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Executive summary

1. This report describes the principal outcomes of an Impact Acceleration Account project

(grant number EP/I000992/1) between the University of Surrey and Transport for Lon-

don carried out between Oct. 2019 and Mar. 2020.

2. The aim of the project was to compare the Health and Safety Executive (HSE) Fatigue

Risk tool with SAFTE and other more recent models of fatigue, where fatigue here

primarily means a reduced ability to function effectively and efficiently as a result of

inadequate sleep.

3. We have not sought to discuss the useability of the HSE Fatigue Risk tool or SAFTE

since this has been discussed comprehensively elsewhere (e.g. [1, 2]). We have

instead focussed on the fundamental principles underlying the models.

4. All current biomathematical models have limitations and make asumptions that are not

always evident from the accompanying documentation. Since full details of the HSE

Fatigue Risk tool and the SAFTE model are not publicly available, Sections 1 and 2

give a mathematical description of the equations that we believe underlie each of these

models.

5. A comparison of predictions made by our versions of the HSE and SAFTE equations

for one particular shift schedule of relevance to the UK and global tunnelling and con-

struction industries is shown in Section 3. In this comparison, we use data collected

durings TfL’s Crossrail project by Dragados1. Essentially, both models give broadly the

same message for the schedule we looked at, but the ability to display fatigue as it

develops within a shift is a strength of SAFTE.

6. A summary of the strengths and limitations of the use of these kind of scheduling tools

is given in the final Section 4. Limitations include:

• Models do not describe fatigue during times when people are not in shift (e.g.

driving home). However, they could readily be extended to do so.

• Models assume people start well-rested. This is not always a good assumption

and can lead to an under-estimate of fatigue.
1Crossrail is the biggest railway infrastructure project in Europe and is one of the largest single investments

undertaken in the UK. It is a joint venture between TfL and the UK Department of Transport. Construction started in
2009 and intensive operational testing is expected to take place in 2021. The project included digging 42 kilometres
of new rail tunnel under London. Dragados was one of two engineering companies responsible for tunnelling.
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• Most models are currently based on population averages, but there are large

individual different. It would be possible to further develop models to include

uncertainty in fatigue predictions associated with individual differences.

• Few mdels include the light environment, which is important both to promote

short-term alertness and facilitate circadian alignment.

• Models are not transparent, which makes them hard to independently validate.

• It is hard to relate the outputs of current models to measureable outcomes in the

field.

7. We also discuss briefly recent developments in mathematical modelling of fatigue and

possible future directions. These include

• Guidance on scheduling and education on sleep and fatigue should be consid-

ered at least as important as current biomathematical models.

• Only by analysing and integrating high quality individual data on sleep, fatigue,

performance, near misses, accidents, actual shift patterns with models can we

develop better models and management systems to reduce fatigue and associ-

ated risks. Wearables combined with apps present a great opportunity to collect

data at scale but need to be used appropriately.

• The importance of making time for sleep is not always recognised. Education,

early diagnosis of sleep disorders such as sleep apnea, and self-monitoring all

have a role to play in reducing fatigue-related risk in the work-place.

8. Section 3 and Section 4 may be understood without reading the intermediate more

mathematical sections.
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1 The HSE Fatigue and Risk Tool: Fatigue Index

1.1 Background

The HSE Fatigue and Risk tool [3] calculates two quantities, the Fatigue Index and the

Risk Index, aimed at providing guidance on the fatigue associated with any specified shift

schedule. Here we focus on the Fatigue Index. We will be making extensive reference to

[3], so from this point will refer to it as the QuinetiQ research report.

The QuinetiQ research report states that the Fatigue Index represents the probability that

someone will score highly (eight or nine) on the Karolinska Sleepiness Scale (KSS), a nine-

point scale ranging from one (extremely alert) to nine (extremely sleepy and fighting sleep).

The Fatigue Index considers sleepiness to arise from the interaction of three components:

(i) a cumulative component, C(i)
f , which models the effect of accumulated sleep debt; (ii)

a shift2 timing component, T
(i)

f , which takes into account the timing of the shift; (iii) a job

type/breaks component, J
(i)

f , which allows for different types of job to lead to different levels

of sleepiness and takes into account breaks.

The Fatigue Index for a shift on day i3, FI(i), is given by

FI(i) = 100
(

1 −
(

1 − C
(i)
f

)(
1 − J

(i)

f − T
(i)

f

))
, (1)

= 100
(
C

(i)
f + J

(i)

f + T
(i)

f − C
(i)
f

(
J

(i)

f + T
(i)

f

))
. (2)

The three components are scaled and each takes a value up to a maximum of approximately

one third. 4.

The basis for this formula is not clear from the documentation, but it can be seen from

equation (2) that the three components are essentially additive with a nonlinear correction

term that downweights the job type and duty timing components when cumulative fatigue is

high. Multiple factors feed into the cumulative component, the shift timing component and

job type component. A schematic giving the overall steps is shown in Fig. 1. The formula

are discussed below.
2or ’duty’
3A technical point: we have used the index i to denote the day on which the shift occurs. More formally, we

should include both an index for the day and for the shift number to allow for the fact that more than one shift can
occur on one day and there may not be a shift on every day. However, to keep the notation from being overly
cumbersome, for the description here we have only specified a single index for the day. In any computer coding of
the model, appropriate care has to be taken for both days and shifts.

4The values reported in the Fatigue Index spreadsheet in the columns labelled ‘cumulative fatigue’, ‘duty timing’
and ‘duty type’ are 100 times the values for C(i)

f , J
(i)
f and T

(i)
f
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Estimate sleep duration for each day. 
Accounts for:
• Early starts, Searly (i)
• Late finishes/overnight duties, Slate (i)
• Quick returns, Squick (i)

Estimate sleepiness on the Karolinska 
Sleepiness Scale for each shift and 
rescale to give daily cumulative fatigue Cf
(i) on a scale approx. 0 to 1/3

Calculate Fatigue Index, FI (i)

FI (i) = 100 ( 𝐶! (i) + 𝐽! (i) + 𝑇! (i) - 𝐶! (i) (𝐽! (i) + 𝑇! (i)) )

Estimate sleep loss for each day in the 
schedule, Sloss (i). Assumes:
• Normal sleep duration is 8 hours

Estimate performance in a psychomotor 
vigilance test (PVT) for each shift, taking 
into account cumulative effect of 
successive days of sleep loss

Cumulative component Cf
(i) Duty timing component Tf

(i)

Job type component Jf
(i)

Estimate performance on a psychomotor 
vigilance test (PVT) at 15 minute time 
intervals in a shift based on 
• Shift start time
• Current time spent on shift
• Time of day

From the PVT, estimate sleepiness on the 
Karolinska Sleepiness Scale. Rescale to a 
value between  0 and 1 for each time 
point and rescale.

Calculate the mean value over the entire 
shift

Estimate the performance on a 
psychomotor vigilance test (PVT) due 
to job type and breaks. Includes:
• The effect of breaks
• Workload
• Time of day

Figure 1: Schematic summarising the process for calculating the Fatigue Index.

1.2 Cumulative component, C(i)
f

The cumulative component is based on sleep debt and, as indicated in Fig. 1, is calculated

by first estimating the sleep duration for each day. This is then used to calculate the sleep

loss. Sleep loss for each day is then used to estimate a baseline performance value on a

psychomotor vigilance task (PVT).

This baseline PVT value is then adjusted up or down depending on performance the previ-

ous day. This scaling up or down based on prior performance in effect models the impact of

accumulated sleep loss. For shifts starting during the day, defined as shifts starting between

03:00 and 15:00, there is an additional small adjustment based on start time.

There is a final rescaling step that rescales PVT to values that relate to the Karolinska

Sleepiness Scale (KSS, a scale from one to nine) and then to a value between zero and

approximately one third.

Each of these steps is discussed in more detail below.
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1.2.1 Daily sleep loss, S(i)
loss

The HSE tool assumes that a normal night’s sleep is eight hours and that shorter than

normal sleep duration may occur as a result of three factors: an early shift start; a late shift

finish or overnight shift, or as a result of two successive shifts are close together (a quick

return). Specifically, sleep duration S(i)
duration on day i is

S
(i)
duration = min

(
S

(i)
early,S

(i)
late,S

(i)
quick

)
, (3)

where S
(i)
early is the sleep duration due to an early start in the morning; S(i)

late is the sleep

duration due to a late finish in the evening or an overnight shift, and S
(i)
quick is the sleep

duration as a result of a quick return. All sleep durations are measured in hours and refer to

the sleep duration on the day leading up to the shift on day i. 5

Consequently, sleep loss, S(i)
loss, in hours for the night leading up to day i is modelled as

S
(i)
loss = max (8 − Sduration, 0) . (4)

In the QuinetiQ report, the formula for S(i)
early is described as a quadratic fit to data from train

drivers showing mean sleep duration as a result of an early start. These data show that start

times of 04:30 results in only 5 h of sleep prior to the shift. With each 1 h delay in start time

there is approximately 0.5 h of additional sleep, until by a start time of 09:30, almost 7.5 h of

sleep are obtained. We have refitted these data, giving,

S
(i)
early =

{
−0.0405 t

(i)2

start + 1.0652 t
(i)
start + 0.9843, for 4 ≤ t

(i)
start ≤ 13

8, otherwise,
(5)

where t(i)start is the start time of the shift on day i in hours on a 24 h clock. The original data

is shown in Fig. 2(a) on which we have superimposed equations (5).

In the QuinetiQ report, S(i)
late, is described as being derived from the data on bedtimes for

Japanese and German workers, reproduced in Fig. 2(b). These data show that going to bed

at midnight results in 8 h sleep. However, sleep duration decreases approximately linearly

with bedtime, with a bedtime of 10:00 resulting in approxmiately 4 h sleep and a bedtime

of 14:00 resulting in only 2 h sleep. The pattern changes after 17:00, with sleep duration

increasing as bedtimes approach ’normal’ bedtimes. Refitting to these data gives sleep

duration based on bedtime, S(i)
bed, on day i as

S
(i)
bed =

 −0.0029 t
(i)2

bed − 0.3836 t
(i)
bed + 8.4531, for 0 ≤ t

(i)
bed ≤ 17,

−0.1286t
(i)2

bed − 6.3365t
(i)
bed + 69.1679, for 17 < t

(i)
bed < 24,

(6)

5For coding purposes, for any shift it is important to determine which of S(i)
early, S(i)

late and S
(i)
quick apply.
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where t
(i)
bed is the bedtime on day i in hours on a 24 h clock. Equations (6) have been

superimposed on the original data in Fig. 2(b).

In order to deduce bedtime from shift end time, it is stated in the QuinetiQ report that data

from an internal QuinetiQ report was used resulting in a scale that gives a minimum sleep

duration of 3 h for shifts ending at 12:00, and 8 h (no sleep loss) for shifts ending at 18:00.

We could not access the QuinetiQ report, although some indication of how shift time and

bedtime are related can be deduced from Fig. 20 from [4], reproduced in Fig. 2(c). Primarily

based on the description that there is a minimum of sleep duration of 3 h for shifts ending at

12:00 and no sleep loss for shifts ending at 18:00, we have assumed a piecewise scaling of

the fit given in equation (6), giving

S
(i)
late =



−0.0029
(

5
6 t

(i)
finish + 3

)2

− 0.3836
(

5
6 t

(i)
finish + 3

)
+ 8.4531, for 0 < t

(i)
finish ≤ 12,

−0.1286
(

2
3 t

(i)
finish + 10

)
− 6.3365

(
2
3 t

(i)
finish + 10

)
+ 69.1679, for 12 < t

(i)
finish ≤ 18,

8 for 18 < t
(i)
finish ≤ 22,

−0.0029
(
t
(i)
finish − 21

)2

− 0.3836
(
t
(i)
finish − 21

)
+ 8.4531, for 22 < t

(i)
finish ≤ 24.

(7)

The resultant dependence of sleep duration on shift end time is shown in Fig. 2(d).

Note the piecewise scaling effectively says that if a shift finishes at midnight, it takes 3 h

between the end of the shift and bedtime, but this gap between end of shift and bedtime

decreases linearly to 1 h for shifts that end at 12:00. For shifts that end after 12:00, the time

between the end of the shift and bedtime increases until for shifts ending at 18:00, bedtime

is 4 h later, at 22:00. This may seem early, but is consistent with the data shown in Fig. 2(c)

and it should be noted is intended to model late finishes or overnight duties.

In the Quinetiq report, sleep duration, S(i)
quick, as a consequence of quick returns is given as

S
(i)
quick = t(i)gap − t

(i)
commute − 1, (8)

where t(i)gap is the time between the shift on day i and the shift on day i − 1, t(i)commute is the

commute time and it is assumed that one further hour is needed for personal needs.

1.2.2 Using sleep loss to calculate performance P (i)
cumulative

Sleep loss has been related to longer reaction times in a performance vigilance task (PVT).

Based on laboratory data, the HSE fatigue tool calculates a baseline performance, P (i)
baseline

9
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(a) (b)

(c) (d)

(e)

Figure 2: (a) Expected sleep duration for early shift starts. Equations (5) superimposed
on Fig. C2 from the QuinetiQ report [3]. (b) Expected sleep duration as a result of bed-
time. Equations (6) superimposed on Fig. C3 from the QuinetiQ report [3]. (c) Bed-
time related to shift end time, Fig. 24 from [4]. (d) Sleep duration as a function of shift
end time, as given by equations (7). (e) Cumulative fatigue component Cf as a func-
tion of cumulative performance Pcumulative, as given by the sequence of transformations
in equations (11)-(14). Panels (a) and (b) have been included with permission from the
Health and Safety Executive (HSE). The original figures and report can be found here
https://www.hse.gov.uk/research/rrhtm/rr446.htm. Panel (c) is reproduced with permission
of the Civil Aviation Authority (CAA).

on each day based on the sleep loss in the previous 24 h. Specifically,

P
(i)
baseline = 3.9 − 0.4415S

(i)
loss, (9)

10
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i.e. performance decreases linearly with sleep loss. This baseline value for each day is then

updated depending on whether or not the predicted baseline performance is better or worse

than the day before. Specifically,

P
(i)
cumulative =

 P
(i)
baseline + 0.8720

(
P

(i−1)
baseline − P

(i)
baseline

)
, if P

(i−1)
baseline > P

(i)
baseline

P
(i)
baseline − 0.5032

(
P

(i)
baseline − P

(i−1)
baseline

)
, otherwise.

(10)

There are two further adjustments made (i) a small circadian adjustment made to shifts with

start times between 03:00 and 15:00 (ii) an adjustment if the gap between two shifts is small

to take into account split shifts.

1.2.3 Calculating the cumulative component, C(i)
f based on performance

Finally, the daily cumulative component of the Fatigue Index, C(i)
f is calculated from the cu-

mulative estimate of performance. Specifically, first scaling the PVT measure to the seven-

point Samn Perelli sleepiness scale,

S(i)
p = 1.2484 log

(
529

(
1.001 − P

(i)
cumulative

3.9

))
, (11)

S(i)
pcc = 1 +

6

1 + exp
(

3.057 − 0.764S
(i)
p

) . (12)

Subsequently, a further rescaling to a measure related to the Karolinska Sleepiness Scale

(KSS).

pKSS(i) =
1.26

1 + 3670 exp
(

0.6360 − 1.522S
(i)
pcc

) . (13)

It is not clear where these various scalings come from. This is a critical step to understanding

the description of the output of the tool as a measure of the probability of scoring eight or

nine on the KSS.

Finally, the cumulative fatigue component, Cif is calculated,

C
(i)
f =

1

3
pKSS(i). (14)

The net effect of these various transformations scales the performance in a nonlinear way to

the cumulative fatigue component, as shown in Fig. 2(e). Much of the nonlinearity is a result

of the nonlinear scaling from PVT to sleepiness measures, as given by equation (11). The

subsequent scalings close to linear. From Fig. 2(e) it can be seen that the maximum value

of C(i)
f is approximately one third.
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1.3 Shift timing component, T (i)

f

In the HSE Fatigue Index, three factors are used to calculate the effect of shift timing on

fatigue: the start time of the shift; the length of the shift, and the time of day throughout the

shift. The effect on fatigue of these three factors is considered to be additive, so at any time

point t.

T
(i)
f (t) = T

(i)
start + T

(i)
length(t) + T

(i)
timeofday(t), (15)

where T (i)
start is the contribution due to start time, T (i)

length is the contribution due to the length

of the shift and T (i)
timeofday(t) is the contribution due to time of day.

Since the shift timing component changes throughout the shift, to calculate a single value

for each shift, T (i)
f (t) is calculated for every 15 minutes during the shift and then the mean

over all the time points found to give T f (i).

The equation for T (i)
start is described in the QuinetiQ report as a daily oscillation and the

amplitude and acrophase (time of the maximum) are given. specifically

T
(i)
start = 0.6715 cos

(
2π

24

(
t
(i)
start − 1.9975

))
, (16)

where t(i)start is the shift start time in hours.

The component of fatigue due to the time of day through the shift is modelled using a cosine,

with a maximum at 05:15,

T
(i)
timeofday = 0.74 cos

(
2π

24

(
t
(i)
start − 5.23

))
. (17)

The component due to the length of the shift period increases linearly with time through the

shift,

T
(i)
length(t) = 0.14 t, (18)

where t is time in hours. We note that the factor 0.14 is based on a commute time of

approximately 30 minutes.
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1.4 Fatigue: Job type / breaks component, J (i)

f

The QuinetiQ report states that the increase in fatigue as a result of continuous activity is

modelled as a negative exponential function, with the more intense the activity the faster the

increase. When breaks occur, there is some recovery. A short break (e.g. two minutes)

temporarily halts the increase. If it is long (e.g. 30 minutes), fatigue returns to baseline, with

50% recovery after approximately 15 minutes.

The description given would give a time course of fatigue across the shift from which an av-

erage for the shift would need to be calculated. Note that the effect of job type as described

should be independent of the shift start time. However, this is not consistent with outputs of

the tool which suggest that the modelling of J
(i)

f also includes a time of day effect.

1.5 Example: comparison of C(i)
f from equation (14) with outputs from

the HSE tool

To demonstrate that the formula for C(i)
f within this report give a reasonable approximation

to the HSE Fatigue Index we show results for a ‘7473’ schedule. Our motivation is not to

replicate the HSE tool, but to make sure that we understand the theoretical basis for the

underlying computations.

The 7473 schedule is a 21 day repeating shift pattern of seven days working 07:00–19:00,

four days rest, seven nights working 19:00–07:00, followed by three days rest, as shown

in Fig. 3(a). Shift timing is indicated by the coloured horizontal bars. Successive days are

plotted from top to bottom. The width of the plot covers two days, so that the top row shows

the shift on day one followed by the shift on day two. On the next row, the shift on day two is

re-plotted and followed by the shift on day three. The reason for double-plotting in this way

is so that both shifts that occur during the day and shifts that occur during the night can be

seen clearly.

The HSE tool was used with the following defaults: commuting time: 40 minutes, workload:

moderately demanding, little spare capacity, attention: level 3 (most of the time), break fre-

quency: 4 hours, break length: 30 minutes, extreme break frequency: 4 hours and extreme

break length: 30 minutes. This gives values for the shift timing component of 0.8 and 17.4 for

the day and night shift respectively, and for the job type/breaks component values of 1.9 and

19.1, respectively. The cumulative component varies throughout the schedule. In Fig. 3 we

show the output from the HSE tool for the Fatigue Index in (b) and the values for the three
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separate components in (c). On these panels we superimpose the values we obtain for the

cumulative fatigue, C(i)
f from equation (14) and for the Fatigue Index using our value for C(i)

f

and the shift timing and job type components from the HSE tool.

Figure 3: (a) Double-plot of the 7473 shift pattern. (b) Fatigue Index, FI from the HSE tool
(black line) and from our calculation (red dots). (c) Cumulative, shift timing and job type
components from the HSE tool with the cumulative component from equation (14) multiplied
by 100 to be consistent with the output of the tool (red dots).
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2 The SAFTE model

2.1 Background

The Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model describes the effective-

ness of individuals based on their sleep history[5, 6]. The model was developed by members

of the United States (US) of America’s Department of Defence (DOD) in the 1990s primarily

as a way to model the effectiveness of members of the US armed forces during military

missions but has since been used in other contexts [7].

Given a pattern of sleep and wake, the SAFTE model is designed to produce a measure of

performance, termed ‘performance effectiveness’ which varies with time. There are several

additional features available, including: ‘AUTOSLEEP’ tool that is designed to be used in

conjunction with SAFTE to predict when sleep will occur on the basis of a shift pattern;

a sleep fragmentation feature to model the effects of disrupted sleep; additional tools to

calculate task specific scores. These are not discussed here.

The SAFTE model is described in [5] and closed source implementations exist such as the

Fatigue Avoidance Scheduling Tool (FAST) [8]. The description below uses details from [5]

and makes reasonable assumptions where details are missing, primarily around the rules

for updating circadian phase.

Performance effectiveness E(%), is calculated as

E(t) = 100
R(t)

Rmax
+ C(t)

(
7 + 5

(
Rmax −R(t)

Rmax

))
+ I(R, t). (19)

where R(t) is the level of a sleep reservoir that captures sleep history effects (sleep home-

ostasis), C(t) captures time of day (circadian) effects and I(R, t) is sleep inertia and models

a short term reduction in effectiveness in the first 2 h after waking.

The performance effectiveness is capped above 100% and below 0%, conditions which do

occur for some settings. A subject is at peak effectiveness when E(t) = 100%.

The following sub-sections describe the sleep reservoir, the circadian process and sleep

inertia in more detail.
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2.2 The sleep reservoir (a homeostatic process), R(t)

The homeostatic process is a measure of the physiological need for sleep. Within SAFTE,

this is framed in terms of a sleep reservoir, the level of which is denoted by R(t) sleep units.

While awake this reservoir is depleted at a rate of K = 0.5/60 sleep units s−1 down to a

minimum of 0 units. Sleep replenishes the reservoir at a rate that is dependent on sleep

intensity, where sleep intensity is greater when the reservoir is low and the reservoir is then

replenished at a faster rate. The reservoir has a maximum capacity, Rmax = 2880 sleep

units.

Although not explicitly stated in this way in [5], obtaining outputs from the SAFTE model

requires finding R(t) at time t by solving piecewise, non-autonomous ordinary differential

equations:

dR

dt
=


−K, during wake

Sintensity, during sleep

0, if R ≤ 0 or R ≥ Rmax,

(20)

where Sintensity is sleep intensity and is modelled as

Sintensity =

f (Rmax −R) − asC, Sintensity ≤ Smax
intensity

Smax
intensity, otherwise.

(21)

Here, C(t) is the time dependent circadian process discussed in the next subsection, f =

0.0026564/60 s−1, as = 0.55/60 s−1 and Smax
intensity = 4.4/60 sleep units s−1. At time t = 0,

the reservoir is assumed to be full so, R(0) = Rmax sleep units. Note that in equations

(20) and (21), for ease of reading we have dropped the explicit references to the variable

dependencies.

An example of the behaviour of R(t) for one given sleep schedule is shown in Fig. 4(a). This

shows the linear decrease in the level of the sleep reservoir with wake, with each hour of

wake reducing the sleep reservoir by approximately 1%.
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Figure 4: SAFTE: (a) The reservoir level R(t) as a function of time. The reservoir level drops
during wake and rises during sleep. (b) The circadian process C(t) as a function of time.
(c) The sleep inertia process I(t) as a function of time. Sleep inertia is non-zero only for
2 h immediately after waking. (d) The net performance effectiveness. For all panels, the
intervals shaded as purple represent time intervals when sleep occurs.

2.3 Circadian process, C(t)

The circadian process is modelled as

C(t) = cos

(
2π

24

(
t− Φ(t)

3600
− φ

))
+ β cos

(
2π

12

(
t− Φ(t)

3600
− φ− φ′

))
, (22)

for t in seconds where the peak of the first curve is given as φ = 18 hours, the peak of the

second curve is φ′ = 3 hours from the first and the amplitude ratio between the two is given

as β = 0.5 (unitless). The offset function Φ(t) is used to adjust for changes in circadian

phase as a result of changes in a sleep pattern, such as during a time zone change or

switching between day and night shifts. For situations with no change in circadian phase,

Φ(t) is zero.

An example of the behaviour of C(t) for one given sleep schedule is shown in Fig. 4(b).

When Φ(t) = 0, during the latter half of the normal working day C(t) is positive and counter-
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balances the depletion of the sleep reservoir. However, during normal sleeping hours C(t)

is negative and reinforces the effects of the depleted sleep reservoir. In this way, C(t) helps

maintain performance during the day but is an important factor in low levels of performance

during the night.

There is little precise information on the equations for Φ(t) in [5]. Here we use a function that

tries to match the description given as closely as possible. Since the equations are solved

as discrete time steps, Φ(t) is generated as an iterative function at each of these time steps.

The offset at each time step in t is given as the previous offset plus an advance or delay, the

choice of which depends on whether the individual’s current circadian phase matches their

current sleeping pattern.

The phase shift for the first day is given as

Φi = 3600(φ− 3) − r(3600(φ− 3) + dl).

where dl = 86400 is the day length in seconds and r(t) is the rolling average awake time.

The rolling average is given by

r(t) =

(
t+rs∑

k=t−rs

w(k)

)−1 t+rs∑
k=t−rs

kw(k) (23)

for rs ≤ t < tmax − rs, where rs = 24 × 60 × 60/2 (s) is half the rolling window size,

tmax = max(t) (s) . When t = rs or t = tmax − rs, r(t) is set to the first or last available

value, respectively.

On subsequent days, the phase shift is

Φ(t) =

{
Φ(t− 1) − crcsw(t), Φ(t− 1) − Φi ≥ r(t− dl)

Φ(t− 1) + cacsw(t), Φ(t− 1) − Φi < r(t− dl),
(24)

where cr = 1/24 (unitless) is the circadian offset retreat rate, ca = 1.5/24 (unitless) is the

circadian offset advance rate and cs = 24/18 (unitless) is a scaling factor. The function w(t)

is 1 if the subject is awake at time t and 0 otherwise, and means that phase updates only

occur while someone is awake.

2.4 Sleep inertia

Sleep inertia describes the observation that performance can be low for a short period after

waking. In [5], this is captured by a sleep inertia variable I given by

I =

−Imaxe
α(t−tw)/Sintensity , t ≥ tw and t− tw ≤ 120 × 60,

0, otherwise.
(25)
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Here Imax = 5%, α = 0.04/3600 sleep units s−2 and tw s is every time when the subject

wakes up. The dependence of sleep inertia I on sleep intensity Sintensity, means that sleep

inertia is greater after waking from a higher intensity sleep. In addition, sleep inertia is

assumed to only take effect for 0-2 h after waking. Note that in equation (25) for ease of

reading we have dropped the explicit references to the variable dependencies.

An example of the behaviour of I(t) for one given sleep schedule is shown in Fig. 4(c),

llustrating the performance loss of 5% immediately on waking and the dissipation of sleep

intertia over the following 2 h.

2.5 Example: comparison with output from SAFTE

We did not have direct access to SAFTE. In order to test the equations in Section 2 we

compared outputs from our model with outputs from SAFTE produced by Fatigue Science

https://www.fatiguescience.com/.

As part of work commissioned by Dragados for TfL’s Crossrail project, Fatigue Science pro-

vided wristworn activity monitors (Readibands), guidance of their use for data collection and

analysis of the subsequent data. The data collected included 30 days of actigraphy data for

each of 30 tunnellers working a 7473 shift on Dragados’ TfL Crossrail project in 2014 and

30 days of actigraphy data for each of 35 tunnellers working a ‘day, back, night’ (DBN) shift

on Dragados’ London Underground Bank Station Capacity Upgrade in 2018. Using sleep

timings deduced from the actigraphy data, Fatigue Science used SAFTE to estimate fatigue

levels. Fatigue Science then produced bar charts showing the average time spent at each

performance effectiveness level. These bar charts are reproduced in Fig. 5(a) and Fig. 6(a)

respectively.

We did not have full access to the actigraphy data, but we did have access to hourly aggre-

gated data on activity for each worker and daily aggregated information on sleep duration.

We used this aggregate information to estimate sleep timing then ran our SAFTE implemen-

tation for each worker and produced analogous charts to those made by Fatigue Science.

Our bar charts for the 7473 and the DBN schedule are shown in Fig. 5(b) and Fig. 6(b)

respectively.
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(a)

Day Night

0h 42m

1h 21m

2h 17m

0h 58m

2h 33m

7h 44m

2h 24m

3h 0m
2h 17m

0h 16m

4h 44m

(b)

Figure 5: The average time spent at different performance effectiveness levels for the 7473
shift cycle. (a) Results from Fatigue Science. (b) Results as calculated from the equations
in Section 2.

(a)

Day Back Night

0h 54m

1h 11m

2h 16m

1h 45m

2h 2m

1h 58m

4h 53m

2h 55m

0h 58m

1h 40m

4h 45m

0h 23m 0h 19m

6h 30m

(b)

Figure 6: The average time spent at different performance effectiveness levels for the DBN
shift cycle. (a) Results from Fatigue Science. (b) Results as calculated from the equations
in Section 2.

Figures 5 and 6 show that both implementations are similar overall. For both implemen-

tations the day and back shifts had minimal time below 70% effectiveness, however night

shifts have substantial time in this range with normally more than half the shift below 70%.

In all instances the total time spend below 70% effectiveness was of the same magnitude

and deviated at most by 58 minutes between implementations.

We believe that the differences are for two primary reasons. Firstly, we did not have access
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to the sleep timing inputs used by SAFTE. The aggregated data that were available limited

our ability to reconstruct this sleep timing. We note that, within SAFTE, small differences in

sleep timing can result in differences between adjacent categories (e.g. an increase in the

70-80 category and a decrease in the 80-90 category).

Secondly, the limited information available about the circadian shift calculation detailed in

2. This second reason is particularly relevant to explaining differences in the night shift,

since it is the switch from the day shift to the night shift that results in a shift in the circa-

dian rhythm. Consequently, differing implementations of the circadian shift calculation can

drastically change the time spent below 70% effectiveness. We note that this is an area of

considerable individual variability.

3 Comparison of the HSE Fatigue Index and SAFTE

Although we do not necessarily have the exact equations that either the HSE tool or the

SAFTE model are based on, comparing the outputs of the equations we have stated here

highlights the similarities and differences between the two approaches. We note that the

outputs we show are outputs that it would be difficult to get from the tools in their current

implementations.

The three cases discussed are: (i) the 7473 shift schedule for the ‘average’ sleeper; (ii) day-

to-day variation in average sleep duration during a 7473 shift; (iii) the differences between a

long and short sleeper undertaking a 7473 shift.

3.1 7473 shift schedules: ‘average’ sleepers

The 7473 shift schedule consists of seven day shifts of 12 h from 07:00 to 19:00, four days

rest, seven night shift of 12 h from 19:00 to 07:00, followed by 3 days rest.
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Figure 7: Comparison of fatigue predictions for the 7473 shift schedule. (a) The shift sched-
ule with schedules shaded according to the FI(i) (b) The equivalent output from SAFTE.

This shift schedule and results for the equations we have presented in this report for the

HSE tool and for SAFTE are shown in Fig. 7 panels (a) and (b) respectively. Shift timing is

indicated by the coloured horizontal bars, shaded according to the level of fatigue. SAFTE

requires sleep timing as input, so in (b), the timing of sleep is shown by the grey bars. We

have not implemented the extension of SAFTE, AUTOSLEEP, which estimates sleep timing

on the basis of the shift schedule. Here, for the purpose of comparison with the HSE tool, we

assume that sleep occurs from 23:00 to 05:15 on nights prior to day shifts and from 9:00 to

13:45 after night shifts. On rest days, we assume sleep occurs from 23:00 to 07:00. These

timings were picked as representative of an ‘average’ sleeper who sleeps in accordance

with approximate sleep durations from the HSE tool.

Successive days are plotted from top to bottom. The width of the plot covers two days, so

that the top row shows the shift on day one followed by the shift on day two. On the next row,

the shift on day two is re-plotted and then followed by the shift on day three. The reason

for double-plotting in this way is so that both shifts that occur during the day and shifts that

occur during the night can be seen clearly.

Fig. 7 illustrates two important points:

1. For an ‘average’ sleeper with similar assumptions on the amount of sleep obtained,

both models give broadly the same message that during night shifts workers will feel

more sleepy/perform less effectively.

2. SAFTE indicates the fatigue at different points of the shift. This is useful as it highlights

that not all parts of the night shift are equal, with most problems likely to occur in the
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early hours of the morning.

The HSE tool does not output information on fatigue at different points during a shift,

although in principle it is contained in the time of day component.

3.2 Day-to-day variation in sleep duration

Not surprisingly, the daily amount of sleep is fundamental to the determination of fatigue.

Given a shift schedule, the HSE tool estimates how much sleep will occur in the breaks

between successive shifts. Implicit in the data the HSE tool is based on is that this sleep

occurs in one consolidated sleep episode.

The actigraphy data collected by Dragados and TfL in 2014, as described in Section 2.5,

resulted in estimates for when and how much sleep actually occurred for the 30 tunnellers

working a 7473 shift. Although actigraphy is known to over-estimate how much sleep oc-

curs, it nevertheless provides a useful benchmark. In Table 1 we summarise the length of

the sleep durations for each of the day, night and rest periods as estimated from our imple-

mentation of the HSE tool and from the activity monitors. From the activity data we have

included results for the average across all tunnellers, and for the individiual with the longest

sleep and the individual with the shortest sleep.

It can be seen that the HSE tool implementation compares well with the actigraphy estimates

for the average amount of sleep. However, these averages hide some important day-to-day

differences. In Fig.8 we compare the average for each day of the schedule for the HSE

tool and from the actigraphy. Critically we see that there are substantial differences in the

estimate of sleep duration at the transition from rest days to nights, with the HSE tool over-

estimating the amount of sleep.

We do not know what predictions the AUTOSLEEP function of SAFTE would make, but in

the operational mode where SAFTE uses sleep timing derived from actigraphy SAFTE will

be able to account for these pronounced day-to-day variations in a way that is not possible

within the current HSE tool. In particular, since the HSE tool over-estimates sleep duration

at the transition to night shifts, it could under-estimate fatigue for this period.
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Sleep duration

Actigraphy estimated

‘HSE tool’ Average sleeper Long sleeper Short sleeper

Day 6.2 h 6.4 h 7.5 h 5.5 h

Night 4.8 h 5.5 h 8.8 h 4.4 h

Rest 8 h 7.4 h 7.2 h 6.5 h

Mean 6.4 h 6.3 h 7.9 h 5.2 h

Table 1: Comparison of sleep duration given by equation (4) for a 7473 shift schedule with
sleep duration derived from actigraphy measures.

Figure 8: Comparison of average sleep durations across each day of the 7474 shift schedule
as derived from actigraphy data versus predicted from equation (4) describing sleep duration
as predicted by the HSE tool.
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3.3 Long and short sleepers

No current commercial implementation of a biomathematical model of fatigue takes into ac-

count individual physiological differences in sleep need or preferred sleep timing. Personal

circumstances are only taken into account through allowing different commute times.

The data from the Readiband study carried out by Fatigue Science for Dragados and TfL

showed that, based on activity measures, there were pronounced differences between indi-

viduals in the amount of sleep they obtained (see Table 1). This is consistent with the known

substantial differences between individuals [9].

Within current biomathematical models, differences in sleep duration then translate to differ-

ent predictions for fatigue, as illustrated in Fig. 9 where outputs from our implementation of

the HSE tool and for the SAFTE model are compared for the long and short sleeper. Since

these models take no account of individual physiological differences, they necessarily pre-

dict that shorter sleep duration will result in more fatigue, as shown. Whether this is actually

the case is not known: it could be that these two individuals differ in their sleep need.
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Figure 9: Short versus long sleepers: Predictions based on cumulated fatigue based on
actual sleep using our model of the HSE tool (panels (a) and (b)) and our equations for
SAFTE (panels (c) and (d)). Coloured bars indicate shift times and are coloured according
to level of fatigue. Grey bars indicate the timing of sleep.
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4 Concluding remarks

4.1 Data driven versus process driven models

All models are built on data.

The HSE tool is directly data-driven in the sense that the equations for the different com-

ponenents come from fitting to data that has been collected in a number of different exper-

iments, some in the field and some in laboratory settings. For example: sleep loss due to

early starts S(i)
early is based on the reported sleep times of Britannia crews on shifts ending

at various times from the early evening through to mid-morning [10] and on the duration

of sleep as a function of time of sleep onset for German and Japanese workers based on

diary records, summarized by [11]. Sleep loss due to the pattern of shift was derived from

the CHS studies of aircrew [12, 13, 10] and train drivers [14]; the shift timing components

due to start time T (i)
start, shift length T (i)

length and time of day T (i)
timeofday have been derived from

several studies of aircrew and train drivers. The scalings from performance as measured

by a psychomotor vigilance test to measures of sleepiness are based on laboratory studies

[15, 16].

In contrast, SAFTE is process driven in the sense that data has been used to deduce that

there are homeostatic and circadian processes and to fit parameters for these processes.

There are pros and cons for each approach.

Both the HSE tool and SAFTE provide guidance on shift-scheduling with the user not re-

quired to input information on sleep duration. When operating in this mode, SAFTE needs

input from AUTOSLEEP which estimates sleep durations. We did not have access to AU-

TOSLEEP so were unable to compare how sleep duration prediction compared with the

HSE tool and therefore whether guidance from the two different models would differ. We did

find that when similar assumptions were used about the daily sleep duration for a 7473 shift,

the overall outputs of SAFTE and the HSE tool were similar.

An advantage of SAFTE is that it can produce estimates of fatigue risk broken down by hour

whereas the HSE tool produces a single value for an entire shift. This is particular useful

during night shifts, see Fig. 7 and Fig. 9, where an hour-by-hour break down highlights the

fact that the beginning of a night shift and the end of a night shift are very different in terms

of fatigue risk.

In addition, SAFTE has additional functionality to the HSE tool in that it can provide day-to-
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day guidance on who is currently fatigued and predict who will become fatigued over the next

day. When operating in this mode, SAFTE takes sleep duration estimated from actigraphy

bands.

4.2 Limitations of existing models

Some key missing elements in both of these models, and in fact all current commerically

available biomathematical models of fatigue are listed below.

4.2.1 Driving home

One significant risk of night shifts is the risk of accidents when driving home in the early

hours of the morning. SAFTE can predict fatigue at all points of the day, although we under-

stand that this is not typically provided as an output. For example, in Fig. 10 we have used

our implementation of SAFTE to model fatigue for all waking hours for the long and short

sleeper examples discussed in Section 3.3. The HSE model can, in principle, also predict

fatigue at all points of the day, although it is not set up to do so at the moment.
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Figure 10: Fatigue for all points of the day. Here the grey bars indicate the sleep timing of
the ‘short sleeper’ from the 7473 actigraphy study, the black boxes indicate the timing of the
shift and the colours indicate levels of fatigue. This is the same data as shown in Fig. 9(c)
and (d) but with fatigue also calculated for times that the individual is not on shift.

4.2.2 Starting well-rested

All models have to make some assumption about the level of fatigue at the start of the

schedule. Both the HSE tool and SAFTE make an assumption that someone starts their

shifts well-rested. Personal circumstances and choices can mean that this is not the case.
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In fact, an important element of shift design is careful choice of the start time for the first

shift in a schedule.

4.2.3 Individual differences

There are large individual differences in sleep preference and sleep need [9]. Neither the

HSE tool nor the SAFTE model are currently able to model individual physiological differ-

ences. As seen in Fig. 9 they predict that someone with a shorter sleep duration will nec-

essarily be more fatigued than someone with a longer sleep duration. This may not be the

case. While there is research that has considered tuning models for individuals, for example,

[17, 18, 19], an operational model that includes uncertainty due to individual differences is

not yet available.

4.2.4 The light environment

Light has a short term alerting effect such that the colour and intensity of light during night

shifts can affect performance. Light also has longer term effects on the biological clock and

preferred sleep timing. There has been much recent work on developing recommendations

for healthy light environments [20]. Mathematical models that include the impact of light

on biological timing have been constructed [21, 22, 23] but are not yet part of operational

models.

4.2.5 Transparency

Commercial sensitivities mean that most models are not transparent with many of the as-

sumptions they are built on not publicly available. This makes them difficult to independently

verify. Mathematical models of sleep can have complex behaviour [24, 25] and it is not clear

that this is fully recognised in their implementation. It is also difficult to make direct com-

parisons between models. For example, with the HSE tool and SAFTE they take different

inputs and output different scales.

4.2.6 Translation of outputs to meaningful workplace outcomes

The outputs of some models are hard to relate to quantities that are measureable in the

workplace.
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4.3 Future directions

4.3.1 Guidance on scheduling and education on sleep and fatigue should be con-
sidered at least as important as current biomathematical models

The core physiological principles that describe fatigue due to lack of sleep are that fatigue

is dependent on (i) sleep history: the longer that you have been awake, the greater your

physiological need for sleep; sleep debt accumulates across days and weeks; (ii) time of

day effects: across a 24 h period, fatigue oscillates according to an internal physiological

clock (the circadian clock).

In their current form, it is not clear that biomathematical models can provide more information

than an expert with a firm grasp of these twin concepts of sleep history and time-of-day

effects. The role of biomathematical models is then a way of providing the non-expert with a

tool to manage fatigue. But use of models without understanding their scope and limitations

is itself risky. Therefore, guidance on scheduling and education on sleep and fatigue should

be considered at least as important as current biomathematical models.

4.3.2 Only by analysing and integrating high quality individual data on sleep, fa-
tigue, performance, near misses, accidents, actual shift patterns with models
can we develop better models and management systems to reduce fatigue and
associated risks.

With new technological solutions including wearables, nearables and apps there is huge

scope to collect more high quality data in order to improve biomathematical models of fa-

tigue. Note while it is useful to collect measures of sleep via actigraphy, collecting outcome

measures such as sleepiness and performance is critical. For example, current models pre-

dict that individuals who sleep less will be at a greater fatigue risk than those who sleep

more. However, those in their 50’s typically sleep less than those in their 20’s [26], but there

is little evidence that they are sleepier. In fact the evidence is rather the reverse [27]. As

further illustration, recent studies have highlighted that different people working on the same

shift pattern have different sleep patterns [28] but without knowing the consequent impact

on individual cognitive function, it is hard to use this information to refine biomathematical

models. Models can account for individual differences in, for example, sleep need [29] and

the effect of light [23], but are not yet part of commercial biomathematical models of fatigue.
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4.3.3 Individual self-management of fatigue

The importance of making time for sleep is not always recognised. Education, early diag-

nosis of sleep disorders such as sleep apnea, and self-monitoring all have a role to play in

reducing fatigue-related risk in the work-place.

Self-monitoring could be via the many actigraphy-based sleep trackers available. But as with

the use biomathematical models, care is needed [30]. Wearables cannot reliably capture

differences between sleep and sitting quietly. Once in bed, actigraphy is good at identifying

sleep, but periods of quiet wakefulness are frequently mis-classified as sleep. For example,

the Readiband used by Fatigue Science is reported as having a sensitivity of 88% and a

specificity of 55% for detecting sleep while in bed [31]. This means that 88% of the time

sleep occured the actigraphy algorithm correctly identified sleep. However, 45% of the time

that wake occurred is was also classified as sleep.

Mis-information on sleep duration can result in actual differences in performance [32] and

promote anxiety over sleep.

The passive nature of sleep trackers, with no need for input from the wearer is a positive. A

more active approach where individuals enter and track their own subjective measures on

sleep quality and measures of wellbeing could be an alternative [33].

4.3.4 Final comments

From publicly available data, it appears the mathematical models that underpin the HSE

tool and those that underpin SAFTE have not been updated in well over a decade. Some

of the other commercially available models also appear to have undergone little change in

the underlying mathematics, with most development focussing on the (necessary) design of

interfaces and applying models in the field.

While the integration with wearables is an important step, and appropriate interfaces abso-

lutely essential, there is considerable scope for the further development of the underlying

mathematical models.

Combining high quality data with improvements to mathematical models could result in bet-

ter fatigue risk management tools that capture not only risk but also uncertainty in risk pre-

dictions due to individual factors.
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5 Definition of symbols

HSE model:

FI(i) Fatigue Index for day i

C
(i)
f Cumulative fatigue component of Fatigue Index on day i

T
(i)

f Shift timing component of Fatigue Index on day i

J
(i)

f Job type component of Fatigue Index on day i

S
(i)
early Predicted sleep duration in hours on day i as a result of an early start

S
(i)
bed Predicted sleep duration in hours on day i for a given bedtime

S
(i)
late Predicted sleep duration in hours on day i as a result of a late finish

S
(i)
quick Predicted sleep duration in hours on day i as a result of a quick return

S
(i)
duration Resultant sleep duration in hours on day i

S
(i)
loss Sleep loss in hours on day i

P
(i)
baseline Baseline performance as measured by the PVT on day i for the given sleep loss

P
(i)
cumulative Performance i as a result of accumulated sleep loss

S
(i)
p Predicted sleepiness on the Samn Perelli scale

S
(i)
pcc

pKSS(i)

t Time

t
(i)
start Shift start time shift i

t
(i)
bed Bedtime for shift i

t
(i)
finish Shift finish time for shift i

t
(i)
gap Gap between shift on day i and the shift on day i− 1

t
(i)
commute Total time spent commuting on day i.

T
(i)
start Contibution to shift timing component of start time

T
(i)
length Contibution to shift timing component of the length of the shift

T
(i)
timeofday Contibution to shift timing component of the time of day of the shift
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SAFTE model:

E(t) (%) Performance effectiveness

R(t) Reservoir level

C(t) Circadian rhythm

I(R, t) Sleep inertia

t Time

Rmax = 2880 units Reservoir capacity

Sintensity sleep units s−1 Sleep intensity

Smax
intensity = 4.4/60 sleep units s−1 Maximum sleep intensity

K = 0.5/60s−1 Rate of reservoir depletion

f = 0.0026564/50s−1

as = 0.55/60s−1 a weighting factor

φ = 18 : 00 Time of the maximum of the 24 h rhythm

φ′ = 3 : 00 Time of the maximum of the 12 h rhythm relative to the 24 h rhythm

Φ Shift of the circadian rhythm due to changes in sleep timing

β = 0.5 Amplitude of the 12 h rhythm relative to the 24 h rhythm

Imax = 5% maximal inertial effect on awakening

α = 0.04/60 sleep units s−2 inertia time constant
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