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HIGHLIGHTS 
1. Acinar-ductal metaplasia (ADM) cells represent a genetic and morphologic transition 

state between acinar and tumor cells. 

2. Inflammatory cancer associated fibroblasts (iCAFs) are a major component of the PDAC 

TME and are significantly higher in treated samples 

3. Receptor-ligand analysis reveals tumor cell-TME interactions through NECTIN4-TIGIT 

4. Tumor and ADM cell proteogenomics differ between treated and untreated samples, with 

unique and shared potential drug targets 

 

SUMMARY 

Pancreatic Ductal Adenocarcinoma (PDAC) is a lethal disease with limited treatment options 

and poor survival. We studied 73 samples from 21 patients (7 treatment-naïve and 14 treated 

with neoadjuvant regimens), analyzing distinct spatial units and performing bulk 

proteogenomics, single cell sequencing, and cellular imaging. Spatial drivers, including mutant 

KRAS, SMAD4, and GNAQ, were associated with differential phosphosignaling and metabolic 

responses compared to wild type. Single cell subtyping discovered 12 of 21 tumors with mixed 

basal and classical features. Trefoil factor family members were upregulated in classical 

populations, while the basal populations showed enhanced expression of mesenchymal genes, 

including VIM and IGTB1. Acinar-ductal metaplasia (ADM) populations, present in 95% of 

patients, with 46% reduction of driver mutation fractions compared to tumor populations, 

exhibited suppressive and oncogenic features linked to morphologic states. We identified 

coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin receptor 

expression in tumor cells. Higher expression of angiogenic and stress response genes in 

dendritic cells compared to tumor cells suggests they have a pro-tumorigenic role in remodeling 

the microenvironment. Treated samples contain a three-fold enrichment of inflammatory CAFs 

when compared to untreated samples, while other CAF subtypes remain similar. A subset of 
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tumor and/or ADM-specific biomarkers showed differential expression between treatment 

groups, and several known drug targets displayed potential cross-cell type reactivities. This 

resolution that spatially defined single cell omics provides reveals the diversity of tumor and 

microenvironment populations in PDAC. Such understanding may lead to more optimal 

treatment regimens for patients with this devastating disease. 

 

INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC) has a 9% five-year survival rate (Siegel et al., 2020). 

This poor prognosis is due to early metastases, late detection, and therapy resistance; at 

diagnosis, the cancer is often unresectable, locally advanced, and/or metastatic disease 

(McGuigan et al., 2018). The incidence of pancreatic cancer has increased in recent years, with 

a roughly 5% rate increase in the last decade, which is projected to raise PDAC from the 4th to 

the 2nd most common cause of cancer-related death in the U.S. by 2020 (Saad et al., 2018; 

Rawla et al., 2019; Ilic & Ilic, 2016; American Cancer Society, 2020). The first-line treatment for 

pancreatic cancer is surgery, if possible, followed by radiation and/or chemotherapy (Conroy et 

al., 2018; Kang et al., 2018). Despite the promising successes of immunotherapy in several 

cancer types, there have been very limited responses to immunotherapy in PDAC (Morrison et 

al., 2018; Balachandran et al., 2019). Nearly all patients will develop chemoresistant tumors and 

develop progressive, metastatic PDAC within two years of diagnosis, and beyond the two FDA-

approved chemotherapy regimens (FOLFIRINOX and gemcitabine+nab-paclitaxel), there are no 

effective treatment regimens. 

 

Over the last decade, there have been several major efforts to characterize the genomic and 

transcriptomic landscape of PDAC (Raphael et al., 2017; Moffitt et al., 2015; Collisson et al., 

2011; Bailey et al., 2016). Altered KRAS, TP53, CDKN2A, and SMAD4, among others, have 

been identified as key disease drivers, with KRAS hotspot mutation rates as high as 97% in 

some cohorts (Raphael et al., 2017). Several expression-based subtyping strategies have been 

developed. Moffitt and colleagues classified tumors into classical or basal-like subtypes based 

on their expression profile; this is the most widely applied system (Moffitt et al., 2015). However, 

a major challenge in bulk sequencing analyses of PDAC is that tumor samples contain low 

neoplastic cellularity due to the presence of high amounts of a dense desmoplastic stroma 

composed of cells that affect the ability to target and treat PDAC. While several approaches to 

address low tumor purity have been applied, including ultra-high depth sequencing and 

microdissection strategies, low neoplastic cellularity remains a significant challenge for data 
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analysis and interpretation of sequencing studies in PDAC (Raphael et al., 2017; Moffitt et al., 

2015; Maurer et al., 2019). 

 

Single cell technologies are well equipped to address the low tumor cellularity challenge in 

PDAC by enabling tumor cell analysis regardless of tumor content of a given sample. 

Additionally, single cell level resolution allows for the dissection and analysis of different cell 

types in the tumor microenvironment (TME) and their interactions with tumor cells. This 

addresses another challenge in the field. We know that non-tumor cell components of the TME 

play a critical role in PDAC, yet the mechanistic underpinnings behind the TME's role in PDAC 

is largely unknown. For instance, several cancer associated fibroblast (CAF) subtypes, including 

myCAFs, iCAFs, and apCAFs, have been identified. Cytotoxic NK and CD8+ T cells are 

downregulated (Elyada et al., 2019; Sahai et al., 2020; Schnurr et al., 2015; Looi et al., 2019). 

This creates an immunosuppressed, pro-tumorigenic environment, but how this occurs is poorly 

understood (Uzunparmak et al., 2019; Ren et al., 2018). Furthermore, tumor populations are 

seldom uniform and single cell technologies allow for an in-depth analysis of cellular 

heterogeneity (Alizadeh et al., 2015; Chung et al., 2017). 

 

Herein, we use a spatially distinct, multi-sampling approach to analyze 73 PDAC samples 

across 21 patients who have undergone different treatment regimens (treatment-naïve, 

neoadjuvant FOLFIRINOX, neoadjuvant gemcitabine+nab-paclitaxel, and Chemo-RT). This 

spatial approach allowed us to interrogate both inter- and intra-tumor heterogeneity via 

extensive omics, including bulk DNA and RNA sequencing, bulk proteomics and 

phosphoproteomics, single cell RNA sequencing (scRNA-Seq), and cellular imaging. 

 

RESULTS 

Study Design and Single Cell Overview of the Cohort 

We collected 73 pancreatic ductal adenocarcinoma samples from 21 patients undergoing 

standard treatment, including 4 normal adjacent tissue (NAT) samples. The various treatment 

groups included 7 treatment-naïve cases, 8 neoadjuvant FOLFIRINOX cases, 4 neoadjuvant 

gemcitabine+nab-paclitaxel cases, 1 mixed (FOLFIRINOX and gemcitabine+nab-paclitaxel), 

and 1 Chemo-RT case. Each tumor was spatially sampled 2–4 times, with sample segments 

subsequently used to generate histologic, imaging, and omics data, H&E slides, imaging mass 

cytometry (IMC), single cell RNA-Sequencing (scRNA), bulk mass spectrometry-based 

proteomics and phosphoproteomics, bulk whole exome sequencing (WES), and bulk RNA 
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sequencing (RNA-Seq) (Figure 1A, Table S1, STAR Methods). We generated scRNA data for 

all 73 samples, WES for 64 samples, and bulk RNA-Seq for 65 samples. A subset of our cohort 

(n = 30) underwent TMT11 proteomic and phosphoproteomic characterization. We generated 

IMC slides using the Hyperion imaging system for 12 samples from 4 cases, each with 3–4 

regions of interest (ROI) (Figure 1B). 

 

Following QC, we scaled and normalized scRNA data, clustered more than 230k cells across all 

samples based on expression profiles, and assigned cell types based on marker gene 

expression (Figure S1A, STAR Methods). Cell types included: acinar, acinar ductal metaplasia 

(ADM), B, CD4+ and CD8+ T cells, dendritic cells (DCs), endothelial cells, erythrocytes, 

fibroblasts, islet cells, macrophages, mast, natural killer (NK), plasma cells, naïve and regulatory 

T cells, tuft cells, and tumor cells (Figures 1B and S1B). Using the fraction of tumor cells as a 

proxy for tumor purity, we estimated that tumor purities ranged from 0.12% to 82.68% across 

samples, with an average of 17.16%. 

 

We calculated a composite heterogeneity score to quantitatively determine cell-type proportion 

and expression differences across cells between the spatial samples within each tumor (Figure 

1B, STAR Methods). Briefly, this score is based on mean pairwise correlation of global average 

scRNA expression and the cell type proportions between samples from the same case. 

Samples from treated patients tended to have significantly higher percentages of stroma cells (p 

= 0.001) (Figures 1B and S1C). In particular, FOLFIRINOX samples had significantly higher 

percentages of fibroblasts (p = 10–4) (Figure 1C). We did not observe significant endothelial or 

tumor cell number differences between treatment groups. ADM cells were present in 20/21 

cases but were most abundant in HT122P1 (treated with gemcitabine+Nab-paclitaxel) and 

HT168P1 (FOLFIRINOX). More than half the cases had high degrees of spatial heterogeneity 

(composite score > 0.1) regardless of treatment status, suggesting that cell type proportions and 

tumor subpopulations have substantial spatial variation. Pathologic review of H&E slides 

revealed that within-patient tumor content differences across samples averaged 24%, with a 

range of 5% to 64% (STAR Methods), consistent with tumor percentages from scRNA 

(Pearson R=0.36, p=0.003). To quantify spatial heterogeneity at a cell-type level, we used a 

similar expression-based approach for each individual cell type (Figure 1B, STAR Methods). 

The greatest heterogeneity occurred amongst tumor cells, followed by macrophages and 

endothelial cells, suggesting our spatial sampling captures differences in tumor subpopulations 

within each case, as well as those within stromal and immune fractions. Principal component 
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analysis (PCA) of bulk proteomic and phosphoproteomic data confirm that, while most within-

tumor regions cluster close to one other, several specimens from the same tumor are quite 

different, representing intra-tumor heterogeneity (Figures S1D and S1E). These results 

underscore limitations of a strict bulk-data approach, in which such heterogeneity may remain 

invisible. 

 

Genomic Landscape and Single Cell Subtyping Heterogeneity 
Using paired bulk whole exome sequencing (WES), we investigated somatic and germline 

variants, observing substantial variation of driver mutation variant allele fractions (VAFs) 

between samples (Figure 2A, Table S2). We detected a KRAS hotspot variant in at least one 

sample in all cases (HT204P1 has no WES data). Furthermore when considering mutations with 

extremely low VAFs ( < 0.01), 10 of the 20 cases had samples whose mutation profiles differed 

from one another. While it is possible these mutations existed in all samples in a given case and 

that detection was imperfect, materials were sequenced and processed uniformly and data 

underwent extensive QC and manual genotyping, suggesting this difference was not due to 

technical shortcomings (STAR Methods). We also characterized germline variants using 

CharGer in order to identify pathogenic and likely pathogenic variants in the cohort (Scott et al., 

2019) (STAR methods). Three cases carried such variants in the homology-directed DNA 

repair pathway (FANCC p.D23*, BRCA2 p.I1470* and p.K607*, and ATM p.Y1124*), and as 

expected, all samples carried the same variant in each case. 

 

Using bulk RNA-Seq, we classified each sample into previously reported subtypes, including 

those defined by Moffitt et al. (2015), Collisson et al. (2011), and Bailey et al. (2016) (Figure 

2A) and determined immune subtypes and stromal and immune compartment scores using 

xCell and ESTIMATE, respectively (Yoshihara et al., 2013; Aran et al., 2017) (STAR Methods). 

Aside from 1 case, Moffitt subtyping was consistent within-tumor across samples, while 

Collisson and Bailey subtyping both showed larger numbers of subtype heterogeneity across 

samples. We observed differences in immune subtypes between spatial samples in 7 tumor 

cases (Figure 2A). We also observed a weak positive correlation between scRNA stroma 

percentages and ESTIMATE stroma scores (Spearman R: 0.46, p = 10–4) though not between 

scRNA immune fraction percentages and ESTIMATE immune scores (Figure S2A and S2B). 

 

In order to further dissect patient-specific heterogeneity, we selected three cases representing 

our major treatment groups, HT060P1 - FOLFIRINOX, HT122P1 - gemcitabine + nab-paclitaxel, 
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and HT061P1 - treatment-naïve, for further analysis. Given the consistency of Moffitt subtyping, 

we used classical and basal-like expression profiles to classify tumor cells at single cell 

resolution (Torres & Grippo et al., 2018) (Figures 2B and S2C, STAR Methods). Specifically, 

we evaluated tumor-only clusters and annotated them by their spatial sample origin and their 

single cell Moffitt subtype for each case. In all three cases, there are both mixed subpopulations 

(originating from > 1 sample) or sample-specific subpopulations, representing spatially distinct 

tumor clusters. Interestingly, we also observe discrete clusters separated by subtype and these 

tend likewise to be of different spatial origin. In HT061P1, the basal-like cluster does not 

correspond to any mappable KRAS mutations (Figure S2C and S2D). Differential gene 

expression (DGE) analysis shows that basal-like tumor cells are enriched in IL-17 and PI3K-

AKT signaling and AP-transcription factor network pathways. Classical tumor cells are enriched 

in O-linked glycosylation of mucins and trefoil factors in mucosal healing pathways (Figure 2B). 

This suggests that spatial sampling captures spatially distinct tumor cells having different 

expression profiles that likely correspond to different subtypes within the same patient. 

Extending this analysis to the rest of the tumor cohort, we identified substantial amounts of 

mixed classical and basal-like tumor cells in 12/21 patients (defined as > 10% of tumor cells in 

the less common subtype) and determined that the basal tumor cells upregulate a number of 

EMT genes, including VIM and ITGB1 (Figure S2E). 

 

Using scRNA analysis, we identified the top 5 most differentially expressed genes (DEGs) 

between classical and basal-like cells from each sample within a tumor and followed with the 

complementary analysis using bulk data. Across the above three within-patient tumor 

specimens, we identified consistent scRNA DEGs between classical and basal tumor cells, 

including S100A6, TFF1, and TFF2 in classical cells and SPP1 and CXCL2 in basal-like cells 

(Figure 2B). Spatially distinct samples enriched in classical or basal-like tumor cells strongly 

express these subtype-specific DEGs and their expression patterns are consistent across omics 

data types (Figure 2B). For instance, in case HT122P1, sample 1 (S1H3) and sample 2 (S1H4) 

express classical markers at the scRNA, bulk RNA, protein, and phosphoprotein levels. Sample 

3 (S1H5) expresses both classical and basal-like markers at the scRNA and RNA levels, with 

slightly higher levels of basal-like expression. In short, this analysis demonstrates it is clearly 

possible to identify distinct tumor subpopulations in space within a tumor. The data here indicate 

PDAC tumors are heterogeneous and are not readily classifiable as a single subtype and this 

may explain, in part, the intrinsic and acquired resistance observed in PDAC. Therefore, 

therapeutic decisions that assume homogeneity may miss these underlying nuances. 
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KRAS signaling and Spatial Drivers 

We reclustered tumor cells from all samples based on scRNA expression to assess their 

heterogeneity. The majority grouped into patient-specific clusters, consistent with the varying 

genetic backgrounds and alterations in each patient (Figure S3A). We also mapped mutations 

called from the bulk whole exome data to single cells (Figure 3A, STAR Methods), observing 

three groups of tumor cells originating from a large number of patients. Two groups had multiple 

different KRAS mutations (Figures 3A and S3B). The remaining group is significantly depleted 

in KRAS mutations and likewise lacks TP53 or CDKN2A mutations (Figure 3B). We denote 

these three populations as "mixed" and hypothesize that their consistent expression profiles 

across samples may signify a potential common element in PDAC. 

 

We conducted DEG analysis for each of these three mixed tumor populations, finding that SPP1 

and CXCL2, two of our previously identified single-cell classical subtype markers, were 

upregulated in the KRAS WT populations (Figures 2B and S3C). Conversely, these genes are 

expressed at a low level in both the KRAS mutated populations. Additionally, in order to test the 

impact of different KRAS hotspot variants, we compared the gene expression profiles of the 

subset of tumor cells with KRAS mutations against each other (STAR Methods). Interestingly, 

we found that compared to other KRAS mutations, tumor cells that harbor KRAS p.G12V 

upregulate several genes associated with more aggressive or metastatic tumors, including 

COL1A1, VIM, and MUC5B (Figure S3D) (Valque et al., 2012; Niknami et al., 2017; Zhang et 

al., 2018). 

 

As most pancreatic cancers carry a hotspot KRAS driver mutation, we additionally manually 

genotyped common KRAS mutations at the p.G12 and p.Q61 loci (STAR Methods). 

Intriguingly, we identified 5 cases with multiple KRAS hotspot drivers, which we denote as cases 

with multiple KRAS clones (Figure S3G). Focusing on case HT061P1, we obtained 4 

subpopulations when clustering tumor cells, three small clusters largely derived from punch A 

and one large cluster that was common to all three punches (the remainder, as expected, 

represented all clusters) (Figures 3C and S3H). Notably, we almost perfectly map KRAS 

p.G12V cells into one cluster from punch A predominant populations and p.G12D cells onto the 

large mixed cluster. Not only do we observe two discrete clones carrying different KRAS driver 

mutations in the same patient, but we also find they were spatially separated and have distinct 
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gene expression profiles (Figure 3C). It is uncertain whether the other two clusters from which 

we did not map a KRAS mutation are truly KRAS WT due to a paucity of cells. 

 

Using inferCNV, we determined the copy number profile of the tumor cells and identified several 

different CNV signatures at both focal and arm levels unique to the two differing KRAS 

subclones in case HT061P1 (Figures 3C and S3I, STAR Methods) (Tickle et al., 2019). For 

instance, the p.G12D population has deep amplifications of AKT2 and MYC while both p.G12D 

and p.G12V clusters harbor amplifications in GATA6, among others (Figures 3C and S3I). 

Furthermore, we used the inferred single cell copy number profiles in order to reconstruct a 

lineage tree using the MEDALT algorithm (Figure 3D) (Wang et al., 2020). Interestingly, the 

CNV-based tree separates the tumor cells into two major groups, consistent with the gene 

expression-based clustering as well as the spatial origin of the cells (Figure 3E). Consolidating 

this information, we propose a model that integrates the gene expression and CNV data (Figure 

3E). We observe two tumor subpopulations in punch A, one of which has an unknown initial 

driver (lack of mappable KRAS) and the other is driven by KRAS p.G12V. The KRAS p.G12V 

population then acquired an amplification in GATA6 and a 17p deletion. In punches B and C 

(and a portion of A), the initial driver was KRAS p.G12D. This was followed by a gain of AKT2, 

MYC, and 1q and additional subsets of cells acquired either an ERBB2 amplification or a 

GATA6 amplification and PTEN deletion (Figures 3C, 3E, and S3I). These results provide an 

example of the vast degree of tumor heterogeneity in PDAC present at the expression, 

mutational, and CNV levels with corresponding differences in genomic alterations that may 

impact tumor growth, progression, and response to treatment. 

 

We determined the impact of mutations on downstream targets by analyzing changes in protein 

and phosphorylation in several oncogenic pathways (STAR Methods). At the protein and 

phosphoprotein level, we observed that samples carrying a TP53 mutation had several proteins 

and phosphosites upregulated in the cell cycle and mismatch repair pathways, including MCM7 

and CDK1 (Figures S3E and S3F). Interestingly, we also identified observed MKI67, a cell 

proliferation marker, is upregulated at both the protein and phosphoprotein levels in TP53 

mutants. As expected, several members of the RTK Ras pathway had higher phosphorylation 

abundance in KRAS mutants (Figure S3F). As the KRAS signaling pathway is uniformly 

upregulated in almost all pancreatic cancers, we analyzed the abundance of key phosphosites 

in the KRAS pathway within the context of different KRAS mutations and treatment groups 

(STAR Methods). Strikingly, we observe a large degree of differential regulation, both between 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.13.426413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

and within tumors, in several phosphosites within thePI3K/PDk1/Akt and Raf/Mek/Erk pathways 

(Figure 3F). There is an association between p53 mutation status and lower phosphorylation 

levels in MAPK1, MAPK3, and AKT1, among others, seem to potentially be related to. While 

samples generally clustered together within the same patient, some cases such as HT125P1 

and HT122P1 do not. In HT125P1, two samples do not have a detectable KRAS mutation 

(S1H3 and S1H9) while the other two have a G12V mutation (S1H4 and S1H8), and these 

samples seem to segregate accordingly into the higher and lower phosphosignaling groups, 

suggestive of differential RAS activation even within the same patient. In particular, the MAPK1  

T185 phosphosite is differentially regulated between these samples, while MAPK1 Y187, for 

instance, is uniformly expressed throughout HT125P1. While these patterns did not seem to 

have a connection to specific KRAS hotspot amino acid changes or treatment status, these 

results underscore the degree of KRAS signaling heterogeneity in PDAC. 

 

Acinar-Ductal Metaplasia Populations Transition Between Tumor and Acinar Cells 

 

A prevailing model is that pancreatic cancer arises from acinar cells that undergo acinar to 

ductal metaplasia (ADM) (Makohon-Moore et al., 2018; Murphy et al., 2013; Kopp et al., 2012). 

However, this is based on mouse models and the actual role this cell state plays in the 

development of PDAC remains unknown (Storz, 2017). A major hurdle has been the small 

numbers of acinar and ADM cells sampled from patients at single cell resolution (Peng et al., 

2019; Qadir et al., 2020 ). We detected ADM populations in 20/21 cases, but focused our 

analyses to the two cases with the most substantial proportion of ADM cells in our cohort: 

HT122P1 and HT168P1 (Figure 4A). By mapping mutations, we found that most mutations 

resided in tumor cells and to a lesser extent, ADM cells (Figures 4B and 4C). Consistent with 

previous studies, we observe ADM initiating mutations in KRAS (from HT122P1) and CDKN2A 

(from HT168P1) present in ADM populations, which we denote as "ADM Mutated," representing 

a more advanced state of ADM (Storz, 2017). While tumor and acinar cells express epithelial 

and acinar cell markers in a mutually exclusive pattern, both ADM populations express a 

combination of both, consistent with current understanding that they exist in an intermediate, 

reversible, state (Figure 4D). In order to better describe this expression gradient, we created 

composite tumor and acinar scores using common tumor (n = 23) and acinar (n = 19) marker 

genes, respectively (Figure 4E, STAR Methods). Mapping these scores onto single cells 

revealed that the ADM populations harbor heterogeneous mixtures of both ductal and acinar 

composite signatures (Figure 4E). 
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We identified significantly highly expressed genes specific to ADM cells (Figure 4F). We did this 

by first performing DEG analysis between ADM and acinar cells, ADM and tumor cells, and 

tumor and acinar cells. Then, from the ADM comparisons, we removed the DEGs between 

tumor and acinar cells which are largely driven by acinar-ductal cell type-specific differences. 

Intriguingly, the most highly expressed ADM genes were oncogenic drivers, including CD81, 

FXYD2, SPP1, IGFBP7, VIM, and MGP, as well as tumor suppressors, A2M, RGS5, TIMP3, 

and SPARCL1. One possible explanation of this phenomenon is that tumor suppressor genes 

may be upregulated in response to oncogene expression in this transitional state, evident by 

their increased expression in the ADM Mutated group, which represents later stage ADM. 

During the ADM transition from acinar to ductal or ductal to acinar, it may be that these 

upregulated features are a result of the transformation process towards either cell fate. We 

observed that VIM, an epithelial-to-mesenchymal transition (EMT) marker, is significantly 

overexpressed in ADM and ADM Mutated (Figure S4A). We then analyzed the expression of 

other EMT-related and stem cell genes to determine whether these pathways were also 

associated with dedifferentiation of acinar cells into ductal cells (Figure 4G). Indeed, compared 

to acinar cells, both tumor and ADM cells highly express EMT and stemness genes. 

Interestingly, when comparing ADM and tumor cells, we found a largely mutually exclusive 

pattern of expression between a subset of genes in each pathway, particularly EMT genes, 

which are highly upregulated in the ADM Mutated population, and to a lesser extent, the ADM 

population as well (Figure 4G). In the EMT-related genes for instance, MMP3, SNAI2, and 

GCLC are highly expressed in tumor cells only, while MMP2, VIM, and ITGB3 are more highly 

expressed in both ADM groups, particularly in the ADM Mutated cells. 

 

While we detect low ADM cells in samples throughout these two cases, a vast majority of ADM 

cells were captured from one sample in HT122P1 (H3), one sample in HT168P1 (H3) and the 

NAT sample from HT168P1. In HT122P1, sample H3 is the only spatial sample with significant 

acinar and ADM fractions (Figure 4H). To further characterize the ADM heterogeneity in a 

manner that preserves spatial integrity, we used imaging mass cytometry (IMC) enlisting anti-

pan-keratin to label tumor cells and anti-α-amylase to detect acinar cells (Figure 4I, STAR 

Methods). This revealed differences in the dominant tumor morphology between samples H3 

and H9, with a patch-like, poorly differentiated morphology in H3 with intermixed acinar cells 

and a more ductal-like, well-differentiated morphology in H9, H4, and H5 (Figures 4I and S4B-

C). In order to approximate the amounts of tumor, ADM, and acinar cells from the IMC images, 
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we used a cell segmentation approach and quantified the intensity of α-amylase and pan-keratin 

for each cell (STAR Methods). Using a heuristic in which the presence of both labels indicates 

ADM cells, we quantified the numbers of tumor, ADM, and acinar cells. This result was 

remarkably consistent with the scRNA estimates (Figure 4I). 

 

Cancer Associated Fibroblasts Subtypes 

 

The TME plays a critical role in promoting tumorigenesis (Uzunparmak et al., 2019; Ren et al., 

2018). In PDAC, there are three major subtypes of CAFs: myCAFs, iCAFs, and apCAFs (Elyada 

et al., 2019; Sahai et al., 2020; Helms et al., 2020). Consistent with the literature, we identified 

clusters of iCAFs, myCAFs, and apCAFs. We also observed two subpopulations of iCAFs with 

unique expression profiles, which we denote as CXCR4+ iCAFs and CD133+ iCAFs (Figures 

5A and 5B). Several CAF markers such as ACTA2 and FAP are commonly used to identify 

CAF subtypes; however, they are not definitive markers and are often expressed in both iCAFs 

and myCAFs (Kraman et al., 2010). We observed that TAGLN and ACTA2 discern myCAFs, 

while FAP and CXCL12 distinguish iCAFs (Figure 5B). apCAFs were identified by expression of 

HLA-DRA and CD74, among others (Figures 5B and S5A). CXCR4+ iCAFs and CD133+ 

iCAFs are defined by very high expression of CXCR4 and CD133 (PROM1), respectively, 

although they also weakly express myCAF and apCAF marker genes (Figure 5B). We 

observed that while most CAFs in every specimen of every patient tumor are iCAFs or myCAFs, 

the other CAF subtypes are present at low numbers throughout (Figure 5C). Notably, the 

CD133+ iCAFs comprise a large proportion of CAFs in one gemcitabine+nab-paclitaxel tumor 

(HT122P1) but were only recovered from two out of the four spatial samples (Figures 5C and 

S5B). These CD133+ iCAFs express several cancer stem cell gene markers, including CD133, 

MET, EPCAM, CD24, and CD44, with some genes expressed at an even higher level than the 

tumor cells themselves (Figure 5D). Interestingly, we observed high CD44 expression in 

apCAFs and CXCR4+ iCAFs as well. Furthermore, VIM and NFE2L2 were most highly 

expressed in apCAFs, which were more abundant in treated samples (p < 10–5) (Figure 5E). 

These results suggest that small unique CAF subpopulations that express cancer-driving 

programs exist within standard CAF subtypes. 

 

To better understand the role of CAFs in tumorigenesis, we analyzed the expression patterns of 

CAF subtypes to test whether they were enriched for TME-remodeling pathways. Loss of CAV1 

and CAV2 are associated with the CAF phenotype, which is associated with poor clinical 
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outcomes (Chatterjee et al., 2015; Chen & Che, 2014). Aside from myCAFs, we observe a 

significant reduction of CAV1 and CAV2 expression in all CAFs compared to fibroblasts present 

in NAT samples (Figure S5C). This suggests that myCAFs may have a different biological role 

in the tumor microenvironment. In addition to their very high levels of CXCR4 expression, 

CXCR4+ iCAFs express very high levels of its ligand, CXCL12 (Figure S5D) (Liekens et al., 

2010; Peitzsch et al., 2015; Eckert et al., 2018). Also, while apCAFs have high expression of 

NFE2L2, which is involved in oxidative damage repair, myCAFs have high expression of HIF1A, 

which regulates tolerance to hypoxic environments (Figure S5E). Together, this suggests that 

different CAF subtypes may play different roles in remodeling of the TME (Semenza, 2003; 

Huang & Taniguchi, 2017). 

 

We identified the top DEGs between our main CAF subtypes (apCAF, iCAF, and myCAF) 

(Figure 5F). myCAFs upregulate genes that are part of the smooth muscle contraction and 

collagen chain trimerization pathways, including MCAM, ACTA2, and NOTCH3. iCAFs 

upregulate genes that are part of the complement system and complement activation pathways, 

including IGFBP3, PTGDS, and CXCL14. apCAFs upregulate genes that are part of antigen 

presenting pathways, including MCAM, ACTA2, and NOTCH3. Additionally, we compared the 

expression of CAF genes currently targeted by clinical trials registered as of 01/2020 (Sahai et 

al., 2020) (Figure 5G). As treated samples compared to untreated samples have a depletion of 

myCAFs and enrichment of iCAFs, the effectiveness of additional therapies targeting CAFs may 

differ across treatment groups (Figure 5C). 

 

Immune Populations and Their Interaction with Tumor Cells 

 

To obtain more insight and identify potential ways to address the immunosuppressed TME 

characteristic of PDAC (Unzunparmak et al., 2019), we identified and reclustered immune cells 

into two major classes: lymphocytes or myeloid and dendritic cells. In the latter group, we further 

distinguish between type I and type II classical dendritic cells (cDC1, cD2), macrophages, 

monocytes, and neutrophils (Figures 6A, S6A, and S6B). We observed that myeloid cells and 

cDCs strongly express TME remodeling pathway genes, such as angiogenesis and hypoxia 

pathways, including TGFB1, NFE2L2 (Nrf2), VEGFA, and HIF1A at higher levels than tumor 

cells (Figure 6B). Furthermore, we observed high expression levels of genes within the Nrf2 

pathway, which regulates oxidative damage repair, including NQO1 and GPX2 (Figure 6C). 

While tumor cells do not have significant expression of NFE2L2, it does have activation of the 
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pathway. Therefore, such activation may be triggered via paracrine interactions with TME cells 

and would indicate that myeloid cells and dendritic cells contribute towards a pro-tumor TME. 

 

Within the lymphocyte and NK subset, we assigned states to CD4+ and CD8+ T based on their 

exhaustion, proliferation, and cytotoxic markers (Figures 6D, S6A, and S6B). We observe 

similar percentages of cell types across treatment groups, with slightly higher abundance of 

CD4+ T cells in FOLFIRINOX samples and higher numbers of CD8+ T cells in treated samples 

(Figure S6C). CD4+ T cells and Tregs in FOLFIRINOX samples had high expression of heat 

shock genes, such as HSPA1A, HSPA1B, HSPH1, and HSPD1, compared to other treatment 

groups. (Figure S6D). Further, pathway enrichment analyses revealed a large number of 

cellular responses to heat stress in both CD4+ T cells and Tregs in these samples (Figure 

S6E). Receptor-ligand analyses furthermore reveal an interaction between the TIGIT receptor in 

lymphocytes and its NECTIN2 receptor across all samples, which we found is highly expressed 

in tumor cells (STAR Methods). This is consistent with a previous report that NECTIN4 has 

high tumor specificity and is a potential target for immune checkpoint blockade (Reches et al., 

2020; Gorvel and Olive, 2020). TIGIT interaction with NECTIN receptors inactivates T cell and 

NK function, which could be used by the tumor for immune evasion. We expanded our analysis 

to all nectin receptors and observed that NECTIN1, NECTIN2, and NECTIN4 are all expressed 

solely in tumor cells, but NECTIN3 is expressed in some lymphoid cell types, while TIGIT is 

largely expressed in Tregs and exhausted CD4+ T cells (Figure 6E). This suggests that this 

interaction may be contributing towards the immunosuppressive TME in PDAC. Furthermore, 

we observe that PD-L1 and PD-L2 are not expressed in tumor cells at all, consistent with the 

poor response of PDAC to anti-PD-1/PD-L1 immunotherapy (Feng et al., 2017; Birnbaum et al., 

2016; Pu et al., 2019). We extend our analysis of nectin receptors to all cell types to assess 

tumor-specific expression beyond lymphocytes and note that while nectins are overall quite 

tumor-specific, NECTIN1 is highly expressed in myCAFs, NECTIN2 in endothelial cells, and 

NECTIN3 in islet cells; NECTIN4 is the most tumor cell-specific NECTIN receptor (Figure 6F), 

consistent with previous reports (Reches et al., 2020). We analyzed TIGIT and Nectin receptors 

expression at individual sample levels in Tregs, NK cells, exhausted T cells, and tumor cells 

(Figure 6G). Consistent with the previous analysis, we observed high expression of all nectin 

receptors in tumor cells and TIGIT in Tregs and exhausted T cells, but also noted a substantial 

degree of heterogeneity across cases, particularly in TIGIT expression in exhausted T cells and 

in NECTIN1 and NECTIN3 expression in tumor cells. These results suggest a rationale for 

targeting the TIGIT-NECTIN axis in PDAC. 
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Cell Type Biomarkers and Treatment Implications 

 

Bulk RNA-Sequencing data of tumors reflects gene expression signatures originating from a 

mixture of cell types. Unless the samples have exceptionally high tumor purity, bulk analysis 

cannot be a completely faithful representation of tumor cell gene expression (Nieuwenhuis et 

al., 2020). scRNA Seq data enables the identification of gene expression patterns from specific 

cell type populations. By analyzing only the tumor cells in the scRNA data, we identified 109 

tumor markers, 56 of which are expressed on the cell surface, that are highly expressed in 

tumor cells compared to all other cell types, with a small subset of markers (n = 15) also 

strongly expressed in ADM cells (Figure 7A, STAR Methods, Table S3). Genes that are highly 

expressed in both tumor cells and ADM include MMP7, CXCL17, TFF1, LGALS4, and 

CEACAM5. Additionally, within the 109 genes, we found 25 genes that are significantly 

differentially expressed between tumors treated with different treatment regimens (Figure 7B). 

We identified several specific genes and proteins that are significantly highly expressed at the 

bulk RNA and protein levels in the gemcitabine+nab-paclitaxel, treatment-naïve, and 

FOLFIRINOX groups (FDR < 0.05) (Figure 7B). Notably, while KRT17 and C19orf33 are 

commonly used as markers to distinguish between epithelial and neoplastic cells, we observed 

large differences in expression in FOLFIRINOX-treated samples compared to other samples. 

We also observe a set of genes that overlap of our previously identified markers for the single 

cell-based classical subtype. These genes include TFF1, TFF3, OLFM4, and CLDN18, which 

suggest that in addition to treatment status, tumor subtypes also have an impact on specific 

tumor biomarker expression (Figure 7B). 

 

In order to determine the differences that occur following treatment, we assessed changes in 

cell type proportions within each of the three major treatment groups (Figure 7C). The largest 

difference was in fibroblasts, where both treated groups had higher numbers of fibroblasts than 

the treatment naive group. Notably, we determined that the difference is driven by a 3-fold 

higher amount of iCAFs in FOLFIRINOX and Gemcitabine+Nab-paclitaxel samples (p < 10–4), 

with little difference in myCAF abundance between treatment groups. As iCAFs are understood 

to be pro-tumorigenic (Hosein et al., 2020), this large increase of iCAFs aftertreatment may 

bode poorly in terms of treatment resistance. While we detected a decrease in CD8+ T cells, 

particularly cytotoxic T cells, and tumor cells in FOLFIRINOX samples, these differences were 

not significant. These observations provide evidence that treated tumors have much higher 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.13.426413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

levels of iCAFs in particular, and represent an attractive potential target for chemoresistant 

tumors. 

 

We further analyzed the DEGs between treatment groups within each cell type (STAR 

Methods). Acinar cells and endothelial cells harbored the strongest differences in expression 

between treated and untreated samples. In acinar cells, we detected high expression of 

regenerating family member genes, such as REG1B and REG3A in the naïve group only. 

Higher expression of amylases and lipase genes were found in both treated groups, which have 

been previously associated with chronic pancreatitis and pancreatic cancer (Figure S7A) 

(Raphael et al., 2016; Stotz et al., 2020; Lasher et al., 2019). In endothelial cells, we observed 

an upregulation in metallothioneins in treated samples, particularly in gemcitabine+nab-

paclitaxel samples. (Figure S7B). Interestingly, PRSS1 and PRSS2, which are associated with 

hereditary pancreatitis, are highly expressed in FOLFIRINOX endothelial cells only (Le 

Maréchal et al., 2006; Whitcomb et al., 2012). Similar to acinar cells, we observed high 

expression of lipase, and chymotrypsin genes in endothelial cells but only in FOLFIRINOX-

treated cases. 

 

With respect to the tumor cells, we identified DEGs between treated and treatment-naïve 

samples. The top DEGs include MMP7, REG4, and VCAN in treated tumor cells and TFF3, 

ITGB8, and PLCG2 in treatment-naïve tumor cells (Figure S7C). Breaking down the treated 

group into FOLFIRINOX and gemcitabine+nab-paclitaxel cells results in the same top DEGs in 

the naïve group, but we detect that VCAN and MMP1 to be gemcitabine+nab-paclitaxel-unique 

(Figure S7D). We applied a similar comparison to the bulk RNA and protein data, which reflect 

a mixture of cell types and once again compared treated vs treatment-naïve samples (STAR 

Methods). The genes with the greatest fold change between treated and untreated samples 

included AMY2A, REG1B, and CTRB2 in the untreated samples and KRT5 and KRT6A in the 

treated group. The first set of genes are known to be acinar gene markers and the second set is 

composed of epithelial genes, suggesting that most differences are driven by cell-type 

differences due to low tumor purity (Figure S7E). While we do not observe significant 

differences in the tumor or acinar cell proportions estimated from the paired scRNA data, the 

tissue portion subjected to bulk sequencing was not completely identical to the scRNA tissue, 

and it is possible that this skewed the observed results (STAR Methods). At the protein level, 

we did not observe cell-type differences. Focusing on proteins with a 2-fold or greater change, 

we identified 18 differentially expressed proteins (DEPs) between treated and untreated 
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samples and find that GBP6, PTGDS, and ADAM23 are elevated in treated samples while 

REG1A, EIF1AY, PRSS3, and HLA-DRB4 are elevated in naïve samples, among others 

(Figure 7D). 

 

While these 18 proteins overall display such patterns between treated and naïve samples, we 

observe a modest amount of heterogeneity between spatial samples and between a subset of 

tumor cases (Figure 7E). For instance, treated tumor HT071P1 has high levels of HLA-DR4 

while treated tumor HT122P1 has high levels of EIF1AY. Similarly, naïve tumor HT064P1 has 

very low levels of ADAM23 only in 2/4 spatial samples, suggesting spatial heterogeneity. In 

order to determine whether this heterogeneity is due to differences in the composition of non-

tumor cell types, we assessed whether any of these 18 proteins were significantly differentially 

expressed between treatment groups in specific cell types in the scRNA data (STAR Methods). 

Curiously, we found that REG1A is upregulated in naïve apCAFs and FOLFIRINOX endothelial 

cells. Additionally, we observe PTGDS overexpression in gemcitabine+nab-paclitaxel iCAFs 

and PRSS3 overexpression in acinar cells in both treated groups compared to the naïve cells 

(Figure S7F). These results suggest that several of these differentially abundant proteins may 

be driven by the TME rather than the tumor cells. Finally, we match all significant DEPs (n = 

143, no minimum fold change of 2 filter) with the CiVIC druggable database (Griffith et al., 2017) 

to identify potential druggable proteins that are differentially expressed in treated and untreated 

samples (STAR Methods). We identified 3 matches to expression-based druggable targets: 

ERBB3 - Pertuzumab/9F7-F11 in naïve samples and DNMT1-Decitabine and SLFN11-7-Ethyl-

10-Hydroxycamptothecin in treatment-resistant samples (Figure 7F). These results suggest that 

DNMT1 and SLFN11, which are known to drive other cancers and are currently targetable, 

could represent drivers in the resistant tumors and thus may warrant pre-clinical assessment for 

treatment efficacy. On the other hand, targeting ERBB3 may not be possible in resistant tumors 

compared to naïve tumors due to treatment-induced changes in protein levels (Murai et al., 

2019; Zhang & Xu, 2017). 

 

Lastly, we extended our druggable target analysis to all cell types in the scRNA data. For each 

cell type, we split the analysis into treated and untreated cells and identified expression-based 

druggable targets (Figure 7G). Most druggable genes identified were present in both treated 

and untreated cells (i.e., significantly highly expressed in the given cell type but not differentially 

expressed between treatment groups). By clustering the data, we identified modules of 

druggable targets that roughly correspond to lymphocytes, myeloid cells, and CAFs. When 
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clustering the drugs that target these genes, these cell type modules are also present (Figure 

S7G). These include PDCD4, CDKN1B, CASP8, and JAK1 in lymphocytes and HLA-DRA, 

SGK1, and HAVCR2 in dendritic and myeloid cells. Interestingly, apCAFs, ADM cells, and 

CD133+ CAFs group together with druggable protein products of HSPB1, CCND1, and ERBB3 

and endothelial cells and myCAFs group together with druggable products of PTP4A3, MYC, 

and AKT3. We note that only 2 out of 8 tumor targets, MET and ERBB2, seem to be tumor-

specific, implying a potentially lower chance of off-target effects in other cell types. 

 

DISCUSSION 

 

We conducted a comprehensive multi-omic spatial characterization of PDAC by integrating bulk 

sequencing and proteomics/phosphoproteomics, single cell sequencing, and high-resolution 

cellular imaging technologies. Each of these modalities makes a crucial contribution to the 

overall picture. Spatial sampling and imaging mass cytometry orthogonally reveal tumor 

heterogeneity. Single cell resolution enables the characterization of tumor cells independent of 

purity level, thus bypassing what has been a substantial challenge in PDAC omic studies, and 

powers a detailed evaluation of the TME and cell-cell interactions (Raphael et al., 2017). 

Different treatment groups allowed us to identify potential mechanisms of treatment resistance 

and identify new targets worthy of further mechanistic inquiry. Over 50% of spatial samples 

showed high degrees of cell type heterogeneity, which was echoed by pathological review of 

H&E slides and subtypes from bulk sequencing data. In certain cases, pathologic review 

assigned different tumor grades to different samples from the same patient, consistent with the 

molecular heterogeneity observed in omic analyses. 

 

We identified ADM cell populations, which express both oncogenic features and tumor 

suppressor genes, and significantly upregulate EMT and stem cell genes, compared to tumor 

cells (Xu et al., 2019). While the ADM state is important in post-injury pancreas regeneration, it 

can also transition through intraepithelial neoplasia lesions to full-blown PDAC (Storz, 2017). 

The unique expression pattern of ADM as an intermediate state suggests there may be a 

dynamic transition between tumor and acinar fates in ADM, which may lead to the progression 

towards PDAC when the oncogenic side prevails, commonly due to the acquisition of a driver 

KRAS variant. This would be consistent with the sensitivity of acinar cells to KRAS mutations as 

a catalyst for ADM and inclination toward PDAC (Xu et al., 2019). It would also further connect 

our observations of KRAS mutated clusters upregulating REG1A and elevation of REG1A in 
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treatment-naïve samples, as REG1A has been proposed as a diagnostic and prognostic marker 

for PDAC (Li et al., 2016). We also observed spatial heterogeneity in ADM populations, which 

was associated with more poorly differentiated tumor phenotype. 

 

The function of cancer-associated fibroblasts (CAFs) has also been poorly understood in 

PDAC.Historically presumed to be staunch drivers of cancer, they are now known to have a 

much more complicated, even dual behavior that can either drive or suppress cancer 

development, depending upon numerous factors (Gieniec et al., 2019; Pereira et al., 2019). 

Indeed, their highly heterogeneous nature has stimulated efforts to discover and catalog CAF 

types. Here, we identified iCAFs, myCAFs, and apCAFs, further classifying two small iCAF 

subsets as CD133+ and CXCR4+. The CD133+ iCAFs are characterized by high expression of 

cancer stemness genes, including PROM1 (CD133), MET, EPCAM, and CD24. We identified 

markers and activated pathways in these subtypes, determining that most CAF genes in current 

clinical trials are differentially expressed between subtypes and therefore may respond 

differently (Sahai et al., 2020). Importantly, we observed a distinct pattern of higher iCAF 

abundance in treated samples. This is important to consider, as IL-1-mediated signaling and 

JAK-STAT signaling in iCAFs has motivated respective studies of adding IL-1R blockade to 

standard-of-care (FOLFIRINOX-based) chemotherapy (Hosein et al., 2020; ClinicalTrials.gov: 

NCT02021422). Additionally, treating KPC mouse models with a JAK inhibitor to target iCAFs 

has resulted in decreased tumor size (Biffi et al., 2019). 

 

Immunotherapy continues to progress across the cancer treatment realm, but clinical application 

is often still plagued by side effects stemming from over-stimulation of the immune system. In 

some instances, these effects can be particularly serious or even fatal (Wang et al., 2018). 

Searches for ever-greater specificities to alleviate what have become known as “immune-

related adverse events” thus continues (Reches et al., 2020). Single cell analysis revealed that 

the nectin receptors, in particular NECTIN4, are tumor-specific. Receptor-ligand analysis 

uncovered a potential interaction with TIGIT in Tregs and exhausted T cells, which may be 

inhibiting the activation of T cell and NK functions. This suggests the possibility that the nectin-

TIGIT interaction may be a target worth exploring in PDAC. Consistent with previous analysis, 

we observed high expression of all nectin receptors in tumor cells and TIGIT in Tregs and 

exhausted T cells but also noted a substantial degree of heterogeneity across cases, 

particularly in TIGIT expression in exhausted T cells and in NECTIN1 and NECTIN3 expression 
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in tumor cells. The specificity problem in immunotherapy is increasingly urgent for advancing the 

safe and effective application of inhibitors. 

 

In conclusion, this study provides a comprehensive analysis of PDAC spatial heterogeneity and 

treatment characteristics by integrating bulk and single cell omics and imaging technologies. We 

determined high levels of heterogeneity in PDAC including spatially separated driver clones, 

KRAS mutated and KRAS WT tumor populations, tumor-ADM interactions, and subtype 

heterogeneity within the same patients. These results underscore both the utility of spatial 

sampling from multiple regions of the tumor for characterization, as well as the clinical challenge 

of capturing PDAC heterogeneity in clinical assays. The identification of biomarkers and 

differentially expressed genes and proteins between treatment groups as well as cell types 

provides a resource to identify new targets with clinical relevance. 
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MAIN FIGURE LEGENDS 

 

Figure 1: Sampling Strategy and Cohort Overview. A) Spatial sampling approach. At least 2 

punches or grids were selected from each tumor for comprehensive imaging and omics 

characterization. "P" denotes tissue punches, "H" denotes tissue grids, and "R" denotes 

remainder tissue. B) Top: Data overview of the cohort. M1K1 and M1G1 denote NAT samples. 

Middle: scRNA-based and histology-based estimates of tumor purity and scRNA-based cell type 

percent composition. The size of each circle denotes percentage. Bottom: Composite cell type 

proportion and expression heterogeneity score (STAR Methods). A higher score denotes 

higher heterogeneity. Cell type-specific scores are calculated in a similar fashion but are based 

only on expression. C) Endothelial cell, tumor cell, and fibroblast percentages in samples split 

by treatment group. 

 

Figure 2: Genomic Landscape and Single-Cell Subtyping. A) Top: Genomic landscape of 

the cohort showing the top significantly mutated genes. Color scale denotes VAF for each gene. 

Bottom: Bulk omics overview of the cohort. B) Three examples of cases with heterogeneous 

tumor cells with different single-cell subtypes. UMAP plots show only clustered tumor cells. For 

each case, the top five significant genes ranked by fold change across subtypes are shown. 

Bolded genes represent genes that are present across at least two of the cases. 

 

Figure 3: Spatial and Oncogenic Driver Heterogeneity. A) Tumor cell clusters labeled with 

KRAS hotspot mutations. B) Tumor cell clusters labeled with KRAS, CDKN2A, and TP53 

mutations. C) Case HT061P1. . Top row left to right: tissue sample spatial locations, sample IDs 

(R1 denotes the remainder tissue), KRAS variants. Second row left to right: AKT2 CNV, MYC 

CNV, and GATA6 CNV. Copy number calls were obtained using inferCNV. D) CNV-based 

lineage tree of a subset of tumor cells from HT061P1. E) Proposed model of tumor progression 

for HT061P1. F) Bulk phosphosite levels in the PI3K/Pdk1/Akt and Raf/Mek/Erk pathways. Grey 
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boxes denote missing data. Samples with proteomics/phosphoproteomics did not all have 

mutations in CDKN2A.  

 

Figure 4: Acinar-Ductal Metaplasia Transition Populations. A) Acinar, ADM, and tumor 

percentages in all 73 samples. NAT samples are labeled with a red circle. B) Acinar, ADM, ADM 

mutated, and tumor populations from cases HT122P1 and HT168P1. C) All mappable mutations 

in acinar, ADM, and tumor cells of HT122P1 and HT168P1. D) A subset of markers used to 

distinguish between acinar, ADM, and tumor cells. E) Composite score using all acinar and 

tumor markers. F) Top significant DEGs in ADM cells. TFF2 and PRSS1 are included as 

references, with each being a strong marker for tumor and acinar cells, respectively. G) Average 

expression of EMT, stemness, and tumor/acinar genes. H) scRNA-based acinar, ADM, and 

tumor cell proportions (left) and sample spatial locations (right) in samples from HT122P1. I) 

Left: IMC slides (Hyperion) of H3 and H9. The antibody labels used and their corresponding 

colors are denoted on the top. Right: IMC-based estimates of acinar, ADM, and tumor cell 

percentages using cell segmentation and color intensity quantitation. 

 

Figure 5: Cancer-Associated Fibroblast Subtypes. A) UMAP of CAF subtypes. B) A subset 

of gene markers used to distinguish between CAF subtypes. C) CAF subtype distribution in the 

cohort and across treatment groups. D) Cancer stem cell gene marker expression across CAF 

subtypes. E) Expression of apCAF markers, VIM, and NFE2L2 across CAF subtypes. F) Top 

DEGs across iCAFs, myCAFs, and apCAFs. G) Expression of genes currently targeted by 

clinical trials across CAF subtypes. 

 

Figure 6: Immune Interactions in the Tumor Microenvironment. A) Myeloid cells and 

dendritic cell clusters. B) TGFB1, NFE2L2, VEGFA, and HIF1A expression across cell types. C) 

Nrf2 pathway gene expression. Tumor cells are included for comparison. D) Lymphocyte and 

NK cell clusters. E) TIGIT and nectin receptors expression in tumor, NK, and lymphocyte cells. 

PD1, PD-L1, and PD-L2 are included for reference. F) Expression of nectin receptors across all 

cell types. G) Average expression of TIGIT, NECTIN1, NECTIN2, NECTIN3, and NECTIN4 in 

exhausted T cells, NK cells, Tregs, and tumor cells.  

 

Figure 7: Tumor Biomarkers and Druggable Targets. A) Average expression of tumor 

biomarkers across all cell types. B) Top: Significantly differentially expressed genes by 

treatment groups and tissue status. Lower panels: scRNA, bulk RNA, proteomics, and 
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phosphoproteomics levels of tumor biomarkers that are differentially expressed across 

treatment groups. C) Top: cell type percentages split by treatment groups. Bottom: cell type 

distributions for CD8+ T cells (cytotoxic and no particular substrate) and CAF subtype (iCAF, 

myCAF, and apCAF). D) Top differentially expressed proteins across treated and untreated 

samples. E) Protein levels of 18 differentially expressed proteins across all samples with 

proteomics data. F) Protein levels of ERBB3, DNMT1, and SLFN11 in treated and untreated 

samples. G) Druggable genes significantly upregulated across cell types.  

 

SUPPLEMENTAL FIGURE LEGENDS 

 
Figure S1: Cell Types and Sample Similarity, Related to Figure 1. A) All cells labeled with 

case ID. B) All cells labeled with cell types. C) Stroma percentages between treated and 

untreated samples. D) Proteomics PCA. E) Phosphoproteomics PCA. 

 

Figure S2: Bulk Correlations and Single-Cell Subtype Annotations, Related to Figure 2. A) 

Stroma score correlations with scRNA estimates. B) Immune score correlations with scRNA 

estimates. C) Tumor cells labeled with single-cell subtype. D) Tumor cells of HT061P1 labeled 

with KRAS variants. E) EMT gene expression in classical and basal-like tumor cells. The overall 

EMT score is a composite score from 14 EMT related genes. 

 

Figure S3: Differential Genomic Features in Heterogeneous KRAS Subpopulations, 

Related to Figure 3. A) Tumor cell clusters labeled with case ID. B) 3 tumor cell clusters 

originate from most samples, one of which has no mappable KRAS mutation. C) Top significant 

DEGs between KRAS clusters of multi-tumor origins. D) Top significant DEGs between specific 

KRAS hotspot mutations. Only cells with a mappable mutation were included in this analysis. E) 

KRAS and TP53 trans mutation impacts on protein levels. F) KRAS and TP53 trans mutation 

impacts on phosphoprotein levels. Overlapping dots denote several phosphosites from the 

same phosphoprotein. G) KRAS mutations in tumor cells of 5 cases with multiple KRAS variants 

mapped. H) Tumor cells of HT061P1 labeled with punch of origin. I) Arm and gene-level CNV 

events in HT061P1. 

 

Figure S4: Additional IMC ROIs for ADM Samples, Related to Figure 4. A) VIM expression. 

B) IMC image of HT122P1 S1H4 sample. C) IMC image of HT122P1 S1H5 sample.  
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Figure S5: Differentially Expressed Genes in Cancer-Associated Fibroblasts, Related to 

Figure 5. A) CAF subtype markers. Tumor cells are included for reference. B) Sample and CAF 

subtype clusters in HT122P1. C) CAV1 and CAV2 expression. D) CXCR4 and CXCL12 

expression. E) HIF1A and NFE2L2 expression. Macrophages and monocytes are included for 

comparison. 

 

Figure S6: Immune Population Markers and Heat Shock Gene Expression in FOLFIRINOX 

Cells, Related to Figure 6. A) Lymphocyte and NK cell marker expression. B) Myeloid and 

dendritic cell marker expression. C) Lymphocyte and NK percentages across treatment groups. 

D) Expression levels of heat shock genes across treatment groups. E) Enriched pathways in 

FOLFIRINOX CD4+ T and Treg populations. 

 

Figure S7: Differentially Expressed Genes and Druggable Genes in Different Cell Types, 

Related to Figure 7. A) Top acinar cell DEGs between treatment groups. B) Top endothelial 

cell DEGs between treatment groups. C) Top 5 DEGs each between treated and untreated 

tumor cells. D) Top tumor cell DEGs splitting the treatment group into FOLFIRINOX and 

Gemcitabine+Nab-paclitaxel groups. E) Top bulk RNA DEGs between treated and untreated 

samples. F) scRNA expression of REG1A, PTGDB, and PRSS3 in different cell types across 

treatment groups. G) Drugs that target genes significantly upregulated across cell types. 

 

STAR METHODS 

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Li Ding (lding@wustl.edu). 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

a-SMA (Clone:1A4) Fluidigm Catalog:3141017D 

Podoplanin (Clone:LpMab-12) Cell Signaling 

Technologies 

Catalog:26981BF 
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(CST) 

vimentin (Clone:RV202) Fluidigm Catalog:3143029D 

a-Amylase (Clone:D55H10) CST Catalog:3796BF 

CD16 (Clone:EPR16784) Fluidigm Catalog:3146020D 

CD163 (Clone:EDHu-1) Fluidigm Catalog:3147021D 

 Pan-Keratin (C11) 

(Clone:C11) 

Fluidigm Catalog:3148020D 

CD11b (Clone:EPR1344) Fluidigm Catalog:3149028D 

PD-L1 (Clone:E1L3N+) CST Catalog:13684BF 

CD31 (PECAM-1) 

(Clone:EPR3094) 

Fluidigm Catalog:3151025D 

CD45 (Clone:D9M8I) Fluidigm Catalog:3152018D 

Lag3 (Clone:D2G40) Fluidigm Catalog:3153028D 

CD11c (Clone:polyclonal) Fluidigm Catalog:3154025D 

FOXP3 (Clone:236A/E7) Fluidigm Catalog:3155016D 

CD4 (Clone:EPR6855) Fluidigm Catalog:3156033D 

E-cadherin (Clone:24E 10) Fluidigm Catalog:3158029D 

CD68 (Clone:KP1 ) Fluidigm Catalog:3159035D 

CD20 (Clone:H1) Fluidigm Catalog:3161029D 

CD8a (Clone:C8/144B) Fluidigm Catalog:3162034D 
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CD133 (Clone:D2V8Q) CST Catalog:64326BF 

CXCR4 (Clone:D4Z7W) CST Catalog:97680BF 

PD1 

(Clone:D4W2J+EPR4877(2)) 

CST Catalog:86163BF 

CD74 (Clone:LN2) Fluidigm Catalog:3166025D 

Granzyme B 

(Clone:EPR20129-217) 

Fluidigm Catalog:3167021D 

Ki-67 (Clone:B56) Fluidigm Catalog:3168022D 

Collagen Type 1 

(Clone:Polyclonal) 

Fluidigm Catalog:3169023D 

CD3 (Clone:polyclonal) Fluidigm Catalog:3170019D 

CD45RO (Clone:UCHL-1) Fluidigm Catalog:3173016D 

HLA-DR (Clone:YE2/36HLK) Fluidigm Catalog:3174023D 

FAP (Clone:E1V9V) CST Catalog:66562BF 

Histone H3 (Clone:D1H2) Fluidigm Catalog:3176023D 

DNA-Intercalator 1 (Clone:) Fluidigm Catalog:201192B 

DNA-Intercalator 2 (Clone:) Fluidigm Catalog:201192B 

Bacterial and Virus Strains 

      

Biological Samples 

Primary tumor and normal 

tissue samples 

This paper See Methods: Experimental Model and Subject Details 

Chemicals, Peptides, and Recombinant Proteins 
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gentleMACS C-tube Miltenyi 

Biotec 

Catalog: 130-093-237 

10% BSA Stock Solution Miltenyi 

Biotec 

Catalog: 130-091-376 

ACK Lysis Solution ThermoFisher Catalog: A1049201 

Phosphate Buffer Saline 

(PBS) 

Corning Catalog: 21-040-CM 

TRI reagent Millipore 

Sigma 

Catalog: T9424 

Critical Commercial Assays 

Dead Cell Removal Kit Miltenyi 

Biotec 

Catalog: 130-090-101 

Human Tumor Dissociation Kit Miltenyi 

Biotec 

Catalog: 130-095-929 

Chromium Next GEM Single 

Cell 3’ GEM, Library & Gel 

Bead Kit v3.1  

10x 

Genomics 

Catalog: 1000269 

QIAamp DNA Mini Kit Qiagen Catalog: 51304 

DNeasy Blood and Tissue Kit Qiagen Catalog: 69504 

RNeasy MinElute Cleanup Kit Qiagen Catalog: 74204 

RNase-Free DNase Set Qiagen Catalog: 79254 

Deposited Data 

      

Experimental Models: Cell Lines 

      

Experimental Models: Organisms/Strains 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.13.426413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

      

Oligonucleotides 

      

Recombinant DNA 

      

Software and Algorithms 

Ascore v1.0.6858 (Beausoleil et 

al., 2006) 

https://github.com/PNNL-Comp-Mass-Spec/AScore 

bam-readcount v0.8 McDonnell 

Genome 

Institute 

https://github.com/genome/bam-readcount 

Bioconda (The 

Bioconda 

Team et al., 

2018) 

https://bioconda.github.io/ 

Bioconductor v3.9 (Huber et al., 

2015) 

https://bioconductor.org/ 

CellPhoneDB (Efremova et 

al., 2020) 

https://www.cellphonedb.org 

 

CharGer v0.5.4 (Scott et al., 

2019) 

https://github.com/ding-lab/CharGer 

 

data.table_1.12.6  R 

Development 

Core Team 

https://cran.r-project.org/package=data.table 

dendsort_0.3.3 (Sakai et al., 

2014) 

https://cran.r-project.org/package=dendsort 

dplyr_0.8.5 R 

Development 

Core Team 

https://cran.r-project.org/package=dplyr 

ESTIMATE (Yoshihara et 

al., 2013) 

https://sourceforge.net/projects/estimateproject/ 
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GATK v4.0.0.0 (McKenna et 

al., 2010) 

https://github.com/broadgsa/gatk 

germlinewrapper v1.1 Li Ding Lab https://github.com/ding-lab/germlinewrapper 

ggplot2_3.3.2 R 

Development 

Core Team 

https://CRAN.R-project.org/package=ggplot2 

gridExtra_2.3 R 

Development 

Core Team 

https://cran.r-project.org/package=gridExtra 

bulk-RNA-Seq expression Li Ding Lab https://github.com/ding-

lab/HTAN_bulkRNA_expression 

inferCNV v0.8.2 (Tickle et al., 

2019) 

https://github.com/broadinstitute/infercnv 

Integrative Genomics Viewer (Robinson et 

al., 2011) 

https://igv.org 

magrittr_1.5 R 

Development 

Core Team 

https://cran.r-project.org/package=magrittr 

Matrix_1.2-17  R 

Development 

Core Team 

https://CRAN.R-project.org/package=Matrix 

MEDALT (Wang et al., 

2020) 

https://github.com/KChen-lab/MEDALT 

MuTect v1.1.7 (Cibulskis et 

al., 2013) 

https://github.com/broadinstitute/mutect 

pheatmap_1.0.12 R 

Development 

Core Team 

https://cran.r-project.org/package=pheatmap 

Pindel v0.2.5 (Ye et al., 

2009) 

https://github.com/genome/pindel 

Python v3.7 Python https://www.python.org/ 
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Software 

Foundation 

R v3.6 R 

Development 

Core Team 

https://www.r-project.org/ 

RColorBrewer_1.1-2 R 

Development 

Core Team 

https://CRAN.R-project.org/package=RColorBrewer 

reshape2_1.4.3 R 

Development 

Core Team 

https://cran.r-project.org/package=reshape2 

Samtools v1.2 (Li et al., 

2009) 

https://www.htslib.org/ 

scVarScan Li Ding Lab https://github.com/ding-lab/10Xmapping 

SeqQEst Li Ding Lab https://github.com/ding-lab/SeqQEst 

Seurat v3.1.2 (Butler et al., 

2018) 

https://cran.r-project.org/web/packages/Seurat 

somaticwrapper v1.3 and v1.5 Li Ding Lab https://github.com/ding-lab/somaticwrapper 

STAR v2.7.4a (Dobin et al., 

2013) 

https://github.com/alexdobin/STAR 

Strelka v2.9.2 (Kim et al., 

2018) 

https://github.com/Illumina/strelka 

stringr_1.4.0 R 

Development 

Core Team 

https://cran.r-project.org/package=stringr 

Subread v2.0.1 (Liao et al., 

2013) 

https://sourceforge.net/projects/subread/ 

Tidyverse (Wickham et 

al., 2019) 

https://www.tidyverse.org/ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.13.426413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 

VarScan v2.3.8 (Koboldt et 

al., 2012) 

https://dkoboldt.github.io/varscan/ 

viridis_0.5.1 R 

Development 

Core Team 

https://github.com/sjmgarnier/viridis 

viridisLite_0.3.0 R 

Development 

Core Team 

https://github.com/sjmgarnier/viridis 

xCell v1.2 (Aran et al., 

2017) 

http://xCell.ucsf.edu/ 

Other 

   

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Specimens and Clinical Data 
All samples were collected with informed consent in concordance with Institutional Review 

Board (IRB) approval. Primary pancreatic adenocarcinoma samples were collected during 

surgical resection and verified by standard pathology (IRB protocol 201108117). Blood was 

collected at the time of surgery into vacuum tubes containing heparin or 

ethylenediaminetetraacetic acid (EDTA) (BD Bioscience). Cells were isolated by ficoll-density 

centrifugation and frozen in fetal bovine serum with 5% dimethyl sulfoxide. 

Clinical data was captured in accordance with IRB protocol 20108117, at the time of informed 

consent and entered into the REDCap database. 

 

Sample Processing 

After verification by an attending pathologist, a 1.5 cm x 1.5 cm x 0.5 cm portion of the tumor 

was removed, photographed, weighed, and measured. Each piece was then subdivided into 6–

9 pieces (depending on the original size) and then further subdivided into four transverse cut 

pieces. Pieces were then placed into formalin, snap frozen in liquid nitrogen, DMEM, and 

formalin, respectively. 

 

METHOD DETAILS 
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Genomic DNA and RNA extraction 
Tumor tissues and corresponding normal mucosae were obtained from surgically resected 

specimens, and after a piece was removed for fresh single-cell prep the remaining sample was 

snap-frozen in liquid nitrogen and stored at −80°C. Before bulk RNA/DNA extraction, samples 

were cryo-pulverized (Covaris) and aliquoted for bulk extraction methods. Genomic DNA was 

extracted from tissue samples with either the DNeasy Blood and Tissue Kit (Qiagen, 69504) or 

the QIAamp DNA Mini Kit (Qiagen, 51304). Total RNA was extracted with TRI reagent (Millipore 

Sigma, T9424) and treated with DNase I (Qiagen, 79254) using an RNeasy MinElute Cleanup 

Kit (Qiagen, 74204). RNA integrity was evaluated using either a Bioanalyzer (Agilent 

Technologies) or TapeStation (Agilent Technologies). Genomic germline DNA was purified from 

cryopreserved peripheral blood mononuclear cells (PBMCs) using the QiaAMP DNA Mini Kit 

(Qiagen, 51304) according to the manufacturer's instructions (Qiagen, Valencia, CA). The DNA 

quantity was assessed by fluorometry using the Qubit dsDNA HS Assay (Q32854) according to 

manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA). 

 
Whole-Exome Sequencing 

100–250 ng of genomic DNA was fragmented on the Covaris LE220 instrument targeting 250bp 

inserts. Automated dual-indexed libraries were constructed with the KAPA Hyper library prep kit 

(Roche) on the SciClone NGS platform (Perkin Elmer). Up to ten libraries were pooled at an 

equimolar ratio by mass prior to the hybrid capture targeting a 5-µg library pool. The library 

pools were hybridized with the xGen Exome Research Panel v1.0 reagent (IDT Technologies) 

that spans a 39Mb target region (19,396 genes) of the human genome. The libraries were 

hybridized for 16–18 h at 65°C followed by stringent wash to remove spuriously hybridized 

library fragments. Enriched library fragments were eluted and PCR cycle optimization was 

performed to prevent over amplification. The enriched libraries were amplified with KAPA HiFi 

master mix (Roche) prior to sequencing. The concentration of each captured library pool was 

accurately determined through qPCR utilizing the KAPA library Quantification Kit according to 

the manufacturer's protocol (Roche) to produce cluster counts appropriate for the Illumina 

NovaSeq-6000 instrument. 2x150 paired-end reads were generated targeting 12Gb of 

sequence to achieve ~100x coverage per library. 

 

RNA Sequencing 

Total RNA integrity was determined using Agilent Bioanalyzer or 4200 Tapestation. Library 

preparation was performed with 500 ng to 1 ug of total RNA. Ribosomal RNA was blocked using 
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FastSelect reagents (Qiagen) during cDNA synthesis. RNA was fragmented in reverse 

transcriptase buffer with FastSelect reagent and heated to 94°C for 5 min, 75°C for 2 min, 70°C 

for 2 min, 65°C for 2 min, 60°C for 2 min, 55°C for 2 min, 37°C for 5 min, 25°C for 5 min. mRNA 

was reverse transcribed to yield cDNA using SuperScript III RT enzyme (Life Technologies, per 

manufacturer’s instructions) and random hexamers. A second strand reaction was performed to 

yield ds-cDNA. cDNA was blunt ended, had an A base added to the 3’ ends, and then had 

Illumina sequencing adapters ligated to the ends. Ligated fragments were then amplified for 15 

cycles using primers incorporating unique dual index tags. Fragments were sequenced on an 

Illumina NovaSeq-6000 S4 instrument generating approximately 30M paired end 2x150 reads 

per library. 

 

Single-cell Suspension Preparation 

For each tumor approximately 15–100 mg of 2–4 sections of each tumor and/or normal piece of 

tissue were cut into small pieces using a blade and processed separately. Enzymes and 

reagents from the human tumor dissociation kit (Miltenyi Biotec, 130-095-929) were added to 

the tumor tissue along with 1.75 mL of DMEM. The resulting suspension was loaded into a 

gentleMACS C-tube (Miltenyi Biotec, 130-093-237) and subject to the gentleMACS Octo 

Dissociator with Heaters (Miltenyi Biotec, 130-096-427). After 30–60 min on the heated 

dissociation program (37h_TDK_1), samples were removed from the dissociator and filtered 

through a 40-μm Mini-Strainer (PluriSelect #43-10040-60) or 40-μm Nylon mesh (Fisher 

Scientific, 22-363-547) into a 15-mL conical tube on ice. The sample was then spun down at 

400 g for 5 min at 4℃. After removing the supernatant, when a red pellet was visible, the cell 

pellet was resuspended using 200 μL to 3 mL of ACK Lysis Solution (ThermoFisher, A1049201) 

for 1–5 min. To quench the reaction, 10 mL of PBS (Corning, 21-040-CM) with 0.5% BSA 

(Miltenyi Biotec, 130-091-376) was added and spun down at 400 g for 5 min at 4℃. After 

removing supernatant, the cells were resuspended in 1 mL of PBS with 0.5% BSA, and live and 

dead cells were visualized using Trypan Blue. If over 40% of dead cells were present, the 

sample was spun down at 400 g for 5 min at 4℃ and subject to the dead cell removal kit 

(Miltenyi Biotec, 130-090-101). Finally the sample was spun down at 400 g for 5 min at 4℃ and 

resuspended in 500 μL to 1 mL of PBS with 0.5% BSA to a final concentration of 700 to 1,500 

cells per μL.  

 

Single-cell library prep and sequencing 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.13.426413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 

Utilizing the Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit v3.1 and 

Chromium instrument, approximately 17,500 to 25,000 cells were partitioned into nanoliter 

droplets to achieve single-cell resolution for a maximum of 10,000 to 15,000 individual cells per 

sample (10x Genomics, 1000269). The resulting cDNA was tagged with a common 16nt cell 

barcode and 10nt Unique Molecular Identifier during the RT reaction. Full-length cDNA from 

poly-A mRNA transcripts was enzymatically fragmented and size-selected to optimize the cDNA 

amplicon size (approximately 400bp) for library construction (10x Genomics).The concentration 

of the 10x single-cell library was accurately determined through qPCR (Kapa Biosystems) to 

produce cluster counts appropriate for the HiSeq 4000 or NovaSeq 6000 platform (Illumina). 

26x98bp sequence data were generated targeting 50K read pairs/cell, which provided digital 

gene expression profiles for each individual cell. 

 

Proteomic and Phosphoproteomic Profiling Experiments 

Protein Extraction and Lys-C/Trypsin Tandem Digestion 

Tissue lysis and downstream sample preparation for global proteomic and phosphoproteomic 

analysis were carried out as previously described (Clark et al., 2019; Mertins et al., 2018). 

Approximately 25–50 mg of each cryo-pulverized HTAN tissue was resuspended in lysis buffer 

(8 M urea, 75 mM NaCl, 50 mM Tris, pH 8.0, 1 mM EDTA, 2 µg/mL aprotinin, 10 µg/mL 

leupeptin, 1 mM PMSF, 10 mM NaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase 

Inhibitor Cocktail 3 [1:100 dilution], and 20 µM PUGNAc) by repeated vortexing. Lysates were 

clarified by centrifugation at 20,000 g for 10 min at 4°C, and protein concentrations were 

determined by BCA assay (Pierce). Proteins were reduced with 5 mM dithiothreitol (DTT, 

ThermoFisher) for 1 h at 37°C, and subsequently alkylated with 10 mM iodoacetamide (Sigma) 

for 45 min at room temperature (RT) in the dark. Samples were diluted 1:4 with 50 mM Tris-HCl 

(pH 8.0) and subjected to proteolytic digestion with LysC (Wako Chemicals) at 1 mAU:50 mg 

enzyme-to-substrate ratio for 2 h at RT, followed by the addition of sequencing grade modified 

trypsin (Promega) at 1:50 enzyme-to-substrate ratio and overnight incubation at RT. The 

digested samples were then acidified with 50% formic acid (FA, Fisher Chemicals) to pH 2. 

Tryptic peptides were desalted on reversed phase C18 SPE columns (Waters) and dried using 

Speed-Vac (Thermo Scientific). 

 

TMT-11 Labeling of Peptides 

Dried peptides from each sample were labeled with 11-plex TMT (Tandem Mass Tag) reagents 

(Thermo Fisher Scientific). 200 µg of peptides from each of the HTAN samples was dissolved in 
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80 µL of 100 mM HEPES, pH 8.5 solution. 30 HTAN samples were labeled in 3 TMT sets. A 

reference sample was created by pooling an aliquot from 26 HTAN samples (representing 

~90% of the sample cohort) and was included in all TMT 11-plex sets as a pooled reference 

channel (Channel 126). 5 mg of TMT reagent was dissolved in 500 µL of anhydrous acetonitrile, 

and then 30 µL of each TMT reagent was added to the corresponding aliquot of peptides. After 

1 h incubation at RT, the reaction was quenched by incubation with 5% NH2OH for 15 min at 

RT. Following labeling, peptides were desalted on reversed phase C18 SPE columns (Waters) 

and dried using Speed-Vac (Thermo Scientific). 

 

Peptide Fractionation by Basic Reversed-phase Liquid Chromatography (bRPLC) 

To reduce the likelihood of peptides co-isolating and co-fragmenting due to high sample 

complexity, we employed extensive, high-resolution fractionation via basic reversed phase liquid 

chromatography (bRPLC). For each TMT set, about 2.2 mg of desalted peptides was 

reconstituted in 900 µL of 5 mM ammonium formate (pH 10) and 2% acetonitrile (ACN) and 

loaded onto a 4.6 mm x 250 mm RP Zorbax 300 A Extend-C18 column with 3.5-mm size beads 

(Agilent). Peptides were separated using an Agilent 1200 Series HPLC instrument using basic 

reversed-phase chromatography with Solvent A (2% ACN, 5 mM ammonium formate, pH 10) 

and a non-linear gradient of Solvent B (90% ACN, 5 mM ammonium formate, pH 10) at 1 

mL/min as follows: 0% Solvent B (7 min), 0% to 16% Solvent B (6 min), 16% to 40% Solvent B 

60 min), 40% to 44% Solvent B (4 min), 44% to 60% Solvent B (5 min) and then held at 60% 

Solvent B (14 min). Collected fractions were concatenated into 24 fractions as described 

previously (Mertins et al., 2018); 5% of each of the 24 fractions was aliquoted for global 

proteomic analysis, dried down in a Speed-Vac, and resuspended in 3% ACN, 0.1% formic acid 

prior to ESI-LC-MS/MS analysis. The remaining sample was utilized for phosphopeptide 

enrichment. 

 

Enrichment of Phosphopeptides by Fe-IMAC 

The remaining 95% of the fractions were further concatenated into 12 fractions prior to 

phosphopeptide enrichment using immobilized metal affinity chromatography (IMAC) as 

previously described (Mertins et al., 2018). In brief, Ni-NTA agarose beads were utilized to 

prepare Fe3+-NTA agarose beads, and then about 200 µg of peptides of each fraction 

reconstituted in 80% ACN/0.1% trifluoroacetic acid were incubated with 10 µL of the Fe3+-IMAC 

beads for 30 mins. Samples were then spun down, and the supernatant containing unbound 

peptides was removed. The beads were brought up in 80% ACN, 0.1% trifluoroacetic acid and 
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then loaded onto equilibrated C-18 Stage Tips, and washed by 80% ACN, 0.1% trifluoroacetic 

acid, rinsed twice with 1% formic acid, followed by sample elution off the Fe3+-IMAC beads with 

100 µL of 500 mM dibasic potassium phosphate, pH 7.0. C-18 Stage Tips were then washed 

twice with 1% formic acid, followed by elution of the phosphopeptides from the C-18 Stage Tips 

with 80 µl of 50% ACN, 0.1% formic acid twice. Samples were dried down and resuspended in 

3% ACN, 0.1% formic acid prior to ESI-LC-MS/MS analysis. 

 

ESI-LC-MS/MS for Global Proteome and Phosphoproteome Analysis 

The global proteome and phosphoproteome fractions were analyzed as described in a previous 

study (Clark et al., 2019). Peptides (~0.8 µg) were separated on an Easy nLC 1200 UHPLC 

system (Thermo Scientific) on an in-house packed 20 cm x 75 mm diameter C18 column (1.9 

mm Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH); Picofrit 10 mm opening (New Objective)). 

The column was heated to 50°C using a column heater (Phoenix-ST). The flow rate was 0.300 

μL/min with 0.1% formic acid and 2% acetonitrile in water (A) and 0.1% formic acid, 90% 

acetonitrile (B). The global peptides were separated with a 6–30% B gradient in 84 mins and 

analyzed using the QE-HFX (Thermo Scientific). Parameters were as follows MS1: resolution – 

120,000, mass range – 400 to 2000 m/z, RF Lens – 30%, AGC Target 3e6, Max IT – 50 ms, 

charge state include - 2-5, dynamic exclusion – 20 s, top 20 ions selected for MS2; MS2: 

resolution – 45,000, collision energy NCE – 32, isolation width (m/z) – 0.7, AGC Target – 1.0e5, 

Max IT – 96 ms. The phosphopeptides were separated with a 6–30% B gradient in 84 mins and 

analyzed using the Lumos (Thermo Scientific). Parameters were as follows MS1: resolution – 

60,000, mass range – 350 to 1800 m/z, RF Lens – 30%, AGC Target 4.0e5, Max IT – 50 ms, 

charge state include - 2-6, dynamic exclusion – 45 s, top 20 ions selected for MS2; MS2: 

resolution – 50,000, HCD collision energy – 34, isolation width (m/z) – 0.7, AGC Target – 2.0e5, 

Max IT – 100 ms. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Genomic Data Analysis 

Somatic Variant Calling 

Somatic variants were called from whole-exome tumor-normal paired BAMs using 

somaticwrapper v1.5, a pipeline designed for detection of somatic variants from tumor and 

normal whole-exome sequence (WES) data. The pipeline merges and filters variant calls from 

four callers: Strelka v2.9.2 (Kim et al., 2018), VarScan v2.3.8 (Koboldt et al., 2012), Pindel 

v0.2.5 (Ye et al., 2009), and MuTect v1.1.7 (Cibulskis et al., 2013). SNV calls were obtained 
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from Strelka, Varscan, and MuTect. Indel calls were obtained from Strelka, Varscan, and Pindel. 

The following filters were applied to obtain variant calls of high confidence: normal VAF ≤ 0.02 

and tumor VAF ≥ 0.05, read depth in tumor ≥ 14 and normal ≥ 8, indel length < 100 bp, all 

variants must be called by 2 or more callers, all variants must be exonic, and variants in dbSNP 

but not in COSMIC excluded. 

 

KRAS Hotspot Genotyping 

To verify manually and/or determine the KRAS mutation status at KRAS hotspots G12, G13, 

and Q61, we used bam-readcount. For each case, we first applied bam-readcount to generate 

readcounts for each of the 9 bases in these loci and then calculated VAF values of all the KRAS 

hotspots based on reference and alternative base read counts at each position. 

 

Germline Variant Calling and Annotation 

Germline variant calling was performed using an in-house pipeline, germlinewrapper v1.1, which 

implements multiple tools for the detection of germline INDELs and SNVs. Germline SNVs were 

identified using VarScan v2.3.8 (with parameters: --min-var-freq 0.10 --p-value 0.10 --min-

coverage 3 --strand-filter 1) operating on a mpileup stream produced by samtools v1.2 (with 

parameters: -q 1 -Q 13) and GATK v4.0.0.0 (McKenna et al., 2010) using its haplotype caller in 

single-sample mode with duplicate and unmapped reads removed and retaining calls with a 

minimum quality threshold of 10. All resulting variants were limited to the coding regions of the 

full-length transcripts obtained from Ensembl release 95 plus an additional two base pairs 

flanking each exon to cover splice donor/acceptor sites. We required variants to have allelic 

depth ≥ 5 reads and alternative allele frequencies ≥ 20% in both the tumor and normal samples. 

We used bam-readcount v0.8 for reference and alternative alleles quantification (with 

parameters: -q 10 -b 15) in both normal and tumor samples. Additionally, we filtered all variants 

with ≥ 0.05% frequency in gnomAD v2.1 (Karczewski et al., 2017) and The 1000 Genomes 

Project (The 1000 Genomes Project Consortium, 2015). 

 

Germline Variant Pathogenic Classification 

For annotation and prioritization of the filtered germline variants, we used our automatic variant 

classification tool CharGer v0.5.4 (Scott et al., 2019), which computes a classification score 

based on ACMG-AMP guidelines. CharGer automatically marks as pathogenic those input 

variants that are marked as known pathogenic in ClinVar’s curated database and marks as 

likely pathogenic those variants with a CharGer score > 8. All pathogenic or likely pathogenic 
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variants had both their normal and tumor samples reviewed manually by us using the Integrative 

Genomics Viewer (IGV) software. 

 

scRNA-Seq Quantification and Analysis 

scRNA-Seq Data Preprocessing 

For each sample, we obtained the unfiltered feature-barcode matrix per sample by passing the 

demultiplexed FASTQs to Cell Ranger v3.1.0 ‘count’ command using default parameters and 

the prebuilt GRCh38 genome reference v3.0.0 (GRCh38 and Ensembl 93). Seurat v3.1.2 

(Butler et al., 2018; Hafemeister and Satija, 2019) was used for all subsequent analysis. First, a 

series of quality filters was applied to the data to remove those barcodes which fell into any one 

of these categories recommended by Seurat: too few total transcript counts (< 300); possible 

debris with too few genes expressed (< 200) and too few UMIs (< 1,000); possible more than 

one cell with too many genes expressed (> 10,000) and too many UMIs (> 10,000); possible 

dead cell or a sign of cellular stress and apoptosis with too high proportion of mitochondrial 

gene expression over the total transcript counts (> 10%). We constructed a Seurat object using 

the unfiltered feature-barcode matrix for each sample. Each sample was scaled and normalized 

using Seurat’s ‘SCTransform’ function to correct for batch effects (with parameters: 

vars.to.regress = c("nCount_RNA", "percent.mito"), variable.features n = 2000). Any merged 

analysis or subsequent subsetting of cells/samples underwent the same scaling and 

normalization method. Cells were clustered using the original Louvain algorithm (Blondel et al., 

2008) and top 20 PCA dimensions via ‘FindNeighbors’ and ‘FindClusters’ (with parameters: 

resolution = 0.5) functions. The resulting merged and normalized matrix was used for the 

subsequent analysis. 

 

scRNA-Seq Cell Type Annotation 

Main cell types were assigned to each cluster by manually reviewing the expression of a 

comprehensive set of marker genes. These assignments were all done by one person to 

maximize consistency. The marker genes used were KRT19, KRT8, KRT18, KRT17, KRT7, 

KRT5, KRT6A, KRT14, EPCAM, TACSTD2, ANXA2, S100A10, S100A11, S100A16, TPM1, 

TFF1, S100A6, AGR2, C19orf33 (tumor); INS, GCG, SST, GHR, PPY, GCK, PCSK1, PCSK2, 

CHGA, CHGB, SYP, KCNJ11 (islet); CTRB1, CELA3A, CELA3B, CTRB2, PLA2G1B, PRSS2, 

SPINK1, CLPS, CPA1, PRSS1, CPA2, REG1A, PNLIP, SYCN, PNLIPRP1, CTRC, KLK1, 

CELA2A, CPB1 (acinar); VWF, PECAM1, FLT4, FLT1, FLT3, KDR, PLVAP, ANGPT2, TRIM24, 

ACTA2 (endothelial); TIMP1, FN1, POSTN, ACTA2, BST2, LY6D, COL6A1, SLC20A1, 
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COL6A2, KRT16, CD9, S100A4, EMP1, LRRC8A, EPCAM, PDPN, ITGB1, PDGFRA, THY1 

(fibroblast); HBD, GYPA, HBA1, HBA2, CA1, HBB, BRSK1 (erythrocyte); SDC1, IGHG1, 

IGHG3, IGHG4 (plasma); CD19, MS4A1, CD79A, CD79B, CD83, CD86 (B cells); CD8B, CD8A, 

CD3E, CD3D (CD8 T cells); CD8B, CD8A, CD4 (CD4 T cells); XCL2, XCL1, SPON2, KLRF1, 

KIR2DL3, IL2RB, HOPX, CLIC3, CD7, KLRB1, KLRD1, GZMA, PRF1, CD160, NCAM1, 

FCGR3A (NK); FCER1A, KIT, FCER2, ENPP3 (mast); CD1C, CD1A, FLT3, ZBTB46, XCR1, 

CLEC9A, IRF8, FLT3, ZBTB46, BATF3 (cDCs); LY6G6D, MPO, FUT4, FCGR3A (neutrophils); 

ITGAM, LGALS3, CD68, CD163, LYZ, ADGRE1, LAMP2 (macrophages); CD14, FCGR3A, 

FCGR1A (monocytes). We further subdivided certain cell types into subtypes or cell states 

using the following: IKZF2, TNFRSF18, FOXP3, CTLA4, IL7R, IL2RA (Treg); GZMH, GZMK, 

GZMB, GZMA, PRF1, IFNG, FASLG, LAMP1, CD8A, CD8B, CD3E, CD3D (cytotoxic T cell); 

VSIR, TIGIT, ICOS, EOMES, HAVCR2, PDCD1, BTLA, CD244, LAG3, CD160, CTLA4, CD96 

(exhausted T cell); MKI67 (proliferation marker); ACTA2, FAP, PDPN, PDGFRA (general CAF); 

IL6, CXCL1, CXCL12, CXCL2 (iCAF); ACTA2, THY1, TAGLN (myCAF); CD74, SAA2, SAA1 

(apCAF). For ADM populations, we used a combination of tumor and acinar markers. 

 

scRNA-Seq Subtype Assignment 
We used 3 bulk gene marker sets (Bailey, Moffitt, and Collisson) and their respective subtypes 

for scRNA-Seq PDAC cluster assignment. For each subtype from the Bailey and Moffitt gene 

sets, the top 20 genes were selected, while from the Collisson gene set, all genes were used 

due to the lower marker count per subtype. The resulting gene marker lists grouped by subtype 

are as follows. Bailey set: MTMR7, ARX, ABCC8, CEACAM7, CACNA2D2, MAPK8IP2, SYT7, 

LTF, NR1H4, SLC7A14, PRSS3, CPA1, AQP8, FGL1, SERPINI2, REG1A, NR5A2, RBPJL, 

KIRREL2, CLPS (Adex); CFH, CD99, HECW1, PLXND1, RECQL, C1orf112, M6PR, FKBP4, 

GGCT, DBF4, SEMA3F, ANKIB1, MAD1L1, CDC27, WDR54, DPM1, NME2, UTP18, 

SLC25A39, TTC27 (Squamous); ENPP4, CFTR, CYP51A1, ABP1, LASP1, TMEM176A, ICA1, 

DBNDD1, CASP10, SARM1, UPF1, ACSM3, SPPL2B, PDK2, OSBPL7, TMEM98, BAIAP2L1, 

ALDH3B1, TTC22, FARP2 (PancProg); CD38, PDK4, FBXL3, CD79B, MYLIP, RWDD2A, 

ACPP, TRAF3IP3, ACAP1, ARHGAP15, CST7, P2RY10, SIRPG, GRAP2, FGR, ITGAL, 

CEACAM21, CD4, BTK, TYROBP (Immunogenic). Collisson set: REG1B, REG3A, REG1A, 

PNLIPRP2, CEL, PNLIP, PLA2G1B, CELA3A, CPB1, CELA3B, CTRB2, CLPS, CELA2B, 

PRSS2, PRSS1, GP2, SLC3A1, CFTR, SLC4A4, SPINK1 (Exocrine-like); AIM2, CALHM6, 

GPM6B, S100A2, KRT14, CAV1, LOX, SLC2A3, TWIST1, PAPPA, NT5E, CKS2, HMMR, 

SLC5A3, PMAIP1, PHLDA1, SLC16A1 (Quasi-Mesenchymal); FERMT1, HK2, AHNAK2, 
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TMEM45B, SDR16C5, GPRC5A, AGR2, S100P, FXYD3, ST6GALNAC1, CEACAM5, 

CEACAM6, TFF1, TFF3, CAPN8, FOXQ1, ELF3, ERBB3, TSPAN8, TOX3, LGALS4, PLS1, 

GPX2, ATP10B, MUC13 (Classical). Moffitt set: S100A2, KRT6A, CST6, GPR87, SCEL, 

ANXA8L2, KRT6C, SERPINB4, SERPINB3, LY6D, LY6D, PLAG1, IL20RB, C16orf74, DCBLD2, 

KRT17P3, HMGA2, SPRR3, SPRR1B, KRT17 (Basal-like); TM4SF5, TFF1, PLA2G10, GPX2, 

SPINK4, LOC400573, BTNL8, DMBT1, ATAD4, TFF3, FAM3D, LYZ, MYO1A, ANXA10, 

CLRN3, AKR1B10, CTSE, TSPAN8, LGALS4, REG4 (Classical). To assign the scRNA-Seq 

subtype, we calculated the “subtype score” for each cluster identified in the merged Seurat 

object described in the “scRNA-Seq Data Preprocessing” section. The subtype scores were 

defined by taking an average of selected bulk markers for each subtype in each marker set. 

Each cluster was then assigned to the subtype with the highest score within each marker set. 

 

Composite Heterogeneity Score 

For the single cell-based composite heterogeneity score, we first calculated the mean pairwise 

Spearman correlation of cell type proportions between samples from each case for a case-level 

cell type proportion statistic. We then calculated the average expression of all genes for each 

sample and obtained the mean pairwise Spearman correlation across all genes between 

samples from each case to obtain a case-level expression statistic. We defined the mean of 

these two scores, subtracted from 1, as the scRNA-based composite heterogeneity score for 

each patient. For the heterogeneity scores at the cell-type level, the score is calculated by 

correlating average expression between cells from each cell type only. 

 

scVarScan Mutation Mapping 

We applied our in-house tool scVarScan that can identify reads supporting the reference and 

variant alleles covering the variant site in each individual cell by tracing cell and molecular 

barcode information in an scRNA bam file. For mapping, we used high-confidence somatic 

mutations from WES data. Additionally, we use cancerhotspots.org (Chang et al., 2018) to 

obtain the most common KRAS hotspot mutations at G12, G13, and Q61 and use scVarScan to 

detect potential minority KRAS mutations in each sample. 

 

Single-cell RNA CNV Detection 

To detect large-scale chromosomal copy number variations using single-cell RNA-seq data, 

inferCNV (version 0.8.2) was used with default parameters recommended for 10x Genomics 

data. All cells that are not tumor were pooled together for the reference normal set. InferCNV 
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was run at a sample level and only with post-QC filtered data. In order to calculate arm-level 

CNV events, we used an in-house script to match the gene-level inferCNV output to 

chromosome bands and take the mean value for each arm. 

 

Differential scRNA Expression Analyses 

For cell-level and cluster-level differential expression, we used the 'FindMarkers' or 

"FindAllMarkers' Seurat function as appropriate, using a minimum percent of 0.25 (parameter 

min.pct = 0.25) and looking only in the positive direction, as lack of expression is harder to 

interpret due to the sparsity of the data. The resulting DEGs were then filtered for adjusted p-

value < 0.05 and sorted by fold change. All differential expression analyses were carried out 

using the "SCT" assay. 

 

Acinar and Ductal Scores 

To create gene module scores, we used the Seurat function "AddModuleScore" with default 

parameters and input our acinar or ductal marker genes lists as follows: KRT19, KRT8, KRT18, 

KRT17, KRT7, KRT5, KRT6A, KRT14, EPCAM, TACSTD2, ANXA2, S100A10, S100A11, 

S100A16, TPM1, TFF1, S100A6, AGR2, C19orf33 (tumor); and CTRB1, CELA3A, CELA3B, 

CTRB2, PLA2G1B, PRSS2, SPINK1, CLPS, CPA1, PRSS1, CPA2, REG1A, PNLIP, SYCN, 

PNLIPRP1, CTRC, KLK1, CELA2A, CPB1 (acinar). 

 

Receptor Ligand Interactions 

We used the CellPhoneDB tool (Efremova et al., 2020) in order to detect significant pairs of 

receptor-ligand interactions between cell types. This comparison was done at the sample level 

using default parameters between tumor and lymphocyte cell types. 

 

Cell Surface Annotation 
To annotate a given biomarker, we annotated each DEG by its subcellular location. Three 

databases were used to curate the subcellular location information: 1) Gene Ontology Term 

0005886; 2) Mass Spectrometric-Derived Cell Surface Protein Atlas (CSPA) (Bausch-Fluck et 

al., 2015); 3) The Human Protein Atlas (HPA) subcellular location data based on HPA version 

19.3 and Ensembl version 92.38. 

 

 

Bulk Proteogenomic Analyses 
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DNA and RNA Sample QC 

Bulk sequencing data quality metrics (adaptor content, mapping quality, coverage, and 

contamination/swaps/mislabeling) were determined for DNA and RNA bams using our in-house 

pipeline SeqQEst. The inclusion criteria for paired DNA and RNA bams was that there be no 

contamination and sufficient coverage (> 50x coding region coverage in WES or > 50Mb 

mapped depth in RNA-Seq data). 

 

RNA Quantification 

We used our in-house bulk-RNA-Seq expression analysis pipeline for quantification. Briefly, for 

each sample, the raw sequence reads were aligned into BAM files using STAR (Dobin et al., 

2013) (version 2.7.4a) 2-pass alignment with GRCh38 as the reference. The resulting BAM files 

were then quantified as a raw count-matrix using read feature counts using Subread (Liao et al., 

2013) (version 2.0.1). For both alignment and quantification, gene annotations were based on 

Gencode v34. The raw counts were then converted to FPKM-UQ based on GDC's formula 

(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/#upper

-quartile-fpkm) and then log2 transformed with 1 pseudocount. 

 

Proteomic and Phosphoproteomics Quantification 

Proteomic data processing followed the methods detailed in Clark et al., 2019. Briefly, raw mass 

spectrometry files were converted into open mzML format, then searched using the MSFragger 

database against a RefSeq protein sequence database appended with an equal number of 

decoy sequences. The specific parameters and software are detailed in the Clark et al., 2019 

study. 

 

Heterogeneity Score 
Similar to the scRNA average expression metric, for each of the bulk RNA, proteomic, and 

phosphoproteomic data, we calculated the mean pairwise Spearman correlation across all 

genes between samples from each case to obtain a case-level correlation metric. We then 

defined the heterogeneity score as this mean correlation subtracted from 1. For 

phosphoproteomics, this was done using phosphosite abundances, not phosphoprotein 

abundances. 

 

Expression-Based Subtyping 
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Bulk expression subtyping is done by selecting top genes from each gene marker set (Bailey, 

Moffitt, and Collisson), normalizing expression, and clustering with the ConsensusClusterPlus 

(Wilkerson and Hayes, 2010) package in R. The top gene selection process is the same as that 

described in the scRNA-Seq subtype assignment method section. The log2 upper quartile 

normalized FPKM reads of these genes were standardized with z-score scaling, making each 

gene’s mean and standard deviation equal to 0 and 1, respectively, thereby allowing all genes 

on different expression levels to contribute equally to clustering. These normalized expression 

matrices were then clustered using ConsensusClusterPlus (with parameters for 1000 iterations 

and maximum k = 8). The optimum k for each marker set was selected based on the number of 

subtypes originally identified in each gene marker set (2, 3, and 4 for Moffitt, Collisson, and 

Bailey, respectively.) The clusters were then assigned to each subtype by inspecting the 

expression level of their respective marker gene lists. 

 

Mutation Impact on the Proteome and Phosphoproteome 
We used an aggregated database of interacting proteins that combines Omnipath, DEPOD, 

CORUM, Signor2, and Reactome databases as previously described (Dou et al., 2020). We 

focused our analyses on PDAC SMGs previously reported in the literature, but only KRAS and 

TP53 had large enough numbers in each comparison group for sufficient statistical power 

(Bailey et al., 2018). For each interacting pair, we split samples with and without mutations in 

partner A and compared expression levels (both protein and phosphosites) both in cis (partner 

A) and in trans (partner B). We calculated the median difference in expression and tested for 

significance using Wilcoxon rank sum tests, with Benjamini-Hochberg multiple test correction. 

We further refined the list of trans interactions by filtering proteins that are not part of oncogenic 

processes identified in TCGA (Sanchez-Vega et al., 2018). 

 

KRAS Phosphosignaling Analysis 

Oncogenic KRAS signaling in PDAC is believed to pass through three major pathways: 

Raf/Mek/Erk, PI3K/Pdk1/Akt, and the Ral guanine nucleotide exchange factor pathway (Eser et 

al., 2014). We focused on the Raf/Mek/Erk pathway (along with PI3K/Pdk1/Akt) because its 

signaling is controlled by phosphorylation. We used the phosphosites identified in this pathway 

as detailed in Collisson et al. (2012). 

 

Differential Proteogenomic Analysis 
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For differential analysis between groups of samples using bulk data (gene expression, 

proteomics, and phosphoproteomics), we used Wilcoxon rank-sum tests to test for differential 

abundances of genes, proteins, and phosphosites. We required that at least 50% of samples in 

each comparison group have non-missing values. P-values were then adjusted using the 

Benjamini-Hochberg multiple test correction to obtain features with an FDR cutoff ≥ 0.05.  

 

Immune Clustering Using Cell Type Enrichment Scores 

The abundance of each cell type was inferred by the xCell web tool (Aran et al., 2017), which 

performed the cell type enrichment analysis from gene expression data for 64 immune and 

stromal cell types (default xCell signature). xCell is a gene signatures-based method learned 

from thousands of pure cell types from various sources. We used the FPKM-UQ expression 

matrix as the input to xCell. xCell generated an immune score per sample that integrates the 

enrichment scores of various cell types, including B cells, CD4+ T-cells, CD8+ T-cells, DC, 

eosinophils, macrophages, monocytes, mast cells, neutrophils, and NK cells. Immune subtypes 

of HTAN PDAC cohorts were generated based on the consensus clustering of the xCell cell 

type enrichment scores (Wilkerson and Hayes, 2010). Among the 64 cell types tested in xCell, 

we selected cell types with at least 2 samples with xCell enrichment p < 0.01 and performed the 

consensus immune clustering based on the z-score normalized xCell enrichment scores. The 

consensus clustering was determined by the R package ConsensusClusterPlus (parameters: 

reps = 2000, pItem = 0.9, pFeature = 0.9, clusterAlg = "kmdist", distance = "spearman"). 

 

ESTIMATE Immune and Stroma Scores 

The ESTIMATE scores reflecting the overall immune and stromal infiltration and tumor purity 

estimation were calculated by the R package ESTIMATE (Yoshihara et al., 2013) using the 

normalized RNA expression data (FPKM-UQ). The ESTIMATE algorithm is based on single-

sample gene set enrichment analysis and generates three scores: 1) stromal score (which 

captures the presence of stroma in tumor tissue), 2) immune score (which represents the 

infiltration of immune cells in tumor tissue), and 3) estimate score (which infers tumor purity). 

 

CiVIC Drug Matching 

We obtained evidence of expression-based response to drugs from CIViC (Griffith et al., 2017). 

We filtered the database for only sensitive results and positive direction (i.e., "expression" and 

"overexpression"). We then matched these annotations to upregulated DEGs in our comparison 
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groups. In the present study we used the 06/02/2020 nightly clinical evidence summary 

annotations. 

 

Imaging Mass Cytometry 

Tissue Staining for IMC 

Two 5-μm thick sections from each pancreas piece were stained with the full antibody panel 

(see Key Resources Table). Slides were placed into a 60oC oven for 2 h, deparaffinized with 

xylene, and then rehydrated with a series of alcohols of decreasing concentrations. Antigen 

retrieval was performed by placing slides into a pre-warmed solution of Tris-EDTA, pH 9.0 and 

incubated at 96oC for 30 min. Slides were then cooled and washed in water and PBS. Non-

specific staining was blocked in PBS with 3% Bovine Serum Albumin (BSA). A cocktail 

containing all antibodies was prepared in PBS with 3% BSA, and slides were stained overnight 

at 4oC. Slides were then washed with PBS/0.2% Triton-X and incubated with an iridium 

intercalator for 30 min at room temperature. Ruthenium red counterstain was applied for 10 min 

after which slides were washed in diH2O then air-dried for 20 min. 

 

IMC Acquisition 

Regions of interest (ROI) were selected based on hematoxylin and eosin (H&E) stains on 

adjacent sections. Selected areas of 1,000 μm x 1,000 μm were ablated by a laser which 

rasters across the selected ROI at a rate of 200 Hz (200 pixels/s). The time needed for 

complete ablation of each ROI selected is about 2 h. The ablated tissue is then carried by an 

inert stream of helium and argon gas into the Helios (Fluidigm, South San Francisco CA) where 

the material is completely ionized in inductively coupled plasma. The ionized material enters into 

a time of flight (TOF) detector where it is separated based on mass. Laser shot signals are 

recorded in order and generate a pseudo-colored intensity map of each mass channel. These 

data are then exported as MCD files. 

 

IMC Analyses 
MCD images were converted to 32-bit ome.tiff images with Fluidigm MCD Viewer. Nuclear 

segmentation was performed with Halo(tm) multiplex imaging analysis software. Cell boundaries 

were delineated by expanding the nuclear segmentation boundary for each cell by 3 pixels. 

Marker intensities for each cell were then exported from Halo and normalized with the following 

steps: 1) division by cellular area, 2) capping to the 99% percentile, and 3) scaling by standard 

deviation and mean-centering. Marker intensities were then decomposed with PCA and UMAP, 
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and nearest neighbors (n=15) were identified for each cell. Cells were then clustered with the 

Leiden algorithm (implemented by the Python library Scanpy). Tumor cell clusters were 

identified as those harboring elevated levels of Pan-Keratin. Cells from this tumor cluster were 

then annotated according to their Pan-Keratin and Alpha-Amylase intensities. The cells were 

split into four partitions, (Alpha-Amylase+, Pan-Keratin+), (Alpha-Amylase+, Pan-Keratin-), 

(Alpha-Amylase-, Pan-Keratin+), and (Alpha-Amylase-, Pan-Keratin-) based on the following 

intensity thresholds: Alpha-Amylase < 2 or ≥ 2, and Pan-Keratin < 2 or ≥ 2. 

 

Additional Methods 

Pathological Parameters and Assessment 

Each tumor that is subdivided into smaller increments is subjected to H&E staining and 

assessed by a pathologist for the following parameters: percentage of viable tumor present, 

tumor differentiation, presence of recognizable pancreatic parenchyma surrounding or 

interspersed between tumor, lymphovascular invasion, and perineural invasion. Both slices of 

each tumor piece, both L1 and L4 when available, were subjected to assessment. For the 

correlation with scRNA-based tumor percentages, we averaged the top and bottom slide (L1 

and L4) tumor estimates. 

 

Pathway analysis 

For each comparison, we obtained the top 30 genes ranked by highest fold change that are 

significantly different between the comparison groups (FDR < 0.05). We used 

ConsensusPathDB-human for gene set over-representation analysis (Kamburov et al., 2013). 

 

DATA AND CODE AVAILABILITY 

All raw image and sequencing data will be deposited into the publicly available HTAN DCC at 

https://humantumoratlas.org/htan-dcc/. 

 

ADDITIONAL RESOURCES 

 
SUPPLEMENTAL TABLE LEGENDS 
 
Table S1: Cohort information including key clinical and molecular phenotypes.  
 
Table S2: Bulk omics data including somatic and germline variants and proteogenomics data. 
 
Table S3: Tumor biomarkers and tumor DEGs between treatment groups. 
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