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Abstract
1 Mutation-selection phylogenetic codon models are grounded on population genetics first
2 principles and represent a principled approach for investigating the intricate interplay
3 between mutation, selection and drift. In their current form, mutation-selection codon
4 models are entirely characterized by the collection of site-specific amino-acid fitness profiles.
5 However, thus far, they have relied on the assumption of a constant genetic drift, translating
6 into a unique effective population size (N,) across the phylogeny, clearly an unreasonable
7 hypothesis. This assumption can be alleviated by introducing variation in N, between
8 lineages. In addition to N, the mutation rate (u) is susceptible to vary between lineages, and
9 both should co-vary with life-history traits (LHTs). This suggests that the model should more
10 globally account for the joint evolutionary process followed by all of these lineage-specific
11 variables (N, p, and LHTs). In this direction, we introduce an extended mutation-selection
12 model jointly reconstructing in a Bayesian Monte Carlo framework the fitness landscape
13 across sites and long-term trends in N,, i and LHTs along the phylogeny, from an alignment
14 of DNA coding sequences and a matrix of observed LHTs in extant species. The model
15 was tested against simulated data and applied to empirical data in mammals, isopods and
16 primates. The reconstructed history of N, in these groups appears to correlate with LHTs
17 or ecological variables in a way that suggests that the reconstruction is reasonable, at least
18 in its global trends. On the other hand, the range of variation in Ne inferred across species
19 is surprisingly narrow. This last point suggests that some of the assumptions of the model,
20 in particular concerning the assumed absence of epistatic interactions between sites, are

21 potentially problematic.

2 Keywords Phylogenetic - codon models - mutation-selection models - population genetic - population size -

23 mutation rate - life history traits.
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2% 1 Introduction

25 Since the realization, by Zuckerkandl and Pauling (1965) that genetic sequences are informative about the
26 evolutionary history of the species, molecular phylogenetics has developed into a mature and very active field.
27 A broad array of models and inference methods have been developed, using DNA sequences for reconstructing
28 the phylogenetic relationships among species (Felsenstein, 1981), for estimating divergence times (Thorne
20 and Kishino, 2002), or for reconstructing the genetic sequences of remote ancestors (Liberles, 2007). However,
30 genetic sequences might contain information about other aspects of the evolutionary history and, in particular,

31 about past population-genetic regimes.

32 Interspecific divergence is the long-term outcome of population-genetic processes, in which point mutations
33 at the level of individuals are then subjected to selection and genetic drift, leading to substitutions at the
34 level of the population. As a result, the substitution patterns that can be reconstructed along phylogenies are
35 modulated by the underlying population-genetic parameters (mutation biases, selective landscapes, effective
36 population size), suggesting the possibility to infer the past variation of these parameters over the phylogeny.
37 Independently, ecological properties such as phenotypic characters or life-history traits can be observed in
38 extinct or in present-day species. Using the comparative method (Felsenstein, 1985), these traits can be
39 reconstructed for the unobserved ancestral species. Combined together, genetic and phenotypic ancestral

40 reconstructions can then be used to unravel the interplay between evolutionary and ecological mechanisms.

41 Practically, in order to disentangle mutation, selection and genetic drift, we need to classify individual
a2 substitutions into different categories, differing in the strength of mutation, selection or genetic drift. In
43 protein-coding DNA sequences, the mutational process occurs at the nucleotide level. Assuming that
a2 synonymous mutations are selectively neutral and that selection mostly acts at the protein level, synonymous
45 substitutions can be used to infer the patterns of mutation, without any interference contributed by selection.
46 Then, by comparing the non-synonymous substitution rate relative to the synonymous substitution rate (the
47 ratio dy/dg), one can estimate the global strength of selection acting on proteins. This idea was formalized
a3 using phylogenetic codon models (Muse and Gaut, 1994; Goldman and Yang, 1994). This led to a broad
a0 range of applications, either to detect proteins under adaptive selection (Kosiol et al., 2008), or to measure
50 the modulations of the strength of purifying selection between sites (Echave et al., 2016), genes (Zhang and
st Yang, 2015), or lineages (Lartillot and Poujol, 2011).

52 Concerning variation in dy/ds between lineages, and in a context mostly characterized by purifying
53 selection, the nearly-neutral theory predicts that changes in the global strength of selection (measured as
54 dy/dg) is related to changes in the relative strength of genetic drift, which is in turn mediated by changes in
55 effective population size (N,) (Ohta, 1992). Mechanistically, populations with high N, are characterized by
s6 more efficient purifying selection against mildly deleterious mutations, resulting in lower dy/ds (Kimura,
57 1979; Welch et al., 2008).

58 Codon models have been used to empirically measure such changes in the efficacy of purifying selection
so along phylogenies, either by allowing for different dy/dg values in different parts of the tree (Dutheil et al.,
60 2012), or by estimating dy/dg independently for every branch of the tree (Popadin et al., 2007). Alternatively,
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61 dpn/ds can be modelled as a continuous trait, varying along the phylogeny as a stochastic process, splitting at
62 each node of the tree into independent processes (Seo et al., 2004). Once empirical estimates of the variation
63 in dy/dg between lineages or groups has been obtained, these can be compared to changes in N, across
64+ lineages, so as to test the validity of the predictions of the nearly-neutral theory. Independent empirical
65 estimation of N, is usually done vie proxies, such as the neutral diversity within species (Galtier, 2016), or
66 life-history traits. For instance, animal species characterized by a large body size or an extended longevity
67 are typically expected to also have a low N, (Romiguier et al., 2014). Alternatively, a Bayesian integrative
6s framework has been proposed (Lartillot and Poujol, 2011), extending the approach of Seo et al. (2004),
60 in which the joint variation in dg, dy/dgs and in life-history traits or other proxies of N, is modelled as a
70 multivariate Brownian process, with a variance-covariance matrix capturing the signal of their correlated

71 evolution.

72 Analyses using these approaches and these proxies of N, have suggested a negative correlation between
73 dy/ds and N, (Popadin et al., 2007; Lanfear et al., 2010; Lartillot and Poujol, 2011; Lartillot and Delsuc,
74 2012; Romiguier et al., 2014; Figuet et al., 2017), thus confirming the theoretical prediction of the nearly-
75 neutral theory. However, the universality and robustness of the correlation between dy/ds and N, is still
76 debated (Nabholz et al., 2013; Lanfear et al., 2014; Figuet et al., 2016; Bolivar et al., 2019), and further
77 investigation might be required. Moreover, these analyses do not explicitly formalize the quantitative
78 relationship between N, and dy/dg. This relation is in principle dependent on the underlying fitness
79 landscape (Welch et al., 2008; Cherry, 1998; Goldstein, 2011), and can show complicated behavior due to
g0 non-equilibrium properties (Jones et al., 2016). These questions could be addressed in the context of a

81 mechanistic modelling approach.

82 As an alternative to classical dy /dg-based codon models, mechanistic codon models explicitly introduce
83 population genetic equations into the codon substitution process (Halpern and Bruno, 1998). Specifically,
s+ these so-called mutation-selection codon models explicitly assign a fitness parameter to each amino acid. As
85 a result, the substitution rate between each pair of codons can be predicted, as the product of the mutation
ss rate and the fixation probability of the new codon, which is in turn dependent on the fitness of the initial and
g7 the final codons. Since the strength of selection is typically not homogeneous along the protein sequence, and
88 depends on the local physicochemical requirements (Echave et al., 2016; Goldstein and Pollock, 2016, 2017),
so local changes in selective strength are usually taken into account by allowing for site-specific amino-acid
90 fitness profiles. Site-specific amino-acid preferences are typically estimated either by penalized maximum
o1 likelihood (Tamuri and Goldstein, 2012; Tamuri et al., 2014), or in a Bayesian context, using an infinite
92 mixture based on a Dirichlet process prior (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014). This second

93 approach is further considered below.

94 Although not directly expressed in terms of this variable, the mutation-selection formalism induces an
o5 equilibrium dy/dg, which is theoretically lower than 1, thus explicitly modelling purifying selection (Spielman
o6 and Wilke, 2015; Dos Reis, 2015). As a result, the mutation-selection codon framework proved to be a
o7 valuable null (nearly-neutral) model, against which to compare the observed dy /dg by classical codon models,

98 so as to test for the presence of adaptation (Rodrigue and Lartillot, 2016; Bloom, 2017).
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Figure 1: Model summary. Panel A. Our method requires a (given) rooted tree topology, an alignment of
protein-coding DNA and (optionally) quantitative life-history trait for the extant species. Panel B. Relying
on a codon model based on the mutation-selection formalism, assuming an auto-correlated log-Brownian
process for the variation through time in effective population size (NV,), mutation rate (u) and life-history
traits, our Bayesian inference method estimates amino-acid fitness profiles across sites, variation in mutation

rate and effective population size along the tree, as well as the node ages and the nucleotide mutation rates.

However, these mutation-selection methods have so far assumed the strength of genetic drift, or equivalently
Ne, to be constant across the phylogeny. This assumption is clearly not realistic, as attested by the empirically
measured variation in dy/ds between lineages using classical codon models or, more directly, by the broad
range of synonymous neutral diversity observed across species (Galtier, 2016). The impact of this assumption
on the estimation of the fitness landscape across sites (Tamuri et al., 2014; Rodrigue and Lartillot, 2014), or
on the tests for the presence of adaptation (Rodrigue and Lartillot, 2016; Bloom, 2017) is totally unknown.

Relaxing this assumption of a constant N, is thus necessary.

Conversely, since the mutation-selection formalism explicitly incorporates N, as a parameter of the model,
extending the model so as to let N, vary across lineages is relatively straightforward, at least conceptually.
Doing this would then provide an occasion to address several important questions: do we have enough signal
in empirical sequence alignments, to estimate the evolutionary history of N, along a phylogeny? Can we
more generally revisit the question of the empirical correlations between N, and ecological life-history traits
(longevity, maturity, weight, size, ...), previously explored using classical dy /dg based models, but now in

the context of this mechanistic framework?

2 New approaches

To address these questions, here we introduce a variant of the mutation-selection codon model, in which

selection is modulated along the sequence (using site-specific amino-acid profiles), while the mutation rate
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116 (), the effective population size (N,) and life-history traits are allowed to vary along the phylogeny (figure 1).
117 Methodologically, our model is fundamentally an integration between the Bayesian non-parametric version of
us the Halpern and Bruno (1998) mutation-selection model (Rodrigue and Lartillot, 2014), and the molecular
119 comparative framework modelling the joint evolution of life-history and molecular traits (Lartillot and Poujol,
10 2011).

121 Formally, the substitution rate (per unit of time) from codon i to j, denoted @Q; ;, is equal to the total
122 rate of mutation (per unit of time) at the level of the population (2Nep;, ;) multiplied by the probability of
123 fixation of the mutation Pgy (i, j):

Qij = 2Nepi,jPsx (i, j) (1)
124 In the case of synonymous mutations, which we assumed are neutral, the probability of fixation is independent

125 of the original and target codon, and equals 1/2N,, such that @, ; simplifies to:
Qi = fhij (2)

126 In the case of non-synonymous mutations, the probability of fixation depends on the difference in fitness

127 between the amino acid encoded by the initial and final codons:

AN. (faw) — faw)
1— e4Nc(fA<z)*fA(j>)

(3)

Qi = i j

128 where f is a 20-dimensional vector specifying the log-fitness for each amino acid, and .A(¢) is the amino acid

129 encoded by codon 3.

130 In the model introduced here, N, and p are allowed to vary between species (across branches) as a
131 multivariate log-Brownian process, but are assumed constant along the DNA sequence. Conversely, amino-
132 acid fitness profiles f are considered constant along the tree but are assumed to vary across sites, being
133 modelled as independent and identically distributed random-effects from an unknown distribution estimated

134 using a Dirichlet process prior.

135 This model was implemented in a Markov chain Monte Carlo framework, allowing for joint inference of
136 site-specific selection profiles and reconstruction of life-history traits and population-genetic regimes along
137 the phylogeny. After validating our model and our inference framework against simulated data, we apply it
138 to several cases of interest across metazoans (placental mammals, primates and isopods), for which some

130 proxies of N, are available.

1w 3 Results

141 3.1 Validation using simulations

122 The inference framework was first tested on independently simulated multiple sequence alignments (see
143 methods). With the aim of applying the inference method to empirical datasets, the simulation parameters
144 were chosen so as to match an empirically relevant empirical regime. Thus, the tree topology and the branch
145 lengths were chosen based on a tree estimated on the mammalian dataset further considered below. The
146 other aspects of the simulation model (fitness landscape, variation in N,) were then varied along a gradient

147 of increasing complexity, so as to test the inference framework under increasingly challenging conditions.
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Figure 2: A-C: branch lengths in expected number of substitutions per site. D-F: N, values across nodes
(including the leaves) relative to N, at the root. From left to right: simulation under the mutation-selection
approximation (A,D), under a Wright-Fisher model accounting for small population size effects (5000
individuals at the root), site linkage and short term fluctuation of N, (B,E) and accounting for site epistasis
in the context of selection for protein stability. The tree root is 150 million years old, where the initial
population start with a mutation rate of 1e=® per site per generation, and generation time of 10 years. These
experiments confirm that signal in the placental mammalian tree can allow to reliably infer the direction of
change in N, even if linkage disequilibrium, short term fluctuation of N, and finite population size effects
are not accounted for in the inference framework. However, the presence of epistasis between sites is a serious

threat to the inference of N,.

A first series of simulations was meant to test the soundness of our inference framework, by simulating
essentially under the model used for inference, although with an independently developed software. Thus, the
mutation-selection approximation was assumed to be valid, and sites were simulated under different fitness
profiles empirically determined (Bloom, 2017), and finally, N, was assumed to undergo discrete shifts at
the tree nodes but otherwise to remain constant along each branch. In this context, branch lengths and
branch-specific values of N, were accurately estimated by our inference method (figure 2, panel A & D).

Concerning N, the slope of the linear regression between true and estimated branch-specific N, is 0.794
(r? = 0.915)

However, the assumptions made for this first round of simulations are almost certainly violated in practice.
First, N, is expected to undergo continuous changes along the lineages of the phylogeny. Second, the diffusion
approximation for the probability of fixation (equation 3) may not hold in small finite populations. Third,
assuming a separate substitution process for each site is equivalent to assuming no linkage between sites (free
recombination). In practice, however, there is limited recombination, at least within exons, and this could

induce deviations from the mutation-selection approximation, due to Hill-Robertson effects.
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162 The finite population was now modelled explicitly, using a Wright-Fisher simulator, tracking the fre-
163 quency of each allele at the gene level and at each generation along the phylogeny. No recombination was
164 implemented within genes. These more complex simulation settings account for small population size effects,
165 for hitchhiking of weakly deleterious mutations during selective sweep and for background selection due to
166 linkage disequilibrium. In addition, the effective population size N, and the mutation rate were allowed to
167 fluctuate continuously along the branches of the tree (changing by a small amount after each generation
168 of the underlying Wright-Fisher process). Finally, short-term fluctuations of N, of the order of 20% per
160 generation, were accounted for by adding a random noise to the Brownian process describing the long-term
170 evolution of N,. In spite of these deviations between the simulation and the inference models, branch lengths
1711 and branch-specific effective population sizes could again be robustly recovered by the inference framework

172 (slope of 0.868, r? = 0.919, figure 2, panel B & E).

173 These results are encouraging. However, they still rely on the assumption of a site-independent fitness
174 landscape, which is equivalent to assuming no epistasis. Yet this assumption is almost certainly violated
175 in practice (Pollock and Goldstein, 2014; Shah et al., 2015). Accordingly, we implemented a more complex,
176 site-dependent fitness landscape accounting for the selective interactions between sites induced by the 3-
177 dimensional structure of protein. In this model, the conformational stability of the protein determines its
178 probability of being in the folded state, which is in turn taken as a proxy for fitness (Williams et al., 2006;
179 Goldstein, 2011; Pollock et al., 2012). Under this evolutionary model, and at any gven time, the fitness
180 landscape at a particular codon site is dependent on the amino acids that are currently present at those sites
181 that are in the vicinity of the focal site in 3D space (see supplementary). When applied to data simulated
182 using this model, our inference framework could accurately recover the simulated branch lengths (figure 2,
183 panel D). On the other hand, the distribution of N, across the tree could not be accurately recovered (slope
184 of 0.0196, r? = 0.0122, figure 2, panel F). In fact, no meaningful variation in N, is detected, and the little
185 variation in N, that is inferred shows no correlation with the true branch-specific mean N, values. This
186 effect can be explained by the predicted independence of dy/dg, and more generally of the scaled selection
187 coefficients associated with non-synonymous mutations, to changes in N, in this specific model of protein

188 stability, as shown theoretically by Goldstein (2013).

189 As an alternative model of epistasis between sites, a Fisher geometric model was also considered for
190 the simulations (see supplementary). The results under this model are intermediate between simulations
101 without epistasis and simulations under the biophysically-inspired model considered above. More specifically,
12 under data simulated using Fisher’s geometric model, the true and estimated branch-specific N, are strongly
13 correlated with each other (r? = 0.73). On the other hand, the slope of the correlation is substantially
104 less than 1 (0.571). In other words, the trends in N, across the tree are correctly recovered, but the
15 range of the variation in effective population size over the tree is substantially under-estimated. As for the
196 branch lengths, they are again correctly estimated. In summary, our simulation experiments show that our
197 inference framework is reliable in the absence of model mis-specification and is robust to violations concerning
198 short-versus long-term variation in IV, or to the presence of empirically reasonable levels of Hill-Robertson
199 interference. On the other hand, and very importantly, epistasis, which is ignored by the inference model,

200 appears to lead to a general underestimation of the true variation in Ne, to an extent that depends on the
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Figure 3: Inferred phylogenetic history of N, (left) and p (right) across placental mammals. Inference was

conducted on a randomly chosen set of 18 out of 226 highly conserved CDS (j 1% of gaps). Ounly highly

conserved CDS were retained such that the assumption of constant fitness landscape is not incautiously

broken by protein with changing function and/or adaptive selection. N, values are relative to the root, which

is arbitrarily set to one. Mean values of MCMC (after burn-in) are obtained at each node of the tree, hence a

gradient can be extrapolated along each branch. p spanned almost 2 order of magnitude, and if we assume

the root to be 1056My old (Kumar et al., 2017), the rescaled mutation rate per site per year in extant species

is between 1.1e 1% and 7.8¢7°. N, at the root of the tree is arbitrarily set to 1, and all values are relative to

the root, which spans at most an order of magnitude.

exact epistatic model but can go as far as completely obliterating any signal about the true variation in N,

across the tree in the most extreme situations.

3.2 Empirical experiments

We next applied our inference framework to a series of 4 empirical datasets spanning different taxnonomic

groups within metazoans. As a first empirical case, we considered a dataset of 77 placental mammals, for

which complete genome sequences and information about life-history traits is available. Placental mammals

offer an interesting example, for which effective population size is likely to show substantial variation across

lineages. This variation in N, is expected to covary with life-history traits (LHTSs), such that large-bodied

species are expected to have smaller effective population sizes, compared to small-bodied species.


https://doi.org/10.1101/2021.01.13.426421
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426421; this version posted January 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

210 For computational reasons, we restricted our analyses to small concatenates made of 18 randomly sampled
211 alignments of orthologous genes. Since the mutation-selection model considered here assumes a mostly
212 nearly-neutral regime, genes for which positive selection was detected using a site codon model were excluded.
213 To assess the reproducibility of our inference and check that the signal about variation in IV, is not driven by
214 particular genes, we analysed 4 concatenated random samples of 18 genes. The different concatenate showed
215 similar trends in the change of p (r? = [0.92,0.95]) and N, (r? = [0.51,0.68]) between pairs of experiments

216 (see supplementary).

217 The reconstructed long-term changes in effective population size (NN,) is displayed in figure 3. We visually
218 observe a global trend of increasing N, throughout the tree around 90 and 60 My. We also observe N, to be
219 lower in some clades, such as Cetacea and Camelidae, while being higher in other clades, such as Rodentia
20 and Pecora. In some cases, a decrease in N, can be observed along an isolated branch of the tree, for example

21 on the branches leading to the Alpaca ( Vicugna pacos) or the cheetah (Acinonyz jubatus).

222 The estimated covariance matrix (table 1) gives a global synthetic picture about the patterns of covariation
23  between the mutation rate per unit of time u, the effective population size N, and the three LHTs. First, the
224 variation in p across species is negatively correlated with variation in body mass, age at sexual maturity and
25 longevity (p = [—0.84,—0.83], table 1). These correlations, which were previously reported (Lartillot and
26 Delsuc, 2012; Nabholz et al., 2013) probably reflect generation time effects (Lanfear et al., 2010; Gao et al.,
227 2016). Similarly, and more interestingly in the present context, the variation in N, between species is also
28 negatively correlated with LHTs (p = [—0.54, —0.47], table 1). This is consistent with the expectation that
220 small-sized and short-lived species tend to be characterized by larger effective population sizes (Romiguier
230 et al., 2014). Of note, these results mirror previous findings, based on classical codon models, showing that
231 dy/dg tends to be positively correlated with LHTs (Lartillot and Delsuc, 2012; Nabholz et al., 2013; Figuet
232 et al., 2017). Result which was also recovered on the present dataset, using a classical dy/ds based codon
233 model (supplementary materials). Interestingly, the correlation of dy/dg with LHTS is weaker than that of
234 our inferred N, with LHTS, as expected if the variation in dy/dg indirectly (and imperfectly) reflects the
235 underlying variation in Ne. Finally, N, and u are positively correlated in their variation (p = 0.44), which
236 might simply reflect the fact that both negatively correlate with LHTs. The partial-correlation coefficients
237 (see supplementary) between N, and LHTs are not significantly different from 0. However, this might simply
238 be due to the very strong correlation between the three LHTs considered here (p = [0.81,0.85]), such that
230 controlling for any one of them removes most of the signal contributed by the available empirical variation

240 between species.

241 Thus, altogether, the inferred trends in N, across species appear to be as expected, based on considerations
242 about life-history evolution. On the other hand, the total range of the inferred variation in IV, across the
243 entire extant taxa is surprisingly narrow, with one order of magnitude (9.2) at most between high and low
24 N, (see supplementary). This almost certainly represents an underestimate of the true range of variation

245 across placental mammals.

246 As another case study, we analysed a group of isopod species that have made multiple independent

247 transitions to subterranean environments. The transition from a terrestrial to a subterranean lifestyle is
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Correlation (p) Ne o Maximum longevity Adult weight Female maturity
Ne - 0.439** —0.523*" —0.544** —0.47*"
I - - —0.832** —0.835"* —0.833**
Maximum longevity - - - 0.827** 0.845**
Adult weight - - - - 0.809**
Female maturity - - - - -

Table 1:  Correlation coefficient between effective population size (N,), mutation rate per site per unit
of time (i), and life-history traits (Maximum longevity, adult weight and female maturity). Asterisks
indicate strength of support of the posterior probability to be different than 0 (pp) as *pp > 0.95 and
**pp > 0.975. Observed correlations are compatible with the interpretation that large populations are
composed of small, short-lived individuals. Moreover if the mutation rate per generation is considered
constant in first approximation, the mutation rate per unit of time is positively correlated to generation rate,

hence to population size.

typically associated with a global life-history and ecological syndrome characterized by a loss of vision,
longer generation times and, most interestingly, smaller population sizes, due to a lower carrying capacity
of the subterranean environment (Capderrey et al., 2013). Protein coding DNA sequence alignments and
qualitative life-history traits such as habitat (surface or underground), pigmentation (depigmented, partially
depigmented or pigmented) and ocular structure (anophthalmia, microphthalmia, or ocular) are available
for these species (Eme et al., 2013; Saclier et al., 2018). The assumption of a Brownian auto-correlated
process for describing the changes in N, along the tree may not be so well adapted to the present case, since
the changes in N, associated with the transition to a subterranean environment are likely to correspond to
relatively sudden shifts, rather than continuous variation, and the ecological correlate (subterranean versus
terrestrial) is not a quantitative trait. However, the dataset considered here contains independent transitions
to a subterranean lifestyle, thus offering an opportunity to test for a potential correlation between inferred
N, variation and terrestrial versus subterranean lifestyles over the terminal branches. In our analysis across 4
concatenated random samples of 12 genes, we observe a reproducible (see supplementary) and statistically
significant reduction in N, for underground or depigmented species, or for species with visual impairment
(see figure 4). Of note, the species that dit not undergo a transition to subterranean environments feature a
relative N, close to 1, meaning that N, has not changed much along the lineages (since the root of the tree).
Again, the total range of the inferred variation in N, across the entire extant taxa is surprisingly narrow,

with ratio of 3.3 at most between high and low N, (see supplementary).

Next, our empirical framework was also applied on a set of genes sampled across primates, taken from
Perelman et al. (2011) and reanalysed in Brevet and Lartillot (2019). In addition to LHTs (mass, female
maturity, generation time and longevity), information about nuclear synonymous diversity (7s) and non-
synonymous over synonymous diversity (my/7g), are available for 10 species across the dataset and are
expected to correlate with N, according to population genetics (Eyre-walker and Keightley, 2007; Galtier,
2016). However, the correlation coefficient between our inferred N, and mg or mn/mg and LHTs are not

statistically significant, nor with LHTs (see supplementary). Again, the total range of the inferred variation in
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Figure 4: N, estimation for extant isopods species, sorted according to their habitat (left), pigmentation
(middle), and ocular structure (right). All three qualitative trait statistically correlates with changes in N,.

Underground, or depigmented species, or species with visual impairment are characteristic of low N, species.

N, across the entire tree is narrow, with ratio of 6.4 at most between high and low N,. This results contrasts
with the finding of Brevet and Lartillot (2019) on the same dataset based on dy/ds-based codon models,

where the estimated N, was found to span several orders of magnitude, and correlated positively with 7g.

4 Discussion

Mechanistic phylogenetic codon models express the substitution rates between codons as a function of the
mutation rates at the nucleotide level, selection over amino-acid sequences and effective population size.
Thus far, the development of mutation-selection models of the HB family (Rodrigue et al., 2010; Tamuri
and Goldstein, 2012) has mostly focused on the question of fully accounting for the fine-scale modulations of
selection between amino-acids and across sites (Rodrigue et al., 2010; Tamuri and Goldstein, 2012). However,
the issue of the variation in the global population-genetic regime between species has received much less
attention. In particular, effective population size (N,) is expected to vary substantially over the species
of a given clade, yet current mutation-selection models all invariably assume N, to be constant across the

phylogeny.

Here, we have introduced an extension of the mutation-selection model that accounts for this variation.
When applied to an alignment of protein coding sequences, this mechanistic model returns an estimate of
the modulations of amino-acid preferences across sites. Simultaneously, it reconstructs the joint evolution of
life-history traits and molecular and population-genetic parameters (mutation rate p and effective population
size N,) along the phylogeny, while estimating the correlation matrix between these variables, intrinsically

accounting for phylogenetic inertia.

4.1 Reliability of the inference of the phylogenetic history of N,

The reconstructions obtained on several empirical datasets, in particular in mammals and in isopods, suggest
that the method is able to correctly infer the directional trends of the changes in N, across species. In
particular, in mammals, the inferred variation in IV, correlates negatively with body size and, more generally,
with life-history traits, as expected under the reasonable assumption that large-bodied mammals would

tend to have smaller effective population sizes Popadin et al. (2007); Lartillot and Delsuc (2012); Nabholz
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208 et al. (2013); Figuet et al. (2017). Similarly, in isopods, smaller effective population sizes are inferred in

200 subterranean species, again, as expected (Capderrey et al., 2013).

300 However, if the trends are in right direction, the magnitude of the changes inferred across the phylogeny is
301 surprisingly narrow and does not match independent empirical estimates of the variation in those clades. In
302 particular, in mammals, synonymous diversity varies by a factor at least 10 between species (Galtier, 2016).
303 In animals, the synonymous diversity roughly spans two orders of magnitude, whereas NN, varies considerably
304 more across species, by a factor of 10® (Galtier and Rousselle, 2020). For instance, effective population sizes
305 estimated based on population genomic data are of the order of 10 000 in humans (Li and Durbin, 2011),
306 and 100 000 in mice (Geraldes et al., 2008). Thus, clearly, our approach underestimates the true variation.

307 Different mechanisms not accounted for by the model could explain this result.

308 First, genetic hitchhiking, Hill-Robertson interference, and short-term fluctuations of IV, could generate
300 this effect. However, inference conducted on alignments simulated under a Wright-Fisher model accounting
s10 for linkage and for short-term variation in N, suggests that empirically reasonable levels of Hill-Robertson
si1  interferences are not strong enough to explain this observation, at least in the regimes explored. Second, p
312 and N, could also be fluctuating along the genome (Gossmann et al., 2011; Ellegren et al., 2003; Eyre-Walker
313 and Eyre-Walker, 2014). This assumption needs to be tested, though we expect that relaxing this assumption
31+ would not change drastically the magnitude of inferred N, since some of this fluctuation should be absorbed
315 by the inferred site-specific fitness profiles. Third, the DNA sequences could also be misaligned at some sites.
s1.6  However we observe the same magnitude of inferred N, for different sets of genes indicating this might not
317 be the primary reason. Fourth, the genes selected in our alignments could be under adaptive evolution, or
318 their function could have changed. However, at least in mammals, the impact of this potential problem was
3190 minimized by the use of genes for which no positive selection was detected using standard phylogenetic codon

320 site models.

321 Finally, one key assumption of the mutation-selection model that is likely to be violated in practice is
322 the assumption of site-independence. In reality, epistasis might be prevalent in protein coding sequence
323 evolution (Pollock and Goldstein, 2014; Shah et al., 2015). Our simulations under an epistatic landscape
324 point to epistasis being a major factor to be investigated. Indeed, N, could not be appropriately estimated
325 under these simulation settings, although the outcome more specifically depends on the exact model for the
326 fitness landscape. An extreme case is obtained using a biophysically-inspired model, assuming purifying
327 selection for conformational stability. This model was previously explored using simulations and theoretical
38 developments Goldstein (2013), and it was shown that, under this model, dy/ds and more generally the
320 substitution process is virtually insensitive to Ne. This is confirmed by our experiments, showing that the

330 mutation-selection approach explored here cannot infer the true variation in N, under this model.

331 A less extreme outcome is obtained under an alternative model also implementing epistatic interactions
332 between sites via Fisher’s geometric model (Tenaillon, 2014; Blanquart and Bataillon, 2016). Interestingly,
333 under this model, our inference framework is able to infer the correct trends of V., although with a substantially
334 underestimated range of inferred variation, thus mirroring the results obtained on placental mammals. Of

335 note, these results do not necessarily imply that models based on biophysics are empirically less relevant than

12
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336 Fisher’s geometric model. Instead, they might just betray that the response of the substitution process to
337 changes in N, may be sensitive to the exact quantitative details of the underlying fitness landscape. More
338 work is probably needed here to characterize these exact conditions. Nevertheless, our simulation experiments
339 suggest a global pattern: epistatic interactions induce a buffering of the response of the substitution process
340 to changes in N,. The meaningful correlation patterns observed with LHTSs in the case of placental mammals
3a1  suggest that this buffering is not complete. Nevertheless, ignoring epistatic interactions at the inference level

342 appears to result in a substantial underestimation of the range over which N, varies across species.

343 Interestingly, the magnitude of the inferred range of N, variation is similar for the placental and the
344 primate datasets (with a 9-fold and 6-fold variation in mammals and primates, respectively), whereas one
35 would have expected a much larger range of variation over the broader phylogenetic scale of placental
346 mammals, compared to primates. An explanation could be that the effects of epistasis are more apparent at
347 longer time-scales. Indeed, the total number of substitutions from root to leaves is greater, and as a result,
348 the local environment, and therefore the fitness landscape at the level of each site, has been less stable across

349 the phylogeny.

350 Although modelling epistasis in an inference framework is a complex biological, mathematical and
351 computational problem, our work points to a potential signal of epistasis that could be retrieved in a
352 phylogenetic context. More specifically, since the slope of the response of the substitution process to changes
33 in N, appears to be informative about the epistatic regime, then, conversely, by relying on independent
354 estimates of N, (e.g. using polymorphism), this effect could be used to leverage a quantitative estimate of

355 the statistical distribution of epistatic effects.

356 Other methods have recently been developed to reconstruct phylogenetic changes in N,. For example, a
357 method recently developed uses polymorphism and generation time for some present-day species to reconstruct
358 N, along the phylogeny, based on a classical (dy/ds-based) codon model (Brevet and Lartillot, 2019). This
350 method implicitly relies on a nearly-neutral model, assuming a fixed and gamma-shaped distribution of fitness
30 effects across non-synonymous mutations. The approach is calibrated using fossils, and as a result, returns
361 estimates of the absolute value of N, and of its phylogenetic variation. Here, in contrast, our method requires
362 neither generation times nor polymorphism data, and the fitness effects are not constrained to a specific
363 distribution. On the other hand, the inferred effective population sizes are only relative. In addition, the

364 empirical fitting of the model requires more computing resources.

365 4.2 Potential applications and future developments

366 Apart from reconstructing the phylogenetic history of N, and investigating its causes and covariates, another
367 potentially interesting application of our approach is in detecting adaptation. In this direction, mutation-
368 selection models represent a useful null nearly-neutral model, explicitly modelling the background of purifying
369 selection acting over protein coding genes. Adaptation can then be detected by measuring the deviation from

s7o  this null model (Rodrigue and Lartillot, 2016; Bloom, 2017).

371 However, by assuming a constant N, along a phylogeny, the statistical power of this approach to detect

372 sites under adaptive evolution may not be optimal. In particular, the site-specific fitness profiles inferred by
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373 the model are averaged along the phylogeny and are seemingly more diffuse than those estimated profiles
s+ under our present framework (see supplementary materials). Thus, our method should provide a better null

375 model of purifying selection against which to test for the presence of adaptive evolution.

376 This approach can be further extended in other directions. First, currently, our model also assumes
377 no selection on codon usage. In the case of primates or placental mammals, this assumption is probably
ars reasonable (Yang and Nielsen, 2008), although it is more questionable for other groups, in particular
s7o Drosophila (Duret and Mouchiroud, 1999; Plotkin and Kudla, 2011). In principle, this assumption can be
ss0 relaxed by implementing selective codon preferences that are shared across all sites. Such an implementation
381 would provide the advantage of estimating codon usage biases, while simultaneously accounting for its

32 confounding effect when estimating selection on amino-acids and inter-specific variation in N,.

383 Second, the Bayesian analysis conducted here was based on relatively small alignments (20 000 sites at
s8¢ most), and with strong limits on the parametrization of the underlying mixture model (allowing for at most
sss 50 distinct profile categories). Profiling of the program (not shown) shows that the number of components of
36 the profile mixture is the limiting step of the computation. Yet, a larger number of components might be
387 required, in order to achieve more accurate inference of the site-specific profiles. One possible development,
388 leading to statistically more stable genome-wide estimates of N, would be to develop a multi-gene parallelized
389 version of the model, in which each coding sequence would have its own mixture model, and would run on a

300 separate thread, while the history of N, would be shared by all computing processes.

301 Finally, estimating N, in a mutation-selection phylogenetic model relies on the relation between N, and
302 the relative strength of drift, in a context where, ultimately, the signal about the intensity of drift comes
303 from the relative rate of non-synonymous substitutions. However, this purely phylogenetic approach does not
304 leverage a second aspect of N, at the population level, namely, the fact that N, also determines the levels of
305 neutral genetic diversity that can be maintained (7 = 4N,u, where u is the mutation rate per generation).
306 Hence, neutral diversity yields an independent empirical estimate of N,. In principle, our mechanistic model
397 could be extended so as to incorporate polymorphism data within species at the tips of the phylogeny. A
308 similar method has been previously pioneered in the case of 3 species and using a distribution of fitness
390 effect(Wilson et al., 2011). More generally, the nearly-neutral theory of evolution defines a long-term N,
a0 which might be different from the short-term definition of N, (Platt et al., 2018). Thus we could ask if
401 empirical independent estimations of N, from within species (based on genetic diversity) and between species
a2 (based on the substitution process) are congruent, and if not, what are the mechanisms responsible for this

403 discrepancy.

404 Notwithstanding theoretical considerations on the nearly-neutral theory of evolution, empirical clues
405 about the long-term trends in the modulations of the intensity of genetic drift opens up a large diversity of
406 ecological and evolutionary questions. Spatial and temporal changes of genetic drift along ecological niches

407 and events can now be investigated, so as to disentangle the underlying evolutionary and ecological pressures.
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w0 D Materials and Methods

400 In the model presented here, N, and p (and quantitative traits) are allowed to vary between species (across
410 branches) as a multivariate log-Brownian process, but assumed constant along the DNA sequence. Conversely,
411 amino-acid fitness profiles are assumed to vary across sites, but are considered constant along the tree.
412 The model makes several assumptions about the evolutionary process generating the observed alignment.
413 First, the species tree topology is supposed to be known, and each gene should match the species tree,
414 meaning genes are strict orthologs (no paralogs and no horizontal transfers). Second, there is no epistasis
415 (interaction between sites), such that any position of the sequence has its own independent evolutionary
416 process and a substitution at one position does not affect the substitution process at other positions. Third,
417 from a population genetics perspective, we assumed sites of the protein to be unlinked, or equivalently the
418 mutation rate is low enough such that there is no Hill-Robertson interference nor genetic hitchhiking. Fourth,

419 polymorphism is ignored in extant species.

420 The parameterization of the models is described as a Bayesian hierarchical model, including the prior
421 distributions and the parameters of the model. This hierarchical model is formally represented as directed

422 acyclic graph, depicted in figure 5.

423 5.1 Nucleotide mutation rates

424 The generalized time-reversible nucleotide mutation rate matrix R is a function of the nucleotide frequencies
425 o and the symmetric exchangeability rates p (Tavaré, 1986). o = (c4,0¢,0¢G,0r) is the equilibrium base fre-
426 quency vector, giving the frequency at which each base occurs at each site. p = (pac, pag, PAT, PG, POT, PGT)

427 is the vector of exchangeabilities between nucleotides. Altogether, the rate matrix is:

A C G T
A - PACOC PAGOG  PATOT
R— C |pacoa - pcgoc pcror (4)
G | pagoa  pccoc - pcToT

T \paroca pcroc peroc —

428 By definition, the sum of the entries in each row of the nucleotide rate matrix R is equal to 0, giving the

429 diagonal entries:

Ra,a = - Z Ra,b (5)

b#a,be{A,C,G,T}
430 The prior on the exchangeabilities p is a uniform Dirichlet distribution of dimension 6:

p ~ Dir (é,G) : (6)

431 The prior on the equilibrium base frequencies o is a uniform Dirichlet distribution of dimension 4:

o ~ Dir (i,4) (7)

432 The general time-reversible nucleotide matrix is normalized such that the total flow equals to 1:

> —0aRaa=1. (8)

a€{A,C,G,T}
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433 5.2 Site-dependent selection

Site-specific amino-acid fitness profiles are assumed i.i.d. from a mixture model, itself endowed with a
truncated Dirichlet process prior. Specifically, the mixture has K components (K = 50 by default). The prior

on component weights () is modeled using a stick-breaking process, truncated at K and of parameter g:

6 ~ StickBreaking (K, 3)

k—1 (9)
= 0=t [[(1-2a), ke{l,....,K},
a=1
43¢ where v are i.i.d. from a beta distribution
P ~ Beta(1,6), ke {1,...,K}. (10)

435 Of note, the weights decrease geometrically in expectation, at rate 3, such that lower values of 8 induce more

436 heterogeneous distributions of weights.

437 Each component of the mixture defines a 20-dimensional fitness profile ¢ (summing to 1), for k €
a3 {1,...,K}. These fitness profiles are i.i.d. from a Dirichlet of center v and concentration a:

»®) ~ Dir (v, o), ke {1,...,K}. (11)

Site allocations to the mixture components « (z) € {1,...,K}, for z € {1,...,Z} running over the Z sites

of the alignment, are i.i.d. multinomial of parameter 8:

m ~ Multinomial (0) . (12)

439 For a given parameter configuration for the mixture, the Malthusian fitness selection coefficients f*) at

40 site z, are obtained by taking the logarithm of the fitness profile assigned to this site:
£ = (¢<*”~<Z>>) L ze{l,...,7). (13)

41 5.3 Dated tree

42 The topology of the rooted phylogenetic tree is supposed to be known and is not estimated by the model.
443 The model estimates the dates at which branches split, thus the dated tree requires P — 2 internal node ages
444 that are free parameters, where P is the number of extant taxa (leaves of the tree). By definition, leaf ages
a5 are all set to 0. The root age is set arbitrarily to 1, but if fossils data are also available the dated tree can be
a6 rescaled into absolute time using cross-multiplication. A uniform prior is assumed over internal node ages

wr T ne{P+1,...,2P -2}

448 The duration AT®) represented by a given branch b, for b € {1,...,2P — 2} is defined as the difference
449 in ages between the oldest node at the tip of the branch T(bT)7 and the youngest node Tk

AT®) = 70 _ 0, (14)
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Figure 5: Directed acyclic graph (DAG) of dependencies between variables. Nodes of the directed acyclic
graph are the variables, and edges are the functions. Hyper-parameters are depicted in red circles, random
variables in blue circles, and transformed variables in black. Blue dashed line denotes a drawing from a
random distribution, and black solid lines denote a function. For a given node, all the nodes pointing toward
him (upstream) are its dependencies which determines its distribution. The other way around, following the
arrows in the DAG (downstream), simple prior distributions are combined together to form more complex

joint prior distribution which ultimately defines the prior distribution of the model.

5.4 Branch dependent traits

The effective population size N, and mutation rate per unit of time p are assumed to evolve along the
phylogeny, and to be correlated. If quantitative life-history traits (LHTS) are also available for some nodes
of the tree (leaves and/or internal nodes), they are also assumed to evolve along the phylogeny and to be
correlated between them, and with N, and u. The total number of traits is noted L, when counting N,
w and all user-defined LHT (denoted X). Their variation through time is modelled by an L-dimensional
log-Brownian process B. By convention, the first component of the log-brownian corresponds to N, and the

second component to pu. Thus:
B (t) = In N(¢)
Ba(t) = In u(t) (15)
Bjyo(t) =In Xi(t), ke {1,..., L}

The effective population size at the root is set to 1 for identifiability of the fitness profiles.

Along a branch b € {1,...,2P — 2} of the tree, a log-Brownian process starts at the oldest node at the
tip of the branch (bT), and ends at the youngest node (bi). The rate of change of the log-Brownian process

per unit of time is constant and determined by the positive semi-definite and symmetric covariance matrix
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w2 3. Thus the distribution at node b* of B®*) is multivariate Gaussian, with mean equals to the Brownian

463 process sampled at the oldest node B(bT), and variance AT®)3:
B®) NN(B(W,AT(WE), be{l,...,2P 2} (16)
464 The Brownian process at the root of the tree is uniformly distributed, except for the first component fixed

465 to 0 for identifiability (see above). The prior on the covariance matrix is an inverse Wishart distribution,

466 parameterized by k = 1 and with ¢ = L 4+ 1 degrees of freedom:
¥ ~ Wishart™*(s1, q). (17)

467 We are interested in approximating the expected substitution rates between codons over the branch. Ideally,
468 under the Brownian process just described, the rates of substitution between codons are continuously changing
460 through time. Also, even conditional on the value of N, at both ends, the Brownian path along the branch
470 entails a random component, leading to complicated integral expressions for substitution rates (Horvilleur
an1  and Lartillot, 2014). Here, a branchwise approximation is used (Lartillot and Poujol, 2011), which consists of
472 first deriving an approximation for the mean N, along the branch, conditional on the values of N, at both

473 ends, and then using this mean branchwise N, to define the codon substitution rates.

474 In the case of log-Brownian process, the most likely path (or geodesic) from B ® to B®Y) g the straight
a5 line, and therefore, it would make sense to take the mean value of eB ™ along this geodesic. We then have

i N and p® for each branch b € {1,...,2P — 2} of the tree:

1 T
N — S
e B(bi) _pg®H

1 1 (18)

(b4 1)
(b) eBZ —_ eB2

e i
B — BV

417 5.5 Codon substitution rates

azs. The mutation rate between codons ¢ and j, denoted p; ; depends on the underlying nucleotide change between
a9 the codons. First, if codons ¢ and j are not nearest-neighbours, p; ; is equal to 0. Second, if codons 7 and j are
ss0 only one mutation away, M(3, j) denotes the nucleotide change (e.g. M(AAT, AAG) = TG), and y; ; is given
a1 by the underlying nucleotide relative rate (Ru4(;,;)) scaled by the mutation rate per time (u). Technically,
42 the 4-dimensional nucleotide relative rate matrix (R) is normalized such that we expect 1 substitution per

483 unit of time, hence the scaling by pu.

484 For a given branch b and a given site z, the codon substitution rate (per unit of time) matrix Q™) is
485 given by:

Q(b ) = () if codons i and j are not neighbors,
QE?Z) = Raq(i,5) if codons i and j are synonymous,
(b) (2)
AN (148~ 150)

N(b) (fAu) fiffj))

(bz) Z sz)'

Jj#i,j=1

(19)

Q(b 2 — = R, ]) if ¢ and j are non-synonymous,

18


https://doi.org/10.1101/2021.01.13.426421
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426421; this version posted January 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

INFERRING LONG-TERM EFFECTIVE POPULATION SIZE WITH MUTATION-SELECTION MODELS

486 We see from this equation that, f and N, are confounded, such that increasing the effective population size

457 while decreasing the fitnesses by the same factor leads to the same substitution rate.

488 The branch lengths {(") are defined as the expected number of neutral substitutions per DNA site along a

489 branch:

1®) =, BAT®) (20)
490 Together, the probability of transition between codons for a given branch b and site z is:
P2 — QM (21)

401 which are the matrices necessary to compute the likelihood of the data (D) given the parameters of the model

492 using the pruning algorithm.

43 5.6 Bayesian implementation

404 Bayesian inference was conducted using Markov Chain Monte Carlo (MCMC). Most phylogenetic MCMC
495  samplers target the distribution over the model parameters given the sequence alignment, which means that
496 they have to repeatedly invoke the pruning algorithm to recalculate the likelihood which is most often the
497 limiting step of the MCMC. An alternative, which is used here, is to do the MCMC conditionally on the
408 detailed substitution history H, thus doing the MCMC over the augmented configuration (#, D), under the

499 target distribution obtained by combining the mapping-based likelihood with the prior over model parameters.

500 The key idea that makes this strategy efficient is that the mapping-based likelihood depends on compact
so1  summary statistics of H, leading to very fast evaluation of the likelihood. On the other hand, this requires to

502 implement more complex MCMC procedures that have to alternate between:

503 1. sampling H conditionally on the data and the current parameter configuration.
504 2. re-sampling the parameters conditionally on H.
505 To implement the mapping-based MCMC sampling strategy, we first sample the detailed substitution

so6  history H for all sites along the tree. Several methods exist for doing this (Nielsen, 2002; Rodrigue et al.,
507 2008), which are used here in combination (first trying the accept-reject method of Nielsen, then switching to

s08  the uniformization approach of Rodrigue et al if the first round has failed).

509 Then, we write down the probability of H given the parameters, and finally, we collect all factors that
s:10 depend on some parameter of interest and make some simplifications. This ultimately leads to relatively
511 compact sufficient statistics (see supplementary) allowing for fast numerical evaluation of the likelihood (Irvahn
512 and Minin, 2014; Davydov et al., 2016). As an example, making an MCMC move on the N, at a given
513 node of the tree is faster since only the mapping-based likelihood (using path sufficient statistics) at the

514 neighbouring branches of the node is necessary, instead of computing the likelihood for the entire tree.

515 Markov chain Monte Carlo (MCMC) are run for 4000 points and the first 1000 points are discarded as
516 burn-in. Convergence is then assessed (see supplementary) by comparing two independent chains, checking

517 that both site-specific fitness and branch N, have the same posterior mean.
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si8 5.7 Correlation between traits

519 The correlation between trait a and trait b € {1,..., L} can be obtained from the covariance matrix 3:

Ea,b (22)

pab = vV Ea,azb,b.

520 This correlation coefficient is then averaged over the posterior distribution, and statistical support is assessed

521 based on the posterior probability of having a positive (or negative) value for the coefficient.

s22 5.8 Simulations

523 'To test the robustness of the model, four parameterized simulators were developed: SimuDiv, SimuPoly,
524  SimuFold & SimuGeo. All four simulators use a log-Brownian multivariate process to model the changes
525 in the mutation rate per generation, the generation time and N, along the lineages. SimuDiv, SimuFold &
526 SimuGeo all simulate point substitutions along the phylogenetic tree. The simulator starts from an initial
527 sequence at equilibrium. The change in fitness is computed for all possible mutant, hence computing all
s28  strictly positive substitution rates. At each point, the next substitution is chosen proportional to these rates
520 using in Gillespie’s algorithm (Gillespie, 1977). At each node, the process is split, and finally stopped at the
530 leaves of the tree. SimuPoly simulates explicitly each generation along the phylogeny under a Wright-Fisher
531 population, consisting of three steps: mutation, selection and genetic drift of currently segregating alleles.
532 Mutations are drawn randomly based on mutation rates. Drift is induced by the multinomial resampling
533 of the currently segregating alleles. We assume that the DNA sequence is composed of exons, with no
s34 linkage between exons, and total linkage of sites within an exon. Moreover, in SimuPoly, the instant value of
535 log-N, can also be modelled as a sum of a log-Brownian process and an Ornstein-Uhlenbeck process. The
53 log-Brownian motion accounts for long-term fluctuations, while the Ornstein-Uhlenbeck introduces short-term
537 fluctuations. In SimuDiv and SimuPoly, each codon site contributes independently to the fitness depending on
53 the encoded amino acids, through site-specific amino-acid fitness profiles experimentally determined (Bloom,
539 2017). In SimuFold, the fitness of a sequence is computed as the probability of the protein to be in the folded
540  state. SimuFold is a C++ adaptation of a Java code previously published (Goldstein and Pollock, 2016, 2017),
541 where we also allow for changes in N, and p along a phylogenetic tree. Supplementary materials describe the

s22 models in more details, as well as performance of the inference model against them.

543 5.9 Empirical data

544 For placental mammals, alignments were extracted from OrthoMam database (Ranwez et al., 2007; Scornavacca
sa5 et al., 2019). Only highly conserved coding sequences are kept for the analysis, representing 226 CDS with
se6 < 1% of gaps in the alignment. Life-history traits (LHTSs) for longevity, age at maturity and weight were
547 obtained from AnAge database (De Magalhdes and Costa, 2009; Tacutu et al., 2012). We focused our analysis

543 on 77 taxa for which information is available for at least one LHT.
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s00 6 Reproducibility - Supplementary Materials

ss0 The simulators written in C++ are publicly available under MIT license at https://github.com/
551 ThibaultLatrille/SimuEvol. The Bayesian inference model, written in C++ in the component based (Lanore,
s52 2019) software BayesCode, is publicly available at https://github.com/ThibaultLatrille/bayescode.
553  Supplementary materials and figures are available in appendix supplementary materials. The scripts
ss4 and instructions necessary to reproduce the simulated and empirical experiments are available at https:

555 //github.com/ThibaultLatrille/MutationSelectionDrift.

ss6 7 Author contributions

ss7 'TL gathered and formatted the data, developed the new models in BayesCode and SimuEvol and conducted
sss  all analyses, in the context of a PhD work (Ecole Normale Superieure de Lyon). VL restructured and
550 refactored the code sustaining the branch and site heterogeneous Bayesian Monte Carlo in BayesCode. TL

se0 and NL both contributed to the writing of the manuscript.
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