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Abstract

Molecular sequences are shaped by selection, where the strength of selection relative to drift1

is determined by effective population size (Ne). Populations with high Ne are expected to2

undergo stronger purifying selection, and consequently to show a lower substitution rate3

for selected mutations relative to the substitution rate for neutral mutations (ω). However,4

computational models based on biophysics of protein stability have suggested that ω can also5

be independent of Ne, a result proven under general conditions. Together, the response of ω6

to changes in Ne depends on the specific mapping from sequence to fitness. Importantly, an7

increase in protein expression level has been found empirically to result in decrease of ω, an8

observation predicted by theoretical models assuming selection for protein stability. Here, we9

derive a theoretical approximation for the response of ω to changes in Ne and expression level,10

under an explicit genotype-phenotype-fitness map. The method is generally valid for additive11

traits and log-concave fitness functions. We applied these results to protein undergoing12

selection for their conformational stability and corroborate out findings with simulations13

under more complex models. We predict a weak response of ω to changes in either Ne or14

expression level, which are interchangeable. Based on empirical data, we propose that fitness15

based on the conformational stability may not be a sufficient mechanism to explain the16

empirically observed variation in ω across species. Other aspects of protein biophysics might17

be explored, such as protein-protein interactions, which can lead to a stronger response of ω18

to changes in Ne.19
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1 Introduction21

Molecular sequences differ across species due to the particular history of nucleotide substitutions along their22

respective lineages. These substitutions in turn are the result of the interplay between evolutionary forces such23

as mutation and selection, whose relative forces are determined by the amount of random genetic drift. These24

forces have effects at different levels: mutations are carried by molecular sequences, selection is mediated at25

the level of individuals, while random genetic drift is a population sampling effect. Yet, they jointly contribute26

to the long-term molecular evolutionary process. Thus, the challenge of the study of molecular evolution is to27

tease out their respective contributions, based on comparative analyses.28

One main aspect of this challenge is to correctly evaluate the role of random drift in the long term29

evolutionary process. Population genetics theory implies that the strength of drift, due to the stochastic30

sampling of mutations, is less pronounced in lineages with large effective population size (Ne), and as a31

consequence, the purification by selection of weakly deleterious mutations is more effective in large populations.32

This fundamental idea is at the core of the nearly-neutral theory of evolution. This theory posits that a33

substantial fraction of mutations are deleterious or weakly deleterious, and as a result, predicts that the34

substitution rate (relative to the neutral expectation), called ω, decreases along lineages with higher Ne (Ohta,35

1972, 1992).36

This prediction has been more quantitatively examined under the assumption that the selective effects of37

mutations are drawn from a fixed distribution of fitness effects (DFE) (Kimura, 1979; Welch et al., 2008).38

Assuming a gamma distribution for the DFE, a key result obtained in this context is an approximate allometric39

scaling of ω as a function of Ne (i.e. ω ∼ N−ke ), where k is the shape parameter of the DFE. In practice,40

DFEs are strongly leptokurtic, which thus predicts a weak negative relation between ω and Ne.41

The study of protein-coding sequences evolution fostered another modelling approach, based on genotype-42

fitness maps instead of distribution of fitness effects. In this alternative approach, the selective effect of a43

mutation depends on the fitness of both the source and the target amino acids involved in the mutation44

event (Halpern and Bruno, 1998; Rodrigue et al., 2010; Tamuri and Goldstein, 2012). Even though this45

modelling approach differs substantially from the one assuming a fixed DFE, it also predicts a negative46

correlation between ω and Ne, at least when the process is at equilibrium (Spielman and Wilke, 2015; Dos47

Reis, 2015).48

Conversely, one striking theoretical result was the proof that ω is in fact predicted to be independent49

of Ne under relatively general circumstances, namely, whenever (i) the fitness is a log-concave function of50

a phenotype and (ii) the phenotype itself is equimutable. Equimutability states that the distribution of51

phenotypic changes due to mutation is independent of the current phenotype of individuals (Cherry, 1998).52

This general theoretical argument has been invoked in the context of in silico experiments of protein sequence53

evolution, assuming that proteins are under selection for their thermodynamic stability, with fitness being54

proportional to the folding probability of the protein (Goldstein, 2013). Thermodynamic stability is itself55
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computed using a 3D structural model of the protein. These computational experiments have led to the56

observation that ω is essentially independent of Ne. An explanation proposed for this result is that the57

distribution of changes in free energy of folding (∆∆G) due to mutations is approximately independent of58

the current free energy (∆G), thus making the free energy of folding essentially equimutable.59

However, the equimutability assumption is a relatively strong one, which also conflicts with combinatorial60

considerations about the relation between sequence and phenotype (Serohijos et al., 2012). For example, if61

a protein sequence is already maximally stable, only destabilizing (or neutral) mutations can occur. More62

generally, assuming that the stability of a protein sequence reflects an underlying fraction of positions having63

already accepted destabilizing amino acids, then the probability of destabilizing mutational events is in turn64

expected to directly depend on the current stability of the protein.65

Altogether, depending on the theoretical model mapping sequence to fitness, ω can be either independent66

or negatively correlated to Ne, or even positively if considering adaptive evolution and environmental67

changes (Lanfear et al., 2014).68

Empirically, variation in ω between lineages has been inferred using phylogenetic codon models applied69

to empirical sequences (Yang and Nielsen, 1998; Zhang and Nielsen, 2005). Confronting branch-specific ω70

estimates to life-history traits such as body mass or generation time uncovered a positive correlation (Popadin71

et al., 2007; Nikolaev et al., 2007). Subsequently, integrative inference methods combining molecular sequences72

and life-history traits have also found that ω correlates positively with traits such as longevity and body73

mass (Lartillot and Poujol, 2011; Figuet et al., 2017). Since lineages with a large body size and extended74

longevity typically correspond to species with low Ne (Romiguier et al., 2014), these empirical correlations75

suggest a negative correlation between ω and Ne, thus confirming the theoretical prediction of the nearly-76

neutral theory of evolution. However, the universality and robustness of the correlation between ω and77

life-history traits is still debated. Results have not been entirely consistent across independent studies.78

The correlation was found to be either not statistically significant (Lartillot and Delsuc, 2012), or even79

in the opposite direction depending on the specific clade under study or the potential biases taken into80

account (Lanfear et al., 2010; Nabholz et al., 2013; Lanfear et al., 2014; Figuet et al., 2016).81

If empirical evidence for a negative correlation of ω with Ne is still not totally convincing, another empirical82

correlation is known to be much more robust. Indeed, expression level or protein abundance is one of the83

best predictors of ω, with highly expressed proteins typically having lower ω values, a correlation clearly84

significant although relatively weak (Duret and Mouchiroud, 2000; Rocha and Danchin, 2004; Drummond85

et al., 2005; Zhang and Yang, 2015; Song et al., 2017). Theoretical models, also based on protein stability,86

have been invoked to explain this negative correlation between ω and expression level (Wilke and Drummond,87

2006; Drummond and Wilke, 2008). According to this argument, selection against protein misfolding due to88

toxicity, which is stronger for more abundant proteins, induces abundant proteins to evolve toward greater89

stability, resulting in a more constrained and more slowly evolving protein coding sequence (Serohijos et al.,90

2012).91

The possibility that expression level and Ne might play similar roles in the evolution of proteins has92

already been noticed. More precisely, under models of selection against protein misfolding, the free energy of93
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folding ∆G is predicted to vary similarly along a gradient of either Ne or expression level (Serohijos et al.,94

2013). As a corollary, under strict equimutability of ∆G, these computational models imply that ω should95

also be independent of expression level (Serohijos et al., 2012), akin to what is predicted with regards to96

changes in Ne.97

Altogether, both theoretical results and empirical analyses are not yet conclusive about the question of98

how ω depends on Ne and expression level. In particular, the theoretical response of ω to changes in both Ne99

and expression level has not been quantified and, most importantly, has not been related to the specific map100

between genotype, phenotype and fitness. Such an analytical development would be useful to more decisively101

confront the theoretical predictions relating ω to both Ne and expression level to empirical data. Ultimately,102

relating proteins structural parameters to the response of ω would help to bridge the gap between protein103

thermodynamics on one side and comparative genomics on the other side.104

Lastly, the theoretical results discussed so far are valid only at the mutation-selection-drift balance. In a105

non-equilibrium regime, however, and at least under a model assuming a site-independent genotype-fitness106

map, an increase in Ne first leads to an increase in ω caused by adaptive substitutions, and subsequently107

a decrease in ω due to stronger purifying selection in the long term (Jones et al., 2016). Studying only108

equilibrium properties can thus be misleading. For this reason, the dynamic response of ω to changes in109

Ne must also be addressed, quantified, and its connection with the underlying selective landscape better110

characterized. Dynamic properties of ω to changes in Ne are of theoretical interest but are also empirically111

relevant, such that, if overlooked they could thwart the relation between theoretical expectations and empirical112

estimates.113

In this context, the aim of the present study is to characterize the dynamics and equilibrium response of114

ω to changes in Ne and expression level, and to relate this response to structural parameters of the model.115

To this effect, we develop a general mathematical approach to derive a quantitative approximation of the116

response of ω to changes in Ne and expression level, in the context of a given genotype-phenotype-fitness map,117

as depicted in figure 1. In the light of previously published empirical estimates from protein thermodynamics118

and comparative genomics, we discuss the articulation between empirical data and our mechanistic model.119

We also discuss some of the alternative biophysical mechanisms that could determine the selective landscape120

on protein-coding sequences, and how they would modulate the response of ω to changes in Ne and expression121

level.122

2 Results123

2.1 Models of evolution124

The results that are presented below are valid for a general category of models of sequence evolution, based on125

an additive trait x, such that the coding positions of the sequence contribute additively to the trait. The trait126

is under directional selection specified by a decreasing and log-concave fitness function W (x). As a specific127

example, we more specifically consider a model of protein evolution under the constraint of thermodynamic128

stability, as depicted in the left panel of figure 1. This model is inspired from previous work (Williams et al.,129
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2006; Goldstein, 2011; Pollock et al., 2012), except that we make several simplifying assumptions, allowing us130

to derive analytical equations.131
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Figure 1: Outline of the theoretical results. The genotype to fitness relationship is depicted in the left
panel. The phenotype (x) is a real-valued function of the genotype (i.e. the amino-acid sequence), and is
defined in our model as the fraction of destabilizing amino acids in the sequence. Fitness is a decreasing
log-concave function of the phenotype, depending on structural parameters of the model. Once the relation
from genotype to fitness is defined, the substitution process proceeds as presented in the middle panel. For
a given effective population size Ne, the evolutionary process results in an average value of the phenotype
x∗ and an average substitution rate (relative to the neutral rate) ω. Averaging over time is equivalent to
determining the statistical equilibrium, by ergodicity of the stochastic process. The slope of the scaling of
the equilibrium ω as a function of log-Ne defines the susceptibility χ, which is a function of the structural
parameters defined by the phenotype-fitness map.

In the original biophysical model, protein stability is determined by the difference in free energy between132

the folded and unfolded conformations, called ∆G and measured in kcal/mol. Technically, free energy is133

computed based on the 3D conformation of the protein and using statistical potentials. As a result, the134

stabilizing or destabilizing effect of an amino acid at a particular site depends on amino acids present in the135

vicinity in 3D conformation, thus implementing what has been called specific epistasis (Starr and Thornton,136

2016).137

Here, we approximate this model such that the (de-)stabilizing effect at a particular site, such as measured
by the ∆∆G of the mutation, does not depend on other neighbouring residues, thus disregarding specific
epistasis (Dasmeh et al., 2014). Instead, each site contributes independently and additively to ∆G. In
addition, we assume that, for each site of the sequence, only one amino acid is stabilizing the protein. All
19 other amino acids are equally destabilizing. Each site bearing a destabilizing amino acid contributes an
excess of ∆∆G > 0 (in kcal/mol) to the total ∆G. The smallest achievable value of ∆G, obtained when all
amino acids of the sequence are stabilizing, is noted ∆Gmin < 0. In this model, the most succinct phenotype
of a given genotype (i.e. sequence) is just the proportion of destabilizing amino acids in the sequence, defined

5
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as 0 ≤ x ≤ 1. Thus ∆G is a linear function of x:

∆G(x) = ∆Gmin + n∆∆Gx, (1)

where n is the number of sites in the sequence.138

For a given ∆G, thermodynamic equations allows one to derive the proportion of protein molecules that139

are in the native (folded) conformation in the cytoplasm. This fraction is assumed to be a proxy for fitness,140

motivated in part by the fact that a protein must be folded to perform its function. A slightly different model141

will be considered below, in order to take into account protein expression level (see section 2.3).142

Analytically, the fitness function is given by the Fermi Dirac distribution and is typically close to 1,
leading to a first-order approximation (Goldstein, 2011):

W (x) = 1
1 + eβ(∆Gmin+n∆∆Gx) , (2)

⇒W (x) ' 1− eβ(∆Gmin+n∆∆Gx), (3)

⇒ f(x) = ln(W (x)) ' eβ(∆Gmin+n∆∆Gx), (4)

where W is the Wrightian fitness for a given phenotype and f is the Malthusian fitness (or log-fitness). Here,143

∆Gmin and ∆∆G are defined as above, and the parameter β is 1.686 mol/kcal at 25°C (or 298.2K).144

Of note, even though the phenotypic effect of a mutation at a given site does not depend on the amino-acids145

that are present at other sites (i.e. the trait is additive), the fitness effect of a mutation still depends on other146

sites (i.e. the log-fitness is not additive). As a result, the molecular evolutionary process is site-interdependent,147

a property referred to as non-specific epistasis (Starr and Thornton, 2016; Dasmeh and Serohijos, 2018).148

2.2 Response of ω to changes in Ne. Analytical approximation149

For a given effective population size Ne, the evolutionary process reaches an equilibrium (figure 1, middle150

panel). This substitution rate at this equilibrium, normalized by the substitution rate of neutral of mutations151

to discard the influence of the underlying mutation rate, is denoted ω. This relative rate can also be interpreted152

as the mean fixation probability of mutations scaled by the fixation probability of neutral alleles p = 1/2Ne,153

the mean being weighted by the probability of occurrence of mutations in the population. As a result, an154

ω < 1 indicates that mutations are negatively selected on average, and ω decreases with increasing strength155

of purifying selection.156

In this section we present an analytical approximate solution for the response of ω after a change in Ne (in
log space), as depicted in the right panel of figure 1. We call this response the susceptibility of ω to changes
in Ne, and denote it as χ:

χ = dω
d ln(Ne) (5)

Deriving χ is done in two steps. First, we determine the mean phenotype at equilibrium, when evolutionary157

forces of mutation, selection and genetic drift compensate each other. Subsequently, differential calculus is158

used to compute the response of the equilibrium phenotype to a change in Ne, which allows us to ultimately159

derive an equation for χ. The main results of our derivation are given both in the general case of any160
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(log-concave) phenotype-fitness map, and in the specific case of the biophysical model introduced above. A161

more detailed derivation is available in the supplementary materials.162

For a given genotype, mutations can have various effects: they can increase or decrease the proportion
of destabilizing amino acids, or do nothing if the mutation is between two destabilizing amino acids. To
derive the probabilities of such events to occur, we also make the simplifying assumption that all transitions
between amino acids are equiprobable. Altogether, any mutation in the sequence can then have a phenotypic
effect of 0 or δx = 1/n, with probabilities of transitions equal to:

δx with probability 1− x,

0 with probability 18x
19 ,

−δx with probability x
19 .

(6)

In the extreme case of an optimal phenotype (x = 0), only destabilizing mutations are proposed. Moreover,163

the probability to propose a stabilizing mutation (effect −δx), or a neutral mutation (effect 0), is proportional164

to x. Conversely, the probability to propose a destabilizing mutation is equal to (1− x). As a result, the165

mutation bias is proportional to (1− x)/x. This mutation bias fundamentally reflects a combinatorial effect,166

due to the number of mutational opportunities available in either direction.167

Second, we need to determine the strength of selection acting on mutations. Destabilizing mutations are
selected against with a negative selection coefficient which can be approximated by:

s ' 1
n

∂f(x)
∂x

(7)

⇒ s ' −β∆∆Geβ(∆Gmin+n∆∆Gx), (8)

where f = ln(W ) is the log-fitness (or Malthusian fitness). Conversely, stabilizing mutations will be under168

positive selection with opposite sign but same absolute value. It is important to realize that the selective169

effect is dependent on x. Furthermore, because the fitness function is log-concave, the absolute value of s170

increases with x.171

Based on these expressions for the mutational and selective pressures, one can then study the trajectory
followed by the evolutionary process. Starting from an optimal sequence, mostly destabilizing mutations will
occur, some of which may reach fixation and accumulate until selection coefficients against new deleterious
mutations is too strong, at which point the protein will reach a point of equilibrium called marginal
stability (Taverna and Goldstein, 2002; Bloom et al., 2007). Most importantly, the probability of fixation of
mutations is affected by genetic drift, and thus depends on the effective population size (Ne). At the equilibrium
between mutation, selection and drift, the process fluctuates through the occurrence of advantageous and
deleterious substitutions compensating each other. This equilibrium can be determined by expressing the
constraint that the selection coefficient of substitutions is expected to be null on average (Goldstein, 2013).
Formally, and after simplification, the equilibrium phenotype denoted x∗ is given in the general case by:

ln
(

1− x∗
x∗

)
+ ln(19) ' −4Ne

n

∂f(x∗)
∂x∗

(9)

⇒ ln
(

1− x∗
x∗

)
+ ln(19) ' 4Neβ∆∆Geβ(∆Gmin+n∆∆Gx∗), (10)

7
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in the more specific case of the biophysical model. This equation essentially expresses the mutation-selection172

equilibrium: the left-hand side of the equation is the log of the mutation bias at x, while the right-hand side173

is simply 4Nes, the scaled selection coefficient.174

This equation cannot be solved explicitly for x∗, but a qualitative intuition on the consequences of change175

in Ne to the equilibrium phenotype x∗ is given in figure 2. Intuitively, an increase in Ne results in a more176

optimal phenotype, closer to 0. The mutation bias (left-hand side of equation 10) decreases with x while177

the strength of selection (right-hand side of equation 10) increases with x, and the equilibrium phenotype is178

obtained at their intersection. An increase in Ne leads to shifting the selective response upward, which then179

results in a leftward shift of the equilibrium phenotype (i.e. closer to 0). The leftward shift is smaller for180

selective strengths characterized by a steeper curve, resulting in qualitatively weaker susceptibility of the181

equilibrium phenotype to changes in Ne182

Unstable proteinStable protein

Mutational pressure

Selective pressure (-4Nes)

Low number of sites (n)
Low
Low 

Low number of sites (n)
Low
Low High number of sites (n)

High
High 

High number of sites (n)
High
High 

Figure 2: Response of the equilibrium phenotype after a change in Ne. The equilibrium phenotype x∗ is
obtained when the selective pressure equals to the mutational pressure (equation 10). The selective pressure
(right-hand side of eq. 10) increases exponentially with x where βn∆∆G is the exponential growth rate
(yellow and green curves). When βn∆∆G is large, increasing Ne by an order of magnitude (yellow dotted
curves) very moderately impacts the equilibrium phenotype (small ∆x∗). In contrast, for small βn∆∆G
(green curves), the equilibrium phenotype is more strongly impacted by a change in Ne (large ∆x∗). Finally,
response of x∗ to changes in Ne reflects the response of ω since both are approximately equal (equation 11).

The results obtained thus far only relate the equilibrium phenotype (x∗) to Ne. To capture how ω varies
with Ne, we also need to obtain an expression for ω as a function of x∗. At equilibrium we can derive
(supplementary materials) the expected substitution rate of mutations, and thus ω, which simply approximates
to:

ω ' x∗ (11)
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This simple approximation is due to the fact that the substitutions between two destabilizing amino acids183

(which are neutral) compose the largest proportion of proposed mutations having a substantial probability of184

fixation (equation 6). In contrast, stabilizing mutations are rare, while destabilizing mutations have a low185

probability of fixation. Since there is a fraction x∗ of sites already occupied by a destabilizing amino-acid,186

these neutral substitutions occur at rate x∗.187

Combined together, these analytical approximations yield the susceptibility (equation 5) of ω to a change
in Ne:

χ = dω
d ln(Ne) ' −

∂f(x∗)
∂x∗

n
4Ne

∂ ln[(1−x∗)/x∗]
∂x∗ + ∂2f(x∗)

∂x∗2

. (12)

The two terms of the denominator correspond to the derivative of the mutational bias and the scaled selection
coefficient, respectively. However, the mutational bias decreases weakly with x (blue curve on figure 2) while
the strength of selection increases sharply with x (red and green curves). As a consequence, the derivative of
the mutational bias is much lower than the derivative of the selection coefficient around the equilibrium point
(i.e. the phenotype is nearly equimutable). The second term can therefore be ignored, which leads to a very
compact equation for susceptibility χ in the general case:

χ ' −
∂f(x∗)
∂x∗

∂2f(x∗)
∂x∗2

(13)

The susceptibility is thus equal to the inverse of the relative curvature, i.e. the ratio of the second to the first188

derivatives, of the log-fitness function, taken at the equilibrium phenotype. Of note, this susceptibility is189

strictly negative for decreasing log-concave fitness functions, asserting that ω is a decreasing function of Ne.190

In addition, the susceptibility itself is low in absolute value (i.e. ω responds more weakly) for strongly concave191

log-fitness functions. This equation quantitatively captures the intuition developed in figure 2, namely that192

the response of ω is very weak if the selection curve is very steep around the equilibrium set point (red curve193

compared to green curve).194

In the specific case of the biophysical model, the susceptibility (χ) further simplifies to:

χ ' − 1
βn∆∆G, (14)

meaning that ω is linearly decreasing with Ne (in log scale) since χ is independent of x∗, or, in other words,195

that the exact value of the equilibrium phenotype has no impact on the slope. Moreover, only the compound196

parameter β∆∆Gn has an impact on the slope of the linear relationship. Thus, in particular, the slope of197

the linear relationship between ω and Ne is affected by ∆∆G but not by ∆Gmin. Of note, empirically, only198

relative values of Ne (up to a multiplicative constant) are required to obtain an estimate of χ.199

2.3 Response of ω to changes in protein expression level200

Effective population size is not the sole predictor of ω, and expression level (or protein abundance) is also201

negatively correlated to ω. However, our previous model, which assumes that fitness is proportional to the202

folded fraction, and is thus independent of protein abundance, does not express the fact that selection is203

typically stronger for proteins characterized by higher levels of expression. An alternative biophysical model204

is to assume that each misfolded protein molecule has the same relative effect on fitness, caused by its toxicity205
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for the cell (Drummond et al., 2005; Wilke and Drummond, 2006; Drummond and Wilke, 2008; Serohijos206

et al., 2012).207

Our general derivation can be directly applied to this case. For a given protein with expression level y and
a cost A representing the selective cost per misfolded molecule (positive constant), the fitness and selection
coefficient can be defined as follows:

f(x) ' −Ayeβ(∆Gmin+n∆∆Gx) (15)

⇒ s ' −β∆∆GAyeβ(∆Gmin+∆∆Gnx). (16)

Under this model, the total selective cost of a destabilizing mutation is now directly proportional to the208

total amount of misfolded proteins. This fitness function leads to the following expression for the mutation-209

selection-drift equilibrium:210

ln
(

1− x∗
x∗

)
+ ln(19) = 4NeyAβ∆∆Gneβ(∆Gmin+∆∆Gnx∗). (17)

Importantly, in this equation, Ne and y are confounded factors appearing only as a product. This means that
increasing either Ne or y leads to same change in equilibrium phenotype, and hence the same change in ω. In
other words, the susceptibility of the response to changes in either Ne or expression level is the same:

χ = dω∗
d ln(Ne) = dω∗

d ln(y) ' −
1

βn∆∆G. (18)

A similar result can be obtained under other models relating phenotype to fitness, for example if the211

selective cost is due to translational errors (supplementary materials). Alternatively if the protein is assumed212

to be regulated such as to reach a specific level of functional protein abundance under a general cost-benefit213

argument (Cherry, 2010; Gout et al., 2010), a multiplicative factor depending solely on the expression level214

is prefixed (supplementary materials). Altogether, we theoretically obtain the same linear decrease of ω215

with regards to either effective population size or expression level (in log space) under a broad variety of216

hypotheses.217

2.4 Simulation experiments218

Our theoretical derivation of the susceptibility of ω to changes in Ne (and expression level) is based on219

several simplifying assumptions about the evolutionary model and makes multiple approximations. In order220

to test the robustness of our main result, we therefore conducted systematic simulation experiments, relaxing221

several of these assumptions. In each case, simulations were conducted under a broad range of values of Ne,222

monitoring the average ω observed at equilibrium and plotting the scaling of these measured equilibrium ω223

as a function of Ne.224

Specifically, with respect to mutations, our derivation assumes that all amino-acid transitions are equiprob-225

able, or in other words, the complexity of the genetic code is not taken into account. Simulating evolution of226

DNA sequence and invoking a matrix of mutation rates between nucleotide allows us to test the robustness of227

our results to this assumption. Furthermore, with regard to the phenotypic effects of amino-acid changes, in228

our derivation, we assumed that all destabilizing amino acids have an identical impact on protein stability. In229

reality, one would expect conservative amino-acid replacements to be less destabilizing than radical changes.230
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Figure 3: Scaling of equilibrium ω as a function of log-Ne, under the additive phenotype model using
Grantham distances (A,B,D) or the explicit biophysical model using a statistical potential (C), with n = 300
and β = 1.686. 200 replicates per Ne value are shown (dots). Solid lines are average over replicates, and
shaded areas are 90% confidence interval. The slope (or susceptibility (χ̂), is estimated by linear regression
(dashed lines). (A): ∆Gmin are given in the legend, and ∆∆G = 1. Decreasing ∆Gmin (to more negative
values) increases ω but does not impact the slope. (B): ∆∆G is increased and ∆Gmin is changed accordingly
such that the equilibrium value x∗ is kept constant, by solving numerically equation 10. The estimated
susceptibility (χ̂) decreases proportionally to the inverse of ∆∆G, as predicted by our theoretical model.
(C): Stability of the folded native state is computed using 3D structural conformations and pairwise contact
potentials. (D): Additive model with ∆Gmin = −118 kcal/mol and ∆∆G = 1 kcal/mol matches structural
model shown in C (although with less variance).

This assumption is relaxed in our simulation, such that destabilizing mutations in each position are now231

proportional to the Grantham distance (Grantham, 1974) between the optimal amino acid in this position232

and the amino acid proposed by the non-synonymous mutation. Finally, our derivation assumes that the233

number of sites in the sequence (n) is large, such that the selection coefficient is well approximated by the234

fitness derivative (equation 7). The robustness of this approximation was tested by conducting simulations235

with finite sequences of realistic length (n = 300 coding positions).236

These simulation experiments demonstrate, first, that the relation between ω and log-Ne is indeed linear,237

at least in the range explored here, and that the slope of the linear regression matches the expected theoretical238

value (figure 3A). Secondly, we observe that the parameter ∆Gmin has virtually no effect on the slope of the239

linear regression, as also expected theoretically (figure 3B). Instead, decreasing ∆Gmin (to more negative240
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values) merely results in an overall increase in ω over the whole range of Ne (i.e. has an impact on the intercept,241

not on the slope of the relation). This is due to the fact that decreasing ∆Gmin shifts the equilibrium to242

higher x∗, since more destabilizing sites can then reach fixation before reaching the point of marginal stability.243

Finally, we relaxed our assumption that each site of the sequence contributes independently to ∆G, by244

taking into account the 3D structure of protein and using a statistical potential to estimate ∆G (supplementary245

materials). We implemented the original model considered in Williams et al. (2006), Goldstein (2011) and246

Pollock et al. (2012), in which the free energy is computed based on the 3D conformation using pairwise247

contact potential energies between neighbouring amino-acid residues (Miyazawa and Jernigan, 1985). The248

original works showed that under this model, ω is approximately independent of Ne (Goldstein, 2013). Using249

extensive simulations in order to obtain sufficient resolution, we observe that ω is in fact weakly dependent on250

Ne, being again approximately linear with log-Ne (figure 3C). Moreover, the observed slope (χ̂ = −0.00117)251

matches the slope obtained under the model of additive ∆G (χ̂ = −0.00125, figure 3D), considering an252

empirical ∆∆G = 1.0 kcal/mol for destabilizing mutations and n = 300. In this experiment (figure 3D),253

∆Gmin was set to −118 kcal/mol, which is the ∆G of the optimal (maximally stable) sequence of 300254

sites (Goldstein, 2011).255

2.5 Time to relaxation256

Although the equilibrium value of ω after changes in Ne is an important feature of the ω-Ne relationship,257

another characteristic that is scarcely studied is the dynamic aspect (Jones et al., 2016), particularly the258

relaxation time to reach the new equilibrium ω. We observed in our simulations that the determining factor259

of the relaxation time is the number of sites n (figure 4A), such that the return to equilibrium is faster for260

longer sequences. This observation matches the theoretical prediction that more mutational opportunities are261

available for longer sequences, driving the trait close to equilibrium at a faster rate.262

It may be useful to compare the relaxation pattern observed here with the predictions under two alternative263

models of sequence evolution, representing two extreme scenarios. On one hand, having fitness modelled at264

the level of sites, such as contemplated by many phylogenetic mutation-selection models (Halpern and Bruno,265

1998; Rodrigue et al., 2010; Tamuri and Goldstein, 2012), leads to a situation where every site has to adapt266

on its own to the new change in Ne. The relaxation time is then very long, on the order of the inverse of267

the per-site substitution rate. On the other hand, assuming a fixed distribution of fitness effect (DFE) as in268

Welch et al. (2008), the response of ω is instantaneous (figure 4B). Our model is effectively in between these269

two extreme scenarios.270

Another characteristic observed in these non-equilibrium experiments is the discontinuity of ω after a271

change in Ne. Most importantly, both an increase and decrease in Ne lead to a discontinuity (figure 4A & 4B).272

These non-equilibrium behaviors can both be explained mechanistically. Under low Ne, the phenotype is far273

away from the optimal phenotype because the efficacy of selection is weaker. A sudden increase in Ne results274

first in a short traction toward a more optimal phenotype, which results in a suddenly higher ω, caused by a275

transient adaptation of the protein toward a higher stability. Conversely, under high Ne the phenotype is276

closer to optimal and the purification of deleterious mutations is stronger. The reaction to a decrease in Ne is277
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Figure 4: Relaxation of ω after a change in Ne Solid line corresponds to the average over 1000 replicates
and the shaded area corresponds to the 90% interval among replicates. The mutation rate (µ) is 1e−8 per
year per site, and the total evolutionary period is 700 million years. (A): β = 1.686 for all simulations. The
DNA sequence of 500 sites is divided into exons of equal size. However the number of sites per exon changes
between simulations from n = 5 to n = 500. Moreover, ∆∆G is changed according to the exon size such
that n∆∆G (and as a result, the susceptibility) are kept constant, and ∆Gmin is changed accordingly such
that the equilibrium value x∗ is kept constant, by solving numerically equation 10. Thus, regardless of exon
size, x∗ and χ are kept constant and thus the observed effect is due to the number of sites in the exon. We
observe that increasing the number of sites leads to a reduced time to reach the new equilibrium. (B): In the
context of a time-independent fitness landscape (yellow curve), where each amino acid has different fitness
(site-specific profiles), the time taken to reach the new equilibrium value of ω after a change in Ne is long. In
the context of a fixed distribution of fitness effects (blue curve), the relaxation time is non-existent and the
new equilibrium value of ω is reached instantaneously.

a relaxation of the purification and thus an ω closer to the neutral case, which results into higher ω until278

reaching the point of marginal stability. To note, an increase in Ne can theoretically and possibly lead to an279

ω that is temporarily greater than 1 due to adaptive evolution (Jones et al., 2016), while a decrease in Ne280

always imply an ω < 1, as it gives at most a neutral regime of relaxed selection.281

3 Discussion282

We provide a compact analytical result for the equilibrium response (which, by analogy with thermodynamics,283

we call the susceptibility) of ω to changes in Ne, and we relate this response to the parameterization of the284

genotype-phenotype-fitness map. An application to a model of selection against protein misfolding shows285

that the response of ω to variation in Ne (in log space) is linear, with a negative slope. Furthermore, this286

application demonstrates that effective population size and protein expression level are interchangeable with287

respect to their impact on the response of ω. Our compact theoretical results, which were obtained by making288

several simplifying assumptions, are supported by more complex simulations of protein evolution relaxing289
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these assumptions. In particular, our theoretical predictions are verified under a numerical model of protein290

evolution in which the free energy is computed based on the 3D structure.291

Overall, the susceptibility (χ) is a function of the structural parameters of the protein and takes a very292

simple analytical form, being inversely proportional to the product of three terms: the sequence size, the293

inverse temperature (β), and the average change in conformational energy of destabilizing mutations (∆∆G).294

Quantitatively, this product can be several orders of magnitude greater than 1 in practice, such that the295

susceptibility of ω, which is its inverse, is typically small. Previous studies using this model presented an296

apparent lack of response of ω to changes in Ne (Goldstein, 2013). We refine this result, by observing297

that there is in fact a very subtle and weak relation, which requires extensive computation to be detected,298

but which is well predicted by our theoretical derivation. Based on empirical estimates of the structural299

parameters β = 1.686, n = 300 sites and ∆∆G = 1.0 kcal/mol for destabilizing mutations (Zeldovich et al.,300

2007), the estimated susceptibility is χ̂ ' −0.002. In other words, for a relative increase in Ne or expression301

level of 6 orders of magnitude, a factor approximately equal to 0.01 is subtracted from ω, a subtle relationship302

that requires laborious effort to be detected in simulated data.303

3.1 Adequacy to empirical data304

Empirically, variation in ω along the branches of phylogenetic trees has been inferred and correlated to305

proxies of Ne, such as body size or other life-history traits. These analyses showed mitigated support for a306

negative relation between ω and Ne (Lanfear et al., 2014). More recently, phylogenetic integrative methods307

refined the estimate of covariation between ω and Ne along lineages by leveraging polymorphism data (Brevet308

and Lartillot, 2019). This approach gives an estimate of χ̂ ' 0.02 in primates (supplementary materials) at309

least one order of magnitude greater than the quantitative estimate obtained above from the biophysical310

model. More empirical data across different clades would be required to robustly consolidate such empirical311

estimates, but as of yet, these results are challenging the idea of a very weak response.312

The relation between ω and expression level provides an independent, and potentially more robust, source313

of empirical observation. Our theoretical results suggest that, under relatively general conditions, the response314

of ω to expression level should be of the same magnitude than the response to Ne. Empirically, the protein315

expression level is one of the best predictors of ω and the empirical estimation of χ in fungi, archaea and316

bacteria varies in the range [−0.046;−0.021] (supplementary materials) extracted from Zhang and Yang317

(2015). Estimation in animals and plants gives somewhat lower estimates, in the range of [−0.026;−0.004],318

although still higher (in absolute value) than −0.002.319

Additionally, another empirical observation is the negative relation between the mean destabilizing effect320

of mutations (mean ∆∆G) and the ∆G of the protein. Such a relation is empirically observed in Serohijos321

et al. (2012), where the slope of the linear regression is −0.13 (r2 = 0.04). The slope of the linear correlation322

observed in our simulations is weaker, with an observed slope of −0.01 (r2 = 0.29) under the 3D biophysical323

model, and −0.003 (r2 = 0.33) under the model of additive phenotype parameterized by ∆∆G = 1 and324

n = 300 (supplementary materials). This observation also sheds light on the correlation between ω and Ne325

in empirical data and in our model. Indeed, equimutability, or namely that the distribution of ∆∆G of326
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mutations is independent of ∆G is a necessary condition to observe independence between ω and Ne (Cherry,327

1998). In our model, the average ∆∆G of mutations at equilibrium depends on ∆G due to combinatorial328

considerations, but this dependence is weaker than empirically observed, which also translates into a weaker329

susceptibility of ω to changes in Ne or expression level than empirically observed.330

Thus, overall, the response of ω to either Ne or expression level predicted by the biophysical model331

considered above seems lower than what is empirically observed. There are several possible explanations332

for this discrepancy. First, the biophysical model might be valid, but the numerical estimates used for n333

or ∆∆G could be inadequate. A ∆∆G of 1.0 kcal/mol for destabilizing mutations seems to correspond to334

empirical estimates (Zeldovich et al., 2007). On the other hand, the effective number of positions implicated335

in the trait might be smaller than the total number of residues in the protein. In our model, all positions in336

the protein can in principle compensate for the destabilizing effect of a mutation at a particular position. In337

practice, the number of sites susceptible to compensate each other is probably smaller, resulting in a stronger338

departure from equimutability.339

Alternatively, the biophysical model considered here might be too restrictive. Recent empirical studies340

have provided evidence against the hypothesis that the rate of sequence evolution is driven solely by341

the toxicity effect of unfolded proteins (Plata and Vitkup, 2017; Razban, 2019; Biesiadecka et al., 2020).342

Notably, the response of ω to changes in expression level has also been found theoretically to arise as a343

consequence of protein-protein interactions, where protein may either be in free form or engaged in non-344

specific interactions (Yang et al., 2012; Zhang et al., 2013). In non-specific interactions at the protein surface,345

stabilizing amino acids are hydrophilic and destabilizing amino acids are hydrophobic, sticking to hydrophobic346

residues at the surface of other proteins (Dixit and Maslov, 2013; Manhart and Morozov, 2015).347

Our theoretical results can be applied more broadly to protein-protein interactions using a mean-field348

argument (supplementary materials). Fitting this model with empirical structural estimates (Janin, 1995;349

Zhang et al., 2008), we obtain a susceptibility of χ ' −0.2 thus a much stronger response than under the350

model based on conformational stability. This much stronger response is due to fewer sites in the protein351

being involved in protein-protein interaction than for conformational stability, in addition to a lower free352

energy engaged in contact between residues.353

Altogether, fitness based on protein stability is a compelling model of molecular evolution, but may not354

be a sufficiently comprehensive model to explain the amplitude of variation of ω empirically observed along a355

gradient of either effective population size or protein expression level. The net response of ω to changes in356

Ne or expression level could have several biophysical causes, which in the end would imply a weak but still357

empirically measurable response.358

3.2 The statistical mechanics of molecular evolution359

This study describes the signature imprinted on DNA sequences by an evolutionary process by merging360

equations from population genetics and from structural physicochemical first principles. More generally, it361

outlines a general approach for deriving quantitative predictions about the observable macroscopic properties362

of the molecular evolutionary process based on an underlying microscopic model of the detailed relation363
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between sequence, phenotype and fitness. In this respect, it borrows from statistical mechanics, attempting364

approximations to derive analytically tractable results (Sella and Hirsh, 2005; Mustonen and Lässig, 2009;365

Bastolla et al., 2012, 2017) The robustness of results can be assessed by computational implementations and366

simulations. Computational models offer a means to test the validity and robustness, while mathematical367

models offer an intuitive mechanistic mental analogy.368

Ultimately, the approach could be generalized to other aspects of the evolutionary process. Beyond ω,369

other macroscopic observables could be of interest, for example site entropy, i.e. the effective number of370

observed amino acids per site at equilibrium (Goldstein and Pollock, 2016; Jimenez et al., 2018; Jiang et al.,371

2018), or the nucleotide or amino-acid composition. In addition to Ne, other evolutionary forces could also372

be considered, for instance the mutational bias or GC-biased gene conversion. The susceptibility of the373

macroscopic observables to changes in the strength of these underlying forces could then more generally be374

investigated. As such, the framework outlined here could foster a better understanding of observable signatures375

of the long-term evolutionary process emerging from ecological parameters and molecular physico-chemical376

first principles, by carefully teasing out the combined effects of mutation, selection and drift.377

4 Materials & Methods378

Protein sequence evolution is simulated under an origin-fixation model (McCandlish and Stoltzfus, 2014), i.e.
the whole population is considered monomorphic and only the succession of fixation events is modeled. Given
the currently fixed sequence S, we defineM (S) as the set of all possible mutant that are one nucleotide away
from S. Non-sense mutants are not considered. For a protein of n amino-acid sites, |M (S)| ≤ 9n, since each
codon has a maximum of 9 possible nearest neighbors that are not stop codons. For each mutant sequence
S′ ∈M (S), we compute its fitness and subsequently the selection coefficient of the mutant:

s (S,S′) = W (S′)−W (S)
W (S) , (19)

⇒ s (S,S′) ' f (S′)− f (S′) , (20)

where W is the Wrightian fitness for a given phenotype and f is the Malthusian fitness (or log-fitness).379

The waiting time before the next mutant invading the population, and the specific mutation involved380

in this event, are chosen using Gillespie’s algorithm (Gillespie, 1977), according to the rates of substitution381

between S and each S′ ∈M (S), which are given by:382

QS,S′ = µS,S′
4Nes (S,S′)

1− e−4Nes(S,S′) , (21)

where µS,S′ is the mutation rate between S and S′, determined by the underlying 4x4 nucleotide mutation rate383

matrix, and QS,S′ = µS,S′ in the case of synonymous substitutions. Various optimizations are implemented384

to reduce the computation time of mutant fitness. The simulation starts with a burn-in period to reach385

mutation-selection-drift equilibrium.386
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4.1 Models of the fitness function387

Under the additive model for the free energy, the difference in free energy between folded and unfolded state
is assumed to be given by:

∆G (S) = ∆Gmin + n∆∆G ∗ x (S) ,

where 0 ≤ x (S) ≤ 1 is the distance of S to the optimal sequence (i.e. the fraction of sites occupied by a388

destabilizing amino-acid). For each site of the sequence, the optimal amino acids are chosen randomly at389

initialization, and the distance between the current amino acid and the optimal is scaled by the Grantham390

amino-acid distance (Grantham, 1974). The Wrightian fitness is defined as the probability of our protein to391

be in the folded state, given by the Fermi-Dirac distribution:392

W (S) = e−β∆G(S)

1 + e−β∆G(S) = 1
1 + eβ∆G(S) , (22)

where β is the inverse of the temperature (β = 1/kT ).393

For simulations under a 3D model of protein conformations, we adapted the model developed in Goldstein394

and Pollock (2017) to our C++ simulator (see supplementary materials).395

For simulations under a site-independent fitness landscape, with site-specific fitness profiles, the protein396

log-fitness is computed as the sum of amino-acid log-fitness coefficients along the sequence. In this model,397

each codon site i has its own fitness profile, denoted φ(i) = {φ(i)
a , 1 ≤ a ≤ 20}, a vector of 20 amino-acid398

scaled (Wrightian) fitness coefficients. Since S[i] is the codon at site i, the encoded amino acid is A (S[i]),399

hence the fitness at site i is φ
(i)
A(S[i]). Altogether, the selection coefficient of the mutant S′ is:400

s (S,S′) =
n∑
i=1

ln

φ
(i)
A(S′[i])

φ
(i)
A(S[i])

 , (23)

The fitness vectors φ(i) used in this study are extracted from Bloom (2017). They were experimentally401

determined by deep mutational scanning.402

For simulations assuming a fixed distribution of fitness effects (DFE), the selection coefficient of the403

mutant S′ is gamma distributed (shape k > 0):404

−s (S,S′) ∼ Gamma
(

¯|s|, k
)

(24)

4.2 Computing ω along the simulation405

From the set of mutants M (S) that are one nucleotide away from S, we define the subsets N (S) of non-406

synonymous and synonymous mutants (N (S) ⊆ M (S)). The ratio of non-synonymous over synonymous407

substitution rates, given the sequence S at time t is defined as (Spielman and Wilke, 2015; Dos Reis, 2015;408

Jones et al., 2016):409

ω(t) =

∑
S′∈N (S)

µS,S′
4Nes (S,S′)

1− e−4Ne(S,S′)∑
S′∈N (S)

µS,S′
(25)
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Averaged over all branches of the tree, the average ω is:

ω = 〈ω(t)〉 , (26)

=
∫
t

ω(t)dt, (27)

where the integral is taken over all branches of the tree, while the integrand ω(t) is a piece-wise function410

changing after every point substitution event.411

5 Reproducibility - Supplementary Materials412

The simulators written in C++ are publicly available under MIT license at https://github.com/413

ThibaultLatrille/SimuEvol. The mathematical developments under the general case of an arbitrary414

additive trait and an arbitrary log-concave fitness function, and the derived susceptibility under various415

fitness functions, as well as supplementary figures, are available in supplementary materials. The scripts and416

instructions necessary to reproduce this study are available at https://github.com/ThibaultLatrille/417

GenotypePhenotypeFitness.418
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