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Abstract
1 Molecular sequences are shaped by selection, where the strength of selection relative to drift
2 is determined by effective population size (N,). Populations with high N, are expected to
3 undergo stronger purifying selection, and consequently to show a lower substitution rate
4 for selected mutations relative to the substitution rate for neutral mutations (w). However,
5 computational models based on biophysics of protein stability have suggested that w can also
6 be independent of N, a result proven under general conditions. Together, the response of w
7 to changes in N, depends on the specific mapping from sequence to fitness. Importantly, an
8 increase in protein expression level has been found empirically to result in decrease of w, an
9 observation predicted by theoretical models assuming selection for protein stability. Here, we
10 derive a theoretical approximation for the response of w to changes in N, and expression level,
1 under an explicit genotype-phenotype-fitness map. The method is generally valid for additive
12 traits and log-concave fitness functions. We applied these results to protein undergoing
13 selection for their conformational stability and corroborate out findings with simulations
14 under more complex models. We predict a weak response of w to changes in either N, or
15 expression level, which are interchangeable. Based on empirical data, we propose that fitness
16 based on the conformational stability may not be a sufficient mechanism to explain the
17 empirically observed variation in w across species. Other aspects of protein biophysics might
18 be explored, such as protein-protein interactions, which can lead to a stronger response of w

19 to changes in Ne.
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21 1 Introduction

2 Molecular sequences differ across species due to the particular history of nucleotide substitutions along their
23 respective lineages. These substitutions in turn are the result of the interplay between evolutionary forces such
24 as mutation and selection, whose relative forces are determined by the amount of random genetic drift. These
25 forces have effects at different levels: mutations are carried by molecular sequences, selection is mediated at
26 the level of individuals, while random genetic drift is a population sampling effect. Yet, they jointly contribute
27 to the long-term molecular evolutionary process. Thus, the challenge of the study of molecular evolution is to

28 tease out their respective contributions, based on comparative analyses.

29 One main aspect of this challenge is to correctly evaluate the role of random drift in the long term
30 evolutionary process. Population genetics theory implies that the strength of drift, due to the stochastic
31 sampling of mutations, is less pronounced in lineages with large effective population size (N,), and as a
32 consequence, the purification by selection of weakly deleterious mutations is more effective in large populations.
33 This fundamental idea is at the core of the nearly-neutral theory of evolution. This theory posits that a
34 substantial fraction of mutations are deleterious or weakly deleterious, and as a result, predicts that the
35 substitution rate (relative to the neutral expectation), called w, decreases along lineages with higher N, (Ohta,

6 1972, 1992).

37 This prediction has been more quantitatively examined under the assumption that the selective effects of
33 mutations are drawn from a fixed distribution of fitness effects (DFE) (Kimura, 1979; Welch et al., 2008).
39 Assuming a gamma distribution for the DFE, a key result obtained in this context is an approximate allometric

w0 scaling of w as a function of N, (i.e. w ~ N %), where k is the shape parameter of the DFE. In practice,

e

a1 DFEs are strongly leptokurtic, which thus predicts a weak negative relation between w and N,.

42 The study of protein-coding sequences evolution fostered another modelling approach, based on genotype-
43 fitness maps instead of distribution of fitness effects. In this alternative approach, the selective effect of a
42 mutation depends on the fitness of both the source and the target amino acids involved in the mutation
a5 event (Halpern and Bruno, 1998; Rodrigue et al., 2010; Tamuri and Goldstein, 2012). Even though this
46 modelling approach differs substantially from the one assuming a fixed DFE, it also predicts a negative
a7 correlation between w and N, at least when the process is at equilibrium (Spielman and Wilke, 2015; Dos
a8 Reis, 2015).

49 Conversely, one striking theoretical result was the proof that w is in fact predicted to be independent
50 of N, under relatively general circumstances, namely, whenever (i) the fitness is a log-concave function of
51 a phenotype and (ii) the phenotype itself is equimutable. Equimutability states that the distribution of
52 phenotypic changes due to mutation is independent of the current phenotype of individuals (Cherry, 1998).
53 This general theoretical argument has been invoked in the context of in silico experiments of protein sequence
54 evolution, assuming that proteins are under selection for their thermodynamic stability, with fitness being

55 proportional to the folding probability of the protein (Goldstein, 2013). Thermodynamic stability is itself
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s6 computed using a 3D structural model of the protein. These computational experiments have led to the
57 observation that w is essentially independent of N.. An explanation proposed for this result is that the
58 distribution of changes in free energy of folding (AAG) due to mutations is approximately independent of

50 the current free energy (AG), thus making the free energy of folding essentially equimutable.

60 However, the equimutability assumption is a relatively strong one, which also conflicts with combinatorial
61 counsiderations about the relation between sequence and phenotype (Serohijos et al., 2012). For example, if
62 a protein sequence is already maximally stable, only destabilizing (or neutral) mutations can occur. More
63 generally, assuming that the stability of a protein sequence reflects an underlying fraction of positions having
64 already accepted destabilizing amino acids, then the probability of destabilizing mutational events is in turn

65 expected to directly depend on the current stability of the protein.

66 Altogether, depending on the theoretical model mapping sequence to fitness, w can be either independent
67 or negatively correlated to N,, or even positively if considering adaptive evolution and environmental

6s changes (Lanfear et al., 2014).

69 Empirically, variation in w between lineages has been inferred using phylogenetic codon models applied
70 to empirical sequences (Yang and Nielsen, 1998; Zhang and Nielsen, 2005). Confronting branch-specific w
71 estimates to life-history traits such as body mass or generation time uncovered a positive correlation (Popadin
72 et al., 2007; Nikolaev et al., 2007). Subsequently, integrative inference methods combining molecular sequences
73 and life-history traits have also found that w correlates positively with traits such as longevity and body
74 mass (Lartillot and Poujol, 2011; Figuet et al., 2017). Since lineages with a large body size and extended
75 longevity typically correspond to species with low N, (Romiguier et al., 2014), these empirical correlations
76 suggest a negative correlation between w and N, thus confirming the theoretical prediction of the nearly-
77 neutral theory of evolution. However, the universality and robustness of the correlation between w and
78 life-history traits is still debated. Results have not been entirely consistent across independent studies.
79 The correlation was found to be either not statistically significant (Lartillot and Delsuc, 2012), or even
so in the opposite direction depending on the specific clade under study or the potential biases taken into
g1 account (Lanfear et al., 2010; Nabholz et al., 2013; Lanfear et al., 2014; Figuet et al., 2016).

82 If empirical evidence for a negative correlation of w with N, is still not totally convincing, another empirical
83 correlation is known to be much more robust. Indeed, expression level or protein abundance is one of the
84 best predictors of w, with highly expressed proteins typically having lower w values, a correlation clearly
85 significant although relatively weak (Duret and Mouchiroud, 2000; Rocha and Danchin, 2004; Drummond
g et al., 2005; Zhang and Yang, 2015; Song et al., 2017). Theoretical models, also based on protein stability,
&7 have been invoked to explain this negative correlation between w and expression level (Wilke and Drummond,
88 2006; Drummond and Wilke, 2008). According to this argument, selection against protein misfolding due to
8o toxicity, which is stronger for more abundant proteins, induces abundant proteins to evolve toward greater
90 stability, resulting in a more constrained and more slowly evolving protein coding sequence (Serohijos et al.,

a1 2012).

92 The possibility that expression level and N, might play similar roles in the evolution of proteins has

93 already been noticed. More precisely, under models of selection against protein misfolding, the free energy of
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94 folding AG is predicted to vary similarly along a gradient of either N, or expression level (Serohijos et al.,
o5 2013). As a corollary, under strict equimutability of AG, these computational models imply that w should
96 also be independent of expression level (Serohijos et al., 2012), akin to what is predicted with regards to

97 changes in N,.

98 Altogether, both theoretical results and empirical analyses are not yet conclusive about the question of
99 how w depends on N, and expression level. In particular, the theoretical response of w to changes in both N,
100 and expression level has not been quantified and, most importantly, has not been related to the specific map
101 between genotype, phenotype and fitness. Such an analytical development would be useful to more decisively
102 confront the theoretical predictions relating w to both N, and expression level to empirical data. Ultimately,
103 relating proteins structural parameters to the response of w would help to bridge the gap between protein

104 thermodynamics on one side and comparative genomics on the other side.

105 Lastly, the theoretical results discussed so far are valid only at the mutation-selection-drift balance. In a
106 non-equilibrium regime, however, and at least under a model assuming a site-independent genotype-fitness
107 map, an increase in IV, first leads to an increase in w caused by adaptive substitutions, and subsequently
108 a decrease in w due to stronger purifying selection in the long term (Jones et al., 2016). Studying only
100 equilibrium properties can thus be misleading. For this reason, the dynamic response of w to changes in
110 N, must also be addressed, quantified, and its connection with the underlying selective landscape better
111 characterized. Dynamic properties of w to changes in N, are of theoretical interest but are also empirically
112 relevant, such that, if overlooked they could thwart the relation between theoretical expectations and empirical

113 estimates.

114 In this context, the aim of the present study is to characterize the dynamics and equilibrium response of
15w to changes in N, and expression level, and to relate this response to structural parameters of the model.
116 To this effect, we develop a general mathematical approach to derive a quantitative approximation of the
17 response of w to changes in N, and expression level, in the context of a given genotype-phenotype-fitness map,
118 as depicted in figure 1. In the light of previously published empirical estimates from protein thermodynamics
119 and comparative genomics, we discuss the articulation between empirical data and our mechanistic model.
120 We also discuss some of the alternative biophysical mechanisms that could determine the selective landscape
121 on protein-coding sequences, and how they would modulate the response of w to changes in N, and expression

122 level.

123 2 Results

124 2.1 Models of evolution

125 The results that are presented below are valid for a general category of models of sequence evolution, based on
126 an additive trait x, such that the coding positions of the sequence contribute additively to the trait. The trait
127 is under directional selection specified by a decreasing and log-concave fitness function W(x). As a specific
128 example, we more specifically consider a model of protein evolution under the constraint of thermodynamic

120 stability, as depicted in the left panel of figure 1. This model is inspired from previous work (Williams et al.,
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130 2006; Goldstein, 2011; Pollock et al., 2012), except that we make several simplifying assumptions, allowing us

131 to derive analytical equations.
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Figure 1: Outline of the theoretical results. The genotype to fitness relationship is depicted in the left
panel. The phenotype (x) is a real-valued function of the genotype (i.e. the amino-acid sequence), and is
defined in our model as the fraction of destabilizing amino acids in the sequence. Fitness is a decreasing
log-concave function of the phenotype, depending on structural parameters of the model. Once the relation
from genotype to fitness is defined, the substitution process proceeds as presented in the middle panel. For
a given effective population size N,, the evolutionary process results in an average value of the phenotype
2* and an average substitution rate (relative to the neutral rate) w. Averaging over time is equivalent to
determining the statistical equilibrium, by ergodicity of the stochastic process. The slope of the scaling of
the equilibrium w as a function of log-N, defines the susceptibility y, which is a function of the structural

parameters defined by the phenotype-fitness map.

132 In the original biophysical model, protein stability is determined by the difference in free energy between
133 the folded and unfolded conformations, called AG and measured in kcal/mol. Technically, free energy is
132 computed based on the 3D conformation of the protein and using statistical potentials. As a result, the
135 stabilizing or destabilizing effect of an amino acid at a particular site depends on amino acids present in the
136 vicinity in 3D conformation, thus implementing what has been called specific epistasis (Starr and Thornton,
137 2016).

Here, we approximate this model such that the (de-)stabilizing effect at a particular site, such as measured
by the AAG of the mutation, does not depend on other neighbouring residues, thus disregarding specific
epistasis (Dasmeh et al., 2014). Instead, each site contributes independently and additively to AG. In
addition, we assume that, for each site of the sequence, only one amino acid is stabilizing the protein. All
19 other amino acids are equally destabilizing. Each site bearing a destabilizing amino acid contributes an
excess of AAG > 0 (in keal/mol) to the total AG. The smallest achievable value of AG, obtained when all
amino acids of the sequence are stabilizing, is noted AGi, < 0. In this model, the most succinct phenotype

of a given genotype (i.e. sequence) is just the proportion of destabilizing amino acids in the sequence, defined
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as 0 < x < 1. Thus AG is a linear function of z:
AG(z) = AGpin + nAAGz, (1)
where n is the number of sites in the sequence.

For a given AG, thermodynamic equations allows one to derive the proportion of protein molecules that
are in the native (folded) conformation in the cytoplasm. This fraction is assumed to be a proxy for fitness,
motivated in part by the fact that a protein must be folded to perform its function. A slightly different model

will be considered below, in order to take into account protein expression level (see section 2.3).

Analytically, the fitness function is given by the Fermi Dirac distribution and is typically close to 1,
leading to a first-order approximation (Goldstein, 2011):

1
Wiz) = 1 + eB(AGmin+nAAGz)’ (2)
= W(x)~1- eB(AGmin-‘rnAAGx)? 3)
= f(z) = In(W(z)) = P (AGmn+nAlGa) )

where W is the Wrightian fitness for a given phenotype and f is the Malthusian fitness (or log-fitness). Here,
AGnin and AAG are defined as above, and the parameter § is 1.686 mol/kcal at 25°C' (or 298.2K).

Of note, even though the phenotypic effect of a mutation at a given site does not depend on the amino-acids
that are present at other sites (i.e. the trait is additive), the fitness effect of a mutation still depends on other
sites (i.e. the log-fitness is not additive). As a result, the molecular evolutionary process is site-interdependent,

a property referred to as non-specific epistasis (Starr and Thornton, 2016; Dasmeh and Serohijos, 2018).

2.2 Response of w to changes in N,. Analytical approximation

For a given effective population size N,, the evolutionary process reaches an equilibrium (figure 1, middle
panel). This substitution rate at this equilibrium, normalized by the substitution rate of neutral of mutations
to discard the influence of the underlying mutation rate, is denoted w. This relative rate can also be interpreted
as the mean fixation probability of mutations scaled by the fixation probability of neutral alleles p = 1/2N,,
the mean being weighted by the probability of occurrence of mutations in the population. As a result, an
w < 1 indicates that mutations are negatively selected on average, and w decreases with increasing strength

of purifying selection.

In this section we present an analytical approximate solution for the response of w after a change in N, (in
log space), as depicted in the right panel of figure 1. We call this response the susceptibility of w to changes
in N, and denote it as x:

dw
X = m (5)
Deriving x is done in two steps. First, we determine the mean phenotype at equilibrium, when evolutionary
forces of mutation, selection and genetic drift compensate each other. Subsequently, differential calculus is
used to compute the response of the equilibrium phenotype to a change in N,, which allows us to ultimately

derive an equation for y. The main results of our derivation are given both in the general case of any
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161 (log-concave) phenotype-fitness map, and in the specific case of the biophysical model introduced above. A

162 more detailed derivation is available in the supplementary materials.

For a given genotype, mutations can have various effects: they can increase or decrease the proportion
of destabilizing amino acids, or do nothing if the mutation is between two destabilizing amino acids. To
derive the probabilities of such events to occur, we also make the simplifying assumption that all transitions
between amino acids are equiprobable. Altogether, any mutation in the sequence can then have a phenotypic

effect of 0 or dz = 1/n, with probabilities of transitions equal to:

oz with probability 1 — x,

0 with probability 11%, (6)

—d0x  with probability 5.

163 In the extreme case of an optimal phenotype (z = 0), only destabilizing mutations are proposed. Moreover,
164 the probability to propose a stabilizing mutation (effect —dx), or a neutral mutation (effect 0), is proportional
165 to z. Conversely, the probability to propose a destabilizing mutation is equal to (1 — x). As a result, the
166 mutation bias is proportional to (1 — z)/x. This mutation bias fundamentally reflects a combinatorial effect,

167 due to the number of mutational opportunities available in either direction.

Second, we need to determine the strength of selection acting on mutations. Destabilizing mutations are

selected against with a negative selection coefficient which can be approximated by:

10f(x
s 6; ) .
= s~ _ﬂAAGeﬂ(AGmin+TLAAGw)7 (8)

168 where f = In(W) is the log-fitness (or Malthusian fitness). Conversely, stabilizing mutations will be under
160 Ppositive selection with opposite sign but same absolute value. It is important to realize that the selective
1o effect is dependent on x. Furthermore, because the fitness function is log-concave, the absolute value of s

171 increases with x.

Based on these expressions for the mutational and selective pressures, one can then study the trajectory
followed by the evolutionary process. Starting from an optimal sequence, mostly destabilizing mutations will
occur, some of which may reach fixation and accumulate until selection coefficients against new deleterious
mutations is too strong, at which point the protein will reach a point of equilibrium called marginal
stability (Taverna and Goldstein, 2002; Bloom et al., 2007). Most importantly, the probability of fixation of
mutations is affected by genetic drift, and thus depends on the effective population size (V). At the equilibrium
between mutation, selection and drift, the process fluctuates through the occurrence of advantageous and
deleterious substitutions compensating each other. This equilibrium can be determined by expressing the
constraint that the selection coefficient of substitutions is expected to be null on average (Goldstein, 2013).

Formally, and after simplification, the equilibrium phenotype denoted x* is given in the general case by:

1—2a* 4N, Of (x*)
1 In(19) o~ ——=
n< — >+ n(19) - 9)
1—a* -
= In ( xf ) +1n(19) =~ 4N, BAAGeP (ACmintnAAGaT) (10)
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172 in the more specific case of the biophysical model. This equation essentially expresses the mutation-selection
173 equilibrium: the left-hand side of the equation is the log of the mutation bias at x, while the right-hand side

174 is simply 4N.s, the scaled selection coefficient.

175 This equation cannot be solved explicitly for z*, but a qualitative intuition on the consequences of change
176 in N, to the equilibrium phenotype x* is given in figure 2. Intuitively, an increase in N, results in a more
177 optimal phenotype, closer to 0. The mutation bias (left-hand side of equation 10) decreases with = while
178 the strength of selection (right-hand side of equation 10) increases with x, and the equilibrium phenotype is
179 obtained at their intersection. An increase in N, leads to shifting the selective response upward, which then
180 results in a leftward shift of the equilibrium phenotype (i.e. closer to 0). The leftward shift is smaller for

181 selective strengths characterized by a steeper curve, resulting in qualitatively weaker susceptibility of the

182 equilibrium phenotype to changes in N,

A _ 5 _ 4
1 Mutational pressure Ne =10 ‘\‘,' // Ne =10
41 | (1 - x) +1In(19) ['
"
Low number of sites (n) X T
Low AAG " !
2 || Lowp " : High number of sites (n)
] ’ ! High AAG
Selective pressure (-4N s) ’1’ i High B
L d " !
0 d——————e Y X : : : : >
0.2 0.25 0.3 0.4 0.45

|
ANEEEEEEEEEEEE «— T=g T > EEEEEEEEEEEEEE

Stable protein Unstable protein

Figure 2: Response of the equilibrium phenotype after a change in N,. The equilibrium phenotype z* is
obtained when the selective pressure equals to the mutational pressure (equation 10). The selective pressure
(right-hand side of eq. 10) increases exponentially with x where SnAAG is the exponential growth rate
( and green curves). When SnAAG is large, increasing N, by an order of magnitude ( dotted
curves) very moderately impacts the equilibrium phenotype (small ). In contrast, for small SnAAG
(green curves), the equilibrium phenotype is more strongly impacted by a change in N, (large Az™). Finally,

response of z* to changes in N, reflects the response of w since both are approximately equal (equation 11).

The results obtained thus far only relate the equilibrium phenotype (z*) to Ne. To capture how w varies
with N, we also need to obtain an expression for w as a function of z*. At equilibrium we can derive

(supplementary materials) the expected substitution rate of mutations, and thus w, which simply approximates

to:

wo~zt (11)
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This simple approximation is due to the fact that the substitutions between two destabilizing amino acids
(which are neutral) compose the largest proportion of proposed mutations having a substantial probability of
fixation (equation 6). In contrast, stabilizing mutations are rare, while destabilizing mutations have a low
probability of fixation. Since there is a fraction x* of sites already occupied by a destabilizing amino-acid,

these neutral substitutions occur at rate z*.

Combined together, these analytical approximations yield the susceptibility (equation 5) of w to a change
in Ng:

0/(@")
d :
X= dln:;\f) T (B G I I Ca (12)
© N, Ox* + Ox*2

The two terms of the denominator correspond to the derivative of the mutational bias and the scaled selection
coefficient, respectively. However, the mutational bias decreases weakly with x (blue curve on figure 2) while
the strength of selection increases sharply with z (red and green curves). As a consequence, the derivative of
the mutational bias is much lower than the derivative of the selection coefficient around the equilibrium point
(i.e. the phenotype is nearly equimutable). The second term can therefore be ignored, which leads to a very

compact equation for susceptibility x in the general case:
8)(; (z")
~ x*
P (13)
az*2

The susceptibility is thus equal to the inverse of the relative curvature, i.e. the ratio of the second to the first

derivatives, of the log-fitness function, taken at the equilibrium phenotype. Of note, this susceptibility is
strictly negative for decreasing log-concave fitness functions, asserting that w is a decreasing function of N.
In addition, the susceptibility itself is low in absolute value (i.e. w responds more weakly) for strongly concave
log-fitness functions. This equation quantitatively captures the intuition developed in figure 2, namely that
the response of w is very weak if the selection curve is very steep around the equilibrium set point (red curve

compared to green curve).

In the specific case of the biophysical model, the susceptibility () further simplifies to:
1
BnAAG’

meaning that w is linearly decreasing with N, (in log scale) since x is independent of z*, or, in other words,

X (14)

that the exact value of the equilibrium phenotype has no impact on the slope. Moreover, only the compound
parameter SAAGn has an impact on the slope of the linear relationship. Thus, in particular, the slope of
the linear relationship between w and N, is affected by AAG but not by AGpi,. Of note, empirically, only

relative values of N, (up to a multiplicative constant) are required to obtain an estimate of x.

2.3 Response of w to changes in protein expression level

Effective population size is not the sole predictor of w, and expression level (or protein abundance) is also
negatively correlated to w. However, our previous model, which assumes that fitness is proportional to the
folded fraction, and is thus independent of protein abundance, does not express the fact that selection is
typically stronger for proteins characterized by higher levels of expression. An alternative biophysical model

is to assume that each misfolded protein molecule has the same relative effect on fitness, caused by its toxicity
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for the cell (Drummond et al., 2005; Wilke and Drummond, 2006; Drummond and Wilke, 2008; Serohijos
et al., 2012).

Our general derivation can be directly applied to this case. For a given protein with expression level y and
a cost A representing the selective cost per misfolded molecule (positive constant), the fitness and selection

coefficient can be defined as follows:

f(I) ~ _Ayeﬁ(AGmin+nAAGz) (15)
= 5 ~ —BAAG Ayel(ACmntAAGNT), (16)
Under this model, the total selective cost of a destabilizing mutation is now directly proportional to the

total amount of misfolded proteins. This fitness function leads to the following expression for the mutation-

selection-drift equilibrium:

In (1 ;*x*) +1n(19) = 4Ny ABAAGne  (ACmnTAAGZT) (17)
Importantly, in this equation, N, and y are confounded factors appearing only as a product. This means that
increasing either N, or y leads to same change in equilibrium phenotype, and hence the same change in w. In
other words, the susceptibility of the response to changes in either N, or expression level is the same:
o dwr dwt B 1

dln(Ne) dln(y) —  BnAAGT

X (18)

A similar result can be obtained under other models relating phenotype to fitness, for example if the
selective cost is due to translational errors (supplementary materials). Alternatively if the protein is assumed
to be regulated such as to reach a specific level of functional protein abundance under a general cost-benefit
argument (Cherry, 2010; Gout et al., 2010), a multiplicative factor depending solely on the expression level
is prefixed (supplementary materials). Altogether, we theoretically obtain the same linear decrease of w
with regards to either effective population size or expression level (in log space) under a broad variety of

hypotheses.

2.4 Simulation experiments

Our theoretical derivation of the susceptibility of w to changes in N, (and expression level) is based on
several simplifying assumptions about the evolutionary model and makes multiple approximations. In order
to test the robustness of our main result, we therefore conducted systematic simulation experiments, relaxing
several of these assumptions. In each case, simulations were conducted under a broad range of values of N,
monitoring the average w observed at equilibrium and plotting the scaling of these measured equilibrium w

as a function of N,.

Specifically, with respect to mutations, our derivation assumes that all amino-acid transitions are equiprob-
able, or in other words, the complexity of the genetic code is not taken into account. Simulating evolution of
DNA sequence and invoking a matrix of mutation rates between nucleotide allows us to test the robustness of
our results to this assumption. Furthermore, with regard to the phenotypic effects of amino-acid changes, in
our derivation, we assumed that all destabilizing amino acids have an identical impact on protein stability. In

reality, one would expect conservative amino-acid replacements to be less destabilizing than radical changes.

10
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Figure 3: Scaling of equilibrium w as a function of log-Ne, under the additive phenotype model using
Grantham distances (A,B,D) or the explicit biophysical model using a statistical potential (C), with n = 300
and 8 = 1.686. 200 replicates per N, value are shown (dots). Solid lines are average over replicates, and
shaded areas are 90% confidence interval. The slope (or susceptibility (¥), is estimated by linear regression
(dashed lines). (A): AGmin are given in the legend, and AAG = 1. Decreasing AGpi, (to more negative
values) increases w but does not impact the slope. (B): AAG is increased and AG,;y is changed accordingly
such that the equilibrium value xz* is kept constant, by solving numerically equation 10. The estimated
susceptibility (%) decreases proportionally to the inverse of AAG, as predicted by our theoretical model.
(C): Stability of the folded native state is computed using 3D structural conformations and pairwise contact
potentials. (D): Additive model with AG i, = —118 keal/mol and AAG = 1 kcal/mol matches structural

model shown in C (although with less variance).

This assumption is relaxed in our simulation, such that destabilizing mutations in each position are now
proportional to the Grantham distance (Grantham, 1974) between the optimal amino acid in this position
and the amino acid proposed by the non-synonymous mutation. Finally, our derivation assumes that the
number of sites in the sequence (n) is large, such that the selection coefficient is well approximated by the
fitness derivative (equation 7). The robustness of this approximation was tested by conducting simulations

with finite sequences of realistic length (n = 300 coding positions).

These simulation experiments demonstrate, first, that the relation between w and log-N, is indeed linear,
at least in the range explored here, and that the slope of the linear regression matches the expected theoretical
value (figure 3A). Secondly, we observe that the parameter AGp;, has virtually no effect on the slope of the

linear regression, as also expected theoretically (figure 3B). Instead, decreasing AGp,i, (to more negative
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241 values) merely results in an overall increase in w over the whole range of N, (i.e. has an impact on the intercept,
242 not on the slope of the relation). This is due to the fact that decreasing AGp, shifts the equilibrium to

243 higher z*, since more destabilizing sites can then reach fixation before reaching the point of marginal stability.

244 Finally, we relaxed our assumption that each site of the sequence contributes independently to AG, by
245 taking into account the 3D structure of protein and using a statistical potential to estimate AG (supplementary
246 materials). We implemented the original model considered in Williams et al. (2006), Goldstein (2011) and
247 Pollock et al. (2012), in which the free energy is computed based on the 3D conformation using pairwise
23 contact potential energies between neighbouring amino-acid residues (Miyazawa and Jernigan, 1985). The
249 original works showed that under this model, w is approximately independent of N, (Goldstein, 2013). Using
250 extensive simulations in order to obtain sufficient resolution, we observe that w is in fact weakly dependent on
251 N,, being again approximately linear with log-N, (figure 3C). Moreover, the observed slope (X = —0.00117)
252 matches the slope obtained under the model of additive AG (X = —0.00125, figure 3D), considering an
253 empirical AAG = 1.0 kcal/mol for destabilizing mutations and n = 300. In this experiment (figure 3D),
254 AGnmin was set to —118 kecal/mol, which is the AG of the optimal (maximally stable) sequence of 300
255 sites (Goldstein, 2011).

%6 2.5 Time to relaxation

257 Although the equilibrium value of w after changes in N, is an important feature of the w-N, relationship,
258 another characteristic that is scarcely studied is the dynamic aspect (Jones et al., 2016), particularly the
250 relaxation time to reach the new equilibrium w. We observed in our simulations that the determining factor
260 of the relaxation time is the number of sites n (figure 4A), such that the return to equilibrium is faster for
261 longer sequences. This observation matches the theoretical prediction that more mutational opportunities are

22 available for longer sequences, driving the trait close to equilibrium at a faster rate.

263 It may be useful to compare the relaxation pattern observed here with the predictions under two alternative
264 models of sequence evolution, representing two extreme scenarios. On one hand, having fitness modelled at
265 the level of sites, such as contemplated by many phylogenetic mutation-selection models (Halpern and Bruno,
266 1998; Rodrigue et al., 2010; Tamuri and Goldstein, 2012), leads to a situation where every site has to adapt
267 on its own to the new change in N,. The relaxation time is then very long, on the order of the inverse of
268 the per-site substitution rate. On the other hand, assuming a fixed distribution of fitness effect (DFE) as in
260 Welch et al. (2008), the response of w is instantaneous (figure 4B). Our model is effectively in between these

270 two extreme scenarios.

271 Another characteristic observed in these non-equilibrium experiments is the discontinuity of w after a
22 change in N,. Most importantly, both an increase and decrease in N, lead to a discontinuity (figure 4A & 4B).
273 These non-equilibrium behaviors can both be explained mechanistically. Under low N,, the phenotype is far
274 away from the optimal phenotype because the efficacy of selection is weaker. A sudden increase in N, results
275 first in a short traction toward a more optimal phenotype, which results in a suddenly higher w, caused by a
276 transient adaptation of the protein toward a higher stability. Conversely, under high N, the phenotype is

277 closer to optimal and the purification of deleterious mutations is stronger. The reaction to a decrease in N, is
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Figure 4: Relaxation of w after a change in N, Solid line corresponds to the average over 1000 replicates
and the shaded area corresponds to the 90% interval among replicates. The mutation rate (u) is le—8 per
year per site, and the total evolutionary period is 700 million years. (A): § = 1.686 for all simulations. The
DNA sequence of 500 sites is divided into exons of equal size. However the number of sites per exon changes
between simulations from n = 5 to n = 500. Moreover, AAG is changed according to the exon size such
that nAAG (and as a result, the susceptibility) are kept constant, and AGy is changed accordingly such
that the equilibrium value x* is kept constant, by solving numerically equation 10. Thus, regardless of exon
size, * and x are kept constant and thus the observed effect is due to the number of sites in the exon. We
observe that increasing the number of sites leads to a reduced time to reach the new equilibrium. (B): In the
context of a time-independent fitness landscape (yellow curve), where each amino acid has different fitness
(site-specific profiles), the time taken to reach the new equilibrium value of w after a change in N, is long. In
the context of a fixed distribution of fitness effects (blue curve), the relaxation time is non-existent and the

new equilibrium value of w is reached instantaneously.

a relaxation of the purification and thus an w closer to the neutral case, which results into higher w until
reaching the point of marginal stability. To note, an increase in N, can theoretically and possibly lead to an
w that is temporarily greater than 1 due to adaptive evolution (Jones et al., 2016), while a decrease in N,

always imply an w < 1, as it gives at most a neutral regime of relaxed selection.

3 Discussion

We provide a compact analytical result for the equilibrium response (which, by analogy with thermodynamics,
we call the susceptibility) of w to changes in N,, and we relate this response to the parameterization of the
genotype-phenotype-fitness map. An application to a model of selection against protein misfolding shows
that the response of w to variation in N, (in log space) is linear, with a negative slope. Furthermore, this
application demonstrates that effective population size and protein expression level are interchangeable with
respect to their impact on the response of w. Our compact theoretical results, which were obtained by making

several simplifying assumptions, are supported by more complex simulations of protein evolution relaxing
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200 these assumptions. In particular, our theoretical predictions are verified under a numerical model of protein

201 evolution in which the free energy is computed based on the 3D structure.

202 Overall, the susceptibility (x) is a function of the structural parameters of the protein and takes a very
203 simple analytical form, being inversely proportional to the product of three terms: the sequence size, the
204 inverse temperature (3), and the average change in conformational energy of destabilizing mutations (AAG).
205 Quantitatively, this product can be several orders of magnitude greater than 1 in practice, such that the
206 susceptibility of w, which is its inverse, is typically small. Previous studies using this model presented an
207 apparent lack of response of w to changes in N, (Goldstein, 2013). We refine this result, by observing
208 that there is in fact a very subtle and weak relation, which requires extensive computation to be detected,
200 but which is well predicted by our theoretical derivation. Based on empirical estimates of the structural
300 parameters 8 = 1.686, n = 300 sites and AAG = 1.0 kcal/mol for destabilizing mutations (Zeldovich et al.,
300 2007), the estimated susceptibility is X ~ —0.002. In other words, for a relative increase in N, or expression
302 level of 6 orders of magnitude, a factor approximately equal to 0.01 is subtracted from w, a subtle relationship

303 that requires laborious effort to be detected in simulated data.

304 3.1 Adequacy to empirical data

305 Empirically, variation in w along the branches of phylogenetic trees has been inferred and correlated to
306 proxies of N, such as body size or other life-history traits. These analyses showed mitigated support for a
307 negative relation between w and N, (Lanfear et al., 2014). More recently, phylogenetic integrative methods
308 refined the estimate of covariation between w and N, along lineages by leveraging polymorphism data (Brevet
s00 and Lartillot, 2019). This approach gives an estimate of ¥ ~ 0.02 in primates (supplementary materials) at
s10 least one order of magnitude greater than the quantitative estimate obtained above from the biophysical
si1 model. More empirical data across different clades would be required to robustly consolidate such empirical

312 estimates, but as of yet, these results are challenging the idea of a very weak response.

313 The relation between w and expression level provides an independent, and potentially more robust, source
si+  of empirical observation. Our theoretical results suggest that, under relatively general conditions, the response
315 of w to expression level should be of the same magnitude than the response to N,. Empirically, the protein
316 expression level is one of the best predictors of w and the empirical estimation of y in fungi, archaea and
317 bacteria varies in the range [—0.046; —0.021] (supplementary materials) extracted from Zhang and Yang
a5 (2015). Estimation in animals and plants gives somewhat lower estimates, in the range of [—0.026; —0.004],

s19  although still higher (in absolute value) than —0.002.

320 Additionally, another empirical observation is the negative relation between the mean destabilizing effect
321 of mutations (mean AAG) and the AG of the protein. Such a relation is empirically observed in Serohijos
s22 et al. (2012), where the slope of the linear regression is —0.13 (r? = 0.04). The slope of the linear correlation
323 observed in our simulations is weaker, with an observed slope of —0.01 (r? = 0.29) under the 3D biophysical
324 model, and —0.003 (r? = 0.33) under the model of additive phenotype parameterized by AAG = 1 and
35 n = 300 (supplementary materials). This observation also sheds light on the correlation between w and N,

326 in empirical data and in our model. Indeed, equimutability, or namely that the distribution of AAG of
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327 mutations is independent of AG is a necessary condition to observe independence between w and N, (Cherry,
38 1998). In our model, the average AAG of mutations at equilibrium depends on AG due to combinatorial
329 considerations, but this dependence is weaker than empirically observed, which also translates into a weaker

330 susceptibility of w to changes in N, or expression level than empirically observed.

331 Thus, overall, the response of w to either N, or expression level predicted by the biophysical model
332 considered above seems lower than what is empirically observed. There are several possible explanations
333 for this discrepancy. First, the biophysical model might be valid, but the numerical estimates used for n
s34 or AAG could be inadequate. A AAG of 1.0 keal/mol for destabilizing mutations seems to correspond to
335 empirical estimates (Zeldovich et al., 2007). On the other hand, the effective number of positions implicated
336 in the trait might be smaller than the total number of residues in the protein. In our model, all positions in
337 the protein can in principle compensate for the destabilizing effect of a mutation at a particular position. In
338 practice, the number of sites susceptible to compensate each other is probably smaller, resulting in a stronger

330 departure from equimutability.

340 Alternatively, the biophysical model considered here might be too restrictive. Recent empirical studies
3s1 have provided evidence against the hypothesis that the rate of sequence evolution is driven solely by
342 the toxicity effect of unfolded proteins (Plata and Vitkup, 2017; Razban, 2019; Biesiadecka et al., 2020).
343 Notably, the response of w to changes in expression level has also been found theoretically to arise as a
344 consequence of protein-protein interactions, where protein may either be in free form or engaged in non-
a5 specific interactions (Yang et al., 2012; Zhang et al., 2013). In non-specific interactions at the protein surface,
346 stabilizing amino acids are hydrophilic and destabilizing amino acids are hydrophobic, sticking to hydrophobic

s47  residues at the surface of other proteins (Dixit and Maslov, 2013; Manhart and Morozov, 2015).

348 Our theoretical results can be applied more broadly to protein-protein interactions using a mean-field
349 argument (supplementary materials). Fitting this model with empirical structural estimates (Janin, 1995;
350 Zhang et al., 2008), we obtain a susceptibility of y ~ —0.2 thus a much stronger response than under the
351 model based on conformational stability. This much stronger response is due to fewer sites in the protein
352 being involved in protein-protein interaction than for conformational stability, in addition to a lower free

353 energy engaged in contact between residues.

354 Altogether, fitness based on protein stability is a compelling model of molecular evolution, but may not
35 be a sufficiently comprehensive model to explain the amplitude of variation of w empirically observed along a
356 gradient of either effective population size or protein expression level. The net response of w to changes in
357 N, or expression level could have several biophysical causes, which in the end would imply a weak but still

358 empirically measurable response.

30 3.2 The statistical mechanics of molecular evolution

30 This study describes the signature imprinted on DNA sequences by an evolutionary process by merging
361 equations from population genetics and from structural physicochemical first principles. More generally, it
362 outlines a general approach for deriving quantitative predictions about the observable macroscopic properties

363 of the molecular evolutionary process based on an underlying microscopic model of the detailed relation
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364 between sequence, phenotype and fitness. In this respect, it borrows from statistical mechanics, attempting
365 approximations to derive analytically tractable results (Sella and Hirsh, 2005; Mustonen and Léssig, 2009;
366 Bastolla et al., 2012, 2017) The robustness of results can be assessed by computational implementations and
367 simulations. Computational models offer a means to test the validity and robustness, while mathematical

368 models offer an intuitive mechanistic mental analogy.

369 Ultimately, the approach could be generalized to other aspects of the evolutionary process. Beyond w,
370 other macroscopic observables could be of interest, for example site entropy, i.e. the effective number of
a1 observed amino acids per site at equilibrium (Goldstein and Pollock, 2016; Jimenez et al., 2018; Jiang et al.,
a2z 2018), or the nucleotide or amino-acid composition. In addition to N,, other evolutionary forces could also
373 be considered, for instance the mutational bias or GC-biased gene conversion. The susceptibility of the
374 macroscopic observables to changes in the strength of these underlying forces could then more generally be
375 investigated. As such, the framework outlined here could foster a better understanding of observable signatures
376 of the long-term evolutionary process emerging from ecological parameters and molecular physico-chemical

377 first principles, by carefully teasing out the combined effects of mutation, selection and drift.

sz 4 Materials & Methods

Protein sequence evolution is simulated under an origin-fixation model (McCandlish and Stoltzfus, 2014), i.e.
the whole population is considered monomorphic and only the succession of fixation events is modeled. Given
the currently fixed sequence S, we define M (S) as the set of all possible mutant that are one nucleotide away
from S. Non-sense mutants are not considered. For a protein of n amino-acid sites, | M (S)| < 9n, since each
codon has a maximum of 9 possible nearest neighbors that are not stop codons. For each mutant sequence

S’ € M (S), we compute its fitness and subsequently the selection coefficient of the mutant:

W(S)-W(S)
5,8 )= —°~ft—— 19
=s(S,8) = f(S) - f(S), (20)
a9 where W is the Wrightian fitness for a given phenotype and f is the Malthusian fitness (or log-fitness).
380 The waiting time before the next mutant invading the population, and the specific mutation involved

381 in this event, are chosen using Gillespie’s algorithm (Gillespie, 1977), according to the rates of substitution
32 between S and each S’ € M (S), which are given by:

4N,s(S,S")
Qss = MS,SW» (21)

383 where pug ¢ is the mutation rate between S and S', determined by the underlying 424 nucleotide mutation rate
38« matrix, and Qs s = ps,s in the case of synonymous substitutions. Various optimizations are implemented
35 to reduce the computation time of mutant fitness. The simulation starts with a burn-in period to reach

386 mutation-selection-drift equilibrium.
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337 4.1 Models of the fitness function

Under the additive model for the free energy, the difference in free energy between folded and unfolded state

is assumed to be given by:

AG (S) = AGmin + nAAG x x (S),

sss where 0 < z(S) < 1 is the distance of S to the optimal sequence (i.e. the fraction of sites occupied by a
a0  destabilizing amino-acid). For each site of the sequence, the optimal amino acids are chosen randomly at
300 initialization, and the distance between the current amino acid and the optimal is scaled by the Grantham
301 amino-acid distance (Grantham, 1974). The Wrightian fitness is defined as the probability of our protein to
302 be in the folded state, given by the Fermi-Dirac distribution:

e—BAG(S) 1
W) = 1786 ~ T4 56O (22)
303 where 3 is the inverse of the temperature (8 = 1/kT).
304 For simulations under a 3D model of protein conformations, we adapted the model developed in Goldstein
395 and Pollock (2017) to our C++ simulator (see supplementary materials).
306 For simulations under a site-independent fitness landscape, with site-specific fitness profiles, the protein

307 log-fitness is computed as the sum of amino-acid log-fitness coefficients along the sequence. In this model,
38 each codon site 7 has its own fitness profile, denoted ¢ = {gbé(f), 1 < a < 20}, a vector of 20 amino-acid
a9 scaled (Wrightian) fitness coefficients. Since S[i] is the codon at site ¢, the encoded amino acid is A (S[i]),

400 hence the fitness at site 7 is gbfi)(s[i]). Altogether, the selection coefficient of the mutant S’ is:

n (i)
D A(sii

5(5,8)=>"In ﬁ : (23)
i=1 A(Sli])

w1 The fitness vectors ¢(?) used in this study are extracted from Bloom (2017). They were experimentally

402 determined by deep mutational scanning.

403 For simulations assuming a fixed distribution of fitness effects (DFE), the selection coefficient of the

a4 mutant S’ is gamma distributed (shape k > 0):

~5(S,8') ~ Gamma (\gm) (24)

205 4.2 Computing w along the simulation

a6 From the set of mutants M (S) that are one nucleotide away from S, we define the subsets N (S) of non-
207 synonymous and synonymous mutants (N (S) C M (S)). The ratio of non-synonymous over synonymous
a8 substitution rates, given the sequence S at time ¢ is defined as (Spielman and Wilke, 2015; Dos Reis, 2015;

a0 Jones et al., 2016):
4N,s(S,9)
Z Hs,s 1_ e*4Ne(S,S/)

_ S/EN(S)
>, Hss
S’eN(S)

w(t)
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Averaged over all branches of the tree, the average w is:

w = (w(t)), (26)
- / w(t)dt, (27)

where the integral is taken over all branches of the tree, while the integrand w(t) is a piece-wise function

changing after every point substitution event.

5 Reproducibility - Supplementary Materials

The simulators written in C++ are publicly available under MIT license at https://github.com/
ThibaultLatrille/SimuEvol. The mathematical developments under the general case of an arbitrary
additive trait and an arbitrary log-concave fitness function, and the derived susceptibility under various
fitness functions, as well as supplementary figures, are available in supplementary materials. The scripts and
instructions necessary to reproduce this study are available at https://github.com/ThibaultLatrille/

GenotypePhenotypeFitness.
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