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Abstract

Mutation-selection phylogenetic codon models are grounded on population genetics first1

principles and represent a principled approach for investigating the intricate interplay2

between mutation, selection and drift. In their current form, mutation-selection codon3

models are entirely characterized by the collection of site-specific amino-acid fitness profiles.4

However, thus far, they have relied on the assumption of a constant genetic drift, translating5

into a unique effective population size (Ne) across the phylogeny, clearly an unreasonable6

hypothesis. This assumption can be alleviated by introducing variation in Ne between7

lineages. In addition to Ne, the mutation rate (µ) is susceptible to vary between lineages, and8

both should co-vary with life-history traits (LHTs). This suggests that the model should more9

globally account for the joint evolutionary process followed by all of these lineage-specific10

variables (Ne, µ, and LHTs). In this direction, we introduce an extended mutation-selection11

model jointly reconstructing in a Bayesian Monte Carlo framework the fitness landscape12

across sites and long-term trends in Ne, µ and LHTs along the phylogeny, from an alignment13

of DNA coding sequences and a matrix of observed LHTs in extant species. The model14

was tested against simulated data and applied to empirical data in mammals, isopods and15

primates. The reconstructed history of Ne in these groups appears to correlate with LHTs16

or ecological variables in a way that suggests that the reconstruction is reasonable, at least17

in its global trends. On the other hand, the range of variation in Ne inferred across species18

is surprisingly narrow. This last point suggests that some of the assumptions of the model,19

in particular concerning the assumed absence of epistatic interactions between sites, are20

potentially problematic.21

Keywords Phylogenetic · codon models · mutation-selection models · population genetic · population size ·22

mutation rate · life history traits.23
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1 Introduction24

Since the realization, by Zuckerkandl and Pauling (1965) that genetic sequences are informative about the25

evolutionary history of the species, molecular phylogenetics has developed into a mature and very active field.26

A broad array of models and inference methods have been developed, using DNA sequences for reconstructing27

the phylogenetic relationships among species (Felsenstein, 1981), for estimating divergence times (Thorne28

and Kishino, 2002), or for reconstructing the genetic sequences of remote ancestors (Liberles, 2007). However,29

genetic sequences might contain information about other aspects of the evolutionary history and, in particular,30

about past population-genetic regimes.31

Interspecific divergence is the long-term outcome of population-genetic processes, in which point mutations32

at the level of individuals are then subjected to selection and genetic drift, leading to substitutions at the33

level of the population. As a result, the substitution patterns that can be reconstructed along phylogenies are34

modulated by the underlying population-genetic parameters (mutation biases, selective landscapes, effective35

population size), suggesting the possibility to infer the past variation of these parameters over the phylogeny.36

Independently, ecological properties such as phenotypic characters or life-history traits can be observed in37

extinct or in present-day species. Using the comparative method (Felsenstein, 1985), these traits can be38

reconstructed for the unobserved ancestral species. Combined together, genetic and phenotypic ancestral39

reconstructions can then be used to unravel the interplay between evolutionary and ecological mechanisms.40

Practically, in order to disentangle mutation, selection and genetic drift, we need to classify individual41

substitutions into different categories, differing in the strength of mutation, selection or genetic drift. In42

protein-coding DNA sequences, the mutational process occurs at the nucleotide level. Assuming that43

synonymous mutations are selectively neutral and that selection mostly acts at the protein level, synonymous44

substitutions can be used to infer the patterns of mutation, without any interference contributed by selection.45

Then, by comparing the non-synonymous substitution rate relative to the synonymous substitution rate (the46

ratio dN/dS), one can estimate the global strength of selection acting on proteins. This idea was formalized47

using phylogenetic codon models (Muse and Gaut, 1994; Goldman and Yang, 1994). This led to a broad48

range of applications, either to detect proteins under adaptive selection (Kosiol et al., 2008), or to measure49

the modulations of the strength of purifying selection between sites (Echave et al., 2016), genes (Zhang and50

Yang, 2015), or lineages (Lartillot and Poujol, 2011).51

Concerning variation in dN/dS between lineages, and in a context mostly characterized by purifying52

selection, the nearly-neutral theory predicts that changes in the global strength of selection (measured as53

dN/dS) is related to changes in the relative strength of genetic drift, which is in turn mediated by changes in54

effective population size (Ne) (Ohta, 1992). Mechanistically, populations with high Ne are characterized by55

more efficient purifying selection against mildly deleterious mutations, resulting in lower dN/dS (Kimura,56

1979; Welch et al., 2008).57

Codon models have been used to empirically measure such changes in the efficacy of purifying selection58

along phylogenies, either by allowing for different dN/dS values in different parts of the tree (Dutheil et al.,59

2012), or by estimating dN/dS independently for every branch of the tree (Popadin et al., 2007). Alternatively,60
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dN/dS can be modelled as a continuous trait, varying along the phylogeny as a stochastic process, splitting at61

each node of the tree into independent processes (Seo et al., 2004). Once empirical estimates of the variation62

in dN/dS between lineages or groups has been obtained, these can be compared to changes in Ne across63

lineages, so as to test the validity of the predictions of the nearly-neutral theory. Independent empirical64

estimation of Ne is usually done vie proxies, such as the neutral diversity within species (Galtier, 2016), or65

life-history traits. For instance, animal species characterized by a large body size or an extended longevity66

are typically expected to also have a low Ne (Romiguier et al., 2014). Alternatively, a Bayesian integrative67

framework has been proposed (Lartillot and Poujol, 2011), extending the approach of Seo et al. (2004),68

in which the joint variation in dS , dN/dS and in life-history traits or other proxies of Ne is modelled as a69

multivariate Brownian process, with a variance-covariance matrix capturing the signal of their correlated70

evolution.71

Analyses using these approaches and these proxies of Ne have suggested a negative correlation between72

dN/dS and Ne (Popadin et al., 2007; Lanfear et al., 2010; Lartillot and Poujol, 2011; Lartillot and Delsuc,73

2012; Romiguier et al., 2014; Figuet et al., 2017), thus confirming the theoretical prediction of the nearly-74

neutral theory. However, the universality and robustness of the correlation between dN/dS and Ne is still75

debated (Nabholz et al., 2013; Lanfear et al., 2014; Figuet et al., 2016; Boĺıvar et al., 2019), and further76

investigation might be required. Moreover, these analyses do not explicitly formalize the quantitative77

relationship between Ne and dN/dS . This relation is in principle dependent on the underlying fitness78

landscape (Welch et al., 2008; Cherry, 1998; Goldstein, 2011), and can show complicated behavior due to79

non-equilibrium properties (Jones et al., 2016). These questions could be addressed in the context of a80

mechanistic modelling approach.81

As an alternative to classical dN/dS-based codon models, mechanistic codon models explicitly introduce82

population genetic equations into the codon substitution process (Halpern and Bruno, 1998). Specifically,83

these so-called mutation-selection codon models explicitly assign a fitness parameter to each amino acid. As84

a result, the substitution rate between each pair of codons can be predicted, as the product of the mutation85

rate and the fixation probability of the new codon, which is in turn dependent on the fitness of the initial and86

the final codons. Since the strength of selection is typically not homogeneous along the protein sequence, and87

depends on the local physicochemical requirements (Echave et al., 2016; Goldstein and Pollock, 2016, 2017),88

local changes in selective strength are usually taken into account by allowing for site-specific amino-acid89

fitness profiles. Site-specific amino-acid preferences are typically estimated either by penalized maximum90

likelihood (Tamuri and Goldstein, 2012; Tamuri et al., 2014), or in a Bayesian context, using an infinite91

mixture based on a Dirichlet process prior (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014). This second92

approach is further considered below.93

Although not directly expressed in terms of this variable, the mutation-selection formalism induces an94

equilibrium dN/dS , which is theoretically lower than 1, thus explicitly modelling purifying selection (Spielman95

and Wilke, 2015; Dos Reis, 2015). As a result, the mutation-selection codon framework proved to be a96

valuable null (nearly-neutral) model, against which to compare the observed dN/dS by classical codon models,97

so as to test for the presence of adaptation (Rodrigue and Lartillot, 2016; Bloom, 2017).98
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Figure 1: Model summary. Panel A. Our method requires a (given) rooted tree topology, an alignment of
protein-coding DNA and (optionally) quantitative life-history trait for the extant species. Panel B. Relying
on a codon model based on the mutation-selection formalism, assuming an auto-correlated log-Brownian
process for the variation through time in effective population size (Ne), mutation rate (µ) and life-history
traits, our Bayesian inference method estimates amino-acid fitness profiles across sites, variation in mutation
rate and effective population size along the tree, as well as the node ages and the nucleotide mutation rates.

However, these mutation-selection methods have so far assumed the strength of genetic drift, or equivalently99

Ne, to be constant across the phylogeny. This assumption is clearly not realistic, as attested by the empirically100

measured variation in dN/dS between lineages using classical codon models or, more directly, by the broad101

range of synonymous neutral diversity observed across species (Galtier, 2016). The impact of this assumption102

on the estimation of the fitness landscape across sites (Tamuri et al., 2014; Rodrigue and Lartillot, 2014), or103

on the tests for the presence of adaptation (Rodrigue and Lartillot, 2016; Bloom, 2017) is totally unknown.104

Relaxing this assumption of a constant Ne is thus necessary.105

Conversely, since the mutation-selection formalism explicitly incorporates Ne as a parameter of the model,106

extending the model so as to let Ne vary across lineages is relatively straightforward, at least conceptually.107

Doing this would then provide an occasion to address several important questions: do we have enough signal108

in empirical sequence alignments, to estimate the evolutionary history of Ne along a phylogeny? Can we109

more generally revisit the question of the empirical correlations between Ne and ecological life-history traits110

(longevity, maturity, weight, size, . . .), previously explored using classical dN/dS based models, but now in111

the context of this mechanistic framework?112

2 New approaches113

To address these questions, here we introduce a variant of the mutation-selection codon model, in which114

selection is modulated along the sequence (using site-specific amino-acid profiles), while the mutation rate115
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(µ), the effective population size (Ne) and life-history traits are allowed to vary along the phylogeny (figure 1).116

Methodologically, our model is fundamentally an integration between the Bayesian non-parametric version of117

the Halpern and Bruno (1998) mutation-selection model (Rodrigue and Lartillot, 2014), and the molecular118

comparative framework modelling the joint evolution of life-history and molecular traits (Lartillot and Poujol,119

2011).120

Formally, the substitution rate (per unit of time) from codon i to j, denoted Qi,j , is equal to the total121

rate of mutation (per unit of time) at the level of the population (2Neµi,j) multiplied by the probability of122

fixation of the mutation Pfix(i, j):123

Qi,j = 2Neµi,jPfix(i, j) (1)

In the case of synonymous mutations, which we assumed are neutral, the probability of fixation is independent124

of the original and target codon, and equals 1/2Ne, such that Qi,j simplifies to:125

Qi,j = µi,j (2)

In the case of non-synonymous mutations, the probability of fixation depends on the difference in fitness126

between the amino acid encoded by the initial and final codons:127

Qi,j = µi,j
4Ne

(
fA(j) − fA(i)

)
1− e4Ne(fA(i)−fA(j))

(3)

where f is a 20-dimensional vector specifying the log-fitness for each amino acid, and A(i) is the amino acid128

encoded by codon i.129

In the model introduced here, Ne and µ are allowed to vary between species (across branches) as a130

multivariate log-Brownian process, but are assumed constant along the DNA sequence. Conversely, amino-131

acid fitness profiles f are considered constant along the tree but are assumed to vary across sites, being132

modelled as independent and identically distributed random-effects from an unknown distribution estimated133

using a Dirichlet process prior.134

This model was implemented in a Markov chain Monte Carlo framework, allowing for joint inference of135

site-specific selection profiles and reconstruction of life-history traits and population-genetic regimes along136

the phylogeny. After validating our model and our inference framework against simulated data, we apply it137

to several cases of interest across metazoans (placental mammals, primates and isopods), for which some138

proxies of Ne are available.139

3 Results140

3.1 Validation using simulations141

The inference framework was first tested on independently simulated multiple sequence alignments (see142

methods). With the aim of applying the inference method to empirical datasets, the simulation parameters143

were chosen so as to match an empirically relevant empirical regime. Thus, the tree topology and the branch144

lengths were chosen based on a tree estimated on the mammalian dataset further considered below. The145

other aspects of the simulation model (fitness landscape, variation in Ne) were then varied along a gradient146

of increasing complexity, so as to test the inference framework under increasingly challenging conditions.147
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Figure 2: A-C: branch lengths in expected number of substitutions per site. D-F: Ne values across nodes
(including the leaves) relative to Ne at the root. From left to right: simulation under the mutation-selection
approximation (A,D), under a Wright-Fisher model accounting for small population size effects (5000
individuals at the root), site linkage and short term fluctuation of Ne (B,E) and accounting for site epistasis
in the context of selection for protein stability. The tree root is 150 million years old, where the initial
population start with a mutation rate of 1e−8 per site per generation, and generation time of 10 years. These
experiments confirm that signal in the placental mammalian tree can allow to reliably infer the direction of
change in Ne, even if linkage disequilibrium, short term fluctuation of Ne and finite population size effects
are not accounted for in the inference framework. However, the presence of epistasis between sites is a serious
threat to the inference of Ne.

A first series of simulations was meant to test the soundness of our inference framework, by simulating148

essentially under the model used for inference, although with an independently developed software. Thus, the149

mutation-selection approximation was assumed to be valid, and sites were simulated under different fitness150

profiles empirically determined (Bloom, 2017), and finally, Ne was assumed to undergo discrete shifts at151

the tree nodes but otherwise to remain constant along each branch. In this context, branch lengths and152

branch-specific values of Ne were accurately estimated by our inference method (figure 2, panel A & D).153

Concerning Ne, the slope of the linear regression between true and estimated branch-specific Ne is 0.794154

(r2 = 0.915)155

However, the assumptions made for this first round of simulations are almost certainly violated in practice.156

First, Ne is expected to undergo continuous changes along the lineages of the phylogeny. Second, the diffusion157

approximation for the probability of fixation (equation 3) may not hold in small finite populations. Third,158

assuming a separate substitution process for each site is equivalent to assuming no linkage between sites (free159

recombination). In practice, however, there is limited recombination, at least within exons, and this could160

induce deviations from the mutation-selection approximation, due to Hill-Robertson effects.161
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The finite population was now modelled explicitly, using a Wright-Fisher simulator, tracking the fre-162

quency of each allele at the gene level and at each generation along the phylogeny. No recombination was163

implemented within genes. These more complex simulation settings account for small population size effects,164

for hitchhiking of weakly deleterious mutations during selective sweep and for background selection due to165

linkage disequilibrium. In addition, the effective population size Ne and the mutation rate were allowed to166

fluctuate continuously along the branches of the tree (changing by a small amount after each generation167

of the underlying Wright-Fisher process). Finally, short-term fluctuations of Ne, of the order of 20% per168

generation, were accounted for by adding a random noise to the Brownian process describing the long-term169

evolution of Ne. In spite of these deviations between the simulation and the inference models, branch lengths170

and branch-specific effective population sizes could again be robustly recovered by the inference framework171

(slope of 0.868, r2 = 0.919, figure 2, panel B & E).172

These results are encouraging. However, they still rely on the assumption of a site-independent fitness173

landscape, which is equivalent to assuming no epistasis. Yet this assumption is almost certainly violated174

in practice (Pollock and Goldstein, 2014; Shah et al., 2015). Accordingly, we implemented a more complex,175

site-dependent fitness landscape accounting for the selective interactions between sites induced by the 3-176

dimensional structure of protein. In this model, the conformational stability of the protein determines its177

probability of being in the folded state, which is in turn taken as a proxy for fitness (Williams et al., 2006;178

Goldstein, 2011; Pollock et al., 2012). Under this evolutionary model, and at any gven time, the fitness179

landscape at a particular codon site is dependent on the amino acids that are currently present at those sites180

that are in the vicinity of the focal site in 3D space (see supplementary). When applied to data simulated181

using this model, our inference framework could accurately recover the simulated branch lengths (figure 2,182

panel D). On the other hand, the distribution of Ne across the tree could not be accurately recovered (slope183

of 0.0196, r2 = 0.0122, figure 2, panel F). In fact, no meaningful variation in Ne is detected, and the little184

variation in Ne that is inferred shows no correlation with the true branch-specific mean Ne values. This185

effect can be explained by the predicted independence of dN/dS , and more generally of the scaled selection186

coefficients associated with non-synonymous mutations, to changes in Ne in this specific model of protein187

stability, as shown theoretically by Goldstein (2013).188

As an alternative model of epistasis between sites, a Fisher geometric model was also considered for189

the simulations (see supplementary). The results under this model are intermediate between simulations190

without epistasis and simulations under the biophysically-inspired model considered above. More specifically,191

under data simulated using Fisher’s geometric model, the true and estimated branch-specific Ne are strongly192

correlated with each other (r2 = 0.73). On the other hand, the slope of the correlation is substantially193

less than 1 (0.571). In other words, the trends in Ne across the tree are correctly recovered, but the194

range of the variation in effective population size over the tree is substantially under-estimated. As for the195

branch lengths, they are again correctly estimated. In summary, our simulation experiments show that our196

inference framework is reliable in the absence of model mis-specification and is robust to violations concerning197

short-versus long-term variation in Ne or to the presence of empirically reasonable levels of Hill-Robertson198

interference. On the other hand, and very importantly, epistasis, which is ignored by the inference model,199

appears to lead to a general underestimation of the true variation in Ne, to an extent that depends on the200
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Figure 3: Inferred phylogenetic history of Ne (left) and µ (right) across placental mammals. Inference was
conducted on a randomly chosen set of 18 out of 226 highly conserved CDS (¡ 1% of gaps). Only highly
conserved CDS were retained such that the assumption of constant fitness landscape is not incautiously
broken by protein with changing function and/or adaptive selection. Ne values are relative to the root, which
is arbitrarily set to one. Mean values of MCMC (after burn-in) are obtained at each node of the tree, hence a
gradient can be extrapolated along each branch. µ spanned almost 2 order of magnitude, and if we assume
the root to be 105My old (Kumar et al., 2017), the rescaled mutation rate per site per year in extant species
is between 1.1e−10 and 7.8e−9. Ne at the root of the tree is arbitrarily set to 1, and all values are relative to
the root, which spans at most an order of magnitude.

exact epistatic model but can go as far as completely obliterating any signal about the true variation in Ne201

across the tree in the most extreme situations.202

3.2 Empirical experiments203

We next applied our inference framework to a series of 4 empirical datasets spanning different taxnonomic204

groups within metazoans. As a first empirical case, we considered a dataset of 77 placental mammals, for205

which complete genome sequences and information about life-history traits is available. Placental mammals206

offer an interesting example, for which effective population size is likely to show substantial variation across207

lineages. This variation in Ne is expected to covary with life-history traits (LHTs), such that large-bodied208

species are expected to have smaller effective population sizes, compared to small-bodied species.209
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For computational reasons, we restricted our analyses to small concatenates made of 18 randomly sampled210

alignments of orthologous genes. Since the mutation-selection model considered here assumes a mostly211

nearly-neutral regime, genes for which positive selection was detected using a site codon model were excluded.212

To assess the reproducibility of our inference and check that the signal about variation in Ne is not driven by213

particular genes, we analysed 4 concatenated random samples of 18 genes. The different concatenate showed214

similar trends in the change of µ (r2 = [0.92, 0.95]) and Ne (r2 = [0.51, 0.68]) between pairs of experiments215

(see supplementary).216

The reconstructed long-term changes in effective population size (Ne) is displayed in figure 3. We visually217

observe a global trend of increasing Ne throughout the tree around 90 and 60 My. We also observe Ne to be218

lower in some clades, such as Cetacea and Camelidae, while being higher in other clades, such as Rodentia219

and Pecora. In some cases, a decrease in Ne can be observed along an isolated branch of the tree, for example220

on the branches leading to the Alpaca (Vicugna pacos) or the cheetah (Acinonyx jubatus).221

The estimated covariance matrix (table 1) gives a global synthetic picture about the patterns of covariation222

between the mutation rate per unit of time µ, the effective population size Ne and the three LHTs. First, the223

variation in µ across species is negatively correlated with variation in body mass, age at sexual maturity and224

longevity (ρ = [−0.84,−0.83], table 1). These correlations, which were previously reported (Lartillot and225

Delsuc, 2012; Nabholz et al., 2013) probably reflect generation time effects (Lanfear et al., 2010; Gao et al.,226

2016). Similarly, and more interestingly in the present context, the variation in Ne between species is also227

negatively correlated with LHTs (ρ = [−0.54,−0.47], table 1). This is consistent with the expectation that228

small-sized and short-lived species tend to be characterized by larger effective population sizes (Romiguier229

et al., 2014). Of note, these results mirror previous findings, based on classical codon models, showing that230

dN/dS tends to be positively correlated with LHTs (Lartillot and Delsuc, 2012; Nabholz et al., 2013; Figuet231

et al., 2017). Result which was also recovered on the present dataset, using a classical dN/dS based codon232

model (supplementary materials). Interestingly, the correlation of dN/dS with LHTs is weaker than that of233

our inferred Ne with LHTs, as expected if the variation in dN/dS indirectly (and imperfectly) reflects the234

underlying variation in Ne. Finally, Ne and µ are positively correlated in their variation (ρ = 0.44), which235

might simply reflect the fact that both negatively correlate with LHTs. The partial-correlation coefficients236

(see supplementary) between Ne and LHTs are not significantly different from 0. However, this might simply237

be due to the very strong correlation between the three LHTs considered here (ρ = [0.81, 0.85]), such that238

controlling for any one of them removes most of the signal contributed by the available empirical variation239

between species.240

Thus, altogether, the inferred trends in Ne across species appear to be as expected, based on considerations241

about life-history evolution. On the other hand, the total range of the inferred variation in Ne across the242

entire extant taxa is surprisingly narrow, with one order of magnitude (9.2) at most between high and low243

Ne (see supplementary). This almost certainly represents an underestimate of the true range of variation244

across placental mammals.245

As another case study, we analysed a group of isopod species that have made multiple independent246

transitions to subterranean environments. The transition from a terrestrial to a subterranean lifestyle is247
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Correlation (ρ) Ne µ Maximum longevity Adult weight Female maturity

Ne - 0.439∗∗ −0.523∗∗ −0.544∗∗ −0.47∗∗

µ - - −0.832∗∗ −0.835∗∗ −0.833∗∗

Maximum longevity - - - 0.827∗∗ 0.845∗∗

Adult weight - - - - 0.809∗∗

Female maturity - - - - -

Table 1: Correlation coefficient between effective population size (Ne), mutation rate per site per unit
of time (µ), and life-history traits (Maximum longevity, adult weight and female maturity). Asterisks
indicate strength of support of the posterior probability to be different than 0 (pp) as ∗pp > 0.95 and
∗∗pp > 0.975. Observed correlations are compatible with the interpretation that large populations are
composed of small, short-lived individuals. Moreover if the mutation rate per generation is considered
constant in first approximation, the mutation rate per unit of time is positively correlated to generation rate,
hence to population size.

typically associated with a global life-history and ecological syndrome characterized by a loss of vision,248

longer generation times and, most interestingly, smaller population sizes, due to a lower carrying capacity249

of the subterranean environment (Capderrey et al., 2013). Protein coding DNA sequence alignments and250

qualitative life-history traits such as habitat (surface or underground), pigmentation (depigmented, partially251

depigmented or pigmented) and ocular structure (anophthalmia, microphthalmia, or ocular) are available252

for these species (Eme et al., 2013; Saclier et al., 2018). The assumption of a Brownian auto-correlated253

process for describing the changes in Ne along the tree may not be so well adapted to the present case, since254

the changes in Ne associated with the transition to a subterranean environment are likely to correspond to255

relatively sudden shifts, rather than continuous variation, and the ecological correlate (subterranean versus256

terrestrial) is not a quantitative trait. However, the dataset considered here contains independent transitions257

to a subterranean lifestyle, thus offering an opportunity to test for a potential correlation between inferred258

Ne variation and terrestrial versus subterranean lifestyles over the terminal branches. In our analysis across 4259

concatenated random samples of 12 genes, we observe a reproducible (see supplementary) and statistically260

significant reduction in Ne for underground or depigmented species, or for species with visual impairment261

(see figure 4). Of note, the species that dit not undergo a transition to subterranean environments feature a262

relative Ne close to 1, meaning that Ne has not changed much along the lineages (since the root of the tree).263

Again, the total range of the inferred variation in Ne across the entire extant taxa is surprisingly narrow,264

with ratio of 3.3 at most between high and low Ne (see supplementary).265

Next, our empirical framework was also applied on a set of genes sampled across primates, taken from266

Perelman et al. (2011) and reanalysed in Brevet and Lartillot (2019). In addition to LHTs (mass, female267

maturity, generation time and longevity), information about nuclear synonymous diversity (πS) and non-268

synonymous over synonymous diversity (πN/πS), are available for 10 species across the dataset and are269

expected to correlate with Ne according to population genetics (Eyre-walker and Keightley, 2007; Galtier,270

2016). However, the correlation coefficient between our inferred Ne and πS or πN/πS and LHTs are not271

statistically significant, nor with LHTs (see supplementary). Again, the total range of the inferred variation in272
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Figure 4: Ne estimation for extant isopods species, sorted according to their habitat (left), pigmentation
(middle), and ocular structure (right). All three qualitative trait statistically correlates with changes in Ne.
Underground, or depigmented species, or species with visual impairment are characteristic of low Ne species.

Ne across the entire tree is narrow, with ratio of 6.4 at most between high and low Ne. This results contrasts273

with the finding of Brevet and Lartillot (2019) on the same dataset based on dN/dS-based codon models,274

where the estimated Ne was found to span several orders of magnitude, and correlated positively with πS .275

4 Discussion276

Mechanistic phylogenetic codon models express the substitution rates between codons as a function of the277

mutation rates at the nucleotide level, selection over amino-acid sequences and effective population size.278

Thus far, the development of mutation-selection models of the HB family (Rodrigue et al., 2010; Tamuri279

and Goldstein, 2012) has mostly focused on the question of fully accounting for the fine-scale modulations of280

selection between amino-acids and across sites (Rodrigue et al., 2010; Tamuri and Goldstein, 2012). However,281

the issue of the variation in the global population-genetic regime between species has received much less282

attention. In particular, effective population size (Ne) is expected to vary substantially over the species283

of a given clade, yet current mutation-selection models all invariably assume Ne to be constant across the284

phylogeny.285

Here, we have introduced an extension of the mutation-selection model that accounts for this variation.286

When applied to an alignment of protein coding sequences, this mechanistic model returns an estimate of287

the modulations of amino-acid preferences across sites. Simultaneously, it reconstructs the joint evolution of288

life-history traits and molecular and population-genetic parameters (mutation rate µ and effective population289

size Ne) along the phylogeny, while estimating the correlation matrix between these variables, intrinsically290

accounting for phylogenetic inertia.291

4.1 Reliability of the inference of the phylogenetic history of Ne292

The reconstructions obtained on several empirical datasets, in particular in mammals and in isopods, suggest293

that the method is able to correctly infer the directional trends of the changes in Ne across species. In294

particular, in mammals, the inferred variation in Ne correlates negatively with body size and, more generally,295

with life-history traits, as expected under the reasonable assumption that large-bodied mammals would296

tend to have smaller effective population sizes Popadin et al. (2007); Lartillot and Delsuc (2012); Nabholz297
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et al. (2013); Figuet et al. (2017). Similarly, in isopods, smaller effective population sizes are inferred in298

subterranean species, again, as expected (Capderrey et al., 2013).299

However, if the trends are in right direction, the magnitude of the changes inferred across the phylogeny is300

surprisingly narrow and does not match independent empirical estimates of the variation in those clades. In301

particular, in mammals, synonymous diversity varies by a factor at least 10 between species (Galtier, 2016).302

In animals, the synonymous diversity roughly spans two orders of magnitude, whereas Ne varies considerably303

more across species, by a factor of 103 (Galtier and Rousselle, 2020). For instance, effective population sizes304

estimated based on population genomic data are of the order of 10 000 in humans (Li and Durbin, 2011),305

and 100 000 in mice (Geraldes et al., 2008). Thus, clearly, our approach underestimates the true variation.306

Different mechanisms not accounted for by the model could explain this result.307

First, genetic hitchhiking, Hill-Robertson interference, and short-term fluctuations of Ne could generate308

this effect. However, inference conducted on alignments simulated under a Wright-Fisher model accounting309

for linkage and for short-term variation in Ne suggests that empirically reasonable levels of Hill-Robertson310

interferences are not strong enough to explain this observation, at least in the regimes explored. Second, µ311

and Ne could also be fluctuating along the genome (Gossmann et al., 2011; Ellegren et al., 2003; Eyre-Walker312

and Eyre-Walker, 2014). This assumption needs to be tested, though we expect that relaxing this assumption313

would not change drastically the magnitude of inferred Ne since some of this fluctuation should be absorbed314

by the inferred site-specific fitness profiles. Third, the DNA sequences could also be misaligned at some sites.315

However we observe the same magnitude of inferred Ne for different sets of genes indicating this might not316

be the primary reason. Fourth, the genes selected in our alignments could be under adaptive evolution, or317

their function could have changed. However, at least in mammals, the impact of this potential problem was318

minimized by the use of genes for which no positive selection was detected using standard phylogenetic codon319

site models.320

Finally, one key assumption of the mutation-selection model that is likely to be violated in practice is321

the assumption of site-independence. In reality, epistasis might be prevalent in protein coding sequence322

evolution (Pollock and Goldstein, 2014; Shah et al., 2015). Our simulations under an epistatic landscape323

point to epistasis being a major factor to be investigated. Indeed, Ne could not be appropriately estimated324

under these simulation settings, although the outcome more specifically depends on the exact model for the325

fitness landscape. An extreme case is obtained using a biophysically-inspired model, assuming purifying326

selection for conformational stability. This model was previously explored using simulations and theoretical327

developments Goldstein (2013), and it was shown that, under this model, dN/dS and more generally the328

substitution process is virtually insensitive to Ne. This is confirmed by our experiments, showing that the329

mutation-selection approach explored here cannot infer the true variation in Ne under this model.330

A less extreme outcome is obtained under an alternative model also implementing epistatic interactions331

between sites via Fisher’s geometric model (Tenaillon, 2014; Blanquart and Bataillon, 2016). Interestingly,332

under this model, our inference framework is able to infer the correct trends of Ne, although with a substantially333

underestimated range of inferred variation, thus mirroring the results obtained on placental mammals. Of334

note, these results do not necessarily imply that models based on biophysics are empirically less relevant than335
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Fisher’s geometric model. Instead, they might just betray that the response of the substitution process to336

changes in Ne may be sensitive to the exact quantitative details of the underlying fitness landscape. More337

work is probably needed here to characterize these exact conditions. Nevertheless, our simulation experiments338

suggest a global pattern: epistatic interactions induce a buffering of the response of the substitution process339

to changes in Ne. The meaningful correlation patterns observed with LHTs in the case of placental mammals340

suggest that this buffering is not complete. Nevertheless, ignoring epistatic interactions at the inference level341

appears to result in a substantial underestimation of the range over which Ne varies across species.342

Interestingly, the magnitude of the inferred range of Ne variation is similar for the placental and the343

primate datasets (with a 9-fold and 6-fold variation in mammals and primates, respectively), whereas one344

would have expected a much larger range of variation over the broader phylogenetic scale of placental345

mammals, compared to primates. An explanation could be that the effects of epistasis are more apparent at346

longer time-scales. Indeed, the total number of substitutions from root to leaves is greater, and as a result,347

the local environment, and therefore the fitness landscape at the level of each site, has been less stable across348

the phylogeny.349

Although modelling epistasis in an inference framework is a complex biological, mathematical and350

computational problem, our work points to a potential signal of epistasis that could be retrieved in a351

phylogenetic context. More specifically, since the slope of the response of the substitution process to changes352

in Ne appears to be informative about the epistatic regime, then, conversely, by relying on independent353

estimates of Ne (e.g. using polymorphism), this effect could be used to leverage a quantitative estimate of354

the statistical distribution of epistatic effects.355

Other methods have recently been developed to reconstruct phylogenetic changes in Ne. For example, a356

method recently developed uses polymorphism and generation time for some present-day species to reconstruct357

Ne along the phylogeny, based on a classical (dN/dS-based) codon model (Brevet and Lartillot, 2019). This358

method implicitly relies on a nearly-neutral model, assuming a fixed and gamma-shaped distribution of fitness359

effects across non-synonymous mutations. The approach is calibrated using fossils, and as a result, returns360

estimates of the absolute value of Ne and of its phylogenetic variation. Here, in contrast, our method requires361

neither generation times nor polymorphism data, and the fitness effects are not constrained to a specific362

distribution. On the other hand, the inferred effective population sizes are only relative. In addition, the363

empirical fitting of the model requires more computing resources.364

4.2 Potential applications and future developments365

Apart from reconstructing the phylogenetic history of Ne and investigating its causes and covariates, another366

potentially interesting application of our approach is in detecting adaptation. In this direction, mutation-367

selection models represent a useful null nearly-neutral model, explicitly modelling the background of purifying368

selection acting over protein coding genes. Adaptation can then be detected by measuring the deviation from369

this null model (Rodrigue and Lartillot, 2016; Bloom, 2017).370

However, by assuming a constant Ne along a phylogeny, the statistical power of this approach to detect371

sites under adaptive evolution may not be optimal. In particular, the site-specific fitness profiles inferred by372
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the model are averaged along the phylogeny and are seemingly more diffuse than those estimated profiles373

under our present framework (see supplementary materials). Thus, our method should provide a better null374

model of purifying selection against which to test for the presence of adaptive evolution.375

This approach can be further extended in other directions. First, currently, our model also assumes376

no selection on codon usage. In the case of primates or placental mammals, this assumption is probably377

reasonable (Yang and Nielsen, 2008), although it is more questionable for other groups, in particular378

Drosophila (Duret and Mouchiroud, 1999; Plotkin and Kudla, 2011). In principle, this assumption can be379

relaxed by implementing selective codon preferences that are shared across all sites. Such an implementation380

would provide the advantage of estimating codon usage biases, while simultaneously accounting for its381

confounding effect when estimating selection on amino-acids and inter-specific variation in Ne.382

Second, the Bayesian analysis conducted here was based on relatively small alignments (20 000 sites at383

most), and with strong limits on the parametrization of the underlying mixture model (allowing for at most384

50 distinct profile categories). Profiling of the program (not shown) shows that the number of components of385

the profile mixture is the limiting step of the computation. Yet, a larger number of components might be386

required, in order to achieve more accurate inference of the site-specific profiles. One possible development,387

leading to statistically more stable genome-wide estimates of Ne, would be to develop a multi-gene parallelized388

version of the model, in which each coding sequence would have its own mixture model, and would run on a389

separate thread, while the history of Ne would be shared by all computing processes.390

Finally, estimating Ne in a mutation-selection phylogenetic model relies on the relation between Ne and391

the relative strength of drift, in a context where, ultimately, the signal about the intensity of drift comes392

from the relative rate of non-synonymous substitutions. However, this purely phylogenetic approach does not393

leverage a second aspect of Ne at the population level, namely, the fact that Ne also determines the levels of394

neutral genetic diversity that can be maintained (π = 4Neu, where u is the mutation rate per generation).395

Hence, neutral diversity yields an independent empirical estimate of Ne. In principle, our mechanistic model396

could be extended so as to incorporate polymorphism data within species at the tips of the phylogeny. A397

similar method has been previously pioneered in the case of 3 species and using a distribution of fitness398

effect(Wilson et al., 2011). More generally, the nearly-neutral theory of evolution defines a long-term Ne,399

which might be different from the short-term definition of Ne (Platt et al., 2018). Thus we could ask if400

empirical independent estimations of Ne from within species (based on genetic diversity) and between species401

(based on the substitution process) are congruent, and if not, what are the mechanisms responsible for this402

discrepancy.403

Notwithstanding theoretical considerations on the nearly-neutral theory of evolution, empirical clues404

about the long-term trends in the modulations of the intensity of genetic drift opens up a large diversity of405

ecological and evolutionary questions. Spatial and temporal changes of genetic drift along ecological niches406

and events can now be investigated, so as to disentangle the underlying evolutionary and ecological pressures.407
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5 Materials and Methods408

In the model presented here, Ne and µ (and quantitative traits) are allowed to vary between species (across409

branches) as a multivariate log-Brownian process, but assumed constant along the DNA sequence. Conversely,410

amino-acid fitness profiles are assumed to vary across sites, but are considered constant along the tree.411

The model makes several assumptions about the evolutionary process generating the observed alignment.412

First, the species tree topology is supposed to be known, and each gene should match the species tree,413

meaning genes are strict orthologs (no paralogs and no horizontal transfers). Second, there is no epistasis414

(interaction between sites), such that any position of the sequence has its own independent evolutionary415

process and a substitution at one position does not affect the substitution process at other positions. Third,416

from a population genetics perspective, we assumed sites of the protein to be unlinked, or equivalently the417

mutation rate is low enough such that there is no Hill-Robertson interference nor genetic hitchhiking. Fourth,418

polymorphism is ignored in extant species.419

The parameterization of the models is described as a Bayesian hierarchical model, including the prior420

distributions and the parameters of the model. This hierarchical model is formally represented as directed421

acyclic graph, depicted in figure 5.422

5.1 Nucleotide mutation rates423

The generalized time-reversible nucleotide mutation rate matrix R is a function of the nucleotide frequencies424

σ and the symmetric exchangeability rates ρ (Tavaré, 1986). σ = (σA, σC , σG, σT ) is the equilibrium base fre-425

quency vector, giving the frequency at which each base occurs at each site. ρ = (ρAC , ρAG, ρAT , ρCG, ρCT , ρGT )426

is the vector of exchangeabilities between nucleotides. Altogether, the rate matrix is:427

R =

A C G T


A − ρACσC ρAGσG ρATσT

C ρACσA − ρCGσG ρCTσT

G ρAGσA ρCGσC − ρGTσT

T ρATσA ρCTσC ρGTσG −

(4)

By definition, the sum of the entries in each row of the nucleotide rate matrix R is equal to 0, giving the428

diagonal entries:429

Ra,a = −
∑

b 6=a,b∈{A,C,G,T}

Ra,b (5)

The prior on the exchangeabilities ρ is a uniform Dirichlet distribution of dimension 6:430

ρ ∼ Dir
(

1
6 , 6
)
. (6)

The prior on the equilibrium base frequencies σ is a uniform Dirichlet distribution of dimension 4:431

σ ∼ Dir
(

1
4 , 4
)

(7)

The general time-reversible nucleotide matrix is normalized such that the total flow equals to 1:432 ∑
a∈{A,C,G,T}

−σaRa,a = 1. (8)
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5.2 Site-dependent selection433

Site-specific amino-acid fitness profiles are assumed i.i.d. from a mixture model, itself endowed with a
truncated Dirichlet process prior. Specifically, the mixture has K components (K = 50 by default). The prior
on component weights (θ) is modeled using a stick-breaking process, truncated at K and of parameter β:

θ ∼ StickBreaking (K, β)

⇐⇒ θk = ψk ·
k−1∏
a=1

(1− ψa) , k ∈ {1, . . . ,K},
(9)

where ψk are i.i.d. from a beta distribution434

ψk ∼ Beta (1, β) , k ∈ {1, . . . ,K}. (10)

Of note, the weights decrease geometrically in expectation, at rate β, such that lower values of β induce more435

heterogeneous distributions of weights.436

Each component of the mixture defines a 20-dimensional fitness profile φ(k) (summing to 1), for k ∈437

{1, . . . ,K}. These fitness profiles are i.i.d. from a Dirichlet of center γ and concentration α:438

φ(k) ∼ Dir (γ, α) , k ∈ {1, . . . ,K}. (11)

Site allocations to the mixture components κ (z) ∈ {1, . . . ,K}, for z ∈ {1, . . . ,Z} running over the Z sites
of the alignment, are i.i.d. multinomial of parameter θ:

m ∼ Multinomial (θ) . (12)

For a given parameter configuration for the mixture, the Malthusian fitness selection coefficients f (z) at439

site z, are obtained by taking the logarithm of the fitness profile assigned to this site:440

f (z) = ln
(
φ(κ(z))

)
, z ∈ {1, . . . ,Z}. (13)

5.3 Dated tree441

The topology of the rooted phylogenetic tree is supposed to be known and is not estimated by the model.442

The model estimates the dates at which branches split, thus the dated tree requires P − 2 internal node ages443

that are free parameters, where P is the number of extant taxa (leaves of the tree). By definition, leaf ages444

are all set to 0. The root age is set arbitrarily to 1, but if fossils data are also available the dated tree can be445

rescaled into absolute time using cross-multiplication. A uniform prior is assumed over internal node ages446

T (n), n ∈ {P + 1, . . . , 2P − 2}.447

The duration ∆T (b) represented by a given branch b, for b ∈ {1, . . . , 2P − 2} is defined as the difference448

in ages between the oldest node at the tip of the branch T (b↑), and the youngest node T (b↓):449

∆T (b) = T (b↑) − T (b↓). (14)
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Figure 5: Directed acyclic graph (DAG) of dependencies between variables. Nodes of the directed acyclic
graph are the variables, and edges are the functions. Hyper-parameters are depicted in red circles, random
variables in blue circles, and transformed variables in black. Blue dashed line denotes a drawing from a
random distribution, and black solid lines denote a function. For a given node, all the nodes pointing toward
him (upstream) are its dependencies which determines its distribution. The other way around, following the
arrows in the DAG (downstream), simple prior distributions are combined together to form more complex
joint prior distribution which ultimately defines the prior distribution of the model.

5.4 Branch dependent traits450

The effective population size Ne and mutation rate per unit of time µ are assumed to evolve along the451

phylogeny, and to be correlated. If quantitative life-history traits (LHTs) are also available for some nodes452

of the tree (leaves and/or internal nodes), they are also assumed to evolve along the phylogeny and to be453

correlated between them, and with Ne and µ. The total number of traits is noted L, when counting Ne,454

µ and all user-defined LHT (denoted X). Their variation through time is modelled by an L-dimensional455

log-Brownian process B. By convention, the first component of the log-brownian corresponds to Ne, and the456

second component to µ. Thus:457 
B1(t) = lnNe(t)

B2(t) = lnµ(t)

Bk+2(t) = lnXk(t), k ∈ {1, . . . , L}

(15)

The effective population size at the root is set to 1 for identifiability of the fitness profiles.458

Along a branch b ∈ {1, . . . , 2P − 2} of the tree, a log-Brownian process starts at the oldest node at the459

tip of the branch (b↑), and ends at the youngest node (b↓). The rate of change of the log-Brownian process460

per unit of time is constant and determined by the positive semi-definite and symmetric covariance matrix461
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Σ. Thus the distribution at node b↓ of B(b↓) is multivariate Gaussian, with mean equals to the Brownian462

process sampled at the oldest node B(b↑), and variance ∆T (b)Σ:463

B(b↓) ∼ N
(
B(b↑),∆T (b)Σ

)
, b ∈ {1, . . . , 2P − 2}. (16)

The Brownian process at the root of the tree is uniformly distributed, except for the first component fixed464

to 0 for identifiability (see above). The prior on the covariance matrix is an inverse Wishart distribution,465

parameterized by κ = 1 and with q = L+ 1 degrees of freedom:466

Σ ∼Wishart−1(κI, q). (17)

We are interested in approximating the expected substitution rates between codons over the branch. Ideally,467

under the Brownian process just described, the rates of substitution between codons are continuously changing468

through time. Also, even conditional on the value of Ne at both ends, the Brownian path along the branch469

entails a random component, leading to complicated integral expressions for substitution rates (Horvilleur470

and Lartillot, 2014). Here, a branchwise approximation is used (Lartillot and Poujol, 2011), which consists of471

first deriving an approximation for the mean Ne along the branch, conditional on the values of Ne at both472

ends, and then using this mean branchwise Ne to define the codon substitution rates.473

In the case of log-Brownian process, the most likely path (or geodesic) from B(b↑) to B(b↓) is the straight474

line, and therefore, it would make sense to take the mean value of eB(n) along this geodesic. We then have475

N
(b)
e and µ(b) for each branch b ∈ {1, . . . , 2P − 2} of the tree:476 

N (b)
e = eB

(b↓)
1 − eB

(b↑)
1

B
(b↓)
1 −B(b↑)

1

µ(b) = eB
(b↓)
2 − eB

(b↑)
2

B
(b↓)
2 −B(b↑)

2

.

(18)

5.5 Codon substitution rates477

The mutation rate between codons i and j, denoted µi,j depends on the underlying nucleotide change between478

the codons. First, if codons i and j are not nearest-neighbours, µi,j is equal to 0. Second, if codons i and j are479

only one mutation away,M(i, j) denotes the nucleotide change (e.g.M(AAT,AAG) = TG), and µi,j is given480

by the underlying nucleotide relative rate (RM(i,j)) scaled by the mutation rate per time (µ). Technically,481

the 4-dimensional nucleotide relative rate matrix (R) is normalized such that we expect 1 substitution per482

unit of time, hence the scaling by µ.483

For a given branch b and a given site z, the codon substitution rate (per unit of time) matrix Q(b,z) is484

given by:485 

Q
(b,z)
i,j = 0 if codons i and j are not neighbors,

Q
(b,z)
i,j = RM(i,j) if codons i and j are synonymous,

Q
(b,z)
i,j = RM(i,j)

4N (b)
e

(
f

(z)
A(j) − f

(z)
A(i)

)
1− e4N(b)

e

(
f

(z)
A(i)−f

(z)
A(j)

) if i and j are non-synonymous,

Q
(b,z)
i,i = −

61∑
j 6=i,j=1

Q
(b,z)
i,j .

(19)
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We see from this equation that, f and Ne are confounded, such that increasing the effective population size486

while decreasing the fitnesses by the same factor leads to the same substitution rate.487

The branch lengths l(b) are defined as the expected number of neutral substitutions per DNA site along a488

branch:489

l(b) = µ(b)∆T (b). (20)

Together, the probability of transition between codons for a given branch b and site z is:490

P (b,z) = el
(b)Q(b,z)

, (21)

which are the matrices necessary to compute the likelihood of the data (D) given the parameters of the model491

using the pruning algorithm.492

5.6 Bayesian implementation493

Bayesian inference was conducted using Markov Chain Monte Carlo (MCMC). Most phylogenetic MCMC494

samplers target the distribution over the model parameters given the sequence alignment, which means that495

they have to repeatedly invoke the pruning algorithm to recalculate the likelihood which is most often the496

limiting step of the MCMC. An alternative, which is used here, is to do the MCMC conditionally on the497

detailed substitution history H, thus doing the MCMC over the augmented configuration (H, D), under the498

target distribution obtained by combining the mapping-based likelihood with the prior over model parameters.499

The key idea that makes this strategy efficient is that the mapping-based likelihood depends on compact500

summary statistics of H, leading to very fast evaluation of the likelihood. On the other hand, this requires to501

implement more complex MCMC procedures that have to alternate between:502

1. sampling H conditionally on the data and the current parameter configuration.503

2. re-sampling the parameters conditionally on H.504

To implement the mapping-based MCMC sampling strategy, we first sample the detailed substitution505

history H for all sites along the tree. Several methods exist for doing this (Nielsen, 2002; Rodrigue et al.,506

2008), which are used here in combination (first trying the accept-reject method of Nielsen, then switching to507

the uniformization approach of Rodrigue et al if the first round has failed).508

Then, we write down the probability of H given the parameters, and finally, we collect all factors that509

depend on some parameter of interest and make some simplifications. This ultimately leads to relatively510

compact sufficient statistics (see supplementary) allowing for fast numerical evaluation of the likelihood (Irvahn511

and Minin, 2014; Davydov et al., 2016). As an example, making an MCMC move on the Ne at a given512

node of the tree is faster since only the mapping-based likelihood (using path sufficient statistics) at the513

neighbouring branches of the node is necessary, instead of computing the likelihood for the entire tree.514

Markov chain Monte Carlo (MCMC) are run for 4000 points and the first 1000 points are discarded as515

burn-in. Convergence is then assessed (see supplementary) by comparing two independent chains, checking516

that both site-specific fitness and branch Ne have the same posterior mean.517
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5.7 Correlation between traits518

The correlation between trait a and trait b ∈ {1, . . . , L} can be obtained from the covariance matrix Σ:519

ρa,b = Σa,b√
Σa,aΣb,b

. (22)

This correlation coefficient is then averaged over the posterior distribution, and statistical support is assessed520

based on the posterior probability of having a positive (or negative) value for the coefficient.521

5.8 Simulations522

To test the robustness of the model, four parameterized simulators were developed: SimuDiv, SimuPoly,523

SimuFold & SimuGeo. All four simulators use a log-Brownian multivariate process to model the changes524

in the mutation rate per generation, the generation time and Ne along the lineages. SimuDiv, SimuFold &525

SimuGeo all simulate point substitutions along the phylogenetic tree. The simulator starts from an initial526

sequence at equilibrium. The change in fitness is computed for all possible mutant, hence computing all527

strictly positive substitution rates. At each point, the next substitution is chosen proportional to these rates528

using in Gillespie’s algorithm (Gillespie, 1977). At each node, the process is split, and finally stopped at the529

leaves of the tree. SimuPoly simulates explicitly each generation along the phylogeny under a Wright-Fisher530

population, consisting of three steps: mutation, selection and genetic drift of currently segregating alleles.531

Mutations are drawn randomly based on mutation rates. Drift is induced by the multinomial resampling532

of the currently segregating alleles. We assume that the DNA sequence is composed of exons, with no533

linkage between exons, and total linkage of sites within an exon. Moreover, in SimuPoly, the instant value of534

log-Ne can also be modelled as a sum of a log-Brownian process and an Ornstein-Uhlenbeck process. The535

log-Brownian motion accounts for long-term fluctuations, while the Ornstein-Uhlenbeck introduces short-term536

fluctuations. In SimuDiv and SimuPoly, each codon site contributes independently to the fitness depending on537

the encoded amino acids, through site-specific amino-acid fitness profiles experimentally determined (Bloom,538

2017). In SimuFold, the fitness of a sequence is computed as the probability of the protein to be in the folded539

state. SimuFold is a C++ adaptation of a Java code previously published (Goldstein and Pollock, 2016, 2017),540

where we also allow for changes in Ne and µ along a phylogenetic tree. Supplementary materials describe the541

models in more details, as well as performance of the inference model against them.542

5.9 Empirical data543

For placental mammals, alignments were extracted from OrthoMam database (Ranwez et al., 2007; Scornavacca544

et al., 2019). Only highly conserved coding sequences are kept for the analysis, representing 226 CDS with545

≤ 1% of gaps in the alignment. Life-history traits (LHTs) for longevity, age at maturity and weight were546

obtained from AnAge database (De Magalhães and Costa, 2009; Tacutu et al., 2012). We focused our analysis547

on 77 taxa for which information is available for at least one LHT.548
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6 Reproducibility - Supplementary Materials549

The simulators written in C++ are publicly available under MIT license at https://github.com/550

ThibaultLatrille/SimuEvol. The Bayesian inference model, written in C++ in the component based (Lanore,551

2019) software BayesCode, is publicly available at https://github.com/ThibaultLatrille/bayescode.552

Supplementary materials and figures are available in appendix supplementary materials. The scripts553

and instructions necessary to reproduce the simulated and empirical experiments are available at https:554

//github.com/ThibaultLatrille/MutationSelectionDrift.555

7 Author contributions556

TL gathered and formatted the data, developed the new models in BayesCode and SimuEvol and conducted557

all analyses, in the context of a PhD work (Ecole Normale Superieure de Lyon). VL restructured and558

refactored the code sustaining the branch and site heterogeneous Bayesian Monte Carlo in BayesCode. TL559

and NL both contributed to the writing of the manuscript.560
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We wish to thank Tristan Lefébure for sharing the isopods phylogeny, alignments and life-history traits. We562

thank Philippe Veber for insightful discussion on mutation-selection models and software development. We563

gratefully also acknowledge the help of Nicolas Rodrigue, Laurent Gueguen, Benoit Nahbolz and Laurent564

Duret for their advice and review concerning this manuscript. This work was performed using the computing565

facilities of the CC LBBE/PRABI. Funding: French National Research Agency, Grant ANR-15-CE12-0010-01566

/ DASIRE.567

References568

Blanquart, F. and Bataillon, T. 2016. Epistasis and the structure of fitness landscapes: Are experimental569

fitness landscapes compatible with fisher’s geometric model? Genetics, 203(2): 847–862.570

Bloom, J. D. 2017. Identification of positive selection in genes is greatly improved by using experimentally571

informed site-specific models. Biology Direct, 12(1): 1.572
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Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on720

mathematics in the life sciences, 17(2): 57–86.721

Tenaillon, O. 2014. The Utility of Fisher’s Geometric Model in Evolutionary Genetics. Annual Review of722

Ecology, Evolution, and Systematics, 45(1): 179–201.723

Thorne, J. L. and Kishino, H. 2002. Divergence Time and Evolutionary Rate Estimation with Multilocus724

Data. Systematic Biology, 51(5): 689–702.725

Welch, J. J., Eyre-Walker, A., and Waxman, D. 2008. Divergence and polymorphism under the nearly neutral726

theory of molecular evolution. Journal of Molecular Evolution, 67(4): 418–426.727

Williams, P. D., Pollock, D. D., Blackburne, B. P., and Goldstein, R. A. 2006. Assessing the accuracy of728

ancestral protein reconstruction methods. PLoS Computational Biology, 2(6): 0598–0605.729

Wilson, D. J., Hernandez, R. D., Andolfatto, P., and Przeworski, M. 2011. A Population Genetics-Phylogenetics730

Approach to Inferring Natural Selection in Coding Sequences. PLoS Genetics, 7(12): e1002395.731

Yang, Z. and Nielsen, R. 2008. Mutation-selection models of codon substitution and their use to estimate732

selective strengths on codon usage. Molecular biology and evolution, 25(3): 568–579.733

Zhang, J. and Yang, J. R. 2015. Determinants of the rate of protein sequence evolution.734

Zuckerkandl, E. and Pauling, L. 1965. Molecules as documents of evolutionary history. Journal of theoretical735

biology, 8(2): 357–366.736

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.13.426421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426421
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	New approaches
	Results
	Validation using simulations
	Empirical experiments

	Discussion
	Reliability of the inference of the phylogenetic history of Ne
	Potential applications and future developments

	Materials and Methods
	Nucleotide mutation rates
	Site-dependent selection
	Dated tree
	Branch dependent traits
	Codon substitution rates
	Bayesian implementation
	Correlation between traits
	Simulations
	Empirical data

	Reproducibility - Supplementary Materials
	Author contributions
	Acknowledgements

