

Evaluating Extraction Methods to Study Canine Urine Microbiota

R. Mrofchak^a, C. Madden^a, M.V. Evans^{a,b} and V.L. Hale^{a*}

3 ^aDepartment of Veterinary Preventive Medicine, Ohio State University College of Veterinary
4 Medicine, Columbus, OH, USA

⁵ ^bDivision of Environmental Health Sciences, Ohio State University College of Public Health,
⁶ Columbus, OH, USA

7 *Corresponding Author:

Vanessa Hale

Department of Veterinary Preventive Medicine

10 Ohio State University College of Veterinary Medicine

11 1900 Coffey Rd.

12 Columbus, OH 43210

13 hale.502@osu.edu

15 **Abstract**

16 The urinary microbiota is the collection of microbes present in urine that play a role in host
17 health. Studies of urine microbiota have traditionally relied upon culturing methods aimed at
18 identifying pathogens. However, recent culture-free sequencing studies of the urine microbiota
19 have determined that a diverse array of microbes are present in health and disease. To study
20 these microbes and their potential role in diseases like bladder cancer or interstitial cystitis,
21 consistent extraction and detection of microbial DNA from urine is critical. However, urine is a
22 low biomass substrate, requiring sensitive methods to capture DNA and making the risk of
23 contamination high. To address this challenge, we collected urine samples from ten healthy dogs

24 and extracted DNA from each sample using five different commercially available extraction
25 methods. Extraction methods were compared based on total and bacterial DNA concentrations
26 and microbial community composition and diversity assessed through 16S rRNA gene
27 sequencing. Significant differences in the urinary microbiota were observed by dog and sex but
28 not extraction method. The Bacteremia kit yielded the highest total DNA concentrations
29 (Kruskal-Wallis, $p = 0.165$, not significant) and the highest bacterial DNA concentrations
30 (Kruskal-Wallis, $p = 0.044$). Bacteremia also extracted bacterial DNA from the greatest number
31 of samples. Taken together, these results suggest that the Bacteremia kit is an effective option for
32 studying the urine microbiota. This work lays the foundation to study the urine microbiome in a
33 wide range of urogenital diseases in dogs and other species.

34

35 **Keywords:** urine microbiota, DNA extraction methods, dog, canine, microbiome

36

37 **Highlights**

38 • Canine urine microbiota differed by sex and dog but not extraction method.

39 • Qiagen Bacteremia kit yielded the highest bacterial DNA concentrations from urine.

40 • The Bacteremia kit extracted bacterial DNA from the greatest number of samples.

41 • Absolute abundance of *Sphingomonas* species increased in female dog urine.

42 • *Pasteurellaceae* bacterium canine oral taxon 272 increased in male dog urine.

43

44

45 **Introduction**

46 Urine, in the absence of urinary tract infection, has long been considered sterile; a
47 principle still taught in many healthcare professional settings to date. However, evidence counter
48 to this idea has been accumulating for several decades (K. Thomas-White et al., 2016). Culture-
49 positive asymptomatic bacteriuria is commonly reported in women and older adults; although,
50 this is sometimes deemed “contamination” based on bacterial counts $< 10^5$ (Kass, 1962).
51 Culture-negative symptomatic urinary tract infections (UTIs) are also common, and can, in some
52 cases, be attributed to fastidious organisms that fail to grow using standard urine culturing (SUC)
53 techniques (Dune et al., 2017; Kass, 1962; Maskell et al., 1979; Maskell, 2010; Price et al., 2016;
54 Thapaliya et al., 2020; Thomas-White et al., 2018). More recently, culture-independent next-
55 generation sequencing of urine and enhanced quantitative urine culture (EQUC) has revealed the
56 presence of bacteria in $>90\%$ of individuals – including those with and without UTIs and from
57 urine collected via free-catch, transurethral catheter, or suprapubic aspirates (Chen et al., 2018;
58 Hilt et al., 2014; Pearce et al., 2014; Pohl et al., 2020; Price et al., 2020, 2016; Thapaliya et al.,
59 2020; Thomas-White et al., 2018; Wolfe et al., 2012). Collectively, this work provides evidence
60 for the presence of a urinary microbiome containing live bacteria that are present in healthy
61 individuals and distinct from contaminants.

62 A growing body of work has revealed profound links between the microbiota (oral, gut,
63 lung, vaginal) and host health (Erb-Downward et al., 2011; Fettweis et al., 2019; Griffen et al.,
64 2012; Manor et al., 2020; Ravel et al., 2011) – from nutrient metabolism (David et al., 2014), to
65 immune development and defense (Furusawa et al., 2013), to colonization resistance (Zmora et
66 al., 2018). Thus, it follows that the urine / bladder microbiome may also have a critical role in
67 host health, but it has been far less studied than the microbiota of the aforementioned body

68 regions. Notably, the “urine is sterile” dogma contributed to the exclusion of urine in the first
69 phase of Human Microbiome Project (HMP) launched in 2007 (Proctor et al., 2019). In 2014, the
70 second phase of the HMP launched and included the urine / bladder microbiome. However, work
71 on the urine microbiome continues to lag. Although urine is not sterile, it has a low microbial
72 biomass, making it more challenging to characterize and at greater risk for contamination
73 (Eisenhofer et al., 2019). Despite this, several recent studies on urine have identified clear shifts
74 in the microbial community associated with age (Adebayo et al., 2020; Curtiss et al., 2018;
75 Gottschick et al., 2017; Komesu et al., 2018; Liu et al., 2017b; Pearce et al., 2014), sex (Lewis et
76 al., 2013; Pederzoli et al., 2020; Pohl et al., 2020), urgency urinary incontinence in women
77 (Brubaker et al., 2014; Karstens et al., 2016; Pearce et al., 2014; K. J. Thomas-White et al.,
78 2016), bladder cancer (Bi et al., 2019; Bučević Popović et al., 2018; Chipollini et al., 2020;
79 Hourigan et al., 2020; Liu et al., 2019; Mansour et al., 2020; Pederzoli et al., 2020; Wu et al.,
80 2018), interstitial cystitis (Abernethy et al., 2017; Bresler et al., 2019; Domingue et al., 1995;
81 Meriwether et al., 2019; Nickel et al., 2019, 2016; Siddiqui et al., 2012), neuropathic bladders
82 (Forster et al., 2020; Fouts et al., 2012) and pneumonia (Pierre et al., 2020). However, additional
83 work is needed to identify definitive and mechanistic links between the urine / bladder
84 microbiome, host health, and urinary tract disease.

85 Urinary tract disease is one of the most common diagnoses in veterinary medicine
86 (Byron, 2019; Ling, 1984). In addition, dogs are a valuable translational model for many human
87 diseases, including urogenital diseases like bladder cancer (Knapp et al., 2014). However, there
88 has only been one study, to our knowledge, characterizing canine urine microbiota (Burton et al.,
89 2017) and none evaluating canine urine DNA extraction methods. Multiple methods of urine
90 microbial DNA isolation have been reported in human studies (Bergallo et al., 2006; El Bali et

91 al., 2014; Fouts et al., 2012; Karstens et al., 2020; Pohl et al., 2020; Siddiqui et al., 2009), and
92 there are a few studies that have compared microbial DNA extraction methods. These studies
93 include a comparison of methods for extracting fungal (Ackerman et al., 2019) and viral DNA
94 from urine (Bergallo et al., 2006; Buffone et al., 1991; Santiago-Rodriguez et al., 2015) as well
95 as a study on methods to reverse crystal precipitates that interfere with DNA extraction (Munch
96 et al., 2019). Yet, only one recent study has evaluated urine DNA extraction methods in relation
97 to the bacterial microbiota in humans (Karstens et al., 2020), and there are no comparable studies
98 in dogs, which are a valuable and translational model for human urinary tract diseases (Knapp et
99 al., 2014). In this study, our objective was to compare canine urine bacterial DNA quantity and
100 16S rRNA sequencing results of five commonly used extraction methods. These extraction
101 methods included four DNA isolation kits from Qiagen—Bacteremia, Blood and Tissue,
102 PowerFecal, and PowerFecal Pro—and an extraction protocol using magnetic beads.
103

104 **Materials and Methods**

105 **Sample collection:** Mid-stream free catch urine samples were collected from 10 healthy dogs in
106 September 2019 at The Ohio State University College of Veterinary Medicine (Columbus, OH,
107 USA) with owner consent (IACUC #2019A00000005). Owners were given a questionnaire to
108 provide information including age, sex, breed, spay / neuter status, and diet. Enrollment criteria
109 included: Dogs had to weigh at least 30 lbs (~13.6 kg) and produce > 30 ml of urine in a single
110 urination. Dogs were excluded if they had any history of urinary tract disease or antibiotic use
111 within three weeks of sample collection. We collected urine samples from a total of 10 dogs,
112 including 4 males (3 neutered) and 6 females (5 spayed). The average age of the dogs was 3.7
113 years old (range: 0.75 – 10 years) and represented multiple breeds including: one Great Pyrenees,
114 one Labrador Retriever, one Golden Retriever, and seven mixed breed dogs. Full metadata on

115 each dog is available in **Table S1**. All urine samples were stored at -80 °C within 6 hours of
116 urination where they remained until extraction.

117 **DNA extraction:** Five extraction methods were tested: QIAamp® BiOstic® Bacteremia DNA Kit
118 (B), DNeasy® Blood and Tissue Kit (BTL), QIAamp® PowerFecal® DNA Kit (PF), QIAamp®
119 PowerFecal® Pro DNA Kit (PFP) (Qiagen, Venlo, Netherlands) and an extraction protocol using
120 magnetic beads (MB) (Liu et al., 2017a). Each protocol incorporated varying chemical,
121 mechanical, and thermal lysing steps to facilitate DNA extraction (**Table 1**).

122 **Table 1:** Mechanical, chemical and thermal lysis properties of each extraction method.

Kit	Mechanical lysis?	Mechanical lysis method	Chemical lysis?	Chemical lysis method	Thermal lysis?	Thermal lysis method
Bacteremia (B)	yes	bead beating	yes	Lysis buffer (MBL)	yes	70 °C heat block / water bath for 15 min.
Blood and Tissue with Lysozyme (BTL)	no	N/A	yes	Lysozyme (10mM EDTA, 1.0% SDS, 20 mg/ml lysozyme)	yes	37 °C heat block / water bath for 1 hour (with lysozyme)
Magnetic Beads (MB)	no	N/A	yes	10mM tris, 2mM EDTA, and 1% SDS	yes	65 °C water bath for 30 min. Three freeze / thaw cycles – liquid nitrogen for 1 minute followed by 65 °C for 5 minutes.
PowerFecal (PF)	yes*	bead beating	yes	Lysis buffer (Powerbead Solution)	no*	N/A
PowerFecal Pro (PFP)	yes*	bead beating	yes	Lysis buffer (CD1)	no*	N/A

123 *Note: These manufacturer protocols include thermal but not mechanical lysing steps. However, based on
124 optimizations for stool DNA extractions, we modified these protocols to replace the thermal lysing step
125 with mechanical lysing, and we applied these same modifications to urine DNA extractions. This table
126 reflects the modified protocols we carried out on these samples and not the manufacturer protocol.

127
128 To prepare urine samples for extraction, 3.0 ml of urine was centrifuged at 4 °C and 20,000 x g
129 for 30 minutes. Samples that underwent MB extraction were centrifuged at 4 °C and 20,000 x g
130 for 20 minutes. After centrifuging, the supernatant was removed and discarded and the pellet was

131 used for extraction. Samples were assigned initials unique to each dog (AW, CB, CS, DD, DH,
132 HB, LS, SF, SM, and ZR) followed by the abbreviation of the extraction method (B, BTL, MB,
133 PF, or PFP). For example, sample AWB is urine from dog AW extracted using the Bacteremia
134 (B) kit. Negative and positive controls were also extracted from each method. The negative
135 control was a blank (no sample) tube that underwent the full extraction process. The positive
136 control was 3.0 ml of urine from dog AW spiked with 3×10^8 CFUs of *Melissococcus plutonius*.
137 *M. plutonius* is a honeybee pathogen that would not be expected in the urine / gut of dogs
138 (Djukic et al., 2018). Brief descriptions of each extraction method are included below.

139 **Bacteremia:** Urine pellets were resuspended in a lysis buffer (MBL) and placed in a 70 °C water
140 bath for 15 minutes. Samples then underwent two rounds of bead beating (6 m/s for 60 seconds
141 with a 5 minute rest between rounds). Bead beating was performed on a MP FastPrep-24TM 5G
142 (MP Biomedicals, Santa Ana, California, USA). After bead beating, the samples were cleaned
143 with an Inhibitor Removal Solution. The remainder of the protocol was followed with two
144 modifications. First, centrifugation was performed at 13,000 x g instead of 10,000 x g. Second,
145 during the final step, DNA was eluted into 50 µl of elution buffer (EB) and incubated at room
146 temperature for five minutes; then, the eluent was run through the silica membrane of the spin
147 column a second time to maximize DNA yield.

148 **Blood and Tissue with Lysozyme:** Urine pellets were resuspended in a lysis buffer adapted
149 from Pearce *et al.*, 2014. The lysis buffer consisted of 10mM tris, 1mM EDTA, 1.0 % SDS, pH
150 8.0, and 20 mg/mL lysozyme (Sigma Aldrich, St. Louis, MO) (Adebayo et al., 2020; Adebayo et
151 al., 2017; Kramer et al., 2018; Pearce et al., 2014). The urine pellet and lysis buffer were then
152 incubated in a 37 °C water bath for 1 hour. The remainder of the extraction protocol was
153 followed per manufacturer instructions with one modification. In the final step, DNA was eluted

154 in 50 μ l of elution buffer (AE), incubated at room temperature for five minutes; then, the eluent
155 was run through the silica membrane of the spin column a second time.

156 **Magnetic Beads:** Per Liu *et al.* (2017), urine pellets were resuspended in a lysis buffer
157 composed of 10mM tris, 2mM EDTA, and 1% SDS, pH 8.0. The suspension was then frozen in
158 liquid nitrogen for 1 minute followed by incubation in a 65 °C water bath for 5 minutes; the
159 freeze / thaw process was repeated three times. After the third freeze / thaw step, suspensions
160 were incubated for 30 minutes in a 65 °C water bath. Suspensions were then centrifuged at
161 20,000 x g for five minutes. After completing the lysis step and centrifugation, the supernatant
162 was placed in PCR tube strips containing AMPure XP magnetic beads (Beckman Coulter,
163 Indianapolis, IN). The supernatant and magnetic beads were homogenized and incubated at room
164 temperature, then placed on a magnetic separator for 5 minutes. During this step, lysed DNA was
165 drawn to magnetic beads in the tube strips. The remaining supernatant was removed and beads
166 were washed with 80% ethanol. This was repeated twice. After washing, DNA-bound beads
167 were dried in a 37 °C heat block for 15 minutes. Dried DNA-bound beads were then resuspended
168 in 40 μ l Qiagen® C6 solution. Resuspended samples were then placed on a magnetic separator
169 for 1 – 2 minutes to pellet beads. The resulting supernatant contained DNA used in downstream
170 analyses.

171 **PowerFecal:** Urine pellets were resuspended in lysis buffer (PowerBead Solution + C1) and
172 subjected to two rounds of bead beating (6 m/s for 60 seconds with a five-minute rest between
173 cycles). Samples then underwent multiple inhibitor removal and purification steps. The
174 remainder of the extraction protocol was followed with two modifications. During the second
175 round of centrifuging, after applying the ethanol-based wash solution (C5) to the spin column,
176 samples were centrifuged for 2 minutes (instead of 1 minute) to remove residual wash solution.

177 In the final step, DNA was eluted in 50 μ l of elution buffer (C6), incubated at room temperature
178 for five minutes; then, the eluent was run through the silica membrane of the spin column a
179 second time.

180 **PowerFecal Pro:** Urine pellets were resuspended in lysis buffer (CD1) and subjected to two
181 rounds of bead beating (6 m/s for 60 seconds with a five-minute rest between cycles). Samples
182 then underwent multiple inhibitor removal and purification steps. The remainder of the
183 extraction protocol was followed with one modification. In the final step, DNA was eluted in 50
184 μ l of elution buffer (C6), incubated at room temperature for five minutes; then, the eluent was
185 run through the silica membrane of the spin column a second time.

186 DNA yields from all samples were then quantified on a Qubit[®] 4.0 Fluorometer
187 (Invitrogen, Thermo Fisher ScientificTM, Carlsbad, CA, USA) using a 1X dsDNA High
188 Sensitivity Assay. Hereafter, DNA concentrations measured using Qubit[®] are referred to as total
189 DNA concentrations.

190 **Quantification of bacterial DNA by qPCR:** Bacterial DNA was amplified using 16S rRNA
191 bacterial primers and probes per Nadkarni *et al.* (2002) on a QuantStudioTM 3 Real-Time PCR
192 System (Applied BiosystemsTM, Thermo Fisher ScientificTM, Carlsbad, CA, USA). 300 nM of
193 forward primer (5' – TCCTACGGGAGGCAGCAGT – 3'), 300 nM of reverse primer (5' –
194 GGAATCAGGGTATCTAACCTGTT – 3'), and 175 nM of probe ((6FAM) – 5' –
195 CGTATTACCGCGGCTGCTGGCAC – 3' – (TAMRA)) were added to each reaction. qPCR
196 cycling parameters were as follows: 50 °C for 2 min, 95 °C for 10 min (initial denaturation) and
197 40 cycles of 95 °C for 15 s (denaturation) and 60 °C for 1 min (annealing and extension)
198 (Nadkarni *et al.*, 2002). To be included in analysis, at least two replicates per sample had to
199 amplify. Following qPCR, cycle thresholds were log₁₀-transformed using the equation listed

200 below under “qPCR standard curve,” and the antilog of each sample was used to calculate the
201 bacterial DNA concentration in each sample.

202 **qPCR standard curve:** DNA extracted from an *Escherichia coli* isolate was used to generate a
203 standard curve for qPCR. Five ten-fold dilutions of *E. coli* DNA ranging from approximately 5 x
204 10^4 pg/ μ l to 5 x 10^{-1} pg/ μ l were run in triplicate using the primers, probe, cycling parameters,
205 and the QuantStudio instrument described above. DNA concentrations were then \log_{10} -
206 transformed and plotted against cycle threshold values on a linear regression using R package
207 ggplot2 v.3.3.2. The resulting equation was $y = -5.329x + 36.504$ ($R^2 = 0.984$) where y is the
208 cycle threshold and x is the \log_{10} -transformed DNA concentration. To calculate absolute cell
209 counts in each sample, *Escherichia coli* was used as a standard, and the bacterial DNA
210 concentrations were divided by the theoretical weight of one *E. coli* cell (4.96 fg DNA) per
211 Nadkarni et al. 2002. Absolute cell counts were then multiplied by relative abundances of
212 specific taxa (e.g. *Sphingomonas* and *Pasteurellaceae* bacterium canine oral taxon 272) to obtain
213 and compare absolute cell counts of these taxa.

214 **16S rRNA sequencing and sequence processing:** DNA underwent library preparation and
215 sequencing at Argonne National Laboratory. Library preparation was performed as follows: the
216 V4 region of the 16S rRNA gene was amplified using primers 515F and 806R (Caporaso et al.,
217 2012, 2011). PCR reactions (25 μ L) contained 9.5 μ L of MO BIO PCR Water (Certified DNA-
218 Free), 12.5 μ L of QuantaBio’s AccuStart II PCR ToughMix (2x concentration, 1x final), 1 μ L
219 Golay barcode tagged Forward Primer (5 μ M concentration, 200 pM final), 1 μ L Reverse Primer
220 (5 μ M concentration, 200 pM final), and 1 μ L of template DNA. The following PCR conditions
221 were applied: 94 °C for 3 minutes to denature the DNA, with 35 cycles at 94 °C for 45 s, 50 °C
222 for 60 s, and 72 °C for 90 s; with a final extension of 10 min at 72 °C. Amplicons were then

223 quantified using PicoGreen (Invitrogen) and a plate reader (Infinite® 200 PRO, Tecan).
224 Equimolar volumes of the amplicons were pooled into a single tube. This pool was then cleaned
225 using AMPure XP Beads (Beckman Coulter), and quantified with a fluorometer (Qubit,
226 Invitrogen). After quantification, the molarity of the pool was diluted to 2 nM, denatured, and
227 then diluted to a final concentration of 6.75 pM with a 10% PhiX spike. Amplicons were
228 sequenced on a 251bp x 12bp x 251bp Illumina MiSeq (Lemont, IL, USA) run using customized
229 sequencing primers and procedures (Caporaso et al., 2012). Sequencing data is available at NCBI
230 Bioproject PRJNA689589.

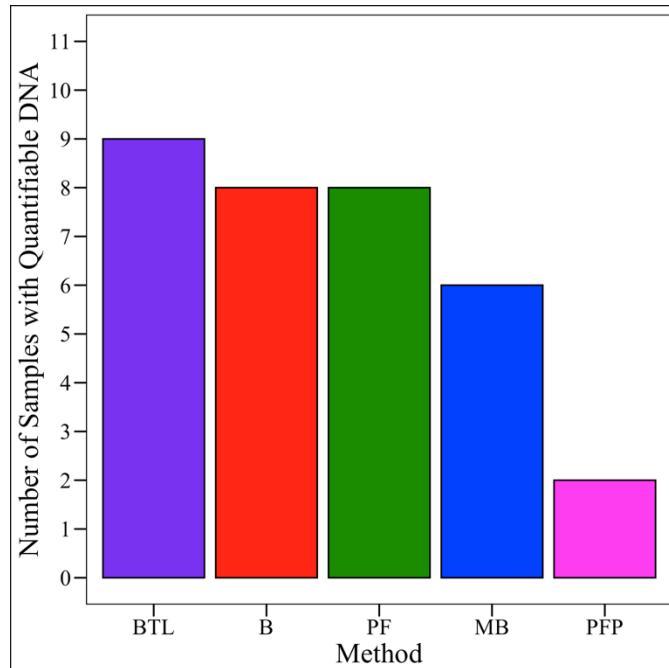
231 Raw, paired-end sequence reads were processed using QIIME2 v. 2020.2 (Boyle et al.,
232 2019). The DADA2 plugin was used to truncate reads at 230 bp and trim 33 bp from the left side
233 of both forward and reverse reads (Callahan et al., 2016). These parameters were used to ensure
234 primers and barcodes were removed and to denoise paired end reads. Taxonomy was assigned in
235 QIIME2 using the Silva 132 99% Operational Taxonomic Units (OTUs) from the 515F / 806R
236 classifier (Quast et al., 2013; Yilmaz et al., 2014). We opted not to rarefy at 300 reads as this
237 drastically decreased diversity and eliminated rare OTUs. Rarefaction can also increase Type 1
238 errors and variance where overdispersion can mask differential abundance between samples
239 (McMurdie and Holmes, 2014). To avoid these issues and account for rare OTUs, an unrarefied
240 table was used as input in α - and β -diversity metrics.

241 **Statistical analyses:** Total DNA concentrations (as measured by Qubit) and bacterial DNA
242 concentrations (as calculated from qPCR) were tested for normality using the Shapiro Wilk
243 Normality Test in R version 3.5.2. DNA concentrations and 16S rRNA read numbers were
244 analyzed using Kruskal-Wallis Rank Sum Test. Statistical significance was achieved if the p-
245 value was less than 0.05.

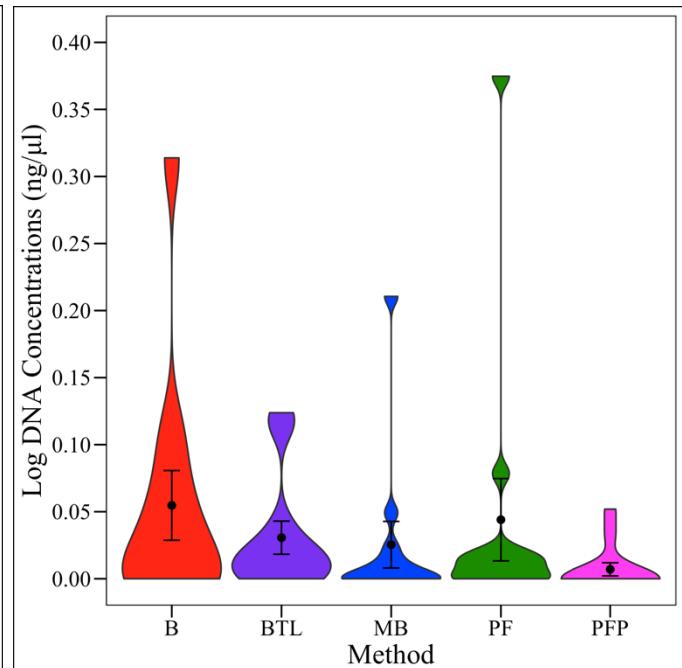
246 All diversity metrics were computed using the R package phyloseq with a p-value cutoff
247 of 0.05 adjusted using the Benjamini & Hochberg False Discovery Rates (McMurdie and
248 Holmes, 2013). To analyze microbial diversity, three α -diversity metrics were used: Observed
249 Operational Taxonomic Units (OTUs) (equivalent to richness), Shannon, and Simpson. Kruskal-
250 Wallis Rank Sum Tests were used to compare α -diversity results to categorical variables of
251 interest (extraction method, sex, dog). Post-hoc pairwise comparisons were calculated using
252 Pairwise Wilcoxon Rank Sum Tests. To compare microbial composition between groups
253 (extraction method, sex, dog), three β -diversity metrics were used: Bray Curtis, Unweighted
254 UniFrac, and Weighted UniFrac. A permutational analysis of variance (PERMANOVA) based
255 on Euclidean distance matrices and 1000 permutations was used to quantify these differences
256 (adonis2 function, R package vegan v.2.5.6). Multilevel pairwise comparisons for dog and
257 extraction method were calculated using pairwise PERMANOVAs with 1000 permutations
258 (Martinez Arbizu, 2020). An Analysis of Composition in Microbiomes (ANCOM) in QIIME2
259 was used to identify differentially abundant taxa between groups (extraction method, sex, dog).

260

261 **Results**

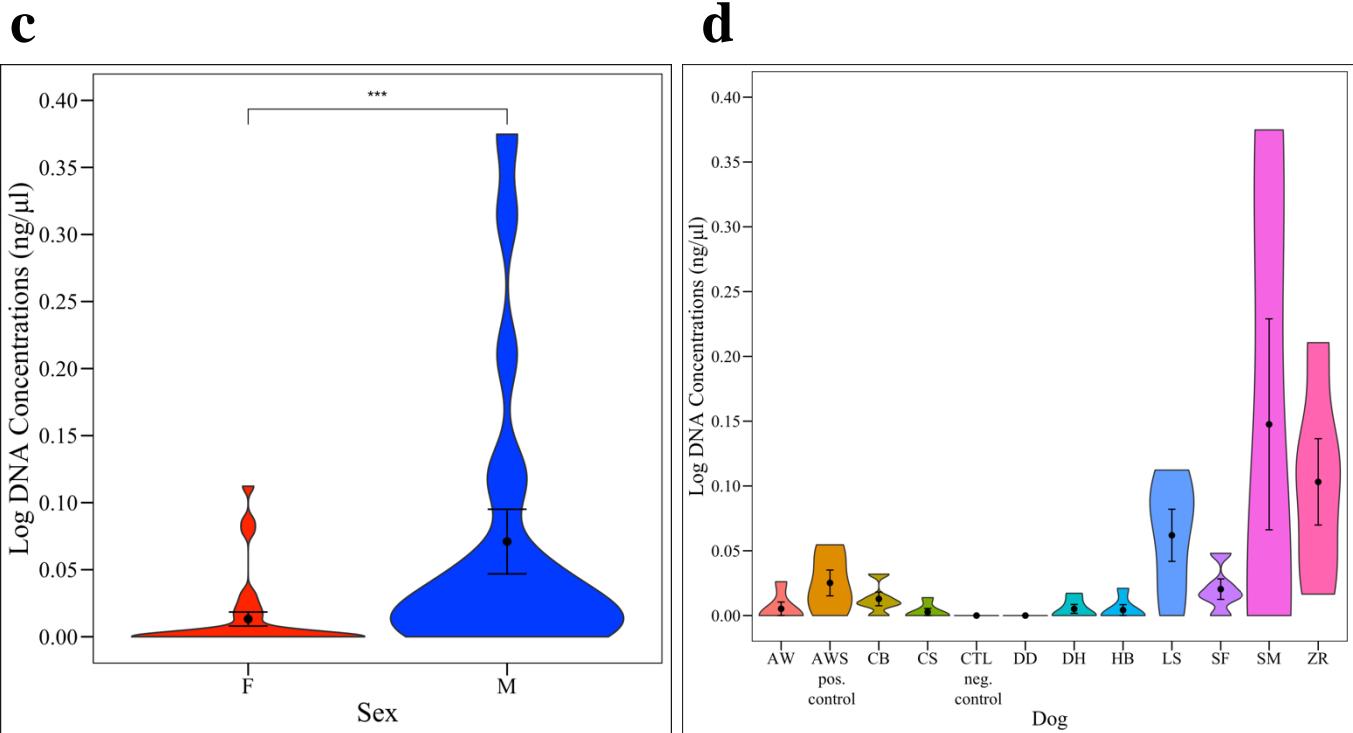

262 **Urine total DNA concentrations:** Total DNA concentrations were measured on a Qubit
263 fluorometer (**Table S2**) and were not normally distributed (Shapiro-Wilk Normality Test, $p = <$
264 0.0001). Twenty-six samples (9 PFP, 6 MB, 4 B, 4 PF, 3 BTL) and all 5 negative controls (one
265 per method) had concentrations that were too low to read ($< 0.01 \text{ ng}/\mu\text{l}$). Quantifiable DNA
266 concentrations ranged from $0.02 \text{ ng}/\mu\text{l}$ to $1.37 \text{ ng}/\mu\text{l}$ for all other samples including positive
267 controls. The number of samples with quantifiable DNA varied by extraction method (**Fig. 1a**).
268 BTL extracted quantifiable DNA from eight out of 12 urine samples (including the positive

269 control). B and PF extracted DNA from seven out of 12 urine samples (including the positive
270 control). MB and PFP extracted DNA from five and two samples, respectively (**Fig. 1a**).
271 Notably, PFP failed to extract DNA from the spiked positive control sample. Total DNA
272 concentrations did not differ significantly by method (**Fig. 1b**, Kruskal-Wallis, $p = 0.165$), but
273 did differ significantly by sex (**Fig. 1c**, Kruskal-Wallis, $p = 0.0007$) and by dog (**Fig. 1d**,
274 Kruskal-Wallis, $p = 0.001$). Males had significantly higher DNA concentrations; however, no
275 pairwise comparisons of DNA concentrations were significant by dog (**Table S3**). Bacteremia
276 (B) produced the highest average total DNA concentrations, followed by PF, BTL, MB, and PF.


277 **Figure 1 – Total DNA Concentrations**

278
279

a



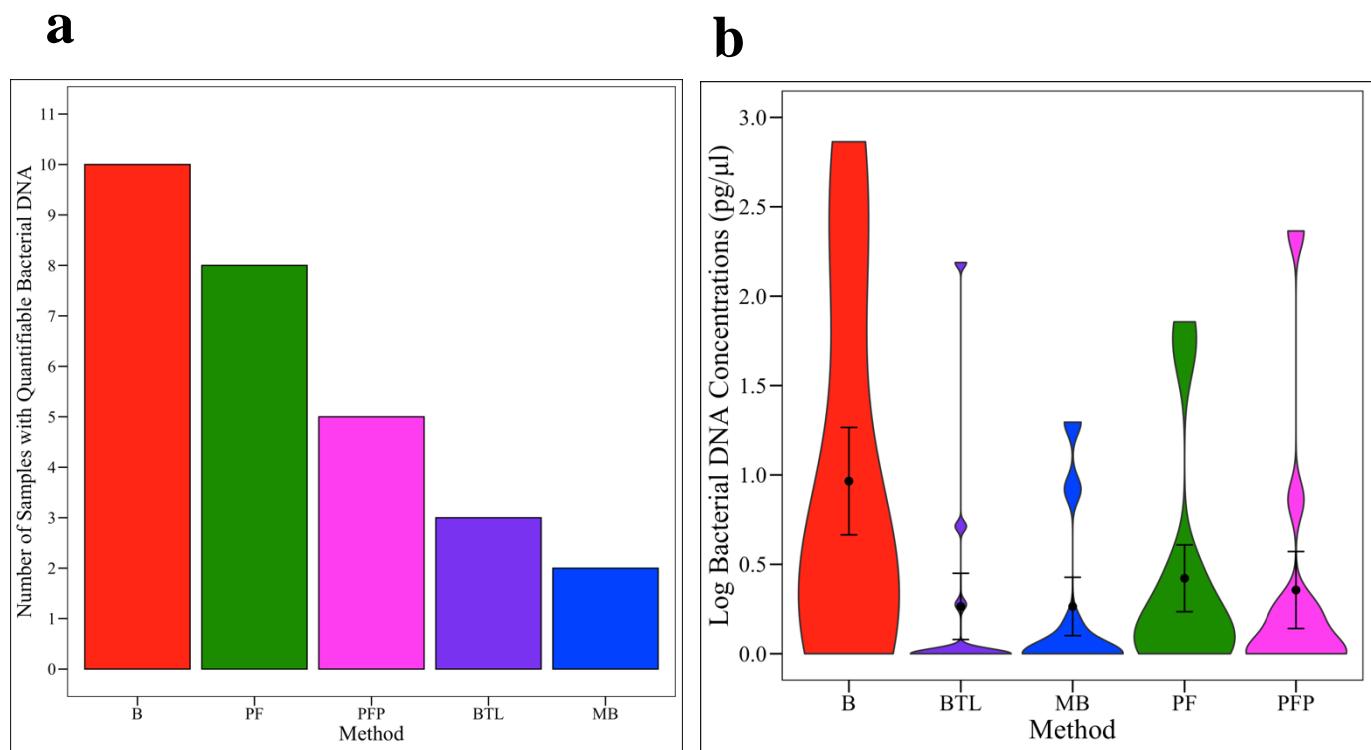
b

280
281

282

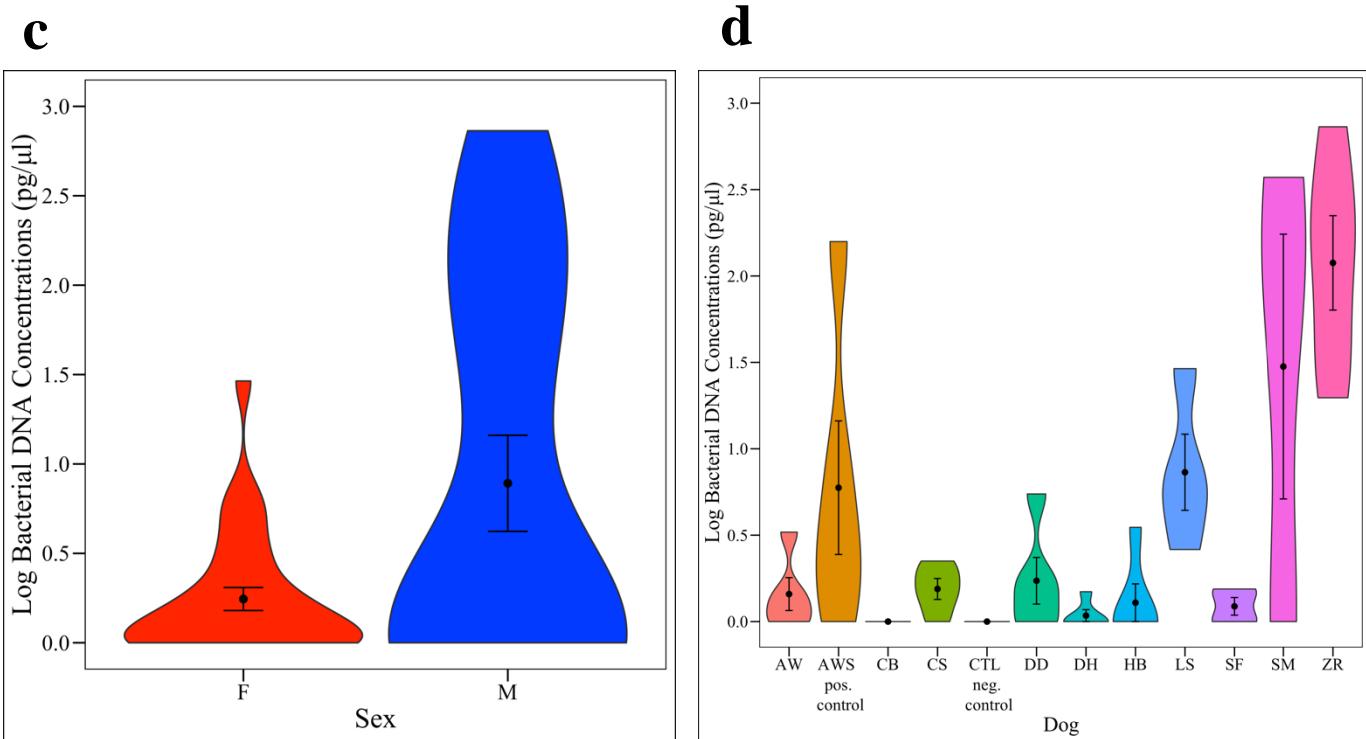
283

Figure 1: Total DNA concentrations. (a) Number of samples with measurable total DNA by extraction method (negative control excluded). Total DNA concentration, measured via Qubit, by (b) extraction method, (c) sex, and (d) dog. Total DNA concentrations did not differ significantly by extraction method (Kruskal-Wallis, $p = 0.165$) but did differ significantly by sex (Kruskal-Wallis, $p = 0.0007$; males > females), and dog (Kruskal-Wallis, $p = 0.001$). By dog, no pairwise comparisons were statistically significant. B = Bacteremia, BTL = Blood & Tissue with Lysozyme, MB = Magnetic Beads, PF = PowerFecal, PFP = PowerFecal Pro, F = Female, M = Male.


292

293 Urine bacterial DNA concentrations: Bacterial DNA concentrations were measured in
294 triplicate via qPCR (**Table S2**) and were not normally distributed (Shapiro-Wilk Normality Test,
295 $p = < 0.0001$). Twenty-two samples (5 MB, 8 BTL, 5 PFP, 3 PF, 1 B) and all 5 negative controls
296 did not amplify any bacterial DNA. Five samples (AWMB, LSMB, SMMB, SFMB, SMPFP)
297 were excluded for failing to have at least two replicates amplify. All samples exhibited less than
298 3% variation in cycle threshold values between replicates with three exceptions: AWSMB (the
299 spiked positive control, 5.6% variation), SFB (6.1%), and SMB (3.4%). All three samples were
300 included in analyses. Quantifiable bacterial DNA concentrations ranged from 0.28 pg/μl to

301 729.48 pg/μl. The number of samples with quantifiable bacterial DNA varied by extraction
302 method (**Fig. 2a**). Additionally, bacterial DNA concentrations differed significantly by method
303 (**Fig. 2b**, Kruskal-Wallis, $p = 0.044$) and by dog (**Fig. 2d**, Kruskal-Wallis, $p = 0.0005$); although,
304 no pairwise comparisons by method or dog were significant (**Table S4**). Bacteremia (B) yielded
305 the highest bacterial DNA concentrations and extracted quantifiable bacterial DNA from the
306 greatest number (10 out of 11) of urine samples. Bacterial concentrations did not differ
307 significantly by sex (**Fig. 2c**, Kruskal-Wallis Rank Sum Test, $p = 0.333$). Bacterial and total
308 DNA concentrations were significantly correlated (**Fig. S1a**, $R = 0.42$, $p = < 0.001$), and 13
309 samples were identified as having greater bacterial DNA concentrations than total DNA
310 concentrations (**Table S2**).


311 **Figure 2 – Bacterial DNA Concentrations**

312
313

314
315

316

317

318

319

320

321

322

323

324

325

326

Figure 2: Bacterial DNA Concentrations. (a) Number of samples with measurable bacterial DNA by extraction method. Bacterial DNA concentrations, calculated via qPCR, by (b) extraction method, (c) sex and (d) dog. Bacterial DNA concentrations differed significantly by extraction method (Kruskal-Wallis, $p = 0.044$) and by dog (Kruskal-Wallis, $p = 0.0005$); although, no pairwise comparisons were significant. Bacterial DNA concentrations did not differ significantly by sex (Kruskal-Wallis, $p = 0.333$; positive control excluded). B = Bacteremia, BTL = Blood & Tissue with Lysozyme, MB = Magnetic Beads, PF = PowerFecal, PFP = PowerFecal Pro, F = Female, M = Male.

327

328

329

330

331

332

333

334

Microbial diversity by extraction method, dog, and sex: Based on the composition of the

negative controls, the following taxa were deemed to be contaminants and were

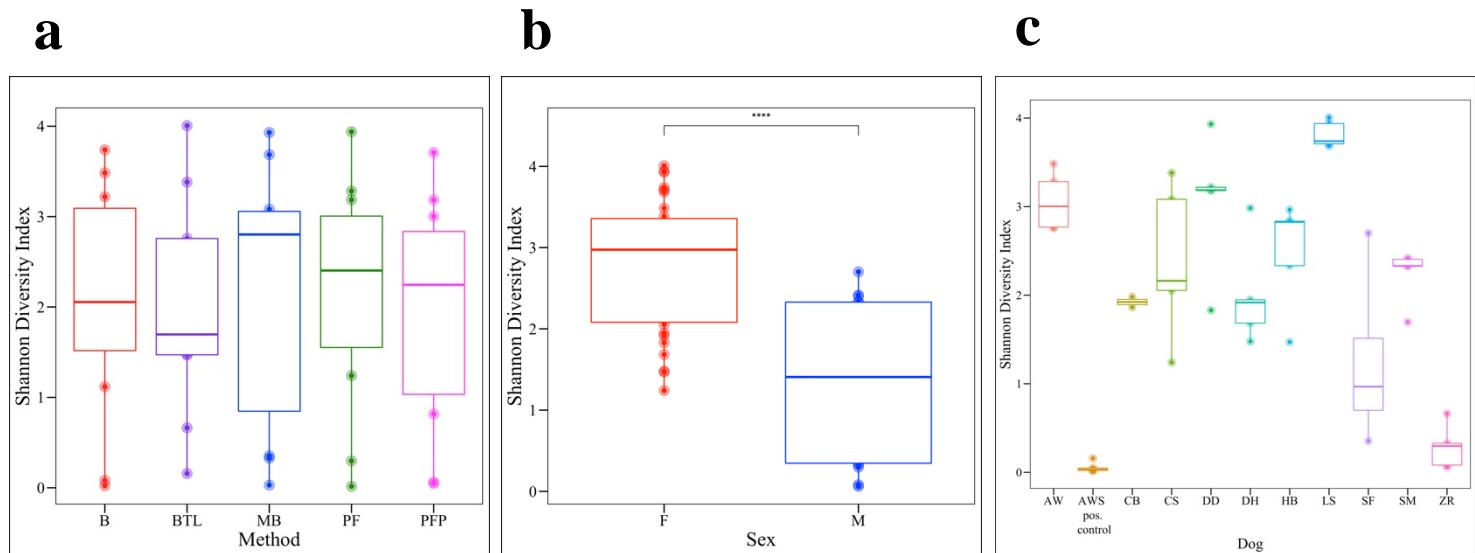
bioinformatically removed from all samples: *Bradyrhizobium*, Caulobacteraceae, Chloroflexi,

Cyanobacteria, *Micrococcus*, and *Prevotella* 9. Chloroplasts, mitochondria, and any reads

identified as Eukarya or Archaea were also removed from all samples. Additionally, four

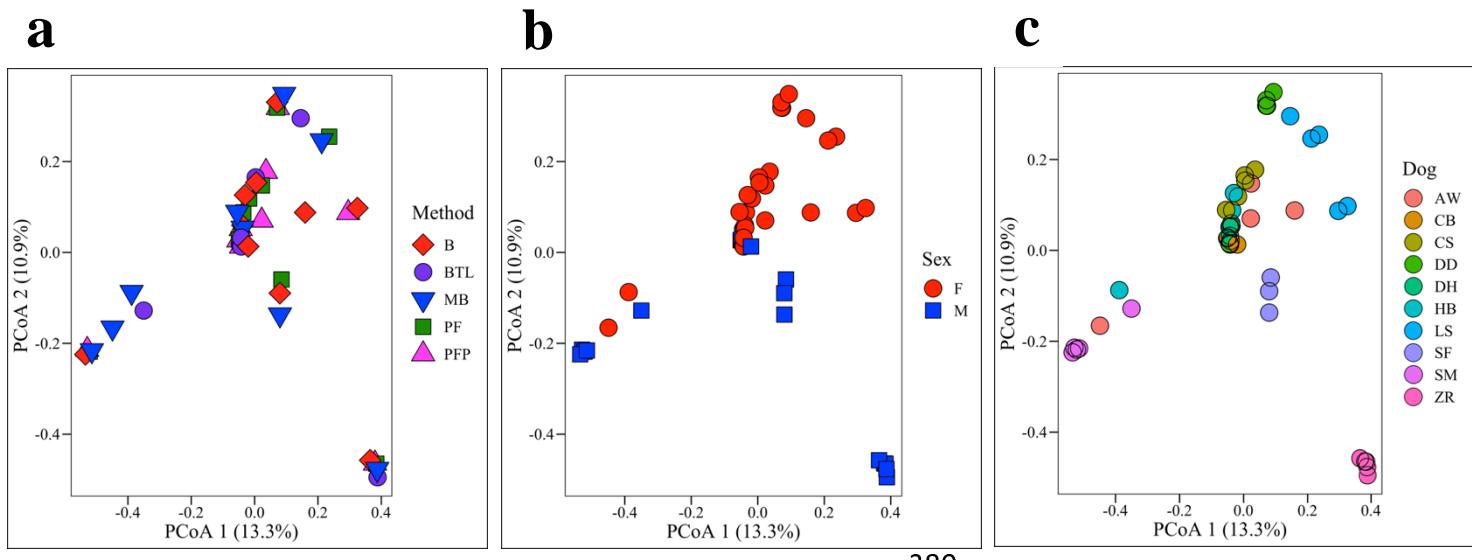
samples (CBMB, SFBTL, CBBTL, CBPFP) with fewer than 300 reads were excluded from 16S

rRNA bacterial community analyses. Three of these four samples came from dog CB, who had


one of the lowest urine bacterial concentrations. Three of the 5 negative controls also had fewer

335 than 300 reads while the remaining 2 negative controls had 8101 and 8269 reads respectively and
336 a taxonomic composition suggesting potential cross-contamination by urine microbiota during
337 the plating / library preparation / sequencing process. The remaining samples ranged from 316 to
338 42,090 reads (average = 16,126). A total of 51 samples (11 B and PF, 10 MB and PFP, 9 BTL)
339 were retained for analysis. The number of 16S rRNA reads per sample differed significantly by
340 dog (Kruskal-Wallis, $p = <0.00001$), but not by sex (Kruskal-Wallis, $p = 0.937$) or extraction
341 method (Kruskal-Wallis, $p = 0.378$); although, Bacteremia yielded the greatest number of 16S
342 reads per sample (**Fig. S2**,). There was also a significant correlation between the number of 16S
343 reads and bacterial DNA concentrations (**Fig. S1b**, $R = 0.28$, $p = 0.047$).

344 Microbial diversity was compared across samples by extraction method, dog, and sex
345 (Shannon Index: **Fig. 3**; Observed OTUs and Simpson Index: **Fig. S3**). The positive control,
346 which was urine from female dog AW spiked with *M. plutonius*, was removed from all analyses
347 by sex to prevent bias. All three measures of diversity revealed the same patterns. Microbial
348 diversity did not differ by extraction method (Kruskal-Wallis: Shannon, $p = 0.95$; Observed
349 OTUs, $p = 0.727$, Simpson, $p = 0.958$; **Fig. 3a, S3a,d**) but did differ significantly by sex
350 (Kruskal-Wallis: Shannon, $p = 0.00005$; Observed OTUs, $p = 0.002$, Simpson, $p = 0.0001$; **Fig.**
351 **3b, S3b,e**) and by dog (Kruskal-Wallis: Shannon, $p = 0.00002$; Observed OTUs, $p = 0.0001$,
352 Simpson, $p = 0.00002$; **Fig. 3c, S3c,f, Table S5**). Females had significantly higher microbial
353 diversity than males across all diversity metrics. By dog, LS had significantly higher microbial
354 diversity than 9 other dogs while ZR had significantly lower microbial diversity than 9 other
355 dogs. For a full list of significant pairwise comparisons by dog, see **Table S5**.


356

357

360
361
362 **Figure 3 – Microbial diversity.** The Shannon diversity metric was used to compare microbial
363 diversity by (a) extraction method, (b) sex, (c) and dog. Microbial diversity did not differ
364 significantly by kit (Kruskal-Wallis, $p = 0.95$) but did differ significantly by dog (Kruskal-
365 Wallis, $p = 0.00002$). For all statistically significant pairwise comparisons by dog, see **Table S3**.
366 Females exhibited higher microbial diversity than males (Kruskal-Wallis, $p = 0.00005$). B =
367 Bacteremia, BTL = Blood & Tissue with Lysozyme, MB = Magnetic Beads, PF = PowerFecal,
368 PFP = PowerFecal Pro, F = Female, M = Male
369

370 **Microbial composition by extraction method, dog, and sex:** Bray Curtis (**Fig. 4**) and
371 Unweighted and Weighted UniFrac metrics (**Fig. S4**) were used to compare microbial
372 composition (beta-diversity) across groups. No significant differences were observed by
373 extraction method (PERMANOVA: Bray Curtis, $p = 0.999$; Unweighted UniFrac, $p = 0.478$;
374 Weighted UniFrac, $p = 0.524$, **Fig. 4a, Fig. S4a,d**). However, microbial composition did differ
375 significantly by sex (PERMANOVA: Bray Curtis, $p = < 0.001$, Unweighted UniFrac, $p = 0.005$;
376 Weighted UniFrac, $p = 0.011$ **Fig. 4b, S4b,e**) and by dog (PERMANOVA: Bray Curtis, $p = <$
377 0.001, Unweighted UniFrac, $p = 0.005$; Weighted UniFrac, $p = 0.011$; **Fig. 4c, S4c,f, Table S6**).

380

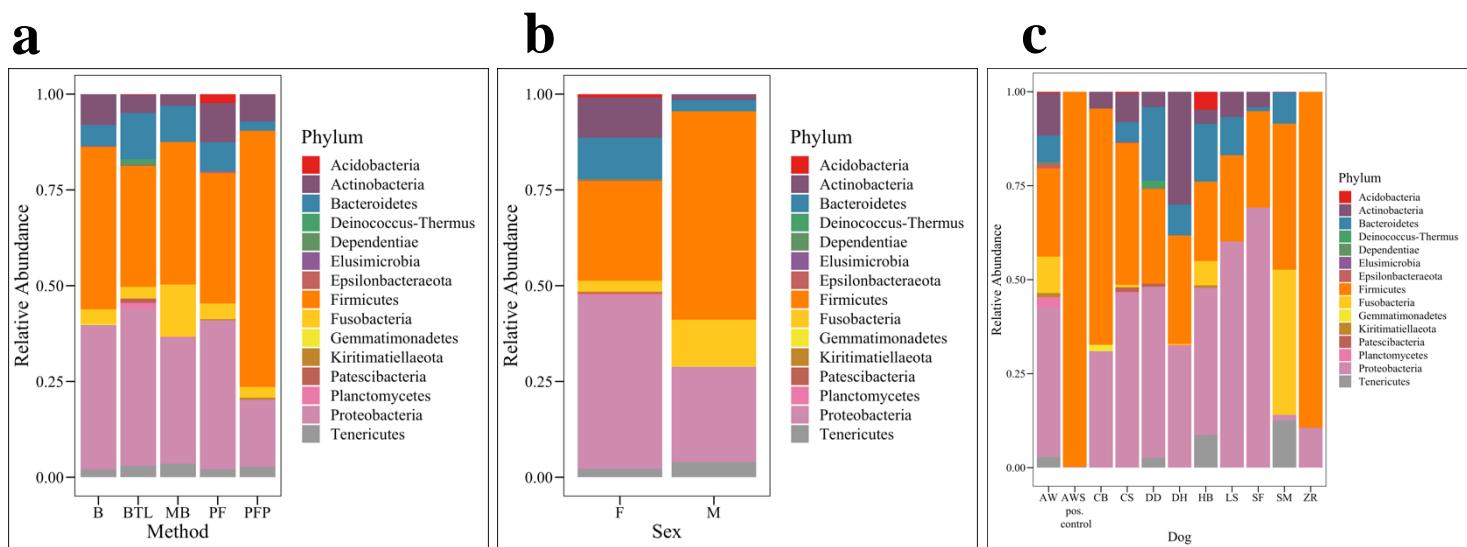
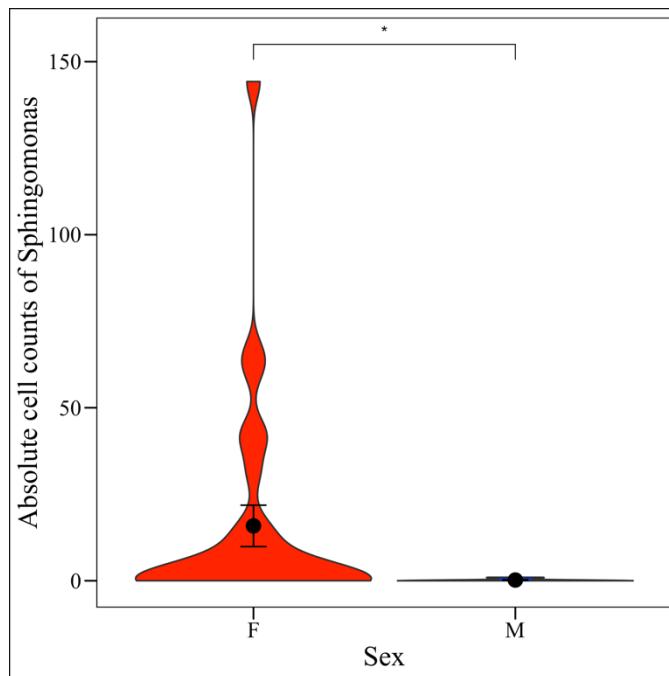
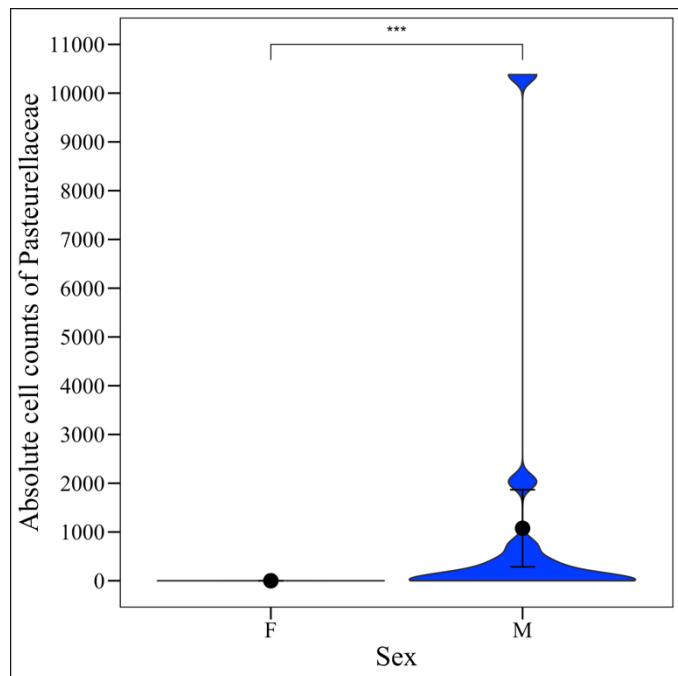

381
382
383
384
385
386

Figure 4 –Microbial Composition. Bray Curtis dissimilarity matrices were used to compare microbial composition (beta-diversity) by (a) extraction method, (b) sex, (c) and dog. Microbial composition did not differ significantly by method (PERMANOVA, $p = 0.999$) but did differ significantly by sex (PERMANOVA, $p = < 0.001$) and dog (PERMANOVA, $p = < 0.001$).

387 **Bacterial taxonomic differences by extraction method, dog, and sex:** In total, there were 21
388 phyla, 323 genera, and 203 amplicon sequence variants (ASVs, roughly equivalent to species)
389 observed across all canine urine samples. Collectively, the three most abundant phyla across all
390 samples were Proteobacteria, Bacteroidetes, and Firmicutes (Fig. 5). We also noted that the
391 positive control sample, AWS, which was urine from dog AW spiked with *M. plutonius*, had
392 significantly lower microbial diversity (Shannon, Wilcoxon Rank Sum test, $p = 0.022$) as
393 compared to AW. This indicates that in urine dominated by a specific microbe (e.g. during a
394 urinary tract infection), amplicon sequencing precludes the ability to detect other microbes
395 present in the microbial community. To test for differentially abundant taxa between groups, we
396 first removed all taxa present at < 1% relative abundance. At the phyla level, there were no
397 significant differences in taxa abundances by extraction method (Fig. 5a, Kruskal-Wallis, $p =$
398 0.81) or dog (Fig. 5c, Kruskal-Wallis, $p = 0.12$), but females had a significantly higher


399 abundance of Actinobacteria as compared to males (**Fig. 5b**, ANCOM, $W = 14$). At the L7
 400 (roughly species) level, no taxa were found to be differentially abundant by extraction method.
 401 However, several taxa were identified as differentially abundant by sex and by dog. By sex, the
 402 relative abundance of *Sphingomonas* was significantly increased in females compared to males
 403 (**Fig. S5a**, ANCOM $W = 573$) while *Pasteurellaceae* bacterium canine oral taxon 272 was
 404 significantly more abundant in males (**Fig. S5b**, ANCOM $W = 591$). Thirty-seven taxa (L7 level)
 405 were differentially abundant by dog (**Table S7**, ANCOM).

406 We then converted the relative abundances into absolute cell counts using bacterial DNA
 407 concentrations derived from qPCR and using the weight of DNA in one *E. coli* cell (4.96 fg) as a
 408 standard (Nadkarni et al., 2002). Total cell counts ranged from approximately 10 – 147,072 cells
 409 per sample. We multiplied total cell counts by the relative abundances of *Sphingomonas* or
 410 *Pasteurellaceae* bacterium canine oral taxon 272 to get the absolute cell counts of these taxa.
 411 The absolute cell counts of *Sphingomonas* were significantly increased in females (**Fig. 6a**,
 412 Kruskal-Wallis, $p = 0.0148$) while the absolute cell counts of *Pasteurellaceae* bacterium canine
 413 oral taxon 272 were significantly increased in males (**Fig. 6b**, Kruskal-Wallis, $p = 0.0002$).



416 **Figure 5 – Bacterial Relative Abundances by Phyla.** Microbial taxa bar plots by Phyla for (a)
417 extraction method, (b) sex and (c) dog. B = Bacteremia, BTL = Blood Tissue with Lysozyme,
418 MB = Magnetic Beads, PF = PowerFecal, PFP = PowerFecal Pro, F = Female, M = Male.
419
420

421 **a**

422 **b**

423

424

425 **Figure 6 – Differentially Abundant Taxa by Sex.** (a) Females had significantly greater
426 absolute cell counts of *Sphingomonas* (Kruskal-Wallis, $p = 0.0148$) while (b) males had
427 significantly greater absolute cell counts of *Pasteurellaceae* bacterium canine oral taxon 272
428 (Kruskal-Wallis, $p = 0.0002$).
429

430 Discussion

431 We compared total and bacterial DNA concentrations as well as 16S rRNA microbial
432 community sequencing data from the urine of 10 healthy dogs extracted using 5 different DNA
433 isolation methods. Each method employed various mechanical, chemical, and / or thermal lysing
434 techniques. Sex and dog, but not extraction method, significantly affected DNA concentrations
435 and microbial diversity and composition. Bacteremia (B) was determined to be one of the most
436 effective methods for urine microbial DNA extraction.

437

438 **DNA concentrations and 16S reads**

439 Bacteremia (B) extracted the greatest total (although not significant) and bacterial DNA
440 concentrations from the canine urine samples (**Fig. 1b, 2b**). Moreover, Bacteremia extracted
441 quantifiable *bacterial* DNA from the greatest number of samples (10 out of 11 samples –
442 including the positive control) while BTL extracted quantifiable *total* DNA from the greatest
443 number of samples (9 out of 11) (**Fig. 1a, 2a**). B and PF each extracted total DNA from the
444 second greatest number of samples (8 out of 11). Males contained significantly greater total but
445 not bacterial DNA as compared to females (**Fig. 1c, 2c**). This contrasts a previous study on
446 human urine microbiota which reported higher total DNA concentrations in females as compared
447 to males (El Bali et al., 2014). Total and bacterial DNA concentrations and number of 16S rRNA
448 reads also varied significantly by dog (**Fig. 1d, 2d, S2c, Table S3, S4**). Bacteremia also
449 produced the greatest number of 16S rRNA reads as compared to other extraction methods
450 (Kruskal-Wallis, $p = 0.378$); however, as 16S rRNA sequencing data are compositional, we do
451 not weigh this finding heavily (Gloor et al., 2017) (**Fig. S2a**). Taken together, Bacteremia
452 demonstrated efficacy over other methods in extracting DNA from dog urine, while biological
453 factors such as sex and dog had strong effects on DNA concentrations.

454 In 13 samples, bacterial DNA concentrations were greater than total DNA concentrations.
455 This primarily occurred in 3 dogs (AW, DD, ZR) and could be due to relatively high bacterial
456 loads in these dogs, as well as the increased sensitivity of qPCR (bacterial DNA concentrations)
457 as compared to Qubit (total DNA concentrations) (Hussing et al., 2018). In 9 other samples, 5 of
458 which were extracted by BTL, there was quantifiable total DNA but no quantifiable bacterial
459 DNA present, suggesting that these samples may have contained more host than bacterial DNA,

460 or that BTL was more effective in extracting host as compared to bacterial DNA. Despite the
461 lack of quantifiable bacterial DNA in these samples, we obtained 16S rRNA sequencing reads
462 from all 9 samples; although, 3 of the 10 samples were excluded from 16S rRNA analysis for
463 having fewer than 300 reads. This indicates that 16S rRNA sequencing may be more sensitive to
464 bacterial DNA than qPCR (Charlebois et al., 2020); however, the microbial taxa present in these
465 samples should be reviewed carefully for potential contamination as they could contain low
466 reads and skewed relative abundances. Alternately, the different primer sets used in qPCR and
467 16S rRNA sequencing, although both considered “universal bacterial primers,” may contribute to
468 the differences we observed in bacterial DNA detection between qPCR and 16S rRNA
469 sequencing.

470

471 **Microbial Diversity and Composition**

472 Microbial diversity and composition differed significantly by sex and dog but not extraction
473 method (**Fig. 3, 4**), indicating that individual differences in the urine microbiota overwhelmed
474 potential differences introduced by extraction. Four samples were excluded from this analysis for
475 having fewer than 300 reads. All 10 canine urine samples extracted via B and PF (excluding
476 negative and positive controls) contained greater than 300 reads and were retained for analysis.
477 MB and PFP extractions each retained 9 samples for analysis, and BTL retained 8 samples.
478 These results again highlight Bacteremia as a viable extraction method for urine microbiota, as it
479 did not obviously skew microbial communities while also generating reasonable 16S rRNA
480 yields. We further observed that urine microbiota were highly variable between individuals, a
481 finding that has been reported previously in studies on human and canine urine (Gottschick et al.,
482 2017; Hilt et al., 2014; Pearce et al., 2014; Wolfe et al., 2012). A few dogs stood out in terms of

483 microbial composition and diversity. ZR, for example, had significantly lower microbial
484 diversity (Shannon) than 7 out of 9 dogs (**Table S5**) and significantly different microbial
485 composition (Bray-Curtis) than 8 out of 9 dogs (**Table S6**). LS had significantly higher microbial
486 diversity (Shannon) than 6 out of 9 dogs and significantly different microbial composition (Bray-
487 Curtis) than 8 out of 9 dogs (**Table S5, S6**).

488 We also observed that females had significantly higher microbial diversity than males
489 despite the finding that males had significantly higher total (**Fig. 1c**) and bacterial DNA (**Fig.**
490 **2c**); although, the latter was not significant. This suggests that males may be shedding more host
491 cells into urine than females. The increased urine microbial diversity in females could be due to
492 differing anatomy between sexes, differing hormone profiles, or differing urination habits. In
493 humans, urine microbial diversity results vary by study. In a 2013 study based on free-catch
494 urine, increased diversity was reported in healthy females as compared to males (Lewis et al.,
495 2013), while in a study from 2020 that compared both free-catch and catheterized urine, no
496 differences in microbial diversity were reported between males and females (Pohl et al., 2020).
497 In the only study, to our knowledge, on healthy canine urine microbiota, microbial diversity did
498 not differ by sex (Burton et al., 2017); although, this study used cystocentesis to collect urine,
499 reducing the potential for genital and skin contaminants that may be present in free-catch
500 samples, as collected in our study. Hormones have also been linked to changes in the fecal
501 microbiome of women and could feasibly be altering the urine microbiota as well (Fuhrman et
502 al., 2014). Urinary behavior also differs between male and female dogs with males generally
503 urinating more frequently than females (Wirant and McGuire, 2004). It is feasible that urine
504 volume and retention time in the bladder could alter urine composition and the urine microbial
505 community.

506

507 **Taxonomic differences**

508 In this study, the three most abundant phyla across all samples were Proteobacteria,
509 Bacteroidetes, and Firmicutes. Other studies on urine microbiota in humans and in dogs report
510 similar findings (Karstens et al., 2016; Lewis et al., 2013; Nelson et al., 2010; Pearce et al., 2014;
511 Siddiqui et al., 2011). There were no differentially abundant taxa at the phyla level by extraction
512 method or dog, but the relative abundance of Actinobacteria was significantly higher in females
513 than males. Actinobacteria has also been reported in the urine of human females (Karstens et al.,
514 2016; Lewis et al., 2013; Pearce et al., 2014; Siddiqui et al., 2011; Thomas-White et al., 2018),
515 and in the oral (Oh et al., 2015) and gut (Honneffer et al., 2017; Kerr et al., 2013) microbiota of
516 dogs. At the L7 (roughly species) level, we observed several differentially abundant taxa by sex
517 and by dog, but not by extraction method. Notably, *Pasteurellaceae* bacterium canine oral taxon
518 272 was significantly increased in males while *Sphingomonas* was significantly increased in
519 females. Taxa in the Pasteurellaceae family have been reported as part of the canine oral
520 (Dewhirst et al., 2012; Oh et al., 2015; Ruparell et al., 2020), nasal (Tress et al., 2017), and gut
521 microbiota (Xenoulis et al., 2008). It is possible that this taxon is introduced into canine urine
522 through licking of the prepuce or penis. As such, this taxon could represent a skin contaminant or
523 could be a true inhabitant of canine urine. Similarly, *Sphingomonas* has been reported in the
524 canine vaginal microbiota (Burton et al., 2017) and could represent a genital contaminant or true
525 inhabitant of urine. In humans, *Lactobacillus* species are common vaginal microbes, but studies
526 on urine microbiota collected via catheter demonstrate that similar or identical *Lactobacillus*
527 species are also present and culturable from the bladder and are not just contaminants (Jacobs et
528 al., 2020; Komesu et al., 2020; Thomas-White et al., 2018).

529 There were several limitations to the work performed here. First, mid-stream free-catch
530 urine was used for this study. This collection technique is highly relevant as it is non-invasive
531 and commonly employed in canine health assessments; however, it is subject to contamination
532 by urethral, genital, and skin microbiota. In a previous study on canine urine microbiota that
533 collected urine via antepubic cystocentesis, no significant differences in microbial composition
534 or diversity were observed between male and female dogs (Burton et al., 2017), while in our
535 study, significant differences in microbial composition and diversity were observed by sex.
536 These differences could be attributed to genital (e.g. vaginal) or skin contaminants in free-catch
537 urine. A second limitation in this study: We cannot determine if the DNA and sequences detected
538 in urine samples came from live or dead bacteria. In other words, we may be detecting microbes
539 that are not actually contributing to the urogenital environment. Specialized culture or
540 assessments of microbial function (e.g. metabolomics, proteomics, transcriptomics) are
541 necessary to make this distinction. Finally, these samples were analyzed using 16S rRNA
542 sequencing. We did this to ensure that we could obtain valid sequencing data from a relatively
543 small amount of urine (3 ml) with generally low DNA concentrations. Now that we have
544 established an effective method for urine microbiota extraction, we can pursue deeper
545 sequencing (e.g. whole shotgun metagenomic sequencing) to more fully characterize microbial
546 genomes and potential microbial function. Also worth noting, we used 3 ml of urine for DNA
547 extractions. Other studies on the urine microbiota have used a range of urine volumes from 1 ml
548 (Pohl et al., 2020; Price et al., 2020; Thomas-White et al., 2017) to 30 ml (Burton et al., 2017;
549 Shrestha et al., 2018). We opted to test smaller volumes of urine as it is not always feasible to
550 obtain 30 ml of urine from a dog, particularly a small dog. Larger volumes of urine may yield

551 larger DNA concentrations and, as such, more readily facilitate deeper sequencing of these
552 samples.

553

554 **Conclusion:** The Bacteremia (B) kit yielded the highest total DNA concentrations, the highest
555 bacterial DNA concentrations, the greatest number of 16S rRNA sequencing reads, and it
556 extracted bacterial DNA from the greatest number of samples. Moreover, microbial diversity and
557 composition did not significantly differ by kit indicating that no method, including Bacteremia,
558 dramatically biased the sequencing results. As such, Bacteremia proved effective as an extraction
559 method for studies of the urine microbiota.

560

561 **Author Contributions:**

562 RM contributed to the study design, performed qPCR, analyzed sequencing results, and drafted
563 the manuscript.

564 CM performed DNA extractions, assisted with data analysis, and provided feedback on the
565 manuscript.

566 ME assisted with processing of sequencing data and provided feedback on the manuscript.

567 VLH designed and directed the study, and aided in analysis of sequencing results, data
568 interpretation, and manuscript preparation.

569

570 **Conflict of interest:** All investigators in this study report no conflicts of interest.

571

572

573 **Acknowledgments:** We are grateful to Dr. Sushmitha Durgam for the shared use of her qPCR
574 instrument and to the many dogs and dog owners who participated in this study.

575

576 **Funding:** Support for this project was provided by the Ohio State University College of
577 Veterinary Medicine Canine Funds, the Infectious Disease Institute, and the Department of
578 Veterinary Preventive Medicine.

579

580 **References**

581 Abernethy, M.G., Rosenfeld, A., White, J.R., Mueller, M.G., Lewicky-Gaupp, C., Kenton, K.,
582 2017. Urinary microbiome and cytokine levels in women with interstitial cystitis. *Obstet.*
583 *Gynecol.* <https://doi.org/10.1097/AOG.0000000000001892>

584 Ackerman, A.L., Anger, J.T., Khalique, M.U., Ackerman, J.E., Tang, J., Kim, J., Underhill,
585 D.M., Freeman, M.R., 2019. Optimization of DNA extraction from human urinary samples
586 for mycobiome community profiling. *PLoS One.*
587 <https://doi.org/10.1371/journal.pone.0210306>

588 Adebayo, A.S., Ackermann, G., Bowyer, R.C.E., Wells, P.M., Humphreys, G., Knight, R.,
589 Spector, T.D., Steves, C.J., 2020. The Urinary Tract Microbiome in Older Women Exhibits
590 Host Genetic and Environmental Influences. *Cell Host Microbe* 28, 298-305.e3.
591 <https://doi.org/https://doi.org/10.1016/j.chom.2020.06.022>

592 Adebayo, A.S., Survayanshi, M., Bhute, S., Agunloye, A.M., Isokpehi, R.D., Anumudu, C.I.,
593 Shouche, Y.S., 2017. The microbiome in urogenital schistosomiasis and induced bladder
594 pathologies. *PLoS Negl. Trop. Dis.* <https://doi.org/10.1371/journal.pntd.0005826>

595 Bergallo, M., Costa, C., Gribaudo, G., Tarallo, S., Baro, S., Ponzi, A.N., Cavallo, R., 2006.
596 Evaluation of six methods for extraction and purification of viral DNA from urine and
597 serum samples. *New Microbiol.*

598 Bi, H., Tian, Y., Song, C., Li, J., Liu, T., Chen, Z., Chen, C., Huang, Y., Zhang, Y., 2019.
599 Urinary microbiota - a potential biomarker and therapeutic target for bladder cancer. *J. Med.*
600 *Microbiol.* <https://doi.org/10.1099/jmm.0.001058>

601 Boylen, E., Ram Rideout, J., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A.,
602 Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K.,
603 Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M.,
604 Chase, J., Cope, E.K., Da Silva, R., Deiner, C., Dorrestein, P.C., Douglas, G.M., Durall,
605 D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M.,
606 Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S.,
607 Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler,
608 B.D., Kang, K. Bin, Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolak,
609 T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C.,
610 Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A. V., Metcalf,
611 J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F.,
612 Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E.,
613 Rasmussen, L.B., Rivers, A., Robeson 2nd, M.S., Rosenthal, P., Segata, N., Shaffer, M.,
614 Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J.,
615 Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F.,
616 Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M.,

617 Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Zech Xu, Z., Zaneveld, J.R.,
618 Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable
619 and extensible microbiome data science using QIIME 2. *Nat. Biotechnol.* 37, 852–857.
620 <https://doi.org/10.1038/s41587-019-0209-9>

621 Bresler, L., Price, T.K., Hilt, E.E., Joyce, C., Fitzgerald, C.M., Wolfe, A.J., 2019. Female lower
622 urinary tract microbiota do not associate with IC/PBS symptoms: a case-controlled study.
623 *Int. Urogynecol. J.* <https://doi.org/10.1007/s00192-019-03942-9>

624 Brubaker, L., Nager, C.W., Richter, H.E., Visco, A., Nygaard, I., Barber, M.D., Schaffer, J.,
625 Meikle, S., Wallace, D., Shibata, N., Wolfe, A.J., 2014. Urinary bacteria in adult women
626 with urgency urinary incontinence. *Obstet. Gynecol. Surv.*
627 <https://doi.org/10.1097/01.ogx.0000451483.95359.a8>

628 Bučević Popović, V., Šitum, M., Chow, C.E.T., Chan, L.S., Roje, B., Terzić, J., 2018. The
629 urinary microbiome associated with bladder cancer. *Sci. Rep.*
630 <https://doi.org/10.1038/s41598-018-29054-w>

631 Buffone, G.J., Demmler, G.J., Schimbor, C.M., Greer, J., 1991. Improved amplification of
632 cytomegalovirus DNA from urine after purification of DNA with glass beads. *Clin. Chem.*
633 <https://doi.org/10.1093/clinchem/37.11.1945>

634 Burton, E.N., Cohn, L.A., Reinero, C.N., Rindt, H., Moore, S.G., Ericsson, A.C., 2017.
635 Characterization of the urinary microbiome in healthy dogs. *PLoS One.*
636 <https://doi.org/10.1371/journal.pone.0177783>

637 Byron, J.K., 2019. Urinary Tract Infection. *Vet. Clin. North Am. - Small Anim. Pract.*
638 <https://doi.org/10.1016/j.cvsm.2018.11.005>

639 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016.
640 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods.*
641 <https://doi.org/10.1038/nmeth.3869>

642 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens,
643 S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G., Knight, R.,
644 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
645 MiSeq platforms. *ISME J.* <https://doi.org/10.1038/ismej.2012.8>

646 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J.,
647 Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of
648 sequences per sample. *Proc. Natl. Acad. Sci. U. S. A.*
649 <https://doi.org/10.1073/pnas.1000080107>

650 Charlebois, R.L., Sathiamoorthy, S., Logvinoff, C., Gisonni-Lex, L., Mallet, L., Ng, S.H.S.,
651 2020. Sensitivity and breadth of detection of high-throughput sequencing for adventitious
652 virus detection. *npj Vaccines.* <https://doi.org/10.1038/s41541-020-0207-4>

653 Chen, Z., Phan, M.D., Bates, L.J., Peters, K.M., Mukerjee, C., Moore, K.H., Schembri, M.A.,
654 2018. The urinary microbiome in patients with refractory urge incontinence and recurrent
655 urinary tract infection. *Int. Urogynecol. J.* <https://doi.org/10.1007/s00192-018-3679-2>

656 Chipollini, J., Wright, J.R., Nwanosike, H., Kepler, C.Y., Batai, K., Lee, B.R., Spiess, P.E.,
657 Stewart, D.B., Lamendella, R., 2020. Characterization of urinary microbiome in patients
658 with bladder cancer: Results from a single-institution, feasibility study. *Urol. Oncol. Semin.*
659 *Orig. Investig.* <https://doi.org/10.1016/j.urolonc.2020.04.014>

660 Curtiss, N., Balachandran, A., Krska, L., Peppiatt-Wildman, C., Wildman, S., Duckett, J., 2018.
661 Age, menopausal status and the bladder microbiome. *Eur. J. Obstet. Gynecol. Reprod. Biol.*
662 <https://doi.org/10.1016/j.ejogrb.2018.06.011>

663 David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling,
664 A. V., Devlin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., Dutton, R.J., Turnbaugh,
665 P.J., 2014. Diet rapidly and reproducibly alters the human gut microbiome. *Nature*.
666 <https://doi.org/10.1038/nature12820>

667 Dewhirst, F.E., Klein, E.A., Thompson, E.C., Blanton, J.M., Chen, T., Milella, L., Buckley,
668 C.M.F., Davis, I.J., Bennett, M.L., Marshall-Jones, Z. V., 2012. The canine oral
669 microbiome. *PLoS One*. <https://doi.org/10.1371/journal.pone.0036067>

670 Djukic, M., Erler, S., Leimbach, A., Grossar, D., Charrière, J.D., Gauthier, L., Hartken, D.,
671 Dietrich, S., Nacke, H., Daniel, R., Poehlein, A., 2018. Comparative genomics and
672 description of putative virulence factors of *Melissococcus plutonius*, the causative agent of
673 European foulbrood disease in honey bees. *Genes (Basel)*.
674 <https://doi.org/10.3390/genes9080419>

675 Domingue, G.J., Ghoniem, G.M., Bost, K.L., Fermin, C., Human, L.G., 1995. Dormant Microbes
676 in Interstitial Cystitis. *J. Urol.* [https://doi.org/10.1016/S0022-5347\(01\)67594-3](https://doi.org/10.1016/S0022-5347(01)67594-3)

677 Dune, T.J., Price, T.K., Hilt, E.E., Thomas-White, K.J., Kliethermes, S., Brincat, C., Brubaker,
678 L., Schreckenberger, P., Wolfe, A.J., Mueller, E.R., 2017. Urinary symptoms and their
679 associations with urinary tract infections in urogynecologic patients. *Obstet. Gynecol.*
680 <https://doi.org/10.1097/AOG.0000000000002239>

681 Eisenhofer, R., Minich, J.J., Marotz, C., Cooper, A., Knight, R., Weyrich, L.S., 2019.
682 Contamination in Low Microbial Biomass Microbiome Studies: Issues and
683 Recommendations. *Trends Microbiol.* <https://doi.org/10.1016/j.tim.2018.11.003>

684 El Bali, L., Diman, A., Bernard, A., Roosens, N.H.C., Dekeersmaecker, S.C.J., 2014.
685 Comparative study of seven commercial kits for human dna extraction from urine samples
686 suitable for dna biomarker-based public health studies. *J. Biomol. Tech.*
687 <https://doi.org/10.7171/jbt.14-2504-002>

688 Erb-Downward, J.R., Thompson, D.L., Han, M.K., Freeman, C.M., McCloskey, L., Schmidt,
689 L.A., Young, V.B., Toews, G.B., Curtis, J.L., Sundaram, B., Martinez, F.J., Huffnagle,
690 G.B., 2011. Analysis of the lung microbiome in the “healthy” smoker and in COPD. *PLoS*
691 *One*. <https://doi.org/10.1371/journal.pone.0016384>

692 Fettweis, J.M., Serrano, M.G., Brooks, J.P., Edwards, D.J., Girerd, P.H., Parikh, H.I., Huang, B.,
693 Arodz, T.J., Edupuganti, L., Glascock, A.L., Xu, J., Jimenez, N.R., Vivadelli, S.C., Fong,
694 S.S., Sheth, N.U., Jean, S., Lee, V., Bokhari, Y.A., Lara, A.M., Mistry, S.D., Duckworth,
695 R.A., Bradley, S.P., Koparde, V.N., Orenda, X.V., Milton, S.H., Rozycski, S.K., Matveyev,
696 A. V., Wright, M.L., Huzurbazar, S. V., Jackson, E.M., Smirnova, E., Korlach, J., Tsai,
697 Y.C., Dickinson, M.R., Brooks, J.L., Drake, J.I., Chaffin, D.O., Sexton, A.L., Gravett,
698 M.G., Rubens, C.E., Wijesooriya, N.R., Hendricks-Muñoz, K.D., Jefferson, K.K., Strauss,
699 J.F., Buck, G.A., 2019. The vaginal microbiome and preterm birth. *Nat. Med.*
700 <https://doi.org/10.1038/s41591-019-0450-2>

701 Forster, C.S., Panchapakesan, K., Stroud, C., Banerjee, P., Gordish-Dressman, H., Hsieh, M.H.,
702 2020. A cross-sectional analysis of the urine microbiome of children with neuropathic
703 bladders. *J. Pediatr. Urol.* <https://doi.org/10.1016/j.jpurol.2020.02.005>

704 Fouts, D.E., Pieper, R., Szpakowski, S., Pohl, H., Knoblach, S., Suh, M.J., Huang, S.T.,
705 Ljungberg, I., Sprague, B.M., Lucas, S.K., Torralba, M., Nelson, K.E., Groah, S.L., 2012.
706 Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the
707 healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated
708 with spinal cord injury. *J. Transl. Med.* <https://doi.org/10.1186/1479-5876-10-174>

709 Fuhrman, B.J., Feigelson, H.S., Flores, R., Gail, M.H., Xu, X., Ravel, J., Goedert, J.J., 2014.
710 Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in
711 postmenopausal women. *J. Clin. Endocrinol. Metab.* <https://doi.org/10.1210/jc.2014-2222>

712 Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y.,
713 Uetake, C., Kato, K., Kato, T., Takahashi, M., Fukuda, N.N., Murakami, S., Miyauchi, E.,
714 Hino, S., Atarashi, K., Onawa, S., Fujimura, Y., Lockett, T., Clarke, J.M., Topping, D.L.,
715 Tomita, M., Hori, S., Ohara, O., Morita, T., Koseki, H., Kikuchi, J., Honda, K., Hase, K.,
716 Ohno, H., 2013. Commensal microbe-derived butyrate induces the differentiation of colonic
717 regulatory T cells. *Nature*. <https://doi.org/10.1038/nature12721>

718 Gloor, G.B., Macklaim, J.M., Pawlowsky-Glahn, V., Egozcue, J.J., 2017. Microbiome datasets
719 are compositional: And this is not optional. *Front. Microbiol.*
720 <https://doi.org/10.3389/fmicb.2017.02224>

721 Gottschick, C., Deng, Z.L., Vital, M., Masur, C., Abels, C., Pieper, D.H., Wagner-Döbler, I.,
722 2017. The urinary microbiota of men and women and its changes in women during bacterial
723 vaginosis and antibiotic treatment. *Microbiome*. <https://doi.org/10.1186/s40168-017-0305-3>

724 Griffen, A.L., Beall, C.J., Campbell, J.H., Firestone, N.D., Kumar, P.S., Yang, Z.K., Podar, M.,
725 Leys, E.J., 2012. Distinct and complex bacterial profiles in human periodontitis and health
726 revealed by 16S pyrosequencing. *ISME J.* <https://doi.org/10.1038/ismej.2011.191>

727 Hilt, E.E., McKinley, K., Pearce, M.M., Rosenfeld, A.B., Zilliox, M.J., Mueller, E.R., Brubaker,
728 L., Gai, X., Wolfe, A.J., Schreckenberger, P.C., 2014. Urine Is Not Sterile: Use of
729 Enhanced Urine Culture Techniques To Detect Resident Bacterial Flora in the Adult Female
730 Bladder. *J. Clin. Microbiol.* 52, 871 LP – 876. <https://doi.org/10.1128/JCM.02876-13>

731 Honneffer, J.B., Steiner, J.M., Lidbury, J.A., Suchodolski, J.S., 2017. Variation of the microbiota
732 and metabolome along the canine gastrointestinal tract. *Metabolomics*.
733 <https://doi.org/10.1007/s11306-017-1165-3>

734 Hourigan, S.K., Zhu, W., Wong, S.W.W., Clemency, N.C., Provenzano, M., Vilboux, T.,
735 Niederhuber, J.E., Deeken, J., Chung, S., McDaniel-Wiley, K., Trump, D., 2020. Studying
736 the urine microbiome in superficial bladder cancer: Samples obtained by midstream voiding
737 versus cystoscopy. *BMC Urol.* <https://doi.org/10.1186/s12894-020-0576-z>

738 Hussing, C., Kampmann, M.L., Mogensen, H.S., Børsting, C., Morling, N., 2018. Quantification
739 of massively parallel sequencing libraries - A comparative study of eight methods. *Sci. Rep.*
740 <https://doi.org/10.1038/s41598-018-19574-w>

741 Jacobs, K.M., Price, T.K., Thomas-White, K., Halverson, T., Davies, A., Myers, D.L., Wolfe,
742 A.J., 2020. Cultivable Bacteria in Urine of Women With Interstitial Cystitis: (Not) What
743 We Expected. *Female Pelvic Med. Reconstr. Surg.* 00.
744 <https://doi.org/10.1097/SPV.0000000000000854>

745 Karstens, L., Asquith, M., Davin, S., Stauffer, P., Fair, D., Gregory, W.T., Rosenbaum, J.T.,
746 McWeeney, S.K., Nardos, R., 2016. Does the Urinary Microbiome Play a Role in Urgency
747 Urinary Incontinence and Its Severity? *Front. Cell. Infect. Microbiol.*

748 Karstens, L., Siddiqui, N.Y., Zaza, T., Barstad, A., Amundsen, C.L., Sysoeva, T.A., 2020.
749 Benchmarking DNA isolation kits used in analyses of the urinary microbiome. *bioRxiv*.
750 <https://doi.org/10.1101/2020.11.10.875279>

751 Kass, E.H., 1962. Pyelonephritis and bacteriuria. A major problem in preventive medicine. *Ann.*
752 *Intern. Med.* <https://doi.org/10.7326/0003-4819-56-1-46>

753 Kerr, K.R., Forster, G., Dowd, S.E., Ryan, E.P., Swanson, K.S., 2013. Effects of dietary cooked
754 navy bean on the fecal microbiome of healthy companion dogs. *PLoS One*.

755 https://doi.org/10.1371/journal.pone.0074998

756 Knapp, D.W., Ramos-Vara, J.A., Moore, G.E., Dhawan, D., Bonney, P.L., Young, K.E., 2014.
757 Urinary bladder cancer in dogs, a naturally occurring model for cancer biology and drug
758 development. *ILAR J.* <https://doi.org/10.1093/ilar/ilu018>

759 Komesu, Y.M., Dinwiddie, D.L., Richter, H.E., Lukacz, E.S., Sung, V.W., Siddiqui, N.Y.,
760 Zyczynski, H.M., Ridgeway, B., Rogers, R.G., Arya, L.A., Mazloomdoost, D., Levy, J.,
761 Carper, B., Gantz, M.G., 2020. Defining the relationship between vaginal and urinary
762 microbiomes, in: *American Journal of Obstetrics and Gynecology*.
763 <https://doi.org/10.1016/j.ajog.2019.08.011>

764 Komesu, Y.M., Richter, H.E., Carper, B., Dinwiddie, D.L., Lukacz, E.S., Siddiqui, N.Y., Sung,
765 V.W., Zyczynski, H.M., Ridgeway, B., Rogers, R.G., Arya, L.A., Mazloomdoost, D.,
766 Gantz, M.G., 2018. The urinary microbiome in women with mixed urinary incontinence
767 compared to similarly aged controls. *Int. Urogynecol. J.* <https://doi.org/10.1007/s00192-018-3683-6>

769 Kramer, H., Kuffel, G., Thomas-White, K., Wolfe, A.J., Vellanki, K., Leehey, D.J., Bansal,
770 V.K., Brubaker, L., Flanigan, R., Koval, J., Wadhwa, A., Zilliox, M.J., 2018. Diversity of
771 the midstream urine microbiome in adults with chronic kidney disease. *Int. Urol. Nephrol.*
772 50, 1123–1130. <https://doi.org/10.1007/s11255-018-1860-7>

773 Lewis, D.A., Brown, R., Williams, J., White, P., Jacobson, S.K., Marchesi, J.R., Drake, M.J.,
774 2013. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic
775 adults. *Front. Cell. Infect. Microbiol.* <https://doi.org/10.3389/fcimb.2013.00041>

776 Ling, G. V., 1984. Therapeutic strategies involving antimicrobial treatment of the canine urinary
777 tract. *J. Am. Vet. Med. Assoc.*

778 Liu, F., Ling, Z., Xiao, Y., Yang, Q., Wang, B., Zheng, L., Jiang, P., Li, L., Wang, W., 2017a.
779 Alterations of urinary microbiota in type 2 diabetes mellitus with hypertension and/or
780 hyperlipidemia. *Front. Physiol.* <https://doi.org/10.3389/fphys.2017.00126>

781 Liu, F., Ling, Z., Xiao, Y., Yang, Q., Zheng, L., Jiang, P., Li, L., Wang, W., 2017b.
782 Characterization of the urinary microbiota of elderly women and the effects of type 2
783 diabetes and urinary tract infections on the microbiota. *Oncotarget.*
784 <https://doi.org/10.18632/oncotarget.21126>

785 Liu, F., Liu, A., Lu, X., Zhang, Z., Xue, Y., Xu, J., Zeng, S., Xiong, Q., Tan, H., He, X., Xu, W.,
786 Sun, Y., Xu, C., 2019. Dysbiosis signatures of the microbial profile in tissue from bladder
787 cancer. *Cancer Med.* <https://doi.org/10.1002/cam4.2419>

788 Manor, O., Dai, C.L., Kornilov, S.A., Smith, B., Price, N.D., Lovejoy, J.C., Gibbons, S.M.,
789 Magis, A.T., 2020. Health and disease markers correlate with gut microbiome composition
790 across thousands of people. *Nat. Commun.* <https://doi.org/10.1038/s41467-020-18871-1>

791 Mansour, B., Monyók, Á., Makra, N., Gajdács, M., Vadnay, I., Ligeti, B., Juhász, J., Szabó, D.,
792 Ostorházi, E., 2020. Bladder cancer-related microbiota: examining differences in urine and
793 tissue samples. *Sci. Rep.* <https://doi.org/10.1038/s41598-020-67443-2>

794 Martinez Arbizu, P., 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis. R
795 package version 0.4 [WWW Document].

796 Maskell, R., Allen, J., Pead, L., 1979. The puzzle of “Urethral syndrome”: a possible answer?
797 *Lancet* 313, 1058–1059. [https://doi.org/https://doi.org/10.1016/S0140-6736\(79\)92953-2](https://doi.org/https://doi.org/10.1016/S0140-6736(79)92953-2)

798 Maskell, R.M., 2010. The natural history of urinary tract infection in women. *Med. Hypotheses.*
799 <https://doi.org/10.1016/j.mehy.2009.12.011>

800 McMurdie, P.J., Holmes, S., 2014. Waste Not, Want Not: Why Rarefying Microbiome Data Is

801 Inadmissible. PLoS Comput. Biol. <https://doi.org/10.1371/journal.pcbi.1003531>

802 McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive
803 Analysis and Graphics of Microbiome Census Data. PLoS One 8.
804 <https://doi.org/10.1371/journal.pone.0061217>

805 Meriwether, K. V., Lei, Z., Singh, R., Gaskins, J., Hobson, D.T.G., Jala, V., 2019. The vaginal
806 and urinary microbiomes in premenopausal women with interstitial cystitis/bladder pain
807 syndrome as compared to unaffected controls: A pilot cross-sectional study. Front. Cell.
808 Infect. Microbiol. <https://doi.org/10.3389/fcimb.2019.00092>

809 Munch, M.M., Chambers, L.C., Manhart, L.E., Domogala, D., Lopez, A., Fredricks, D.N.,
810 Srinivasan, S., 2019. Optimizing bacterial DNA extraction in urine. PLoS One 14.

811 Nadkarni, M.A., Martin, F.E., Jacques, N.A., Hunter, N., 2002. Determination of bacterial load
812 by real-time PCR using a broad-range (universal) probe and primers set. Microbiology.
813 <https://doi.org/10.1099/00221287-148-1-257>

814 Nelson, D.E., van der Pol, B., Dong, Q., Revanna, K. V., Fan, B., Easwaran, S., Sodergren, E.,
815 Weinstock, G.M., Diao, L., Fortenberry, D.J., 2010. Characteristic male urine microbiomes
816 associate with asymptomatic sexually transmitted infection. PLoS One.
817 <https://doi.org/10.1371/journal.pone.0014116>

818 Nickel, J.C., Stephens-Shields, A., Landis, J., Mullins, C., van Bokhoven, A., Lucia, M.,
819 Henderson, J., Sen, B., Krol, J., Ehrlich, G., 2019. A Culture-Independent Analysis of the
820 Microbiota of Female Interstitial Cystitis/Bladder Pain Syndrome Participants in the MAPP
821 Research Network. J. Clin. Med. <https://doi.org/10.3390/jcm8030415>

822 Nickel, J.C., Stephens, A., Landis, J.R., Mullins, C., Van Bokhoven, A., Lucia, M.S., Ehrlich,
823 G.D., 2016. Assessment of the Lower Urinary Tract Microbiota during Symptom Flare in
824 Women with Urologic Chronic Pelvic Pain Syndrome: A MAPP Network Study. J. Urol.
825 <https://doi.org/10.1016/j.juro.2015.09.075>

826 Oh, C., Lee, K., Cheong, Y., Lee, S.W., Park, S.Y., Song, C.S., Choi, I.S., Lee, J.B., 2015.
827 Comparison of the oral microbiomes of canines and their owners using next- generation
828 sequencing. PLoS One. <https://doi.org/10.1371/journal.pone.0131468>

829 Pearce, M.M., Hilt, E.E., Rosenfeld, A.B., Zilliox, M.J., Thomas-White, K., Fok, C.,
830 Kliethermes, S., Schreckenberger, P.C., Brubaker, L., Gai, X., Wolfe, A.J., 2014. The
831 female urinary microbiome: A comparison of women with and without urgency urinary
832 incontinence. MBio. <https://doi.org/10.1128/mBio.01283-14>

833 Pederzoli, F., Ferrarese, R., Amato, V., Locatelli, I., Alchera, E., Lucianò, R., Nebuloni, M.,
834 Briganti, A., Gallina, A., Colombo, R., Necchi, A., Clementi, M., Montorsi, F., Mancini, N.,
835 Salonia, A., Alfano, M., 2020. Sex-specific Alterations in the Urinary and Tissue
836 Microbiome in Therapy-naïve Urothelial Bladder Cancer Patients. Eur. Urol. Oncol.
837 <https://doi.org/10.1016/j.euo.2020.04.002>

838 Pierre, J.F., Akbilgic, O., Smallwood, H., Cao, X., Fitzpatrick, E.A., Pena, S., Furmanek, S.P.,
839 Ramirez, J.A., Jonsson, C.B., 2020. Discovery and predictive modeling of urine
840 microbiome, metabolite and cytokine biomarkers in hospitalized patients with community
841 acquired pneumonia. Sci. Rep. <https://doi.org/10.1038/s41598-020-70461-9>

842 Pohl, H.G., Groah, S.L., Pérez-Losada, M., Ljungberg, I., Sprague, B.M., Chandal, N., Caldovic,
843 L., Hsieh, M., 2020. The Urine Microbiome of Healthy Men and Women Differs by Urine
844 Collection Method. Int Neurol. J. 24, 41–51.
845 <https://doi.org/https://doi.org/10.5213/inj.1938244.122>

846 Price, T.K., Dune, T., Hilt, E.E., Thomas-White, K.J., Kliethermes, S., Brincat, C., Brubaker, L.,

847 Wolfe, A.J., Mueller, E.R., Schreckenberger, P.C., 2016. The clinical urine culture:
848 Enhanced techniques improve detection of clinically relevant microorganisms. *J. Clin.*
849 *Microbiol.* <https://doi.org/10.1128/JCM.00044-16>

850 Price, T.K., Hilt, E.E., Thomas-White, K., Mueller, E.R., Wolfe, A.J., Brubaker, L., 2020. The
851 urobiome of continent adult women: a cross-sectional study. *BJOG An Int. J. Obstet.*
852 *Gynaecol.* <https://doi.org/10.1111/1471-0528.15920>

853 Proctor, L.M., Creasy, H.H., Fettweis, J.M., Lloyd-Price, J., Mahurkar, A., Zhou, W., Buck,
854 G.A., Snyder, M.P., Strauss, J.F., Weinstock, G.M., White, O., Huttenhower, C., 2019. The
855 Integrative Human Microbiome Project. *Nature.* <https://doi.org/10.1038/s41586-019-1238-8>

856 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O.,
857 2013. The SILVA ribosomal RNA gene database project: Improved data processing and
858 web-based tools. *Nucleic Acids Res.* <https://doi.org/10.1093/nar/gks1219>

859 Ravel, J., Gajer, P., Abdo, Z., Schneider, G.M., Koenig, S.S.K., McCulle, S.L., Karlebach, S.,
860 Gorle, R., Russell, J., Tacket, C.O., Brotman, R.M., Davis, C.C., Ault, K., Peralta, L.,
861 Forney, L.J., 2011. Vaginal microbiome of reproductive-age women. *Proc. Natl. Acad. Sci.*
862 U. S. A. <https://doi.org/10.1073/pnas.1002611107>

863 Ruparell, A., Inui, T., Staunton, R., Wallis, C., Deusch, O., Holcombe, L.J., 2020. The canine
864 oral microbiome: Variation in bacterial populations across different niches. *BMC*
865 *Microbiol.* <https://doi.org/10.1186/s12866-020-1704-3>

866 Santiago-Rodriguez, T.M., Ly, M., Bonilla, N., Pride, D.T., 2015. The human urine virome in
867 association with urinary tract infections. *Front. Microbiol.*
868 <https://doi.org/10.3389/fmicb.2015.00014>

869 Shrestha, E., White, J.R., Yu, S.H., Kulac, I., Ertunc, O., De Marzo, A.M., Yegnasubramanian,
870 S., Mangold, L.A., Partin, A.W., Sfanos, K.S., 2018. Profiling the Urinary Microbiome in
871 Men with Positive versus Negative Biopsies for Prostate Cancer. *J. Urol.*
872 <https://doi.org/10.1016/j.juro.2017.08.001>

873 Siddiqui, H., Lagesen, K., Nederbragt, A.J., Jeansson, S.L., Jakobsen, K.S., 2012. Alterations of
874 microbiota in urine from women with interstitial cystitis. *BMC Microbiol.*
875 <https://doi.org/10.1186/1471-2180-12-205>

876 Siddiqui, H., Nederbragt, A.J., Jakobsen, K.S., 2009. A solid-phase method for preparing human
877 DNA from urine for diagnostic purposes. *Clin. Biochem.*
878 <https://doi.org/10.1016/j.clinbiochem.2009.03.010>

879 Siddiqui, H., Nederbragt, A.J., Lagesen, K., Jeansson, S.L., Jakobsen, K.S., 2011. Assessing
880 diversity of the female urine microbiota by high throughput sequencing of 16S rDNA
881 amplicons. *BMC Microbiol.* <https://doi.org/10.1186/1471-2180-11-244>

882 Thapaliya, J., Khadka, P., Thapa, S., Gongal, C., 2020. Enhanced quantitative urine culture
883 technique, a slight modification, in detecting under-diagnosed pediatric urinary tract
884 infection. *BMC Res. Notes.* <https://doi.org/10.1186/s13104-019-4875-y>

885 Thomas-White, K., Brady, M., Wolfe, A.J., Mueller, E.R., 2016. The bladder is not sterile:
886 History and current discoveries on the urinary microbiome. *Curr. Bladder Dysfunct. Rep.*
887 11, 18–24. <https://doi.org/10.1007/s11884-016-0345-8>

888 Thomas-White, K., Forster, S.C., Kumar, N., Van Kuiken, M., Putonti, C., Stares, M.D., Hilt,
889 E.E., Price, T.K., Wolfe, A.J., Lawley, T.D., 2018. Culturing of female bladder bacteria
890 reveals an interconnected urogenital microbiota. *Nat. Commun.*
891 <https://doi.org/10.1038/s41467-018-03968-5>

892 Thomas-White, K.J., Hilt, E.E., Fok, C., Pearce, M.M., Mueller, E.R., Kliethermes, S., Jacobs,

893 K., Zilliox, M.J., Brincat, C., Price, T.K., Kuffel, G., Schreckenberger, P., Gai, X.,
894 Brubaker, L., Wolfe, A.J., 2016. Incontinence medication response relates to the female
895 urinary microbiota. *Int. Urogynecol. J.* <https://doi.org/10.1007/s00192-015-2847-x>

896 Thomas-White, K.J., Kliethermes, S., Rickey, L., Lukacz, E.S., Richter, H.E., Moalli, P.,
897 Zimmern, P., Norton, P., Kusek, J.W., Wolfe, A.J., Brubaker, L., 2017. Evaluation of the
898 urinary microbiota of women with uncomplicated stress urinary incontinence. *Am. J.*
899 *Obstet. Gynecol.* <https://doi.org/10.1016/j.ajog.2016.07.049>

900 Tress, B., Dorn, E.S., Suchodolski, J.S., Nisar, T., Ravindran, P., Weber, K., Hartmann, K.,
901 Schulz, B.S., 2017. Bacterial microbiome of the nose of healthy dogs and dogs with nasal
902 disease. *PLoS One.* <https://doi.org/10.1371/journal.pone.0176736>

903 Wirant, S.C., McGuire, B., 2004. Urinary behavior of female domestic dogs (*Canis familiaris*):
904 Influence of reproductive status, location, and age. *Appl. Anim. Behav. Sci.*
905 <https://doi.org/10.1016/j.applanim.2003.09.012>

906 Wolfe, A.J., Toh, E., Shibata, N., Rong, R., Kenton, K., FitzGerald, M.P., Mueller, E.R.,
907 Schreckenberger, P., Dong, Q., Nelson, D.E., Brubaker, L., 2012. Evidence of uncultivated
908 bacteria in the adult female bladder. *J. Clin. Microbiol.* <https://doi.org/10.1128/JCM.05852-11>

909 11

910 Wu, P., Zhang, G., Zhao, J., Chen, J., Chen, Y., Huang, W., Zhong, J., Zeng, J., 2018. Profiling
911 the urinary microbiota in male patients with bladder cancer in China. *Front. Cell. Infect.*
912 *Microbiol.* <https://doi.org/10.3389/fcimb.2018.00167>

913 Xenoulis, P.G., Palculict, B., Allenspach, K., Steiner, J.M., Van House, A.M., Suchodolski, J.S.,
914 2008. Molecular-phylogenetic characterization of microbial communities imbalances in the
915 small intestine of dogs with inflammatory bowel disease. *FEMS Microbiol. Ecol.*
916 <https://doi.org/10.1111/j.1574-6941.2008.00556.x>

917 Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J.,
918 Ludwig, W., Glöckner, F.O., 2014. The SILVA and “all-species Living Tree Project (LTP)”
919 taxonomic frameworks. *Nucleic Acids Res.* <https://doi.org/10.1093/nar/gkt1209>

920 Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., Kotler,
921 E., Zur, M., Regev-Lehavi, D., Brik, R.B.Z., Federici, S., Cohen, Y., Linevsky, R.,
922 Rothschild, D., Moor, A.E., Ben-Moshe, S., Harmelin, A., Itzkovitz, S., Maherashak, N.,
923 Shibolet, O., Shapiro, H., Pevsner-Fischer, M., Sharon, I., Halpern, Z., Segal, E., Elinav, E.,
924 2018. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is
925 Associated with Unique Host and Microbiome Features. *Cell.*
926 <https://doi.org/10.1016/j.cell.2018.08.041>

927