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HIGHLIGHTS
1. Acinar-ductal metaplasia (ADM) cells represent a genetic and morphologic transition
state between acinar and tumor cells.
2. Inflammatory cancer associated fibroblasts (iICAFs) are a major component of the PDAC
TME and are significantly higher in treated samples
Receptor-ligand analysis reveals tumor cell-TME interactions through NECTIN4-TIGIT
Tumor and ADM cell proteogenomics differ between treated and untreated samples, with

unique and shared potential drug targets

SUMMARY

Pancreatic Ductal Adenocarcinoma (PDAC) is a lethal disease with limited treatment options
and poor survival. We studied 73 samples from 21 patients (7 treatment-naive and 14 treated
with neoadjuvant regimens), analyzing distinct spatial units and performing bulk
proteogenomics, single cell sequencing, and cellular imaging. Spatial drivers, including mutant
KRAS, SMAD4, and GNAQ, were associated with differential phosphosignaling and metabolic
responses compared to wild type. Single cell subtyping discovered 12 of 21 tumors with mixed
basal and classical features. Trefoil factor family members were upregulated in classical
populations, while the basal populations showed enhanced expression of mesenchymal genes,
including VIM and IGTB1. Acinar-ductal metaplasia (ADM) populations, present in 95% of
patients, with 46% reduction of driver mutation fractions compared to tumor populations,
exhibited suppressive and oncogenic features linked to morphologic states. We identified
coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin receptor
expression in tumor cells. Higher expression of angiogenic and stress response genes in
dendritic cells compared to tumor cells suggests they have a pro-tumorigenic role in remodeling
the microenvironment. Treated samples contain a three-fold enrichment of inflammatory CAFs

when compared to untreated samples, while other CAF subtypes remain similar. A subset of
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tumor and/or ADM-specific biomarkers showed differential expression between treatment
groups, and several known drug targets displayed potential cross-cell type reactivities. This
resolution that spatially defined single cell omics provides reveals the diversity of tumor and
microenvironment populations in PDAC. Such understanding may lead to more optimal

treatment regimens for patients with this devastating disease.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) has a 9% five-year survival rate (Siegel et al., 2020).
This poor prognosis is due to early metastases, late detection, and therapy resistance; at
diagnosis, the cancer is often unresectable, locally advanced, and/or metastatic disease
(McGuigan et al., 2018). The incidence of pancreatic cancer has increased in recent years, with
a roughly 5% rate increase in the last decade, which is projected to raise PDAC from the 4th to
the 2nd most common cause of cancer-related death in the U.S. by 2020 (Saad et al., 2018;
Rawla et al., 2019; llic & llic, 2016; American Cancer Society, 2020). The first-line treatment for
pancreatic cancer is surgery, if possible, followed by radiation and/or chemotherapy (Conroy et
al., 2018; Kang et al., 2018). Despite the promising successes of immunotherapy in several
cancer types, there have been very limited responses to immunotherapy in PDAC (Morrison et
al., 2018; Balachandran et al., 2019). Nearly all patients will develop chemoresistant tumors and
develop progressive, metastatic PDAC within two years of diagnosis, and beyond the two FDA-
approved chemotherapy regimens (FOLFIRINOX and gemcitabine+nab-paclitaxel), there are no

effective treatment regimens.

Over the last decade, there have been several major efforts to characterize the genomic and
transcriptomic landscape of PDAC (Raphael et al., 2017; Moffitt et al., 2015; Collisson et al.,
2011; Bailey et al., 2016). Altered KRAS, TP53, CDKN2A, and SMAD4, among others, have
been identified as key disease drivers, with KRAS hotspot mutation rates as high as 97% in
some cohorts (Raphael et al., 2017). Several expression-based subtyping strategies have been
developed. Moffitt and colleagues classified tumors into classical or basal-like subtypes based
on their expression profile; this is the most widely applied system (Moffitt et al., 2015). However,
a major challenge in bulk sequencing analyses of PDAC is that tumor samples contain low
neoplastic cellularity due to the presence of high amounts of a dense desmoplastic stroma
composed of cells that affect the ability to target and treat PDAC. While several approaches to
address low tumor purity have been applied, including ultra-high depth sequencing and

microdissection strategies, low neoplastic cellularity remains a significant challenge for data
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analysis and interpretation of sequencing studies in PDAC (Raphael et al., 2017; Moffitt et al.,
2015; Maurer et al., 2019).

Single cell technologies are well equipped to address the low tumor cellularity challenge in
PDAC by enabling tumor cell analysis regardless of tumor content of a given sample.
Additionally, single cell level resolution allows for the dissection and analysis of different cell
types in the tumor microenvironment (TME) and their interactions with tumor cells. This
addresses another challenge in the field. We know that non-tumor cell components of the TME
play a critical role in PDAC, yet the mechanistic underpinnings behind the TME's role in PDAC
is largely unknown. For instance, several cancer associated fibroblast (CAF) subtypes, including
myCAFs, ICAFs, and apCAFs, have been identified. Cytotoxic NK and CD8+ T cells are
downregulated (Elyada et al., 2019; Sahai et al., 2020; Schnurr et al., 2015; Looi et al., 2019).
This creates an immunosuppressed, pro-tumorigenic environment, but how this occurs is poorly
understood (Uzunparmak et al., 2019; Ren et al., 2018). Furthermore, tumor populations are
seldom uniform and single cell technologies allow for an in-depth analysis of cellular
heterogeneity (Alizadeh et al., 2015; Chung et al., 2017).

Herein, we use a spatially distinct, multi-sampling approach to analyze 73 PDAC samples
across 21 patients who have undergone different treatment regimens (treatment-naive,
neoadjuvant FOLFIRINOX, neoadjuvant gemcitabine+nab-paclitaxel, and Chemo-RT). This
spatial approach allowed us to interrogate both inter- and intra-tumor heterogeneity via
extensive omics, including bulk DNA and RNA sequencing, bulk proteomics and

phosphoproteomics, single cell RNA sequencing (scRNA-Seq), and cellular imaging.

RESULTS

Study Design and Single Cell Overview of the Cohort

We collected 73 pancreatic ductal adenocarcinoma samples from 21 patients undergoing
standard treatment, including 4 normal adjacent tissue (NAT) samples. The various treatment
groups included 7 treatment-naive cases, 8 neoadjuvant FOLFIRINOX cases, 4 neoadjuvant
gemcitabine+nab-paclitaxel cases, 1 mixed (FOLFIRINOX and gemcitabine+nab-paclitaxel),
and 1 Chemo-RT case. Each tumor was spatially sampled 2—4 times, with sample segments
subsequently used to generate histologic, imaging, and omics data, H&E slides, imaging mass
cytometry (IMC), single cell RNA-Sequencing (scRNA), bulk mass spectrometry-based

proteomics and phosphoproteomics, bulk whole exome sequencing (WES), and bulk RNA
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sequencing (RNA-Seq) (Figure 1A, Table S1, STAR Methods). We generated scRNA data for
all 73 samples, WES for 64 samples, and bulk RNA-Seq for 65 samples. A subset of our cohort
(n = 30) underwent TMT11 proteomic and phosphoproteomic characterization. We generated
IMC slides using the Hyperion imaging system for 12 samples from 4 cases, each with 3—4

regions of interest (ROI) (Figure 1B).

Following QC, we scaled and normalized scRNA data, clustered more than 230k cells across all
samples based on expression profiles, and assigned cell types based on marker gene
expression (Figure S1A, STAR Methods). Cell types included: acinar, acinar ductal metaplasia
(ADM), B, CD4+ and CD8+ T cells, dendritic cells (DCs), endothelial cells, erythrocytes,
fibroblasts, islet cells, macrophages, mast, natural killer (NK), plasma cells, naive and regulatory
T cells, tuft cells, and tumor cells (Figures 1B and S1B). Using the fraction of tumor cells as a
proxy for tumor purity, we estimated that tumor purities ranged from 0.12% to 82.68% across

samples, with an average of 17.16%.

We calculated a composite heterogeneity score to quantitatively determine cell-type proportion
and expression differences across cells between the spatial samples within each tumor (Figure
1B, STAR Methods). Briefly, this score is based on mean pairwise correlation of global average
scRNA expression and the cell type proportions between samples from the same case.
Samples from treated patients tended to have significantly higher percentages of stroma cells (p
= 0.001) (Figures 1B and S1C). In particular, FOLFIRINOX samples had significantly higher
percentages of fibroblasts (p = 10™) (Figure 1C). We did not observe significant endothelial or
tumor cell number differences between treatment groups. ADM cells were present in 20/21
cases but were most abundant in HT122P1 (treated with gemcitabine+Nab-paclitaxel) and
HT168P1 (FOLFIRINOX). More than half the cases had high degrees of spatial heterogeneity
(composite score > 0.1) regardless of treatment status, suggesting that cell type proportions and
tumor subpopulations have substantial spatial variation. Pathologic review of H&E slides
revealed that within-patient tumor content differences across samples averaged 24%, with a
range of 5% to 64% (STAR Methods), consistent with tumor percentages from ScRNA
(Pearson R=0.36, p=0.003). To quantify spatial heterogeneity at a cell-type level, we used a
similar expression-based approach for each individual cell type (Figure 1B, STAR Methods).
The greatest heterogeneity occurred amongst tumor cells, followed by macrophages and
endothelial cells, suggesting our spatial sampling captures differences in tumor subpopulations

within each case, as well as those within stromal and immune fractions. Principal component


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

analysis (PCA) of bulk proteomic and phosphoproteomic data confirm that, while most within-
tumor regions cluster close to one other, several specimens from the same tumor are quite
different, representing intra-tumor heterogeneity (Figures S1D and S1E). These results
underscore limitations of a strict bulk-data approach, in which such heterogeneity may remain

invisible.

Genomic Landscape and Single Cell Subtyping Heterogeneity

Using paired bulk whole exome sequencing (WES), we investigated somatic and germline
variants, observing substantial variation of driver mutation variant allele fractions (VAFSs)
between samples (Figure 2A, Table S2). We detected a KRAS hotspot variant in at least one
sample in all cases (HT204P1 has no WES data). Furthermore when considering mutations with
extremely low VAFs ( < 0.01), 10 of the 20 cases had samples whose mutation profiles differed
from one another. While it is possible these mutations existed in all samples in a given case and
that detection was imperfect, materials were sequenced and processed uniformly and data
underwent extensive QC and manual genotyping, suggesting this difference was not due to
technical shortcomings (STAR Methods). We also characterized germline variants using
CharGer in order to identify pathogenic and likely pathogenic variants in the cohort (Scott et al.,
2019) (STAR methods). Three cases carried such variants in the homology-directed DNA
repair pathway (FANCC p.D23*, BRCA2 p.11470* and p.K607*, and ATM p.Y1124*), and as

expected, all samples carried the same variant in each case.

Using bulk RNA-Seq, we classified each sample into previously reported subtypes, including
those defined by Moffitt et al. (2015), Collisson et al. (2011), and Bailey et al. (2016) (Figure
2A) and determined immune subtypes and stromal and immune compartment scores using
xCell and ESTIMATE, respectively (Yoshihara et al., 2013; Aran et al., 2017) (STAR Methods).
Aside from 1 case, Moffitt subtyping was consistent within-tumor across samples, while
Collisson and Bailey subtyping both showed larger numbers of subtype heterogeneity across
samples. We observed differences in immune subtypes between spatial samples in 7 tumor
cases (Figure 2A). We also observed a weak positive correlation between scRNA stroma
percentages and ESTIMATE stroma scores (Spearman R: 0.46, p = 10™*) though not between

scRNA immune fraction percentages and ESTIMATE immune scores (Figure S2A and S2B).

In order to further dissect patient-specific heterogeneity, we selected three cases representing
our major treatment groups, HTO60P1 - FOLFIRINOX, HT122P1 - gemcitabine + nab-paclitaxel,
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and HT061P1 - treatment-naive, for further analysis. Given the consistency of Moffitt subtyping,
we used classical and basal-like expression profiles to classify tumor cells at single cell
resolution (Torres & Grippo et al., 2018) (Figures 2B and S2C, STAR Methods). Specifically,
we evaluated tumor-only clusters and annotated them by their spatial sample origin and their
single cell Moffitt subtype for each case. In all three cases, there are both mixed subpopulations
(originating from > 1 sample) or sample-specific subpopulations, representing spatially distinct
tumor clusters. Interestingly, we also observe discrete clusters separated by subtype and these
tend likewise to be of different spatial origin. In HTO61P1, the basal-like cluster does not
correspond to any mappable KRAS mutations (Figure S2C and S2D). Differential gene
expression (DGE) analysis shows that basal-like tumor cells are enriched in IL-17 and PI3K-
AKT signaling and AP-transcription factor network pathways. Classical tumor cells are enriched
in O-linked glycosylation of mucins and trefoil factors in mucosal healing pathways (Figure 2B).
This suggests that spatial sampling captures spatially distinct tumor cells having different
expression profiles that likely correspond to different subtypes within the same patient.
Extending this analysis to the rest of the tumor cohort, we identified substantial amounts of
mixed classical and basal-like tumor cells in 12/21 patients (defined as > 10% of tumor cells in
the less common subtype) and determined that the basal tumor cells upregulate a number of
EMT genes, including VIM and ITGB1 (Figure S2E).

Using scRNA analysis, we identified the top 5 most differentially expressed genes (DEGS)
between classical and basal-like cells from each sample within a tumor and followed with the
complementary analysis using bulk data. Across the above three within-patient tumor
specimens, we identified consistent sScRNA DEGs between classical and basal tumor cells,
including S100A6, TFF1, and TFF2 in classical cells and SPP1 and CXCL2 in basal-like cells
(Figure 2B). Spatially distinct samples enriched in classical or basal-like tumor cells strongly
express these subtype-specific DEGs and their expression patterns are consistent across omics
data types (Figure 2B). For instance, in case HT122P1, sample 1 (S1H3) and sample 2 (S1H4)
express classical markers at the scRNA, bulk RNA, protein, and phosphoprotein levels. Sample
3 (S1H5) expresses both classical and basal-like markers at the scRNA and RNA levels, with
slightly higher levels of basal-like expression. In short, this analysis demonstrates it is clearly
possible to identify distinct tumor subpopulations in space within a tumor. The data here indicate
PDAC tumors are heterogeneous and are not readily classifiable as a single subtype and this
may explain, in part, the intrinsic and acquired resistance observed in PDAC. Therefore,

therapeutic decisions that assume homogeneity may miss these underlying nuances.
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KRAS signaling and Spatial Drivers

We reclustered tumor cells from all samples based on scRNA expression to assess their
heterogeneity. The majority grouped into patient-specific clusters, consistent with the varying
genetic backgrounds and alterations in each patient (Figure S3A). We also mapped mutations
called from the bulk whole exome data to single cells (Figure 3A, STAR Methods), observing
three groups of tumor cells originating from a large number of patients. Two groups had multiple
different KRAS mutations (Figures 3A and S3B). The remaining group is significantly depleted
in KRAS mutations and likewise lacks TP53 or CDKN2A mutations (Figure 3B). We denote
these three populations as "mixed" and hypothesize that their consistent expression profiles

across samples may signify a potential common element in PDAC.

We conducted DEG analysis for each of these three mixed tumor populations, finding that SPP1
and CXCL2, two of our previously identified single-cell classical subtype markers, were
upregulated in the KRAS WT populations (Figures 2B and S3C). Conversely, these genes are
expressed at a low level in both the KRAS mutated populations. Additionally, in order to test the
impact of different KRAS hotspot variants, we compared the gene expression profiles of the
subset of tumor cells with KRAS mutations against each other (STAR Methods). Interestingly,
we found that compared to other KRAS mutations, tumor cells that harbor KRAS p.G12V
upregulate several genes associated with more aggressive or metastatic tumors, including
COL1A1, VIM, and MUCS5B (Figure S3D) (Valque et al., 2012; Niknami et al., 2017; Zhang et
al., 2018).

As most pancreatic cancers carry a hotspot KRAS driver mutation, we additionally manually
genotyped common KRAS mutations at the p.G12 and p.Q61 loci (STAR Methods).
Intriguingly, we identified 5 cases with multiple KRAS hotspot drivers, which we denote as cases
with multiple KRAS clones (Figure S3G). Focusing on case HT061P1, we obtained 4
subpopulations when clustering tumor cells, three small clusters largely derived from punch A
and one large cluster that was common to all three punches (the remainder, as expected,
represented all clusters) (Figures 3C and S3H). Notably, we almost perfectly map KRAS
p.G12V cells into one cluster from punch A predominant populations and p.G12D cells onto the
large mixed cluster. Not only do we observe two discrete clones carrying different KRAS driver

mutations in the same patient, but we also find they were spatially separated and have distinct
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gene expression profiles (Figure 3C). It is uncertain whether the other two clusters from which

we did not map a KRAS mutation are truly KRAS WT due to a paucity of cells.

Using inferCNV, we determined the copy number profile of the tumor cells and identified several
different CNV signatures at both focal and arm levels unique to the two differing KRAS
subclones in case HT061P1 (Figures 3C and S3I, STAR Methods) (Tickle et al., 2019). For
instance, the p.G12D population has deep amplifications of AKT2 and MYC while both p.G12D
and p.G12V clusters harbor amplifications in GATA6, among others (Figures 3C and S3l).
Furthermore, we used the inferred single cell copy number profiles in order to reconstruct a
lineage tree using the MEDALT algorithm (Figure 3D) (Wang et al., 2020). Interestingly, the
CNV-based tree separates the tumor cells into two major groups, consistent with the gene
expression-based clustering as well as the spatial origin of the cells (Figure 3E). Consolidating
this information, we propose a model that integrates the gene expression and CNV data (Figure
3E). We observe two tumor subpopulations in punch A, one of which has an unknown initial
driver (lack of mappable KRAS) and the other is driven by KRAS p.G12V. The KRAS p.G12V
population then acquired an amplification in GATA6 and a 17p deletion. In punches B and C
(and a portion of A), the initial driver was KRAS p.G12D. This was followed by a gain of AKT2,
MYC, and 1g and additional subsets of cells acquired either an ERBB2 amplification or a
GATA6 amplification and PTEN deletion (Figures 3C, 3E, and S3I). These results provide an
example of the vast degree of tumor heterogeneity in PDAC present at the expression,
mutational, and CNV levels with corresponding differences in genomic alterations that may

impact tumor growth, progression, and response to treatment.

We determined the impact of mutations on downstream targets by analyzing changes in protein
and phosphorylation in several oncogenic pathways (STAR Methods). At the protein and
phosphoprotein level, we observed that samples carrying a TP53 mutation had several proteins
and phosphosites upregulated in the cell cycle and mismatch repair pathways, including MCM7
and CDK1 (Figures S3E and S3F). Interestingly, we also identified observed MKI67, a cell
proliferation marker, is upregulated at both the protein and phosphoprotein levels in TP53
mutants. As expected, several members of the RTK Ras pathway had higher phosphorylation
abundance in KRAS mutants (Figure S3F). As the KRAS signaling pathway is uniformly
upregulated in almost all pancreatic cancers, we analyzed the abundance of key phosphosites
in the KRAS pathway within the context of different KRAS mutations and treatment groups

(STAR Methods). Strikingly, we observe a large degree of differential regulation, both between
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and within tumors, in several phosphosites within thePI3K/PDk1/Akt and Raf/Mek/Erk pathways
(Figure 3F). There is an association between p53 mutation status and lower phosphorylation
levels in MAPK1, MAPK3, and AKT1, among others, seem to potentially be related to. While
samples generally clustered together within the same patient, some cases such as HT125P1
and HT122P1 do not. In HT125P1, two samples do not have a detectable KRAS mutation
(S1H3 and S1H9) while the other two have a G12V mutation (S1H4 and S1H8), and these
samples seem to segregate accordingly into the higher and lower phosphosignaling groups,
suggestive of differential RAS activation even within the same patient. In particular, the MAPK1
T185 phosphosite is differentially regulated between these samples, while MAPK1 Y187, for
instance, is uniformly expressed throughout HT125P1. While these patterns did not seem to
have a connection to specific KRAS hotspot amino acid changes or treatment status, these

results underscore the degree of KRAS signaling heterogeneity in PDAC.

Acinar-Ductal Metaplasia Populations Transition Between Tumor and Acinar Cells

A prevailing model is that pancreatic cancer arises from acinar cells that undergo acinar to
ductal metaplasia (ADM) (Makohon-Moore et al., 2018; Murphy et al., 2013; Kopp et al., 2012).
However, this is based on mouse models and the actual role this cell state plays in the
development of PDAC remains unknown (Storz, 2017). A major hurdle has been the small
numbers of acinar and ADM cells sampled from patients at single cell resolution (Peng et al.,
2019; Qadir et al., 2020 ). We detected ADM populations in 20/21 cases, but focused our
analyses to the two cases with the most substantial proportion of ADM cells in our cohort:
HT122P1 and HT168P1 (Figure 4A). By mapping mutations, we found that most mutations
resided in tumor cells and to a lesser extent, ADM cells (Figures 4B and 4C). Consistent with
previous studies, we observe ADM initiating mutations in KRAS (from HT122P1) and CDKN2A
(from HT168P1) present in ADM populations, which we denote as "ADM Mutated," representing
a more advanced state of ADM (Storz, 2017). While tumor and acinar cells express epithelial
and acinar cell markers in a mutually exclusive pattern, both ADM populations express a
combination of both, consistent with current understanding that they exist in an intermediate,
reversible, state (Figure 4D). In order to better describe this expression gradient, we created
composite tumor and acinar scores using common tumor (n = 23) and acinar (n = 19) marker
genes, respectively (Figure 4E, STAR Methods). Mapping these scores onto single cells
revealed that the ADM populations harbor heterogeneous mixtures of both ductal and acinar

composite signatures (Figure 4E).

10


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We identified significantly highly expressed genes specific to ADM cells (Figure 4F). We did this
by first performing DEG analysis between ADM and acinar cells, ADM and tumor cells, and
tumor and acinar cells. Then, from the ADM comparisons, we removed the DEGs between
tumor and acinar cells which are largely driven by acinar-ductal cell type-specific differences.
Intriguingly, the most highly expressed ADM genes were oncogenic drivers, including CD81,
FXYD2, SPP1, IGFBP7, VIM, and MGP, as well as tumor suppressors, A2M, RGS5, TIMP3,
and SPARCL1. One possible explanation of this phenomenon is that tumor suppressor genes
may be upregulated in response to oncogene expression in this transitional state, evident by
their increased expression in the ADM Mutated group, which represents later stage ADM.
During the ADM transition from acinar to ductal or ductal to acinar, it may be that these
upregulated features are a result of the transformation process towards either cell fate. We
observed that VIM, an epithelial-to-mesenchymal transition (EMT) marker, is significantly
overexpressed in ADM and ADM Mutated (Figure S4A). We then analyzed the expression of
other EMT-related and stem cell genes to determine whether these pathways were also
associated with dedifferentiation of acinar cells into ductal cells (Figure 4G). Indeed, compared
to acinar cells, both tumor and ADM cells highly express EMT and stemness genes.
Interestingly, when comparing ADM and tumor cells, we found a largely mutually exclusive
pattern of expression between a subset of genes in each pathway, particularly EMT genes,
which are highly upregulated in the ADM Mutated population, and to a lesser extent, the ADM
population as well (Figure 4G). In the EMT-related genes for instance, MMP3, SNAI2, and
GCLC are highly expressed in tumor cells only, while MMP2, VIM, and ITGB3 are more highly
expressed in both ADM groups, particularly in the ADM Mutated cells.

While we detect low ADM cells in samples throughout these two cases, a vast majority of ADM
cells were captured from one sample in HT122P1 (H3), one sample in HT168P1 (H3) and the
NAT sample from HT168P1. In HT122P1, sample H3 is the only spatial sample with significant
acinar and ADM fractions (Figure 4H). To further characterize the ADM heterogeneity in a
manner that preserves spatial integrity, we used imaging mass cytometry (IMC) enlisting anti-
pan-keratin to label tumor cells and anti-a-amylase to detect acinar cells (Figure 4l, STAR
Methods). This revealed differences in the dominant tumor morphology between samples H3
and H9, with a patch-like, poorly differentiated morphology in H3 with intermixed acinar cells
and a more ductal-like, well-differentiated morphology in H9, H4, and H5 (Figures 4l and S4B-

C). In order to approximate the amounts of tumor, ADM, and acinar cells from the IMC images,
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we used a cell segmentation approach and quantified the intensity of a-amylase and pan-keratin
for each cell (STAR Methods). Using a heuristic in which the presence of both labels indicates
ADM cells, we quantified the numbers of tumor, ADM, and acinar cells. This result was

remarkably consistent with the sScRNA estimates (Figure 4l).

Cancer Associated Fibroblasts Subtypes

The TME plays a critical role in promoting tumorigenesis (Uzunparmak et al., 2019; Ren et al.,
2018). In PDAC, there are three major subtypes of CAFs: myCAFs, iCAFs, and apCAFs (Elyada
et al., 2019; Sahai et al., 2020; Helms et al., 2020). Consistent with the literature, we identified
clusters of iCAFs, myCAFs, and apCAFs. We also observed two subpopulations of iCAFs with
unique expression profiles, which we denote as CXCR4+ iCAFs and CD133+ iCAFs (Figures
5A and 5B). Several CAF markers such as ACTA2 and FAP are commonly used to identify
CAF subtypes; however, they are not definitive markers and are often expressed in both iCAFs
and myCAFs (Kraman et al., 2010). We observed that TAGLN and ACTA2 discern myCAFs,
while FAP and CXCL12 distinguish iCAFs (Figure 5B). apCAFs were identified by expression of
HLA-DRA and CD74, among others (Figures 5B and S5A). CXCR4+ iCAFs and CD133+
iCAFs are defined by very high expression of CXCR4 and CD133 (PROM1), respectively,
although they also weakly express myCAF and apCAF marker genes (Figure 5B). We
observed that while most CAFs in every specimen of every patient tumor are iCAFs or myCAFs,
the other CAF subtypes are present at low numbers throughout (Figure 5C). Notably, the
CD133+ ICAFs comprise a large proportion of CAFs in one gemcitabine+nab-paclitaxel tumor
(HT122P1) but were only recovered from two out of the four spatial samples (Figures 5C and
S5B). These CD133+ iCAFs express several cancer stem cell gene markers, including CD133,
MET, EPCAM, CD24, and CD44, with some genes expressed at an even higher level than the
tumor cells themselves (Figure 5D). Interestingly, we observed high CD44 expression in
apCAFs and CXCR4+ iCAFs as well. Furthermore, VIM and NFE2L2 were most highly
expressed in apCAFs, which were more abundant in treated samples (p < 10™) (Figure 5E).
These results suggest that small unique CAF subpopulations that express cancer-driving

programs exist within standard CAF subtypes.
To better understand the role of CAFs in tumorigenesis, we analyzed the expression patterns of

CAF subtypes to test whether they were enriched for TME-remodeling pathways. Loss of CAV1

and CAV2 are associated with the CAF phenotype, which is associated with poor clinical
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outcomes (Chatterjee et al., 2015; Chen & Che, 2014). Aside from myCAFs, we observe a
significant reduction of CAV1 and CAV2 expression in all CAFs compared to fibroblasts present
in NAT samples (Figure S5C). This suggests that myCAFs may have a different biological role
in the tumor microenvironment. In addition to their very high levels of CXCR4 expression,
CXCR4+ iCAFs express very high levels of its ligand, CXCL12 (Figure S5D) (Liekens et al.,
2010; Peitzsch et al., 2015; Eckert et al., 2018). Also, while apCAFs have high expression of
NFE2L2, which is involved in oxidative damage repair, myCAFs have high expression of HIF1A,
which regulates tolerance to hypoxic environments (Figure S5E). Together, this suggests that
different CAF subtypes may play different roles in remodeling of the TME (Semenza, 2003;
Huang & Taniguchi, 2017).

We identified the top DEGs between our main CAF subtypes (apCAF, iCAF, and myCAF)
(Figure 5F). myCAFs upregulate genes that are part of the smooth muscle contraction and
collagen chain trimerization pathways, including MCAM, ACTA2, and NOTCH3. iCAFs
upregulate genes that are part of the complement system and complement activation pathways,
including IGFBP3, PTGDS, and CXCL14. apCAFs upregulate genes that are part of antigen
presenting pathways, including MCAM, ACTA2, and NOTCH3. Additionally, we compared the
expression of CAF genes currently targeted by clinical trials registered as of 01/2020 (Sahai et
al., 2020) (Figure 5G). As treated samples compared to untreated samples have a depletion of
myCAFs and enrichment of iCAFs, the effectiveness of additional therapies targeting CAFs may

differ across treatment groups (Figure 5C).

Immune Populations and Their Interaction with Tumor Cells

To obtain more insight and identify potential ways to address the immunosuppressed TME
characteristic of PDAC (Unzunparmak et al., 2019), we identified and reclustered immune cells
into two major classes: lymphocytes or myeloid and dendritic cells. In the latter group, we further
distinguish between type | and type Il classical dendritic cells (cDC1, cD2), macrophages,
monocytes, and neutrophils (Figures 6A, S6A, and S6B). We observed that myeloid cells and
cDCs strongly express TME remodeling pathway genes, such as angiogenesis and hypoxia
pathways, including TGFB1, NFE2L2 (Nrf2), VEGFA, and HIF1A at higher levels than tumor
cells (Figure 6B). Furthermore, we observed high expression levels of genes within the Nrf2
pathway, which regulates oxidative damage repair, including NQO1 and GPX2 (Figure 6C).

While tumor cells do not have significant expression of NFE2L2, it does have activation of the
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pathway. Therefore, such activation may be triggered via paracrine interactions with TME cells

and would indicate that myeloid cells and dendritic cells contribute towards a pro-tumor TME.

Within the lymphocyte and NK subset, we assigned states to CD4+ and CD8+ T based on their
exhaustion, proliferation, and cytotoxic markers (Figures 6D, S6A, and S6B). We observe
similar percentages of cell types across treatment groups, with slightly higher abundance of
CD4+ T cells in FOLFIRINOX samples and higher numbers of CD8+ T cells in treated samples
(Figure S6C). CD4+ T cells and Tregs in FOLFIRINOX samples had high expression of heat
shock genes, such as HSPA1A, HSPA1B, HSPH1, and HSPD1, compared to other treatment
groups. (Figure S6D). Further, pathway enrichment analyses revealed a large number of
cellular responses to heat stress in both CD4+ T cells and Tregs in these samples (Figure
S6E). Receptor-ligand analyses furthermore reveal an interaction between the TIGIT receptor in
lymphocytes and its NECTIN2 receptor across all samples, which we found is highly expressed
in tumor cells (STAR Methods). This is consistent with a previous report that NECTIN4 has
high tumor specificity and is a potential target for immune checkpoint blockade (Reches et al.,
2020; Gorvel and Olive, 2020). TIGIT interaction with NECTIN receptors inactivates T cell and
NK function, which could be used by the tumor for immune evasion. We expanded our analysis
to all nectin receptors and observed that NECTIN1, NECTIN2, and NECTIN4 are all expressed
solely in tumor cells, but NECTIN3 is expressed in some lymphoid cell types, while TIGIT is
largely expressed in Tregs and exhausted CD4+ T cells (Figure 6E). This suggests that this
interaction may be contributing towards the immunosuppressive TME in PDAC. Furthermore,
we observe that PD-L1 and PD-L2 are not expressed in tumor cells at all, consistent with the
poor response of PDAC to anti-PD-1/PD-L1 immunotherapy (Feng et al., 2017; Birnbaum et al.,
2016; Pu et al., 2019). We extend our analysis of nectin receptors to all cell types to assess
tumor-specific expression beyond lymphocytes and note that while nectins are overall quite
tumor-specific, NECTIN1 is highly expressed in myCAFs, NECTIN2 in endothelial cells, and
NECTINSI in islet cells; NECTIN4 is the most tumor cell-specific NECTIN receptor (Figure 6F),
consistent with previous reports (Reches et al., 2020). We analyzed TIGIT and Nectin receptors
expression at individual sample levels in Tregs, NK cells, exhausted T cells, and tumor cells
(Figure 6G). Consistent with the previous analysis, we observed high expression of all nectin
receptors in tumor cells and TIGIT in Tregs and exhausted T cells, but also noted a substantial
degree of heterogeneity across cases, particularly in TIGIT expression in exhausted T cells and
in NECTIN1 and NECTIN3 expression in tumor cells. These results suggest a rationale for
targeting the TIGIT-NECTIN axis in PDAC.
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Cell Type Biomarkers and Treatment Implications

Bulk RNA-Sequencing data of tumors reflects gene expression signatures originating from a
mixture of cell types. Unless the samples have exceptionally high tumor purity, bulk analysis
cannot be a completely faithful representation of tumor cell gene expression (Nieuwenhuis et
al., 2020). scRNA Seq data enables the identification of gene expression patterns from specific
cell type populations. By analyzing only the tumor cells in the scRNA data, we identified 109
tumor markers, 56 of which are expressed on the cell surface, that are highly expressed in
tumor cells compared to all other cell types, with a small subset of markers (n = 15) also
strongly expressed in ADM cells (Figure 7A, STAR Methods, Table S3). Genes that are highly
expressed in both tumor cells and ADM include MMP7, CXCL17, TFF1, LGALS4, and
CEACAMS. Additionally, within the 109 genes, we found 25 genes that are significantly
differentially expressed between tumors treated with different treatment regimens (Figure 7B).
We identified several specific genes and proteins that are significantly highly expressed at the
bulk RNA and protein levels in the gemcitabine+nab-paclitaxel, treatment-naive, and
FOLFIRINOX groups (FDR < 0.05) (Figure 7B). Notably, while KRT17 and C190rf33 are
commonly used as markers to distinguish between epithelial and neoplastic cells, we observed
large differences in expression in FOLFIRINOX-treated samples compared to other samples.
We also observe a set of genes that overlap of our previously identified markers for the single
cell-based classical subtype. These genes include TFF1, TFF3, OLFM4, and CLDN18, which
suggest that in addition to treatment status, tumor subtypes also have an impact on specific

tumor biomarker expression (Figure 7B).

In order to determine the differences that occur following treatment, we assessed changes in
cell type proportions within each of the three major treatment groups (Figure 7C). The largest
difference was in fibroblasts, where both treated groups had higher numbers of fibroblasts than
the treatment naive group. Notably, we determined that the difference is driven by a 3-fold
higher amount of iCAFs in FOLFIRINOX and Gemcitabine+Nab-paclitaxel samples (p < 107,
with little difference in myCAF abundance between treatment groups. As iCAFs are understood
to be pro-tumorigenic (Hosein et al., 2020), this large increase of iCAFs aftertreatment may
bode poorly in terms of treatment resistance. While we detected a decrease in CD8+ T cells,
particularly cytotoxic T cells, and tumor cells in FOLFIRINOX samples, these differences were

not significant. These observations provide evidence that treated tumors have much higher
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levels of ICAFs in particular, and represent an attractive potential target for chemoresistant

tumors.

We further analyzed the DEGs between treatment groups within each cell type (STAR
Methods). Acinar cells and endothelial cells harbored the strongest differences in expression
between treated and untreated samples. In acinar cells, we detected high expression of
regenerating family member genes, such as REG1B and REG3A in the naive group only.
Higher expression of amylases and lipase genes were found in both treated groups, which have
been previously associated with chronic pancreatitis and pancreatic cancer (Figure S7A)
(Raphael et al., 2016; Stotz et al., 2020; Lasher et al., 2019). In endothelial cells, we observed
an upregulation in metallothioneins in treated samples, particularly in gemcitabine+nab-
paclitaxel samples. (Figure S7B). Interestingly, PRSS1 and PRSS2, which are associated with
hereditary pancreatitis, are highly expressed in FOLFIRINOX endothelial cells only (Le
Maréchal et al., 2006; Whitcomb et al., 2012). Similar to acinar cells, we observed high
expression of lipase, and chymotrypsin genes in endothelial cells but only in FOLFIRINOX-

treated cases.

With respect to the tumor cells, we identified DEGs between treated and treatment-naive
samples. The top DEGs include MMP7, REG4, and VCAN in treated tumor cells and TFF3,
ITGB8, and PLCG2 in treatment-naive tumor cells (Figure S7C). Breaking down the treated
group into FOLFIRINOX and gemcitabine+nab-paclitaxel cells results in the same top DEGs in
the naive group, but we detect that VCAN and MMP1 to be gemcitabine+nab-paclitaxel-unique
(Figure S7D). We applied a similar comparison to the bulk RNA and protein data, which reflect
a mixture of cell types and once again compared treated vs treatment-naive samples (STAR
Methods). The genes with the greatest fold change between treated and untreated samples
included AMY2A, REG1B, and CTRB2 in the untreated samples and KRT5 and KRT6A in the
treated group. The first set of genes are known to be acinar gene markers and the second set is
composed of epithelial genes, suggesting that most differences are driven by cell-type
differences due to low tumor purity (Figure S7E). While we do not observe significant
differences in the tumor or acinar cell proportions estimated from the paired scRNA data, the
tissue portion subjected to bulk sequencing was not completely identical to the scRNA tissue,
and it is possible that this skewed the observed results (STAR Methods). At the protein level,
we did not observe cell-type differences. Focusing on proteins with a 2-fold or greater change,

we identified 18 differentially expressed proteins (DEPs) between treated and untreated
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samples and find that GBP6, PTGDS, and ADAM23 are elevated in treated samples while
REG1A, EIF1AY, PRSS3, and HLA-DRB4 are elevated in naive samples, among others
(Figure 7D).

While these 18 proteins overall display such patterns between treated and naive samples, we
observe a modest amount of heterogeneity between spatial samples and between a subset of
tumor cases (Figure 7E). For instance, treated tumor HTO71P1 has high levels of HLA-DR4
while treated tumor HT122P1 has high levels of EIF1AY. Similarly, naive tumor HT064P1 has
very low levels of ADAM23 only in 2/4 spatial samples, suggesting spatial heterogeneity. In
order to determine whether this heterogeneity is due to differences in the composition of non-
tumor cell types, we assessed whether any of these 18 proteins were significantly differentially
expressed between treatment groups in specific cell types in the scRNA data (STAR Methods).
Curiously, we found that REG1A is upregulated in naive apCAFs and FOLFIRINOX endothelial
cells. Additionally, we observe PTGDS overexpression in gemcitabine+nab-paclitaxel iCAFs
and PRSS3 overexpression in acinar cells in both treated groups compared to the naive cells
(Figure S7F). These results suggest that several of these differentially abundant proteins may
be driven by the TME rather than the tumor cells. Finally, we match all significant DEPs (n =
143, no minimum fold change of 2 filter) with the CiVIC druggable database (Griffith et al., 2017)
to identify potential druggable proteins that are differentially expressed in treated and untreated
samples (STAR Methods). We identified 3 matches to expression-based druggable targets:
ERBB3 - Pertuzumab/9F7-F11 in naive samples and DNMT1-Decitabine and SLFN11-7-Ethyl-
10-Hydroxycamptothecin in treatment-resistant samples (Figure 7F). These results suggest that
DNMT1 and SLFN11, which are known to drive other cancers and are currently targetable,
could represent drivers in the resistant tumors and thus may warrant pre-clinical assessment for
treatment efficacy. On the other hand, targeting ERBB3 may not be possible in resistant tumors
compared to naive tumors due to treatment-induced changes in protein levels (Murai et al.,
2019; Zhang & Xu, 2017).

Lastly, we extended our druggable target analysis to all cell types in the scRNA data. For each
cell type, we split the analysis into treated and untreated cells and identified expression-based
druggable targets (Figure 7G). Most druggable genes identified were present in both treated
and untreated cells (i.e., significantly highly expressed in the given cell type but not differentially
expressed between treatment groups). By clustering the data, we identified modules of

druggable targets that roughly correspond to lymphocytes, myeloid cells, and CAFs. When
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clustering the drugs that target these genes, these cell type modules are also present (Figure
S7G). These include PDCD4, CDKN1B, CASP8, and JAK1 in lymphocytes and HLA-DRA,
SGK1, and HAVCR2 in dendritic and myeloid cells. Interestingly, apCAFs, ADM cells, and
CD133+ CAFs group together with druggable protein products of HSPB1, CCND1, and ERBB3
and endothelial cells and myCAFs group together with druggable products of PTP4A3, MYC,
and AKT3. We note that only 2 out of 8 tumor targets, MET and ERBB2, seem to be tumor-

specific, implying a potentially lower chance of off-target effects in other cell types.

DISCUSSION

We conducted a comprehensive multi-omic spatial characterization of PDAC by integrating bulk
sequencing and proteomics/phosphoproteomics, single cell sequencing, and high-resolution
cellular imaging technologies. Each of these modalities makes a crucial contribution to the
overall picture. Spatial sampling and imaging mass cytometry orthogonally reveal tumor
heterogeneity. Single cell resolution enables the characterization of tumor cells independent of
purity level, thus bypassing what has been a substantial challenge in PDAC omic studies, and
powers a detailed evaluation of the TME and cell-cell interactions (Raphael et al., 2017).
Different treatment groups allowed us to identify potential mechanisms of treatment resistance
and identify new targets worthy of further mechanistic inquiry. Over 50% of spatial samples
showed high degrees of cell type heterogeneity, which was echoed by pathological review of
H&E slides and subtypes from bulk sequencing data. In certain cases, pathologic review
assigned different tumor grades to different samples from the same patient, consistent with the

molecular heterogeneity observed in omic analyses.

We identified ADM cell populations, which express both oncogenic features and tumor
suppressor genes, and significantly upregulate EMT and stem cell genes, compared to tumor
cells (Xu et al., 2019). While the ADM state is important in post-injury pancreas regeneration, it
can also transition through intraepithelial neoplasia lesions to full-blown PDAC (Storz, 2017).
The unique expression pattern of ADM as an intermediate state suggests there may be a
dynamic transition between tumor and acinar fates in ADM, which may lead to the progression
towards PDAC when the oncogenic side prevails, commonly due to the acquisition of a driver
KRAS variant. This would be consistent with the sensitivity of acinar cells to KRAS mutations as
a catalyst for ADM and inclination toward PDAC (Xu et al., 2019). It would also further connect

our observations of KRAS mutated clusters upregulating REG1A and elevation of REG1A in
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treatment-naive samples, as REG1A has been proposed as a diagnostic and prognostic marker
for PDAC (Li et al., 2016). We also observed spatial heterogeneity in ADM populations, which

was associated with more poorly differentiated tumor phenotype.

The function of cancer-associated fibroblasts (CAFs) has also been poorly understood in
PDAC.Historically presumed to be staunch drivers of cancer, they are now known to have a
much more complicated, even dual behavior that can either drive or suppress cancer
development, depending upon numerous factors (Gieniec et al., 2019; Pereira et al., 2019).
Indeed, their highly heterogeneous nature has stimulated efforts to discover and catalog CAF
types. Here, we identified iCAFs, myCAFs, and apCAFs, further classifying two small iCAF
subsets as CD133+ and CXCR4+. The CD133+ iCAFs are characterized by high expression of
cancer stemness genes, including PROM1 (CD133), MET, EPCAM, and CD24. We identified
markers and activated pathways in these subtypes, determining that most CAF genes in current
clinical trials are differentially expressed between subtypes and therefore may respond
differently (Sahai et al., 2020). Importantly, we observed a distinct pattern of higher iCAF
abundance in treated samples. This is important to consider, as IL-1-mediated signaling and
JAK-STAT signaling in iCAFs has motivated respective studies of adding IL-1R blockade to
standard-of-care (FOLFIRINOX-based) chemotherapy (Hosein et al., 2020; ClinicalTrials.gov:
NCT02021422). Additionally, treating KPC mouse models with a JAK inhibitor to target iCAFs

has resulted in decreased tumor size (Biffi et al., 2019).

Immunotherapy continues to progress across the cancer treatment realm, but clinical application
is often still plagued by side effects stemming from over-stimulation of the immune system. In
some instances, these effects can be particularly serious or even fatal (Wang et al., 2018).
Searches for ever-greater specificities to alleviate what have become known as “immune-
related adverse events” thus continues (Reches et al., 2020). Single cell analysis revealed that
the nectin receptors, in particular NECTIN4, are tumor-specific. Receptor-ligand analysis
uncovered a potential interaction with TIGIT in Tregs and exhausted T cells, which may be
inhibiting the activation of T cell and NK functions. This suggests the possibility that the nectin-
TIGIT interaction may be a target worth exploring in PDAC. Consistent with previous analysis,
we observed high expression of all nectin receptors in tumor cells and TIGIT in Tregs and
exhausted T cells but also noted a substantial degree of heterogeneity across cases,

particularly in TIGIT expression in exhausted T cells and in NECTIN1 and NECTIN3 expression
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in tumor cells. The specificity problem in immunotherapy is increasingly urgent for advancing the

safe and effective application of inhibitors.

In conclusion, this study provides a comprehensive analysis of PDAC spatial heterogeneity and
treatment characteristics by integrating bulk and single cell omics and imaging technologies. We
determined high levels of heterogeneity in PDAC including spatially separated driver clones,
KRAS mutated and KRAS WT tumor populations, tumor-ADM interactions, and subtype
heterogeneity within the same patients. These results underscore both the utility of spatial
sampling from multiple regions of the tumor for characterization, as well as the clinical challenge
of capturing PDAC heterogeneity in clinical assays. The identification of biomarkers and
differentially expressed genes and proteins between treatment groups as well as cell types

provides a resource to identify new targets with clinical relevance.
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MAIN FIGURE LEGENDS

Figure 1. Sampling Strategy and Cohort Overview. A) Spatial sampling approach. At least 2
punches or grids were selected from each tumor for comprehensive imaging and omics
characterization. "P" denotes tissue punches, "H" denotes tissue grids, and "R" denotes
remainder tissue. B) Top: Data overview of the cohort. M1K1 and M1G1 denote NAT samples.
Middle: scRNA-based and histology-based estimates of tumor purity and scRNA-based cell type
percent composition. The size of each circle denotes percentage. Bottom: Composite cell type
proportion and expression heterogeneity score (STAR Methods). A higher score denotes
higher heterogeneity. Cell type-specific scores are calculated in a similar fashion but are based
only on expression. C) Endothelial cell, tumor cell, and fibroblast percentages in samples split

by treatment group.

Figure 2. Genomic Landscape and Single-Cell Subtyping. A) Top: Genomic landscape of
the cohort showing the top significantly mutated genes. Color scale denotes VAF for each gene.
Bottom: Bulk omics overview of the cohort. B) Three examples of cases with heterogeneous
tumor cells with different single-cell subtypes. UMAP plots show only clustered tumor cells. For
each case, the top five significant genes ranked by fold change across subtypes are shown.

Bolded genes represent genes that are present across at least two of the cases.

Figure 3: Spatial and Oncogenic Driver Heterogeneity. A) Tumor cell clusters labeled with
KRAS hotspot mutations. B) Tumor cell clusters labeled with KRAS, CDKN2A, and TP53
mutations. C) Case HTO61P1. . Top row left to right: tissue sample spatial locations, sample IDs
(R1 denotes the remainder tissue), KRAS variants. Second row left to right: AKT2 CNV, MYC
CNV, and GATA6 CNV. Copy number calls were obtained using inferCNV. D) CNV-based
lineage tree of a subset of tumor cells from HT061P1. E) Proposed model of tumor progression
for HTO61P1. F) Bulk phosphosite levels in the PI3K/Pdk1/Akt and Raf/Mek/Erk pathways. Grey
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boxes denote missing data. Samples with proteomics/phosphoproteomics did not all have
mutations in CDKN2A.

Figure 4: Acinar-Ductal Metaplasia Transition Populations. A) Acinar, ADM, and tumor
percentages in all 73 samples. NAT samples are labeled with a red circle. B) Acinar, ADM, ADM
mutated, and tumor populations from cases HT122P1 and HT168P1. C) All mappable mutations
in acinar, ADM, and tumor cells of HT122P1 and HT168P1. D) A subset of markers used to
distinguish between acinar, ADM, and tumor cells. E) Composite score using all acinar and
tumor markers. F) Top significant DEGs in ADM cells. TFF2 and PRSS1 are included as
references, with each being a strong marker for tumor and acinar cells, respectively. G) Average
expression of EMT, stemness, and tumor/acinar genes. H) scRNA-based acinar, ADM, and
tumor cell proportions (left) and sample spatial locations (right) in samples from HT122P1. I)
Left: IMC slides (Hyperion) of H3 and H9. The antibody labels used and their corresponding
colors are denoted on the top. Right: IMC-based estimates of acinar, ADM, and tumor cell

percentages using cell segmentation and color intensity quantitation.

Figure 5: Cancer-Associated Fibroblast Subtypes. A) UMAP of CAF subtypes. B) A subset
of gene markers used to distinguish between CAF subtypes. C) CAF subtype distribution in the
cohort and across treatment groups. D) Cancer stem cell gene marker expression across CAF
subtypes. E) Expression of apCAF markers, VIM, and NFE2L2 across CAF subtypes. F) Top
DEGs across iCAFs, myCAFs, and apCAFs. G) Expression of genes currently targeted by

clinical trials across CAF subtypes.

Figure 6: Immune Interactions in the Tumor Microenvironment. A) Myeloid cells and
dendritic cell clusters. B) TGFB1, NFE2L2, VEGFA, and HIF1A expression across cell types. C)
Nrf2 pathway gene expression. Tumor cells are included for comparison. D) Lymphocyte and
NK cell clusters. E) TIGIT and nectin receptors expression in tumor, NK, and lymphocyte cells.
PD1, PD-L1, and PD-L2 are included for reference. F) Expression of nectin receptors across all
cell types. G) Average expression of TIGIT, NECTIN1, NECTIN2, NECTIN3, and NECTIN4 in

exhausted T cells, NK cells, Tregs, and tumor cells.
Figure 7: Tumor Biomarkers and Druggable Targets. A) Average expression of tumor

biomarkers across all cell types. B) Top: Significantly differentially expressed genes by

treatment groups and tissue status. Lower panels: scRNA, bulk RNA, proteomics, and
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phosphoproteomics levels of tumor biomarkers that are differentially expressed across
treatment groups. C) Top: cell type percentages split by treatment groups. Bottom: cell type
distributions for CD8+ T cells (cytotoxic and no particular substrate) and CAF subtype (iCAF,
myCAF, and apCAF). D) Top differentially expressed proteins across treated and untreated
samples. E) Protein levels of 18 differentially expressed proteins across all samples with
proteomics data. F) Protein levels of ERBB3, DNMT1, and SLFN11 in treated and untreated

samples. G) Druggable genes significantly upregulated across cell types.

SUPPLEMENTAL FIGURE LEGENDS

Figure S1: Cell Types and Sample Similarity, Related to Figure 1. A) All cells labeled with
case ID. B) All cells labeled with cell types. C) Stroma percentages between treated and

untreated samples. D) Proteomics PCA. E) Phosphoproteomics PCA.

Figure S2: Bulk Correlations and Single-Cell Subtype Annotations, Related to Figure 2. A)
Stroma score correlations with scRNA estimates. B) Immune score correlations with scCRNA
estimates. C) Tumor cells labeled with single-cell subtype. D) Tumor cells of HT0O61P1 labeled
with KRAS variants. E) EMT gene expression in classical and basal-like tumor cells. The overall

EMT score is a composite score from 14 EMT related genes.

Figure S3: Differential Genomic Features in Heterogeneous KRAS Subpopulations,
Related to Figure 3. A) Tumor cell clusters labeled with case ID. B) 3 tumor cell clusters
originate from most samples, one of which has no mappable KRAS mutation. C) Top significant
DEGs between KRAS clusters of multi-tumor origins. D) Top significant DEGs between specific
KRAS hotspot mutations. Only cells with a mappable mutation were included in this analysis. E)
KRAS and TP53 trans mutation impacts on protein levels. F) KRAS and TP53 trans mutation
impacts on phosphoprotein levels. Overlapping dots denote several phosphosites from the
same phosphoprotein. G) KRAS mutations in tumor cells of 5 cases with multiple KRAS variants
mapped. H) Tumor cells of HTO61P1 labeled with punch of origin. I) Arm and gene-level CNV
events in HTO61P1.

Figure S4: Additional IMC ROIs for ADM Samples, Related to Figure 4. A) VIM expression.
B) IMC image of HT122P1 S1H4 sample. C) IMC image of HT122P1 S1H5 sample.
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Figure S5: Differentially Expressed Genes in Cancer-Associated Fibroblasts, Related to
Figure 5. A) CAF subtype markers. Tumor cells are included for reference. B) Sample and CAF
subtype clusters in HT122P1. C) CAV1l and CAV2 expression. D) CXCR4 and CXCL12
expression. E) HIF1A and NFE2L2 expression. Macrophages and monocytes are included for

comparison.

Figure S6: Immune Population Markers and Heat Shock Gene Expression in FOLFIRINOX
Cells, Related to Figure 6. A) Lymphocyte and NK cell marker expression. B) Myeloid and
dendritic cell marker expression. C) Lymphocyte and NK percentages across treatment groups.
D) Expression levels of heat shock genes across treatment groups. E) Enriched pathways in
FOLFIRINOX CD4+ T and Treg populations.

Figure S7: Differentially Expressed Genes and Druggable Genes in Different Cell Types,
Related to Figure 7. A) Top acinar cell DEGs between treatment groups. B) Top endothelial
cell DEGs between treatment groups. C) Top 5 DEGs each between treated and untreated
tumor cells. D) Top tumor cell DEGs splitting the treatment group into FOLFIRINOX and
Gemcitabine+Nab-paclitaxel groups. E) Top bulk RNA DEGs between treated and untreated
samples. F) scRNA expression of REG1A, PTGDB, and PRSS3 in different cell types across

treatment groups. G) Drugs that target genes significantly upregulated across cell types.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Li Ding (Iding@wustl.edu).

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
a-SMA (Clone:1A4) Fluidigm Catalog:3141017D

Podoplanin (Clone:LpMab-12) [Cell Signaling|Catalog:26981BF
Technologies
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(CST)
vimentin (Clone:RV202) Fluidigm Catalog:3143029D
a-Amylase (Clone:D55H10) CST Catalog:3796BF
CD16 (Clone:EPR16784) Fluidigm Catalog:3146020D
CD163 (Clone:EDHu-1) Fluidigm Catalog:3147021D
Pan-Keratin (C11)|Fluidigm Catalog:3148020D
(Clone:C11)
CD11b (Clone:EPR1344) Fluidigm Catalog:3149028D
PD-L1 (Clone:E1L3N+) CST Catalog:13684BF
CD31 (PECAM-1)|Fluidigm Catalog:3151025D
(Clone:EPR3094)
CD45 (Clone:D9M8I) Fluidigm Catalog:3152018D
Lag3 (Clone:D2G40) Fluidigm Catalog:3153028D
CD11c (Clone:polyclonal) Fluidigm Catalog:3154025D
FOXP3 (Clone:236A/E7) Fluidigm Catalog:3155016D
CD4 (Clone:EPR6855) Fluidigm Catalog:3156033D
E-cadherin (Clone:24E 10) Fluidigm Catalog:3158029D
CD68 (Clone:KP1) Fluidigm Catalog:3159035D
CD20 (Clone:H1) Fluidigm Catalog:3161029D
CD8a (Clone:C8/144B) Fluidigm Catalog:3162034D
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CD133 (Clone:D2Vv8Q) CST Catalog:64326BF
CXCR4 (Clone:D4Z7W) CST Catalog:97680BF
PD1 CST Catalog:86163BF

(Clone:D4W2J+EPR4877(2))

CD74 (Clone:LN2) Fluidigm Catalog:3166025D

Granzyme B|Fluidigm Catalog:3167021D
(Clone:EPR20129-217)

Ki-67 (Clone:B56) Fluidigm Catalog:3168022D

Collagen Type 1|Fluidigm Catalog:3169023D
(Clone:Polyclonal)

CD3 (Clone:polyclonal) Fluidigm Catalog:3170019D
CD45RO0 (Clone:UCHL-1) Fluidigm Catalog:3173016D
HLA-DR (Clone:YE2/36HLK) [Fluidigm Catalog:3174023D
FAP (Clone:E1V9V) CST Catalog:66562BF
Histone H3 (Clone:D1H2) Fluidigm Catalog:3176023D
DNA-Intercalator 1 (Clone:) Fluidigm Catalog:201192B
DNA-Intercalator 2 (Clone:) Fluidigm Catalog:201192B

Bacterial and Virus Strains

Biological Samples

Primary tumor and normal|This paper See Methods: Experimental Model and Subject Details

tissue samples

Chemicals, Peptides, and Recombinant Proteins
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gentleMACS C-tube Miltenyi Catalog: 130-093-237
Biotec

10% BSA Stock Solution Miltenyi Catalog: 130-091-376
Biotec

ACK Lysis Solution ThermoFisher | Catalog: A1049201

Phosphate  Buffer  Saline [ Corning Catalog: 21-040-CM

(PBS)

TRI reagent Millipore Catalog: T9424
Sigma

Critical Commercial Assays

Dead Cell Removal Kit Miltenyi Catalog: 130-090-101
Biotec

Human Tumor Dissociation Kit [ Miltenyi Catalog: 130-095-929
Biotec

Chromium Next GEM Single [ 10x Catalog: 1000269

Cell 3 GEM, Library & Gel|Genomics

Bead Kitv3.1

QlAamp DNA Mini Kit Qiagen Catalog: 51304

DNeasy Blood and Tissue Kit |Qiagen Catalog: 69504

RNeasy MinElute Cleanup Kit [ Qiagen Catalog: 74204

RNase-Free DNase Set Qiagen Catalog: 79254

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains
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Oligonucleotides

Recombinant DNA

Software and Algorithms

Ascore v1.0.6858 (Beausoleil et | https://github.com/PNNL-Comp-Mass-Spec/AScore
al., 2006)

bam-readcount v0.8 McDonnell https://github.com/genome/bam-readcount

Genome

Institute

Bioconda (The https://bioconda.github.io/

Bioconda
Team et al.,
2018)

Bioconductor v3.9 (Huber et al., | https://bioconductor.org/
2015)

CellPhoneDB (Efremova et| https://www.cellphonedb.org
al., 2020)

CharGer v0.5.4 (Scott et al.,|https://github.com/ding-lab/CharGer
2019)

data.table_1.12.6 R https://cran.r-project.org/package=data.table

Development

Core Team

dendsort_0.3.3 (Sakai et al.,|https://cran.r-project.org/package=dendsort
2014)

dplyr_0.8.5 R https://cran.r-project.org/package=dplyr

Development
Core Team

ESTIMATE (Yoshihara et| https://sourceforge.net/projects/estimateproject/
al., 2013)
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GATK v4.0.0.0 (McKenna et| https://github.com/broadgsa/gatk
al., 2010)
germlinewrapper v1.1 Li Ding Lab | https://github.com/ding-lab/germlinewrapper
ggplot2_3.3.2 R https://CRAN.R-project.org/package=ggplot2
Development
Core Team
gridExtra_2.3 R https://cran.r-project.org/package=gridExtra

Development

Core Team
bulk-RNA-Seq expression Li Ding Lab https://qgithub.com/ding-
lab/HTAN_bulkRNA_expression
inferCNV v0.8.2 (Tickle et al., [ https://github.com/broadinstitute/infercnv
2019)

Integrative Genomics Viewer

(Robinson et
al., 2011)

https://igv.org

magrittr_1.5

R
Development

Core Team

https://cran.r-project.org/package=maaqrittr

Matrix_1.2-17

R
Development

Core Team

https://CRAN.R-project.org/package=Matrix

MEDALT

(Wang et al,
2020)

https://qgithub.com/KChen-lab/MEDALT

MuTect v1.1.7

(Cibulskis et
al., 2013)

https://qgithub.com/broadinstitute/mutect

pheatmap_1.0.12

R

Development

https://cran.r-project.org/package=pheatmap

Core Team

Pindel v0.2.5 (Ye et al,|https://github.com/genome/pindel
2009)

Python v3.7 Python https://www.python.org/
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R v3.6

R
Development

Core Team

https://www.r-project.org/

RColorBrewer _1.1-2

R
Development

Core Team

https://CRAN.R-project.org/package=RColorBrewer

reshape2_1.4.3

R

Development

https://cran.r-project.org/package=reshape?2

Core Team
Samtools v1.2 (Li et al.,|https://www.htslib.org/
2009)
scVarScan Li Ding Lab https://github.com/ding-lab/10Xmapping
SeqQEst Li Ding Lab | https://github.com/ding-lab/SegQEst
Seuratv3.1.2 (Butler et al., | https://cran.r-project.org/web/packages/Seurat
2018)
somaticwrapper v1.3 and v1.5 | Li Ding Lab | https://github.com/ding-lab/somaticwrapper
STARVv2.7.4a (Dobin et al., | https://github.com/alexdobin/STAR
2013)
Strelka v2.9.2 (Kim et al.,|https://github.com/lllumina/strelka
2018)
stringr_1.4.0 R https://cran.r-project.org/package=stringr
Development
Core Team
Subread v2.0.1 (Liao et al.,|https://sourceforge.net/projects/subread/
2013)
Tidyverse (Wickham et| https://www.tidyverse.ora/
al., 2019)
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VarScan v2.3.8 (Koboldt et | https://dkoboldt.qgithub.io/varscan/
al., 2012)
viridis_0.5.1 R https://github.com/sjmgarnier/viridis

Development

Core Team

viridisLite _0.3.0 R https://github.com/sjmgarnier/viridis

Development

Core Team

xCellv1.2 (Aran et al.,[http://xCell.ucsf.edu/
2017)

Other

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Specimens and Clinical Data

All samples were collected with informed consent in concordance with Institutional Review
Board (IRB) approval. Primary pancreatic adenocarcinoma samples were collected during
surgical resection and verified by standard pathology (IRB protocol 201108117). Blood was
collected at the time of surgery into vacuum tubes containing heparin or
ethylenediaminetetraacetic acid (EDTA) (BD Bioscience). Cells were isolated by ficoll-density
centrifugation and frozen in fetal bovine serum with 5% dimethyl sulfoxide.

Clinical data was captured in accordance with IRB protocol 20108117, at the time of informed

consent and entered into the REDCap database.

Sample Processing

After verification by an attending pathologist, a 1.5 cm x 1.5 cm x 0.5 cm portion of the tumor
was removed, photographed, weighed, and measured. Each piece was then subdivided into 6—
9 pieces (depending on the original size) and then further subdivided into four transverse cut
pieces. Pieces were then placed into formalin, snap frozen in liquid nitrogen, DMEM, and

formalin, respectively.

METHOD DETAILS
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Genomic DNA and RNA extraction
Tumor tissues and corresponding normal mucosae were obtained from surgically resected

specimens, and after a piece was removed for fresh single-cell prep the remaining sample was
snap-frozen in liquid nitrogen and stored at —80°C. Before bulk RNA/DNA extraction, samples
were cryo-pulverized (Covaris) and aliquoted for bulk extraction methods. Genomic DNA was
extracted from tissue samples with either the DNeasy Blood and Tissue Kit (Qiagen, 69504) or
the QIAamp DNA Mini Kit (Qiagen, 51304). Total RNA was extracted with TRI reagent (Millipore
Sigma, T9424) and treated with DNase | (Qiagen, 79254) using an RNeasy MinElute Cleanup
Kit (Qiagen, 74204). RNA integrity was evaluated using either a Bioanalyzer (Agilent
Technologies) or TapeStation (Agilent Technologies). Genomic germline DNA was purified from
cryopreserved peripheral blood mononuclear cells (PBMCs) using the QiaAMP DNA Mini Kit
(Qiagen, 51304) according to the manufacturer's instructions (Qiagen, Valencia, CA). The DNA
guantity was assessed by fluorometry using the Qubit dsSDNA HS Assay (Q32854) according to

manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA).

Whole-Exome Sequencing

100-250 ng of genomic DNA was fragmented on the Covaris LE220 instrument targeting 250bp
inserts. Automated dual-indexed libraries were constructed with the KAPA Hyper library prep kit
(Roche) on the SciClone NGS platform (Perkin Elmer). Up to ten libraries were pooled at an
equimolar ratio by mass prior to the hybrid capture targeting a 5-ug library pool. The library
pools were hybridized with the xGen Exome Research Panel v1.0 reagent (IDT Technologies)
that spans a 39Mb target region (19,396 genes) of the human genome. The libraries were
hybridized for 16-18 h at 65°C followed by stringent wash to remove spuriously hybridized
library fragments. Enriched library fragments were eluted and PCR cycle optimization was
performed to prevent over amplification. The enriched libraries were amplified with KAPA HiFi
master mix (Roche) prior to sequencing. The concentration of each captured library pool was
accurately determined through qPCR utilizing the KAPA library Quantification Kit according to
the manufacturer's protocol (Roche) to produce cluster counts appropriate for the lllumina
NovaSeq-6000 instrument. 2x150 paired-end reads were generated targeting 12Gb of

sequence to achieve ~100x coverage per library.

RNA Sequencing
Total RNA integrity was determined using Agilent Bioanalyzer or 4200 Tapestation. Library

preparation was performed with 500 ng to 1 ug of total RNA. Ribosomal RNA was blocked using
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FastSelect reagents (Qiagen) during cDNA synthesis. RNA was fragmented in reverse
transcriptase buffer with FastSelect reagent and heated to 94°C for 5 min, 75°C for 2 min, 70°C
for 2 min, 65°C for 2 min, 60°C for 2 min, 55°C for 2 min, 37°C for 5 min, 25°C for 5 min. mRNA
was reverse transcribed to yield cDNA using SuperScript Il RT enzyme (Life Technologies, per
manufacturer’s instructions) and random hexamers. A second strand reaction was performed to
yield ds-cDNA. cDNA was blunt ended, had an A base added to the 3’ ends, and then had
lllumina sequencing adapters ligated to the ends. Ligated fragments were then amplified for 15
cycles using primers incorporating unique dual index tags. Fragments were sequenced on an
lllumina NovaSeq-6000 S4 instrument generating approximately 30M paired end 2x150 reads

per library.

Single-cell Suspension Preparation

For each tumor approximately 15-100 mg of 2—4 sections of each tumor and/or normal piece of
tissue were cut into small pieces using a blade and processed separately. Enzymes and
reagents from the human tumor dissociation kit (Miltenyi Biotec, 130-095-929) were added to
the tumor tissue along with 1.75 mL of DMEM. The resulting suspension was loaded into a
gentleMACS C-tube (Miltenyi Biotec, 130-093-237) and subject to the gentleMACS Octo
Dissociator with Heaters (Miltenyi Biotec, 130-096-427). After 30-60 min on the heated
dissociation program (37h_TDK_1), samples were removed from the dissociator and filtered
through a 40-um Mini-Strainer (PluriSelect #43-10040-60) or 40-um Nylon mesh (Fisher
Scientific, 22-363-547) into a 15-mL conical tube on ice. The sample was then spun down at
400 g for 5 min at 4°C. After removing the supernatant, when a red pellet was visible, the cell
pellet was resuspended using 200 uL to 3 mL of ACK Lysis Solution (ThermoFisher, A1049201)
for 1-5 min. To quench the reaction, 10 mL of PBS (Corning, 21-040-CM) with 0.5% BSA
(Miltenyi Biotec, 130-091-376) was added and spun down at 400 g for 5 min at 4°C. After
removing supernatant, the cells were resuspended in 1 mL of PBS with 0.5% BSA, and live and
dead cells were visualized using Trypan Blue. If over 40% of dead cells were present, the
sample was spun down at 400 g for 5 min at 4°C and subject to the dead cell removal kit
(Miltenyi Biotec, 130-090-101). Finally the sample was spun down at 400 g for 5 min at 4°C and
resuspended in 500 pL to 1 mL of PBS with 0.5% BSA to a final concentration of 700 to 1,500

cells per pL.

Single-cell library prep and sequencing
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Utilizing the Chromium Next GEM Single Cell 3 GEM, Library & Gel Bead Kit v3.1 and
Chromium instrument, approximately 17,500 to 25,000 cells were partitioned into nanoliter
droplets to achieve single-cell resolution for a maximum of 10,000 to 15,000 individual cells per
sample (10x Genomics, 1000269). The resulting cDNA was tagged with a common 16nt cell
barcode and 10nt Unique Molecular Identifier during the RT reaction. Full-length cDNA from
poly-A mRNA transcripts was enzymatically fragmented and size-selected to optimize the cDNA
amplicon size (approximately 400bp) for library construction (10x Genomics).The concentration
of the 10x single-cell library was accurately determined through qPCR (Kapa Biosystems) to
produce cluster counts appropriate for the HiSeq 4000 or NovaSeq 6000 platform (lllumina).
26x98bp sequence data were generated targeting 50K read pairs/cell, which provided digital

gene expression profiles for each individual cell.

Proteomic and Phosphoproteomic Profiling Experiments

Protein Extraction and Lys-C/Trypsin Tandem Digestion

Tissue lysis and downstream sample preparation for global proteomic and phosphoproteomic
analysis were carried out as previously described (Clark et al., 2019; Mertins et al., 2018).
Approximately 25-50 mg of each cryo-pulverized HTAN tissue was resuspended in lysis buffer
(8 M urea, 75 mM NacCl, 50 mM Tris, pH 8.0, 1 mM EDTA, 2 ug/mL aprotinin, 10 pg/mL
leupeptin, 1 mM PMSF, 10 mM NaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase
Inhibitor Cocktail 3 [1:100 dilution], and 20 uM PUGNAC) by repeated vortexing. Lysates were
clarified by centrifugation at 20,000 g for 10 min at 4°C, and protein concentrations were
determined by BCA assay (Pierce). Proteins were reduced with 5 mM dithiothreitol (DTT,
ThermoFisher) for 1 h at 37°C, and subsequently alkylated with 10 mM iodoacetamide (Sigma)
for 45 min at room temperature (RT) in the dark. Samples were diluted 1:4 with 50 mM Tris-HCI
(pH 8.0) and subjected to proteolytic digestion with LysC (Wako Chemicals) at 1 mAU:50 mg
enzyme-to-substrate ratio for 2 h at RT, followed by the addition of sequencing grade modified
trypsin (Promega) at 1:50 enzyme-to-substrate ratio and overnight incubation at RT. The
digested samples were then acidified with 50% formic acid (FA, Fisher Chemicals) to pH 2.
Tryptic peptides were desalted on reversed phase C18 SPE columns (Waters) and dried using

Speed-Vac (Thermo Scientific).
TMT-11 Labeling of Peptides

Dried peptides from each sample were labeled with 11-plex TMT (Tandem Mass Tag) reagents

(Thermo Fisher Scientific). 200 ug of peptides from each of the HTAN samples was dissolved in
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80 pL of 100 mM HEPES, pH 8.5 solution. 30 HTAN samples were labeled in 3 TMT sets. A
reference sample was created by pooling an aliquot from 26 HTAN samples (representing
~90% of the sample cohort) and was included in all TMT 11-plex sets as a pooled reference
channel (Channel 126). 5 mg of TMT reagent was dissolved in 500 uL of anhydrous acetonitrile,
and then 30 pL of each TMT reagent was added to the corresponding aliquot of peptides. After
1 h incubation at RT, the reaction was quenched by incubation with 5% NH,OH for 15 min at
RT. Following labeling, peptides were desalted on reversed phase C18 SPE columns (Waters)

and dried using Speed-Vac (Thermo Scientific).

Peptide Fractionation by Basic Reversed-phase Liquid Chromatography (bRPLC)

To reduce the likelihood of peptides co-isolating and co-fragmenting due to high sample
complexity, we employed extensive, high-resolution fractionation via basic reversed phase liquid
chromatography (bRPLC). For each TMT set, about 2.2 mg of desalted peptides was
reconstituted in 900 pL of 5 mM ammonium formate (pH 10) and 2% acetonitrile (ACN) and
loaded onto a 4.6 mm x 250 mm RP Zorbax 300 A Extend-C18 column with 3.5-mm size beads
(Agilent). Peptides were separated using an Agilent 1200 Series HPLC instrument using basic
reversed-phase chromatography with Solvent A (2% ACN, 5 mM ammonium formate, pH 10)
and a non-linear gradient of Solvent B (90% ACN, 5 mM ammonium formate, pH 10) at 1
mL/min as follows: 0% Solvent B (7 min), 0% to 16% Solvent B (6 min), 16% to 40% Solvent B
60 min), 40% to 44% Solvent B (4 min), 44% to 60% Solvent B (5 min) and then held at 60%
Solvent B (14 min). Collected fractions were concatenated into 24 fractions as described
previously (Mertins et al., 2018); 5% of each of the 24 fractions was aliquoted for global
proteomic analysis, dried down in a Speed-Vac, and resuspended in 3% ACN, 0.1% formic acid
prior to ESI-LC-MS/MS analysis. The remaining sample was utilized for phosphopeptide

enrichment.

Enrichment of Phosphopeptides by Fe-IMAC

The remaining 95% of the fractions were further concatenated into 12 fractions prior to
phosphopeptide enrichment using immobilized metal affinity chromatography (IMAC) as
previously described (Mertins et al., 2018). In brief, Ni-NTA agarose beads were utilized to
prepare Fe®*-NTA agarose beads, and then about 200 pg of peptides of each fraction
reconstituted in 80% ACN/0.1% trifluoroacetic acid were incubated with 10 uL of the Fe**-IMAC
beads for 30 mins. Samples were then spun down, and the supernatant containing unbound

peptides was removed. The beads were brought up in 80% ACN, 0.1% trifluoroacetic acid and
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then loaded onto equilibrated C-18 Stage Tips, and washed by 80% ACN, 0.1% trifluoroacetic
acid, rinsed twice with 1% formic acid, followed by sample elution off the Fe**-IMAC beads with
100 pL of 500 mM dibasic potassium phosphate, pH 7.0. C-18 Stage Tips were then washed
twice with 1% formic acid, followed by elution of the phosphopeptides from the C-18 Stage Tips
with 80 pl of 50% ACN, 0.1% formic acid twice. Samples were dried down and resuspended in
3% ACN, 0.1% formic acid prior to ESI-LC-MS/MS analysis.

ESI-LC-MS/MS for Global Proteome and Phosphoproteome Analysis

The global proteome and phosphoproteome fractions were analyzed as described in a previous
study (Clark et al., 2019). Peptides (~0.8 ug) were separated on an Easy nLC 1200 UHPLC
system (Thermo Scientific) on an in-house packed 20 cm x 75 mm diameter C18 column (1.9
mm Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH); Picofrit 10 mm opening (New Objective)).
The column was heated to 50°C using a column heater (Phoenix-ST). The flow rate was 0.300
HL/min with 0.1% formic acid and 2% acetonitrile in water (A) and 0.1% formic acid, 90%
acetonitrile (B). The global peptides were separated with a 6-30% B gradient in 84 mins and
analyzed using the QE-HFX (Thermo Scientific). Parameters were as follows MS1: resolution —
120,000, mass range — 400 to 2000 m/z, RF Lens — 30%, AGC Target 3e6, Max IT — 50 ms,
charge state include - 2-5, dynamic exclusion — 20 s, top 20 ions selected for MS2; MS2:
resolution — 45,000, collision energy NCE — 32, isolation width (m/z) — 0.7, AGC Target — 1.0e5,
Max IT — 96 ms. The phosphopeptides were separated with a 6—30% B gradient in 84 mins and
analyzed using the Lumos (Thermo Scientific). Parameters were as follows MS1: resolution —
60,000, mass range — 350 to 1800 m/z, RF Lens — 30%, AGC Target 4.0e5, Max IT — 50 ms,
charge state include - 2-6, dynamic exclusion — 45 s, top 20 ions selected for MS2; MS2:
resolution — 50,000, HCD caollision energy — 34, isolation width (m/z) — 0.7, AGC Target — 2.0e5,
Max IT — 100 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genomic Data Analysis

Somatic Variant Calling

Somatic variants were called from whole-exome tumor-normal paired BAMs using
somaticwrapper v1.5, a pipeline designed for detection of somatic variants from tumor and
normal whole-exome sequence (WES) data. The pipeline merges and filters variant calls from
four callers: Strelka v2.9.2 (Kim et al., 2018), VarScan v2.3.8 (Koboldt et al., 2012), Pindel
v0.2.5 (Ye et al., 2009), and MuTect v1.1.7 (Cibulskis et al., 2013). SNV calls were obtained
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from Strelka, Varscan, and MuTect. Indel calls were obtained from Strelka, Varscan, and Pindel.
The following filters were applied to obtain variant calls of high confidence: normal VAF < 0.02
and tumor VAF = 0.05, read depth in tumor = 14 and normal 2 8, indel length < 100 bp, all
variants must be called by 2 or more callers, all variants must be exonic, and variants in dbSNP
but not in COSMIC excluded.

KRAS Hotspot Genotyping

To verify manually and/or determine the KRAS mutation status at KRAS hotspots G12, G13,
and Q61, we used bam-readcount. For each case, we first applied bam-readcount to generate
readcounts for each of the 9 bases in these loci and then calculated VAF values of all the KRAS

hotspots based on reference and alternative base read counts at each position.

Germline Variant Calling and Annotation

Germline variant calling was performed using an in-house pipeline, germlinewrapper v1.1, which
implements multiple tools for the detection of germline INDELs and SNVs. Germline SNVs were
identified using VarScan v2.3.8 (with parameters: --min-var-freq 0.10 --p-value 0.10 --min-
coverage 3 --strand-filter 1) operating on a mpileup stream produced by samtools v1.2 (with
parameters: -q 1 -Q 13) and GATK v4.0.0.0 (McKenna et al., 2010) using its haplotype caller in
single-sample mode with duplicate and unmapped reads removed and retaining calls with a
minimum quality threshold of 10. All resulting variants were limited to the coding regions of the
full-length transcripts obtained from Ensembl release 95 plus an additional two base pairs
flanking each exon to cover splice donor/acceptor sites. We required variants to have allelic
depth = 5 reads and alternative allele frequencies = 20% in both the tumor and normal samples.
We used bam-readcount v0.8 for reference and alternative alleles quantification (with
parameters: -q 10 -b 15) in both normal and tumor samples. Additionally, we filtered all variants
with = 0.05% frequency in gnomAD v2.1 (Karczewski et al., 2017) and The 1000 Genomes
Project (The 1000 Genomes Project Consortium, 2015).

Germline Variant Pathogenic Classification

For annotation and prioritization of the filtered germline variants, we used our automatic variant
classification tool CharGer v0.5.4 (Scott et al., 2019), which computes a classification score
based on ACMG-AMP guidelines. CharGer automatically marks as pathogenic those input
variants that are marked as known pathogenic in ClinVar's curated database and marks as

likely pathogenic those variants with a CharGer score > 8. All pathogenic or likely pathogenic
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variants had both their normal and tumor samples reviewed manually by us using the Integrative

Genomics Viewer (IGV) software.

ScRNA-Seq Quantification and Analysis

ScRNA-Seq Data Preprocessing

For each sample, we obtained the unfiltered feature-barcode matrix per sample by passing the
demultiplexed FASTQs to Cell Ranger v3.1.0 ‘count’ command using default parameters and
the prebuilt GRCh38 genome reference v3.0.0 (GRCh38 and Ensembl 93). Seurat v3.1.2
(Butler et al., 2018; Hafemeister and Satija, 2019) was used for all subsequent analysis. First, a
series of quality filters was applied to the data to remove those barcodes which fell into any one
of these categories recommended by Seurat: too few total transcript counts (< 300); possible
debris with too few genes expressed (< 200) and too few UMIs (< 1,000); possible more than
one cell with too many genes expressed (> 10,000) and too many UMIs (> 10,000); possible
dead cell or a sign of cellular stress and apoptosis with too high proportion of mitochondrial
gene expression over the total transcript counts (> 10%). We constructed a Seurat object using
the unfiltered feature-barcode matrix for each sample. Each sample was scaled and normalized
using Seurat's ‘SCTransform’ function to correct for batch effects (with parameters:
vars.to.regress = c("nCount_RNA", "percent.mito"), variable.features n = 2000). Any merged
analysis or subsequent subsetting of cells/samples underwent the same scaling and
normalization method. Cells were clustered using the original Louvain algorithm (Blondel et al.,
2008) and top 20 PCA dimensions via ‘FindNeighbors’ and ‘FindClusters’ (with parameters:
resolution = 0.5) functions. The resulting merged and normalized matrix was used for the

subsequent analysis.

ScRNA-Seq Cell Type Annotation

Main cell types were assigned to each cluster by manually reviewing the expression of a
comprehensive set of marker genes. These assignments were all done by one person to
maximize consistency. The marker genes used were KRT19, KRT8, KRT18, KRT17, KRT7,
KRT5, KRT6A, KRT14, EPCAM, TACSTD2, ANXA2, S100A10, S100A11, S100A16, TPM1,
TFF1, S100A6, AGR2, C190rf33 (tumor); INS, GCG, SST, GHR, PPY, GCK, PCSK1, PCSK2,
CHGA, CHGB, SYP, KCNJ11 (islet); CTRB1, CELA3A, CELA3B, CTRB2, PLA2G1B, PRSS2,
SPINK1, CLPS, CPAl, PRSS1, CPA2, REGI1A, PNLIP, SYCN, PNLIPRP1, CTRC, KLK1,
CELA2A, CPBL1 (acinar); VWF, PECAM1, FLT4, FLT1, FLT3, KDR, PLVAP, ANGPT2, TRIM24,
ACTA2 (endothelial); TIMP1, FN1, POSTN, ACTA2, BST2, LY6D, COL6A1l, SLC20A1,
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COL6A2, KRT16, CD9, S100A4, EMP1, LRRC8A, EPCAM, PDPN, ITGB1, PDGFRA, THY1
(fibroblast); HBD, GYPA, HBA1, HBA2, CAl, HBB, BRSK1 (erythrocyte); SDC1, IGHG1,
IGHGS, IGHG4 (plasma); CD19, MS4A1, CD79A, CD79B, CD83, CD86 (B cells); CD8B, CD8A,
CD3E, CD3D (CD8 T cells); CD8B, CD8A, CD4 (CD4 T cells); XCL2, XCL1, SPON2, KLRF1,
KIR2DL3, IL2RB, HOPX, CLIC3, CD7, KLRB1, KLRD1, GZMA, PRF1, CD160, NCAM1,
FCGR3A (NK); FCER1A, KIT, FCER2, ENPP3 (mast); CD1C, CD1A, FLT3, ZBTB46, XCR1,
CLECO9A, IRF8, FLT3, ZBTB46, BATF3 (cDCs); LY6GED, MPO, FUT4, FCGR3A (neutrophils);
ITGAM, LGALS3, CD68, CD163, LYZ, ADGRE1, LAMP2 (macrophages); CD14, FCGR3A,
FCGR1A (monocytes). We further subdivided certain cell types into subtypes or cell states
using the following: IKZF2, TNFRSF18, FOXP3, CTLA4, IL7R, IL2RA (Treg); GZMH, GZMK,
GZMB, GZMA, PRF1, IFNG, FASLG, LAMP1, CD8A, CD8B, CD3E, CD3D (cytotoxic T cell);
VSIR, TIGIT, ICOS, EOMES, HAVCR2, PDCD1, BTLA, CD244, LAG3, CD160, CTLA4, CD96
(exhausted T cell); MKI67 (proliferation marker); ACTA2, FAP, PDPN, PDGFRA (general CAF);
IL6, CXCL1, CXCL12, CXCL2 (iCAF); ACTA2, THY1, TAGLN (myCAF); CD74, SAA2, SAAl

(apCAF). For ADM populations, we used a combination of tumor and acinar markers.

ScRNA-Seq Subtype Assignment

We used 3 bulk gene marker sets (Bailey, Moffitt, and Collisson) and their respective subtypes
for scRNA-Seq PDAC cluster assignment. For each subtype from the Bailey and Moffitt gene
sets, the top 20 genes were selected, while from the Collisson gene set, all genes were used
due to the lower marker count per subtype. The resulting gene marker lists grouped by subtype
are as follows. Bailey set: MTMR7, ARX, ABCC8, CEACAM7, CACNA2D2, MAPK8IP2, SYT7,
LTF, NR1H4, SLC7A14, PRSS3, CPA1l, AQP8, FGL1, SERPINI2, REG1A, NR5A2, RBPJL,
KIRREL2, CLPS (Adex); CFH, CD99, HECW1, PLXND1, RECQL, Clorf112, M6PR, FKBP4,
GGCT, DBF4, SEMA3F, ANKIB1, MADI1L1, CDC27, WDR54, DPM1, NME2, UTP18,
SLC25A39, TTC27 (Squamous); ENPP4, CFTR, CYP51A1, ABP1, LASP1, TMEM176A, ICAL,
DBNDD1, CASP10, SARM1, UPF1, ACSM3, SPPL2B, PDK2, OSBPL7, TMEM98, BAIAP2L1,
ALDH3B1, TTC22, FARP2 (PancProg); CD38, PDK4, FBXL3, CD79B, MYLIP, RWDD2A,
ACPP, TRAF3IP3, ACAP1, ARHGAP15, CST7, P2RY10, SIRPG, GRAP2, FGR, ITGAL,
CEACAM21, CD4, BTK, TYROBP (Immunogenic). Collisson set: REG1B, REG3A, REG1A,
PNLIPRP2, CEL, PNLIP, PLA2G1B, CELA3A, CPB1, CELA3B, CTRB2, CLPS, CELAZ2B,
PRSS2, PRSS1, GP2, SLC3A1, CFTR, SLC4A4, SPINK1 (Exocrine-like); AIM2, CALHMS,
GPM6B, S100A2, KRT14, CAV1, LOX, SLC2A3, TWIST1, PAPPA, NT5E, CKS2, HMMR,
SLC5A3, PMAIP1, PHLDA1, SLC16Al1 (Quasi-Mesenchymal); FERMT1, HK2, AHNAK2,

39


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

TMEM45B, SDR16C5, GPRC5A, AGR2, S100P, FXYD3, ST6GALNAC1, CEACAMS5,
CEACAMS6, TFF1, TFF3, CAPN8, FOXQ1, ELF3, ERBB3, TSPANS8, TOX3, LGALS4, PLS1,
GPX2, ATP10B, MUC13 (Classical). Moffitt set: S100A2, KRT6A, CST6, GPR87, SCEL,
ANXA8L2, KRT6C, SERPINB4, SERPINB3, LY6D, LY6D, PLAG1, IL20RB, C160rf74, DCBLD2,
KRT17P3, HMGA2, SPRR3, SPRR1B, KRT17 (Basal-like); TM4SF5, TFF1, PLA2G10, GPX2,
SPINK4, LOC400573, BTNL8, DMBT1, ATAD4, TFF3, FAM3D, LYZ, MYO1A, ANXAI10,
CLRN3, AKR1B10, CTSE, TSPANS8, LGALS4, REG4 (Classical). To assign the scRNA-Seq
subtype, we calculated the “subtype score” for each cluster identified in the merged Seurat
object described in the “scRNA-Seq Data Preprocessing” section. The subtype scores were
defined by taking an average of selected bulk markers for each subtype in each marker set.

Each cluster was then assigned to the subtype with the highest score within each marker set.

Composite Heterogeneity Score

For the single cell-based composite heterogeneity score, we first calculated the mean pairwise
Spearman correlation of cell type proportions between samples from each case for a case-level
cell type proportion statistic. We then calculated the average expression of all genes for each
sample and obtained the mean pairwise Spearman correlation across all genes between
samples from each case to obtain a case-level expression statistic. We defined the mean of
these two scores, subtracted from 1, as the scRNA-based composite heterogeneity score for
each patient. For the heterogeneity scores at the cell-type level, the score is calculated by

correlating average expression between cells from each cell type only.

scVarScan Mutation Mapping

We applied our in-house tool scVarScan that can identify reads supporting the reference and
variant alleles covering the variant site in each individual cell by tracing cell and molecular
barcode information in an scRNA bam file. For mapping, we used high-confidence somatic
mutations from WES data. Additionally, we use cancerhotspots.org (Chang et al., 2018) to
obtain the most common KRAS hotspot mutations at G12, G13, and Q61 and use scVarScan to

detect potential minority KRAS mutations in each sample.

Single-cell RNA CNV Detection
To detect large-scale chromosomal copy number variations using single-cell RNA-seq data,
inferCNV (version 0.8.2) was used with default parameters recommended for 10x Genomics

data. All cells that are not tumor were pooled together for the reference normal set. InferCNV
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was run at a sample level and only with post-QC filtered data. In order to calculate arm-level
CNV events, we used an in-house script to match the gene-level inferCNV output to

chromosome bands and take the mean value for each arm.

Differential sScRNA Expression Analyses

For cell-level and cluster-level differential expression, we used the 'FindMarkers' or
"FindAllMarkers' Seurat function as appropriate, using a minimum percent of 0.25 (parameter
min.pct = 0.25) and looking only in the positive direction, as lack of expression is harder to
interpret due to the sparsity of the data. The resulting DEGs were then filtered for adjusted p-
value < 0.05 and sorted by fold change. All differential expression analyses were carried out

using the "SCT" assay.

Acinar and Ductal Scores

To create gene module scores, we used the Seurat function "AddModuleScore" with default
parameters and input our acinar or ductal marker genes lists as follows: KRT19, KRT8, KRT18,
KRT17, KRT7, KRT5, KRT6A, KRT14, EPCAM, TACSTD2, ANXA2, S100A10, S100A11,
S100A16, TPM1, TFF1, S100A6, AGR2, C190rf33 (tumor); and CTRB1, CELA3A, CELASB,
CTRB2, PLA2G1B, PRSS2, SPINK1, CLPS, CPAl, PRSS1, CPA2, REG1A, PNLIP, SYCN,
PNLIPRP1, CTRC, KLK1, CELA2A, CPB1 (acinar).

Receptor Ligand Interactions
We used the CellPhoneDB tool (Efremova et al., 2020) in order to detect significant pairs of
receptor-ligand interactions between cell types. This comparison was done at the sample level

using default parameters between tumor and lymphocyte cell types.

Cell Surface Annotation

To annotate a given biomarker, we annotated each DEG by its subcellular location. Three
databases were used to curate the subcellular location information: 1) Gene Ontology Term
0005886; 2) Mass Spectrometric-Derived Cell Surface Protein Atlas (CSPA) (Bausch-Fluck et
al., 2015); 3) The Human Protein Atlas (HPA) subcellular location data based on HPA version
19.3 and Ensembl version 92.38.

Bulk Proteogenomic Analyses
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DNA and RNA Sample QC

Bulk sequencing data quality metrics (adaptor content, mapping quality, coverage, and
contamination/swaps/mislabeling) were determined for DNA and RNA bams using our in-house
pipeline SeqQEst. The inclusion criteria for paired DNA and RNA bams was that there be no
contamination and sufficient coverage (> 50x coding region coverage in WES or > 50Mb

mapped depth in RNA-Seq data).

RNA Quantification

We used our in-house bulk-RNA-Seq expression analysis pipeline for quantification. Briefly, for
each sample, the raw sequence reads were aligned into BAM files using STAR (Dobin et al.,
2013) (version 2.7.4a) 2-pass alignment with GRCh38 as the reference. The resulting BAM files
were then quantified as a raw count-matrix using read feature counts using Subread (Liao et al.,
2013) (version 2.0.1). For both alignment and quantification, gene annotations were based on
Gencode v34. The raw counts were then converted to FPKM-UQ based on GDC's formula

(https://docs.qgdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression. mRNA _Pipeline/#upper

-quartile-fpkm) and then log2 transformed with 1 pseudocount.

Proteomic and Phosphoproteomics Quantification

Proteomic data processing followed the methods detailed in Clark et al., 2019. Briefly, raw mass
spectrometry files were converted into open mzML format, then searched using the MSFragger
database against a RefSeq protein sequence database appended with an equal number of
decoy sequences. The specific parameters and software are detailed in the Clark et al., 2019

study.

Heterogeneity Score

Similar to the scRNA average expression metric, for each of the bulk RNA, proteomic, and
phosphoproteomic data, we calculated the mean pairwise Spearman correlation across all
genes between samples from each case to obtain a case-level correlation metric. We then
defined the heterogeneity score as this mean correlation subtracted from 1. For
phosphoproteomics, this was done using phosphosite abundances, not phosphoprotein

abundances.

Expression-Based Subtyping
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Bulk expression subtyping is done by selecting top genes from each gene marker set (Bailey,
Moffitt, and Collisson), normalizing expression, and clustering with the ConsensusClusterPlus
(Wilkerson and Hayes, 2010) package in R. The top gene selection process is the same as that
described in the scRNA-Seq subtype assignment method section. The log2 upper quartile
normalized FPKM reads of these genes were standardized with z-score scaling, making each
gene’s mean and standard deviation equal to 0 and 1, respectively, thereby allowing all genes
on different expression levels to contribute equally to clustering. These normalized expression
matrices were then clustered using ConsensusClusterPlus (with parameters for 1000 iterations
and maximum k = 8). The optimum k for each marker set was selected based on the number of
subtypes originally identified in each gene marker set (2, 3, and 4 for Moffitt, Collisson, and
Bailey, respectively.) The clusters were then assigned to each subtype by inspecting the

expression level of their respective marker gene lists.

Mutation Impact on the Proteome and Phosphoproteome

We used an aggregated database of interacting proteins that combines Omnipath, DEPOD,
CORUM, Signor2, and Reactome databases as previously described (Dou et al., 2020). We
focused our analyses on PDAC SMGs previously reported in the literature, but only KRAS and
TP53 had large enough numbers in each comparison group for sufficient statistical power
(Bailey et al., 2018). For each interacting pair, we split samples with and without mutations in
partner A and compared expression levels (both protein and phosphosites) both in cis (partner
A) and in trans (partner B). We calculated the median difference in expression and tested for
significance using Wilcoxon rank sum tests, with Benjamini-Hochberg multiple test correction.
We further refined the list of trans interactions by filtering proteins that are not part of oncogenic

processes identified in TCGA (Sanchez-Vega et al., 2018).

KRAS Phosphosignaling Analysis

Oncogenic KRAS signaling in PDAC is believed to pass through three major pathways:
Raf/Mek/Erk, PI3K/Pdk1/Akt, and the Ral guanine nucleotide exchange factor pathway (Eser et
al., 2014). We focused on the Raf/Mek/Erk pathway (along with PI3K/Pdk1/Akt) because its
signaling is controlled by phosphorylation. We used the phosphosites identified in this pathway
as detailed in Collisson et al. (2012).

Differential Proteogenomic Analysis
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For differential analysis between groups of samples using bulk data (gene expression,
proteomics, and phosphoproteomics), we used Wilcoxon rank-sum tests to test for differential
abundances of genes, proteins, and phosphosites. We required that at least 50% of samples in
each comparison group have non-missing values. P-values were then adjusted using the

Benjamini-Hochberg multiple test correction to obtain features with an FDR cutoff = 0.05.

Immune Clustering Using Cell Type Enrichment Scores

The abundance of each cell type was inferred by the xCell web tool (Aran et al., 2017), which
performed the cell type enrichment analysis from gene expression data for 64 immune and
stromal cell types (default xCell signature). xCell is a gene signatures-based method learned
from thousands of pure cell types from various sources. We used the FPKM-UQ expression
matrix as the input to xCell. xCell generated an immune score per sample that integrates the
enrichment scores of various cell types, including B cells, CD4+ T-cells, CD8+ T-cells, DC,
eosinophils, macrophages, monocytes, mast cells, neutrophils, and NK cells. Immune subtypes
of HTAN PDAC cohorts were generated based on the consensus clustering of the xCell cell
type enrichment scores (Wilkerson and Hayes, 2010). Among the 64 cell types tested in xCell,
we selected cell types with at least 2 samples with xCell enrichment p < 0.01 and performed the
consensus immune clustering based on the z-score normalized xCell enrichment scores. The
consensus clustering was determined by the R package ConsensusClusterPlus (parameters:

reps = 2000, pltem = 0.9, pFeature = 0.9, clusterAlg = "kmdist", distance = "spearman").

ESTIMATE Immune and Stroma Scores

The ESTIMATE scores reflecting the overall immune and stromal infiltration and tumor purity
estimation were calculated by the R package ESTIMATE (Yoshihara et al., 2013) using the
normalized RNA expression data (FPKM-UQ). The ESTIMATE algorithm is based on single-
sample gene set enrichment analysis and generates three scores: 1) stromal score (which
captures the presence of stroma in tumor tissue), 2) immune score (which represents the

infiltration of immune cells in tumor tissue), and 3) estimate score (which infers tumor purity).

CiVIC Drug Matching
We obtained evidence of expression-based response to drugs from CIViC (Griffith et al., 2017).
We filtered the database for only sensitive results and positive direction (i.e., "expression” and

"overexpression"). We then matched these annotations to upregulated DEGs in our comparison
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groups. In the present study we used the 06/02/2020 nightly clinical evidence summary

annotations.

Imaging Mass Cytometry

Tissue Staining for IMC

Two 5-pm thick sections from each pancreas piece were stained with the full antibody panel
(see Key Resources Table). Slides were placed into a 60°C oven for 2 h, deparaffinized with
xylene, and then rehydrated with a series of alcohols of decreasing concentrations. Antigen
retrieval was performed by placing slides into a pre-warmed solution of Tris-EDTA, pH 9.0 and
incubated at 96°C for 30 min. Slides were then cooled and washed in water and PBS. Non-
specific staining was blocked in PBS with 3% Bovine Serum Albumin (BSA). A cocktall
containing all antibodies was prepared in PBS with 3% BSA, and slides were stained overnight
at 4°C. Slides were then washed with PBS/0.2% Triton-X and incubated with an iridium
intercalator for 30 min at room temperature. Ruthenium red counterstain was applied for 10 min

after which slides were washed in diH20 then air-dried for 20 min.

IMC Acquisition

Regions of interest (ROI) were selected based on hematoxylin and eosin (H&E) stains on
adjacent sections. Selected areas of 1,000 um x 1,000 um were ablated by a laser which
rasters across the selected ROI at a rate of 200 Hz (200 pixels/s). The time needed for
complete ablation of each ROI selected is about 2 h. The ablated tissue is then carried by an
inert stream of helium and argon gas into the Helios (Fluidigm, South San Francisco CA) where
the material is completely ionized in inductively coupled plasma. The ionized material enters into
a time of flight (TOF) detector where it is separated based on mass. Laser shot signals are
recorded in order and generate a pseudo-colored intensity map of each mass channel. These

data are then exported as MCD files.

IMC Analyses

MCD images were converted to 32-bit ome.tiff images with Fluidigm MCD Viewer. Nuclear
segmentation was performed with Halo(tm) multiplex imaging analysis software. Cell boundaries
were delineated by expanding the nuclear segmentation boundary for each cell by 3 pixels.
Marker intensities for each cell were then exported from Halo and normalized with the following
steps: 1) division by cellular area, 2) capping to the 99% percentile, and 3) scaling by standard

deviation and mean-centering. Marker intensities were then decomposed with PCA and UMAP,
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and nearest neighbors (n=15) were identified for each cell. Cells were then clustered with the
Leiden algorithm (implemented by the Python library Scanpy). Tumor cell clusters were
identified as those harboring elevated levels of Pan-Keratin. Cells from this tumor cluster were
then annotated according to their Pan-Keratin and Alpha-Amylase intensities. The cells were
split into four partitions, (Alpha-Amylase+, Pan-Keratin+), (Alpha-Amylase+, Pan-Keratin-),
(Alpha-Amylase-, Pan-Keratin+), and (Alpha-Amylase-, Pan-Keratin-) based on the following

intensity thresholds: Alpha-Amylase < 2 or = 2, and Pan-Keratin < 2 or = 2.

Additional Methods

Pathological Parameters and Assessment

Each tumor that is subdivided into smaller increments is subjected to H&E staining and
assessed by a pathologist for the following parameters: percentage of viable tumor present,
tumor differentiation, presence of recognizable pancreatic parenchyma surrounding or
interspersed between tumor, lymphovascular invasion, and perineural invasion. Both slices of
each tumor piece, both L1 and L4 when available, were subjected to assessment. For the
correlation with scRNA-based tumor percentages, we averaged the top and bottom slide (L1

and L4) tumor estimates.

Pathway analysis
For each comparison, we obtained the top 30 genes ranked by highest fold change that are
significantly different between the comparison groups (FDR < 0.05). We used

ConsensusPathDB-human for gene set over-representation analysis (Kamburov et al., 2013).

DATA AND CODE AVAILABILITY
All raw image and sequencing data will be deposited into the publicly available HTAN DCC at

https://humantumoratlas.org/htan-dcc/.

ADDITIONAL RESOURCES

SUPPLEMENTAL TABLE LEGENDS
Table S1: Cohort information including key clinical and molecular phenotypes.
Table S2: Bulk omics data including somatic and germline variants and proteogenomics data.

Table S3: Tumor biomarkers and tumor DEGs between treatment groups.

46


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES
1000 Genomes Project Consortium. (2015). A global reference for human genetic variation.
Nature, 526(7571), 68-74.

Alizadeh, A. A., Aranda, V., Bardelli, A., Blanpain, C., Bock, C., Borowski, C., ... & Esteller, M.

(2015). Toward understanding and exploiting tumor heterogeneity. Nature medicine, 21(8), 846.

American Cancer Society (2020). Cancer Facts & Figures 2020. Atlanta: American Cancer

Society.

Aran, D., Hu, Z., & Butte, A. J. (2017). xCell: digitally portraying the tissue cellular heterogeneity
landscape. Genome biology, 18(1), 1-14.

Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A., ... &
Ng, P. K. S. (2018). Comprehensive characterization of cancer driver genes and mutations.
Cell, 173(2), 371-385.

Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., ... & Nourse, C.
(2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592),
47-52.

Balachandran, V. P., Beatty, G. L., & Dougan, S. K. (2019). Broadening the impact of
immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology, 156(7),
2056-2072.

Bausch-Fluck, D., Hofmann, A., Bock, T., Frei, A. P., Cerciello, F., Jacobs, A., ... & Schiess, R.

(2015). A mass spectrometric-derived cell surface protein atlas. PloS one, 10(4), e0121314.
Biffi, G., Oni, T. E., Spielman, B., Hao, Y., Elyada, E., Park, Y., ... & Tuveson, D. A. (2019). IL1-

induced JAK/STAT signaling is antagonized by TGF( to shape CAF heterogeneity in pancreatic

ductal adenocarcinoma. Cancer discovery, 9(2), 282-301.

47


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Birnbaum, D. J., Finetti, P., Lopresti, A., Gilabert, M., Poizat, F., Turrini, O., ... & Mamessier, E.

(2016). Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget, 7(44), 71198.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10), P10008.

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nature
biotechnology, 36(5), 411-420.

Chang, M. T., Bhattarai, T. S., Schram, A. M., Bielski, C. M., Donoghue, M. T., Jonsson, P., ... &
Gorelick, A. (2018). Accelerating discovery of functional mutant alleles in cancer. Cancer
discovery, 8(2), 174-183.

Chatterjee, M., Ben-Josef, E., Thomas, D. G., Morgan, M. A., Zalupski, M. M., Khan, G., ... &
Bekaii-Saab, T. (2015). Caveolin-1 is associated with tumor progression and confers a multi-

modality resistance phenotype in pancreatic cancer. Scientific reports, 5, 10867.

Chen, D., & Che, G. (2014). Value of caveolinfll in cancer progression and prognosis:
Emphasis on cancer@associated fibroblasts, human cancer cells and mechanism of caveolin@1

expression. Oncology letters, 8(4), 1409-1421.

Chung, W., Eum, H. H., Lee, H. O,, Lee, K. M., Lee, H. B., Kim, K. T., ... & Kan, Z. (2017).
Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast

cancer. Nature communications, 8(1), 1-12.

Clark, D. J., Dhanasekaran, S. M., Petralia, F., Pan, J., Song, X., Hu, Y., ... & Ma, W. (2019).
Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell, 179(4), 964-
983.

Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., ... & Feiler, H. S.

(2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy.
Nature medicine, 17(4), 500-503.

48


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Coallisson, E. A., Trejo, C. L., Silva, J. M., Gu, S., Korkola, J. E., Heiser, L. M., ... & Spellman, P.
T. (2012). A central role for RAF— MEK— ERK signaling in the genesis of pancreatic ductal

adenocarcinoma. Cancer discovery, 2(8), 685-693.

Conroy, T., Hammel, P., Hebbar, M., Ben Abdelghani, M., Wei, A. C., Raoul, J. L., ... &
Lecomte, T. (2018). FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer.
New England Journal of Medicine, 379(25), 2395-2406.

DiMagno, E. P., Malagelada, J. R., & Go, V. L. (1979, March). The relationships between
pancreatic ductal obstruction and pancreatic secretion in man. In Mayo Clinic Proceedings (Vol.
54, No. 3, p. 157).

Dou, Y., Kawaler, E. A., Zhou, D. C., Gritsenko, M. A., Huang, C., Blumenberg, L., ... & Liu, W.

(2020). Proteogenomic characterization of endometrial carcinoma. Cell, 180(4), 729-748.

Eckert, F., Schilbach, K., Klumpp, L., Bardoscia, L., Sezgin, E. C., Schwab, M., ... & Huber, S.
M. (2018). Potential role of CXCR4 targeting in the context of radiotherapy and immunotherapy

of cancer. Frontiers in Immunology, 9, 3018.

Efremova, M., Vento-Tormo, M., Teichmann, S. A., & Vento-Tormo, R. (2020). CellPhoneDB:
inferring cell-cell communication from combined expression of multi-subunit ligand—receptor
complexes. Nature protocols, 15(4), 1484-1506.

Elyada, E., Bolisetty, M., Laise, P., Flynn, W. F., Courtois, E. T., Burkhart, R. A., ... & Sivajothi,
S. (2019). Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals

antigen-presenting cancer-associated fibroblasts. Cancer discovery, 9(8), 1102-1123.

Eser, S., Schnieke, A., Schneider, G., & Saur, D. (2014). Oncogenic KRAS signalling in

pancreatic cancer. British journal of cancer, 111(5), 817-822.

Feng, M., Xiong, G., Cao, Z., Yang, G., Zheng, S., Song, X., ... & Zhao, Y. (2017). PD-1/PD-L1

and immunotherapy for pancreatic cancer. Cancer letters, 407, 57-65.

49


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gieniec, K. A., Butler, L. M., Worthley, D. L., & Woods, S. L. (2019). Cancer-associated

fibroblasts—heroes or villains?. British journal of cancer, 121(4), 293-302.

Gorvel, L., & Olive, D. (2020). Targeting the "PVR-TIGIT axis” with immune checkpoint
therapies. F1000Research, 9.

Griffith, M., Spies, N. C., Krysiak, K., McMichael, J. F., Coffman, A. C., Danos, A. M., ... &
Barnell, E. K. (2017). CIViC is a community knowledgebase for expert crowdsourcing the clinical

interpretation of variants in cancer. Nature genetics, 49(2), 170-174.

Hafemeister, C., & Satija, R. (2019). Normalization and variance stabilization of single-cell RNA-

seq data using regularized negative binomial regression. Genome biology, 20(1), 1-15.

Hargadon, K. M. (2016). Dysregulation of TGFB1 activity in cancer and its influence on the

quality of anti-tumor immunity. Journal of clinical medicine, 5(9), 76.

Helms, E., Onate, M. K., & Sherman, M. H. (2020). Fibroblast heterogeneity in the pancreatic

tumor microenvironment. Cancer Discovery, 10(5), 648-656.

Hosein, A. N., Brekken, R. A., & Maitra, A. (2020). Pancreatic cancer stroma: an update on

therapeutic targeting strategies. Nature Reviews Gastroenterology & Hepatology, 1-19.

Huang, Y., Lin, D., & Taniguchi, C. M. (2017). Hypoxia inducible factor (HIF) in the tumor

microenvironment: friend or foe?. Science China Life Sciences, 60(10), 1114-1124.

llic, M., & llic, I. (2016). Epidemiology of pancreatic cancer. World journal of gastroenterology,
22(44), 9694.

Kamburov, A., Stelzl, U., Lehrach, H., & Herwig, R. (2013). The ConsensusPathDB interaction
database: 2013 update. Nucleic acids research, 41(D1), D793-D800.

Kang, J., Hwang, I., Yoo, C., Kim, K. P., Jeong, J. H., Chang, H. M., ... & Lee, S. K. (2018).

Nab-paclitaxel plus gemcitabine versus FOLFIRINOX as the first-line chemotherapy for patients

50


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

with metastatic pancreatic cancer: retrospective analysis. Investigational New Drugs, 36(4),
732-741.

Karczewski, K., & Francioli, L. (2017). The genome aggregation database (gnomAD). MacArthur
Lab.

Klose, R., Krzywinska, E., Castells, M., Gotthardt, D., Putz, E. M., Kantari-Mimoun, C., ... &
Fandrey, J. (2016). Targeting VEGF-A in myeloid cells enhances natural killer cell responses to

chemotherapy and ameliorates cachexia. Nature communications, 7(1), 1-14.

Kopp, J. L., von Figura, G., Mayes, E., Liu, F. F., Duboais, C. L., Morris IV, J. P., ... & Hebrok, M.
(2012). Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal

mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer cell, 22(6), 737-750.

Koukourakis, M. 1., Giatromanolaki, A., Sivridis, E., Simopoulos, C., Turley, H., Talks, K., ... &
Tumour and Angiogenesis Research Group. (2002). Hypoxia-inducible factor (HIF1A and
HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck

cancer. International Journal of Radiation Oncology* Biology* Physics, 53(5), 1192-1202.

Kraman, M., Bambrough, P. J., Arnold, J. N., Roberts, E. W., Magiera, L., Jones, J. O., ... &
Fearon, D. T. (2010). Suppression of antitumor immunity by stromal cells expressing fibroblast
activation protein—a. Science, 330(6005), 827-830.

Lasher, D., Szab6, A., Masamune, A., Chen, J. M., Xiao, X., Whitcomb, D. C., ... & Issarapu, P.
(2019). Protease-sensitive pancreatic lipase (PNLIP) variants are associated with early onset

chronic pancreatitis. The American journal of gastroenterology, 114(6), 974.

Le Maréchal, C., Masson, E., Chen, J. M., Morel, F., Ruszniewski, P., Levy, P., & Férec, C.
(2006). Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nature genetics,
38(12), 1372-1374.

Li, Q., Wang, H., Zogopoulos, G., Shao, Q., Dong, K., Lv, F., ... & Gao, Z. H. (2016). Reg

proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic

markers in pancreatic ductal adenocarcinoma. Oncotarget, 7(47), 77838.

51


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Liekens, S., Schols, D., & Hatse, S. (2010). CXCL12-CXCR4 axis in angiogenesis, metastasis

and stem cell mobilization. Current pharmaceutical design, 16(35), 3903-3920.

Looi, C. K., Chung, F. F. L., Leong, C. O., Wong, S. F., Rosli, R., & Mai, C. W. (2019).
Therapeutic challenges and current immunomodulatory strategies in targeting the
immunosuppressive pancreatic tumor microenvironment. Journal of Experimental & Clinical
Cancer Research, 38(1), 162.

Makohon-Moore, A. P., Matsukuma, K., Zhang, M., Reiter, J. G., Gerold, J. M., Jiao, Y., ... &
Hruban, R. H. (2018). Precancerous neoplastic cells can move through the pancreatic ductal
system. Nature, 561(7722), 201-205.

Maurer, C., Holmstrom, S. R., He, J., Laise, P., Su, T., Ahmed, A., ... & Genkinger, J. M. (2019).
Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes.
Gut, 68(6), 1034-1043.

McGuigan, A., Kelly, P., Turkington, R. C., Jones, C., Coleman, H. G., & McCain, R. S. (2018).
Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World

journal of gastroenterology, 24(43), 4846.

Mertins, P., Tang, L. C., Krug, K., Clark, D. J., Gritsenko, M. A., Chen, L., ... & Petyuk, V. A.
(2018). Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome
analysis of tumor tissues by liquid chromatography—mass spectrometry. Nature protocols, 13(7),
1632-1661.

Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G. H., Hoadley, K. A., ... &
Smyla, J. K. (2015). Virtual microdissection identifies distinct tumor-and stroma-specific

subtypes of pancreatic ductal adenocarcinoma. Nature genetics, 47(10), 1168.

Morrison, A. H., Byrne, K. T., & Vonderheide, R. H. (2018). Immunotherapy and prevention of

pancreatic cancer. Trends in cancer, 4(6), 418-428.

52


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Murai, J., Thomas, A., Miettinen, M., & Pommier, Y. (2019). Schlafen 11 (SLFN11), a restriction
factor for replicative stress induced by DNA-targeting anti-cancer therapies. Pharmacology &
Therapeutics, 201, 94-102.

Murphy, S. J., Hart, S. N., Lima, J. F., Kipp, B. R., Klebig, M., Winters, J. L., ... & Scherer, S. E.
(2013). Genetic alterations associated with progression from pancreatic intraepithelial neoplasia

to invasive pancreatic tumor. Gastroenterology, 145(5), 1098-1109.

Nieuwenhuis, T. O., Yang, S. Y., Verma, R. X., Pillalamarri, V., Arking, D. E., Rosenberg, A. Z.,
... & Halushka, M. K. (2020). Consistent RNA sequencing contamination in GTEx and other data

sets. Nature communications, 11(1), 1-10.

Niknami, Z., Eslamifar, A., Emamirazavi, A., Ebrahimi, A., & Shirkoohi, R. (2017). The
association of vimentin and fibronectin gene expression with epithelial-mesenchymal transition

and tumor malignancy in colorectal carcinoma. EXCLI journal, 16, 1009.

Peitzsch, C., Cojoc, M., Kurth, 1., & Dubrovska, A. (2015). Implications of CXCR4/CXCL12
Interaction for Cancer Stem Cell Maintenance and Cancer Progression. In Cancer Stem Cells:
Emerging Concepts and Future Perspectives in Translational Oncology (pp. 89-130). Springer,
Cham.

Peng, J., Sun, B. F., Chen, C. Y., Zhou, J. Y., Chen, Y. S., Chen, H., ... & Yang, Y. (2019).
Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in

pancreatic ductal adenocarcinoma. Cell research, 29(9), 725-738.

Pereira, B. A., Vennin, C., Papanicolaou, M., Chambers, C. R., Herrmann, D., Morton, J. P., ...
& Timpson, P. (2019). CAF subpopulations: a new reservoir of stromal targets in pancreatic
Cancer. Trends in cancer, 5(11), 724-741.

Plava, J., Cihova, M., Burikova, M., Matuskova, M., Kucerova, L., & Miklikova, S. (2019). Recent

advances in understanding tumor stroma-mediated chemoresistance in breast cancer.

Molecular cancer, 18(1), 67.

53


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pu, N., Lou, W., & Yu, J. (2019). PD-1 immunotherapy in pancreatic cancer: current status.

Journal of Pancreatology, 2(1), 6-10.

Qadir, M. M. F., Alvarez-Cubela, S., Klein, D., van Dijk, J., Mufiz-Anquela, R., Moreno-
Hernandez, Y. B, ... & Diaz, A. (2020). Single-cell resolution analysis of the human pancreatic
ductal progenitor cell niche. Proceedings of the National Academy of Sciences, 117(20), 10876-
10887.

Raphael, B. J., Hruban, R. H., Aguirre, A. J., Moffitt, R. A., Yeh, J. J., Stewart, C., ... & Gabriel,
S. B. (2017). Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer
cell, 32(2), 185-203.

Raphael, K. L., & Willingham, F. F. (2016). Hereditary pancreatitis: current perspectives. Clinical

and experimental gastroenterology, 9, 197.

Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global

trends, etiology and risk factors. World journal of oncology, 10(1), 10.

Reches, A., Ophir, Y., Stein, N., Kol, I., Isaacson, B., Amikam, Y. C., ... & Seliger, B. (2020).
Nectind is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity.

Journal for ImmunoTherapy of Cancer, 8(1), e000266.

Ren, B., Cui, M., Yang, G., Wang, H., Feng, M., You, L., & Zhao, Y. (2018). Tumor

microenvironment participates in metastasis of pancreatic cancer. Molecular cancer, 17(1), 108.

Saad, A. M., Turk, T., Al-Husseini, M. J., & Abdel-Rahman, O. (2018). Trends in pancreatic
adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-
based study. BMC cancer, 18(1), 688.

Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D. G., Egeblad, M., Evans, R. M., ... &

Hynes, R. O. (2020). A framework for advancing our understanding of cancer-associated

fibroblasts. Nature Reviews Cancer, 1-13.

54


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., ... & Chakravarty,
D. (2018). Oncogenic signaling pathways in the cancer genome atlas. Cell, 173(2), 321-337.

Schnurr, M., Duewell, P., Bauer, C., Rothenfusser, S., Lauber, K., Endres, S., & Kobold, S.
(2015). Strategies to relieve immunosuppression in pancreatic cancer. Immunotherapy, 7(4),
363-376.

Scott, A. D., Huang, K. L., Weerasinghe, A., Mashl, R. J., Gao, Q., Martins Rodrigues, F., ... &
Ding, L. (2019). CharGer: clinical Characterization of Germline variants. Bioinformatics, 35(5),
865-867.

Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature reviews cancer, 3(10), 721-
732.

Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: a cancer journal for
clinicians, 70(1), 7-30.

Storz, P. (2017). Acinar cell plasticity and development of pancreatic ductal adenocarcinoma.

Nature reviews Gastroenterology & hepatology, 14(5), 296-304.

Stotz, M., Barth, D. A., Riedl, J. M., Asamer, E., Klocker, E. V., Kornprat, P., ... & Gerger, A.
(2020). The Lipase/Amylase Ratio (LAR) in Peripheral Blood Might Represent a Novel
Prognostic Marker in Patients with Surgically Resectable Pancreatic Cancer. Cancers, 12(7),
1798.

Tickle, T., Tl, G. C., Brown, M., & Haas, B. (2019). inferCNV of the Trinity CTAT Project.
Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Torres, C., & Grippo, P. J. (2018). Pancreatic cancer subtypes: a roadmap for precision
medicine. Annals of medicine, 50(4), 277-287.

Uzunparmak, B., & Sahin, I. H. (2019). Pancreatic cancer microenvironment: a current dilemma.

Clinical and translational medicine, 8(1), 2.

55


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Valkenburg, K. C., de Groot, A. E., & Pienta, K. J. (2018). Targeting the tumour stroma to

improve cancer therapy. Nature reviews Clinical oncology, 15(6), 366-381.

Valque, H., Gouyer, V., Gottrand, F., & Desseyn, J. L. (2012). MUC5B leads to aggressive
behavior of breast cancer MCF7 cells. PLoS One, 7(10), e46699.

Wang, D. Y., Salem, J. E., Cohen, J. V., Chandra, S., Menzer, C., Ye, F., ... & Rathmell, W. K.
(2018). Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review
and meta-analysis. JAMA oncology, 4(12), 1721-1728.

Wang, F., Wang, Q., Mohanty, V., Liang, S., Dou, J., Han, J., ... & Chen, K. (2020). Single-cell

copy number lineage tracing enabling gene discovery. bioRxiv.

Whitcomb, D. C., LaRusch, J., Krasinskas, A. M., Klei, L., Smith, J. P., Brand, R. E., ... & Guda,
N. M. (2012). Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for
alcohol-related and sporadic pancreatitis. Nature genetics, 44(12), 1349-1354.

Wilkerson, M. D., & Hayes, D. N. (2010). ConsensusClusterPlus: a class discovery tool with

confidence assessments and item tracking. Bioinformatics, 26(12), 1572-1573.

Xu, Y., Liu, J., Nipper, M., & Wang, P. (2019). Ductal vs. acinar? Recent insights into identifying

cell lineage of pancreatic ductal adenocarcinoma. Annals of pancreatic cancer, 2.

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia, W., ... &
Carter, S. L. (2013). Inferring tumour purity and stromal and immune cell admixture from

expression data. Nature communications, 4(1), 1-11.

Zhang, W., & Xu, J. (2017). DNA methyltransferases and their roles in tumorigenesis. Biomarker
research, 5(1), 1-8.

Zhang, Z., Wang, Y., Zhang, J., Zhong, J., & Yang, R. (2018). COL1A1 promotes metastasis in

colorectal cancer by regulating the WNT/PCP pathway. Molecular Medicine Reports, 17(4),
5037-5042.

56


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Zimta, A. A., Cenariu, D., Irimie, A., Magdo, L., Nabavi, S. M., Atanasov, A. G., & Berindan-
Neagoe, I. (2019). The role of Nrf2 activity in cancer development and progression. Cancers,
11(11), 1755.

57


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

s not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

preprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint

4

ioRx
h

Figu
A

Tumor Fibroblast

Endothelial

@ o
€ c B¢ Cell-Type Specific =
® 8 BS &s 2 Heterogeneity Score o o
Soo a g ° 85 95 o5 g2 o 5 o 32
S| |Ed S 5 9 g Es 28 58 552 %8 g 32 2 o R ¥ ¥ &¢
@ n0n [a ) y o EO s 2 BOOC o2 S ©O > X b o b c
wo @ gag| Mm. 2 SH ga W ANTmu Io,mu 5 82% 1+ S8 m.mm 585 o++ 8% F8oa v ~ Qo
o3 < 4 b a WS> 5o Q¥ cE 3 ExP 5ST683 £ 568 ES0S8838¢57T =< 52 owowown
2| |Z| [fz5(& K S8 8 3Edc 2E 822 ~0° 255858027 323 238180225 35 - e @ @ Foo3NSIES
5 Lxx ; _|StHY © e® e® o o @ +-o- =25 2999S
@ =33 o a ° ° o . . eecl
goe £ ° 4 H - O
L] . L]
[} ° ° o - - Q - 89
e Qo+
o ° ° . - o - 70
® [ 4 ° - ° . >
x _c o8 [ ] () o o @ o O 2
|l |(ss| |85 2 ° ° .« - o - op 8 o @
=1 33 = £ E Qc
£ O® 22 2 ® ® o o ° - .sul Z0
< 58 2 3 L) ° . e o I+ 0D © o o
£ 29 a O, = O O
E o 2 @ O ] ® M) o . alPp= =22
Elleg| |8 c EgSS S SO
i a A a [ ° - o e ° - o5 5458
° ° R ° - ok ]
pee [ [ ® o . Mm
- (@] [ ] [ ] @ oo . A_n:vlu
< @ =z [ ] [ ) @ oo . >0 Q o o
< © S o o e oo . e © - %n
: 2| § E s ERHEE coEm iS
z Q 5 ° o oo o — Lok
(%) « >0
—/ O () e e . . (0] m o=
hrd ° - ecceoe . ? S 25 ocooo
- N ° eceee 2 ¢ g Fbo
° FR o 5 m
[ ] e o m o] T~
e}
o | e - - > g o
o L] ° = T T c
£ ° Il e --- el & g 3o
2 ° ® oo N %um
8 o mE e - S5 EGC 88
8 - ® « o0 < 5 06 5 A_nr
x o @ oo g F Z F Z9
s m_ ° o, oe - 5 FE
S 2 s . 000 IS
O] D) )
H N
o .
+3 ° PR
\_ ew [ ] o o
E= . - * ®
%d [ ] o e t
S@ o || [ R
o [ . - -
22| B mf R
[oR] o L |
oOZ ° B .n
[ ) e oo
Y o e
® e e
[) ® oo
[ @ oo 8 &)
. L] LN
° . e
[ ] o o
[ ] o oo 5
° Il e .. = °
\ . L] LN m
o M e -- S
[ e -0 Q
[ ] PYRS &
o o ° ® .o <
= = () @ oo z
7] © ¢]
& Pz [ ] ® oo +
w (] ® - m o .
< ® - o .- _Dan el °
W “ [ | u a || o 2
. L0
m ) o o oo mrl__lmmw Q e
T [ ] [ ] o o cOZS0T
o ° ° N OoL=0Z
° ° - ® — EEEER
° ° - e - S o) o) S S
\_ [ d [ 4 ® oo 3] © < Y
[ ] [ J @ oo

abejuadlad adA] 190

B
C


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure

A

bioRxigmpreprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
h s not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

) Gemcitabine + )
Naive Nab-paclitaxel Mixed FOLFIRINOX Chemo-RT

_HT085P1  HT121P1_ _HTOG1P1__HT064P1 HT124P1HT123P1 HT140P1 HT125P1 HT122P1 _HT138P1 HT190P1 HT185P1 HT166P1  HT168P1 HT056P1 HTOBOP1 HT115P1 HT191P1 HT200P1 HT204P1 HT071P1_ Case ID

IEFEESTETTEESSN 150 5 ¢
100%'0
T | | e T ,_,I T | [ — muEle _ —EEE . mE em—— -.--0 23

KRAS VAF

oo | 05
4
2

7GRBR2 0

Germline Status

scRNA tumor fraction

u- r- h ----- ] Immune subtype

Immune score

Stroma score
] I | Moffitt Subtype
Collisson Subtype

Bailey Subtype
I — [ .. - - RNA Score
[ [

o

o
w

o

o
o

‘d | [ | |
—r— -I: —--I] I
--I;

Protein Score
Phosphosite Score

Germline Status scRNA . KRAS VAF Immune subtype Immune Score  Stroma Score  Moffitt Subtype  Collisson Subtype Bailey Subtype .
FANCC tumor fraction [ 0.35 High Wos 03 Basal-like Classical ADEX Lower Higher
BRCA2 l 70 Low Classical Exocrine-like Immunogenic _
BRCA2 & ATM . Quasimesenchymal I Pancreaticprogenitor Bulk Heterogeneity

Scores
10 0.05 0 0 Squamous
HTO60P1 HT122P1 HT061P1
FOLFIRINOX Gemcitabine + Nab-paclitaxel Naive
Samples Subtypes Samples Subtypes Samples Subtypes

A A
0" ?

y 3 ) ® ﬁr 4 ﬁ!" 4

UMAP 1 UMAP_1

Spatial Sample @® Sample 1 ® Sample 2 ® Sample 3 ® Sample 4 Moffitt Subtype ~ @ Basal-like @ Classical

UMAP_2

.---—';r'.fj .
gl T | S

g oldwes godwes |odwes siaxep

Bile Secretion Focal Adhesion IL-17 Signaling Pathway
Estrogen Receptor Pathway PI3K-Akt Signaling Pathway AP- Transcription Factor Network I
IL-17 Signaling Pathway Signaling by RTKs TNF Signaling Pathway 5
O-glycan Biosynthesis Termination Trefoil Factors in Mucosal Healing E,
O-linked Glycosylation of Mucins ESR-Mediated Signaling &
C-type Lectin Receptors Neutrophil Degranulation
e0000 o000 0000
00000 N XX 0000
oo o ® o o0 - -0 I
[ |
I |
000 ®eve0e0e® I

2224498992 Q2xAAQIREZ FLAAED5237Y
c 35 ) 2 T
o o M m v 0 T m O m m wn o moe m m T T
Segn~R2333 ZZJ-mPR2g23 NS w S ZwmPRh g3
>0 N z o1 3 M N> o NEENES
o

Moffitt Subtype Data Type Percentage of Cells Relative Expression

I Basal-like I scRNA | Protein Expressing Gene Low M Higr Low lF M High

| Classical I RNA || Phosphoprotein 25 @50 @100 SCRNA Bulk Omics


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

reprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright

holder for this preprint

- ioRxi
Flg u h 35 not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
% KRASp.Giz2De “~ KRAS @
KRAS p.G12V @ CDKN2A ®
KRAS p.G12R® TP53®
KRAS p.Q61K® Reference
° KRAS p.Q61H® . . NA
. Reference .
NA % °
» ] .:. g .O.;..
: > e Mo Sy D
e obe H -
e ) . 3 r.'. pr 4
L4 ‘ Qe *
- s FN
. L4 ?: . LY #% & [ ?"
P .. JJ A} o “"Q.o
[N s N o .-b," P2 o
° FoatL e
° - 4 '-' D' . 'f’J .
e 4 .’.f .‘o‘?ﬁ .
o (Y [1XY L]
T Y
‘ o
o See
YT e
N N LY “
n.‘ n.‘ . ® ‘.
< < o
5 3 ¢
UMAP_1 UMAP_1
HT061P1 Spatial Samples KRAS Variants
® pGilav NA
® PA ® PC s ® pGi2D Ref
® PB o Ri ;"
h o
4 - A
i’ l’0=' .
LN Y
oo
AKT2 CNV MYC CNV GATA6 CNV
B &
Voo r
'- -
o TR g ok
&
> o Copy Number Status ® 0x ® 1x = 2x ® 3x ® 4x ® >4x ",
E . HT124P1  HT123P1 HT125P1 HT122P1 HT056P1 HTO60P1 HTO071P1
Inltlalevents [V - M v o T 00 <t 0 o < 0O - < 0O - 0w o
I I I I I IIII I II ool ocooax I I I I
Do Db BObODH HHH HBOH HHH OdH O
. Purity
B | [ | KRAS VAF
HE . BN TPs3VAF
0 SMAD4VAF
PB GNAQ VAF
PC [ [ N U SO N e Treatment
[ I N [EE Moffitt Subtype
BNl EEE B N W varki Tigs
MAPK1 T185Y187
MAPK1 Y187
[ | MAPK3 T202
MAPK3 T202Y204
[ [ MAPK3 Y204
AKT1 S473
PA || AKT1S1T246
EIF4EBP1 T37T46
PDPK1 S241

scRNA tumor percentage VAF

Unknown

0 01 02 03

0 20 40 60 80

Moffitt Subtype
IBasaI-Iike Classical I NA | None

Treatment Status
IChemo—RTI FOLFIRINOXI Naive I Nab-Paclitaxel | No Data

Mutation


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure-
A

Cell Type Percent

B

HTO60P1
HTO56P1

HT061P1

HT064P1
HTO71P1

available under aCC-BY-NC-ND 4.0 International license.

HTO085P1

HT121P1
HT115P1

HT123P1  HT125P1

HT122P1  HT124P1

HT138P1

HT140P1
HT166P1

HT190P1
HT191P1

HT168P1
HT185P1

ioRXiyareprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
as not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

HT200P1

HT204P1

® Acinar ® ADM Mutated
® ADM ® Tumor
Acinar |~ @

CDKN2A @ MRE11A®
CEP76

ADM (0 @0 e 00000000

ADM Mutated @ 0 @ » » 9000000

©® ARMCX2 ® EIF4A2 ©
® ASHIL

® CCDC102A ® KRAS
L]

L]

Tumor |@ o o

13E8ELEE34ES

Frox ol SNESc

a WG <

= Q

%)

Oncogenic Tumor
Driver Suppressor
HT122P1

[0}
o))
©
8
c
[0}
o
[}
o
<
pd
o
[5}
(7]

0
H3 'H4' H5' HO
[ Acinar [l ApM B Tumor

D
Acinar
ADM
2 ADM Mutated
Tumor

CUARCE
Q.o 5 Y .

W g
g .

PPIL2 ® USP10
RDX ® USP53
Reference ® ZC3H4
SYNJ2 e Z7z3
TP53

® IQGAP1 ®

NA [ ]

Average Percent of Cells

Expression Expressing Gene
10 ® 2% )
05 ® 5o Acinar
0.0 ® ADM
o5 ADM Mutated

Tumor
-1.0

Average Expression I

Acinar

Pieces from one tumor

Average
ADM Tumor
1.0
0.5
0.0
-0.5

ID3
MYC

NOTCH1

'\‘\<
HEYg
AL
2
.03

EMT

-1

-1.0

STAT3|+ e -
NFATC1]| -

KRT19|/@ ® @
EPCAM|@® o ®

DCLK1
S100A10/@ ® ®

® 50
@ 75

o
o

7.5

o
o

Acinar Score

N
o

2 4 6 8
Tumor Score

10

Stemness

-0.5 0

|

B a-amylase [la-amylase+Pan-keratin [llPan-keratin

IMC-based Percentage

801
701
601
501
401
301
201

10+

H9 01

Expression

Percent of Cells
Expressing Gene
e« 25

Tumor/Acinar

H3 H9


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

L] ioRxipmoreprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
Flg u h B]s not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
A

® cxcra+icaF B cD133+icAF [l ) ® ® O . . ° o
® iCAF
— -
® apCAF
. . ® 0
® CD133+iCAF Y ® .
- - e 0 0 O -

ErE @ o o ¢ O @ O

CD74 HLA-DRA CXCL12 FAP  ACTA2 TAGLN CXCR4 PROM1

10 -

) Percent of Cells
Average Expression _ Expressing Gene ® 25 . 50 .75

CD133+ iCAF apCAF myCAF CR4+ iCAF

@
o
£
8
£
ES
8
£
=)
)
w
<
S
UMAP_1
Chemo-RT FOLFIRINOX Mixed ~ Gemcitabine Naive
Nab-paclitaxel
D Percent of Cells E Percent c?f Cells
CD133+ iCAF ° ° ‘ . ° Expressing Gene CD133+ iCAF PY . - Expressing Gene
* 20 * 25
apCAF ° : . . ([ ] ® apCAF () o o () ® o
) . R . 60 . 75
myGCAF [ ) myCAF o @
. . . . Average Expression . ‘ Average Expression
CXCR4+ iCAF : . . . o ; CXCR4+ iCAF [l ° . ® ® !
MET PROM1 EPCAM CD24 CD44 -1 CD74 HLA-DPA1HLA-DRA VIM NFE2L2 -1
CD133+ iCAF |ICIEEEIEN ) ® 6 - o @ o -
apCAF . ° ® o e ® - -
myCAF - e - @ o o 0 O - o .
BT - - e -0 - -0 - . .
CXCR4+ iCAF . - o - @ o - e @ O o -
- Human Complement - Smooth Muscle - Antigen processing o o @ N L = N N = Y = = T
System Contraction and presentation g S F 2 S8 % & S 5 R E P
- Complement - Collagen chain . MHC class Il antigen S T o PS8 n s R 9
Activation trimerization presentation
Average Expression [ e Average Expression _ Percent of Cells * ® @@
-1 0 1 Expressing Gene 20406080

-0.5 0 0.5 1


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

Flgu

reprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint
6 not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

TGFB1 NFE2L2 VEGFA HIF1A

& 4 4
‘ el 3 S N g
® cDC2 g3 g3 34 83
® Macrophage S o S 5 s s
©® Monocyte g g g 2 g 2
@ Neutrophil o 1 [SI 2 4 O 4
o Qo o o
x x x x
W gl _ B w o (12 _ W g
N O= O S -—rNO= O X -rNO= O X -rNO= O 5
Y 00 2§52 00 2§52 Q0 2558 Q0 2558
o0 & o 85 o0 & o 85 o0 & o 85 o0 & o 85
©Cog 5 eF ©Cog 5 eF ©Cog 5 eF ©o0g s e
I} 238 238 232
: gz= gz=2 gz= §z=
Weear ¢ = = = =
Average_
Tumor| ® ° . . . o . . . @ Dxpression
ﬁl’ \ Monocyte| © ® e . e O . . Y
TR "\ Macrophage e o @ - o . . . . 0
: 4
N : ?Q Neutrophil| ~ « ° . o ) .
& 2. Percent of Cells
§ cDC1 . . Expressing Gene
UMAP 1 cDC2 e « O . ° 20
@ 4w
o = Q ~ Q Q = © (=) -~ Qq =~ [\ hl ™
Q < < ~ w x (@) - o =
8 83 K § 9 3T 8T § ¥ 3z 0
g O © 3 o & °© 2 K ¢ © 8
S g g O
= I > =
Elrgllferatmg T E Average Expression F Average Expression
cD8+T | . [
CD8+ T cytotoxic -1 0 1 2 -1 0 1 2 3 4
Exhoustod T NECTINT
Treg Exhausted T NECTIN3
» Treg NECTINZ
Tumor NECTIN4

NK

T O DD SNSXHFOEG[LLEFHF LML HBSL §
OO P20EZ L XE=<< 3 S S580<
8O = E + [+% F o+ »w8a c
CD8+T %g%",z%ﬁ 8%2%9% %Eg 13 §<Q§_2
CD8+ T cytotoxic S & o 333 3°8 =
o] = = 5
Proliferating T S & « i°. w
CD4+T ]
Y8522 5:28
SHICEETEE
T°8 oo oug
UMAP_1 a 2z =2 2 =z
G Q
HTO060P1 HT064P1 HT085P1 HT121P1 HT123P1 HT125P1 HT140P1 HT168P1 HT190P1 HT200P1
HT056P1 HT061P1 HT071 P1 HT115P1 HT122P1 HT1 24P1 HT1 38P1 HT1 66P1 HT185P1 HT191 P1 HT204P1

TIGIT

Exhausted T
- e e SO N . I e
Tumor -
Exhausted T [N
NK
Treg
Tumor
Exhausted T | ]
NK
Treg
Tumor
EXhEUSted : 1:“ 1=FI=E. FHEIFE-
J |
I | ||
Exhausted T E
NK =
Treg (,_,-_,)
Tumor =

Treg
Tumor

NECTIN3 NECTIN2 NECTIN1


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

reprint doi: https://doi.org/10.1101/2021.01.13.426413; this version posted January 14, 2021. The copyright holder for this preprint

available under aCC-BY-NC-ND 4.0 International license.

= ioRX
Flg u h gs not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
A

Average
Expression

Naive Non Tumor
Gemcitabine+Nab-paclitaxel Non Tumor
FOLFIRINOX Non Tumor
Gemcitabine+Nab-paclitaxel Tumor
FOLFIRINOX Tumor

Naive Tumor

N
Bulk RNA

Bulk Protein I

Bulk Phosphoprotein [l
Bulk RNA [l

|
Bulk Protein

iy LT %m
Bulk Phosphoprotein [ |
Bulk RNA q [

Bulk Protein
Bulk Phosphoprotein ll

Low M
Relative Expression

s High

2.001
REG1A . » GBP7
1.751 °
E'F1AY\} % o «PTGDS
1.50] PRSS3 . .
HLA-DRB4 oo o ADAM23
*
& 1259
2
§ 1.00+
D
O 0.754
0.501
0.25{
0.004
2 1 0 i 2
F log2 Protein Fold Change (Treated vs Naive)
I Treated  EINaive
075| = —* .
0.50
]
°
@ 025 °
> °
] o
= 0.00 o o
] o
S -02s .
-0.50 ° 3
[
-0.75
ERBB3 DNMT1 SLFN11

2 O O

Pertuzumab  Decitabine  7-Ethyl-10-
9F7-F11 Hydroxy- .
camiptothecin

C

Tumor

ADM
CD133+iCAF
CAF

Monocyte
Macrophage
Proliferating T

CXCR4+ iCAF
Erythrocyte
B

NK

CD8+
CD8+
Cell Surface

T cytotoxic
T

= FOLFIRINOX
& 304 mmmm Gemcitabine + Nab-paclitaxel
g R 25 s Naive
o = 20
S 815
&5 101
g s
< o-
. CD8+ T Endothelial Fibroblast Macrophage Tumor
Gemcitabine+
Nab-paclitaxel
CD8+ T Subtype Distribution Fibroblast Subtype Distribution
FOLFIRINOX & 20| £ i
[ [
o o
o 2 154 s 2
oo oo
Naive 2 © 104 29
@ O @ O
o 51 ©
> >
< ol <
CD8+ T CCy?osthc iCAF myCAF apCAF
Treated Naive
ADAM23
PTGDS
GBP7| 2
CGN
ATP1A4
B4GALT5 Q 0
RAB25 c
c  CA9 3
‘D =
O KLK11 5 -2
S FA2H 2
o
CKMT1A ©
AKR7A3 =l
SDCBP2 g
CAPN9 o
PRSS3 -6
EIF1AY
REG1A
HLA-DRB4 I

G

Mast

Tumor
Proliferating T
Monocyte

&DC1 h
acrophage
cDC2 phag

Exhausted T

CD8+ T cytotoxic
Tre:

CDg+ T

apCAF

ADM
CD133+ iCAF

Neutrophi

CXCR4+ iCAF
iCAF

|
CD4+T
B

Islet

Acinar

Plasma

hrocyte

ol
"

Ei
E%othe ial
myCAF

,

PTEN
HLA-DRA
HAVCR2
SGK1
CASP8
JAK1
CDKN1B
PDCD4
AREG
HSPA5

HSPB1‘
CCND1
ERBB3
PARP1
ZEB1
FGFR1
CDK4
DNMT1
AURKA
BRCA1
TOP2A
CHEK1
FOXP3
MERTK
FLT3
FGFR3

MYC
AKT3
GATA2
KIT
DUSP6
MET
ERBB2
JUN
PTGS2
FOS

[ Both

H Treated

. Naive

EREG
TOP1
SLFN11
PTP4A3
CDK6
TFF3


https://doi.org/10.1101/2021.01.13.426413
http://creativecommons.org/licenses/by-nc-nd/4.0/

