

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

T. Latrille^{1,2}, N. Lartillot¹

¹Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.

²École Normale Supérieure de Lyon, Université de Lyon, Université Lyon 1, Lyon, France

thibault.latrille@ens-lyon.org

January 13, 2021

Abstract

1 Molecular sequences are shaped by selection, where the strength of selection relative to drift
2 is determined by effective population size (N_e). Populations with high N_e are expected to
3 undergo stronger purifying selection, and consequently to show a lower substitution rate
4 for selected mutations relative to the substitution rate for neutral mutations (ω). However,
5 computational models based on biophysics of protein stability have suggested that ω can also
6 be independent of N_e , a result proven under general conditions. Together, the response of ω
7 to changes in N_e depends on the specific mapping from sequence to fitness. Importantly, an
8 increase in protein expression level has been found empirically to result in decrease of ω , an
9 observation predicted by theoretical models assuming selection for protein stability. Here, we
10 derive a theoretical approximation for the response of ω to changes in N_e and expression level,
11 under an explicit genotype-phenotype-fitness map. The method is generally valid for additive
12 traits and log-concave fitness functions. We applied these results to protein undergoing
13 selection for their conformational stability and corroborate our findings with simulations
14 under more complex models. We predict a weak response of ω to changes in either N_e or
15 expression level, which are interchangeable. Based on empirical data, we propose that fitness
16 based on the conformational stability may not be a sufficient mechanism to explain the
17 empirically observed variation in ω across species. Other aspects of protein biophysics might
18 be explored, such as protein-protein interactions, which can lead to a stronger response of ω
19 to changes in N_e .

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

20 **Keywords** protein stability · substitution rate · population-genetics · drift · expression level.

21 **1 Introduction**

22 Molecular sequences differ across species due to the particular history of nucleotide substitutions along their
23 respective lineages. These substitutions in turn are the result of the interplay between evolutionary forces such
24 as mutation and selection, whose relative forces are determined by the amount of random genetic drift. These
25 forces have effects at different levels: mutations are carried by molecular sequences, selection is mediated at
26 the level of individuals, while random genetic drift is a population sampling effect. Yet, they jointly contribute
27 to the long-term molecular evolutionary process. Thus, the challenge of the study of molecular evolution is to
28 tease out their respective contributions, based on comparative analyses.

29 One main aspect of this challenge is to correctly evaluate the role of random drift in the long term
30 evolutionary process. Population genetics theory implies that the strength of drift, due to the stochastic
31 sampling of mutations, is less pronounced in lineages with large effective population size (N_e), and as a
32 consequence, the purification by selection of weakly deleterious mutations is more effective in large populations.
33 This fundamental idea is at the core of the nearly-neutral theory of evolution. This theory posits that a
34 substantial fraction of mutations are deleterious or weakly deleterious, and as a result, predicts that the
35 substitution rate (relative to the neutral expectation), called ω , decreases along lineages with higher N_e (Ohta,
36 1972, 1992).

37 This prediction has been more quantitatively examined under the assumption that the selective effects of
38 mutations are drawn from a fixed distribution of fitness effects (DFE) (Kimura, 1979; Welch *et al.*, 2008).
39 Assuming a gamma distribution for the DFE, a key result obtained in this context is an approximate allometric
40 scaling of ω as a function of N_e (i.e. $\omega \sim N_e^{-k}$), where k is the shape parameter of the DFE. In practice,
41 DFEs are strongly leptokurtic, which thus predicts a weak negative relation between ω and N_e .

42 The study of protein-coding sequences evolution fostered another modelling approach, based on genotype-
43 fitness maps instead of distribution of fitness effects. In this alternative approach, the selective effect of a
44 mutation depends on the fitness of both the source and the target amino acids involved in the mutation
45 event (Halpern and Bruno, 1998; Rodrigue *et al.*, 2010; Tamuri and Goldstein, 2012). Even though this
46 modelling approach differs substantially from the one assuming a fixed DFE, it also predicts a negative
47 correlation between ω and N_e , at least when the process is at equilibrium (Spielman and Wilke, 2015; Dos
48 Reis, 2015).

49 Conversely, one striking theoretical result was the proof that ω is in fact predicted to be independent
50 of N_e under relatively general circumstances, namely, whenever (i) the fitness is a log-concave function of
51 a phenotype and (ii) the phenotype itself is equimutable. Equimutability states that the distribution of
52 phenotypic changes due to mutation is independent of the current phenotype of individuals (Cherry, 1998).
53 This general theoretical argument has been invoked in the context of *in silico* experiments of protein sequence
54 evolution, assuming that proteins are under selection for their thermodynamic stability, with fitness being
55 proportional to the folding probability of the protein (Goldstein, 2013). Thermodynamic stability is itself

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

56 computed using a 3D structural model of the protein. These computational experiments have led to the
57 observation that ω is essentially independent of N_e . An explanation proposed for this result is that the
58 distribution of changes in free energy of folding ($\Delta\Delta G$) due to mutations is approximately independent of
59 the current free energy (ΔG), thus making the free energy of folding essentially equimutable.

60 However, the equimutability assumption is a relatively strong one, which also conflicts with combinatorial
61 considerations about the relation between sequence and phenotype (Serohijos *et al.*, 2012). For example, if
62 a protein sequence is already maximally stable, only destabilizing (or neutral) mutations can occur. More
63 generally, assuming that the stability of a protein sequence reflects an underlying fraction of positions having
64 already accepted destabilizing amino acids, then the probability of destabilizing mutational events is in turn
65 expected to directly depend on the current stability of the protein.

66 Altogether, depending on the theoretical model mapping sequence to fitness, ω can be either independent
67 or negatively correlated to N_e , or even positively if considering adaptive evolution and environmental
68 changes (Lanfear *et al.*, 2014).

69 Empirically, variation in ω between lineages has been inferred using phylogenetic codon models applied
70 to empirical sequences (Yang and Nielsen, 1998; Zhang and Nielsen, 2005). Confronting branch-specific ω
71 estimates to life-history traits such as body mass or generation time uncovered a positive correlation (Popadin
72 *et al.*, 2007; Nikolaev *et al.*, 2007). Subsequently, integrative inference methods combining molecular sequences
73 and life-history traits have also found that ω correlates positively with traits such as longevity and body
74 mass (Lartillot and Poujol, 2011; Figuet *et al.*, 2017). Since lineages with a large body size and extended
75 longevity typically correspond to species with low N_e (Romiguier *et al.*, 2014), these empirical correlations
76 suggest a negative correlation between ω and N_e , thus confirming the theoretical prediction of the nearly-
77 neutral theory of evolution. However, the universality and robustness of the correlation between ω and
78 life-history traits is still debated. Results have not been entirely consistent across independent studies.
79 The correlation was found to be either not statistically significant (Lartillot and Delsuc, 2012), or even
80 in the opposite direction depending on the specific clade under study or the potential biases taken into
81 account (Lanfear *et al.*, 2010; Nabholz *et al.*, 2013; Lanfear *et al.*, 2014; Figuet *et al.*, 2016).

82 If empirical evidence for a negative correlation of ω with N_e is still not totally convincing, another empirical
83 correlation is known to be much more robust. Indeed, expression level or protein abundance is one of the
84 best predictors of ω , with highly expressed proteins typically having lower ω values, a correlation clearly
85 significant although relatively weak (Duret and Mouchiroud, 2000; Rocha and Danchin, 2004; Drummond
86 *et al.*, 2005; Zhang and Yang, 2015; Song *et al.*, 2017). Theoretical models, also based on protein stability,
87 have been invoked to explain this negative correlation between ω and expression level (Wilke and Drummond,
88 2006; Drummond and Wilke, 2008). According to this argument, selection against protein misfolding due to
89 toxicity, which is stronger for more abundant proteins, induces abundant proteins to evolve toward greater
90 stability, resulting in a more constrained and more slowly evolving protein coding sequence (Serohijos *et al.*,
91 2012).

92 The possibility that expression level and N_e might play similar roles in the evolution of proteins has
93 already been noticed. More precisely, under models of selection against protein misfolding, the free energy of

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

94 folding ΔG is predicted to vary similarly along a gradient of either N_e or expression level (Serohijos *et al.*,
95 2013). As a corollary, under strict equimutability of ΔG , these computational models imply that ω should
96 also be independent of expression level (Serohijos *et al.*, 2012), akin to what is predicted with regards to
97 changes in N_e .

98 Altogether, both theoretical results and empirical analyses are not yet conclusive about the question of
99 how ω depends on N_e and expression level. In particular, the theoretical response of ω to changes in both N_e
100 and expression level has not been quantified and, most importantly, has not been related to the specific map
101 between genotype, phenotype and fitness. Such an analytical development would be useful to more decisively
102 confront the theoretical predictions relating ω to both N_e and expression level to empirical data. Ultimately,
103 relating proteins structural parameters to the response of ω would help to bridge the gap between protein
104 thermodynamics on one side and comparative genomics on the other side.

105 Lastly, the theoretical results discussed so far are valid only at the mutation-selection-drift balance. In a
106 non-equilibrium regime, however, and at least under a model assuming a site-independent genotype-fitness
107 map, an increase in N_e first leads to an increase in ω caused by adaptive substitutions, and subsequently
108 a decrease in ω due to stronger purifying selection in the long term (Jones *et al.*, 2016). Studying only
109 equilibrium properties can thus be misleading. For this reason, the dynamic response of ω to changes in
110 N_e must also be addressed, quantified, and its connection with the underlying selective landscape better
111 characterized. Dynamic properties of ω to changes in N_e are of theoretical interest but are also empirically
112 relevant, such that, if overlooked they could thwart the relation between theoretical expectations and empirical
113 estimates.

114 In this context, the aim of the present study is to characterize the dynamics and equilibrium response of
115 ω to changes in N_e and expression level, and to relate this response to structural parameters of the model.
116 To this effect, we develop a general mathematical approach to derive a quantitative approximation of the
117 response of ω to changes in N_e and expression level, in the context of a given genotype-phenotype-fitness map,
118 as depicted in figure 1. In the light of previously published empirical estimates from protein thermodynamics
119 and comparative genomics, we discuss the articulation between empirical data and our mechanistic model.
120 We also discuss some of the alternative biophysical mechanisms that could determine the selective landscape
121 on protein-coding sequences, and how they would modulate the response of ω to changes in N_e and expression
122 level.

123 2 Results

124 2.1 Models of evolution

125 The results that are presented below are valid for a general category of models of sequence evolution, based on
126 an additive trait x , such that the coding positions of the sequence contribute additively to the trait. The trait
127 is under directional selection specified by a decreasing and log-concave fitness function $W(x)$. As a specific
128 example, we more specifically consider a model of protein evolution under the constraint of thermodynamic
129 stability, as depicted in the left panel of figure 1. This model is inspired from previous work (Williams *et al.*,

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

130 2006; Goldstein, 2011; Pollock *et al.*, 2012), except that we make several simplifying assumptions, allowing us
 131 to derive analytical equations.

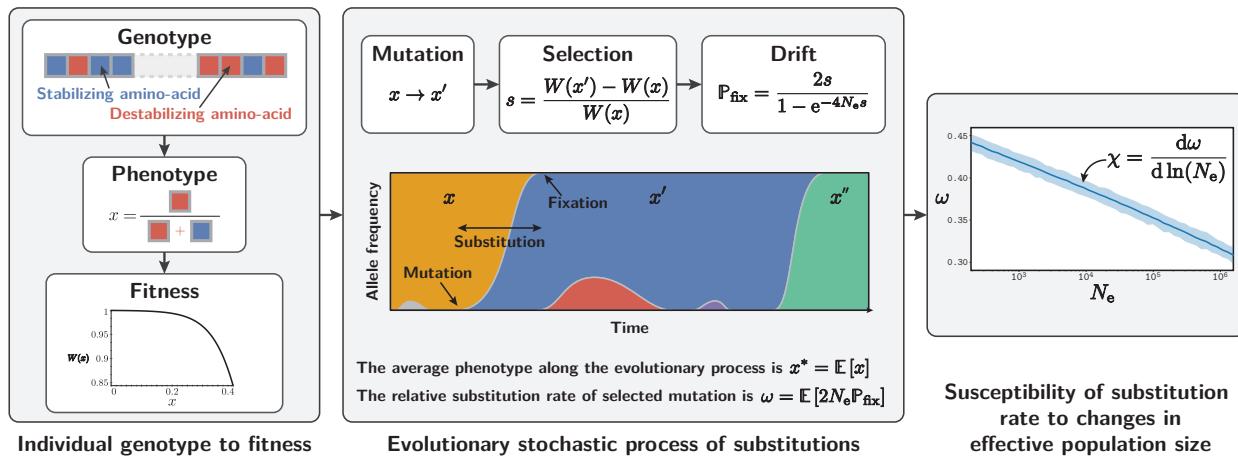


Figure 1: Outline of the theoretical results. The genotype to fitness relationship is depicted in the left panel. The phenotype (x) is a real-valued function of the genotype (i.e. the amino-acid sequence), and is defined in our model as the fraction of destabilizing amino acids in the sequence. Fitness is a decreasing log-concave function of the phenotype, depending on structural parameters of the model. Once the relation from genotype to fitness is defined, the substitution process proceeds as presented in the middle panel. For a given effective population size N_e , the evolutionary process results in an average value of the phenotype x^* and an average substitution rate (relative to the neutral rate) ω . Averaging over time is equivalent to determining the statistical equilibrium, by ergodicity of the stochastic process. The slope of the scaling of the equilibrium ω as a function of $\log N_e$ defines the susceptibility χ , which is a function of the structural parameters defined by the phenotype-fitness map.

132 In the original biophysical model, protein stability is determined by the difference in free energy between
 133 the folded and unfolded conformations, called ΔG and measured in kcal/mol. Technically, free energy is
 134 computed based on the 3D conformation of the protein and using statistical potentials. As a result, the
 135 stabilizing or destabilizing effect of an amino acid at a particular site depends on amino acids present in the
 136 vicinity in 3D conformation, thus implementing what has been called specific epistasis (Starr and Thornton,
 137 2016).

Here, we approximate this model such that the (de-)stabilizing effect at a particular site, such as measured by the $\Delta\Delta G$ of the mutation, does not depend on other neighbouring residues, thus disregarding specific epistasis (Dasmeh *et al.*, 2014). Instead, each site contributes independently and additively to ΔG . In addition, we assume that, for each site of the sequence, only one amino acid is stabilizing the protein. All 19 other amino acids are equally destabilizing. Each site bearing a destabilizing amino acid contributes an excess of $\Delta\Delta G > 0$ (in kcal/mol) to the total ΔG . The smallest achievable value of ΔG , obtained when all amino acids of the sequence are stabilizing, is noted $\Delta G_{\min} < 0$. In this model, the most succinct phenotype of a given genotype (i.e. sequence) is just the proportion of destabilizing amino acids in the sequence, defined

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

as $0 \leq x \leq 1$. Thus ΔG is a linear function of x :

$$\Delta G(x) = \Delta G_{\min} + n\Delta\Delta Gx, \quad (1)$$

138 where n is the number of sites in the sequence.

139 For a given ΔG , thermodynamic equations allows one to derive the proportion of protein molecules that
140 are in the native (folded) conformation in the cytoplasm. This fraction is assumed to be a proxy for fitness,
141 motivated in part by the fact that a protein must be folded to perform its function. A slightly different model
142 will be considered below, in order to take into account protein expression level (see section 2.3).

Analytically, the fitness function is given by the Fermi Dirac distribution and is typically close to 1, leading to a first-order approximation (Goldstein, 2011):

$$W(x) = \frac{1}{1 + e^{\beta(\Delta G_{\min} + n\Delta\Delta Gx)}}, \quad (2)$$

$$\Rightarrow W(x) \simeq 1 - e^{\beta(\Delta G_{\min} + n\Delta\Delta Gx)}, \quad (3)$$

$$\Rightarrow f(x) = \ln(W(x)) \simeq e^{\beta(\Delta G_{\min} + n\Delta\Delta Gx)}, \quad (4)$$

143 where W is the Wrightian fitness for a given phenotype and f is the Malthusian fitness (or log-fitness). Here,
144 ΔG_{\min} and $\Delta\Delta G$ are defined as above, and the parameter β is 1.686 mol/kcal at 25°C (or 298.2K).

145 Of note, even though the phenotypic effect of a mutation at a given site does not depend on the amino-acids
146 that are present at other sites (i.e. the trait is additive), the fitness effect of a mutation still depends on other
147 sites (i.e. the log-fitness is not additive). As a result, the molecular evolutionary process is site-interdependent,
148 a property referred to as non-specific epistasis (Starr and Thornton, 2016; Dasmeh and Serohijos, 2018).

149 **2.2 Response of ω to changes in N_e . Analytical approximation**

150 For a given effective population size N_e , the evolutionary process reaches an equilibrium (figure 1, middle
151 panel). This substitution rate at this equilibrium, normalized by the substitution rate of neutral mutations
152 to discard the influence of the underlying mutation rate, is denoted ω . This relative rate can also be interpreted
153 as the mean fixation probability of mutations scaled by the fixation probability of neutral alleles $p = 1/2N_e$,
154 the mean being weighted by the probability of occurrence of mutations in the population. As a result, an
155 $\omega < 1$ indicates that mutations are negatively selected on average, and ω decreases with increasing strength
156 of purifying selection.

In this section we present an analytical approximate solution for the response of ω after a change in N_e (in log space), as depicted in the right panel of figure 1. We call this response the susceptibility of ω to changes in N_e , and denote it as χ :

$$\chi = \frac{d\omega}{d \ln(N_e)} \quad (5)$$

157 Deriving χ is done in two steps. First, we determine the mean phenotype at equilibrium, when evolutionary
158 forces of mutation, selection and genetic drift compensate each other. Subsequently, differential calculus is
159 used to compute the response of the equilibrium phenotype to a change in N_e , which allows us to ultimately
160 derive an equation for χ . The main results of our derivation are given both in the general case of any

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

161 (log-concave) phenotype-fitness map, and in the specific case of the biophysical model introduced above. A
 162 more detailed derivation is available in the supplementary materials.

For a given genotype, mutations can have various effects: they can increase or decrease the proportion of destabilizing amino acids, or do nothing if the mutation is between two destabilizing amino acids. To derive the probabilities of such events to occur, we also make the simplifying assumption that all transitions between amino acids are equiprobable. Altogether, any mutation in the sequence can then have a phenotypic effect of 0 or $\delta x = 1/n$, with probabilities of transitions equal to:

$$\begin{cases} \delta x & \text{with probability } 1-x, \\ 0 & \text{with probability } \frac{18x}{19}, \\ -\delta x & \text{with probability } \frac{x}{19}. \end{cases} \quad (6)$$

163 In the extreme case of an optimal phenotype ($x = 0$), only destabilizing mutations are proposed. Moreover,
 164 the probability to propose a stabilizing mutation (effect $-\delta x$), or a neutral mutation (effect 0), is proportional
 165 to x . Conversely, the probability to propose a destabilizing mutation is equal to $(1-x)$. As a result, the
 166 mutation bias is proportional to $(1-x)/x$. This mutation bias fundamentally reflects a combinatorial effect,
 167 due to the number of mutational opportunities available in either direction.

Second, we need to determine the strength of selection acting on mutations. Destabilizing mutations are selected against with a negative selection coefficient which can be approximated by:

$$s \simeq \frac{1}{n} \frac{\partial f(x)}{\partial x} \quad (7)$$

$$\Rightarrow s \simeq -\beta \Delta \Delta G e^{\beta(\Delta G_{\min} + n \Delta \Delta G x)}, \quad (8)$$

168 where $f = \ln(W)$ is the log-fitness (or Malthusian fitness). Conversely, stabilizing mutations will be under
 169 positive selection with opposite sign but same absolute value. It is important to realize that the selective
 170 effect is dependent on x . Furthermore, because the fitness function is log-concave, the absolute value of s
 171 increases with x .

Based on these expressions for the mutational and selective pressures, one can then study the trajectory followed by the evolutionary process. Starting from an optimal sequence, mostly destabilizing mutations will occur, some of which may reach fixation and accumulate until selection coefficients against new deleterious mutations is too strong, at which point the protein will reach a point of equilibrium called marginal stability (Taverna and Goldstein, 2002; Bloom *et al.*, 2007). Most importantly, the probability of fixation of mutations is affected by genetic drift, and thus depends on the effective population size (N_e). At the equilibrium between mutation, selection and drift, the process fluctuates through the occurrence of advantageous and deleterious substitutions compensating each other. This equilibrium can be determined by expressing the constraint that the selection coefficient of substitutions is expected to be null on average (Goldstein, 2013). Formally, and after simplification, the equilibrium phenotype denoted x^* is given in the general case by:

$$\ln \left(\frac{1-x^*}{x^*} \right) + \ln(19) \simeq -\frac{4N_e}{n} \frac{\partial f(x^*)}{\partial x^*} \quad (9)$$

$$\Rightarrow \ln \left(\frac{1-x^*}{x^*} \right) + \ln(19) \simeq 4N_e \beta \Delta \Delta G e^{\beta(\Delta G_{\min} + n \Delta \Delta G x^*)}, \quad (10)$$

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

172 in the more specific case of the biophysical model. This equation essentially expresses the mutation-selection
 173 equilibrium: the left-hand side of the equation is the log of the mutation bias at x , while the right-hand side
 174 is simply $4N_e s$, the scaled selection coefficient.

175 This equation cannot be solved explicitly for x^* , but a qualitative intuition on the consequences of change
 176 in N_e to the equilibrium phenotype x^* is given in figure 2. Intuitively, an increase in N_e results in a more
 177 optimal phenotype, closer to 0. The mutation bias (left-hand side of equation 10) decreases with x while
 178 the strength of selection (right-hand side of equation 10) increases with x , and the equilibrium phenotype is
 179 obtained at their intersection. An increase in N_e leads to shifting the selective response upward, which then
 180 results in a leftward shift of the equilibrium phenotype (i.e. closer to 0). The leftward shift is smaller for
 181 selective strengths characterized by a steeper curve, resulting in qualitatively weaker susceptibility of the
 182 equilibrium phenotype to changes in N_e

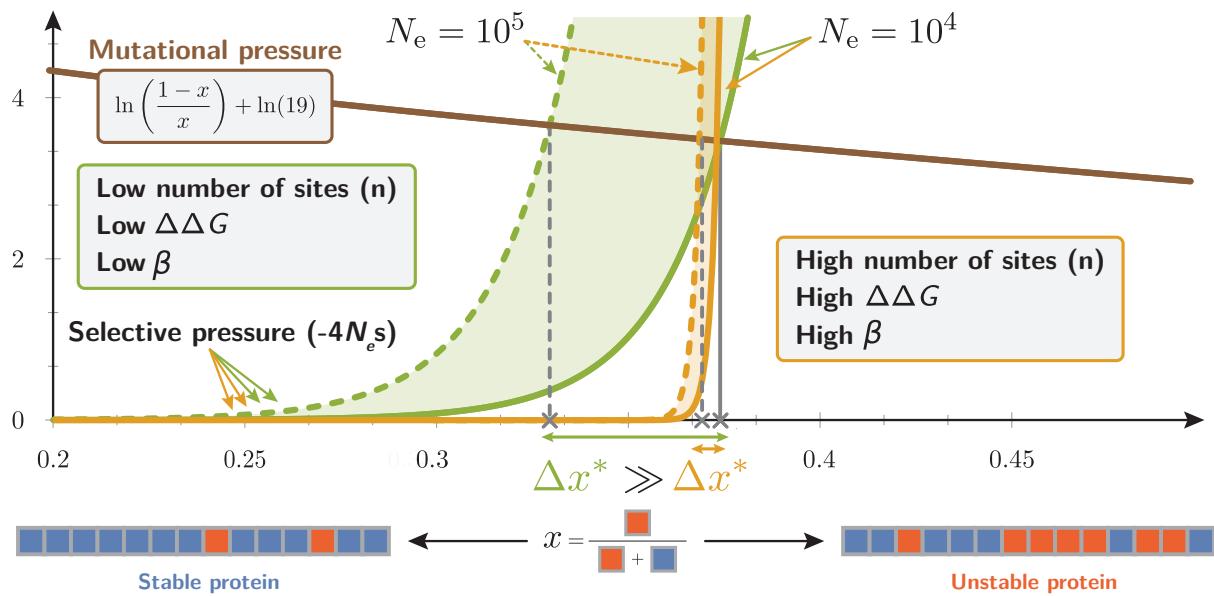


Figure 2: Response of the equilibrium phenotype after a change in N_e . The equilibrium phenotype x^* is obtained when the selective pressure equals to the mutational pressure (equation 10). The selective pressure (right-hand side of eq. 10) increases exponentially with x where $\beta n \Delta \Delta G$ is the exponential growth rate (yellow and green curves). When $\beta n \Delta \Delta G$ is large, increasing N_e by an order of magnitude (yellow dotted curves) very moderately impacts the equilibrium phenotype (small Δx^*). In contrast, for small $\beta n \Delta \Delta G$ (green curves), the equilibrium phenotype is more strongly impacted by a change in N_e (large Δx^*). Finally, response of x^* to changes in N_e reflects the response of ω since both are approximately equal (equation 11).

The results obtained thus far only relate the equilibrium phenotype (x^*) to N_e . To capture how ω varies with N_e , we also need to obtain an expression for ω as a function of x^* . At equilibrium we can derive (supplementary materials) the expected substitution rate of mutations, and thus ω , which simply approximates to:

$$\omega \simeq x^* \quad (11)$$

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

183 This simple approximation is due to the fact that the substitutions between two destabilizing amino acids
 184 (which are neutral) compose the largest proportion of proposed mutations having a substantial probability of
 185 fixation (equation 6). In contrast, stabilizing mutations are rare, while destabilizing mutations have a low
 186 probability of fixation. Since there is a fraction x^* of sites already occupied by a destabilizing amino-acid,
 187 these neutral substitutions occur at rate x^* .

Combined together, these analytical approximations yield the susceptibility (equation 5) of ω to a change in N_e :

$$\chi = \frac{d\omega}{d \ln(N_e)} \simeq - \frac{\frac{\partial f(x^*)}{\partial x^*}}{\frac{n}{4N_e} \frac{\partial \ln[(1-x^*)/x^*]}{\partial x^*} + \frac{\partial^2 f(x^*)}{\partial x^{*2}}}. \quad (12)$$

The two terms of the denominator correspond to the derivative of the mutational bias and the scaled selection coefficient, respectively. However, the mutational bias decreases weakly with x (blue curve on figure 2) while the strength of selection increases sharply with x (red and green curves). As a consequence, the derivative of the mutational bias is much lower than the derivative of the selection coefficient around the equilibrium point (i.e. the phenotype is *nearly* equimutable). The second term can therefore be ignored, which leads to a very compact equation for susceptibility χ in the general case:

$$\chi \simeq - \frac{\frac{\partial f(x^*)}{\partial x^*}}{\frac{\partial^2 f(x^*)}{\partial x^{*2}}}. \quad (13)$$

188 The susceptibility is thus equal to the inverse of the relative curvature, i.e. the ratio of the second to the first
 189 derivatives, of the log-fitness function, taken at the equilibrium phenotype. Of note, this susceptibility is
 190 strictly negative for decreasing log-concave fitness functions, asserting that ω is a decreasing function of N_e .
 191 In addition, the susceptibility itself is low in absolute value (i.e. ω responds more weakly) for strongly concave
 192 log-fitness functions. This equation quantitatively captures the intuition developed in figure 2, namely that
 193 the response of ω is very weak if the selection curve is very steep around the equilibrium set point (red curve
 194 compared to green curve).

In the specific case of the biophysical model, the susceptibility (χ) further simplifies to:

$$\chi \simeq - \frac{1}{\beta n \Delta \Delta G}, \quad (14)$$

195 meaning that ω is linearly decreasing with N_e (in log scale) since χ is independent of x^* , or, in other words,
 196 that the exact value of the equilibrium phenotype has no impact on the slope. Moreover, only the compound
 197 parameter $\beta \Delta \Delta G n$ has an impact on the slope of the linear relationship. Thus, in particular, the slope of
 198 the linear relationship between ω and N_e is affected by $\Delta \Delta G$ but not by ΔG_{\min} . Of note, empirically, only
 199 relative values of N_e (up to a multiplicative constant) are required to obtain an estimate of χ .

200 **2.3 Response of ω to changes in protein expression level**

201 Effective population size is not the sole predictor of ω , and expression level (or protein abundance) is also
 202 negatively correlated to ω . However, our previous model, which assumes that fitness is proportional to the
 203 folded fraction, and is thus independent of protein abundance, does not express the fact that selection is
 204 typically stronger for proteins characterized by higher levels of expression. An alternative biophysical model
 205 is to assume that each misfolded protein molecule has the same relative effect on fitness, caused by its toxicity

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

206 for the cell (Drummond *et al.*, 2005; Wilke and Drummond, 2006; Drummond and Wilke, 2008; Serohijos
207 *et al.*, 2012).

Our general derivation can be directly applied to this case. For a given protein with expression level y and a cost A representing the selective cost per misfolded molecule (positive constant), the fitness and selection coefficient can be defined as follows:

$$f(x) \simeq -Aye^{\beta(\Delta G_{\min} + n\Delta\Delta Gx)} \quad (15)$$

$$\Rightarrow s \simeq -\beta\Delta\Delta GAye^{\beta(\Delta G_{\min} + \Delta\Delta Gnx)}. \quad (16)$$

208 Under this model, the total selective cost of a destabilizing mutation is now directly proportional to the
209 total amount of misfolded proteins. This fitness function leads to the following expression for the mutation-
210 selection-drift equilibrium:

$$\ln\left(\frac{1-x^*}{x^*}\right) + \ln(19) = 4N_e y A \beta \Delta\Delta G n e^{\beta(\Delta G_{\min} + \Delta\Delta G nx^*)}. \quad (17)$$

Importantly, in this equation, N_e and y are confounded factors appearing only as a product. This means that increasing either N_e or y leads to same change in equilibrium phenotype, and hence the same change in ω . In other words, the susceptibility of the response to changes in either N_e or expression level is the same:

$$\chi = \frac{d\omega^*}{d\ln(N_e)} = \frac{d\omega^*}{d\ln(y)} \simeq -\frac{1}{\beta n \Delta\Delta G}. \quad (18)$$

211 A similar result can be obtained under other models relating phenotype to fitness, for example if the
212 selective cost is due to translational errors (supplementary materials). Alternatively if the protein is assumed
213 to be regulated such as to reach a specific level of functional protein abundance under a general cost-benefit
214 argument (Cherry, 2010; Gout *et al.*, 2010), a multiplicative factor depending solely on the expression level
215 is prefixed (supplementary materials). Altogether, we theoretically obtain the same linear decrease of ω
216 with regards to either effective population size or expression level (in log space) under a broad variety of
217 hypotheses.

218 2.4 Simulation experiments

219 Our theoretical derivation of the susceptibility of ω to changes in N_e (and expression level) is based on
220 several simplifying assumptions about the evolutionary model and makes multiple approximations. In order
221 to test the robustness of our main result, we therefore conducted systematic simulation experiments, relaxing
222 several of these assumptions. In each case, simulations were conducted under a broad range of values of N_e ,
223 monitoring the average ω observed at equilibrium and plotting the scaling of these measured equilibrium ω
224 as a function of N_e .

225 Specifically, with respect to mutations, our derivation assumes that all amino-acid transitions are equiprob-
226 able, or in other words, the complexity of the genetic code is not taken into account. Simulating evolution of
227 DNA sequence and invoking a matrix of mutation rates between nucleotide allows us to test the robustness of
228 our results to this assumption. Furthermore, with regard to the phenotypic effects of amino-acid changes, in
229 our derivation, we assumed that all destabilizing amino acids have an identical impact on protein stability. In
230 reality, one would expect conservative amino-acid replacements to be less destabilizing than radical changes.

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

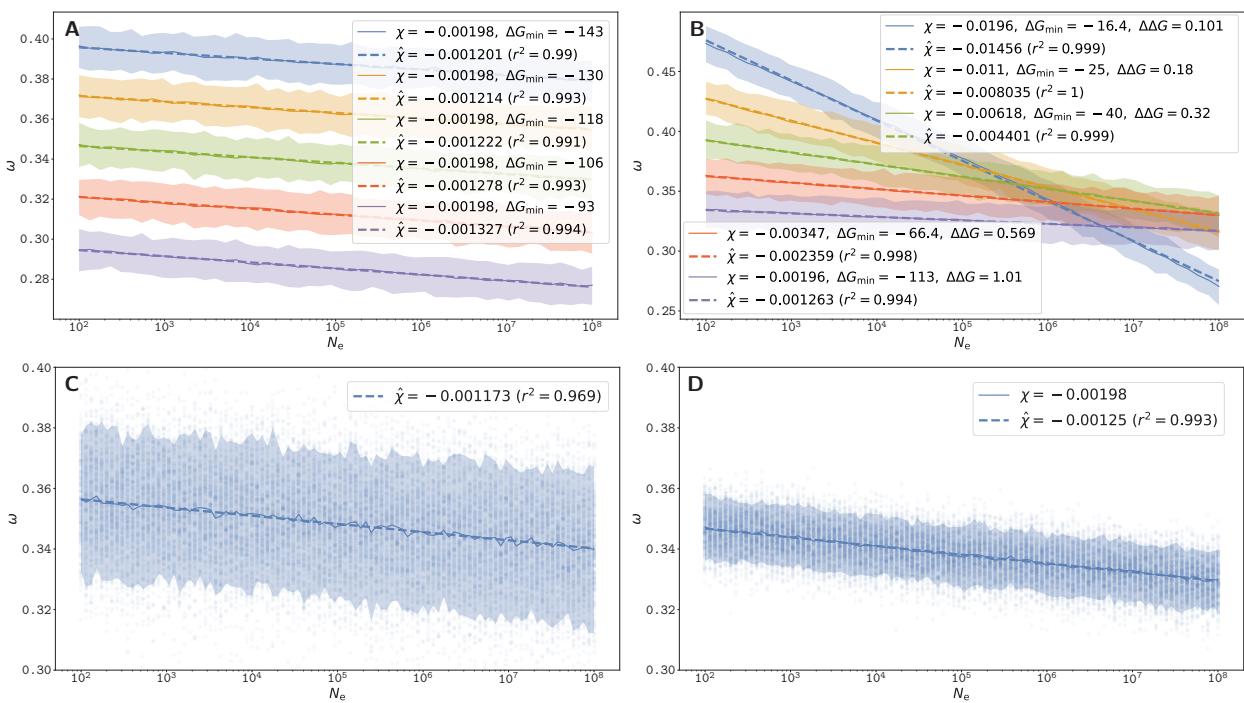


Figure 3: Scaling of equilibrium ω as a function of $\log-N_e$, under the additive phenotype model using Grantham distances (A,B,D) or the explicit biophysical model using a statistical potential (C), with $n = 300$ and $\beta = 1.686$. 200 replicates per N_e value are shown (dots). Solid lines are average over replicates, and shaded areas are 90% confidence interval. The slope (or susceptibility) ($\hat{\chi}$), is estimated by linear regression (dashed lines). (A): ΔG_{\min} are given in the legend, and $\Delta \Delta G = 1$. Decreasing ΔG_{\min} (to more negative values) increases ω but does not impact the slope. (B): $\Delta \Delta G$ is increased and ΔG_{\min} is changed accordingly such that the equilibrium value x^* is kept constant, by solving numerically equation 10. The estimated susceptibility ($\hat{\chi}$) decreases proportionally to the inverse of $\Delta \Delta G$, as predicted by our theoretical model. (C): Stability of the folded native state is computed using 3D structural conformations and pairwise contact potentials. (D): Additive model with $\Delta G_{\min} = -118$ kcal/mol and $\Delta \Delta G = 1$ kcal/mol matches structural model shown in C (although with less variance).

231 This assumption is relaxed in our simulation, such that destabilizing mutations in each position are now
 232 proportional to the Grantham distance (Grantham, 1974) between the optimal amino acid in this position
 233 and the amino acid proposed by the non-synonymous mutation. Finally, our derivation assumes that the
 234 number of sites in the sequence (n) is large, such that the selection coefficient is well approximated by the
 235 fitness derivative (equation 7). The robustness of this approximation was tested by conducting simulations
 236 with finite sequences of realistic length ($n = 300$ coding positions).

237 These simulation experiments demonstrate, first, that the relation between ω and $\log-N_e$ is indeed linear,
 238 at least in the range explored here, and that the slope of the linear regression matches the expected theoretical
 239 value (figure 3A). Secondly, we observe that the parameter ΔG_{\min} has virtually no effect on the slope of the
 240 linear regression, as also expected theoretically (figure 3B). Instead, decreasing ΔG_{\min} (to more negative

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

values) merely results in an overall increase in ω over the whole range of N_e (i.e. has an impact on the intercept, not on the slope of the relation). This is due to the fact that decreasing ΔG_{\min} shifts the equilibrium to higher x^* , since more destabilizing sites can then reach fixation before reaching the point of marginal stability.

Finally, we relaxed our assumption that each site of the sequence contributes independently to ΔG , by taking into account the 3D structure of protein and using a statistical potential to estimate ΔG (supplementary materials). We implemented the original model considered in [Williams et al. \(2006\)](#), [Goldstein \(2011\)](#) and [Pollock et al. \(2012\)](#), in which the free energy is computed based on the 3D conformation using pairwise contact potential energies between neighbouring amino-acid residues ([Miyazawa and Jernigan, 1985](#)). The original works showed that under this model, ω is approximately independent of N_e ([Goldstein, 2013](#)). Using extensive simulations in order to obtain sufficient resolution, we observe that ω is in fact weakly dependent on N_e , being again approximately linear with $\log N_e$ (figure 3C). Moreover, the observed slope ($\hat{\chi} = -0.00117$) matches the slope obtained under the model of additive ΔG ($\hat{\chi} = -0.00125$, figure 3D), considering an empirical $\Delta\Delta G = 1.0$ kcal/mol for destabilizing mutations and $n = 300$. In this experiment (figure 3D), ΔG_{\min} was set to -118 kcal/mol, which is the ΔG of the optimal (maximally stable) sequence of 300 sites ([Goldstein, 2011](#)).

2.5 Time to relaxation

Although the equilibrium value of ω after changes in N_e is an important feature of the ω - N_e relationship, another characteristic that is scarcely studied is the dynamic aspect ([Jones et al., 2016](#)), particularly the relaxation time to reach the new equilibrium ω . We observed in our simulations that the determining factor of the relaxation time is the number of sites n (figure 4A), such that the return to equilibrium is faster for longer sequences. This observation matches the theoretical prediction that more mutational opportunities are available for longer sequences, driving the trait close to equilibrium at a faster rate.

It may be useful to compare the relaxation pattern observed here with the predictions under two alternative models of sequence evolution, representing two extreme scenarios. On one hand, having fitness modelled at the level of sites, such as contemplated by many phylogenetic mutation-selection models ([Halpern and Bruno, 1998](#); [Rodrigue et al., 2010](#); [Tamuri and Goldstein, 2012](#)), leads to a situation where every site has to adapt on its own to the new change in N_e . The relaxation time is then very long, on the order of the inverse of the per-site substitution rate. On the other hand, assuming a fixed distribution of fitness effect (DFE) as in [Welch et al. \(2008\)](#), the response of ω is instantaneous (figure 4B). Our model is effectively in between these two extreme scenarios.

Another characteristic observed in these non-equilibrium experiments is the discontinuity of ω after a change in N_e . Most importantly, both an increase and decrease in N_e lead to a discontinuity (figure 4A & 4B). These non-equilibrium behaviors can both be explained mechanistically. Under low N_e , the phenotype is far away from the optimal phenotype because the efficacy of selection is weaker. A sudden increase in N_e results first in a short traction toward a more optimal phenotype, which results in a suddenly higher ω , caused by a transient adaptation of the protein toward a higher stability. Conversely, under high N_e the phenotype is closer to optimal and the purification of deleterious mutations is stronger. The reaction to a decrease in N_e is

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

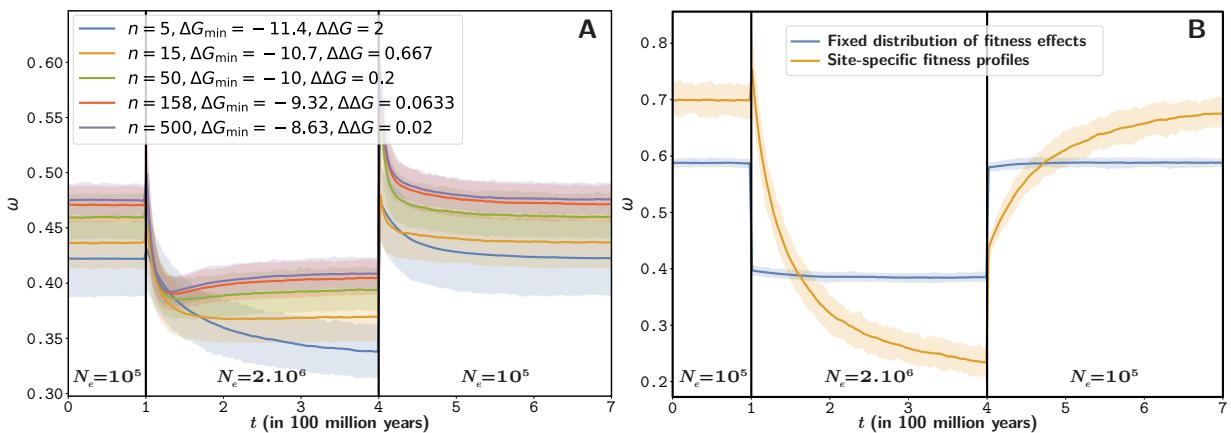


Figure 4: Relaxation of ω after a change in N_e . Solid line corresponds to the average over 1000 replicates and the shaded area corresponds to the 90% interval among replicates. The mutation rate (μ) is $1e-8$ per year per site, and the total evolutionary period is 700 million years. (A): $\beta = 1.686$ for all simulations. The DNA sequence of 500 sites is divided into exons of equal size. However the number of sites per exon changes between simulations from $n = 5$ to $n = 500$. Moreover, $\Delta \Delta G$ is changed according to the exon size such that $n \Delta \Delta G$ (and as a result, the susceptibility) are kept constant, and ΔG_{\min} is changed accordingly such that the equilibrium value x^* is kept constant, by solving numerically equation 10. Thus, regardless of exon size, x^* and χ are kept constant and thus the observed effect is due to the number of sites in the exon. We observe that increasing the number of sites leads to a reduced time to reach the new equilibrium. (B): In the context of a time-independent fitness landscape (yellow curve), where each amino acid has different fitness (site-specific profiles), the time taken to reach the new equilibrium value of ω after a change in N_e is long. In the context of a fixed distribution of fitness effects (blue curve), the relaxation time is non-existent and the new equilibrium value of ω is reached instantaneously.

278 a relaxation of the purification and thus an ω closer to the neutral case, which results into higher ω until
 279 reaching the point of marginal stability. To note, an increase in N_e can theoretically and possibly lead to an
 280 ω that is temporarily greater than 1 due to adaptive evolution (Jones *et al.*, 2016), while a decrease in N_e
 281 always imply an $\omega < 1$, as it gives at most a neutral regime of relaxed selection.

282 **3 Discussion**

283 We provide a compact analytical result for the equilibrium response (which, by analogy with thermodynamics,
 284 we call the susceptibility) of ω to changes in N_e , and we relate this response to the parameterization of the
 285 genotype-phenotype-fitness map. An application to a model of selection against protein misfolding shows
 286 that the response of ω to variation in N_e (in log space) is linear, with a negative slope. Furthermore, this
 287 application demonstrates that effective population size and protein expression level are interchangeable with
 288 respect to their impact on the response of ω . Our compact theoretical results, which were obtained by making
 289 several simplifying assumptions, are supported by more complex simulations of protein evolution relaxing

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

290 these assumptions. In particular, our theoretical predictions are verified under a numerical model of protein
291 evolution in which the free energy is computed based on the 3D structure.

292 Overall, the susceptibility (χ) is a function of the structural parameters of the protein and takes a very
293 simple analytical form, being inversely proportional to the product of three terms: the sequence size, the
294 inverse temperature (β), and the average change in conformational energy of destabilizing mutations ($\Delta\Delta G$).
295 Quantitatively, this product can be several orders of magnitude greater than 1 in practice, such that the
296 susceptibility of ω , which is its inverse, is typically small. Previous studies using this model presented an
297 apparent lack of response of ω to changes in N_e (Goldstein, 2013). We refine this result, by observing
298 that there is in fact a very subtle and weak relation, which requires extensive computation to be detected,
299 but which is well predicted by our theoretical derivation. Based on empirical estimates of the structural
300 parameters $\beta = 1.686$, $n = 300$ sites and $\Delta\Delta G = 1.0$ kcal/mol for destabilizing mutations (Zeldovich *et al.*,
301 2007), the estimated susceptibility is $\hat{\chi} \simeq -0.002$. In other words, for a relative increase in N_e or expression
302 level of 6 orders of magnitude, a factor approximately equal to 0.01 is subtracted from ω , a subtle relationship
303 that requires laborious effort to be detected in simulated data.

304 3.1 Adequacy to empirical data

305 Empirically, variation in ω along the branches of phylogenetic trees has been inferred and correlated to
306 proxies of N_e , such as body size or other life-history traits. These analyses showed mitigated support for a
307 negative relation between ω and N_e (Lanfear *et al.*, 2014). More recently, phylogenetic integrative methods
308 refined the estimate of covariation between ω and N_e along lineages by leveraging polymorphism data (Brevet
309 and Lartillot, 2019). This approach gives an estimate of $\hat{\chi} \simeq 0.02$ in primates (supplementary materials) at
310 least one order of magnitude greater than the quantitative estimate obtained above from the biophysical
311 model. More empirical data across different clades would be required to robustly consolidate such empirical
312 estimates, but as of yet, these results are challenging the idea of a very weak response.

313 The relation between ω and expression level provides an independent, and potentially more robust, source
314 of empirical observation. Our theoretical results suggest that, under relatively general conditions, the response
315 of ω to expression level should be of the same magnitude than the response to N_e . Empirically, the protein
316 expression level is one of the best predictors of ω and the empirical estimation of χ in fungi, archaea and
317 bacteria varies in the range $[-0.046; -0.021]$ (supplementary materials) extracted from Zhang and Yang
318 (2015). Estimation in animals and plants gives somewhat lower estimates, in the range of $[-0.026; -0.004]$,
319 although still higher (in absolute value) than -0.002 .

320 Additionally, another empirical observation is the negative relation between the mean destabilizing effect
321 of mutations (mean $\Delta\Delta G$) and the ΔG of the protein. Such a relation is empirically observed in Serohijos
322 *et al.* (2012), where the slope of the linear regression is -0.13 ($r^2 = 0.04$). The slope of the linear correlation
323 observed in our simulations is weaker, with an observed slope of -0.01 ($r^2 = 0.29$) under the 3D biophysical
324 model, and -0.003 ($r^2 = 0.33$) under the model of additive phenotype parameterized by $\Delta\Delta G = 1$ and
325 $n = 300$ (supplementary materials). This observation also sheds light on the correlation between ω and N_e
326 in empirical data and in our model. Indeed, equimutability, or namely that the distribution of $\Delta\Delta G$ of

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

327 mutations is independent of ΔG is a necessary condition to observe independence between ω and N_e (Cherry,
328 1998). In our model, the average $\Delta\Delta G$ of mutations at equilibrium depends on ΔG due to combinatorial
329 considerations, but this dependence is weaker than empirically observed, which also translates into a weaker
330 susceptibility of ω to changes in N_e or expression level than empirically observed.

331 Thus, overall, the response of ω to either N_e or expression level predicted by the biophysical model
332 considered above seems lower than what is empirically observed. There are several possible explanations
333 for this discrepancy. First, the biophysical model might be valid, but the numerical estimates used for n
334 or $\Delta\Delta G$ could be inadequate. A $\Delta\Delta G$ of 1.0 kcal/mol for destabilizing mutations seems to correspond to
335 empirical estimates (Zeldovich *et al.*, 2007). On the other hand, the effective number of positions implicated
336 in the trait might be smaller than the total number of residues in the protein. In our model, all positions in
337 the protein can in principle compensate for the destabilizing effect of a mutation at a particular position. In
338 practice, the number of sites susceptible to compensate each other is probably smaller, resulting in a stronger
339 departure from equimutability.

340 Alternatively, the biophysical model considered here might be too restrictive. Recent empirical studies
341 have provided evidence against the hypothesis that the rate of sequence evolution is driven solely by
342 the toxicity effect of unfolded proteins (Plata and Vitkup, 2017; Razban, 2019; Biesiadecka *et al.*, 2020).
343 Notably, the response of ω to changes in expression level has also been found theoretically to arise as a
344 consequence of protein-protein interactions, where protein may either be in free form or engaged in non-
345 specific interactions (Yang *et al.*, 2012; Zhang *et al.*, 2013). In non-specific interactions at the protein surface,
346 stabilizing amino acids are hydrophilic and destabilizing amino acids are hydrophobic, sticking to hydrophobic
347 residues at the surface of other proteins (Dixit and Maslov, 2013; Manhart and Morozov, 2015).

348 Our theoretical results can be applied more broadly to protein-protein interactions using a mean-field
349 argument (supplementary materials). Fitting this model with empirical structural estimates (Janin, 1995;
350 Zhang *et al.*, 2008), we obtain a susceptibility of $\chi \simeq -0.2$ thus a much stronger response than under the
351 model based on conformational stability. This much stronger response is due to fewer sites in the protein
352 being involved in protein-protein interaction than for conformational stability, in addition to a lower free
353 energy engaged in contact between residues.

354 Altogether, fitness based on protein stability is a compelling model of molecular evolution, but may not
355 be a sufficiently comprehensive model to explain the amplitude of variation of ω empirically observed along a
356 gradient of either effective population size or protein expression level. The net response of ω to changes in
357 N_e or expression level could have several biophysical causes, which in the end would imply a weak but still
358 empirically measurable response.

359 **3.2 The statistical mechanics of molecular evolution**

360 This study describes the signature imprinted on DNA sequences by an evolutionary process by merging
361 equations from population genetics and from structural physicochemical first principles. More generally, it
362 outlines a general approach for deriving quantitative predictions about the observable macroscopic properties
363 of the molecular evolutionary process based on an underlying microscopic model of the detailed relation

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

364 between sequence, phenotype and fitness. In this respect, it borrows from statistical mechanics, attempting
365 approximations to derive analytically tractable results (Sella and Hirsh, 2005; Mustonen and Lässig, 2009;
366 Bastolla *et al.*, 2012, 2017) The robustness of results can be assessed by computational implementations and
367 simulations. Computational models offer a means to test the validity and robustness, while mathematical
368 models offer an intuitive mechanistic mental analogy.

369 Ultimately, the approach could be generalized to other aspects of the evolutionary process. Beyond ω ,
370 other macroscopic observables could be of interest, for example site entropy, i.e. the effective number of
371 observed amino acids per site at equilibrium (Goldstein and Pollock, 2016; Jimenez *et al.*, 2018; Jiang *et al.*,
372 2018), or the nucleotide or amino-acid composition. In addition to N_e , other evolutionary forces could also
373 be considered, for instance the mutational bias or GC-biased gene conversion. The susceptibility of the
374 macroscopic observables to changes in the strength of these underlying forces could then more generally be
375 investigated. As such, the framework outlined here could foster a better understanding of observable signatures
376 of the long-term evolutionary process emerging from ecological parameters and molecular physico-chemical
377 first principles, by carefully teasing out the combined effects of mutation, selection and drift.

378 4 Materials & Methods

Protein sequence evolution is simulated under an origin-fixation model (McCandlish and Stoltzfus, 2014), i.e. the whole population is considered monomorphic and only the succession of fixation events is modeled. Given the currently fixed sequence \mathbb{S} , we define $\mathcal{M}(\mathbb{S})$ as the set of all possible mutant that are one nucleotide away from \mathbb{S} . Non-sense mutants are not considered. For a protein of n amino-acid sites, $|\mathcal{M}(\mathbb{S})| \leq 9n$, since each codon has a maximum of 9 possible nearest neighbors that are not stop codons. For each mutant sequence $\mathbb{S}' \in \mathcal{M}(\mathbb{S})$, we compute its fitness and subsequently the selection coefficient of the mutant:

$$s(\mathbb{S}, \mathbb{S}') = \frac{W(\mathbb{S}') - W(\mathbb{S})}{W(\mathbb{S})}, \quad (19)$$

$$\Rightarrow s(\mathbb{S}, \mathbb{S}') \simeq f(\mathbb{S}') - f(\mathbb{S}), \quad (20)$$

379 where W is the Wrightian fitness for a given phenotype and f is the Malthusian fitness (or log-fitness).

380 The waiting time before the next mutant invading the population, and the specific mutation involved
381 in this event, are chosen using Gillespie's algorithm (Gillespie, 1977), according to the rates of substitution
382 between \mathbb{S} and each $\mathbb{S}' \in \mathcal{M}(\mathbb{S})$, which are given by:

$$Q_{\mathbb{S}, \mathbb{S}'} = \mu_{\mathbb{S}, \mathbb{S}'} \frac{4N_e s(\mathbb{S}, \mathbb{S}')}{1 - e^{-4N_e s(\mathbb{S}, \mathbb{S}')}}, \quad (21)$$

383 where $\mu_{\mathbb{S}, \mathbb{S}'}$ is the mutation rate between \mathbb{S} and \mathbb{S}' , determined by the underlying 4x4 nucleotide mutation rate
384 matrix, and $Q_{\mathbb{S}, \mathbb{S}'} = \mu_{\mathbb{S}, \mathbb{S}'}$ in the case of synonymous substitutions. Various optimizations are implemented
385 to reduce the computation time of mutant fitness. The simulation starts with a burn-in period to reach
386 mutation-selection-drift equilibrium.

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

387 **4.1 Models of the fitness function**

Under the additive model for the free energy, the difference in free energy between folded and unfolded state is assumed to be given by:

$$\Delta G(\mathbb{S}) = \Delta G_{\min} + n \Delta \Delta G * x(\mathbb{S}),$$

388 where $0 \leq x(\mathbb{S}) \leq 1$ is the distance of \mathbb{S} to the optimal sequence (i.e. the fraction of sites occupied by a
389 destabilizing amino-acid). For each site of the sequence, the optimal amino acids are chosen randomly at
390 initialization, and the distance between the current amino acid and the optimal is scaled by the Grantham
391 amino-acid distance (Grantham, 1974). The Wrightian fitness is defined as the probability of our protein to
392 be in the folded state, given by the Fermi-Dirac distribution:

$$W(\mathbb{S}) = \frac{e^{-\beta \Delta G(\mathbb{S})}}{1 + e^{-\beta \Delta G(\mathbb{S})}} = \frac{1}{1 + e^{\beta \Delta G(\mathbb{S})}}, \quad (22)$$

393 where β is the inverse of the temperature ($\beta = 1/kT$).

394 For simulations under a 3D model of protein conformations, we adapted the model developed in Goldstein
395 and Pollock (2017) to our C++ simulator (see supplementary materials).

396 For simulations under a site-independent fitness landscape, with site-specific fitness profiles, the protein
397 log-fitness is computed as the sum of amino-acid log-fitness coefficients along the sequence. In this model,
398 each codon site i has its own fitness profile, denoted $\phi^{(i)} = \{\phi_a^{(i)}, 1 \leq a \leq 20\}$, a vector of 20 amino-acid
399 scaled (Wrightian) fitness coefficients. Since $\mathbb{S}[i]$ is the codon at site i , the encoded amino acid is $\mathcal{A}(\mathbb{S}[i])$,
400 hence the fitness at site i is $\phi_{\mathcal{A}(\mathbb{S}[i])}^{(i)}$. Altogether, the selection coefficient of the mutant \mathbb{S}' is:

$$s(\mathbb{S}, \mathbb{S}') = \sum_{i=1}^n \ln \left(\frac{\phi_{\mathcal{A}(\mathbb{S}'[i])}^{(i)}}{\phi_{\mathcal{A}(\mathbb{S}[i])}^{(i)}} \right), \quad (23)$$

401 The fitness vectors $\phi^{(i)}$ used in this study are extracted from Bloom (2017). They were experimentally
402 determined by deep mutational scanning.

403 For simulations assuming a fixed distribution of fitness effects (DFE), the selection coefficient of the
404 mutant \mathbb{S}' is gamma distributed (shape $k > 0$):

$$-s(\mathbb{S}, \mathbb{S}') \sim \text{Gamma}(|\bar{s}|, k) \quad (24)$$

405 **4.2 Computing ω along the simulation**

406 From the set of mutants $\mathcal{M}(\mathbb{S})$ that are one nucleotide away from \mathbb{S} , we define the subsets $\mathcal{N}(\mathbb{S})$ of non-
407 synonymous and synonymous mutants ($\mathcal{N}(\mathbb{S}) \subseteq \mathcal{M}(\mathbb{S})$). The ratio of non-synonymous over synonymous
408 substitution rates, given the sequence \mathbb{S} at time t is defined as (Spielman and Wilke, 2015; Dos Reis, 2015;
409 Jones *et al.*, 2016):

$$\omega(t) = \frac{\sum_{\mathbb{S}' \in \mathcal{N}(\mathbb{S})} \mu_{\mathbb{S}, \mathbb{S}'} \frac{4N_e s(\mathbb{S}, \mathbb{S}')}{1 - e^{-4N_e(\mathbb{S}, \mathbb{S}')}}}{\sum_{\mathbb{S}' \in \mathcal{N}(\mathbb{S})} \mu_{\mathbb{S}, \mathbb{S}'}} \quad (25)$$

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

Averaged over all branches of the tree, the average ω is:

$$\omega = \langle \omega(t) \rangle, \quad (26)$$

$$= \int_t \omega(t) dt, \quad (27)$$

410 where the integral is taken over all branches of the tree, while the integrand $\omega(t)$ is a piece-wise function
411 changing after every point substitution event.

412 5 Reproducibility - Supplementary Materials

413 The simulators written in C++ are publicly available under MIT license at <https://github.com/ThibaultLatrille/SimuEvol>. The mathematical developments under the general case of an arbitrary
414 additive trait and an arbitrary log-concave fitness function, and the derived susceptibility under various
415 fitness functions, as well as supplementary figures, are available in supplementary materials. The scripts and
416 instructions necessary to reproduce this study are available at <https://github.com/ThibaultLatrille/GenotypePhenotypeFitness>.
417

419 6 Author contributions

420 TL gathered and formatted the data, developed the new models in SimuEvol and conducted all analyses, in
421 the context of a PhD work (Ecole Normale Supérieure de Lyon). TL and NL both contributed to the writing
422 of the manuscript.

423 7 Acknowledgements

424 We wish to thank Julien Joseph for whiteboard mathematical sessions. We gratefully acknowledge the help of
425 Nicolas Rodrigue and Laurent Duret for their input on this work and their comments on the manuscript.
426 This work was performed using the computing facilities of the CC LBBE/PRABI. Funding: French National
427 Research Agency, Grant ANR-15-CE12-0010-01 / DASIRE.

428 References

429 Bastolla, U., Bruscolini, P., and Velasco, J. L. 2012. Sequence determinants of protein folding rates: Positive
430 correlation between contact energy and contact range indicates selection for fast folding. *Proteins: Structure,
431 Function and Bioinformatics*, 80(9): 2287–2304.

432 Bastolla, U., Dehouck, Y., and Echave, J. 2017. What evolution tells us about protein physics, and protein
433 physics tells us about evolution.

434 Biesiadecka, M. K., Sliwa, P., Tomala, K., and Korona, R. 2020. An Overexpression Experiment Does Not
435 Support the Hypothesis That Avoidance of Toxicity Determines the Rate of Protein Evolution. *Genome
436 Biology and Evolution*, 12(5): 589–596.

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

437 Bloom, J. D. 2017. Identification of positive selection in genes is greatly improved by using experimentally
438 informed site-specific models. *Biology Direct*, 12(1): 1.

439 Bloom, J. D., Raval, A., and Wilke, C. O. 2007. Thermodynamics of Neutral Protein Evolution. *Genetics*,
440 175(1): 255 LP – 266.

441 Brevet, M. and Lartillot, N. 2019. Reconstructing the history of variation in effective population size along
442 phylogenies. *bioRxiv*, page 793059.

443 Brush, S. G. 1967. History of the Lenz-Ising model. *Reviews of Modern Physics*, 39(4): 883–893.

444 Cherry, J. L. 1998. Should We Expect Substitution Rate to Depend on Population Size? *Genetics*, 150(2).

445 Cherry, J. L. 2010. Expression Level, Evolutionary Rate, and the Cost of Expression. *Genome Biology and*
446 *Evolution*, 2: 757–769.

447 Dasmeh, P. and Serohijos, A. W. R. 2018. Estimating the contribution of folding stability to nonspecific
448 epistasis in protein evolution. *Proteins: Structure, Function, and Bioinformatics*, 86(12): 1242–1250.

449 Dasmeh, P., Serohijos, A. W., Kepp, K. P., and Shakhnovich, E. I. 2014. The Influence of Selection for
450 Protein Stability on dN/dS Estimations. *Genome Biology and Evolution*, 6(10): 2956–2967.

451 Dixit, P. D. and Maslov, S. 2013. Evolutionary Capacitance and Control of Protein Stability in Protein-Protein
452 Interaction Networks. *PLoS Computational Biology*, 9(4).

453 Dos Reis, M. 2015. How to calculate the non-synonymous to synonymous rate ratio of protein-coding genes
454 under the fisher-wright mutation-selection framework. *Biology Letters*, 11(4).

455 Drummond, D. A. and Wilke, C. O. 2008. Mistranslation-Induced Protein Misfolding as a Dominant
456 Constraint on Coding-Sequence Evolution. *Cell*, 134(2): 341–352.

457 Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., and Arnold, F. H. 2005. Why highly expressed
458 proteins evolve slowly. *Proceedings of the National Academy of Sciences of the United States of America*,
459 102(40): 14338–14343.

460 Duret, L. and Mouchiroud, D. 2000. Determinants of Substitution Rates in Mammalian Genes: Expression
461 Pattern Affects Selection Intensity but Not Mutation Rate. *Molecular Biology and Evolution*, 17(1): 68–070.

462 Figuet, E., Nabholz, B., Bonneau, M., Mas Carrio, E., Nadachowska-Brzyska, K., Ellegren, H., and Galtier,
463 N. 2016. Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes. *Molecular*
464 *Biology and Evolution*, 33(6): 1517–1527.

465 Figuet, E., Ballenghien, M., Lartillot, N., and Galtier, N. 2017. Reconstruction of body mass evolution in the
466 Cetartiodactyla and mammals using phylogenomic data. *bioRxiv*, pages 139147, ver. 3 peer-reviewed and
467 recommended by PC.

468 Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical reactions. *The Journal of Physical*
469 *Chemistry*, 81(25): 2340–2361.

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

470 Goldstein, R. A. 2011. The evolution and evolutionary consequences of marginal thermostability in proteins.
471 *Proteins: Structure, Function and Bioinformatics*, 79(5): 1396–1407.

472 Goldstein, R. A. 2013. Population Size Dependence of Fitness Effect Distribution and Substitution Rate
473 Probed by Biophysical Model of Protein Thermostability. *Genome Biology and Evolution*, 5(9): 1584–1593.

474 Goldstein, R. A. and Pollock, D. D. 2016. The tangled bank of amino acids. *Protein Science*, 25(7): 1354–1362.

475 Goldstein, R. A. and Pollock, D. D. 2017. Sequence entropy of folding and the absolute rate of amino acid
476 substitutions. *Nature Ecology & Evolution*, 1(12): 1923–1930.

477 Gout, J.-F., Kahn, D., and Duret, L. 2010. The Relationship among Gene Expression, the Evolution of Gene
478 Dosage, and the Rate of Protein Evolution. *PLoS Genetics*, 6(5): e1000944.

479 Grantham, R. 1974. Amino acid difference formula to help explain protein evolution. *Science*, 185(4154):
480 862–864.

481 Halpern, A. L. and Bruno, W. J. 1998. Evolutionary distances for protein-coding sequences: modeling
482 site-specific residue frequencies. *Molecular biology and evolution*, 15(7): 910–917.

483 Janin, J. 1995. Protein-protein recognition.

484 Jiang, Q., Teufel, A. I., Jackson, E. L., and Wilke, C. O. 2018. Beyond thermodynamic constraints:
485 Evolutionary sampling generates realistic protein sequence variation. *Genetics*, 208(4): 1387–1395.

486 Jimenez, M. J., Arenas, M., and Bastolla, U. 2018. Substitution rates predicted by stability-constrained
487 models of protein evolution are not consistent with empirical data. *Molecular Biology and Evolution*, 35(3):
488 743–755.

489 Jones, C. T., Youssef, N., Susko, E., and Bielawski, J. P. 2016. Shifting Balance on a Static Mutation–Selection
490 Landscape: A Novel Scenario of Positive Selection. *Molecular Biology and Evolution*, 34(2): msw237.

491 Kimura, M. 1979. Model of effectively neutral mutations in which selective constraint is incorporated.
492 *Proceedings of the National Academy of Sciences of the United States of America*, 76(7): 3440–3444.

493 Lanfear, R., Ho, S. Y., Love, D., and Bromham, L. 2010. Mutation rate is linked to diversification in birds.
494 *Proceedings of the National Academy of Sciences of the United States of America*, 107(47): 20423–20428.

495 Lanfear, R., Kokko, H., and Eyre-Walker, A. 2014. Population size and the rate of evolution.

496 Lartillot, N. and Delsuc, F. 2012. Joint reconstruction of divergence times and life-history evolution in
497 placental mammals using a phylogenetic covariance model. *Evolution*, 66(6): 1773–1787.

498 Lartillot, N. and Poujol, R. 2011. A Phylogenetic Model for Investigating Correlated Evolution of Substitution
499 Rates and Continuous Phenotypic Characters. *Molecular Biology and Evolution*, 28(1): 729–744.

500 Manhart, M. and Morozov, A. V. 2015. Protein folding and binding can emerge as evolutionary spandrels
501 through structural coupling. *Proceedings of the National Academy of Sciences of the United States of
502 America*, 112(6): 1797–1802.

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

503 McCandlish, D. M. and Stoltzfus, A. 2014. Modeling Evolution Using the Probability of Fixation: History
504 and Implications. *The Quarterly Review of Biology*, 89(3): 225–252.

505 Miyazawa, S. and Jernigan, R. L. 1985. Estimation of effective interresidue contact energies from protein
506 crystal structures: quasi-chemical approximation. *Macromolecules*, 18(3): 534–552.

507 Mustonen, V. and Lässig, M. 2009. From fitness landscapes to seascapes: non-equilibrium dynamics of
508 selection and adaptation. *Trends in genetics*, 25(3): 111–119.

509 Nabholz, B., Uwimana, N., and Lartillot, N. 2013. Reconstructing the Phylogenetic History of Long-
510 Term Effective Population Size and Life-History Traits Using Patterns of Amino Acid Replacement in
511 Mitochondrial Genomes of Mammals and Birds. *Genome Biology and Evolution*, 5(7): 1273–1290.

512 Nikolaev, S. I., Montoya-Burgos, J. I., Popadin, K., Parand, L., Margulies, E. H., Antonarakis, S. E., Bouffard,
513 G. G., Idol, J. R., Maduro, V. V., Blakesley, R. W., Guan, X., Hansen, N. F., Maskeri, B., McDowell,
514 J. C., Park, M., Thomas, P. J., and Young, A. C. 2007. Life-history traits drive the evolutionary rates of
515 mammalian coding and noncoding genomic elements. *Proceedings of the National Academy of Sciences of
516 the United States of America*, 104(51): 20443–20448.

517 Ohta, T. 1972. Population size and rate of evolution. *Journal of Molecular Evolution*, 1(4): 305–314.

518 Ohta, T. 1992. The nearly neutral theory of molecular evolution. *Annual Review of Ecology and Systematics*,
519 23(1992): 263–286.

520 Plata, G. and Vitkup, D. 2017. Protein Stability and Avoidance of Toxic Misfolding Do Not Explain the
521 Sequence Constraints of Highly Expressed Proteins. *Molecular Biology and Evolution*, 35(3): 700–703.

522 Pollock, D. D., Thiltgen, G., and Goldstein, R. A. 2012. Amino acid coevolution induces an evolutionary
523 Stokes shift. *Proceedings of the National Academy of Sciences of the United States of America*, 109(21):
524 E1352–E1359.

525 Popadin, K., Polishchuk, L. V., Mamirova, L., Knorre, D., and Gunbin, K. 2007. Accumulation of slightly
526 deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. *Proceedings of
527 the National Academy of Sciences of the United States of America*, 104(33): 13390–13395.

528 Razban, R. M. 2019. Protein Melting Temperature Cannot Fully Assess Whether Protein Folding Free Energy
529 Underlies the Universal Abundance–Evolutionary Rate Correlation Seen in Proteins. *Molecular Biology
530 and Evolution*, 36(9): 1955–1963.

531 Rocha, E. P. C. and Danchin, A. 2004. An Analysis of Determinants of Amino Acids Substitution Rates in
532 Bacterial Proteins. *Molecular Biology and Evolution*, 21(1): 108–116.

533 Rodrigue, N., Philippe, H., and Lartillot, N. 2010. Mutation-selection models of coding sequence evolution
534 with site-heterogeneous amino acid fitness profiles. *Proceedings of the National Academy of Sciences of the
535 United States of America*, 107(10): 4629–34.

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

536 Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., Chiari, Y., Dernat, R.,
537 Duret, L., Faivre, N., Loire, E., Lourenco, J. M., Nabholz, B., Roux, C., Tsagkogeorga, G., Weber, A.
538 A.-T., Weinert, L. A., Belkhir, K., Bierne, N., Glémin, S., and Galtier, N. 2014. Comparative population
539 genomics in animals uncovers the determinants of genetic diversity. *Nature*, 515(7526): 261–263.

540 Sella, G. and Hirsh, A. E. 2005. The application of statistical physics to evolutionary biology. *Proceedings of
541 the National Academy of Sciences of the United States of America*, 102(27): 9541–9546.

542 Serohijos, A. W., Rimas, Z., and Shakhnovich, E. I. 2012. Protein Biophysics Explains Why Highly Abundant
543 Proteins Evolve Slowly. *Cell Reports*, 2(2): 249–256.

544 Serohijos, A. W., Lee, S. Y., and Shakhnovich, E. I. 2013. Highly abundant proteins favor more stable 3D
545 structures in yeast. *Biophysical Journal*, 104(3): L1–L3.

546 Song, H., Gao, H., Liu, J., Tian, P., and Nan, Z. 2017. Comprehensive analysis of correlations among codon
547 usage bias, gene expression, and substitution rate in *Arachis duranensis* and *Arachis ipaënsis* orthologs.
548 *Scientific Reports*, 7(1): 1–12.

549 Spielman, S. J. and Wilke, C. O. 2015. The relationship between dN/dS and scaled selection coefficients.
550 *Molecular biology and evolution*, 32(4): 1097–1108.

551 Starr, T. N. and Thornton, J. W. 2016. Epistasis in protein evolution.

552 Tamuri, A. U. and Goldstein, R. A. 2012. Estimating the distribution of selection coefficients from phylogenetic
553 data using sitewise mutation-selection models. *Genetics*, 190(March): 1101–1115.

554 Taverna, D. M. and Goldstein, R. A. 2002. Why are proteins marginally stable? *Proteins: Structure,
555 Function, and Bioinformatics*, 46(1): 105–109.

556 Welch, J. J., Eyre-Walker, A., and Waxman, D. 2008. Divergence and polymorphism under the nearly neutral
557 theory of molecular evolution. *Journal of Molecular Evolution*, 67(4): 418–426.

558 Wilke, C. O. and Drummond, D. A. 2006. Population Genetics of Translational Robustness. *Genetics*, 173(1):
559 473 LP – 481.

560 Williams, P. D., Pollock, D. D., Blackburne, B. P., and Goldstein, R. A. 2006. Assessing the accuracy of
561 ancestral protein reconstruction methods. *PLoS Computational Biology*, 2(6): 0598–0605.

562 Yang, J. R., Liao, B. Y., Zhuang, S. M., and Zhang, J. 2012. Protein misinteraction avoidance causes highly
563 expressed proteins to evolve slowly. *Proceedings of the National Academy of Sciences of the United States
564 of America*, 109(14): E831–E840.

565 Yang, Z. and Nielsen, R. 1998. Synonymous and nonsynonymous rate variation in nuclear genes of mammals.
566 *Journal of Molecular Evolution*, 46(4): 409–418.

567 Zeldovich, K. B., Chen, P., and Shakhnovich, E. I. 2007. Protein stability imposes limits on organism
568 complexity and speed of molecular evolution. *Proceedings of the National Academy of Sciences of the
569 United States of America*, 104(41): 16152–16157.

A THEORETICAL APPROACH FOR QUANTIFYING THE IMPACT OF CHANGES IN EFFECTIVE POPULATION SIZE
AND EXPRESSION LEVEL ON THE RATE OF CODING SEQUENCE EVOLUTION.

570 Zhang, J. and Nielsen, R. 2005. Evaluation of an improved branch-site likelihood method for detecting
571 positive selection at the molecular level. *Molecular biology and evolution*, 22(12): 2472–2479.

572 Zhang, J. and Yang, J. R. 2015. Determinants of the rate of protein sequence evolution.

573 Zhang, J., Maslov, S., and Shakhnovich, E. I. 2008. Constraints imposed by non-functional protein–protein
574 interactions on gene expression and proteome size. *Molecular Systems Biology*, 4(1): 210.

575 Zhang, X., Perica, T., and Teichmann, S. A. 2013. Evolution of protein structures and interactions from the
576 perspective of residue contact networks.