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Abstract

In multiple sclerosis (MS), immune cells invade the central nervous system and destroy myelin.
Macrophages contribute to demyelination and myelin repair, and their role in each process
depends on their ability to acquire specific phenotypes in response to external signals. Here, we
assess whether defects in MS patient macrophage responses may lead to increased

inflammation or lack of neuro-regenerative effects.

To test this hypothesis, CD14"CD16™ monocytes from MS patients and healthy controls were
activated in vitro to obtain homeostatic-like, pro-inflammatory and pro-regenerative
macrophages. Myelin phagocytic capacity and surface molecule expression of CD14, CD16
and HLA-DR were evaluated with flow cytometry. In parallel, macrophages were assessed

through RNA sequencing and metabolomics.

We observed that MS patient monocytes ex vivo recapitulate their preferential activation toward
a CD16" phenotype, a subset of pro-inflammatory cells present in MS lesions. Even in the
absence of pro-inflammatory stimuli, MS patient macrophages exhibit a pro-inflammatory
transcriptomic profile with higher levels of cytokine/chemokine suggesting increased
recruitment capacities. Interestingly, MS patient macrophages exhibit a specific metabolic
signature with a mitochondrial energy metabolism blockage resulting in a shift from oxidative
phosphorylation to glycolysis. Furthermore, we observe a failure to up-regulate apoptosis
effector genes in the pro inflammatory state suggesting a longer-lived pro-inflammatory

macrophage population.

Our results highlight an intrinsic defect of MS patient macrophages that provide evidence of

innate immune cell memory in MS.
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Introduction

Multiple sclerosis (MS) is an inflammatory disease in which peripheral immune cells infiltrate
the central nervous system (CNS) and destroy myelin, a neuroprotective and conduction-
enhancing substance. This leads to impaired neuronal function and finally neurodegeneration.
The infiltrating cells primarily consist of lymphocytes and monocytes, which together with
microglia (the tissue-resident macrophages of the CNS) induce and maintain
neuroinflammation. Infiltrating monocytes differentiate into macrophages, and the total
macrophage population is believed to play an important role in the disease [70]. They likely
contribute to myelin destruction through perpetuation of the inflammatory environment,
recruitment of leukocytes, antigen presentation and damage to neural cells through toxic

effector mechanisms [4, 63].

However, demyelinated lesions can be repaired through an endogenous processed termed
remyelination. The remyelination capacity varies greatly between patients, with extensive
remyelination correlating with higher age at death [51] and lower disease severity [10]. In
animal models, immune cells are instrumental for efficient remyelination. Depletion of
macrophages leads to reduced proliferation and differentiation of oligodendrocyte precursor
cells (OPCs), resulting in fewer myelin-producing oligodendrocytes [35, 46]. This effect is
linked to factors secreted by macrophages and the differentiation-inhibiting properties of
myelin debris [34], which is cleared through phagocytosis by macrophages in demyelinated

lesions.

In this process, the activation status of macrophages appears critical. Macrophages respond to
cues in the environment, such as pathogen-derived molecules and cytokines from other immune
cells, and respond accordingly to achieve different “activation states” [47]. The activation states
are typically described with terms such as “pro-inflammatory” (typically induced with
interferon (IFN) y and lipopolysaccharide (LPS) in vitro) and “anti-inflammatory” (typically
induced with interleukin (IL)-4 in vitro). While macrophages in an organism often display
features of different activation states at once, in vitro activation of macrophages with specific
pro- or anti-inflammatory stimuli has provided great insight into the extensive macrophage
response to inflammatory molecules, including the signaling pathways that induce this

functional diversity [21, 44, 54].

Pro-inflammatory macrophages produce more pro-inflammatory cytokines and toxic

molecules, suggesting a destructive role in MS. In the case of effects on remyelination, in vivo
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and in vitro results show that pro-inflammatory macrophages promote OPC proliferation while
anti-inflammatory macrophages promote OPC differentiation. /n vivo data show a switch from
a majority of pro-inflammatory cells to a population composed of pro-regenerative macrophage
during the early stages of successful remyelination [46]. This switch depends on a necroptotic
depletion of pro-inflammatory macrophages, permitting the resolution of inflammation and
establishment of an anti-inflammatory population [42]. Thus, pathological activation of

macrophages appears as a potential culprit in both destruction and lack of repair.

Macrophage activation is indeed extensive in MS CNS, and loss of homeostatic marker
purinergic Receptor P2Y12 (P2RY12) is seen both in lesions and in normal-appearing white
matter [74]. Pro-inflammatory macrophage markers are abundant in active lesions and slowly
expanding lesion rims [26, 74], both of which show active demyelination. However, it is not
known to what extent this perturbed state is driven by a pathological environment or by intrinsic

features of infiltrating macrophages.

Recently, it was shown that innate immune cells (monocytes, macrophages and microglia) can
develop an immunologic memory named trained immunity [50]. This phenomenon has been
observed in inflammatory disease such as atherosclerosis [8]. Induction of this trained state
relies on epigenetic reprogramming resulting in a metabolic switch toward glycolysis and an
increased activation of innate immune cells characterized by an enhanced inflammatory
response and cytokine production. However, the differences in macrophage capacity for
homeostasis and activation have not been studied in MS conditions, and thus it is unknown

whether monocyte-derived macrophages are primed to react incorrectly.

In this study, we examine whether MS patient macrophages show differences compared to
healthy controls (HC), and whether these are dependent on activating stimuli. By using
monocytes isolated from blood samples and differentiating them in vifro, we emulate
infiltrating macrophages without exposure to the lesion. Our original approach explores how
disease relates to key components of macrophage activation at the functional and molecular
levels and how these dysfunctionalities might lead to the onset or development of
proinflammatory lesions. We provide evidence of a pro-inflammatory phenotype in MS patient

macrophages, with transcriptomic, metabolic and functional changes.
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Methods
Participants

A total of 36 MS patients and 17 HC were included in this study (Supplementary table 1). The
study was approved by the French Ethics committee and the French ministry of research
(NCT03369106). Written informed consent was obtained from all study participants. Patients
were recruited from a larger cohort of multi-case families, collected within a project studying
MS patient phenotype in multiplex families. Six of the patients were the only one in their family
to be sampled, the remaining 30 were 15 pairs of siblings. All patients fulfilled diagnostic
criteria for MS, and individuals (MS patients and healthy donors) with other inflammatory or
neurological disorders were excluded from the study. For patients, clinical evaluation and blood
sampling were performed on the same day. The clinical evaluation included standard testing of
Expanded Disability Status Scale (EDSS) [37], from which MS Severity Score (MSSS) [59]
was calculated, as well as documentation of treatment history. The varying number of patients
and control in the different experiments are mainly due to cell number constraint or

experimental limitations.
Macrophage culture and activation

Blood was sampled from all participants in acid citrate dextrose (ACD) tubes. From blood
samples, peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll Paque Plus
(GE Healthcare Life Sciences) and centrifugation (2200 rpm, 20 min). Cells were washed in
PBS (2x10 min at 1500 rpm) and RPMI 1640 + 10% fetal bovine serum (FBS) (5 min at 1500
rpm) (all products from ThermoFisher). Monocytes were isolated with anti-CD14 microbeads
(Miltenyi) and plated in 12-well plates (500 000 cells/well) or in 24-well plates (200 000
cells/well) in RPMI 1640 + 10% FBS and granulocyte macrophage colony-stimulating factor
(GM-CSF) (500 U/ml, ImmunoTools). After 72h, media was replaced with fresh media and one
of the following: GM-CSF (500 U/ml); IL4 (1000 U/ml, ImmunoTools); or combined IFNy
(200 U/ml, ImmunoTools) and ultra-pure LPS (10 ng/ml, InvivoGen). Purity after isolation was
evaluated by FACS analysis with anti-CD14-FITC (Miltenyi), anti-CD16-eFluor450
(ThermoFisher) and anti-CD3-APC (BioLegend).

Human myelin extraction

Human myelin was extracted from normal-appearing white matter in post mortem MS patient
brain tissue. Tissue was homogenized in 0.32M sucrose (prepared in 20mM Tris-HCI).

Homogenate was layered on 0.85M sucrose (prepared in 20mM Tris-HCl) and sample was
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centrifuged at 75,000 g for 30 min. The layer between the two sucrose layers was collected and
washed with water 3 times, first at 75,000 g and then at 12,000 g twice. Pellet was resuspended
in 0.85M sucrose and 0.32M was layered on the solution. Sample was centrifuged at 75,000 g
for 30 min. Pellet was resuspended in water and centrifuged at 75,000 g for 15 min. Total myelin
protein was quantified with Micro BCA™ Protein Assay Kit (ThermoFisher Scientific). Myelin
was labeled using Amersham CyDye Cy5 Mono-Reactive Dye (GE Healthcare Life Sciences),
using half of the recommended dose (1 vial per 2mg myelin). Labeled myelin was washed with

PBS and resuspended in PBS at 1pg/ul.
Phagocytosis assay and flow cytometry

Macrophage phagocytic capacity was evaluated through flow cytometry. Twenty-four hours
post-activation, media was replaced for macrophages in 24-well plates with RPMI + 10% FBS
containing labeled human myelin (25 pg/ml). For each condition, 1 well was used for myelin
incubation and one well was used for negative control. Cells were incubated at 37C for 1 hour.
Cells were washed with PBS and detached from wells using Trypsin-EDTA (0.25%)
(ThermoFisher). Cells were flushed with RPMI 1640 + 10% FBS until all cells had detached,
at which point cells were washed through centrifugation with PBS. Labeling was done with
anti-HLA-DR-PB and anti-CD16-FITC (Duraclone pre-coated tubes or separate antibodies, all
from Beckman-Coulter) and anti-CD14-PEvio770 (Miltenyi) at room temperature in darkness
for 30 min (pre-coated tubes) or 45 min at 4°C (liquid antibodies) in PBS + 5% FBS. Cells were
washed with PBS + 5% FBS and analyzed with MACSQuant (Miltenyi). Results were analyzed
with Flowlogic software (Inivai Technologies). Cells were gated for size and granulosity

(FSC/SCC) and singlets (FSC-A/FSC-H).
Multiway Generalized Canonical Correlation Analysis

Flow cytometric data was analyzed using Multiway Regularized Generalized Canonical
Correlation Analysis (MGCCA) [22]. Prior to analysis, samples with low cell counts or missing
data points were excluded, and 33 patients and 16 HC were used in the final analysis. Data were
log2-transformed and formatted into a 3-order tensor with dimension 1 corresponding to
individual participants, dimension 2 to flow cytometric variables and dimension 3 to activation
states. One of the main goals in the method is to understand the complex relationships between

this flow cytometric 3-order tensor data and the response variable (HC vs MS).

Regularized generalized canonical correlation analysis (RGCCA) is a general framework for

multiblock data analysis [65, 66]. RGCCA is geared for the analysis of a set of matrices.
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RGCCA can also be applied to tensor data using the multiway formalism, which accounts for
multiple measurements of the cytometric variables along activation states. This method, called
MGCCA, was used to explore the complex relationships between flow cytometric data
measured at 3 different states of activation with the response variable (HC vs MS). MGCCA
allows identifying (through the construction of two weight vectors associated with cytometric
variables and activation states) cytometric variables within specific activations state that are

discriminant between HC and MS.

A bootstrap procedure [16, 17] was performed to assess the reliability of parameter estimates.
500 bootstrap samples of the same size as the original data were repeatedly sampled with
replacement from the original data. MGCCA was applied to each bootstrap sample to obtain
estimates (i.e. cytometric and activation states weights). We then calculated the mean and
variance of the estimates across the bootstrap samples, from which we derived confidence

interval. A coefficient is declared significant when zero is excluded from its confidence interval.
RNA Sequencing and differential expression analysis

Cell lysis and RNA extraction were performed on macrophage samples 24h post-activation
using Nucleospin RNA extraction kit (Macherey-Nagel). Quality of RNA was confirmed on
Agilent TapeStation (RINe>8). Transcriptome sequencing was performed on a total of 28
patients and 11 HC. cDNA libraries were prepared using a stranded mRNA polyA selection
(Truseq stranded mRNA kit, [1lumina). For each sample, we performed 60 million single-end,

75 base reads on a NextSeq 500 sequencer (Illumina).

Quality of raw data was evaluated with FastQC. Poor quality sequences were trimmed or
removed with Fastp software to retain only good quality paired reads. Star v2.5.3a [13] was
used to align reads on reference genome hg38 using standard options. Quantification of gene

and isoform abundances has been done with RSEM 1.2.28 [41].

In the analyses detailed below, two batch effects were taken into account: 1) Sequencing was
performed twice, with 18 RNA samples sequenced in both rounds; 2) In the second sequencing
round, cDNA libraries were prepared in two batches, with one batch showing a noticeable
difference in DNA quantity. In addition, one patient was sampled twice — the first sample was
sequenced in the first run, and the patient was later resampled in order to increase the number
of untreated patients, as (independently of the study) the patient had suspended treatment
between the two visits. The data from first sample were therefore excluded in the comparisons

described below.
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Differential expression analysis was performed using limma (3.40.6) [57] in combination with
voom [40], including the batch effects in the design and improving batch correction using the
DuplicateCorrelation function with the re-sequenced samples. Only genes expressed at a
minimum of 1 CPM were included in the analysis. Multiple hypotheses-adjusted p-values were
calculated with the Benjamini-Hochberg procedure to control FDR. Results were considered

statistically significant at p-value <= 0.05 and Log2FC >=0.5.

Functional enrichment analysis was performed with EnrichR [36]. GO Biological Process terms
were considered significantly over-represented at adjusted p-value <0.05. Terms were

simplified with the simplifyGOterms function from the compEpiTools package.

When two analyses were compared (e.g. MiL-4 vs Mam-csF in MS and MiL-4 vs Mom-csk in HC),
genes were considered specific to MS if the fold-change of significant genes in MS was 0.5
higher (for over-expressed genes) or 0.5 lower (for under-expressed genes) than in HC (and

vice versa for HC).

To illustrate gene expression while accounting for batch effects, a representative data set was
produced using the removeBatchEffect function of the limma package with the same

parameters as ImFit.
Principal component analysis

To produce a batch-corrected transcriptomic dataset without bias toward the variables of
interest, the removeBatchEffect function from the limma package was again used, correcting
for the batch effects described above, and including the intra-duplicate correlation. Unlike the
data set used to visualize specific genes (above), the patient status and activation state were not

considered in the correction.

Principal component analysis (PCA) was performed in R [56] using the ExPosition R package
[7]. All analyses were performed using centered but not scaled logz-transformed RPKM+1
values. Only genes that were expressed in >80% of all samples were included. Samples from
one individual were either considered individually or combined into one observation by
defining each gene in each activation state as a separate variable. To calculate 95% confidence
intervals for each group mean, a bootstrap procedure [16, 17] was performed. 100 bootstrap
samples of the same size as the original data were repeatedly sampled with replacement from
the original data. PCA was applied to each bootstrap sample and the group means were

recalculated from these samples, from which we derived confidence interval.
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Weighted gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA) [38] was performed. We used the
same batch-corrected data as for the PCA. In order to reduce the effect of the activation state in
the network, the expression data was divided into three sets, one per activation state, and a
multi-dataset network was constructed in a similar way to the consensus network instructions
from the WGCNA package creators [39]. However, instead of considering the minimal
correlation across datasets for each gene pair, the maximal correlation was considered. Genes
were filtered to exclude any gene not expressed in >80% of samples in at least one dataset.
Functional annotation of genes in WGCNA modules was performed using EnrichR to identify
over-represented KEGG pathways [28] and GO biological process and molecular function

terms [6]. Terms were considered significantly over-represented at FDR-adjusted p<0.05.
Metabolomics

Metabolomics analysis was performed on GM-CSF-exposed macrophages from 7 patients and
6 HC. Macrophage samples were prepared in the same way and in parallel to RNASeq samples
until the lysis step. At this point, cells were instead detached from wells with 0.25% Trypsin-
EDTA (ThermoFisher) for 10 min in 37°C. Cells were collected in RPMI + 10% FBS and
centrifuged at 400g to form a pellet. After removal of supernatant, samples were stored at -
80°C. The numbers of cells for each sample were estimated based on the number of cells
measured in the corresponding flow cytometry sample, adjusted for the number of cells plated

for each experiment.

Prior to extraction process, dry pellet cells were homogenized in 0.1% formic acid including
internal standards labelled mix of amino acids (10 pg/mL) to a ratio equivalent to 50.000 cells
per 100uL. 4 volumes of frozen methanol (-20°C) containing internal standards as well (labeled
mixture of amino acids at 10 pg/mL) were added to 100 pL cell samples and vortexed. The
resulting samples were sonicated during 10 min and centrifuged during 2 minutes at 10.000xg
and at 4°C. Then, centrifuged samples were incubated at 4°C during 1 hour for the slow protein
precipitation process. Samples were centrifuged for 20 min at 20.000 % g at 4°C. Supernatants
were transferred to another series of tubes and then dried and stored at -80°C prior to the LC-

MS analyses. Aliquots were reconstituted in 200uL of H2O/ACN (40/60).

Liquid chromatography mass spectrometry (LC-MS) experiments were performed using a
HILIC phase chromatographic column, on a ZIC-pHILIC 5pum, 2.1 x 150 mm at 15°C (Merck,
Darmstadt, Germany), and on a UPLC Waters Acquity (Waters Corp, Saint-Quentin-en-
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Yvelines, France) coupled to Q-Exactive mass spectrometer (Thermo Scientific, San Jose, CA).
Experimental settings for global approach by LC-HRMS were carried out as detailed in the
paper of Garali et al [19].

All LC-MS grade reference compounds, water (H20) and methanol (MeOH) were from VWR
International (Plainview, NY). LC grade 2-propanol (IPA) and formic acid were from Sigma-
Aldrich (Saint Quentin Fallavier, France). Stock solutions of Stable isotope-labeled mix (Algal
amino acid mixture-'>C,'*N) for metabolomics approach were purchased from Sigma-Aldrich

(Saint Quentin Fallavier, France).

All processing steps were carried out using the R software [56]. LC-MS raw data were firstly
converted into mzXML format using MSconvert tool [33]. Peak detection, correction,
alignment and integration were processed using Workflow4metabolomics (W4M) platforms
[20]. The resulted datasets were log-10 normalized, filtered and cleaned based on quality
control (QC) samples as described in Dunn et al [14]. Metabolomics features were annotated
based on their mass over charge ratio (m/z) and retention time using an “in house” database
detailed in the paper of Boudag et al [11], and also characterized based solely on their m/z using
public databases such as the human metabolome database HMDB [72] and the Kyoto
Encyclopedia of Genes and Genomes database, KEGG [28].

Other statistical analyses

Non-transcriptomic continuous variables were compared between two groups using Mann-
Whitney U test, and were considered significantly different at p<0.05. Non-transcriptomic
correlation calculations were performed with Pearson’s correlation coefficients and p-values

based on linear regression (Ho: f=0). All analyses were performed in R v 3.6.
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Results

Generation of monocyte-derived macrophages

Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of 36 MS patients
and 17 age- and sex-matched HC (Table 1 and S1) using CD14-specific magnetic separation.
For 7 HC and 26 MS patients, isolated cells were analyzed for CD14, CD16 and CD3 positivity
using flow cytometry in order to characterize monocyte and lymphocyte populations (gating
strategies shown in Fig. S1A, B). Among these individuals, PBMCs were analyzed in the same
way for 7 HC and 19 patients. No differences were seen in PBMCs pre-isolation, with similar
proportions of CD3" lymphocytes and CD14" and/or CD16" monocyte lineage cells, as well as
similar distributions of CD14- and CD16-positivity among monocyte lineage cells (Fig. Sla,
¢). After isolation, patient samples showed a slightly reduced proportion of CD14"CD16" cells
compared to HC, but this was not explained by an increase of another specific population (Fig.

S1b, d).

Once isolated, monocytes were differentiated in vitro through exposure to GM-CSF for 72
hours. Macrophages were then exposed to activating stimuli (IFNy+LPS for pro-inflammatory
activation or IL4 for anti-inflammatory activation) or maintained in GM-CSF for 24h. We refer

to these samples as Mam-csr, Mirny+Lps and MiLs4 according to the stimuli used.

MS macrophages differ from HC in function and expression of cell surface markers

Having started off with a primarily CD14+CD16- monocyte population when generating the
macrophages, we examined how expression of CD14 and CD16, as well as HLA-DR differed
between HC and MS macrophages after each activation stimuli. We also studied cell’s capacity
to phagocytose myelin, as this capacity is likely relevant to both destruction and regeneration
in MS. Samples were incubated with Cy5-labeled human myelin for 1h and then labeled with
antibodies targeting CD14, CD16 and HLA-DR. Samples from 33 patients and 16 HC were
evaluated on percentage of phagocytic (myelin-positive) and high-phagocytic (myelin-high)
cells and on percentage of CD14-negative, -low or -high and CD16-negative or -positive cells
(Fig. 1a, full gating strategies shown in Fig. S2a). Mean fluorescence intensity (MFI) was also

measured for each of the surface markers.

In order to efficiently identify the key differences among these multiple parameters, multiway

regularized generalized canonical correlation analysis (MGCCA) was performed with disease
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status (HC or MS) as the target feature. In this analysis, the three activation states were
considered for each individual by constructing a 3-order tensor (individualsxbiological
markersxactivation states) (Fig. 1a, right panel). This method generates principal components
permitting visualization of the individuals in a low dimensional space. In the space of the first
component, all but one HC (Fig. 1b, black triangles) clustered on one end of the scale. The
patients (Fig. 1b, white squares) were more heterogeneous but on average presented on the
opposite end of the scale. The 3 activation states all contributed to the separation between HC
and MS patients (Fig. Ic). Looking into all the markers, we identified that MS patient
macrophages were defined by a high percentage of CD14™" and CD14""/CD16" populations, a
high MFI of CD14 and a high percentage of myelin-positive cells (Fig. 1d). HC macrophages,
on the other hand, were defined by a high percentage of CD14- and CD14/CD16" populations
(Fig. 1d). Examining the distribution of the individual samples for these variables (Fig. 1e, Fig.
S2b), it is evident that the importance of each variable varies between states, but overall a

difference can be seen regardless of how the cells have been stimulated.

This difference between HC and MS samples was independent of patient sex, age, MS Severity
Score (MSSS) and disease duration (Fig. S3a-d). The effect was not due to any treatment taken
by the patient at the time of sampling, as untreated patient samples were equally different from
HC samples compared to treated patients (Fig. S3e). Although the patient samples were
collected through a cohort of sibling pairs with MS, patients from the same families did not

show intra-pair similarity and were therefore considered as independent samples (Fig. S3f).

While examining each state individually provides insight into the function of the macrophages,
comparing the differences between two states can give an idea of how strongly the cells respond
to activating stimuli. To provide a proxy of the pro- and anti-inflammatory response, we
compared cells exposed to pro- or anti-inflammatory stimuli to the homeostatic-like state. To
do so, we performed a second MGCCA in which the values of the Mom-csr samples were
subtracted from the Mirny+Lps and MiLs4 samples (Fig. 1f). Here, we again see a shift between
MS and HC (Fig. 1f) but this difference is primarily present in the pro-inflammatory activation
stimuli IFNy+LPS (Fig. 1h, Fig. S2¢). In this case, we see maintained levels of phagocytic cells
(both myelin-positive and myelin-high) and of the CD16" and CD14"CD16" populations in MS
compared to HC (Fig. 1i, Fig. S2¢). This suggests a less responsive phenotype to pro-
inflammatory stimuli, with a weakened anti-phagocytic response in MS macrophages. The only

variable that shows MS macrophages reacting more strongly than HC macrophages is the
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percentage of CD14°CD16" cells — this percentage increases in MS Mirny+Lps, a difference that

1s not seen in HC.

In both absolute and relative values, we thus see a higher level of phagocytosis in MS
macrophages in cells treated with pro-inflammatory stimuli. The differences in surface markers
are reflected in both CD14 and CD16 expression, with an over-representation of the
CD14++CD16+ cells in MS patients, despite this difference not being seen in the original

isolated monocytes.

MS patient macrophages transcriptomic profile differs from HC macrophages

In order to study the complete activation profiles of the macrophages, transcriptomic profiles
were analyzed through RNASeq in samples generated as above from 28 MS patients and 11
HC. Principal component analyses (PCAs) were performed both with and without consideration
for the three activation stimuli, by studying each sample as one observation or by concatenating
the three activation states (considering one gene in three activation states as three variables). In
the concatenated PCA, which combines all samples from one individual, HC samples clustered
mostly on one end of the first principal component (PC1, 22% of variance) while the MS
samples showed more heterogeneity with many samples being on the opposite end of PC1 (Fig.
2a, HC: black triangles, MS: white squares). The mean value on PC1 was significantly different
between MS and HC (no overlap in 95% confidence intervals calculated by boot-strapping)
meaning that presence of disease was an important contributor to the transcriptomic differences
between samples. This separation was further strengthened when including PC2 (14% of
variance). Considering these two PCs, at least 36% of the total inter-individual variance was
linked to the disease, suggesting significant large-scale transcriptomic differences between MS

patients and HC.

When comparing the transcriptomic profiles of each sample (activation state), the two first
principal components (58% of variance) primarily showed the effect of the activating stimuli
(Fig. 2b). The three activation states were clearly separated, with the exception of five MS MiL4
which clustered with Mgm-csr. However, a difference could also be seen between MS and HC
samples. There was again overlap between the groups, but the means of each group were
significantly different in all activation states when considering both principal components (no
overlap in 95% confidence intervals calculated by boot-strapping). Thus, the inter-sample

variation was partially explained by the disease, albeit less so than by activation stimuli.
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Like the functional results, the transcriptomic global differences were independent of patient

sex, age, MSSS, disease duration, treatment and sibling effects (Fig. S4).
MS patient macrophages show a globally pro-inflammatory transcriptomic profile

Differential expression (DE) analyses were performed comparing MS and HC samples in each
activation state independently (log2 fold-change >0.5, q<0.05). In Mcm-csr, Mirny+Lps, and
MiL4, respectively, 703, 689 and 297 genes were over-expressed in MS whereas 408, 964 and
273 genes were under-expressed. Several genes were differentially expressed in more than one

activation state (Fig. 2c).

By analyzing the lists of DE genes for over-represented Gene Ontology (GO) terms, we
identified a number of altered inflammatory pathways in all activation states (Fig. 2d). Several
chemokine-coding genes, such as CCL4 (Fig. 2e), were increased in multiple activation states,
suggesting an increased capacity to attract other pro-inflammatory immune cells. A smaller
number of chemokines were under-expressed in multiple states, such as CCLI7 (Fig. 2e),
known to attract T helper (Th) 2 cells and typically expressed by anti-inflammatory
macrophages. A number of genes important for pro-inflammatory stimuli, such as CD/4 and
TLR7 (Fig. 2e), were up-regulated in one or more states. In addition, among the most highly
up-regulated genes in all states were metallothionein genes (MT'1G, Fig. 2e). Differences were

also seen in apoptosis-related genes such as CASP3 (Fig. 2e), most notably in Mirny+Lps.

Other GO terms were primarily over-represented in one state. In Mgwm.csr, the DE genes were
consistently indicative of a pro-inflammatory profile, with alterations of genes related to
cytokine secretion, semaphorins (SEMA4A, Fig. 2e) and extracellular matrix disassembly
(MMP9, Fig. 2e). Different genes relating to endocytosis (FCGR2B, Fig. 2e) were over-

expressed in MS Mam-csr and MirNy+LPs.

Mir4 showed a profile similar to that of Mawm-csr, albeit with fewer significant genes and GO
terms. The only terms that were specific to MiL4 concerned response to lipid, with an up-
regulation of genes such as ABCAI (Fig. 2e). However, this over-expression was not specific
to MiL4, rather, the smaller total number of significant genes permitted the lipid-response genes

to emerge as significantly over-represented.

On the other hand, Mirny+Lps showed a state-specific down-regulation of a subset of
inflammatory genes, including chemokines such as CXCL9, 10 and 1/ (CXCLI0, Fig. 2e),
known to recruit Thl cells, certain receptors such as 7LR3 and 7 (TLR7, Fig. 2e), and interferon

response genes of the IFIT and IFITM families (/FITM1, Fig. 2e).
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Overall, while MirnysLps showed the broadest dysregulation of genes in the number of
significant DE genes (Fig. 2¢), the differences in Mawm-csr appeared more cohesively indicative
of a pro-inflammatory state (Fig. 2d). The combination of both over- and under-expression of
pro-inflammatory genes in Mirny+Lps implies a mixed phenotype with a partially incorrect

response to pro-inflammatory stimuli.

MS patients exhibit a weaker response to pro-inflammatory stimuli compared to HC

macrophages

Having seen a weakened functional response to pro-inflammatory stimuli in MS cells, and the
differences in transcriptomic results between activation states, we hypothesized that MS
macrophages may have a disturbed transcriptomic response to pro-inflammatory stimuli. We

therefore performed inter-activation state analyses on the transcriptomic data as follows.

First, the overall similarity between two samples from the same individual was estimated using
the Pearson’s correlation coefficient, calculated across all expressed genes between each pair
of stimuli. The coefficients were significantly higher in MS than HC when comparing both
Moaom-csr with Mirny+Lps (p<0.01, Mann-Whitney U test), and Mirny+Lps with MiLs (p<0.05,
Mann-Whitney U test) (Fig. 3a), indicating a higher similarity between the activation states.
This suggests a reduced response to IFNy+LPS in MS, corroborating the differences noted

above.

To understand whether this difference could represent an alteration of the inflammatory status
of the cells, we next examined which genes caused this global difference. DE analyses were
performed for each pair of stimuli, in MS and HC samples separately (6 analyses in total). For
all the DE genes between two states (significantly different in HC and/or MS), we plotted the
fold-change in MS samples against the fold-change in HC samples (Fig. 3b). In all comparisons,
a larger number of genes were more strongly regulated in HC (purple dots), than MS (orange
dots) (difference in mean and median logz (fold-change) > 0.5), again suggesting a weaker
response in MS. Like the difference in correlation, this effect was most noticeable in the
difference between Mieny+Lrs and Mam-csr, with 408 and 180 genes being more strongly up-
and down-regulated, respectively, in HC compared to MS. In contrast, only 32 genes were more
strongly regulated in MS. In the 408 genes that were more strongly up-regulated in the HC, the
five most over-represented GO terms were inflammatory response, cellular response to
cytokine stimulus, cytokine-mediated signaling pathway, chemokine-mediated signaling

pathway and response to interferon-gamma (Fig. 3c), again implying a partially reduced
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inflammatory response to IFNy+LPS in MS. These genes include the above identified
chemokines CXCL9-11 and interferon response genes of the [FIT and IFITM families (Fig. 3c).

To ensure that this reduced response was not a result of saturation of pro-inflammatory genes
already over-expressed in Mam-csF, the mean expression level of these genes were visualized
for each group of samples (Mam-csr and Mirny+Lps in HC and MS) as a z-score (group mean
subtracted by total mean, divided by the standard deviation for each gene) in Fig. 3d. As should
be the case, we can see that all genes were more strongly expressed in HC Mirny+Lps than Mawm-
csr (Fig. 3d, upper panels). However, despite the expression levels of most genes already being
slightly higher in MS Mam-csr compared to HC, the expression was lower in MS Mieny+Lps than
in HC (Fig. 3d, lower panels), arguing against a “saturation” effect and for a deviant response
and altered final state. Thus, our data speak to a dysregulated response to pro-inflammatory

stimuli beyond the altered state seen in homeostatic-like cells.

Co-expressed genes involved in migration, apoptosis and metabolism are dysregulated in

MS macrophages

By investigating transcriptomic differences in a modular way, rather than gene by gene, it is
possible to identify groups of co-expressed genes that each show a small intergroup difference
but together likely have a larger effect. To this end, we performed a weighted gene co-
expression network analysis (WGCNA). In order to avoid the differences between activation
states masking the effect of the disease, we constructed the network by calculating the
correlation between each pair of genes in each activation state separately, then using the
maximum correlation for each gene pair in the module construction (Fig. 4a, Fig. S5a). For
each module produced in the analysis, the genes in the modules were analyzed to identify over-
represented GO terms and KEGG pathways (Fig. S5b). The eigengene (first principal
component) value was then calculated for each module and sample using the PCA for each
activation state individually. The correlation between these eigengene values and the disease
status (HC or MS) was then calculated (Fig. S5b-c). All modules with a significant correlation
(FDR-adjusted asymptotic p<0.05) in at least one activation state and at least one significantly
over-represented GO term or KEGG pathway are represented in Fig. 4b. The module with the
strongest correlation to disease contained several chemokine and metal homeostasis genes,

reiterating the differences observed in the DE analysis.

Six modules were negatively correlated with disease in Mirny+Lps, containing many of the

interferon-response genes seen previously, but also several genes involved in cell death
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(modules 5 and 6, Fig. 4C). However, these modules included genes that promote survival as
well as cell death, such as BCL2 and FAS (Fig. 4d). When comparing the levels of the genes
present in the Apoptosis KEGG pathway, MS Mirny+Lps showed both over- and under-
expression of several pro- and anti-apoptotic genes (Fig. S6), complicating the interpretation of
the impact on apoptosis. However, the under-expression of several caspase genes suggests a

dysfunction of this important effector aspect of the pathway (Fig. S6).

Two modules with several genes involved in the respiratory electron transport chain were
negatively correlated with disease in Mam-csr (modules 8 and 9, Fig. 4c and Fig. S5c¢). Although
each gene on its own showed a relatively small dysregulation (MT-ND6, Fig. 4d), the concerted
decreased expression of several genes involved in the process suggest a global reduction of
oxidative metabolism, a key feature of anti-inflammatory cells [32]. For this reason, we chose

to further study the metabolic phenotypes of the cells, as described below.

There were also three modules that correlated with disease and contained several genes relating
to RNA binding and ribosome biogenesis (Fig. 4b), suggesting an even more complex

dysregulation of mRNA and protein levels.
MS homeostatic-like macrophages present dysregulated mitochondrial energy metabolism

To define the metabolic phenotype of the cells, a metabolomic analysis was performed using
liquid chromatography mass spectrometry (LC-MS) on samples from cells prepared in the same
way as for the transcriptomic analysis. As the transcriptomic changes related to metabolism
were mostly noted in Mam-csr, we chose to focus on this activation state. We included only
untreated patients to eliminate potential effects of metabolism-modifying treatment (HC n = 6,
MS n =7), effects notably observed in DMF treated individuals [9]. In order to identify changes
in energy metabolism, we examined the metabolites and genes (using the previous
transcriptomic results) involved in 4 main pathways: fatty acid oxidation; the tricarboxylic acid

(TCA) cycle; oxidative phosphorylation; and glycolysis (Fig. 5).

While none of the individual metabolites included in Fig. 5 showed significant differences
between patients and HC (Fig. S7), the concordance between mean differences in metabolite
abundance and significant differences in gene expression nonetheless gives an idea of the

activity of the pathways.

Overall, patients with MS displayed a global down-regulation of all mitochondrial pathways.
Mitochondrial B-oxidation of fatty acids was down-regulated in MS samples with both (1)

decreased levels of long-chain fatty acids (arachidonic and linolenic acids), acylcarnitines
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(oleyl- and palmitoyl-carnitines) and carnitine, as well as (ii) a significant under-expression of
four major genes (CPT2, HADHB, ACADM and ACAA2) encoding carnitine
palmitoyltransferase type 2, the trifunctional protein, medium-chain acyl-coenzyme A

dehydrogenase and acetyl-CoA acyltransferase 2, respectively.

We also observed decreased levels (log2 fold-change <-0.4) of TCA intermediates (citrate,
isocitrate, aconitate, o-ketoglutarate and malate) in MS samples, together with significant
under-expression of almost all genes involved in the TCA cycle (IDHI, SUCLA2, SDHC,
SDHD, FH and MDH1).

Downstream, all five complexes of the electron transport chain showed the following signs of
under-expression: 1) at least one significantly under-expressed gene, 2) no significantly over-
expressed genes, 3) a larger number of genes with downregulated expression (significant or
not) (Fig. 5). Consistent with this observation, NAD*, which results from the oxidation of

NADH by the electron transport chain, was less abundant in MS samples.

Conversely, levels of lactate and pyruvate tended to be higher in MS samples (Fig. 5, Fig. S7),
suggesting a shift from oxidative metabolism to glycolysis. Likewise, four key genes (HX1,
PFKM, ALDOC and GAPDH) involved in glycolysis and two regulators of gluconeogenesis
(PCK2 and G6P(C3) were significantly over-expressed in patients with MS.

Collectively, despite the intragroup heterogeneity, these combined data strongly suggest a
reduced capacity of oxidative metabolism in MS Mawm-csF, consistent with a pro-inflammatory

phenotype.

Discussion

Using peripheral monocytes from MS patients and HC, we provide evidence of a pro-
inflammatory profile in MS monocyte-derived macrophages prior to lesion exposure,
regardless of activating stimuli, reminiscent of trained immunity. A metabolic switch
accompanies this over-inflammatory response with a downregulation of several pathways of
mitochondrial energy metabolism. However, MS macrophages also show signs of tolerance

toward pro-inflammatory stimulation.
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Pro-inflammatory tendencies of MS patient macrophages

MS macrophages over-expressed several cytokine genes, indicating a role in maintaining a pro-
inflammatory environment and promoting immune cell infiltration into the CNS. For instance,
classical pro-inflammatory interleukins /L/B and IL6 were increased in MS patient
macrophages. Furthermore, genes encoding for ligands of CCR2 and CCRS receptors (CCLs
2-5,7, 8, and 13) were significantly over-expressed in at least one activation state, suggesting
an implication of macrophages in the increased percentage of CD4"CCR2"CCRS5* cells
observed in the CSF in MS during relapse [61]. These CD4"CCR2*CCRS5" cells in turn
produced high levels of pro-inflammatory cytokines and were reactive to myelin basic protein
(MBP) [61]. In addition, CCL2 and CCLS5, which were both over-expressed in MS conditions,
induce stronger in vitro migratory capacities in monocytes from MS patients than from HC
[18], implicating macrophages in increased recruitment of infiltrating monocytes. Interestingly,
MS patient macrophage under-expressed CCLI7 which is known to attract Th2 and regulatory
T cells, subtypes of anti-inflammatory lymphocytes [73]. In total, these transcriptomic data
suggest that infiltration of disease-associated cell types could be exaggerated by macrophage

defects observed in MS conditions.

Another family of genes that was over-expressed in MS macrophages of all activation states
was MTs, which are cysteine-rich proteins capable of binding metals. They are important for
copper and zinc homeostasis, protection against oxidative stress and sequestration of heavy
metals [45, 60]. Several roles for MT in immune regulation have been proposed [64], and MT
over-expression has been described in MS CNS [52]. Beyond immune regulation, MT
expression could be related to the reduced concentration of zinc observed in MS [12] through
sequestration. As zinc binds to myelin proteins such as MBP and seems important for myelin
structure and/or function [15, 67], its reduction may be of direct importance in the degeneration

of myelin.

The identified transcriptomic signature matches a differential expression of cell surface
markers. Expression of CD14 and CD16 showed significant differences between MS patient
and HC with a larger proportion of CD14""CD16"cells. Interestingly, this result reflects the
observation that CD16" monocytes are present in MS active lesions, participating to blood brain

barrier breakdown and T cells invasion of the CNS [71].

Overall, we thus see that macrophages derived from peripheral monocytes of MS patients

present a phenotype that is both reflective of known characteristics in MS lesions, and that
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indicate a role of macrophages in important pathological events. As such, this model shows
potential to aid identification of biomarkers as well as testing of treatments targeting the innate

immune system, a strategy so far under-utilized in MS treatment.
MS patient macrophages exhibit a perturbed energy metabolism

The activation as pro- and anti-inflammatory macrophages relies on specific metabolic profile,
with increased anaerobic glycolysis and oxidative metabolism, respectively [32]. We observe
that MS patient macrophages, in absence of pro-inflammatory signals (Mam-csr), exhibit a
preferential glycolytic metabolism when compared to HC macrophages, thus already showing
signs toward a pathogenic phenotype. Interestingly, perivascular macrophages with high
glycolytic capacity were identified in an MS animal model and showed increased
transmigratory functions [30], implicating this metabolic dysregulation in immune cell
infiltration in MS. The same study showed indications of similar cells in post-mortem MS

tissue.

Lactate, another indicator of aerobic glycolysis and mitochondrial dysfunction that was more
prevalent in MS patient macrophages, is also detected at higher levels MS cerebrospinal fluid

[2] and serum [3].

Here, enhanced glycolysis is accompanied by a reduction of electron transport chain gene
expression in MS patient macrophages, an observation that was also reported on a protein level
in MS patient lymphocytes [23]. These mitochondrial alterations observed in immune cells
would have therefore an impaired redox status and anti-oxidant capacities. In particular,
reactive oxygen species (ROS) are believed to be a main instigator of oligodendrocyte
alterations and neurotoxicity [1]. ROS production is linked to energy metabolism [55], and the
reduced mitochondrial metabolism seen here in MS macrophages could thus reflect a

destructive phenotype contributing to neural damage.

In addition to the changes in the electron transport chain, we saw disturbances in the TCA cycle
and fatty acid metabolism, indicating overall reduction of oxidative metabolism in MS.
Oxidative metabolism is both a hallmark of and necessary for the anti-inflammatory state in
macrophages [25, 68]. The observed imbalance between glycolysis and oxidative metabolism
may thus be a result and/or a cause of the pro-inflammatory MS phenotype even in the absence

of pro-inflammatory signals.

A few metabolic treatment strategies have been proposed to reduce degeneration in neural cells

in progressive MS [24]. It is however recognized that many metabolic therapeutics could act
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on macrophages as well [53] and more specifically that a metabolic switch (from aerobic
glycolysis to oxidative phosphorylation) is essential for promotion of a pro-regenerative states.
Interestingly, one of the most common first line treatments in MS, dimethyl fumarate, is
believed to function through metabolic alterations [31, 53], although it is unclear which cell

types are primarily implicated in this correction.
Trained innate immunity

The concept of trained innate immunity describes the increased reactivity to novel signals after
a prior activation. Increased pro-inflammatory cytokine production and altered metabolism are
both hallmarks of this second reactive state [49]. Although monocytes are short-lived, the
trained immunity is epigenetically programmed in the bone marrow and can thus reflect
previous exposure to antigens from a time prior to the generation of the tested monocytes [29].
Our work shows that pro-inflammatory tendencies of MS patient macrophages exist well before

they enter the highly inflammatory environment of a lesion just after exposure to GM-CSF.

Trained immunity has previously been identified as a phenomenon through which the innate
immunity could contribute to inflammatory diseases [5], participating both to disease initiation
and maintenance or aggravation of deleterious environment. For example, in atherosclerosis
and systemic lupus erythematous, monocytes/macrophages share several features observed in
MS patient macrophages such as increased expression of pro-inflammatory cytokines [8, 48],
metabolic rewiring [8, 27], and overrepresentation of pro-inflammatory CD14"CD16" cells [48,

58].

However, the manifestation of innate immune memory can also be disease specific. Here we
document yet another MS macrophage peculiarity. In MS patient macrophages, we did not
observe the expected further increased response when MS macrophages were exposed to
IFNy+LPS, to the point where a subset of genes involved in inflammatory responses showed
lower expression in MS MirnysLps than HC Mirny+ips. This is reminiscent of previously
described LPS tolerance in macrophages, in which interferon response gene expression is
reduced upon a second stimulation [43]. LPS exposure is an unlikely cause of MS patient-
specific phenotypes, but a similar desensitization might be triggered by other causes. While this
desensitization intuitively would seem beneficial to the patient, it is also possible that this
incomplete activation fails to activate important inflammatory resolution-inducing pathways.
For instance, death of pro-inflammatory cells is a regulatory phenomenon described generally

in resolution [62] and specifically in myelin regeneration [42]; the failure to up-regulate
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apoptosis effector genes in MS Mirny+ips could result in a longer-lived pro-inflammatory

macrophage population and failure to institute a pro-regenerative one.

However, it is important to note that while the response overall was weaker in MS macrophages,
MS Mirny+Lps still showed up-regulation of several pro-inflammatory cytokines compared to
HC, suggesting a mixed phenotype with features of tolerance and trained immunity. We also
see a mixed pro- and anti-inflammatory phenotype in MS MIL-4, with anti-inflammatory genes
weakly up-regulated. These phenotypes may be related to the intermediate activation state that

has previously been described in MS lesions [69].

In conclusion, our data imply a perturbed macrophage response with characteristics of both
trained innate immunity and tolerance. Therefore, we propose that the predisposition to a pro-
inflammatory state, as well as the response to activating stimuli, must be considered in an MS-

specific context when predicting how the innate immune system can be targeted in treatment.
Concluding remarks

This study implicates a role of monocyte-derived macrophage function and transcriptome as
mediators and/or biomarkers of MS. In an artificial environment, we were able to mimic several
aspects of MS lesions, supporting the role of innate immune system memory in the
inflammatory lesion environment. For a better understanding of how this dysregulation affects
different patient groups, future work would likely benefit from connecting cellular biology and
clinical observations through more extensive phenotyping, in particular keeping in mind the

potential functions of the cell in disease.
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Table 1 Characteristics of study participants. Continuous variables are given as mean +
standard deviation.

Age Female Disease % MS-treated % RRMS MSSS
(years) sex Duration
(years)
HC 37+11 14/17
(82%)
MS 38+11 31/36 12+8 25/36 (69%) 33/36 (92%, 2,9+1,7
(86%) 2 CIS1SP)

RRMS: Relapsing remitting, CIS: Clinically isolated syndrome,; SP: secondary progressive
MSSS: Multiple sclerosis severity score
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Fig. 1 Flow cytometry reveals differences in phagocytic function and cell surface markers of
HC and MS macrophages. a) Experimental procedure overview: Activated macrophages were
exposed to labeled human myelin for 1h, and labeled with antibodies targeting CD14, CD16
and HLA-DR. In addition to registering MFI for each surface marker, the percentage of CD14
negative, low and high and CD16 negative and positive cells, and myelin positive and high,
populations were calculated for each sample. A 3D matrix was constructed with dimensions
representing individuals, activation states and flow cytometric variables was constructed to
perform MGCCA. b) First principal components of MGCCA targeting the differences between
MS (squares) and HC (triangles) across all activation states and variables. ¢) Weights of each
activation state to the first PC of b. d) Weights of each flow cytometry variable to the first PC
of b. e) Distribution of samples for each significant variable, as identified in d. Values are
grouped by activation state and disease (HC: triangles; MS: squares; GM-CSF: green;
IFNy+LPS: blue; IL4: pink). f) Analysis procedure for inter-state differences: Data from A were
transformed by subtracting the values in the GM-CSF state from the values of the same
individual in the IFNy+LPS and IL4 states. A matrix of the relative data was created as in A. @)
First principal components of MGCCA based on relative data. h) Weights of each activation
state to the first PC of G. Error bars indicate 95% confidence interval as calculated by
bootstrapping. i) Weights of each flow cytometry variable to the first PC of G. j) Distribution
of samples for each significant variable, as identified in i. Values are expressed as log2(fold-
change from Mam-csr) and are grouped by activation state and disease as in e. *0 outside of
95% confidence interval based on bootstrapping (d&i) or * p<0.05, ** p<0.01 in Mann Whitney
U test between HC and MS for each activation state, not adjusted for multiple testing (e&j).
HC: healthy controls; MS: multiple sclerosis patients. (HC n=16; MS n=33). Error bars indicate

95% confidence interval as calculated by bootstrapping.
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Fig. 2 MS macrophages show a more pro-inflammatory transcriptomic profile compared to HC.
a) PCA of all individuals, with each observation representing one individual (HC: triangles;
MS: squares), and variables representing each gene in each activation state. All genes expressed
in >80% of samples was included. Ellipses indicate 95% confidence interval of the group mean
based on bootstrapping. b) PCA of the same genes as in fig. 3A, however, each observation
representing one sample from one individual (HC: triangles; MS: squares; GM-CSF: green,;
IFNy+LPS: blue; IL4: pink). Ellipses indicate 95% confidence interval of the group mean based
on bootstrapping. ¢) Venn diagrams showing the number of differentially over- and under-
expressed genes (absolute log2(fold-change)>0.5, q<0.05) between HC and MS samples in
each activation state. d) A selection of GO terms, sorted by broader functionality, with dots
indicating a significant over-representation in a given set of DE genes (adjusted p<0.05). The
proportion of genes from the term and the p-value are indicated by the size and color of the
dots, respectively. Examples of DE genes from at least one list of genes are provided on the
right. e) Sample distribution for a subset of genes highlighted in d. Expression is given in log2
and grouped by activation state and disease as in b. *q<0.05, **q<0.01, ***q<0.001,
*EX%q<0.0001, *****q<0.00001 in limma DE analysis. GO: gene ontology; HC: healthy
controls; MS: MS patients (HC n=11; MS n=28).
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Fig. 3 MS macrophages present a limited amplitude of response when stimulated with
IFNy+LPS. In order to compare how the transition occurs in HC and MS patients from one
activation state to another we compared each pair of samples a) Boxplots of Pearson’s
correlation coefficient between gene expression in two activation states (IFNy+LPS vs GM-
CSF, IL4 vs GM-CSF and IFNy+LPS vs IL4), calculated for each individual (HC: triangles;
MS: squares). b) Scatterplots showing log2(fold-change) between two states in HC (x-axis) and
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MS (y-axis) for each gene that is DE between the two states in MS and/or HC. Genes with a
difference in mean and median log2(fold-change) greater than 0.5 between HC and MS are
highlighted in orange (larger absolute fold-change in HC) and purple (larger absolute fold-
change in MS). Values represent numbers of genes specific to each group and regulation (up or
down). ¢) Top 5 over-represented gene ontology terms in the 408 genes with stronger up-
regulation in HC than MS when comparing Mieny+Lps to Maom-csr, with the differentially
regulated genes connected to their respective GO terms. d) Network from c colored by z-score
((meangroup-meantotal)/standard deviationiwotal) for the mean gene expression in each activation
state and disease group, with higher expression noted in red and lower expression in blue. HC:
healthy controls; MS: MS patients (HC n=11; MS n=28). *p<0.05, **p<0.01 in Mann Whitney
U test.
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Fig. 4 Modules of co-expressed genes involved in inflammatory and metabolic pathways show
altered expression in MS macrophages compared to HC macrophages. a) Clustering of genes
in multi-dataset WGCNA, with module assignment indicated below. Multi-dataset network was
produced by comparing correlations between genes for each state individually and basing
clustering on the maximum correlation for each gene pair. b) Heat map of correlation between
presence of disease and eigengenes of each module and activation. Only modules with
significant correlation and functional annotation terms are shown. Functional annotations were
given by Enrichr from databases GO biological process, GO molecular function, and KEGG
pathways (adjusted p<0.05). ¢) Eigengene values in three modules, for each sample and
module, grouped according to disease (HC: triangles; MS: squares) and activation state (GM-
CSF: green; IFNy+LPS: blue; IL4: pink). d) Expression of examples of genes from each module
shown in ¢ (grouped and visualized as in c¢). HC: healthy controls; MS: MS patients (HC n=11;
MS n=28). *p< 0.05. Correlations were calculated with FDR-corrected default WGCNA

functions (b, c), differential expression was tested with limma (d).
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Fig. 5 MS homeostatic-like macrophages show several signs of alteration in the TCA cycle and
respiratory chain. Genes and metabolites included in the KEGG pathways Glycolysis, Fatty
acid degradation, TCA cycle and Oxidative phosphorylation are organized according to
pathways. Each element is colored to indicate mean abundance in MS Magwm-csr relative to HC

(Alog2(mean), over-expression in red, under-expression in blue, HC n=6; MS n=7). Genes
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involved in oxidative phosphorylation are organized into the complexes in which their gene
products take part. Genes that were not expressed in at least one sample were excluded in the
figure. *significantly altered genes (q<0.05) in limma differential expression analysis. HC:
healthy controls; MS: MS patients; 2,3BPG: 2,3-bisphosphoglyceric acid; 2PG: 2-
phosphoglyceric acid; 3PG: 3-phosphoglyceric acid; 3PGP: 3-phospho-D-glyceroyl phosphate;
AcCoA: acetyl coenzyme A; ACO: aconitate; AKG: alpha-ketoglutarate; f-ox: beta-oxidation;
CIT: citrate; DHAP: dihydroxyacetone phosphate; F1,6BP; fructose-1,6-bisphosphate; FUM:
fumarate; G1P: glucose-1-phosphate; G3P: 3-phosphoglycerate; G6P: glucose-6-phosphate;
ISC: isocitrate; LAC: lactate; LCFA: long-chain fatty acid; MAL: malate; OAA: oxaloacetate;
OXSUC: oxalosuccinate; PEP: phosphoenolpyruvic acid; PYR: pyruvate; SUC: succinate;
SUC-CoA: succinyl coenzyme A.
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