

Adiponectin Preserves Metabolic Fitness During Aging

2 Na Li^{1,3}, Zhuzhen Zhang¹, Shangang Zhao¹, Yi Zhu^{1, #}, Christy M. Gliniak¹, Lavanya
3 Vishvanath¹, Yu A. An¹, May-yun Wang¹, Yingfeng Deng¹, Qingzhang Zhu¹, Toshiharu
4 Onodera¹, Orhan K Oz², Ruth Gordillo¹, Rana K. Gupta¹, Ming Liu³, Tamas L. Horvath⁴,
5 Vishwa Deep Dixit^{4, 5} and Philipp E. Scherer^{1, 6, *}

6
7 ¹ Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas
8 Southwestern Medical Center, Dallas, TX USA.

9 ² Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
10 USA.

11 ³ Department of Endocrinology and Metabolism, Tianjin Medical University General
12 Hospital, Tianjin 300052, China.

13 ⁴ Department of Comparative Medicine and Immunobiology, Yale School of Medicine, New
14 Haven, Connecticut 06520, USA.

15 ⁵ Yale Center for Research on Aging, Yale School of Medicine, New Haven, Connecticut
16 06520, USA.

17 ⁶Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas,
18 TX USA.

19 # Current address: Children's Nutrition Research Center, Department of Pediatric, Baylor
20 College of Medicine, Houston, TX, USA.

22 Running title: *Adiponectin and Aging*

23 *To whom correspondence should be addressed:

24 Philipp E. Scherer, Ph.D.
25 Departments of Internal Medicine
26 University of Texas Southwestern Medical Center
27 Address: L5.210, 5323 Harry Hines Boulevard, Dallas, TX 75390-8549
28 Tel: (+1)214-648-8715; Email: Philipp.Scherer@UTSouthwestern.edu

29 **Abstract:**

30 Adiponectin is essential for the regulation of tissue substrate utilization and systemic
31 insulin sensitivity. Clinical studies have suggested a positive association of circulating
32 adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on
33 promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin
34 null mouse and a transgenic adiponectin overexpression model. We directly assessed
35 the effects of circulating adiponectin on the aging process and found that adiponectin null
36 mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover,
37 adiponectin null mice have a significantly shortened lifespan on both chow and high-fat
38 diet (HFD). In contrast, a transgenic mouse model with elevated circulating adiponectin
39 levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue
40 inflammation and fibrosis, and a prolonged healthspan and median lifespan. These
41 results support a role of adiponectin as an essential regulator for healthspan and lifespan.

42 **Introduction**

43 Healthspan and lifespan are intimately linked. Improving healthspan should help enhance
44 the overall quality of life for an aging population, and possibly even extend lifespan
45 (Crimmins, 2015; Piskovatska *et al*, 2019). According to current estimates, by 2050, the
46 number of older adults in US, above the age 65 years are expected to double, rising from
47 40.2 million to approx. 88 million
48 (<https://www.cdc.gov/nchs/products/databriefs/db106.htm>). In the U.S., the average
49 lifespan is around 79.3 years, while the estimated healthspan is only 67.3 years,
50 indicating that the individuals will on average live up to 20% of their lives in an unhealthy
51 state (Olshansky, 2018). Moreover, 35-40% of adults aged 65 and above are obese.
52 Given both aging and obesity are independent risk factors for chronic diseases, it is
53 important to further determine how the confluence of adiposity and aging impacts
54 healthspan and lifespan. The primary health problems associated with elderly individuals
55 are obesity and associated metabolic disorders, including insulin resistance, type 2
56 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular disease, and
57 many types of cancers. These diseases are global public health problems, significantly
58 accelerating the aging process, and severely decreasing the quality of life and overall life
59 expectancy (Jura & Kozak, 2016). Thus, increasing healthspan by prolonging a disease-
60 free period of elderly individuals may be equally important as increasing lifespan. Simple
61 strategies, such as caloric restriction, or pharmacological interventions, such as
62 metformin or rapamycin treatment, can promote both healthspan and lifespan in mice
63 (Bhullar & Hubbard, 2015; Bitto *et al*, 2016; Martin-Montalvo *et al*, 2013; Minor *et al*, 2010).
64 However, the effectiveness of such an approach in humans still awaits confirmation. The

65 search for novel and effective strategies to extend these processes is still one of the major
66 goals of geroscience research.

67 Adiponectin was one of the earliest adipokines described (Scherer *et al*, 1995). Since its
68 discovery, significant efforts have been made to study its regulation, biogenesis, and
69 physiological effects. As an excellent biomarker for mature adipocytes, circulating
70 adiponectin levels are inversely correlated with fat mass, distinguishing it from most of
71 the other adipokines, including leptin (Hu *et al*, 1996). Adiponectin exerts pleiotropic
72 effects, including improving glucose tolerance, increasing insulin sensitivity, enhancing
73 lipid clearance, and reducing systemic inflammation and tissue fibrosis (Scherer, 2006).

74 Our previous studies have indicated that a lack of adiponectin in mice leads to glucose
75 intolerance and hyperlipidemia (Nawrocki *et al*, 2006; Xia *et al*, 2018). Conversely,
76 increasing adiponectin levels in an adiponectin transgenic mouse model, greatly improves
77 metabolic homeostasis and produces a metabolically healthy obese phenotype (Combs
78 *et al*, 2004; Kim *et al*, 2007). Similarly, chronic administration of adiponectin ameliorates
79 glucose intolerance and enhances insulin sensitivity in both type 1 and 2 diabetic mice
80 (Berg *et al*, 2001). These observations fully support the favorable effects of adiponectin
81 in promoting metabolic health.

82 Most of the previous published literature focuses on beneficial effects of adiponectin in
83 younger mice or diet-induced obese mice within less than 20 weeks of an HFD challenge.
84 Whether similar beneficial effects could be observed in aging mice (older than 100 weeks)
85 remains unexplored. Beyond its possible role in healthspan, some human genetics
86 studies have implicated adiponectin as a longevity gene (Atzmon *et al*, 2008). One

87 potential mechanism of particular interest, with robust effects on elevating circulating
88 adiponectin levels, is the starvation hormone fibroblast growth factor-21 (FGF21). It
89 extends lifespan in both male and female mice (Holland *et al*, 2013). Similarly,
90 thiazolidinediones (TZDs), agonists of the peroxisome proliferator-activated receptor γ
91 (PPAR γ), also significantly increase circulating adiponectin levels, and ameliorate aged-
92 related tissue function decline (Viljoen & Sinclair, 2009; Yu *et al*, 2002). In addition, female
93 mice harbor higher circulating adiponectin levels and live longer compared to male mice
94 (Gehrand *et al*, 2016). All these observations point to a positive correlation between high
95 circulating adiponectin and longevity and implicate adiponectin as a novel circulating
96 hormone that may directly promote both healthspan and lifespan in mice. To test this
97 hypothesis, we used our established mouse models of adiponectin overexpression and
98 complete absence of adiponectin and assessed the effect of circulating adiponectin on
99 the aging process. Our results reveal that adiponectin null mice have a significantly
100 reduced healthspan and lifespan, while adiponectin transgenic mice have a significantly
101 prolonged healthspan.

102 **Methods**

103 **Animals experiments**

104 Adiponectin knockout mice (APN-KO) (Nawrocki *et al.*, 2006) and adiponectin transgenic
105 mice (Combs *et al.*, 2004) with wild-type controls are on a pure C57BL6J background. All
106 of the animal experimental protocols have been approved by the Institutional Animal Care
107 and Use Committee of University of Texas Southwestern Medical Center at Dallas. The
108 mice were housed under standard laboratory conditions (12 h on/off; lights on at 7:00
109 a.m.) and temperature-controlled environment with food and water available *ad libitum*.
110 Mice were fed a standard chow-diet (number 5058, LabDiet, St. Louis, MO) or high-fat
111 diet (60% energy from fat, D12492, Research Diets) for various periods as indicated in
112 the Figures. All experiments were initiated at approximately 8 weeks of age, unless
113 indicated otherwise. Mouse phenotyping studies were performed with controls and a
114 minimum of two independent cohorts with more than 5 mice in each group.

115 **Systemic tests**

116 Systemic tests were previously described (Zhao *et al*, 2014; Zhu *et al*, 2017). In brief, oral
117 glucose tolerance tested were performed on overnight fasted mice. The mice orally
118 received 1.25g or 2 g of glucose per kg body weight dissolved in phosphate buffered
119 saline (Cat. 806552, Sigma-Aldrich). Injection volume was calculated based on 10 μ l/g
120 body weight. Blood glucose concentrations were measured by glucose meters (Contour)
121 at the indicated time points. For ITTs, mice were fasted for 6 h in the morning, and chow-
122 fed animals were intraperitoneally injected with insulin at a dose of 0.5 U per kg body
123 weight, while HFD-fed animals were injected with a dose of 0.75 U per kg body weight.

124 Blood glucose concentrations were measured by glucose meter at the indicated time
125 points; For T.G. clearance, mice were fasted (16 h), then gavaged 15 μ l g⁻¹ bodyweight
126 of 20% intralipid (Fresenius Kabi Clyton, L.P.). Blood was collected at timed intervals then
127 assayed for T.G. levels (Infinity; Thermo Fisher Scientific) and FFA levels (NEFA-HR);
128 Wako Pure Chemical Industries). For some of the experiments, area under curve (AUC)
129 was calculated.

130 **Blood parameters**

131 Blood was taken from fed animals in the morning and was centrifuged at 8000 g for 5 min,
132 and then the supernatants were collected for multiple analyses. Adiponectin was
133 measured using an ELISA kit from Invitrogen (Catalog number: EZMADP-60K). Serum
134 insulin levels were measured using ALPCO Mouse Insulin ELISA Jumbo kit (Cat. Number:
135 80-INSMS-E10). Mercodia Developing Diagnostic). Serum IGF-1 levels were measured
136 by Mouse/Rat IGF-1 Quantikine ELISA kit (R&D Systems, Inc., Minneapolis, MN, USA).
137 Serum parameters were measured and calculated with a VITROS analyzer (Ortho Clinical
138 Diagnostics) at UTSW metabolic core.

139 **RT-qPCR and Analysis**

140 RNA was extracted from fresh or frozen tissues by homogenization in TRIzol reagent
141 (Invitrogen) as previously described (Zhu *et al*, 2016). We used 1 μ g RNA to transcribe
142 cDNA with a reverse transcription kit (Bio-Rad). Most of RT-qPCR primers were from the
143 Harvard Primer Bank (<https://pga.mgh.harvard.edu/primerbank/>). The relative expression

144 levels were calculated using the comparative threshold cycle method, normalized to the
145 housekeeping gene *Gapdh*.

146 **Histological Analyses**

147 For all histological analyses, four sections from at least three mice per group were stained
148 and the examiner, typically a pathologist, was blinded to the genotype and/or treatment
149 condition, as previously described (Zhao *et al*, 2020). In brief, for immunohistochemistry
150 (IHC), tissues were fixed in 4% paraformaldehyde and embedded in paraffin. Sections (5
151 μm) were deparaffinized, heat retrieved (buffer with 10 mM Tris, 1.0 mM EDTA, PH=8.0,
152 94–96 °C for 30min, cool naturally), perforated (0.2% Triton \times 100, 10 min), blocked in 3%
153 BSA (Sigma, A9418) and then incubated with Mac2 (1:500 dilution, Cat#: 125401,
154 BioLegend) primary antibodies. IHC and Hematoxylin (Vector, H3401) and Eosin Y
155 (Thermo, 6766007) staining (HE staining) were performed using standard protocols or
156 under the manufacturer's instructions. Detection of IHC signal was performed with
157 Vectastain Elite ABC kit (Vector Laboratories, Burlingame, CA) and DAB substrate kit for
158 peroxidase (Vector Laboratories) followed by hematoxylin counterstaining (Vector
159 Laboratories). For immunofluorescence of perilipin (1:500 dilution NB100-60554,
160 Novus), Mac2, insulin (1:500, Dako #A0564) and glucagon (1:500, Invitrogen #18-0064),
161 after incubation with primary antibody, slides were washed and incubated with Secondary
162 antibodies (1:250 dilution) used were Alexa Fluor 488 or 594 donkey anti-rabbit IgG
163 (HCL), Alexa Fluor 488 or 594 donkey anti-goat IgG (HCL) (Invitrogen) or Alexa Fluor
164 488 or 594 donkey anti- guinea pig IgG (HCL) at room temperature for 1 hour, then

165 washed and sealed with Prolong Gold antifade reagent with DAPI (Life technology
166 P36941).

167 **Metabolic Cage Experiments**

168 Metabolic cage studies were conducted using a PhenoMaster System (TSE systems) at
169 USTW Metabolic Phenotyping Core as previously described (Zhao *et al*, 2019) . Mice
170 were acclimated in temporary holding cages for 5 days before recording. Food intake,
171 movement, and CO₂ and O₂ levels were measured at various intervals (determined by
172 collectively how many cages were running concurrently) for the indicated period shown
173 on Figures.

174 **Statistics**

175 All values are expressed as the mean ± SEM. The significance between the mean
176 values for each study was evaluated by Student t tests for comparisons of two groups.
177 One way or two-way ANOVA was used for comparisons of more than two groups. The
178 box-and-whisker analysis was performed to exclude potential outlier data accordingly.
179 $P \leq 0.05$ is regarded as statistically significant. For lifespan analysis, data were calculated
180 using the GraphPad Prism 7 and OASIS 2 software. Log-rank (Mantel–Cox) tests were
181 used to analyze Kaplan–Meier curves.

182

183

184

185

186

187 **Results**

188 **Altered adiponectin levels in adiponectin null (APN-KO) and adiponectin**
189 **overexpressing transgenic mice (Δ Gly)**

190 Male adiponectin null mice (APN-KO) (Nawrocki *et al.*, 2006) and adiponectin transgenic
191 (Δ Gly) mice (Combs *et al.*, 2004) were used for this study. The initial number of mice for
192 each group in the study and a detailed scheme of the phenotypic assessments performed
193 is outlined in (Fig. S1A-B). APN-KO were challenged with chow (NCD) or high-fat diet
194 (HFD). Δ Gly mice were challenged with chow diet (NCD). Consistent with expectations,
195 serum adiponectin was absent in APN-KO mice (Fig. S1C). For Δ Gly transgenic mice,
196 circulating adiponectin levels were increased by 50% (Fig. S1C). All these observations
197 indicate that our loss and gain of function mouse models indeed alter circulating
198 adiponectin levels effectively as expected.

199 **Deletion of adiponectin in aged mice shortens lifespan on HFD.**

200 Given that the loss of adiponectin leads to impaired glucose tolerance and lipid clearance,
201 we wanted to test whether these mice have a shortened lifespan. A cohort of APN-KO
202 and WT mice was used to measure the lifespan. The survival curves for APN-KO reveal
203 a statistically significant shortened lifespan compared to WT control both in the chow diet
204 cohort (Fig. 1A) and in the HFD cohort (Fig. 1B). Thus, loss of adiponectin in mice
205 accelerates the aging process and shortens lifespan.

206 **Loss of adiponectin impairs glucose and lipid homeostasis during aging.**

207 Glucose intolerance is a hallmark of the aging process (DeFronzo, 1981). Compared to
208 WT mice, APN-KO mice did not show any striking difference in body weight at middle-
209 and advanced-aged, both on chow diet and on HFD (**Fig. 2A-B**). We examined glucose
210 homeostasis in aged mice (100 weeks for with the HFD cohort and 140 weeks for the
211 chow diet cohort). In accordance with previous metabolic studies of young adiponectin
212 null mice, differences in glucose tolerance were marginal in mice fed standard chow diet
213 (**Fig. 2C**). APN-KO mice fed HFD, in contrast, exhibited significantly higher glucose
214 excursions during an OGTT (**Fig. 2D**) reflecting impaired glucose tolerance. However, no
215 significant difference in plasma insulin level was observed during the OGTT at the
216 different time points (**Fig. S2A**). This indicates that APN-KO mice are more susceptible
217 to diet-induced insulin resistance.

218 To elucidate the effects of adiponectin on lipid metabolism of aged mice, we performed a
219 triglyceride (TG) clearance test by gavaging the WT and APN-KO mice with 20% intralipid.
220 Triacylglycerol levels in both NCD and HFD-fed APN-KO mice peaked at higher levels
221 and showed a slower clearance of lipids from plasma (**Fig. 2E-F**). This highlights a
222 prevailing impaired lipid clearance in APN-KO mice. Furthermore, although APN-KO and
223 WT mice consume comparable amounts of diet (**Fig. 2G**), indirect calorimetry studies
224 show that APN-KO mice had a significantly higher respiratory exchange ratio (**Fig. 2H**),
225 indicative of carbohydrate being a more predominant fuel source in the absence of
226 adiponectin. Combined, these results suggest adiponectin is necessary to maintain
227 proper lipid homeostasis. Lack of adiponectin prompts glucose metabolism to be more
228 prevalent.

229 **Deletion of adiponectin in aged mice exacerbates tissue functional decline.**

230 The aging process is associated with gradual decline and deterioration of functional
231 properties at the tissue level. In aging adipose tissue, this is manifest as expansion of B
232 cells in fat-associated lymphoid clusters(Camell *et al*, 2019), enrichment of senescent-
233 like pro-inflammatory macrophages and loss of tissue protective macrophage subsets
234 that drive inflamming and compromises glucose and lipid metabolism(Camell *et al*,
235 2017; Lumeng *et al*, 2011; Tchkonia *et al*, 2010). In the liver and kidney, dysfunction is
236 usually apparent as overexpression of extracellular matrix (ECM) protein constituents,
237 such as collagen and the resulting increased fibrosis (Kim *et al*, 2016). We examined
238 whether the deletion of APN will affect the function of these major organs. We collected
239 adipose tissue, kidney, and liver from separate aging cohorts of young (20 weeks) and
240 old (100 weeks for HFD cohort and 140weeks for chow diet cohort) mice. Compared to
241 WT mice, APN-KO mice did not show significant morphological differences in adipocytes
242 in both young and aged mice. However, the epididymal fat of APN-KO mice fed either
243 HFD or chow diet show increased pro-inflammatory-like macrophages in the aged mice,
244 as demonstrated by a prominent signal for the macrophage marker Mac2 (**Fig. 3A-B**).
245 This demonstrates that the loss of adiponectin accelerates adipose tissue inflammation,
246 a characteristic marker of the increased aging process. We do not know whether these
247 macrophages originate from bone marrow-derived monocytes that infiltrate the tissue or
248 whether the lack of adiponectin enhances differentiation of proliferating tissue resident
249 monocytes into macrophages.

250 We also examined the age-related decline of health parameters in two other vital organs,
251 kidney and liver. Even during normal aging, the kidney develops age-related structural
252 changes and displays functional declines, including nephrosclerosis, loss of renal mass

253 or compensatory hypertrophy of the remaining nephrons, with a corresponding decrease
254 in glomerular filtration rate (GFR) and renal blood flow RBF (Weinstein & Anderson, 2010).
255 Clinical studies have demonstrated that adiponectin is elevated in patients with chronic
256 kidney disease, suggesting a possible compensatory upregulation to alleviate further
257 renal injury (Christou & Kiortsis, 2014). Morphologically, APN-KO mice fed either the HFD
258 or the chow diet show more severe interstitial and periglomerular fibrosis. Compared to
259 aged WT mice, the glomeruli in aged APN-KO mice have collapsed tufts, accompanied
260 by hypertrophic Bowman's capsules (**Fig. 3C**). Meanwhile, aged APN-KO mice exhibited
261 a significant increase in kidney weight as compared with aged WT mice (**Fig. S2C**). To
262 determine the cause of this severe glomerular and tubulointerstitial damage in APN-KO
263 mice, we investigated the glomerular infiltration with macrophages. Immunohistochemical
264 staining with Mac2 antibodies reveals a significant increase in Mac-2 positive
265 intraglomerular signal in the old mice which is vastly more abundant in the APN-KO mice
266 fed the HFD (**Fig. 3D**).

267 Aging increases the susceptibility of various liver diseases as well, responsible for a
268 deteriorated quality of life in the elderly and increasing mortality rate. Several studies
269 suggest that hypo adiponectinemia predicts liver fibrosis and accelerates hepatic tumor
270 formation (Park *et al*, 2015). Thus, we explored whether the lack of adiponectin may
271 exacerbate age-induced dysfunction and dysmorphology of the liver. Unlike other diet-
272 induced obese mouse models, we did not find any enhanced lipid droplet accumulation
273 in the livers of APN-KO mice compared to WT mice upon short term and long-term
274 exposure to HFD treatment (**Fig. 3E**). However, we found many inflammatory infiltrates
275 in the livers of APN-KO mice on HFD diet. The expression of inflammatory markers is

276 significantly increased in aged APN-KO mice fed on HFD and chow diet (**Fig. 3G, Fig.**
277 **S2B**), indicative of increased inflammation in the liver. Moreover, Trichrome staining
278 highlighting the ECM reveals increased hepatic fibrosis in old APN-KO mice on the chow
279 diet that was even more evident under HFD conditions (**Fig. 3F**). Mirroring these
280 histological findings, the expression levels of liver fibrosis markers, such as $\text{Col1}\alpha 1$ and
281 αSMA , are strikingly increased in older HFD and chow diet fed APN-KO mice (**Fig. 3G**,
282 **Fig. S2B**). Liver damage was further confirmed by elevated serum AST and ALT levels
283 in HFD fed APN-KO mice compared with control mice (**Fig. 3H**). All of these observations
284 support that adiponectin plays an essential role in maintaining normal liver function during
285 the aging process.

286 Upon comparing young WT vs APN-KO mice (20 weeks) that were exposed for 8 weeks
287 to HFD, no genotype-specific differences were observed in the kidney and the liver. This
288 therefore indicates that the pathological changes in older APN-KO mice genuinely reflect
289 age-related chronic changes rather than simple developmental differences that would be
290 apparent in the young mice as well. These findings clearly indicate that the lack of
291 adiponectin during aging exacerbates liver and renal damage, at least in part through
292 proinflammatory mechanisms.

293 **Increasing adiponectin protects mice from aged induced metabolic dysfunction**

294 Clinically, adiponectin levels are significantly higher in centenarians and in some of their
295 offspring, suggesting that adiponectin may be a key driver to promote healthspan and
296 lifespan. As the elimination of adiponectin shortens healthspan and lifespan, we
297 wondered whether increasing adiponectin by our previously established transgenic
298 mouse model (that we refer to as the “ ΔGly mouse”) could promote both healthspan and

299 lifespan. A large cohort of WT and Δ Gly mice were placed on chow diet to assess their
300 lifespan. After calculation, a median lifespan in Control mice was around 117 weeks, while
301 this value in Δ Gly mouse has been extended to 128 weeks (9% extension), indicating that
302 increasing circulating adiponectin prolongs median lifespan. However, the maximum
303 lifespan is comparable in Control and Δ Gly mice, as the overall survival curves were not
304 different by log rank test (**Fig. 4A**).

305 Besides its positive effects in prolonging median lifespan, we determined if increasing
306 adiponectin levels may have beneficial effects in extending healthspan. Previous studies
307 indicated that increasing adiponectin levels results in improved glucose and lipid profiles
308 in younger mice (Berg *et al.*, 2001). However, whether these beneficial effects of
309 adiponectin carry to older age has not been assessed. When fed with a chow diet, Δ Gly
310 mice show a similar body weight during lifespan, compared to littermate controls (**Fig.**
311 **4B**). Then we measured fasting glycemia, insulin, and IGF-1(**Fig. 4C**). Under 16hr fasted
312 conditions, Δ Gly mice have a significantly lower fasting glycemia, accompanied by a
313 robust reduction in plasma insulin. Moreover, a reduction in circulating IGF-1 levels is
314 observed in Δ Gly mice. Lower IGF-1 levels are thought to play a key role as a mediator
315 of health- and lifespan extension (Bartke *et al*, 2003). To test whether the improvements
316 in systemic insulin sensitivity are also associated with improvements at the level of the
317 pancreatic β cell, we performed H&E staining on pancreatic sections. Consistent with the
318 reduced demand on islets to produce and release insulin in a more insulin-sensitive
319 environment, the average islet size was considerably reduced by adiponectin
320 overexpression, with islet structural integrity fully preserved (**Fig. 4D**).
321 Immunohistochemical analysis of islets exhibits a normal composition with α cells

322 (glucagon) and β cells (insulin) in Δ Gly mice. During an oral glucose tolerance test, Δ Gly
323 mice displayed a much lower glucose excursion than littermates (**Fig. 4E**). In addition,
324 insulin levels in Δ Gly mice were significantly lower in response to the glucose challenge,
325 which further supports improved insulin sensitivity (**Fig. 4F**). To confirm this, we
326 performed insulin tolerance tests. Δ Gly mice show a significant increase in insulin
327 sensitivity (**Fig. 4G**), which is consistent with our results for the young mice. Moreover,
328 when orally challenged with triglycerides, Δ Gly mice display enhanced lipid clearance (**Fig.**
329 **4H-I**), with correspondingly lower FFA values (**Fig. 4J**). These data demonstrate that
330 increasing adiponectin levels significantly promotes metabolic fitness in aged mice.

331 **Increasing adiponectin levels improves the age-related functional decline in**
332 **tissues of aged mice.**

333 To probe tissue functional declines that might contribute to metabolic syndrome in the
334 elderly, we evaluated the function of fat and liver in aged mice. Aging is associated with
335 a redistribution of fat from the periphery to central fat deposition(Kuk *et al*, 2009). The
336 redistribution and ectopic fat deposition with aging appear to accelerate onset of multiple
337 age-related diseases. A histological examination of adipose tissue showed that Δ Gly mice
338 harbor much smaller adipocytes in subcutaneous and gonadal fat (**Fig. 5A**) compared to
339 controls at the age of 140 weeks. In agreement with the epididymal adipocyte size and
340 fat mass, inflammation is potently suppressed in visceral fat tissues of Δ Gly mice, as
341 demonstrated by a significantly reduced Mac-2 staining (**Fig. 5B**). Moreover, it was quite
342 apparent that visceral fat pad weight was reduced in Δ Gly mice with a slightly increase in
343 subcutaneous adipose tissue (**Fig. 5C**). Aged WT mice revealed an unclear boundary in
344 the hepatic lobule with lose cellular cytoplasm, while Δ Gly mice entirely prevented lipid

345 droplet accumulation and age-related deterioration of the morphology of the liver (**Fig.**
346 **5D**). Furthermore, gene expression of inflammation and fibrosis markers in the livers were
347 dramatically reduced in Δ Gly mice compared with their littermates (**Fig. 5E**). Combined,
348 these findings strongly support that adiponectin promotes metabolic fitness, by
349 maintaining a proper fat distribution, and reducing adipose tissue inflammation, along with
350 reducing inflammation and fibrosis in liver.

351 **Discussion**

352 Based on data from clinical correlations as well as ample preclinical results, we appreciate
353 that elevated levels of adiponectin are generally associated with an improved overall
354 metabolic phenotype. Here, we systematically assessed the impact of adiponectin in the
355 context of aging. Using adiponectin-null and adiponectin overexpressing mouse models,
356 we have made the following observations: 1) The lack of adiponectin in mice curtails
357 healthspan by impairing glucose and lipid homeostasis, and accelerating fibrogenesis in
358 multiple tissues, resulting in reduced healthspan; 2) The lack of adiponectin in mice
359 shortens lifespan both on chow and HFD. 3) Increasing adiponectin levels in aged
360 adiponectin overexpressing mice produces a healthy metabolic phenotype, with greatly
361 increased glucose tolerance and insulin sensitivity, enhanced lipid clearance, lowered
362 visceral fat and potent protection from inflammation and fibrosis; 4) Adiponectin
363 overexpressing mice on a chow diet show a 9% increase in median lifespan. All these
364 observations support that adiponectin is a vastly underestimated player in healthspan and
365 lifespan.

366 With the extension of life expectancy, larger segments of the elderly population suffer
367 from various chronic diseases. The normal aging process is associated with chronic
368 inflammation and thereby increases susceptibility to these chronic morbidities (Goldberg
369 & Dixit, 2015). Indeed, we observed an exacerbated pro-inflammatory state in aged WT
370 mice compared with younger WT animals. In order to combat these age-related
371 inflammatory changes, we need effective anti-inflammatory interventions. But these
372 interventions should not negatively impact desired innate and adaptive immune
373 responses. Circulating adiponectin levels are negatively correlated with inflammatory

374 markers in diabetic patients (Krakoff *et al*, 2003; Mantzoros *et al*, 2005) and in non-
375 diabetic subjects (Choi *et al*, 2007). Among different adipokines, adiponectin is
376 recognized as a major adipokine regulating inflammation in a number of cell types. Our
377 previous studies indicated acute APN depletion leads to an upregulation of inflammatory
378 genes (Xia *et al.*, 2018). Adipose tissues are also susceptible to fibrosis. Chronic
379 inflammation frequently results in fibrosis, which leads to functional declines in tissues.
380 During normal aging, fibrosis occurs in small steps. Due to gradual deposition of collagens,
381 organs become rigid and dysfunctional. Eventually, this causes the health to decline. We
382 found indeed that aged WT mice develop more severe fibrosis compared to young WT
383 mice.

384 Adiponectin has potent anti-fibrotic effects in the liver by activating peroxisome
385 proliferator-activated receptor-gamma pathways (Shafiei *et al*, 2011), which in turn
386 diminishes the expression of pro-fibrotic genes. Despite having reduced levels of
387 triglyceride accumulation in the liver, the chronic lack of adiponectin dramatically
388 exacerbates age-related liver fibrosis in parallel with disruption of liver function. In contrast,
389 Δ Gly mice are completely protected from diet- and aging- induced steatohepatitis and
390 fibrosis, indicating of a crucial role of adiponectin in regulating liver inflammatory reactions
391 and fibrosis. Hence, the anti-inflammatory impact and potent anti-fibrotic actions of
392 adiponectin make it a potent novel regulator enhancing health span.

393

394 Obesity-associated chronic inflammation and insulin resistance are regarded as a pivotal
395 risk factors for the development of several age-related pathological sequelae (Huffman &
396 Barzilai, 2009; Kanneganti & Dixit, 2012). Improved metabolic homeostasis is positively

397 associated with lifespan in humans and mice. Prolongevity intervention, caloric restriction
398 and long-lived Ames dwarf mice have increased adiponectin expression (Hill *et al*, 2016).
399 We found adiponectin mimics to some extent the impact of caloric restriction on reduction
400 in inflammation and improved metabolic homeostasis. Reduction in adiposity is
401 considered to be a hallmark of caloric restriction, which is an important component of its
402 beneficial effects on metabolism. After long-term caloric restriction, aged mice display
403 lower adiposity, smaller adipocytes and improved insulin sensitivity (Miller *et al*, 2017).
404 Strikingly, increases in adiponectin expression are detected in these smaller adipocytes
405 after caloric restriction. Adipocyte hypertrophy is associated with cellular stress and
406 obesity-associated metabolic complications. Due to the limited capacity to expand
407 subcutaneous adipose tissue in aged populations, adipocyte hypertrophy also occurs in
408 visceral fat, which is associated with lipid spillover in multiple tissues in aging and ectopic
409 fat accumulation(Tchkonia *et al*, 2013). Hypertrophic adipocytes and impaired
410 redistribution of lipids exert a negative impact on insulin responsiveness, contributing to
411 many metabolic diseases frequently observed in the elderly. Thus, metabolic disorders
412 frequently go hand in hand with aging. Clinical studies have identified an strong inverse
413 relationship between circulating adiponectin and insulin resistance in obese individuals
414 (Turer *et al*, 2011). Our previous data suggested that adiponectin strongly suppresses
415 hepatic gluconeogenesis and enhances fatty acid oxidation, thereby strongly contributing
416 to an overall beneficial metabolic regulation (Wang & Scherer, 2016). Our aged
417 adiponectin transgenic mice still have dramatically improved insulin sensitivity in parallel
418 with reduced plasma insulin. All of this happens primarily due to an increase in adipocyte
419 numbers in subcutaneous fat of Δ Gly mice. In the absence of the protective effects of

420 adiponectin, aged APN-KO mice exacerbated diet-and aging-induced glucose intolerance
421 and lipid disorders. Moreover, Δ Gly mice show improved insulin sensitivity in parallel with
422 lower insulin and IGF-1 levels, and higher IGF-1 in APN-KO mice. Attenuated activation
423 of the growth hormone –insulin-like growth factor I (IGF-I) axis is also an integral
424 component of the beneficial effects of caloric restriction leading to prolonged healthspan
425 and lifespan in rodents. Interestingly, elevated adiponectin is detected in all long-live mice:
426 This includes the adipocyte-specific insulin receptor knockout mice (FIRKO), the Ames
427 dwarfs (df/df) and GHRKO mice (Blüher *et al*, 2002; Masternak *et al*, 2012; Wang *et al*,
428 2006). These similarities across all these models suggest that an increase in adiponectin
429 levels may be the common denominator driving longevity in all these models.

430
431 Combined, our studies and along with previous reports, demonstrate that adipose tissue
432 plays a vital role in the aging process. In aging, dysfunctional fat tissue leads to ectopic
433 fat deposition, lipodystrophic adipocytes, and subcutaneous fat loss, thereby contributing
434 to increased systemic inflammation, metabolic disturbances, and functional declines in
435 other organs. However, healthy fat pads have characteristic features not only in terms of
436 the quantity, but more importantly, by the quality of adipose tissue (Kusminski *et al*, 2012).
437 Adiponectin is a key player maintaining glucose and lipid homeostasis on the basis of its
438 lipid storing capacity and its ability to communicate with other organs. Thus,
439 overexpressing adiponectin results in the healthy expansion of subcutaneous adipose
440 tissue, a reduction of visceral fat and improvement of inflammation and fibrosis in the liver,
441 all of which greatly alleviates metabolic disturbances and protects against tissue
442 functional decline during the aging process. In contrast, adiponectin deficiency increases

443 susceptibility to metabolic diseases in the elderly. Impaired glucose tolerance and lipid
444 clearance, severe inflammation accompanied by dysfunctional liver and kidney all reduce
445 the quality of life and lifespan in the elderly. Thus, the ability to prolong health span by
446 maintaining adiponectin levels provides a promising therapy for aged- related disorders
447 and improving quality of life in older individuals.

448

449 **Study approval**

450 The Institutional Animal Care and Use Committee of the University of Texas
451 Southwestern Medical Center approved all animal experiments (APN:2015-101207G).

452

453 **Author contributions**

454 NL performed most of the experiments. ZZ, SZ, YAA, YZ, LV and MW conducted some
455 of the experiments. ZZ, YD and TO helped with the breeding of mouse models. RG
456 performed the metabolite measurement experiment. QZ, RKG, ML and VDD gave useful
457 suggestions to this study. NL and PES wrote the manuscript. SZ, YZ, CG and VDD
458 revised the manuscript. PES, TLH and VDD were involved in experimental design,
459 experiments, data analysis, and the interpretation of data.

460

461 **Acknowledgements**

462 We thank all members of Scherer for their support of this study. We would also like to
463 thank the UTSW Metabolic Core Facility, the Histo-Pathology Core, UTSW ARC, and
464 Charlotte Lee for help with histology. **Funding:** This study was supported by US National
465 Institutes of Health grant P01-AG051459 to T.L.H., V.D.D. and P.E.S.

466 **Competing interests:** None of the authors declare any conflicts of interest.

467

468

469 **References:**

470 Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Scherer PE, Rincon M, Siegel
471 G, Katz M, Lipton RB *et al* (2008) Adiponectin levels and genotype: a potential
472 regulator of life span in humans. *J Gerontol A Biol Sci Med Sci* 63: 447-453

473 Bartke A, Chandrashekhar V, Dominici F, Turyn D, Kinney B, Steger R, Kopchick JJ (2003)
474 Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights.
475 *Biogerontology* 4: 1-8

476 Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted
477 protein Acrp30 enhances hepatic insulin action. *Nat Med* 7: 947-953

478 Bhullar KS, Hubbard BP (2015) Lifespan and healthspan extension by resveratrol.
479 *Biochim Biophys Acta* 1852: 1209-1218

480 Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, Sutlief E, Tung H, Vizzini N, Chen B,
481 Smith K *et al* (2016) Transient rapamycin treatment can increase lifespan and
482 healthspan in middle-aged mice. *Elife* 5

483 Blüher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, Kahn CR (2002) Adipose
484 tissue selective insulin receptor knockout protects against obesity and obesity-related
485 glucose intolerance. *Dev Cell* 3: 25-38

486 Camell CD, Günther P, Lee A, Goldberg EL, Spadaro O, Youm YH, Bartke A, Hubbard
487 GB, Ikeno Y, Ruddle NH *et al* (2019) Aging Induces an Nlrp3 Inflammasome-
488 Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. *Cell*
489 *metabolism* 30: 1024-1039.e1026

490 Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, Goldberg EL, Youm YH,
491 Brown CW, Elsworth J *et al* (2017) Inflammasome-driven catecholamine catabolism
492 in macrophages blunts lipolysis during ageing. *Nature* 550: 119-123

493 Choi KM, Ryu OH, Lee KW, Kim HY, Seo JA, Kim SG, Kim NH, Choi DS, Baik SH (2007)
494 Serum adiponectin, interleukin-10 levels and inflammatory markers in the metabolic
495 syndrome. *Diabetes Res Clin Pract* 75: 235-240

496 Christou GA, Kiortsis DN (2014) The role of adiponectin in renal physiology and
497 development of albuminuria. *J Endocrinol* 221: R49-61

498 Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala
499 MW, Parlow AF, Cheeseboro L *et al* (2004) A transgenic mouse with a deletion in the
500 collagenous domain of adiponectin displays elevated circulating adiponectin and
501 improved insulin sensitivity. *Endocrinology* 145: 367-383

502 Crimmins EM (2015) Lifespan and Healthspan: Past, Present, and Promise.
503 *Gerontologist* 55: 901-911

504 DeFronzo RA (1981) Glucose Intolerance and Aging. *Diabetes Care* 4: 493-501

505 Gehrand AL, Hoeynck B, Jablonski M, Leonovicz C, Ye R, Scherer PE, Raff H (2016) Sex
506 differences in adult rat insulin and glucose responses to arginine: programming effects
507 of neonatal separation, hypoxia, and hypothermia. *Physiol Rep* 4

508 Goldberg EL, Dixit VD (2015) Drivers of age-related inflammation and strategies for
509 healthspan extension. *Immunological reviews* 265: 63-74

510 Hill CM, Fang Y, Miquet JG, Sun LY, Masternak MM, Bartke A (2016) Long-lived
511 hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet
512 on metabolic function and energy expenditure. *Aging cell* 15: 509-521

513 Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM,
514 Wade M, Singhal E, Cheng CC *et al* (2013) An FGF21-adiponectin-ceramide axis
515 controls energy expenditure and insulin action in mice. *Cell Metab* 17: 790-797

516 Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene
517 dysregulated in obesity. *J Biol Chem* 271: 10697-10703

518 Huffman DM, Barzilai N (2009) Role of visceral adipose tissue in aging. *Biochimica et
519 biophysica acta* 1790: 1117-1123

520 Jura M, Kozak LP (2016) Obesity and related consequences to ageing. *Age (Dordr)* 38:
521 23-23

522 Kanneganti TD, Dixit VD (2012) Immunological complications of obesity. *Nature
523 immunology* 13: 707-712

524 Kim IH, Xu J, Liu X, Koyama Y, Ma HY, Diggle K, You YH, Schilling JM, Jeste D, Sharma
525 K *et al* (2016) Aging increases the susceptibility of hepatic inflammation, liver fibrosis
526 and aging in response to high-fat diet in mice. *Age (Dordr)* 38: 291-302

527 Kim J-Y, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, Schraw T,
528 Durand JL, Li H, Li G *et al* (2007) Obesity-associated improvements in metabolic
529 profile through expansion of adipose tissue. *The Journal of Clinical Investigation* 117:
530 2621-2637

531 Krakoff J, Funahashi T, Stehouwer CD, Schalkwijk CG, Tanaka S, Matsuzawa Y, Kobes
532 S, Tataranni PA, Hanson RL, Knowler WC *et al* (2003) Inflammatory markers,
533 adiponectin, and risk of type 2 diabetes in the Pima Indian. *Diabetes Care* 26: 1745-
534 1751

535 Kuk JL, Saunders TJ, Davidson LE, Ross R (2009) Age-related changes in total and
536 regional fat distribution. *Ageing research reviews* 8: 339-348

537 Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, Askew GR, Simcox JA,
538 McClain DA, Li C *et al* (2012) MitoNEET-driven alterations in adipocyte mitochondrial
539 activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity.
540 *Nature medicine* 18: 1539-1549

541 Lumeng CN, Liu J, Geletka L, Delaney C, Delproposto J, Desai A, Oatmen K, Martinez-
542 Santibanez G, Julius A, Garg S *et al* (2011) Aging is associated with an increase in T
543 cells and inflammatory macrophages in visceral adipose tissue. *Journal of*
544 *immunology (Baltimore, Md : 1950)* 187: 6208-6216

545 Mantzoros CS, Li T, Manson JE, Meigs JB, Hu FB (2005) Circulating adiponectin levels
546 are associated with better glycemic control, more favorable lipid profile, and reduced
547 inflammation in women with type 2 diabetes. *J Clin Endocrinol Metab* 90: 4542-4548

548 Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen
549 M, Gomes AP, Ward TM, Minor RK, Blouin MJ *et al* (2013) Metformin improves
550 healthspan and lifespan in mice. *Nat Commun* 4: 2192

551 Masternak MM, Bartke A, Wang F, Spong A, Gesing A, Fang Y, Salmon AB, Hughes LF,
552 Liberati T, Boparai R *et al* (2012) Metabolic effects of intra-abdominal fat in GHRKO
553 mice. *Aging Cell* 11: 73-81

554 Miller KN, Burhans MS, Clark JP, Howell PR, Polewski MA, DeMuth TM, Eliceiri KW,
555 Lindstrom MJ, Ntambi JM, Anderson RM (2017) Aging and caloric restriction impact
556 adipose tissue, adiponectin, and circulating lipids. *Aging Cell* 16: 497-507

557 Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R (2010) Dietary interventions to
558 extend life span and health span based on calorie restriction. *J Gerontol A Biol Sci
559 Med Sci* 65: 695-703

560 Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen
561 AS, Ruderman NB, Chen H et al (2006) Mice lacking adiponectin show decreased
562 hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-
563 activated receptor gamma agonists. *J Biol Chem* 281: 2654-2660

564 Olshansky SJ (2018) From Lifespan to Healthspan. *JAMA* 320: 1323-1324

565 Park P-H, Sanz-Garcia C, Nagy LE (2015) Adiponectin as an anti-fibrotic and anti-
566 inflammatory adipokine in the liver. *Curr Pathobiol Rep* 3: 243-252

567 Piskovatska V, Strilbytska O, Koliada A, Vaiserman A, Lushchak O (2019) Health Benefits
568 of Anti-aging Drugs. *Subcell Biochem* 91: 339-392

569 Scherer PE (2006) Adipose tissue: from lipid storage compartment to endocrine organ.
570 *Diabetes* 55: 1537-1545

571 Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein
572 similar to C1q, produced exclusively in adipocytes. *J Biol Chem* 270: 26746-26749

573 Shafiei MS, Shetty S, Scherer PE, Rockey DC (2011) Adiponectin regulation of stellate
574 cell activation via PPAR γ -dependent and -independent mechanisms. *Am J Pathol* 178:
575 2690-2699

576 Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla
577 S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. *Aging
578 Cell* 9: 667-684

579 Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL
580 (2013) Mechanisms and metabolic implications of regional differences among fat
581 depots. *Cell metabolism* 17: 644-656

582 Turer AT, Khera A, Ayers CR, Turer CB, Grundy SM, Vega GL, Scherer PE (2011)
583 Adipose tissue mass and location affect circulating adiponectin levels. *Diabetologia*
584 54: 2515-2524

585 Viljoen A, Sinclair A (2009) Safety and efficacy of rosiglitazone in the elderly diabetic
586 patient. *Vasc Health Risk Manag* 5: 389-395

587 Wang Z, Al-Regaiey KA, Masternak MM, Bartke A (2006) Adipocytokines and lipid levels
588 in Ames dwarf and calorie-restricted mice. *J Gerontol A Biol Sci Med Sci* 61: 323-331

589 Wang ZV, Scherer PE (2016) Adiponectin, the past two decades. *Journal of molecular*
590 *cell biology* 8: 93-100

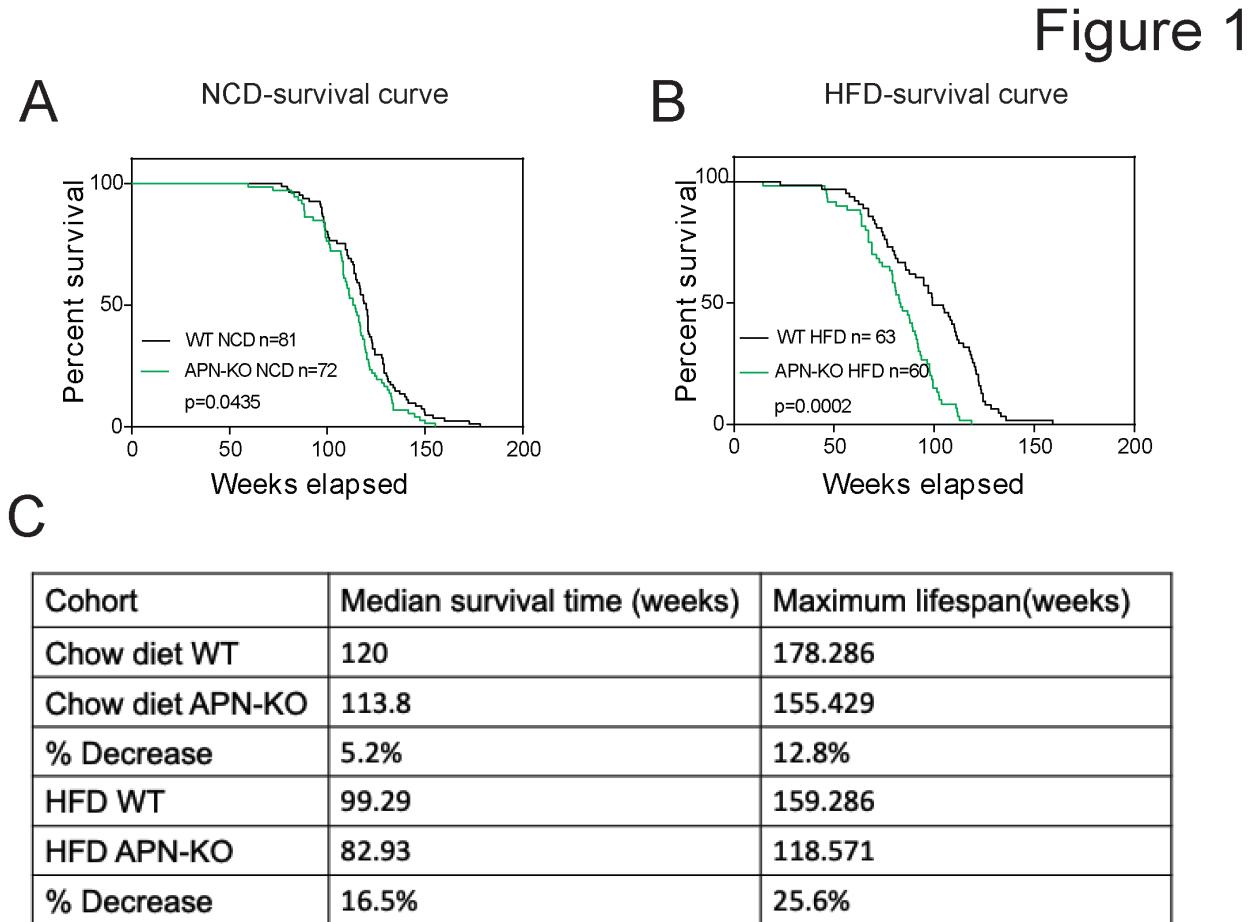
591 Weinstein JR, Anderson S (2010) The aging kidney: physiological changes. *Adv Chronic*
592 *Kidney Dis* 17: 302-307

593 Xia JY, Sun K, Hepler C, Ghaben AL, Gupta RK, An YA, Holland WL, Morley TS, Adams
594 AC, Gordillo R *et al* (2018) Acute loss of adipose tissue-derived adiponectin triggers
595 immediate metabolic deterioration in mice. *Diabetologia* 61: 932-941

596 Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M, Olefsky JM (2002)
597 The Effect of Thiazolidinediones on Plasma Adiponectin Levels in Normal, Obese, and
598 Type 2 Diabetic Subjects. *Diabetes* 51: 2968-2974

599 Zhao S, Li N, Zhu Y, Straub L, Zhang Z, Wang MY, Zhu Q, Kusminski CM, Elmquist JK,
600 Scherer PE (2020) Partial leptin deficiency confers resistance to diet-induced obesity
601 in mice. *Mol Metab*: 100995

602 Zhao S, Mugabo Y, Iglesias J, Xie L, Delghingaro-Augusto V, Lussier R, Peyot ML, Joly
603 E, Taib B, Davis MA *et al* (2014) alpha/beta-Hydrolase domain-6-accessible
604 monoacylglycerol controls glucose-stimulated insulin secretion. *Cell Metab* 19: 993-
605 1007


606 Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, Caron A, Zhu Q, Sun K, Xiong W *et al*
607 (2019) Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy.
608 *Cell Metab* 30: 706-719.e706

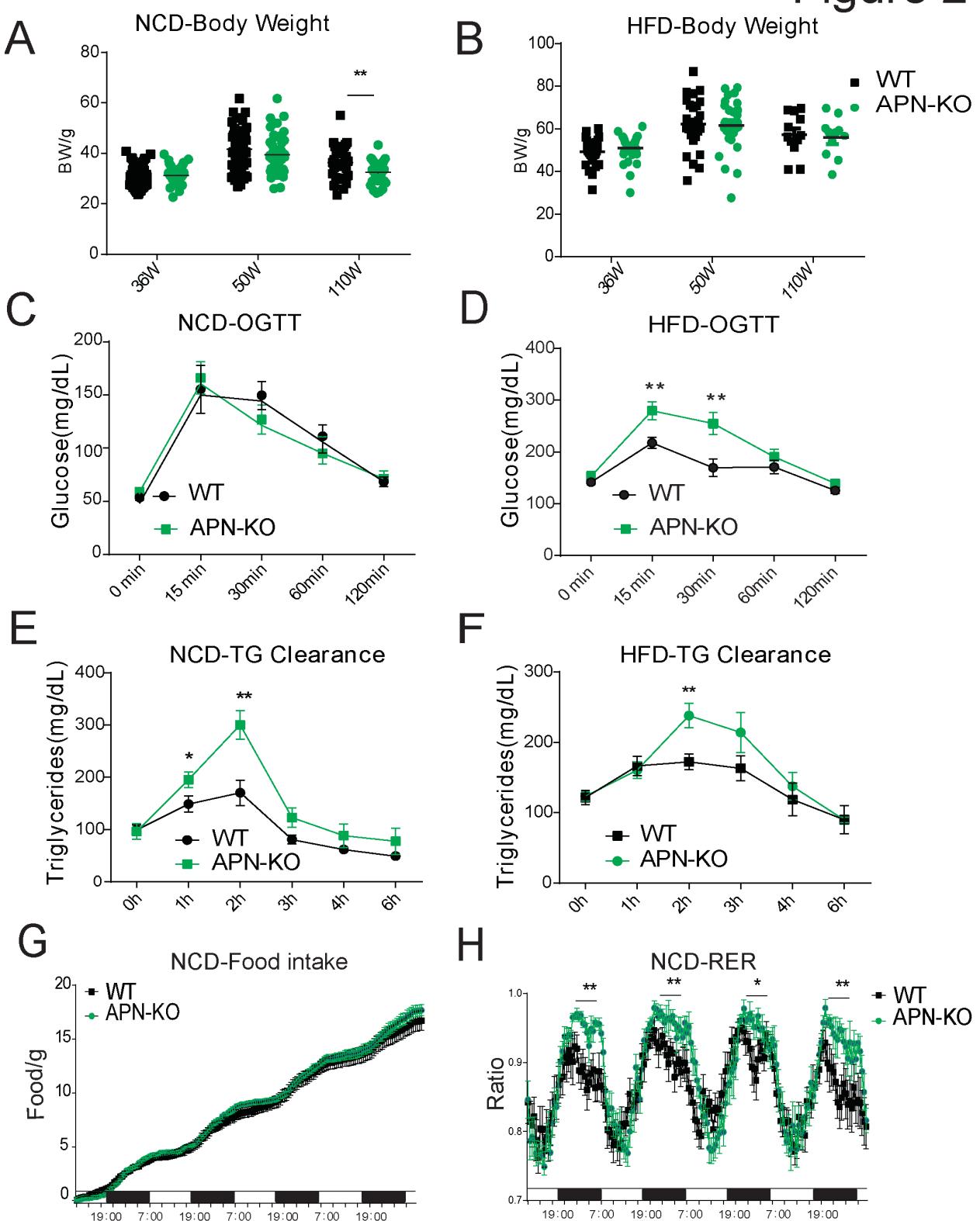
609 Zhu Y, Gao Y, Tao C, Shao M, Zhao S, Huang W, Yao T, Johnson JA, Liu T, Cypess AM
610 *et al* (2016) Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the
611 Propagation of Sympathetic Neuronal Signals. *Cell metabolism* 24: 420-433

612 Zhu Y, Zhao S, Deng Y, Gordillo R, Ghaben AL, Shao M, Zhang F, Xu P, Li Y, Cao H *et*
613 *al* (2017) Hepatic GALE Regulates Whole-Body Glucose Homeostasis by Modulating
614 Tff3 Expression. *Diabetes* 66: 2789-2799

615

616 **Figures:**

617


618 **Fig. 1: Lack of APN in aging mice shortens lifespan**

619 A. Kaplan-Meier survival curves for WT and APN-KO mice on chow diet.

620 B. Kaplan-Meier survival curves for WT and APN-KO mice on HFD.

621 C. Median survival time and maximum lifespan for each cohort. *n* denotes the
622 number of mice per group. *P* values were determined by log-rank (Mantel–Cox)
623 test.

Figure 2

624

625

Fig. 2: Lack of APN in aging mice attenuates glucose and lipid

626 **homeostasis.**

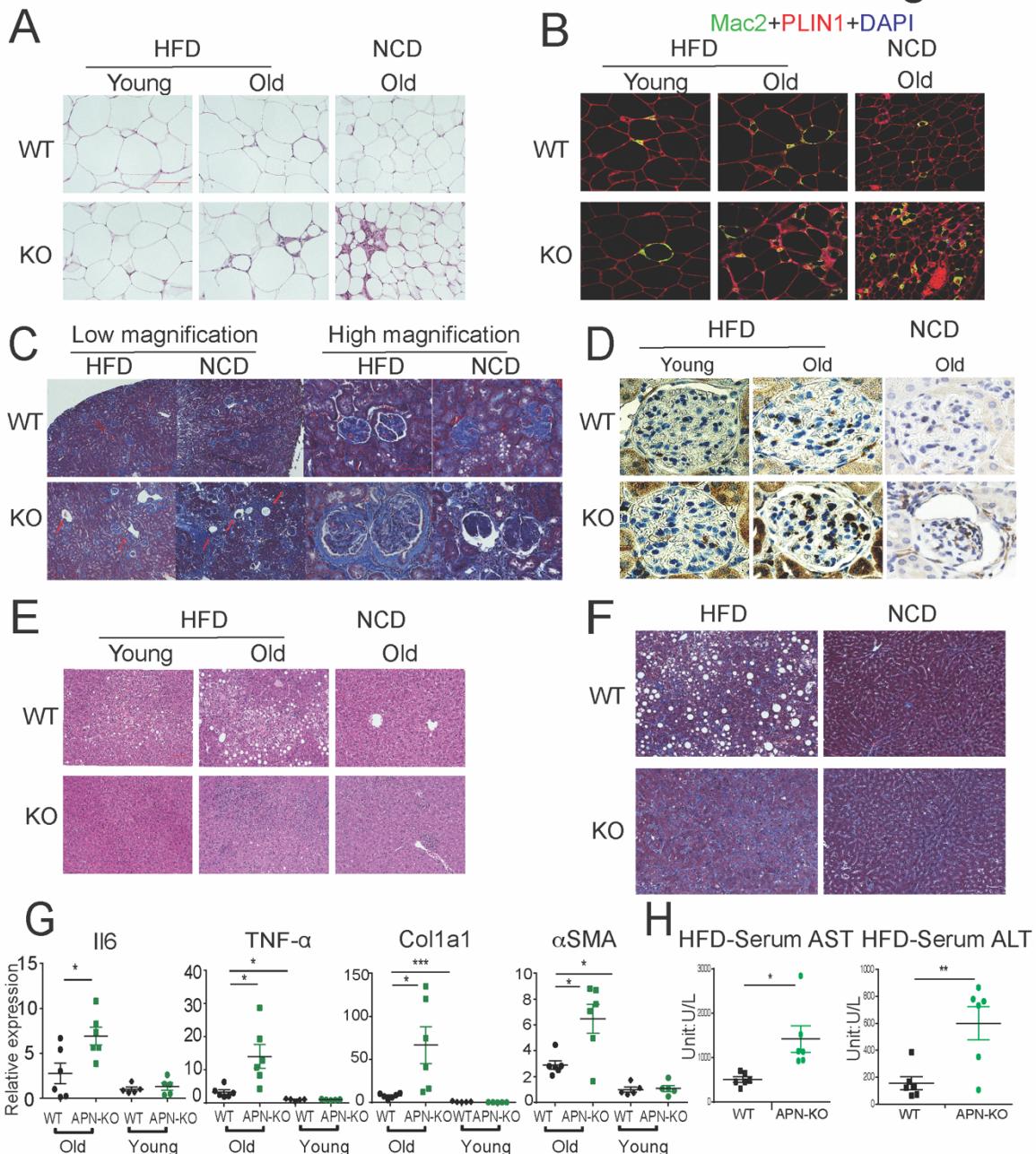
627 A. Body-weights during aging processes for WT and APN-KO mice fed on chow
628 diet.

629 B. Body-weights during aging processes for WT and APN-KO mice fed on HFD.

630 C. An OGTT (2g kg^{-1} bodyweight; single gavage) on chow diet-feeding WT and
631 APN-KO mice at 110-week old (n=7 per group).

632 D. An OGTT (1.25 g kg^{-1} bodyweight; single gavage) on HFD-feeding WT and APN-
633 KO mice at 85-week old (n=8 for WT, n=7 for APN-KO mice).

634 E. T.G. clearance test (20% intralipid; 15 ul g^{-1} bodyweight; single gavage) in chow
635 diet-feeding WT and APN-KO mice at 110-week old (n = 9 for WT, n=10 for APN-
636 KO mice).


637 F. T.G. clearance test (20% intralipid; 15 ul g^{-1} bodyweight; single gavage) in HFD-
638 feeding WT and APN-KO mice at 85-week old (n=8 per group) .

639 G. Metabolic cage analyses showing food intake for chow diet-feeding WT in APN-
640 KO mice at 110-week old (n=8 for WT, n=7 for APN-KO mice). Data are mean \pm
641 SEM. Student's *t* test: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ for WT vs APN-KO.

642 H. Metabolic cage analyses showing respiratory exchange rate (RER) chow diet-
643 feeding WT and APN-KO mice at 110-week old (n=8 for WT, n=7 for APN-KO
644 mice). Data are mean \pm SEM. Student's *t* test: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
645 for WT vs APN-KO.

646

Figure 3

647

648 **Fig. 3: Deletion of APN in aged mice exacerbate functional decline.**

649 A. H&E staining of an Epi fat depot of 20-week old and 100-week old WT and APN-

650 KO mice fed on HFD or 140-week old WT and APN-KO mice on chow diet.

651 B. Mac2 staining of an Epi fat depot of 20-week old and 100-week old WT and APN-

652 KO mice fed on HFD or 140-week old WT and APN-KO mice on chow diet.

653 C. Trichrome staining of kidney sections reveals severe interstitial and

654 periglomerular fibrosis in 110-week old APN-KO mice fed on HFD and 140-week

655 old APN-KO mice fed on chow diet. Collapsed tufts are seen inside widened

656 Bowman's capsules forming glomerular cysts (red arrow)

657 D. Mac2 staining of kidney sections of 20-week old and 100-week old WT and APN-

658 KO mice fed on HFD or chow diet.

659 E. H&E staining of Liver of 20-week old and 100-week old WT and APN-KO mice

660 fed on HFD, 140-week old WT and APN-KO mice on chow diet. Note the

661 extensive inflammatory cell infiltrates in the liver of the aged APN-KO mice fed on

662 HFD.

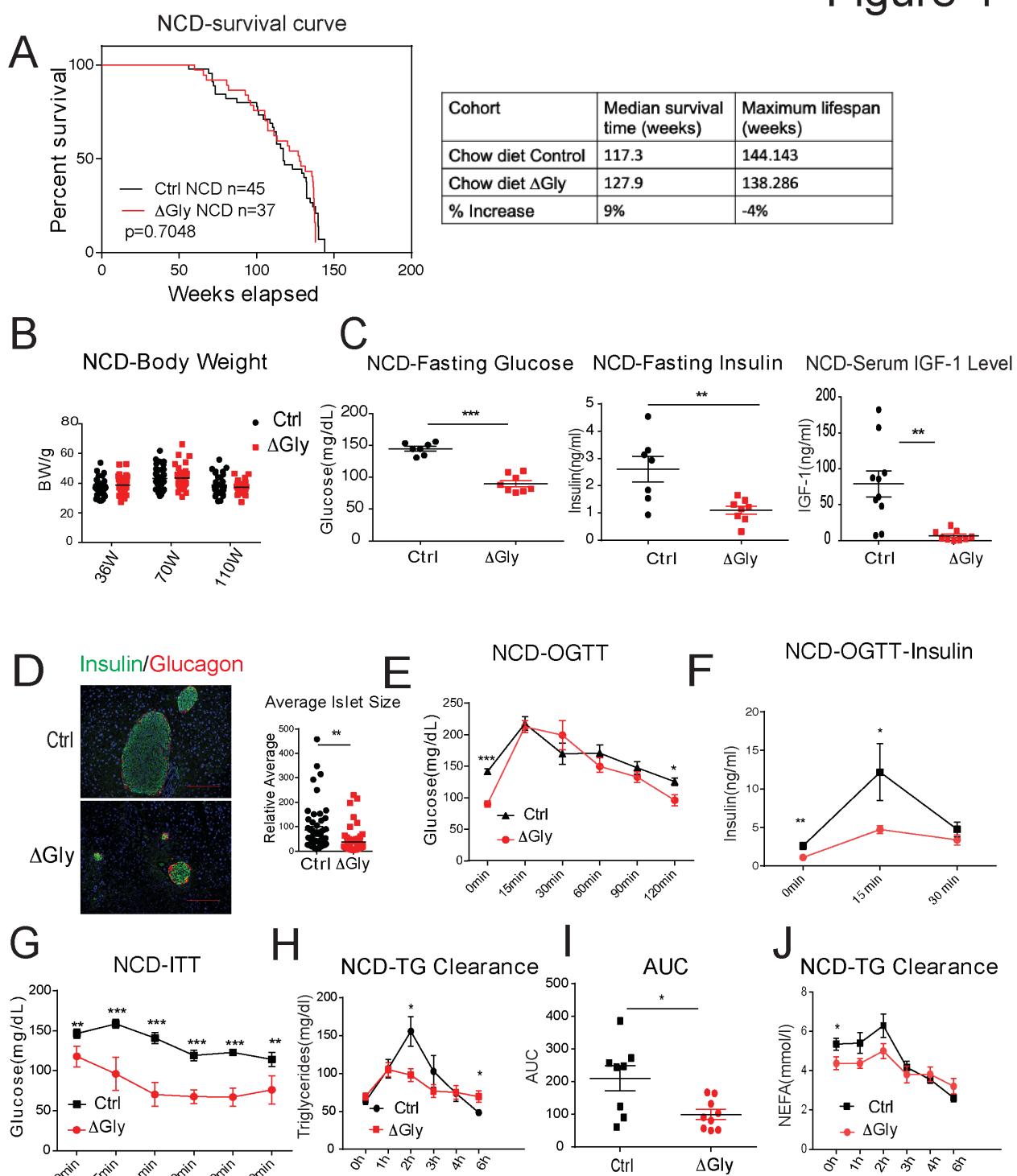
663 F. Trichrome stains of liver sections from 20-week old and 100-week old WT and

664 APN-KO mice fed on HFD or 140-week old WT and APN-KO mice on chow diet,

665 examine liver fibrosis.

666 G. Expression of inflammatory and fibrosis markers in liver tissues of 20-week old

667 and 100-week old WT and APN-KO mice fed on HFD or chow diet (n=5 per


668 groups of young cohorts, n=6 per groups of aged cohorts).

669 H. Serum AST and ALT activities in 100-week old WT and APN-KO mice fed on

670 HFD (n=6 per group). Bar, 100 μ m. Data are mean \pm SEM. Student's *t* test: **p* <

671 0.05, ***p* < 0.01, ****p* < 0.001 for WT vs APN-KO.

Figure 4

672

673 **Fig. 4: Increasing adiponectin protect against aging- induced metabolic**
674 **disturbance.**

675 A. Kaplan-Meyer survival curves for WT and Δ Gly mice on chow diet. Median
676 survival time and maximum lifespan for each cohort. n denotes the number of
677 mice per group. P values were determined by log-rank (Mantel–Cox) test.

678 B. Body-weights during aging processes for controls and Δ Gly mice fed on chow
679 diet.

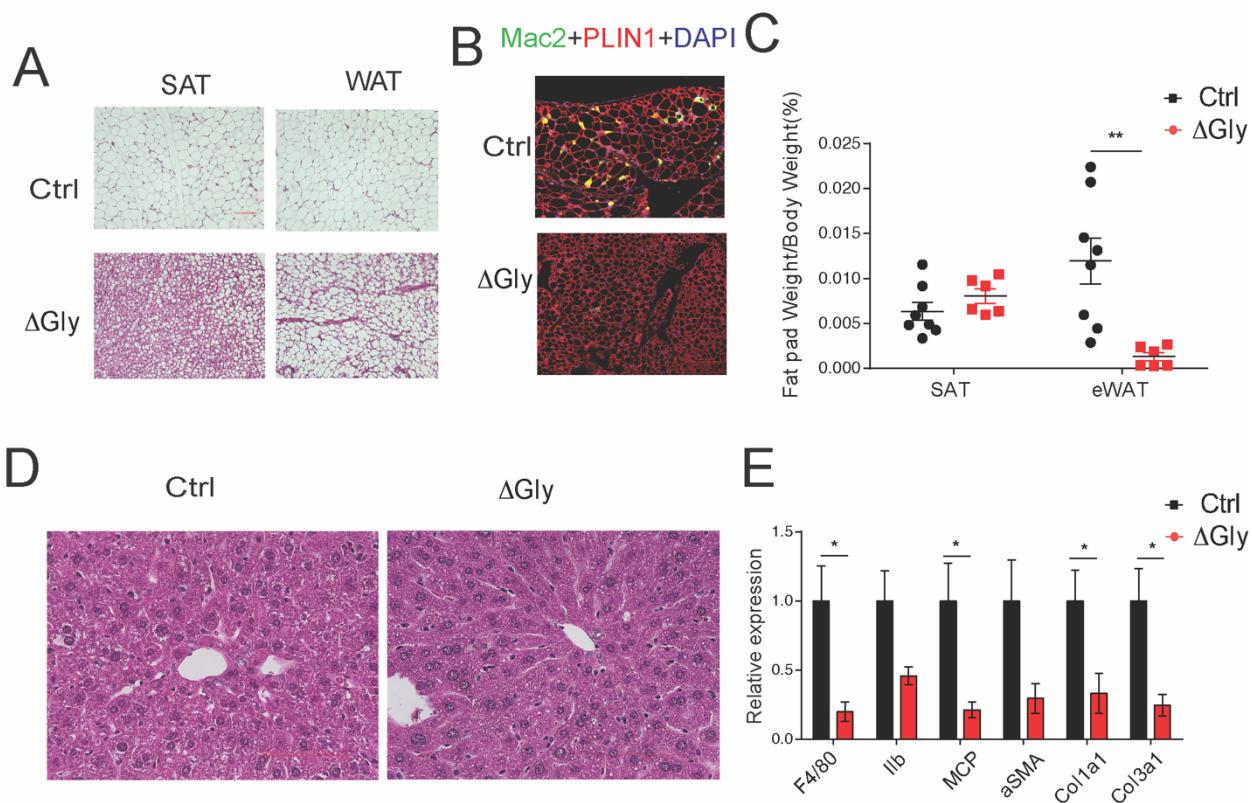
680 C. Systemic glucose, insulin and IGF-1 levels in 50-week old controls and Δ Gly
681 mice after fasting 16h.

682 D. Insulin and glucagon IF staining of pancreases from controls and Δ Gly mice at
683 140-week old (left). Right: Relative average islet size.

684 E. An OGTT (2 g kg⁻¹ bodyweight; single gavage) revealed marginally improved
685 glucose tolerance in 50-week Δ Gly compared with controls ($n=8$ per group).

686 F. Serum insulin levels during glucose tolerance test performed in panel C ($n=8$ per
687 group).

688 G. ITT in controls and Δ Gly mice at 50-week old. ($n=8$ per group)


689 H. T.G. clearance test in controls and Δ Gly mice at 50-week old ($n=8$ for WT, $n=9$
690 for Δ Gly mice)

691 I. AUC calculated based on H.

692 J. Circulating FFA levels in controls and Δ Gly mice at 50-week old during T.G.
693 clearance performed in panel I. ($n=8$ for WT, $n=9$ for Δ Gly mice). Bar, 100 μ m. Data
694 are mean \pm SEM. Student's t test: * p < 0.05, ** p < 0.01, *** p < 0.001 for controls
695 vs Δ Gly.

696

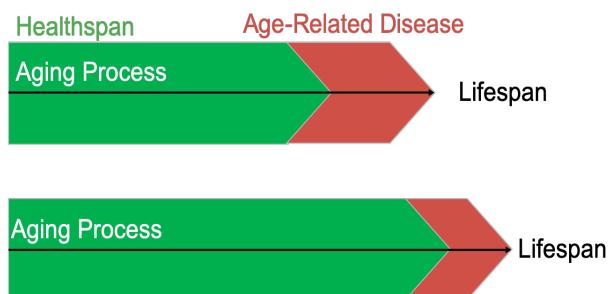
Figure 5

697

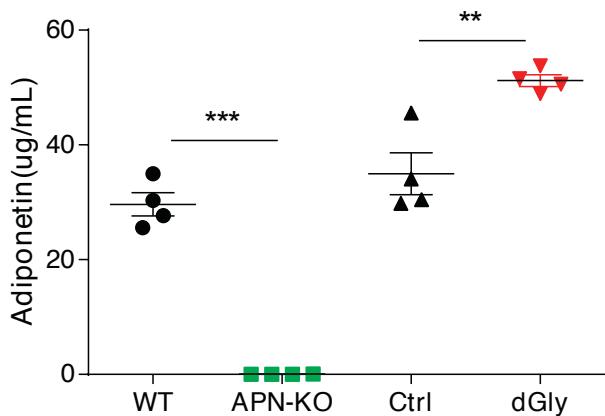
698 **Fig. 5: Old adiponectin overexpressing mice exhibit improved glucose and lipid**
699 **homeostasis.**

700 A. H&E staining of SubQ fat depot and Epi fat depot of 140-week old controls and
701 ΔGly mice fed on chow diet.
702 B. Mac2 staining of Epididymal fat sections in 140-week old controls and ΔGly mice.
703 C. Relative subcutaneous and visceral fat pad weights of 140-week old controls and
704 ΔGly mice fed on chow diet (n=8 for controls, n=6 for ΔGly mice).
705 D. H&E staining of Liver from 140-week old controls and ΔGly mice fed on chow
706 diet.

707 E. Expression of inflammatory and fibrosis markers in liver of 140-week old controls
708 and Δ Gly mice fed on chow diet (n=8 for controls, n=6 for Δ Gly mice). Bar,
709 100 μ m. Data are mean \pm SEM. Student's *t* test: * p < 0.05, ** p < 0.01, *** p < 0.001
710 for WT vs Δ Gly.


711 **Supplemental Figure Legends:**

Sup Figure 1

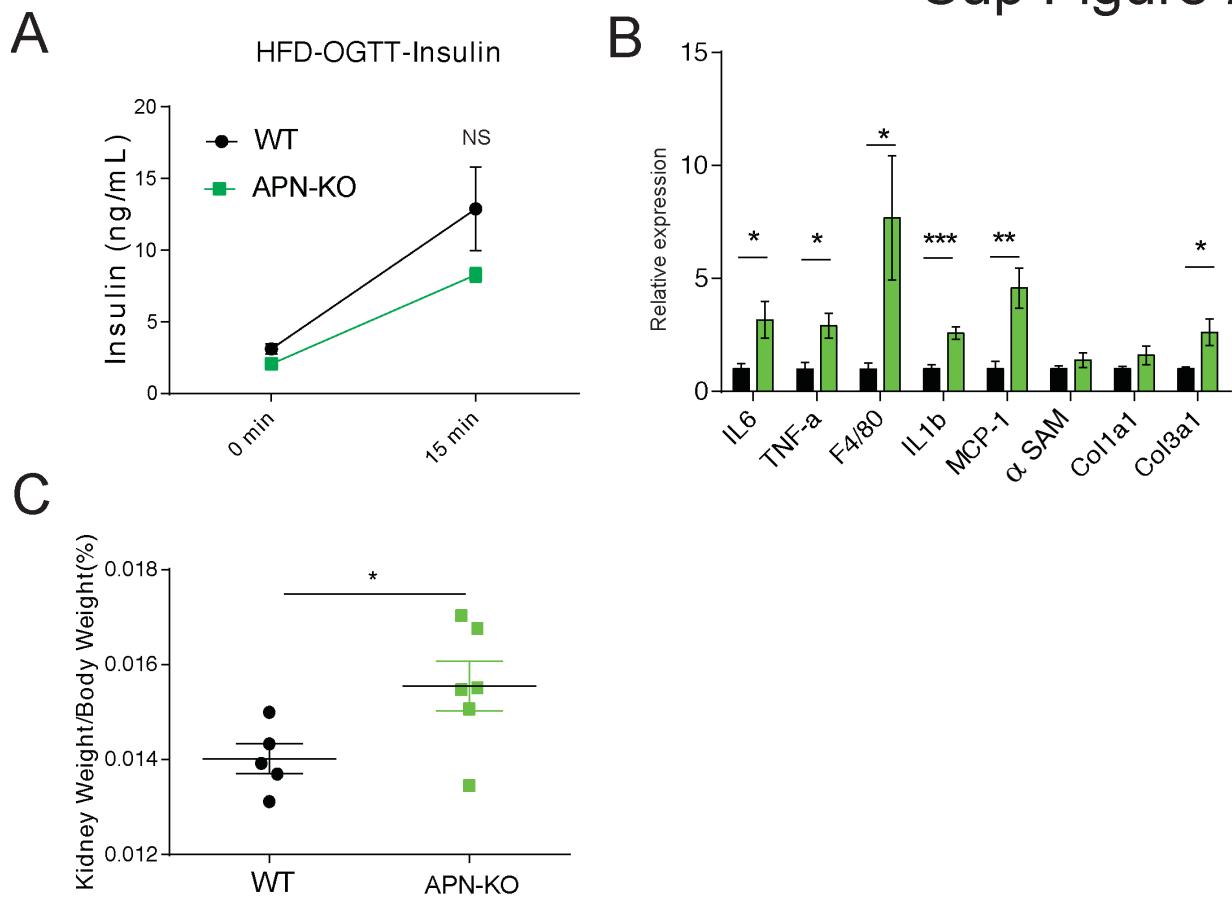

A

Genotype	Chow diet		HFD		Chow diet	
	WT	APN-KO	WT	APN-KO	Ctrl	Δ Gly
Cohort	81 male	72 male	63 male	60 male	45 male	37 male

B

C Serum Adiponectin Concentration

712


713 **Fig. S1: Mouse Models used for longevity studies: APN-KO Mice and Δ Gly Mice**

714 S1A. Experimental strategy for longevity experiments.

715 S1B. Diagram of the aging process. Lifespan and healthspan are always strongly
716 coupled.

717 S1C. Circulating adiponectin levels measured in 50-week old APN-KO and Δ Gly mice
718 with their controls fed on chow diet respectively (n=4 per group).

Sup Figure 2

719

720 **Fig. S2: Insulin levels in APN-KO mice during OGTTs.**

721 S2A. No difference in insulin levels during OGTTs in aged APN-KO mice on HFD. And
722 chow diet fed aged APN-KO mice do not improve glucose tolerance. Serum insulin
723 levels during glucose tolerance test performed in Fig.3D. (n=8 for WT, n=7 for APN-KO
724 mice.

725 S2B. Expression of inflammatory and fibrosis markers in liver of 140-week old WT and
726 APN-KO mice fed on chow diet (n=7 for WT, n=7 for APN-KO mice).

727 S2C. The relative wet kidney weight with respect to body weight of 140-week old WT
728 and APN-KO mice fed on chow diet (n=5 for WT, n=6 for APN-KO mice). Bar,
729 100 μ m. Data are mean \pm SEM. Student's *t* test: * p < 0.05, ** p < 0.01, *** p < 0.001 for
730 WT vs APN-KO.