
INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

T. Latrille^{1,2}, V. Lanore¹, N. Lartillot¹

¹Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.

²École Normale Supérieure de Lyon, Université de Lyon, Université Lyon 1, Lyon, France

thibault.latrille@ens-lyon.org

January 13, 2021

Abstract

1 Mutation-selection phylogenetic codon models are grounded on population genetics first
2 principles and represent a principled approach for investigating the intricate interplay
3 between mutation, selection and drift. In their current form, mutation-selection codon
4 models are entirely characterized by the collection of site-specific amino-acid fitness profiles.
5 However, thus far, they have relied on the assumption of a constant genetic drift, translating
6 into a unique effective population size (N_e) across the phylogeny, clearly an unreasonable
7 hypothesis. This assumption can be alleviated by introducing variation in N_e between
8 lineages. In addition to N_e , the mutation rate (μ) is susceptible to vary between lineages, and
9 both should co-vary with life-history traits (LHTs). This suggests that the model should more
10 globally account for the joint evolutionary process followed by all of these lineage-specific
11 variables (N_e , μ , and LHTs). In this direction, we introduce an extended mutation-selection
12 model jointly reconstructing in a Bayesian Monte Carlo framework the fitness landscape
13 across sites and long-term trends in N_e , μ and LHTs along the phylogeny, from an alignment
14 of DNA coding sequences and a matrix of observed LHTs in extant species. The model
15 was tested against simulated data and applied to empirical data in mammals, isopods and
16 primates. The reconstructed history of N_e in these groups appears to correlate with LHTs
17 or ecological variables in a way that suggests that the reconstruction is reasonable, at least
18 in its global trends. On the other hand, the range of variation in N_e inferred across species
19 is surprisingly narrow. This last point suggests that some of the assumptions of the model,
20 in particular concerning the assumed absence of epistatic interactions between sites, are
21 potentially problematic.

22 **Keywords** Phylogenetic · codon models · mutation-selection models · population genetic · population size ·
23 mutation rate · life history traits.

24 1 Introduction

25 Since the realization, by Zuckerkandl and Pauling (1965) that genetic sequences are informative about the
26 evolutionary history of the species, molecular phylogenetics has developed into a mature and very active field.
27 A broad array of models and inference methods have been developed, using DNA sequences for reconstructing
28 the phylogenetic relationships among species (Felsenstein, 1981), for estimating divergence times (Thorne
29 and Kishino, 2002), or for reconstructing the genetic sequences of remote ancestors (Liberles, 2007). However,
30 genetic sequences might contain information about other aspects of the evolutionary history and, in particular,
31 about past population-genetic regimes.

32 Interspecific divergence is the long-term outcome of population-genetic processes, in which point mutations
33 at the level of individuals are then subjected to selection and genetic drift, leading to substitutions at the
34 level of the population. As a result, the substitution patterns that can be reconstructed along phylogenies are
35 modulated by the underlying population-genetic parameters (mutation biases, selective landscapes, effective
36 population size), suggesting the possibility to infer the past variation of these parameters over the phylogeny.
37 Independently, ecological properties such as phenotypic characters or life-history traits can be observed in
38 extinct or in present-day species. Using the comparative method (Felsenstein, 1985), these traits can be
39 reconstructed for the unobserved ancestral species. Combined together, genetic and phenotypic ancestral
40 reconstructions can then be used to unravel the interplay between evolutionary and ecological mechanisms.

41 Practically, in order to disentangle mutation, selection and genetic drift, we need to classify individual
42 substitutions into different categories, differing in the strength of mutation, selection or genetic drift. In
43 protein-coding DNA sequences, the mutational process occurs at the nucleotide level. Assuming that
44 synonymous mutations are selectively neutral and that selection mostly acts at the protein level, synonymous
45 substitutions can be used to infer the patterns of mutation, without any interference contributed by selection.
46 Then, by comparing the non-synonymous substitution rate relative to the synonymous substitution rate (the
47 ratio d_N/d_S), one can estimate the global strength of selection acting on proteins. This idea was formalized
48 using phylogenetic codon models (Muse and Gaut, 1994; Goldman and Yang, 1994). This led to a broad
49 range of applications, either to detect proteins under adaptive selection (Kosiol *et al.*, 2008), or to measure
50 the modulations of the strength of purifying selection between sites (Echave *et al.*, 2016), genes (Zhang and
51 Yang, 2015), or lineages (Lartillot and Poujol, 2011).

52 Concerning variation in d_N/d_S between lineages, and in a context mostly characterized by purifying
53 selection, the nearly-neutral theory predicts that changes in the global strength of selection (measured as
54 d_N/d_S) is related to changes in the relative strength of genetic drift, which is in turn mediated by changes in
55 effective population size (N_e) (Ohta, 1992). Mechanistically, populations with high N_e are characterized by
56 more efficient purifying selection against mildly deleterious mutations, resulting in lower d_N/d_S (Kimura,
57 1979; Welch *et al.*, 2008).

58 Codon models have been used to empirically measure such changes in the efficacy of purifying selection
59 along phylogenies, either by allowing for different d_N/d_S values in different parts of the tree (Dutheil *et al.*,
60 2012), or by estimating d_N/d_S independently for every branch of the tree (Popadin *et al.*, 2007). Alternatively,

61 d_N/d_S can be modelled as a continuous trait, varying along the phylogeny as a stochastic process, splitting at
62 each node of the tree into independent processes (Seo *et al.*, 2004). Once empirical estimates of the variation
63 in d_N/d_S between lineages or groups has been obtained, these can be compared to changes in N_e across
64 lineages, so as to test the validity of the predictions of the nearly-neutral theory. Independent empirical
65 estimation of N_e is usually done via proxies, such as the neutral diversity within species (Galtier, 2016), or
66 life-history traits. For instance, animal species characterized by a large body size or an extended longevity
67 are typically expected to also have a low N_e (Romiguier *et al.*, 2014). Alternatively, a Bayesian integrative
68 framework has been proposed (Lartillot and Poujol, 2011), extending the approach of Seo *et al.* (2004),
69 in which the joint variation in d_S , d_N/d_S and in life-history traits or other proxies of N_e is modelled as a
70 multivariate Brownian process, with a variance-covariance matrix capturing the signal of their correlated
71 evolution.

72 Analyses using these approaches and these proxies of N_e have suggested a negative correlation between
73 d_N/d_S and N_e (Popadin *et al.*, 2007; Lanfear *et al.*, 2010; Lartillot and Poujol, 2011; Lartillot and Delsuc,
74 2012; Romiguier *et al.*, 2014; Figuet *et al.*, 2017), thus confirming the theoretical prediction of the nearly-
75 neutral theory. However, the universality and robustness of the correlation between d_N/d_S and N_e is still
76 debated (Nabholz *et al.*, 2013; Lanfear *et al.*, 2014; Figuet *et al.*, 2016; Bolívar *et al.*, 2019), and further
77 investigation might be required. Moreover, these analyses do not explicitly formalize the quantitative
78 relationship between N_e and d_N/d_S . This relation is in principle dependent on the underlying fitness
79 landscape (Welch *et al.*, 2008; Cherry, 1998; Goldstein, 2011), and can show complicated behavior due to
80 non-equilibrium properties (Jones *et al.*, 2016). These questions could be addressed in the context of a
81 mechanistic modelling approach.

82 As an alternative to classical d_N/d_S -based codon models, mechanistic codon models explicitly introduce
83 population genetic equations into the codon substitution process (Halpern and Bruno, 1998). Specifically,
84 these so-called mutation-selection codon models explicitly assign a fitness parameter to each amino acid. As
85 a result, the substitution rate between each pair of codons can be predicted, as the product of the mutation
86 rate and the fixation probability of the new codon, which is in turn dependent on the fitness of the initial and
87 the final codons. Since the strength of selection is typically not homogeneous along the protein sequence, and
88 depends on the local physicochemical requirements (Echave *et al.*, 2016; Goldstein and Pollock, 2016, 2017),
89 local changes in selective strength are usually taken into account by allowing for site-specific amino-acid
90 fitness profiles. Site-specific amino-acid preferences are typically estimated either by penalized maximum
91 likelihood (Tamuri and Goldstein, 2012; Tamuri *et al.*, 2014), or in a Bayesian context, using an infinite
92 mixture based on a Dirichlet process prior (Rodrigue *et al.*, 2010; Rodrigue and Lartillot, 2014). This second
93 approach is further considered below.

94 Although not directly expressed in terms of this variable, the mutation-selection formalism induces an
95 equilibrium d_N/d_S , which is theoretically lower than 1, thus explicitly modelling purifying selection (Spielman
96 and Wilke, 2015; Dos Reis, 2015). As a result, the mutation-selection codon framework proved to be a
97 valuable null (nearly-neutral) model, against which to compare the observed d_N/d_S by classical codon models,
98 so as to test for the presence of adaptation (Rodrigue and Lartillot, 2016; Bloom, 2017).

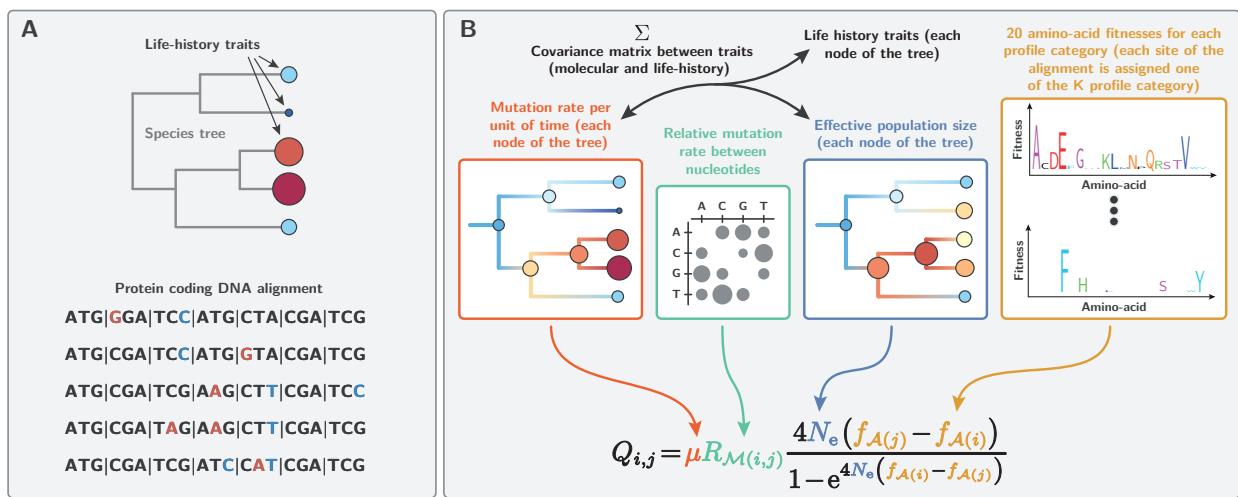


Figure 1: Model summary. Panel A. Our method requires a (given) rooted tree topology, an alignment of protein-coding DNA and (optionally) quantitative life-history trait for the extant species. Panel B. Relying on a codon model based on the mutation-selection formalism, assuming an auto-correlated log-Brownian process for the variation through time in effective population size (N_e), mutation rate (μ) and life-history traits, our Bayesian inference method estimates amino-acid fitness profiles across sites, variation in mutation rate and effective population size along the tree, as well as the node ages and the nucleotide mutation rates.

99 However, these mutation-selection methods have so far assumed the strength of genetic drift, or equivalently
 100 N_e , to be constant across the phylogeny. This assumption is clearly not realistic, as attested by the empirically
 101 measured variation in d_N/d_S between lineages using classical codon models or, more directly, by the broad
 102 range of synonymous neutral diversity observed across species (Galtier, 2016). The impact of this assumption
 103 on the estimation of the fitness landscape across sites (Tamuri *et al.*, 2014; Rodrigue and Lartillot, 2014), or
 104 on the tests for the presence of adaptation (Rodrigue and Lartillot, 2016; Bloom, 2017) is totally unknown.
 105 Relaxing this assumption of a constant N_e is thus necessary.

106 Conversely, since the mutation-selection formalism explicitly incorporates N_e as a parameter of the model,
 107 extending the model so as to let N_e vary across lineages is relatively straightforward, at least conceptually.
 108 Doing this would then provide an occasion to address several important questions: do we have enough signal
 109 in empirical sequence alignments, to estimate the evolutionary history of N_e along a phylogeny? Can we
 110 more generally revisit the question of the empirical correlations between N_e and ecological life-history traits
 111 (longevity, maturity, weight, size, ...), previously explored using classical d_N/d_S based models, but now in
 112 the context of this mechanistic framework?

113 2 New approaches

114 To address these questions, here we introduce a variant of the mutation-selection codon model, in which
 115 selection is modulated along the sequence (using site-specific amino-acid profiles), while the mutation rate

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

116 (μ) , the effective population size (N_e) and life-history traits are allowed to vary along the phylogeny (figure 1).
117 Methodologically, our model is fundamentally an integration between the Bayesian non-parametric version of
118 the Halpern and Bruno (1998) mutation-selection model (Rodrigue and Lartillot, 2014), and the molecular
119 comparative framework modelling the joint evolution of life-history and molecular traits (Lartillot and Poujol,
120 2011).

121 Formally, the substitution rate (per unit of time) from codon i to j , denoted $Q_{i,j}$, is equal to the total
122 rate of mutation (per unit of time) at the level of the population ($2N_e\mu_{i,j}$) multiplied by the probability of
123 fixation of the mutation $\mathbb{P}_{\text{fix}}(i, j)$:

$$Q_{i,j} = 2N_e\mu_{i,j}\mathbb{P}_{\text{fix}}(i, j) \quad (1)$$

124 In the case of synonymous mutations, which we assumed are neutral, the probability of fixation is independent
125 of the original and target codon, and equals $1/2N_e$, such that $Q_{i,j}$ simplifies to:

$$Q_{i,j} = \mu_{i,j} \quad (2)$$

126 In the case of non-synonymous mutations, the probability of fixation depends on the difference in fitness
127 between the amino acid encoded by the initial and final codons:

$$Q_{i,j} = \mu_{i,j} \frac{4N_e (f_{\mathcal{A}(j)} - f_{\mathcal{A}(i)})}{1 - e^{4N_e (f_{\mathcal{A}(i)} - f_{\mathcal{A}(j)})}} \quad (3)$$

128 where \mathbf{f} is a 20-dimensional vector specifying the log-fitness for each amino acid, and $\mathcal{A}(i)$ is the amino acid
129 encoded by codon i .

130 In the model introduced here, N_e and μ are allowed to vary between species (across branches) as a
131 multivariate log-Brownian process, but are assumed constant along the DNA sequence. Conversely, amino-
132 acid fitness profiles \mathbf{f} are considered constant along the tree but are assumed to vary across sites, being
133 modelled as independent and identically distributed random-effects from an unknown distribution estimated
134 using a Dirichlet process prior.

135 This model was implemented in a Markov chain Monte Carlo framework, allowing for joint inference of
136 site-specific selection profiles and reconstruction of life-history traits and population-genetic regimes along
137 the phylogeny. After validating our model and our inference framework against simulated data, we apply it
138 to several cases of interest across metazoans (placental mammals, primates and isopods), for which some
139 proxies of N_e are available.

140 3 Results

141 3.1 Validation using simulations

142 The inference framework was first tested on independently simulated multiple sequence alignments (see
143 methods). With the aim of applying the inference method to empirical datasets, the simulation parameters
144 were chosen so as to match an empirically relevant empirical regime. Thus, the tree topology and the branch
145 lengths were chosen based on a tree estimated on the mammalian dataset further considered below. The
146 other aspects of the simulation model (fitness landscape, variation in N_e) were then varied along a gradient
147 of increasing complexity, so as to test the inference framework under increasingly challenging conditions.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

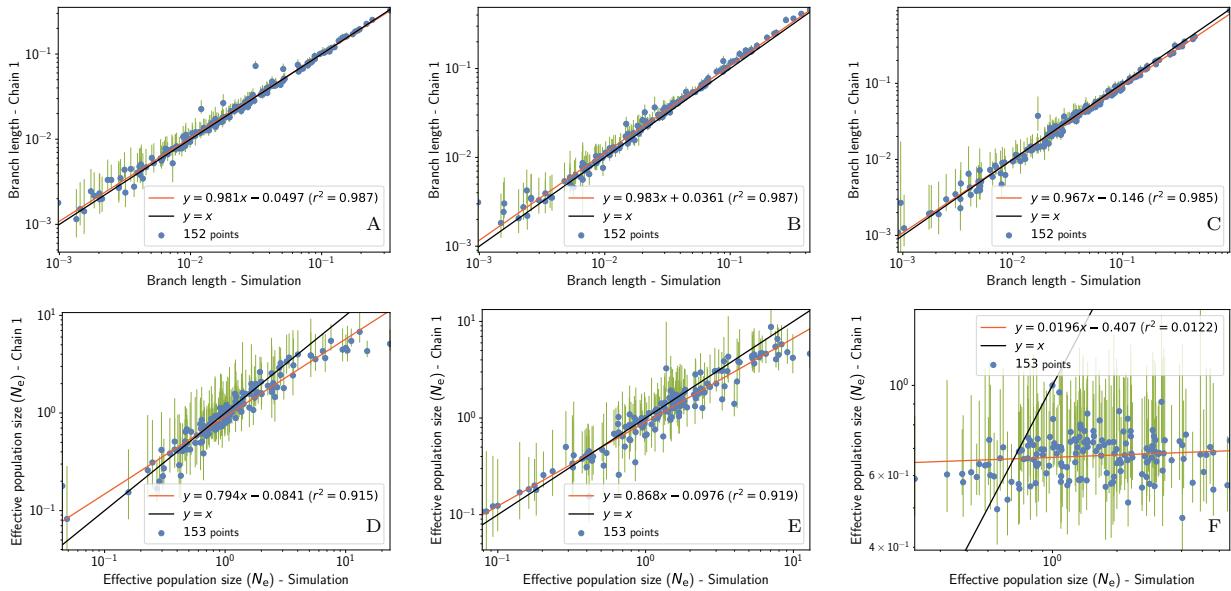


Figure 2: A-C: branch lengths in expected number of substitutions per site. D-F: N_e values across nodes (including the leaves) relative to N_e at the root. From left to right: simulation under the mutation-selection approximation (A,D), under a Wright-Fisher model accounting for small population size effects (5000 individuals at the root), site linkage and short term fluctuation of N_e (B,E) and accounting for site epistasis in the context of selection for protein stability. The tree root is 150 million years old, where the initial population start with a mutation rate of $1e^{-8}$ per site per generation, and generation time of 10 years. These experiments confirm that signal in the placental mammalian tree can allow to reliably infer the direction of change in N_e , even if linkage disequilibrium, short term fluctuation of N_e and finite population size effects are not accounted for in the inference framework. However, the presence of epistasis between sites is a serious threat to the inference of N_e .

148 A first series of simulations was meant to test the soundness of our inference framework, by simulating
 149 essentially under the model used for inference, although with an independently developed software. Thus, the
 150 mutation-selection approximation was assumed to be valid, and sites were simulated under different fitness
 151 profiles empirically determined (Bloom, 2017), and finally, N_e was assumed to undergo discrete shifts at
 152 the tree nodes but otherwise to remain constant along each branch. In this context, branch lengths and
 153 branch-specific values of N_e were accurately estimated by our inference method (figure 2, panel A & D).
 154 Concerning N_e , the slope of the linear regression between true and estimated branch-specific N_e is 0.794
 155 ($r^2 = 0.915$)

156 However, the assumptions made for this first round of simulations are almost certainly violated in practice.
 157 First, N_e is expected to undergo continuous changes along the lineages of the phylogeny. Second, the diffusion
 158 approximation for the probability of fixation (equation 3) may not hold in small finite populations. Third,
 159 assuming a separate substitution process for each site is equivalent to assuming no linkage between sites (free
 160 recombination). In practice, however, there is limited recombination, at least within exons, and this could
 161 induce deviations from the mutation-selection approximation, due to Hill-Robertson effects.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

162 The finite population was now modelled explicitly, using a Wright-Fisher simulator, tracking the fre-
163 quency of each allele at the gene level and at each generation along the phylogeny. No recombination was
164 implemented within genes. These more complex simulation settings account for small population size effects,
165 for hitchhiking of weakly deleterious mutations during selective sweep and for background selection due to
166 linkage disequilibrium. In addition, the effective population size N_e and the mutation rate were allowed to
167 fluctuate continuously along the branches of the tree (changing by a small amount after each generation
168 of the underlying Wright-Fisher process). Finally, short-term fluctuations of N_e , of the order of 20% per
169 generation, were accounted for by adding a random noise to the Brownian process describing the long-term
170 evolution of N_e . In spite of these deviations between the simulation and the inference models, branch lengths
171 and branch-specific effective population sizes could again be robustly recovered by the inference framework
172 (slope of 0.868, $r^2 = 0.919$, figure 2, panel B & E).

173 These results are encouraging. However, they still rely on the assumption of a site-independent fitness
174 landscape, which is equivalent to assuming no epistasis. Yet this assumption is almost certainly violated
175 in practice (Pollock and Goldstein, 2014; Shah *et al.*, 2015). Accordingly, we implemented a more complex,
176 site-dependent fitness landscape accounting for the selective interactions between sites induced by the 3-
177 dimensional structure of protein. In this model, the conformational stability of the protein determines its
178 probability of being in the folded state, which is in turn taken as a proxy for fitness (Williams *et al.*, 2006;
179 Goldstein, 2011; Pollock *et al.*, 2012). Under this evolutionary model, and at any given time, the fitness
180 landscape at a particular codon site is dependent on the amino acids that are currently present at those sites
181 that are in the vicinity of the focal site in 3D space (see supplementary). When applied to data simulated
182 using this model, our inference framework could accurately recover the simulated branch lengths (figure 2,
183 panel D). On the other hand, the distribution of N_e across the tree could not be accurately recovered (slope
184 of 0.0196, $r^2 = 0.0122$, figure 2, panel F). In fact, no meaningful variation in N_e is detected, and the little
185 variation in N_e that is inferred shows no correlation with the true branch-specific mean N_e values. This
186 effect can be explained by the predicted independence of d_N/d_S , and more generally of the scaled selection
187 coefficients associated with non-synonymous mutations, to changes in N_e in this specific model of protein
188 stability, as shown theoretically by Goldstein (2013).

189 As an alternative model of epistasis between sites, a Fisher geometric model was also considered for
190 the simulations (see supplementary). The results under this model are intermediate between simulations
191 without epistasis and simulations under the biophysically-inspired model considered above. More specifically,
192 under data simulated using Fisher's geometric model, the true and estimated branch-specific N_e are strongly
193 correlated with each other ($r^2 = 0.73$). On the other hand, the slope of the correlation is substantially
194 less than 1 (0.571). In other words, the trends in N_e across the tree are correctly recovered, but the
195 range of the variation in effective population size over the tree is substantially under-estimated. As for the
196 branch lengths, they are again correctly estimated. In summary, our simulation experiments show that our
197 inference framework is reliable in the absence of model mis-specification and is robust to violations concerning
198 short-versus long-term variation in N_e or to the presence of empirically reasonable levels of Hill-Robertson
199 interference. On the other hand, and very importantly, epistasis, which is ignored by the inference model,
200 appears to lead to a general underestimation of the true variation in N_e , to an extent that depends on the

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

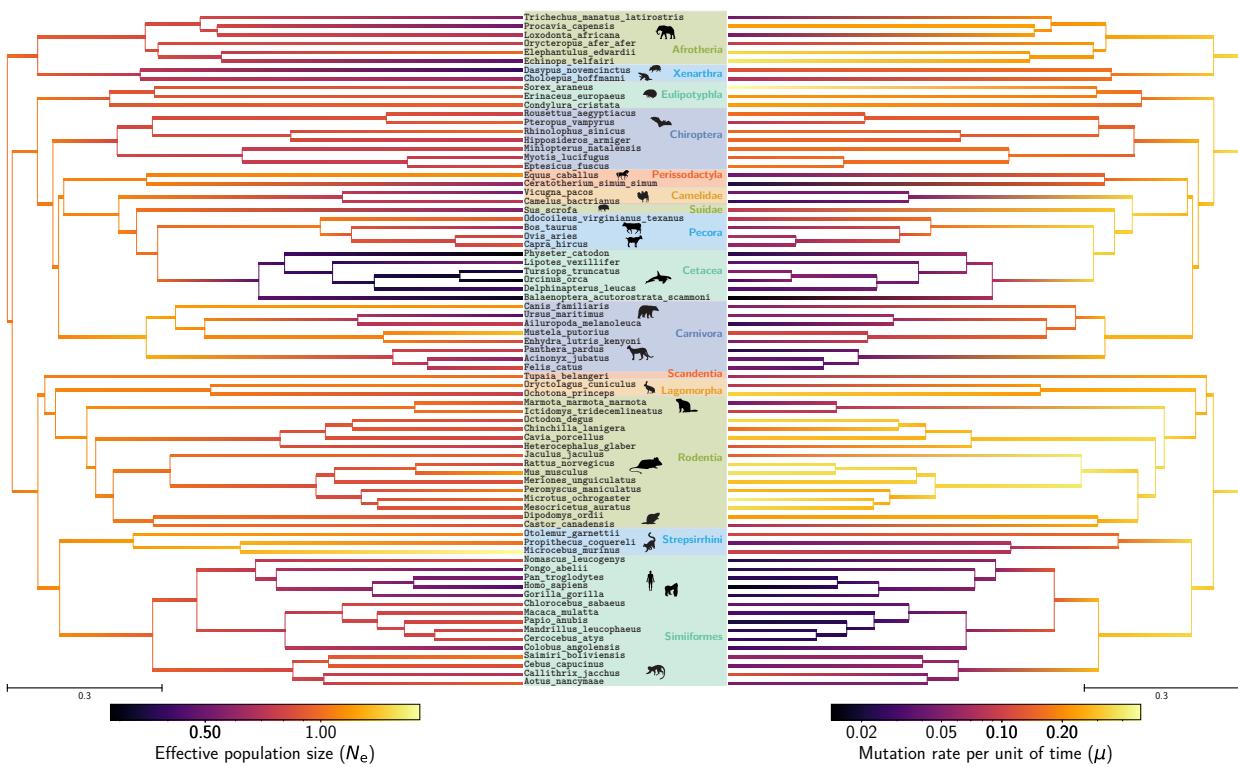


Figure 3: Inferred phylogenetic history of N_e (left) and μ (right) across placental mammals. Inference was conducted on a randomly chosen set of 18 out of 226 highly conserved CDS ($\pm 1\%$ of gaps). Only highly conserved CDS were retained such that the assumption of constant fitness landscape is not incautiously broken by protein with changing function and/or adaptive selection. N_e values are relative to the root, which is arbitrarily set to one. Mean values of MCMC (after burn-in) are obtained at each node of the tree, hence a gradient can be extrapolated along each branch. μ spanned almost 2 order of magnitude, and if we assume the root to be 105My old (Kumar *et al.*, 2017), the rescaled mutation rate per site per year in extant species is between $1.1e^{-10}$ and $7.8e^{-9}$. N_e at the root of the tree is arbitrarily set to 1, and all values are relative to the root, which spans at most an order of magnitude.

exact epistatic model but can go as far as completely obliterating any signal about the true variation in N_e across the tree in the most extreme situations.

203 3.2 Empirical experiments

204 We next applied our inference framework to a series of 4 empirical datasets spanning different taxonomic
205 groups within metazoans. As a first empirical case, we considered a dataset of 77 placental mammals, for
206 which complete genome sequences and information about life-history traits is available. Placental mammals
207 offer an interesting example, for which effective population size is likely to show substantial variation across
208 lineages. This variation in N_e is expected to covary with life-history traits (LHTs), such that large-bodied
209 species are expected to have smaller effective population sizes, compared to small-bodied species.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

210 For computational reasons, we restricted our analyses to small concatenates made of 18 randomly sampled
211 alignments of orthologous genes. Since the mutation-selection model considered here assumes a mostly
212 nearly-neutral regime, genes for which positive selection was detected using a site codon model were excluded.
213 To assess the reproducibility of our inference and check that the signal about variation in N_e is not driven by
214 particular genes, we analysed 4 concatenated random samples of 18 genes. The different concatenate showed
215 similar trends in the change of μ ($r^2 = [0.92, 0.95]$) and N_e ($r^2 = [0.51, 0.68]$) between pairs of experiments
216 (see supplementary).

217 The reconstructed long-term changes in effective population size (N_e) is displayed in figure 3. We visually
218 observe a global trend of increasing N_e throughout the tree around 90 and 60 My. We also observe N_e to be
219 lower in some clades, such as Cetacea and Camelidae, while being higher in other clades, such as Rodentia
220 and Pecora. In some cases, a decrease in N_e can be observed along an isolated branch of the tree, for example
221 on the branches leading to the Alpaca (*Vicugna pacos*) or the cheetah (*Acinonyx jubatus*).

222 The estimated covariance matrix (table 1) gives a global synthetic picture about the patterns of covariation
223 between the mutation rate per unit of time μ , the effective population size N_e and the three LHTs. First, the
224 variation in μ across species is negatively correlated with variation in body mass, age at sexual maturity and
225 longevity ($\rho = [-0.84, -0.83]$, table 1). These correlations, which were previously reported (Lartillot and
226 Delsuc, 2012; Nabholz *et al.*, 2013) probably reflect generation time effects (Lanfear *et al.*, 2010; Gao *et al.*,
227 2016). Similarly, and more interestingly in the present context, the variation in N_e between species is also
228 negatively correlated with LHTs ($\rho = [-0.54, -0.47]$, table 1). This is consistent with the expectation that
229 small-sized and short-lived species tend to be characterized by larger effective population sizes (Romiguier
230 *et al.*, 2014). Of note, these results mirror previous findings, based on classical codon models, showing that
231 d_N/d_S tends to be positively correlated with LHTs (Lartillot and Delsuc, 2012; Nabholz *et al.*, 2013; Figuet
232 *et al.*, 2017). Result which was also recovered on the present dataset, using a classical d_N/d_S based codon
233 model (supplementary materials). Interestingly, the correlation of d_N/d_S with LHTs is weaker than that of
234 our inferred N_e with LHTs, as expected if the variation in d_N/d_S indirectly (and imperfectly) reflects the
235 underlying variation in N_e . Finally, N_e and μ are positively correlated in their variation ($\rho = 0.44$), which
236 might simply reflect the fact that both negatively correlate with LHTs. The partial-correlation coefficients
237 (see supplementary) between N_e and LHTs are not significantly different from 0. However, this might simply
238 be due to the very strong correlation between the three LHTs considered here ($\rho = [0.81, 0.85]$), such that
239 controlling for any one of them removes most of the signal contributed by the available empirical variation
240 between species.

241 Thus, altogether, the inferred trends in N_e across species appear to be as expected, based on considerations
242 about life-history evolution. On the other hand, the total range of the inferred variation in N_e across the
243 entire extant taxa is surprisingly narrow, with one order of magnitude (9.2) at most between high and low
244 N_e (see supplementary). This almost certainly represents an underestimate of the true range of variation
245 across placental mammals.

246 As another case study, we analysed a group of isopod species that have made multiple independent
247 transitions to subterranean environments. The transition from a terrestrial to a subterranean lifestyle is

Correlation (ρ)	N_e	μ	Maximum longevity	Adult weight	Female maturity
N_e	-	0.439**	-0.523**	-0.544**	-0.47**
μ	-	-	-0.832**	-0.835**	-0.833**
Maximum longevity	-	-	-	0.827**	0.845**
Adult weight	-	-	-	-	0.809**
Female maturity	-	-	-	-	-

Table 1: Correlation coefficient between effective population size (N_e), mutation rate per site per unit of time (μ), and life-history traits (Maximum longevity, adult weight and female maturity). Asterisks indicate strength of support of the posterior probability to be different than 0 (pp) as * $pp > 0.95$ and ** $pp > 0.975$. Observed correlations are compatible with the interpretation that large populations are composed of small, short-lived individuals. Moreover if the mutation rate per generation is considered constant in first approximation, the mutation rate per unit of time is positively correlated to generation rate, hence to population size.

248 typically associated with a global life-history and ecological syndrome characterized by a loss of vision,
 249 longer generation times and, most interestingly, smaller population sizes, due to a lower carrying capacity
 250 of the subterranean environment (Capderrey *et al.*, 2013). Protein coding DNA sequence alignments and
 251 qualitative life-history traits such as habitat (surface or underground), pigmentation (depigmented, partially
 252 depigmented or pigmented) and ocular structure (anophthalmia, microphthalmia, or ocular) are available
 253 for these species (Eme *et al.*, 2013; Saclier *et al.*, 2018). The assumption of a Brownian auto-correlated
 254 process for describing the changes in N_e along the tree may not be so well adapted to the present case, since
 255 the changes in N_e associated with the transition to a subterranean environment are likely to correspond to
 256 relatively sudden shifts, rather than continuous variation, and the ecological correlate (subterranean versus
 257 terrestrial) is not a quantitative trait. However, the dataset considered here contains independent transitions
 258 to a subterranean lifestyle, thus offering an opportunity to test for a potential correlation between inferred
 259 N_e variation and terrestrial versus subterranean lifestyles over the terminal branches. In our analysis across 4
 260 concatenated random samples of 12 genes, we observe a reproducible (see supplementary) and statistically
 261 significant reduction in N_e for underground or depigmented species, or for species with visual impairment
 262 (see figure 4). Of note, the species that did not undergo a transition to subterranean environments feature a
 263 relative N_e close to 1, meaning that N_e has not changed much along the lineages (since the root of the tree).
 264 Again, the total range of the inferred variation in N_e across the entire extant taxa is surprisingly narrow,
 265 with ratio of 3.3 at most between high and low N_e (see supplementary).

266 Next, our empirical framework was also applied on a set of genes sampled across primates, taken from
 267 Perelman *et al.* (2011) and reanalysed in Brevet and Lartillot (2019). In addition to LHTs (mass, female
 268 maturity, generation time and longevity), information about nuclear synonymous diversity (π_S) and non-
 269 synonymous over synonymous diversity (π_N/π_S), are available for 10 species across the dataset and are
 270 expected to correlate with N_e according to population genetics (Eyre-walker and Keightley, 2007; Galtier,
 271 2016). However, the correlation coefficient between our inferred N_e and π_S or π_N/π_S and LHTs are not
 272 statistically significant, nor with LHTs (see supplementary). Again, the total range of the inferred variation in

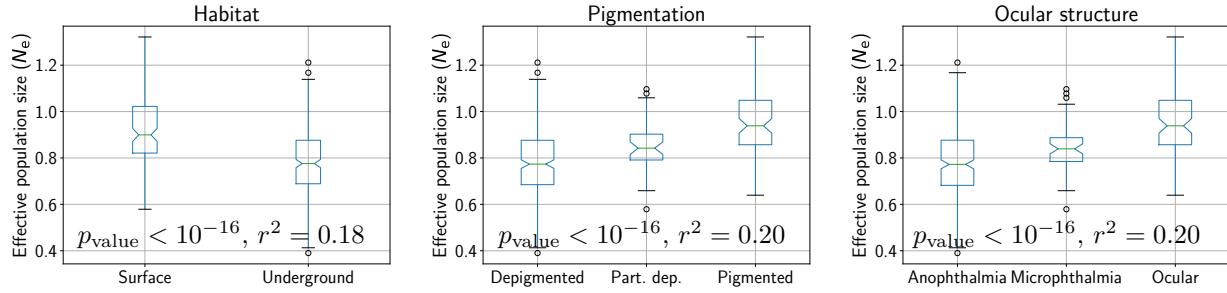


Figure 4: N_e estimation for extant isopod species, sorted according to their habitat (left), pigmentation (middle), and ocular structure (right). All three qualitative trait statistically correlates with changes in N_e . Underground, or depigmented species, or species with visual impairment are characteristic of low N_e species.

273 N_e across the entire tree is narrow, with ratio of 6.4 at most between high and low N_e . This results contrasts
 274 with the finding of [Brevet and Lartillot \(2019\)](#) on the same dataset based on d_N/d_S -based codon models,
 275 where the estimated N_e was found to span several orders of magnitude, and correlated positively with π_S .

276 4 Discussion

277 Mechanistic phylogenetic codon models express the substitution rates between codons as a function of the
 278 mutation rates at the nucleotide level, selection over amino-acid sequences and effective population size.
 279 Thus far, the development of mutation-selection models of the HB family ([Rodrigue et al., 2010](#); [Tamuri](#)
 280 [and Goldstein, 2012](#)) has mostly focused on the question of fully accounting for the fine-scale modulations of
 281 selection between amino-acids and across sites ([Rodrigue et al., 2010](#); [Tamuri and Goldstein, 2012](#)). However,
 282 the issue of the variation in the global population-genetic regime between species has received much less
 283 attention. In particular, effective population size (N_e) is expected to vary substantially over the species
 284 of a given clade, yet current mutation-selection models all invariably assume N_e to be constant across the
 285 phylogeny.

286 Here, we have introduced an extension of the mutation-selection model that accounts for this variation.
 287 When applied to an alignment of protein coding sequences, this mechanistic model returns an estimate of
 288 the modulations of amino-acid preferences across sites. Simultaneously, it reconstructs the joint evolution of
 289 life-history traits and molecular and population-genetic parameters (mutation rate μ and effective population
 290 size N_e) along the phylogeny, while estimating the correlation matrix between these variables, intrinsically
 291 accounting for phylogenetic inertia.

292 4.1 Reliability of the inference of the phylogenetic history of N_e

293 The reconstructions obtained on several empirical datasets, in particular in mammals and in isopods, suggest
 294 that the method is able to correctly infer the directional trends of the changes in N_e across species. In
 295 particular, in mammals, the inferred variation in N_e correlates negatively with body size and, more generally,
 296 with life-history traits, as expected under the reasonable assumption that large-bodied mammals would
 297 tend to have smaller effective population sizes [Popadin et al. \(2007\)](#); [Lartillot and Delsuc \(2012\)](#); [Nabholz](#)

298 *et al.* (2013); Figuet *et al.* (2017). Similarly, in isopods, smaller effective population sizes are inferred in
299 subterranean species, again, as expected (Capderrey *et al.*, 2013).

300 However, if the trends are in right direction, the magnitude of the changes inferred across the phylogeny is
301 surprisingly narrow and does not match independent empirical estimates of the variation in those clades. In
302 particular, in mammals, synonymous diversity varies by a factor at least 10 between species (Galtier, 2016).
303 In animals, the synonymous diversity roughly spans two orders of magnitude, whereas N_e varies considerably
304 more across species, by a factor of 10^3 (Galtier and Rousselle, 2020). For instance, effective population sizes
305 estimated based on population genomic data are of the order of 10 000 in humans (Li and Durbin, 2011),
306 and 100 000 in mice (Geraldes *et al.*, 2008). Thus, clearly, our approach underestimates the true variation.
307 Different mechanisms not accounted for by the model could explain this result.

308 First, genetic hitchhiking, Hill-Robertson interference, and short-term fluctuations of N_e could generate
309 this effect. However, inference conducted on alignments simulated under a Wright-Fisher model accounting
310 for linkage and for short-term variation in N_e suggests that empirically reasonable levels of Hill-Robertson
311 interferences are not strong enough to explain this observation, at least in the regimes explored. Second, μ
312 and N_e could also be fluctuating along the genome (Gossmann *et al.*, 2011; Ellegren *et al.*, 2003; Eyre-Walker
313 and Eyre-Walker, 2014). This assumption needs to be tested, though we expect that relaxing this assumption
314 would not change drastically the magnitude of inferred N_e since some of this fluctuation should be absorbed
315 by the inferred site-specific fitness profiles. Third, the DNA sequences could also be misaligned at some sites.
316 However we observe the same magnitude of inferred N_e for different sets of genes indicating this might not
317 be the primary reason. Fourth, the genes selected in our alignments could be under adaptive evolution, or
318 their function could have changed. However, at least in mammals, the impact of this potential problem was
319 minimized by the use of genes for which no positive selection was detected using standard phylogenetic codon
320 site models.

321 Finally, one key assumption of the mutation-selection model that is likely to be violated in practice is
322 the assumption of site-independence. In reality, epistasis might be prevalent in protein coding sequence
323 evolution (Pollock and Goldstein, 2014; Shah *et al.*, 2015). Our simulations under an epistatic landscape
324 point to epistasis being a major factor to be investigated. Indeed, N_e could not be appropriately estimated
325 under these simulation settings, although the outcome more specifically depends on the exact model for the
326 fitness landscape. An extreme case is obtained using a biophysically-inspired model, assuming purifying
327 selection for conformational stability. This model was previously explored using simulations and theoretical
328 developments Goldstein (2013), and it was shown that, under this model, d_N/d_S and more generally the
329 substitution process is virtually insensitive to N_e . This is confirmed by our experiments, showing that the
330 mutation-selection approach explored here cannot infer the true variation in N_e under this model.

331 A less extreme outcome is obtained under an alternative model also implementing epistatic interactions
332 between sites via Fisher's geometric model (Tenaillon, 2014; Blanquart and Bataillon, 2016). Interestingly,
333 under this model, our inference framework is able to infer the correct trends of N_e , although with a substantially
334 underestimated range of inferred variation, thus mirroring the results obtained on placental mammals. Of
335 note, these results do not necessarily imply that models based on biophysics are empirically less relevant than

336 Fisher's geometric model. Instead, they might just betray that the response of the substitution process to
337 changes in N_e may be sensitive to the exact quantitative details of the underlying fitness landscape. More
338 work is probably needed here to characterize these exact conditions. Nevertheless, our simulation experiments
339 suggest a global pattern: epistatic interactions induce a buffering of the response of the substitution process
340 to changes in N_e . The meaningful correlation patterns observed with LHTs in the case of placental mammals
341 suggest that this buffering is not complete. Nevertheless, ignoring epistatic interactions at the inference level
342 appears to result in a substantial underestimation of the range over which N_e varies across species.

343 Interestingly, the magnitude of the inferred range of N_e variation is similar for the placental and the
344 primate datasets (with a 9-fold and 6-fold variation in mammals and primates, respectively), whereas one
345 would have expected a much larger range of variation over the broader phylogenetic scale of placental
346 mammals, compared to primates. An explanation could be that the effects of epistasis are more apparent at
347 longer time-scales. Indeed, the total number of substitutions from root to leaves is greater, and as a result,
348 the local environment, and therefore the fitness landscape at the level of each site, has been less stable across
349 the phylogeny.

350 Although modelling epistasis in an inference framework is a complex biological, mathematical and
351 computational problem, our work points to a potential signal of epistasis that could be retrieved in a
352 phylogenetic context. More specifically, since the slope of the response of the substitution process to changes
353 in N_e appears to be informative about the epistatic regime, then, conversely, by relying on independent
354 estimates of N_e (e.g. using polymorphism), this effect could be used to leverage a quantitative estimate of
355 the statistical distribution of epistatic effects.

356 Other methods have recently been developed to reconstruct phylogenetic changes in N_e . For example, a
357 method recently developed uses polymorphism and generation time for some present-day species to reconstruct
358 N_e along the phylogeny, based on a classical (d_N/d_S -based) codon model (Brevet and Lartillot, 2019). This
359 method implicitly relies on a nearly-neutral model, assuming a fixed and gamma-shaped distribution of fitness
360 effects across non-synonymous mutations. The approach is calibrated using fossils, and as a result, returns
361 estimates of the absolute value of N_e and of its phylogenetic variation. Here, in contrast, our method requires
362 neither generation times nor polymorphism data, and the fitness effects are not constrained to a specific
363 distribution. On the other hand, the inferred effective population sizes are only relative. In addition, the
364 empirical fitting of the model requires more computing resources.

365 4.2 Potential applications and future developments

366 Apart from reconstructing the phylogenetic history of N_e and investigating its causes and covariates, another
367 potentially interesting application of our approach is in detecting adaptation. In this direction, mutation-
368 selection models represent a useful null nearly-neutral model, explicitly modelling the background of purifying
369 selection acting over protein coding genes. Adaptation can then be detected by measuring the deviation from
370 this null model (Rodrigue and Lartillot, 2016; Bloom, 2017).

371 However, by assuming a constant N_e along a phylogeny, the statistical power of this approach to detect
372 sites under adaptive evolution may not be optimal. In particular, the site-specific fitness profiles inferred by

373 the model are averaged along the phylogeny and are seemingly more diffuse than those estimated profiles
374 under our present framework (see supplementary materials). Thus, our method should provide a better null
375 model of purifying selection against which to test for the presence of adaptive evolution.

376 This approach can be further extended in other directions. First, currently, our model also assumes
377 no selection on codon usage. In the case of primates or placental mammals, this assumption is probably
378 reasonable (Yang and Nielsen, 2008), although it is more questionable for other groups, in particular
379 Drosophila (Duret and Mouchiroud, 1999; Plotkin and Kudla, 2011). In principle, this assumption can be
380 relaxed by implementing selective codon preferences that are shared across all sites. Such an implementation
381 would provide the advantage of estimating codon usage biases, while simultaneously accounting for its
382 confounding effect when estimating selection on amino-acids and inter-specific variation in N_e .

383 Second, the Bayesian analysis conducted here was based on relatively small alignments (20 000 sites at
384 most), and with strong limits on the parametrization of the underlying mixture model (allowing for at most
385 50 distinct profile categories). Profiling of the program (not shown) shows that the number of components of
386 the profile mixture is the limiting step of the computation. Yet, a larger number of components might be
387 required, in order to achieve more accurate inference of the site-specific profiles. One possible development,
388 leading to statistically more stable genome-wide estimates of N_e , would be to develop a multi-gene parallelized
389 version of the model, in which each coding sequence would have its own mixture model, and would run on a
390 separate thread, while the history of N_e would be shared by all computing processes.

391 Finally, estimating N_e in a mutation-selection phylogenetic model relies on the relation between N_e and
392 the relative strength of drift, in a context where, ultimately, the signal about the intensity of drift comes
393 from the relative rate of non-synonymous substitutions. However, this purely phylogenetic approach does not
394 leverage a second aspect of N_e at the population level, namely, the fact that N_e also determines the levels of
395 neutral genetic diversity that can be maintained ($\pi = 4N_e u$, where u is the mutation rate per generation).
396 Hence, neutral diversity yields an independent empirical estimate of N_e . In principle, our mechanistic model
397 could be extended so as to incorporate polymorphism data within species at the tips of the phylogeny. A
398 similar method has been previously pioneered in the case of 3 species and using a distribution of fitness
399 effect (Wilson *et al.*, 2011). More generally, the nearly-neutral theory of evolution defines a long-term N_e ,
400 which might be different from the short-term definition of N_e (Platt *et al.*, 2018). Thus we could ask if
401 empirical independent estimations of N_e from within species (based on genetic diversity) and between species
402 (based on the substitution process) are congruent, and if not, what are the mechanisms responsible for this
403 discrepancy.

404 Notwithstanding theoretical considerations on the nearly-neutral theory of evolution, empirical clues
405 about the long-term trends in the modulations of the intensity of genetic drift opens up a large diversity of
406 ecological and evolutionary questions. Spatial and temporal changes of genetic drift along ecological niches
407 and events can now be investigated, so as to disentangle the underlying evolutionary and ecological pressures.

408 5 Materials and Methods

409 In the model presented here, N_e and μ (and quantitative traits) are allowed to vary between species (across
410 branches) as a multivariate log-Brownian process, but assumed constant along the DNA sequence. Conversely,
411 amino-acid fitness profiles are assumed to vary across sites, but are considered constant along the tree.
412 The model makes several assumptions about the evolutionary process generating the observed alignment.
413 First, the species tree topology is supposed to be known, and each gene should match the species tree,
414 meaning genes are strict orthologs (no paralogs and no horizontal transfers). Second, there is no epistasis
415 (interaction between sites), such that any position of the sequence has its own independent evolutionary
416 process and a substitution at one position does not affect the substitution process at other positions. Third,
417 from a population genetics perspective, we assumed sites of the protein to be unlinked, or equivalently the
418 mutation rate is low enough such that there is no Hill-Robertson interference nor genetic hitchhiking. Fourth,
419 polymorphism is ignored in extant species.

420 The parameterization of the models is described as a Bayesian hierarchical model, including the prior
421 distributions and the parameters of the model. This hierarchical model is formally represented as directed
422 acyclic graph, depicted in figure 5.

423 5.1 Nucleotide mutation rates

424 The generalized time-reversible nucleotide mutation rate matrix \mathbf{R} is a function of the nucleotide frequencies
425 σ and the symmetric exchangeability rates ρ (Tavaré, 1986). $\sigma = (\sigma_A, \sigma_C, \sigma_G, \sigma_T)$ is the equilibrium base fre-
426 quency vector, giving the frequency at which each base occurs at each site. $\rho = (\rho_{AC}, \rho_{AG}, \rho_{AT}, \rho_{CG}, \rho_{CT}, \rho_{GT})$
427 is the vector of exchangeabilities between nucleotides. Altogether, the rate matrix is:

$$\mathbf{R} = \begin{pmatrix} & A & C & G & T \\ A & - & \rho_{AC}\sigma_C & \rho_{AG}\sigma_G & \rho_{AT}\sigma_T \\ C & \rho_{AC}\sigma_A & - & \rho_{CG}\sigma_G & \rho_{CT}\sigma_T \\ G & \rho_{AG}\sigma_A & \rho_{CG}\sigma_C & - & \rho_{GT}\sigma_T \\ T & \rho_{AT}\sigma_A & \rho_{CT}\sigma_C & \rho_{GT}\sigma_G & - \end{pmatrix} \quad (4)$$

428 By definition, the sum of the entries in each row of the nucleotide rate matrix \mathbf{R} is equal to 0, giving the
429 diagonal entries:

$$R_{a,a} = - \sum_{b \neq a, b \in \{A, C, G, T\}} R_{a,b} \quad (5)$$

430 The prior on the exchangeabilities ρ is a uniform Dirichlet distribution of dimension 6:

$$\rho \sim \text{Dir} \left(\frac{1}{6}, 6 \right). \quad (6)$$

431 The prior on the equilibrium base frequencies σ is a uniform Dirichlet distribution of dimension 4:

$$\sigma \sim \text{Dir} \left(\frac{1}{4}, 4 \right) \quad (7)$$

432 The general time-reversible nucleotide matrix is normalized such that the total flow equals to 1:

$$\sum_{a \in \{A, C, G, T\}} -\sigma_a R_{a,a} = 1. \quad (8)$$

433 **5.2 Site-dependent selection**

Site-specific amino-acid fitness profiles are assumed i.i.d. from a mixture model, itself endowed with a truncated Dirichlet process prior. Specifically, the mixture has K components ($K = 50$ by default). The prior on component weights ($\boldsymbol{\theta}$) is modeled using a stick-breaking process, truncated at K and of parameter β :

$$\begin{aligned} \boldsymbol{\theta} &\sim \text{StickBreaking}(K, \beta) \\ \iff \theta_k &= \psi_k \cdot \prod_{a=1}^{k-1} (1 - \psi_a), \quad k \in \{1, \dots, K\}, \end{aligned} \tag{9}$$

434 where ψ_k are i.i.d. from a beta distribution

$$\psi_k \sim \text{Beta}(1, \beta), \quad k \in \{1, \dots, K\}. \tag{10}$$

435 Of note, the weights decrease geometrically in expectation, at rate β , such that lower values of β induce more
436 heterogeneous distributions of weights.

437 Each component of the mixture defines a 20-dimensional fitness profile $\boldsymbol{\phi}^{(k)}$ (summing to 1), for $k \in$
438 $\{1, \dots, K\}$. These fitness profiles are i.i.d. from a Dirichlet of center $\boldsymbol{\gamma}$ and concentration α :

$$\boldsymbol{\phi}^{(k)} \sim \text{Dir}(\boldsymbol{\gamma}, \alpha), \quad k \in \{1, \dots, K\}. \tag{11}$$

Site allocations to the mixture components $\kappa(z) \in \{1, \dots, K\}$, for $z \in \{1, \dots, Z\}$ running over the Z sites of the alignment, are i.i.d. multinomial of parameter $\boldsymbol{\theta}$:

$$\mathbf{m} \sim \text{Multinomial}(\boldsymbol{\theta}). \tag{12}$$

439 For a given parameter configuration for the mixture, the Malthusian fitness selection coefficients $\mathbf{f}^{(z)}$ at
440 site z , are obtained by taking the logarithm of the fitness profile assigned to this site:

$$\mathbf{f}^{(z)} = \ln(\boldsymbol{\phi}^{(\kappa(z))}), \quad z \in \{1, \dots, Z\}. \tag{13}$$

441 **5.3 Dated tree**

442 The topology of the rooted phylogenetic tree is supposed to be known and is not estimated by the model.
443 The model estimates the dates at which branches split, thus the dated tree requires $P - 2$ internal node ages
444 that are free parameters, where P is the number of extant taxa (leaves of the tree). By definition, leaf ages
445 are all set to 0. The root age is set arbitrarily to 1, but if fossils data are also available the dated tree can be
446 rescaled into absolute time using cross-multiplication. A uniform prior is assumed over internal node ages
447 $T^{(n)}$, $n \in \{P + 1, \dots, 2P - 2\}$.

448 The duration $\Delta T^{(b)}$ represented by a given branch b , for $b \in \{1, \dots, 2P - 2\}$ is defined as the difference
449 in ages between the oldest node at the tip of the branch $T^{(b^\dagger)}$, and the youngest node $T^{(b^\downarrow)}$:

$$\Delta T^{(b)} = T^{(b^\dagger)} - T^{(b^\downarrow)}. \tag{14}$$

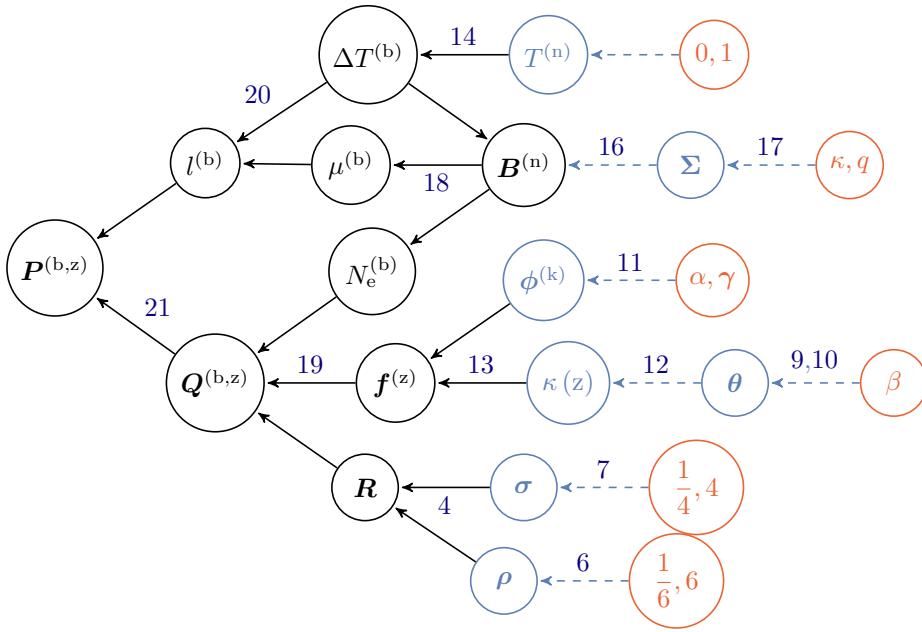


Figure 5: Directed acyclic graph (DAG) of dependencies between variables. Nodes of the directed acyclic graph are the variables, and edges are the functions. Hyper-parameters are depicted in red circles, random variables in blue circles, and transformed variables in black. Blue dashed line denotes a drawing from a random distribution, and black solid lines denote a function. For a given node, all the nodes pointing toward him (upstream) are its dependencies which determines its distribution. The other way around, following the arrows in the DAG (downstream), simple prior distributions are combined together to form more complex joint prior distribution which ultimately defines the prior distribution of the model.

450 5.4 Branch dependent traits

451 The effective population size N_e and mutation rate per unit of time μ are assumed to evolve along the
 452 phylogeny, and to be correlated. If quantitative life-history traits (LHTs) are also available for some nodes
 453 of the tree (leaves and/or internal nodes), they are also assumed to evolve along the phylogeny and to be
 454 correlated between them, and with N_e and μ . The total number of traits is noted L , when counting N_e ,
 455 μ and all user-defined LHT (denoted \mathbf{X}). Their variation through time is modelled by an L -dimensional
 456 log-Brownian process \mathbf{B} . By convention, the first component of the log-Brownian corresponds to N_e , and the
 457 second component to μ . Thus:

$$\begin{cases} B_1(t) = \ln N_e(t) \\ B_2(t) = \ln \mu(t) \\ B_{k+2}(t) = \ln X_k(t), k \in \{1, \dots, L\} \end{cases} \quad (15)$$

458 The effective population size at the root is set to 1 for identifiability of the fitness profiles.

459 Along a branch $b \in \{1, \dots, 2P - 2\}$ of the tree, a log-Brownian process starts at the oldest node at the
 460 tip of the branch (b^\uparrow), and ends at the youngest node (b^\downarrow). The rate of change of the log-Brownian process
 461 per unit of time is constant and determined by the positive semi-definite and symmetric covariance matrix

462 Σ . Thus the distribution at node b^\downarrow of $\mathbf{B}^{(b^\downarrow)}$ is multivariate Gaussian, with mean equals to the Brownian
 463 process sampled at the oldest node $\mathbf{B}^{(b^\uparrow)}$, and variance $\Delta T^{(b)} \Sigma$:

$$\mathbf{B}^{(b^\downarrow)} \sim \mathcal{N} \left(\mathbf{B}^{(b^\uparrow)}, \Delta T^{(b)} \Sigma \right), \quad b \in \{1, \dots, 2P - 2\}. \quad (16)$$

464 The Brownian process at the root of the tree is uniformly distributed, except for the first component fixed
 465 to 0 for identifiability (see above). The prior on the covariance matrix is an inverse Wishart distribution,
 466 parameterized by $\kappa = 1$ and with $q = L + 1$ degrees of freedom:

$$\Sigma \sim \text{Wishart}^{-1}(\kappa \mathbf{I}, q). \quad (17)$$

467 We are interested in approximating the expected substitution rates between codons over the branch. Ideally,
 468 under the Brownian process just described, the rates of substitution between codons are continuously changing
 469 through time. Also, even conditional on the value of N_e at both ends, the Brownian path along the branch
 470 entails a random component, leading to complicated integral expressions for substitution rates (Horvilleur
 471 and Lartillot, 2014). Here, a branchwise approximation is used (Lartillot and Poujol, 2011), which consists of
 472 first deriving an approximation for the mean N_e along the branch, conditional on the values of N_e at both
 473 ends, and then using this mean branchwise N_e to define the codon substitution rates.

474 In the case of log-Brownian process, the most likely path (or geodesic) from $\mathbf{B}^{(b^\uparrow)}$ to $\mathbf{B}^{(b^\downarrow)}$ is the straight
 475 line, and therefore, it would make sense to take the mean value of $e^{\mathbf{B}^{(n)}}$ along this geodesic. We then have
 476 $N_e^{(b)}$ and $\mu^{(b)}$ for each branch $b \in \{1, \dots, 2P - 2\}$ of the tree:

$$\begin{cases} N_e^{(b)} = \frac{e^{B_1^{(b^\downarrow)}} - e^{B_1^{(b^\uparrow)}}}{B_1^{(b^\downarrow)} - B_1^{(b^\uparrow)}} \\ \mu^{(b)} = \frac{e^{B_2^{(b^\downarrow)}} - e^{B_2^{(b^\uparrow)}}}{B_2^{(b^\downarrow)} - B_2^{(b^\uparrow)}}. \end{cases} \quad (18)$$

477 5.5 Codon substitution rates

478 The mutation rate between codons i and j , denoted $\mu_{i,j}$ depends on the underlying nucleotide change between
 479 the codons. First, if codons i and j are not nearest-neighbours, $\mu_{i,j}$ is equal to 0. Second, if codons i and j are
 480 only one mutation away, $\mathcal{M}(i, j)$ denotes the nucleotide change (e.g. $\mathcal{M}(AAT, AAG) = TG$), and $\mu_{i,j}$ is given
 481 by the underlying nucleotide relative rate ($R_{\mathcal{M}(i,j)}$) scaled by the mutation rate per time (μ). Technically,
 482 the 4-dimensional nucleotide relative rate matrix (\mathbf{R}) is normalized such that we expect 1 substitution per
 483 unit of time, hence the scaling by μ .

484 For a given branch b and a given site z , the codon substitution rate (per unit of time) matrix $\mathbf{Q}^{(b,z)}$ is
 485 given by:

$$\begin{cases} Q_{i,j}^{(b,z)} = 0 \text{ if codons } i \text{ and } j \text{ are not neighbors,} \\ Q_{i,j}^{(b,z)} = R_{\mathcal{M}(i,j)} \text{ if codons } i \text{ and } j \text{ are synonymous,} \\ Q_{i,j}^{(b,z)} = R_{\mathcal{M}(i,j)} \frac{4N_e^{(b)} \left(f_{\mathcal{A}(j)}^{(z)} - f_{\mathcal{A}(i)}^{(z)} \right)}{1 - e^{4N_e^{(b)} \left(f_{\mathcal{A}(i)}^{(z)} - f_{\mathcal{A}(j)}^{(z)} \right)}} \text{ if } i \text{ and } j \text{ are non-synonymous,} \\ Q_{i,i}^{(b,z)} = - \sum_{j \neq i, j=1}^{61} Q_{i,j}^{(b,z)}. \end{cases} \quad (19)$$

486 We see from this equation that, f and N_e are confounded, such that increasing the effective population size
487 while decreasing the fitnesses by the same factor leads to the same substitution rate.

488 The branch lengths $l^{(b)}$ are defined as the expected number of neutral substitutions per DNA site along a
489 branch:

$$l^{(b)} = \mu^{(b)} \Delta T^{(b)}. \quad (20)$$

490 Together, the probability of transition between codons for a given branch b and site z is:

$$\mathbf{P}^{(b,z)} = e^{l^{(b)} \mathbf{Q}^{(b,z)}}, \quad (21)$$

491 which are the matrices necessary to compute the likelihood of the data (D) given the parameters of the model
492 using the pruning algorithm.

493 **5.6 Bayesian implementation**

494 Bayesian inference was conducted using Markov Chain Monte Carlo (MCMC). Most phylogenetic MCMC
495 samplers target the distribution over the model parameters given the sequence alignment, which means that
496 they have to repeatedly invoke the pruning algorithm to recalculate the likelihood which is most often the
497 limiting step of the MCMC. An alternative, which is used here, is to do the MCMC conditionally on the
498 detailed substitution history \mathcal{H} , thus doing the MCMC over the augmented configuration (\mathcal{H}, D) , under the
499 target distribution obtained by combining the mapping-based likelihood with the prior over model parameters.

500 The key idea that makes this strategy efficient is that the mapping-based likelihood depends on compact
501 summary statistics of \mathcal{H} , leading to very fast evaluation of the likelihood. On the other hand, this requires to
502 implement more complex MCMC procedures that have to alternate between:

503 1. sampling \mathcal{H} conditionally on the data and the current parameter configuration.
504 2. re-sampling the parameters conditionally on \mathcal{H} .

505 To implement the mapping-based MCMC sampling strategy, we first sample the detailed substitution
506 history \mathcal{H} for all sites along the tree. Several methods exist for doing this (Nielsen, 2002; Rodrigue *et al.*,
507 2008), which are used here in combination (first trying the accept-reject method of Nielsen, then switching to
508 the uniformization approach of Rodrigue *et al* if the first round has failed).

509 Then, we write down the probability of \mathcal{H} given the parameters, and finally, we collect all factors that
510 depend on some parameter of interest and make some simplifications. This ultimately leads to relatively
511 compact sufficient statistics (see supplementary) allowing for fast numerical evaluation of the likelihood (Iravahn
512 and Minin, 2014; Davydov *et al.*, 2016). As an example, making an MCMC move on the N_e at a given
513 node of the tree is faster since only the mapping-based likelihood (using path sufficient statistics) at the
514 neighbouring branches of the node is necessary, instead of computing the likelihood for the entire tree.

515 Markov chain Monte Carlo (MCMC) are run for 4000 points and the first 1000 points are discarded as
516 burn-in. Convergence is then assessed (see supplementary) by comparing two independent chains, checking
517 that both site-specific fitness and branch N_e have the same posterior mean.

518 **5.7 Correlation between traits**

519 The correlation between trait a and trait $b \in \{1, \dots, L\}$ can be obtained from the covariance matrix Σ :

$$\rho_{a,b} = \frac{\Sigma_{a,b}}{\sqrt{\Sigma_{a,a}\Sigma_{b,b}}}. \quad (22)$$

520 This correlation coefficient is then averaged over the posterior distribution, and statistical support is assessed
521 based on the posterior probability of having a positive (or negative) value for the coefficient.

522 **5.8 Simulations**

523 To test the robustness of the model, four parameterized simulators were developed: **SimuDiv**, **SimuPoly**,
524 **SimuFold** & **SimuGeo**. All four simulators use a log-Brownian multivariate process to model the changes
525 in the mutation rate per generation, the generation time and N_e along the lineages. **SimuDiv**, **SimuFold** &
526 **SimuGeo** all simulate point substitutions along the phylogenetic tree. The simulator starts from an initial
527 sequence at equilibrium. The change in fitness is computed for all possible mutant, hence computing all
528 strictly positive substitution rates. At each point, the next substitution is chosen proportional to these rates
529 using in Gillespie's algorithm (Gillespie, 1977). At each node, the process is split, and finally stopped at the
530 leaves of the tree. **SimuPoly** simulates explicitly each generation along the phylogeny under a Wright-Fisher
531 population, consisting of three steps: mutation, selection and genetic drift of currently segregating alleles.
532 Mutations are drawn randomly based on mutation rates. Drift is induced by the multinomial resampling
533 of the currently segregating alleles. We assume that the DNA sequence is composed of exons, with no
534 linkage between exons, and total linkage of sites within an exon. Moreover, in **SimuPoly**, the instant value of
535 $\log-N_e$ can also be modelled as a sum of a log-Brownian process and an Ornstein-Uhlenbeck process. The
536 log-Brownian motion accounts for long-term fluctuations, while the Ornstein-Uhlenbeck introduces short-term
537 fluctuations. In **SimuDiv** and **SimuPoly**, each codon site contributes independently to the fitness depending on
538 the encoded amino acids, through site-specific amino-acid fitness profiles experimentally determined (Bloom,
539 2017). In **SimuFold**, the fitness of a sequence is computed as the probability of the protein to be in the folded
540 state. **SimuFold** is a C++ adaptation of a Java code previously published (Goldstein and Pollock, 2016, 2017),
541 where we also allow for changes in N_e and μ along a phylogenetic tree. Supplementary materials describe the
542 models in more details, as well as performance of the inference model against them.

543 **5.9 Empirical data**

544 For placental mammals, alignments were extracted from OrthoMam database (Ranwez *et al.*, 2007; Scornavacca
545 *et al.*, 2019). Only highly conserved coding sequences are kept for the analysis, representing 226 CDS with
546 $\leq 1\%$ of gaps in the alignment. Life-history traits (LHTs) for longevity, age at maturity and weight were
547 obtained from AnAge database (De Magalhães and Costa, 2009; Tacutu *et al.*, 2012). We focused our analysis
548 on 77 taxa for which information is available for at least one LHT.

549 6 Reproducibility - Supplementary Materials

550 The simulators written in C++ are publicly available under MIT license at <https://github.com/ThibaultLatrille/SimuEvol>. The Bayesian inference model, written in C++ in the component based (Lanore, 551 2019) software BayesCode, is publicly available at <https://github.com/ThibaultLatrille/bayescode>. 552 Supplementary materials and figures are available in appendix supplementary materials. The scripts 553 and instructions necessary to reproduce the simulated and empirical experiments are available at <https://github.com/ThibaultLatrille/MutationSelectionDrift>. 554

555 7 Author contributions

556 TL gathered and formatted the data, developed the new models in BayesCode and SimuEvol and conducted 557 all analyses, in the context of a PhD work (Ecole Normale Supérieure de Lyon). VL restructured and 558 refactored the code sustaining the branch and site heterogeneous Bayesian Monte Carlo in BayesCode. TL 559 and NL both contributed to the writing of the manuscript. 560

561 8 Acknowledgements

562 We wish to thank Tristan Lefébure for sharing the isopods phylogeny, alignments and life-history traits. We 563 thank Philippe Veber for insightful discussion on mutation-selection models and software development. We 564 gratefully also acknowledge the help of Nicolas Rodrigue, Laurent Gueguen, Benoit Nahbolz and Laurent 565 Duret for their advice and review concerning this manuscript. This work was performed using the computing 566 facilities of the CC LBBE/PRABI. Funding: French National Research Agency, Grant ANR-15-CE12-0010-01 567 / DASIRE.

568 References

569 Blanquart, F. and Bataillon, T. 2016. Epistasis and the structure of fitness landscapes: Are experimental 570 fitness landscapes compatible with fisher's geometric model? *Genetics*, 203(2): 847–862.

571 Bloom, J. D. 2017. Identification of positive selection in genes is greatly improved by using experimentally 572 informed site-specific models. *Biology Direct*, 12(1): 1.

573 Bolívar, P., Guéguen, L., Duret, L., Ellegren, H., and Mugal, C. F. 2019. GC-biased gene conversion conceals 574 the prediction of the nearly neutral theory in avian genomes. *Genome Biology*, 20(1): 5.

575 Brevet, M. and Lartillot, N. 2019. Reconstructing the history of variation in effective population size along 576 phylogenies. *bioRxiv*, page 793059.

577 Capderrey, C., Kaufmann, B., Jean, P., Malard, F., Konecny-Dupré, L., Lefébure, T., and Douady, C. J. 2013. 578 Microsatellite Development and First Population Size Estimates for the Groundwater Isopod Proasellus 579 walteri. *PLoS ONE*, 8(9): e76213.

580 Cherry, J. L. 1998. Should We Expect Substitution Rate to Depend on Population Size? *Genetics*, 150(2).

581 Davydov, I. I., Robinson-Rechavi, M., and Salamin, N. 2016. State aggregation for fast likelihood computations
582 in molecular evolution. *Bioinformatics*, 33(3): btw632.

583 De Magalhães, J. P. and Costa, J. 2009. A database of vertebrate longevity records and their relation to
584 other life-history traits. *Journal of Evolutionary Biology*, 22(8): 1770–1774.

585 Dos Reis, M. 2015. How to calculate the non-synonymous to synonymous rate ratio of protein-coding genes
586 under the fisher-wright mutation-selection framework. *Biology Letters*, 11(4).

587 Duret, L. and Mouchiroud, D. 1999. Expression pattern and, surprisingly, gene length shape codon usage
588 in *Caenorhabditis*, *Drosophila*, and *Arabidopsis*. *Proceedings of the National Academy of Sciences of the*
589 *United States of America*, 96(8): 4482–4487.

590 Dutheil, J. Y., Galtier, N., Romiguier, J., Douzery, E. J., Ranwez, V., and Boussau, B. 2012. Efficient Selection
591 of Branch-Specific Models of Sequence Evolution. *Molecular Biology and Evolution*, 29(7): 1861–1874.

592 Echave, J., Spielman, S. J., and Wilke, C. O. 2016. Causes of evolutionary rate variation among protein sites.
593 *Nature Reviews Genetics*, 17(2): 109–121.

594 Ellegren, H., Smith, N. G., and Webster, M. T. 2003. Mutation rate variation in the mammalian genome.

595 Eme, D., Malard, F., Konecny-Dupré, L., Lefébure, T., and Douady, C. J. 2013. Bayesian phylogeographic
596 inferences reveal contrasting colonization dynamics among European groundwater isopods. *Molecular*
597 *Ecology*, 22(22): 5685–5699.

598 Eyre-Walker, A. and Eyre-Walker, Y. C. 2014. How much of the variation in the mutation rate along the
599 human genome can be explained? *G3: Genes, Genomes, Genetics*, 4(9): 1667–1670.

600 Eyre-walker, A. and Keightley, P. D. 2007. The distribution of fitness effects of new mutations. *Nature*,
601 8(August).

602 Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. *Journal of*
603 *Molecular Evolution*, 17(6): 368–376.

604 Felsenstein, J. 1985. Phylogenies and the Comparative Method. *The American Naturalist*, 125(1): 1–15.

605 Figuet, E., Nabholz, B., Bonneau, M., Mas Carrio, E., Nadachowska-Brzyska, K., Ellegren, H., and Galtier,
606 N. 2016. Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes. *Molecular*
607 *Biology and Evolution*, 33(6): 1517–1527.

608 Figuet, E., Ballenghien, M., Lartillot, N., and Galtier, N. 2017. Reconstruction of body mass evolution in the
609 Cetartiodactyla and mammals using phylogenomic data. *bioRxiv*, pages 139147, ver. 3 peer-reviewed and
610 recommended by PC.

611 Galtier, N. 2016. Adaptive protein evolution in animals and the effective population size hypothesis. *PLoS*
612 *Genetics*, pages 1–23.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

613 Galtier, N. and Rousselle, M. 2020. How much does N_e vary among species? *bioRxiv*, pages 861849, ver. 3
614 peer-reviewed and recommended by PC.

615 Gao, Z., Wyman, M. J., Sella, G., and Przeworski, M. 2016. Interpreting the Dependence of Mutation Rates
616 on Age and Time. *PLOS Biology*, 14(1): e1002355.

617 Geraldes, A., Basset, P., Gibson, B., Smith, K. L., Harr, B., YU, H., Bulatova, N., Ziv, Y., and Nachman, M. W. 2008. Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and
618 mitochondrial genes. *Molecular Ecology*, 17(24): 5349–5363.

619

620 Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical reactions. *The Journal of Physical
621 Chemistry*, 81(25): 2340–2361.

622 Goldman, N. and Yang, Z. 1994. A codon-based model of nucleotide substitution for protein-coding DNA
623 sequences. *Molecular biology and evolution*, 11(5): 725–736.

624 Goldstein, R. A. 2011. The evolution and evolutionary consequences of marginal thermostability in proteins.
625 *Proteins: Structure, Function and Bioinformatics*, 79(5): 1396–1407.

626 Goldstein, R. A. 2013. Population Size Dependence of Fitness Effect Distribution and Substitution Rate
627 Probed by Biophysical Model of Protein Thermostability. *Genome Biology and Evolution*, 5(9): 1584–1593.

628 Goldstein, R. A. and Pollock, D. D. 2016. The tangled bank of amino acids. *Protein Science*, 25(7): 1354–1362.

629 Goldstein, R. A. and Pollock, D. D. 2017. Sequence entropy of folding and the absolute rate of amino acid
630 substitutions. *Nature Ecology & Evolution*, 1(12): 1923–1930.

631 Gossmann, T. I., Woolfit, M., and Eyre-Walker, A. 2011. Quantifying the variation in the effective population
632 size within a genome. *Genetics*, 189(4): 1389–1402.

633 Halpern, A. L. and Bruno, W. J. 1998. Evolutionary distances for protein-coding sequences: modeling
634 site-specific residue frequencies. *Molecular biology and evolution*, 15(7): 910–917.

635 Horvilleur, B. and Lartillot, N. 2014. Monte Carlo algorithms for Brownian phylogenetic models. *Bioinformatics*,
636 30(21): 3020–3028.

637 Irvahn, J. and Minin, V. N. 2014. Phylogenetic Stochastic Mapping Without Matrix Exponentiation. *Journal
638 of Computational Biology*, 21(9): 676–690.

639 Jones, C. T., Youssef, N., Susko, E., and Bielawski, J. P. 2016. Shifting Balance on a Static Mutation-Selection
640 Landscape: A Novel Scenario of Positive Selection. *Molecular Biology and Evolution*, 34(2): msw237.

641 Kimura, M. 1979. Model of effectively neutral mutations in which selective constraint is incorporated.
642 *Proceedings of the National Academy of Sciences of the United States of America*, 76(7): 3440–3444.

643 Kosiol, C., Vinař, T., da Fonseca, R. R., Hubisz, M. J., Bustamante, C. D., Nielsen, R., and Siepel, A. 2008.
644 Patterns of Positive Selection in Six Mammalian Genomes. *PLOS Genetics*, 4(8): e1000144.

645 Kumar, S., Stecher, G., Suleski, M., and Hedges, S. B. 2017. TimeTree: A Resource for Timelines, Timetrees,
646 and Divergence Times. *Molecular Biology and Evolution*, 34(7): 1812–1819.

647 Lanfear, R., Ho, S. Y., Love, D., and Bromham, L. 2010. Mutation rate is linked to diversification in birds.
648 *Proceedings of the National Academy of Sciences of the United States of America*, 107(47): 20423–20428.

649 Lanfear, R., Kokko, H., and Eyre-Walker, A. 2014. Population size and the rate of evolution.

650 Lanore, V. 2019. Fostering Reuse in Scientific Computing With Embedded Components. *Computing in
651 Science & Engineering*, 21(2): 36–47.

652 Lartillot, N. and Delsuc, F. 2012. Joint reconstruction of divergence times and life-history evolution in
653 placental mammals using a phylogenetic covariance model. *Evolution*, 66(6): 1773–1787.

654 Lartillot, N. and Poujol, R. 2011. A Phylogenetic Model for Investigating Correlated Evolution of Substitution
655 Rates and Continuous Phenotypic Characters. *Molecular Biology and Evolution*, 28(1): 729–744.

656 Li, H. and Durbin, R. 2011. Inference of human population history from individual whole-genome sequences.
657 *Nature*, 475(7357): 493–496.

658 Liberles, D. A. 2007. *Ancestral sequence reconstruction*. Oxford University Press on Demand.

659 Muse, S. V. and Gaut, B. S. 1994. A likelihood approach for comparing synonymous and nonsynonymous
660 nucleotide substitution rates, with application to the chloroplast genome. *Molecular biology and evolution*,
661 1(5): 715–724.

662 Nabholz, B., Uwimana, N., and Lartillot, N. 2013. Reconstructing the Phylogenetic History of Long-
663 Term Effective Population Size and Life-History Traits Using Patterns of Amino Acid Replacement in
664 Mitochondrial Genomes of Mammals and Birds. *Genome Biology and Evolution*, 5(7): 1273–1290.

665 Nielsen, R. 2002. Mapping Mutations on Phylogenies. *Systematic Biology*, 51(5): 729–739.

666 Ohta, T. 1992. The nearly neutral theory of molecular evolution. *Annual Review of Ecology and Systematics*,
667 23(1992): 263–286.

668 Perelman, P., Johnson, W. E., Roos, C., Seuánez, H. N., Horvath, J. E., Moreira, M. A. M., Kessing, B.,
669 Pontius, J., Roelke, M., Rumphier, Y., Schneider, M. P. C., Silva, A., O'Brien, S. J., and Pecon-Slattery, J.
670 2011. A Molecular Phylogeny of Living Primates. *PLoS Genetics*, 7(3): e1001342.

671 Platt, A., Weber, C. C., and Liberles, D. A. 2018. Protein evolution depends on multiple distinct population
672 size parameters. *BMC Evolutionary Biology*, 18(1): 17.

673 Plotkin, J. B. and Kudla, G. 2011. Synonymous but not the same: The causes and consequences of codon
674 bias.

675 Pollock, D. D. and Goldstein, R. A. 2014. Strong evidence for protein epistasis, weak evidence against it.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

676 Pollock, D. D., Thiltgen, G., and Goldstein, R. A. 2012. Amino acid coevolution induces an evolutionary
677 Stokes shift. *Proceedings of the National Academy of Sciences of the United States of America*, 109(21):
678 E1352–E1359.

679 Popadin, K., Polishchuk, L. V., Mamirova, L., Knorre, D., and Gunbin, K. 2007. Accumulation of slightly
680 deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. *Proceedings of
681 the National Academy of Sciences of the United States of America*, 104(33): 13390–13395.

682 Ranwez, V., Delsuc, F., Ranwez, S., Belkhir, K., Tilak, M.-K., and Douzery, E. J. 2007. OrthoMaM: A
683 database of orthologous genomic markers for placental mammal phylogenetics. *BMC Evolutionary Biology*,
684 7(1): 241.

685 Rodrigue, N. and Lartillot, N. 2014. Site-heterogeneous mutation-selection models within the PhyloBayes-MPI
686 package. *Bioinformatics*, 30(7): 1020–1021.

687 Rodrigue, N. and Lartillot, N. 2016. Detecting adaptation in protein-coding genes using a Bayesian site-
688 heterogeneous mutation-selection codon substitution model. *Molecular biology and evolution*, 34(1):
689 204–214.

690 Rodrigue, N., Philippe, H., and Lartillot, N. 2008. Uniformization for sampling realizations of Markov
691 processes: applications to Bayesian implementations of codon substitution models. *Bioinformatics*, 24(1):
692 56–62.

693 Rodrigue, N., Philippe, H., and Lartillot, N. 2010. Mutation-selection models of coding sequence evolution
694 with site-heterogeneous amino acid fitness profiles. *Proceedings of the National Academy of Sciences of the
695 United States of America*, 107(10): 4629–34.

696 Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., Chiari, Y., Dernat, R.,
697 Duret, L., Faivre, N., Loire, E., Lourenco, J. M., Nabholz, B., Roux, C., Tsagkogeorga, G., Weber, A.
698 A.-T., Weinert, L. A., Belkhir, K., Bierne, N., Glémin, S., and Galtier, N. 2014. Comparative population
699 genomics in animals uncovers the determinants of genetic diversity. *Nature*, 515(7526): 261–263.

700 Saclier, N., François, C. M., Konecny-Dupré, L., Lartillot, N., Guéguen, L., Duret, L., Malard, F., Douady,
701 C. J., and Lefébure, T. 2018. Life history traits impact the nuclear rate of substitution but not the
702 mitochondrial rate in isopods. *Molecular Biology and Evolution*, 35(12): 2900–2912.

703 Scornavacca, C., Belkhir, K., Lopez, J., Dernat, R., Delsuc, F., Douzery, E. J. P., and Ranwez, V. 2019.
704 OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments with More than One
705 Hundred Mammalian Genomes. *Molecular Biology and Evolution*, 36(4): 861–862.

706 Seo, T. K., Kishino, H., and Thorne, J. L. 2004. Estimating absolute rates of synonymous and nonsynonymous
707 nucleotide substitution in order to characterize natural selection and date species divergences. *Molecular
708 Biology and Evolution*, 21(7): 1201–1213.

709 Shah, P., McCandlish, D. M., and Plotkin, J. B. 2015. Contingency and entrenchment in protein evolution
710 under purifying selection. *Proceedings of the National Academy of Sciences*, 112(5): 3226–3235.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

711 Spielman, S. J. and Wilke, C. O. 2015. The relationship between dN/dS and scaled selection coefficients.
712 *Molecular biology and evolution*, 32(4): 1097–1108.

713 Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa, J., Fraifeld, V. E.,
714 and de Magalhães, J. P. 2012. Human Ageing Genomic Resources: Integrated databases and tools for the
715 biology and genetics of ageing. *Nucleic Acids Research*, 41(D1): D1027–D1033.

716 Tamuri, A. U. and Goldstein, R. A. 2012. Estimating the distribution of selection coefficients from phylogenetic
717 data using sitewise mutation-selection models. *Genetics*, 190(March): 1101–1115.

718 Tamuri, A. U., Goldman, N., and dos Reis., M. 2014. A penalized-likelihood method to estimate the
719 distribution of selection coefficients from phylogenetic data. *Genetics*, 197(May): 257–271.

720 Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. *Lectures on*
721 *mathematics in the life sciences*, 17(2): 57–86.

722 Tenaillon, O. 2014. The Utility of Fisher’s Geometric Model in Evolutionary Genetics. *Annual Review of*
723 *Ecology, Evolution, and Systematics*, 45(1): 179–201.

724 Thorne, J. L. and Kishino, H. 2002. Divergence Time and Evolutionary Rate Estimation with Multilocus
725 Data. *Systematic Biology*, 51(5): 689–702.

726 Welch, J. J., Eyre-Walker, A., and Waxman, D. 2008. Divergence and polymorphism under the nearly neutral
727 theory of molecular evolution. *Journal of Molecular Evolution*, 67(4): 418–426.

728 Williams, P. D., Pollock, D. D., Blackburne, B. P., and Goldstein, R. A. 2006. Assessing the accuracy of
729 ancestral protein reconstruction methods. *PLoS Computational Biology*, 2(6): 0598–0605.

730 Wilson, D. J., Hernandez, R. D., Andolfatto, P., and Przeworski, M. 2011. A Population Genetics-Phylogenetics
731 Approach to Inferring Natural Selection in Coding Sequences. *PLoS Genetics*, 7(12): e1002395.

732 Yang, Z. and Nielsen, R. 2008. Mutation-selection models of codon substitution and their use to estimate
733 selective strengths on codon usage. *Molecular biology and evolution*, 25(3): 568–579.

734 Zhang, J. and Yang, J. R. 2015. Determinants of the rate of protein sequence evolution.

735 Zuckerkandl, E. and Pauling, L. 1965. Molecules as documents of evolutionary history. *Journal of theoretical*
736 *biology*, 8(2): 357–366.