

1 **Acute inflammation, mediated by lung neutrophils, confers enhanced**
2 **protection against *Mycobacterium tuberculosis* infection in mice**

3

4 Tucker J. Piergallini^{1,2}, Julia M. Scordo^{1,3}, Paula A. Pino⁴, Jordi B. Torrelles⁴, and Joanne
5 Turner^{1#}

6

7 ¹Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX;

8 ²Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH; ³The

9 Barshop Institute, The University of Texas Health Science Center at San Antonio, San Antonio,

10 TX; ⁴Population Health Program, Texas Biomedical Research Institute, San Antonio, TX

11

12 #Correspondence: Dr. Joanne Turner; joanneturner@txbiomed.org

13

14 **Abstract**

15 Inflammation plays a crucial role in the control of *Mycobacterium tuberculosis* (*M.tb*) infection. In
16 this study, we demonstrate that an inflammatory pulmonary environment at the time of infection
17 mediated by liposaccharide (LPS) treatment in mice confers enhanced protection against *M.tb*
18 for up to 6 months post infection. This transient protective inflammatory environment was
19 associated with a neutrophil and monocyte/macrophage influx as well as increased
20 inflammatory cytokines. *In vitro* infection of neutrophils from LPS treated mice demonstrated
21 that LPS neutrophils exhibited increased recognition of *M.tb*, and had a greater innate capacity
22 for killing *M.tb*. Finally, partial depletion of neutrophils in LPS treated mice showed an increase
23 in *M.tb* burden, suggesting neutrophils conferred the enhanced protection observed in LPS
24 treated mice. These results indicate a positive role of an inflammatory environment during initial

25 *M.tb* infection, and suggests that acute inflammation at the time of *M.tb* infection can positively
26 alter disease outcome.

27

28 **Keywords:** *Mycobacterium tuberculosis*, inflammation, neutrophils, lipopolysaccharide, LPS

29

30 **Introduction**

31 Tuberculosis (TB) disease, caused by the bacterium *Mycobacterium tuberculosis* (*M.tb*) is a
32 global health burden. In 2019, 1.4 million people died from TB, making TB the leading cause of
33 death due to an infectious disease worldwide in that year (1). There is variability in *M.tb* infection
34 outcome among individuals, with some maintaining infection in a latent state (*M.tb* latency) and
35 others developing active TB disease (1). Comorbidities such as HIV co-infection, diabetes,
36 malnutrition, and aging along with environmental exposure to pulmonary insults (wood burning
37 fire, smoking, etc.) are among some of the factors that can increase one's susceptibility to
38 develop active TB (1, 2). Systemic inflammation has been associated with each of these (3-8).

39

40 Inflammation is typically defined as higher levels of inflammatory cytokines and/or a chemokine-
41 mediated influx of immune cells to tissue sites (9). Infection-induced inflammation can have a
42 negative impact on active TB progression (2, 10-12), defining a delicate balance, with both too
43 much and too little inflammation causing worsening prognosis and outlook via host-induced
44 damage or by leading to inadequate control of *M.tb* growth, respectively (13-18). Several
45 studies have suggested that the first events immediately after initial *M.tb* infection can alter TB
46 disease outcome (19-22), establishing our hypothesis that the inflammatory state of the lung at
47 the moment of first encounter with *M.tb* can dictate long term infection and disease outcomes.
48 Comorbidities of diabetes, malnutrition, and aging, along with environmental exposures occur
49 alongside an increased inflammatory state (3-8), making it feasible that transient (acute) vs.

50 constant (chronic) increased basal inflammation may define the course of *M.tb* infection in
51 humans.

52

53 To determine how acute inflammation can influence *M.tb* infection outcome, we utilized short-
54 term low dose lipopolysaccharide (LPS) treatment in mice to generate an increased acute
55 systemic and pulmonary inflammatory response at the time of *M.tb* infection. LPS treatment
56 caused an increase of inflammatory cytokines and myeloid cells, primarily neutrophils and
57 monocyte/macrophages, in the mouse lungs. Following *M.tb* infection, LPS-treated mice had a
58 significant reduction of *M.tb* burden evident as early as 7 days post infection, an effect that
59 persisted for at least 6 months. *In vitro* analyses implicated neutrophils as the mediators of early
60 *M.tb* control, confirmed through *in vivo* depletion of neutrophils in LPS treated mice prior to *M.tb*
61 infection. Our findings confirm that a transient, acute, increased inflammatory environment at
62 the time of *M.tb* entry into the lung can impact the course of infection by reducing *M.tb* burden in
63 the lung, thus, adding further information to discern why *M.tb* exposed people have different
64 infection and disease outcomes.

65

66 **Methods**

67 **Mice**

68 Specific pathogen-free male or female BALB/c and male C57BL/6 mice, 11-12 week old, were
69 purchased from Charles River Laboratories (Wilmington, MA) or The Jackson Laboratory (Bar
70 Harbor, ME). Male and female BALB/c mice were used interchangeably as indicated in the
71 figure legends. Mice were housed in animal biosafety level (ABSL) 2 or ABSL3 facilities, in
72 individually ventilated cages, and given sterilized water and standard chow, *ad libitum*.
73 Experimental and control mice were housed in separate cages, and were acclimatized for at
74 least 1 week before use in experiments. Mice were euthanized by CO₂ asphyxiation. All

75 procedures were approved by the Texas Biomedical Research Institute Institutional Laboratory
76 Animal Care and Use Committee (IACUC), protocol # 1608 MU.

77

78 **LPS Mouse Model**

79 Lipopolysaccharides (LPS) (L3129-100MG, Sigma), were injected intraperitoneally (IP) with 20
80 µg/mouse (BALB/c) or 50 µg/mouse (C57BL/6) in 100 µl normal saline (vehicle). Saline
81 injections served as control. The optimum LPS dose for each individual mouse strain to result in
82 inflammation without persistent morbidity was determined, and mice were injected every 24
83 hours (hr) ± 2 hr for 4 total injections. Experiments termed day 0 took place 2 hr after the fourth
84 injection. Alternatively, mice were infected with *M.tb* 2-4 hr after the fourth injection, as
85 described below. *M.tb* infected mice were daily injected with LPS or saline for 2 more days, for a
86 total of 6 injections, and rested until the indicated timepoint.

87

88 ***M.tb* stocks**

89 *M.tb* Erdman (ATCC 35801) was obtained from the American Type Culture Collection
90 (Manassas, VA). GFP-expressing *M.tb* Erdman was kindly provided by Horwitz and colleagues
91 (23). Stocks were grown and delivered via aerosol as previously described (24). For *in vitro*
92 infections, a frozen *M.tb* stock was plated onto 7H11 agar (Difco and BBL) supplemented with
93 oleic acid-albumin-dextrose-catalase (OADC) enrichment, and incubated for 11-13 days at
94 37°C. A *M.tb* single bacterial suspension was generated and diluted to working concentration as
95 described (25).

96

97 ***M.tb* aerosol infection and CFU calculation**

98 Mice were exposed to a low-dose aerosol of *M.tb* Erdman using an inhalation exposure system
99 (Glas-col) calibrated to deliver 10-30 colony-forming-units (CFUs) to the lungs of each individual
100 mouse (26). Calculation of *M.tb* (CFU) burden at the indicated timepoints was performed by

101 plating serial dilutions of whole or partial (superior, middle, inferior, and post-caudal lobes) lung
102 homogenates onto OADC supplemented 7H11 agar containing Mycobacteria Selectatab (Mast
103 Group, UK). Plates were incubated at 37°C and CFUs counted after 14-21 days, and
104 transformed to a \log_{10} scale. CFU counts obtained from partial lung homogenates were
105 normalized to the mass of each partial lung.

106

107 **Protein ELISA and Luminex Analysis**

108 Organ homogenates were thawed and the resulting supernatants analyzed for cytokines and
109 proteins by ELISA (Biolegend, BD, and R&D) and Luminex (R&D) according to manufacturer's
110 instructions. Protein levels were normalized to lung mass.

111

112 **Lung cell isolation**

113 As described previously, mice were euthanized and lungs perfused with 10 ml PBS containing
114 50 U/ml heparin (Sigma) and placed into 2 ml complete DMEM (c-DMEM); DMEM (10-017-CV,
115 Corning), 500 ml supplemented with filter-sterilized 5 ml HEPES buffer (1 M; Sigma), 10 ml
116 MEM nonessential amino acid solution (100x; Sigma), 5 ml Penicillin-Streptomycin (pen./strep.)
117 (100x; Sigma), 660 μ l 2- mercaptoethanol (50 mM; Sigma), and 45 ml heat-inactivated fetal
118 bovine serum (FBS) (Atlas Biologicals). A single-cell suspension was obtained using enzymatic
119 digestion (15). Residual erythrocytes were lysed using Gey's solution (8 mM NH₄Cl, 5 mM
120 KHCO₃ in water), passed through a 40 μ m strainer, and suspended in c-DMEM. Total number of
121 viable cells (via.cells) were determined with acridine orange and propidium iodide (AO/PI)
122 staining and counted on a Cellometer K2 Cell Counter (Nexcelom Bioscience).

123

124 **Flow cytometry**

125 Lung single-cell suspensions were washed once with 1x Dulbecco's phosphate buffered saline
126 without calcium or magnesium (Gibco) (PBS) and stained with Zombie Aqua Fixable Viability Kit

127 (1:100; Biolegend) for 15 min at room temperature (RT) in the dark. After incubation, cells were
128 washed once with 1x PBS and incubated in TruStain FcX-Fc Block (Biolegend) for 15 min at
129 4°C in the dark. Fc Block was diluted in deficient RPMI (dRPMI; RPMI-1640 supplemented with
130 HEPES and 1g/L sodium azide [ThermoFisher Scientific]) with 10% heat-inactivated FBS
131 (dRPMI+FBS). Fc block was then removed and cells incubated in antibody cocktails (CD45.2,
132 PerCP/Cyanine5.5, clone 104; Ly6G, Alexa Fluor 488, clone 1A8; CD11b, APC/Cyanine7, clone
133 M1/70; CD11c, APC, clone N418; Siglec-F, Brilliant Violet 421, clone S17007L; CD80, PE,
134 clone 16-10A1; Biolegend) diluted in dRPMI+FBS for 20 min at 4°C in the dark. After staining,
135 cells were washed once in dRPMI+FBS. For experiments completed at day 0 (uninfected mice),
136 cells were fixed in 2% paraformaldehyde (PFA) for 15 min at RT in the dark, and washed once
137 more in dRPMI+FBS. For experiments completed after infection, cells were fixed in 4% PFA for
138 30 min at RT in the dark for ABSL3 removal, and washed twice in dRPMI+FBS. All stained and
139 fixed cells were suspended in dRPMI+FBS and stored at 4°C in the dark until data acquisition
140 on a Beckman Coulter CyAn flow cytometer. Data analysis was performed using FlowJo v10
141 (BD). Total number of specific cell populations per lung calculated using the percentage of each
142 population in the parent gate for absolute quantification multiplied by the total number of viable
143 cells isolated from each sample.

144

145 **Collection of adherent lung cells**

146 Lung single-cell suspensions were incubated in tissue-culture plates for 1 hr at 37°C, 5% CO₂
147 (15). Plates were washed with c-DMEM to remove non-adherent cells. For RNA isolation, Trizol
148 (ThermoFisher Scientific), was added to the plates and vigorously pipetted. The Trizol solution
149 (containing adherent cell RNA) was frozen at -80°C until RNA extraction. For flow cytometric
150 analysis, adherent cells were incubated in Trypsin-EDTA (Sigma) for 15 min at 37°C, 5% CO₂,
151 and c-DMEM was added to stop the reaction. Adherent cells were pooled, suspended in c-

152 DMEM and via.cells determined with AO/PI staining as described above. Flow cytometric
153 analysis was performed as described above.

154

155 **Real-time PCR**

156 Frozen Trizol samples were thawed, RNA extracted with chloroform, precipitated using
157 isopropanol and 75% ethanol, and reconstituted in DNase/RNase-free water as previously
158 described (15). cDNA was synthesized with random hexamers using an Omniscript RT Kit
159 (Qiagen). cDNA was quantified using TaqMan gene expression probes (ThermoFisher
160 Scientific) and data collected using an Applied Biosystems 7500 real-time PCR instrument. The
161 $\Delta\Delta CT$ method was used to quantify relative numerical units (RNU), normalized to endogenous
162 18S RNA, relative to saline.

163

164 **Isolation of purified lung monocyte/macrophage and neutrophil populations**

165 Lung single cell suspensions were prepared from non-infected mice as described above, with
166 the exception that residual erythrocytes were not lysed with Gey's solution. For isolation of
167 CD11b⁺ monocyte/macrophages, lung suspensions from 2 saline injected mice were pooled,
168 whereas LPS lung suspensions were individually processed. As CD11b is also highly expressed
169 on neutrophils and natural killer (NK) cells (27, 28), we developed a method which enriched lung
170 single-cell suspensions for monocyte/macrophages by depleting the suspensions of Ly6G⁺ cells
171 (neutrophils) and CD49b⁺ cells (NK cells) via positive selection, followed with positive CD11b
172 magnetic isolation to obtain the leftover monocyte/macrophages. Briefly, suspensions were
173 washed once with selection buffer (1x PBS containing 2% FBS, 1 mM EDTA, and 1x
174 pen./strep.), suspended at a concentration of 1×10^8 via.cells/ml in 5 ml polypropylene tubes, and
175 first depleted of neutrophils and NK cells using positive magnetic selection, with all incubations
176 carried out in selection buffer using the MojoSort Mouse Ly6G Selection Kit (Biolegend), the
177 EasySep Biotin Positive Selection Kit II (Stemcell Technologies), and biotinylated anti-mouse

178 CD49b antibody (25 µg/ 1×10⁸ via.cells, clone DX5, Biolegend) per each kits' instructions.
179 Following Fc block incubation (Stem Cell), cells were incubated in Ly6G-selection antibody and
180 CD49b antibody together, followed by the Stem Cell selection cocktail. Finally, cells were
181 incubated with Ly6G and Stem Cell selection magnetic beads together, and selected out using
182 magnets. From the resulting cell suspensions (depleted of neutrophils and NK cells), CD11b⁺
183 monocyte/macrophages were isolated using positive magnetic selection using the EasySep
184 Mouse CD11b Positive Selection Kit II (Stem cell technologies), according to manufacturer's
185 instructions.

186

187 For isolation of lung neutrophils, single cell suspensions were washed in selection media and
188 suspended at a concentration of 1×10⁸ via.cells/ml. Cells were incubated with normal rat serum
189 (50 µl/ 1×10⁸ via.cells, Stem Cell Technologies and Jackson ImmunoResearch Laboratories) for
190 5 min. at RT. Neutrophils were isolated using the MojoSort Mouse Ly6G Selection Kit
191 (Biolegend) according to manufacturer's instructions.

192

193 Purified monocyte/macrophage or neutrophil suspensions were washed and suspended in 100-
194 200 µl c-DMEM, and total via.cells determined with AO/PI staining. Cells were washed with 10
195 ml antibiotic-free c-DMEM (ABFc-DMEM; c-DMEM without pen./strep. added), and suspended
196 at a final concentration of 50,000 via.cells/150 µl in ABFc-DMEM.

197

198 ***In vitro* M.tb infection of monocyte/macrophages and neutrophils, and CFU determination**
199 96-well plates and 8-well chamberslides were coated with poly-d-lysine (0.1 mg/ml, Gibco)
200 overnight at RT or 2 hr 37°C, washed three times with 1x PBS, and dried before use. Purified
201 cells were plated at 50,000 via.cells per well in 150 µl ABFc-DMEM in a pre-coated 96 well plate
202 or 8 -well chamberslide. Cells adhered to the plate or slide by centrifuging at 300 xg, 5 min, 4°C.

203 A 50 μ l single-cell suspension of GFP-*M.tb* Erdman in ABFc-DMEM, calibrated to deliver *M.tb* at
204 a MOI of 5:1, was then added to the wells.

205

206 For monocyte/macrophages, samples were infected in duplicate. The infection proceeded for 2
207 hr at 37°C, 5% CO₂ (30 minute [min] shaking followed by 1.5 hr of static incubation). After the 2
208 hr infection, cells were washed three times with ABFc-DMEM, and incubated at static conditions
209 in ABFc-DMEM until the indicated timepoint. For CFU enumeration, cells were centrifuged for
210 300 xg, 5 min, 4°C, and washed three times with ABFc-DMEM, liquid was removed after the
211 final wash. Cold distilled water (50 μ l) containing 500 μ g/ml DNase I (Sigma) was added and
212 incubated at RT with periodic agitation. 100 μ l OADC supplemented 7H9 (Difco) media and 60
213 μ L of 0.25% sodium dodecyl sulfate (Fisher) in 1x PBS were added and cells incubated for 10
214 min at RT with periodic agitation. 75 μ l 20% bovine serum albumin (BSA) (Alfa Aesar) in 1x PBS
215 was added, and wells mixed by pipetting vigorously several times. Resulting solutions were
216 serially-diluted, plated, and incubated as described above. Average CFU expressed as CFU/ml.

217

218 For neutrophils, samples were infected in triplicate. The infection proceeded for 30 min at 37°C,
219 5% CO₂ with constant shaking. After the 30 min infection, cells were washed three times with
220 ABFc-DMEM, and incubated at static conditions in ABFc-DMEM until the indicated timepoint.
221 For CFU enumeration, cells were centrifuged at 300 xg, 5 min, 4°C, and washed three times
222 with ABFc-DMEM, liquid was removed after the final wash. 100 μ l 0.1% TritonX-100 (Fisher) in
223 1x PBS was added, and cells incubated at RT for 15 min with periodic agitation. 100 μ l OADC
224 supplemented 7H9 media was added, and wells mixed by pipetting vigorously several times.
225 Resulting solutions were serially-diluted, plated, and incubated as described above. Average
226 CFUs expressed as CFU/ml. For microscopy studies, cells in 8-well chamberslides were
227 washed three times in ABFc-DMEM following the 30 min infection, and then fixed in 4% PFA for
228 15 min, prior to ABSL3 removal and further processing.

229

230 **Immunocytochemistry (ICC) of *in vitro* infections**

231 Fixed cells on chamberslides were washed three times with 1x PBS and stored at 4°C in the
232 dark until staining. Cells were permeabilized by incubating in 0.5% TritonX-100 for 1 min at RT,
233 and washed three times with 1x PBS, 1 min per wash. Blocking buffer (1x PBS with 10% normal
234 donkey serum [Jackson ImmunoResearch Laboratories], 10 mg/ml BSA, and 0.1% Triton X-
235 100) was added and cells incubated for 30 min at 37°C in a humid chamber. Primary antibodies:
236 goat anti-human/mouse myeloperoxidase (1:100, AF3667, R&D) and rabbit anti-mouse histone
237 H3 (citrulline R2 + R8 + R17) (1:200, ab5103, Abcam), diluted in blocking buffer were added
238 and incubated for 1 hr, at 37°C in a humid chamber. Chamberslides were washed three times
239 with 1x PBS, 1 min per wash. Secondary antibodies: donkey anti-goat IgG Alexa Fluor 647
240 (1:10,000, A21447, ThermoFisher Scientific) and donkey anti-rabbit IgG Alexa Fluor 568
241 (1:1,000, A10042, ThermoFisher Scientific), diluted in blocking buffer were added and cells
242 incubated for 1 hr at 37°C in a humid chamber. Cells were washed as before with three 1 min
243 washes. Chamberslides were then incubated in 4',6-Diamidino-2-phenylindole dihydrochloride
244 (DAPI) (1:5,000, ThermoFisher Scientific) in 1x PBS for 5 min, and washed three times in 1x
245 PBS, for 5 min with constant shaking. Chamber sides were mounted with coverslips using
246 Prolong Diamond Antifade Mountant (ThermoFisher Scientific), and dried for at least 24 hr prior
247 to imaging. Chamberslides were analyzed using a Zeiss LSM 800 confocal microscope. 19-22
248 GFP-*M.tb* (488 nm) events were counted per well. Histone H3 (citrulline R2 + R8 + R17) and
249 DAPI-smear colocalizations were used to mark neutrophil extracellular traps (NETs), and MPO
250 and circular DAPI were used to mark intact neutrophils. In a single-blinded manner, the location
251 of GFP-*M.tb* events were visually assayed as *M.tb* co-localized with an intact neutrophil, or *M.tb*
252 co-localized with a neutrophil NET. Free *M.tb* (outside of cells or NETS) was also determined
253 and no differences were observed between groups. Data are presented as percent fold change

254 of GFP-*M.tb* colocalized with an intact neutrophil or neutrophil NET, relative to the average
255 saline value of each experiment.

256

257 **Neutrophil depletion**

258 Anti-mouse Ly6G (300 µg clone IA8, BP0075-1, BioXCell) or its isotype control rat IgG2a (clone
259 2A3, BP0089, BioXCell) in 1x PBS were administered via the IP route to LPS/saline mice.
260 Antibody injections began the same day as LPS/saline injections, and continued every 48 hr.
261 CFUs were assessed at 7 days of infection. Single cell suspensions were isolated at day 0
262 (uninfected) and analyzed by flow cytometry to assess depletion efficiency. Intracellular Ly6G
263 was used in place of surface Ly6G to account for potential surface antigen masking by the
264 depletion antibody (29). After 2% PFA fixation, intracellular Ly6G was stained in the Intracellular
265 Staining Permeabilization Wash Buffer (Biolegend) using the manufacturer's protocol. Ly6G
266 antibodies (Ly6G, PE, clone 1A8, BD Pharmingen) used for intracellular staining were diluted
267 half of what was typically used for surface staining.

268

269 **Statistical analysis**

270 Data analyses, graphing, and statistical analyses were performed using GraphPad Prism 8 and
271 9 software. Unpaired, two-tailed Student's *t*-test was used for two group comparisons. Statistical
272 significance is reported as **p*<0.05; ***p*<0.01; ****p*<0.001, or *****p*<0.0001. The Grubbs' test
273 was used to identify outlying data points. Data are presented as individual data points, and
274 mean ± SEM.

275

276 **Results**

277 **LPS causes pulmonary and systemically increased inflammation in mice**

278 To evaluate the impact of acute inflammation on *M.tb* infection, we injected BALB/c mice with
279 LPS or saline via the IP route every 24 hr, for 4 total injections (Fig. 1A). Two hr after the fourth

280 injection, termed day 0, we analyzed the local inflammatory response in the lungs. TNF, IL-1 β ,
281 IL-6, IL-12p70, and IL-10 were significantly increased in the lungs of LPS-injected mice (LPS
282 mice) (Fig. 1B). We also saw a concomitant increase of TNF, IL-1 β , IL-6, and IL-10 in the
283 spleens of LPS mice, while IL-12p70 showed no differences (Supp. Fig. S1A). C-reactive
284 protein (CRP) levels showed no difference in the lung (Supp. Fig. S1B), but was increased in
285 spleen and liver (Supp. Fig. S1B).

286

287 **Acute inflammation protects mice from *M.tb* infection**

288 We infected LPS mice with *M.tb* on day 0 (4 days after initiation of LPS/saline treatment),
289 injected with LPS/saline daily for 2 more days, and rested until the indicated timepoints (Fig.
290 1A). At 1 day post infection (d.p.i.), we found no difference in CFU (Fig. 1C), whereas at 7 and
291 14 d.p.i. we saw significantly fewer CFUs ($\sim 0.5 \log_{10}$) in LPS mice (Fig. 1C). To determine if the
292 early control of *M.tb* was not mouse strain specific, we repeated these studies in C57BL/6 mice,
293 showing that at 14 d.p.i., C57BL/6 treated LPS mice also had significantly fewer CFU compared
294 to saline-injected mice (saline mice) (Supp. Fig. S1C). These results suggest that the effects of
295 LPS on the early control of *M.tb* was not mouse strain specific, but was related to LPS induced
296 inflammation. We further determined the CFU content at 35, 75, 125, 175, and 197 d.p.i., and
297 observed lower CFU levels (~ 0.25 , ~ 0.6 , ~ 1.0 , ~ 1.0 , $\sim 0.4 \log_{10}$ [CFU/g tissue], respectively) in
298 LPS mice at all timepoints (Fig. 1D), although only days 75, 125, and 175 showed statistical
299 significance.

300

301 When determining cytokine protein levels at 7, 14, and 35 d.p.i., we observed that IL-1 β levels in
302 the lung were elevated at 7 d.p.i., with a trend increase at 14 d.p.i. (Fig. 1E). IFN- γ levels in lung
303 showed no differences at 7 and 14 d.p.i. (Fig. 1E). TNF levels showed no differences at 7 d.p.i.,
304 but showed a trend increase at 14 d.p.i. when compared to saline (Supp. Fig. S1D). At 35 d.p.i.,

305 LPS mouse lungs showed significantly less IFN- γ , and a trend decrease of IL-1 β and TNF, likely
306 a result of their lower level of *M.tb* CFU burden at this time when compared to saline treated
307 *M.tb* infected mice (Fig. 1E and Supp. Fig. S1D).

308

309 **LPS mice have more activated myeloid cells in the lungs**

310 To determine the cellular mechanism behind the early *M.tb* control in LPS mice, we analyzed
311 lung cellular profiles at day 0, prior to infection. LPS mice had more viable cells (Fig. 2A), and
312 more myeloid cells (CD45 $^{+}$ SSC $^{\text{hi}}$) per lung (Fig. 2B). Flow gating schemes and representative
313 images of LPS or saline treated mouse profiles are shown in Supp. Fig. S2. Further analysis
314 showed that LPS mice had higher amounts of neutrophils (CD11b $^{+}$ Ly6G $^{\text{hi}}$) (Fig. 2C), alveolar
315 macrophages (AMs) (Ly6G $^{\text{lo/neg}}$ CD11c $^{+}$ SiglecF $^{+}$) (Fig. 2D), and monocyte/macrophages
316 (mon./mac.), which both singularly expressed CD11b (Ly6G $^{\text{lo/neg}}$ CD11b $^{+}$ CD11c $^{-}$) (Fig. 2E) and
317 dually expressed CD11b and CD11c (Ly6G $^{\text{lo/neg}}$ CD11b $^{+}$ CD11c $^{+}$) (Fig. 2F) in LPS mice.
318 Eosinophil (eos.) (Ly6G $^{\text{lo/neg}}$ CD11c $^{+}$ SiglecF $^{-}$) numbers were relatively unchanged (Fig. 2G).
319 CD80 is upregulated on macrophages after activation (30), and we found higher numbers of
320 CD80 $^{+}$ CD11b $^{+}$ CD11c $^{-}$ mon./mac., and CD80 $^{+}$ CD11b $^{+}$ CD11c $^{+}$ mon./mac (Fig. 2 H,I) in LPS
321 mice. No differences were seen in CD80 $^{+}$ AMs (Fig. 2J). We also determined CD11b expression
322 on neutrophils and CD11b $^{+}$ CD11c $^{-}$ mon./mac and found a significant lower level of CD11b mean
323 fluorescence intensity (MFI) on neutrophils, and a significant higher CD11b MFI on mon./mac.
324 (Fig. 2 K,L) in LPS mice, suggesting higher CD11b surface expression on the mon./mac, and
325 less on neutrophils from LPS mice.

326

327 **Elevated numbers of myeloid cells in LPS mice persist at 1 week, but normalize by 2
328 weeks post *M.tb* infection**

329 We next determined when, and if, the levels of myeloid cells normalized in *M.tb* infected LPS
330 mice relative to *M.tb* infected saline mice. Total viable cells in *M.tb* infected LPS mice were

331 elevated at 7 d.p.i., but no differences were seen between groups at 14 d.p.i. (Fig. 3A). The
332 same trend was observed in total myeloid cells at 7 and 14 d.p.i. (Fig. 3B). Flow cytometric
333 analysis of specific myeloid cell populations showed higher numbers of neutrophils (Fig. 3C),
334 CD11b⁺CD11c⁻ mon./mac. (Fig. 3D), and CD11b⁺CD11c⁺ mon./mac. (Fig. 3E) in *M.tb* infected
335 LPS mice at 7 d.p.i., which normalized to *M.tb* infected saline mice by 14 d.p.i. AMs (Fig. 3F)
336 and eos. (Fig. 3G) showed no significant differences at 7 or 14 d.p.i. Elevated cell numbers in
337 LPS mice compared to saline mice at 7 d.p.i., but not 14 d.p.i., indicated that the inflammatory
338 stimulus from LPS treatment in *M.tb* infected LPS mice was acute. Furthermore, we observed
339 CD11b MFI differences for both neutrophils and CD11b⁺CD11c⁻ mon./mac at 7 d.p.i., but only
340 the former was significant. At 14 d.p.i., CD11b MFI differences were normalized on neutrophils
341 and CD11b⁺CD11c⁻ mon./mac from LPS and saline mice (Fig. 3H,I). These results show that
342 the *M.tb* infected LPS mice were under acute inflammation at the time of infection, and the
343 cellular events responsible for the early protection against *M.tb* likely occurred within the first
344 week post-infection. This was supported by the lower CFUs in LPS mice as early as 7 d.p.i.
345 (Fig. 1C).

346

347 **Macrophages from LPS mice do not contribute to *in vitro* control of *M.tb***

348 To determine the contribution of macrophages in the early *M.tb* control by LPS mice, we
349 measured mRNA expression levels of several inflammatory transcription factors (CIITA, IRF1,
350 and IRGM1) (31-34) from adherent lung cells at day 0 (uninfected), and 7 and 14 d.p.i. Flow
351 cytometric analysis found the majority of adherent cells to be AMs, with some mon./mac. (total
352 adherent cells referred to as pulmonary macrophages) (Supp. Table 1). We observed no
353 differences in CIITA mRNA levels at any timepoint (Fig. 4A) whereas IRF-1, and IRGM-1
354 showed an increase in *M.tb* infected LPS mice at 7 d.p.i. only (Fig. 4B,C). We concluded that
355 pulmonary macrophages in LPS mice transiently upregulated inflammatory transcription factors
356 after day 0.

357

358 We next purified mon./mac. at day 0 (uninfected) from LPS or saline mice based on CD11b
359 positive magnetic selection (Supp. Table 1), infected *in vitro* with GFP-expressing *M.tb* Erdman,
360 and determined CFUs at 2 hr, and 1, 2, 3, and 5 d.p.i. We observed no differences between
361 groups at 2 hr and 1 d.p.i., but 2, 3, and 5 d.p.i. showed significantly higher *M.tb* CFUs in
362 mon./mac. isolated from LPS mice (Fig. 4D). This suggested that the mon./mac. infiltrates we
363 saw in LPS mouse lungs at day 0 may not be contributing to the early control we see after *in*
364 *vivo* infections, and may possibly be detrimental.

365

366 **Neutrophils are responsible for enhanced control of *M.tb* infection in LPS mice**

367 LPS treatment also increased neutrophils in the lung (Fig. 2C). To determine the potential
368 involvement of neutrophils in control of *M.tb* infection in LPS mice, we isolated neutrophils via
369 Ly6G positive magnetic selection at day 0 (uninfected) (Supp. Table 1), and infected the purified
370 cells *in vitro* with GFP-*M.tb* Erdman. At 30 min, 1 hr, and 2 hr post infection, we determined
371 CFU (Fig. 5A). While at each timepoint there was no significant difference between CFU in LPS
372 and saline mice, we found paired LPS neutrophils had significantly less *M.tb* CFU at 2 hr
373 relative to 30 min when compared to paired saline neutrophils (Fig. 5B), suggesting a greater
374 magnitude of *M.tb* killing. When we analyzed the infection using single-blinded ICC microscopy
375 (Fig. 5C), we found no differences in *M.tb* association with neutrophil extracellular traps (NETs),
376 but the numbers of *M.tb* co-localizing with intact neutrophils was significantly increased in
377 neutrophils from LPS mice when compared to saline mice (Fig. 5D).

378

379 To confirm that LPS neutrophils were responsible for conferring increased control of *M.tb*, we
380 depleted neutrophils over the course of *in vivo* infection (Table 1). At 7 d.p.i., *M.tb* infected LPS
381 mice depleted of neutrophils showed higher levels of *M.tb* CFU compared to *M.tb* infected LPS
382 mice injected with the isotype control (Fig. 6), although these results failed to reach statistical

383 significance. Increased killing *in vitro* (Fig. 5), together with these results, point to neutrophils as
384 being the mediator behind increased early control of *M.tb* infection in LPS mice *in vivo*.

385

386 **Discussion**

387 Inflammation can affect the control of TB disease (10-12), yet the impact of basally increased
388 inflammation (occurring in the elderly, persons with lung co-infections, those with environmental
389 insult, etc.) at the time of *M.tb* infection has received limited attention (2, 19, 20). To investigate
390 this, we developed a mouse model to test if acute inflammation induced by a short-term low
391 level LPS delivery could alter control of *M.tb* infection. LPS is a potent inflammatory stimulus,
392 and causes an upregulation of many inflammatory cytokines and signals (35, 36). Mice injected
393 with LPS established an acute pulmonary and systemic inflammatory state and an influx of
394 neutrophils and monocyte/macrophages into the lungs prior to infection, which can be expected
395 after an acute inflammatory stimulus (37). After *M.tb* infection, LPS mice had lower *M.tb* burden
396 compared to controls as early as 7 d.p.i., and continuing up to 6 months post infection. *In vitro*
397 and *in vivo* studies demonstrated that neutrophils, and not monocyte/macrophages, were the
398 driver of enhanced control in LPS mice. These findings suggest that acute inflammation, driven
399 by an increase of neutrophils, can confer protection against *M.tb* infection in the mouse model.

400

401 Our results suggest that an acute inflammatory state at the time of *M.tb* infection can be
402 protective against *M.tb*. Examples of this in the literature include studies in old mice, which are
403 chronically inflammatory, both in the periphery and the lung (15, 16, 38). This chronic
404 inflammatory status makes old mice display an early control of *M.tb* infection compared to their
405 younger counterparts (21, 39, 40). This early control is considered a consequence of the chronic
406 but moderate inflammatory state at the time of infection in old mice, as work from our group has
407 indicated (14, 41-43), and we showed that innate cells in the lungs of old mice are pre-activated
408 and behave differently in response to *M.tb* (15). In contrast to LPS mice (acute model), old mice

409 (chronic model) cannot sustain control, likely due to their reported reduced adaptive immune
410 function (44, 45), and old mice succumb to the infection earlier than young mice (39, 46).

411 Adaptive immune function was not investigated in LPS mice, but as we observed decreased
412 *M.tb* burden in LPS mice up to 6 months p.i., the longest timepoint we tested, the initial innate
413 response against *M.tb* in LPS mice was enough to maintain protection long term in our model.

414

415 In human active TB, neutrophils are the most infected phagocytic cell and can provide a niche
416 for *M.tb* persistence and survival (47). Furthermore, neutrophil influx to the lungs is associated
417 with worse TB disease in patients (48). Neutrophils enter the lung in high numbers after *M.tb*
418 infection, and are typically reported to kill *M.tb* via phagocytosis and subsequent killing, as well
419 as extracellular killing mechanisms (degranulation) (49, 50). Neutrophil NETs can also
420 contribute to control via slowing of *M.tb* growth and *M.tb* death (51), but are also reported to
421 contribute to the worsening of disease (52). The amount of conflicting information on neutrophils
422 in *M.tb* infection suggests the role of neutrophils is context dependent. Indeed, rodent studies
423 show that neutrophils play a beneficial role in early infection, but a negative role at later stages
424 (19, 20, 53, 54). A study of LPS induced lung neutrophilia in rats showed reduced *M.tb* burden if
425 LPS was delivered prior to infection, which was negated following neutrophil depletion (19). LPS
426 delivery 10 days post *M.tb* infection, however, had no effect. Our results from LPS mice
427 corroborate these findings, and suggest that neutrophils can play a beneficial role in early *M.tb*
428 infection, if they are increased in number and primed prior to the arrival of *M.tb* to the lungs. In
429 our own neutrophil depletion studies, however, we recognize that the reduced *M.tb* CFU from
430 our neutrophil depletions of LPS mice did not reach statistical significance, possibly because of
431 incomplete depletion of neutrophils in LPS mice. It is accepted that depletion of neutrophils in
432 mice with the 1A8 clone is difficult for a variety of reasons (29). After depletion, the bone marrow
433 generates neutrophils to maintain homeostasis (55) which, coupled with the LPS stimulus, likely

434 caused abundant neutrophils present in the periphery to be depleted, resulting in incomplete
435 depletion.

436

437 The role of neutrophils in mediating control of *M.tb* infection in LPS mice is supported by our *in*
438 *vivo* flow cytometry data, where neutrophil numbers were increased the most in lungs of LPS
439 mice compared to other cells. Our *in vitro* work also suggests that neutrophils from LPS mice
440 phagocytose and kill *M.tb* more effectively. Furthermore, we observed less CD11b expression
441 on LPS neutrophils, a component of complement receptor 3 (CR3) (56). CR3 is one of the major
442 phagocytic receptors for *M.tb* and can be activated by *M.tb* on neutrophils, although it is not
443 known if neutrophils directly use CR3 to phagocytose *M.tb* (56-58). Because we observed no
444 negative impact in the co-localization of *M.tb* and LPS neutrophils, we can conclude that the
445 lower levels of CD11b expression on LPS neutrophils had a limited effect. Interestingly, a recent
446 experiment showed that lowering levels of CD11b expression on neutrophils resulted in
447 increased protection against *M.tb* in a mouse model, although this was associated with
448 decreased neutrophil accumulation in the lungs (59). Given the complicated and often disparate
449 roles of neutrophils shown in the literature, more studies are needed to address the role of
450 neutrophils in differing states of *M.tb* infection, especially in cases where neutrophil behavior
451 may be altered (19, 20, 53, 54, 59).

452

453 The other cell type we interrogated as potentially being responsible for control in LPS mice were
454 monocyte/macrophages, and our results suggested monocyte/macrophages are not major
455 contributors to the increase in *M.tb* control seen LPS mice, at least *in vitro*. As *M.tb* infections
456 progress in a mouse, monocyte/macrophages are known to be essential for infection control,
457 and the transition of *M.tb* to interstitial macrophages has been shown as beneficial (60, 61).
458 However, interstitial macrophages can also provide *M.tb* a niche for survival (62-64). A recent
459 experiment on an alveolar macrophage subset showing monocytic markers in old mice

460 displayed worse control of *M.tb* (13), and in humans and mice infected with *M.tb*, a monocyte
461 influx to the lungs correlates with worse TB disease outcome (65, 66). These substantiate the
462 results from our *in vitro* infections of monocyte/macrophages in LPS mice. However, additional
463 studies are required to assess the interplay of inflammatory monocyte/macrophages and *M.tb* in
464 our LPS mouse model.

465

466 Overall, our results demonstrate that basal inflammation at the time of *M.tb* infection can impact
467 infection outcome. In a broader sense, this suggests that inflammation driven by acute insult at
468 the time of *M.tb* infection can lead to improved long term control of infection. This mechanism
469 may have relevance for some co-infections and other disease states that establish a short-term
470 (acute) pulmonary inflammation in the lung that induces neutrophil influx. In these cases, the
471 initial bacterial burden may be lowered during early *M.tb* infection and maintained long-term,
472 giving rise to differential TB infection outcomes.

473

474 **Competing interests:** The authors declare that they have no competing interests.

475

476 **Author's contributions:** TJP and JT designed the experiments. TJP and JMS performed the
477 experiments. PAP assisted with mouse procedures. TJP collected and analyzed data, and wrote
478 the paper. JT and JBT provided critical review of the paper. All authors read and approved the
479 final manuscript.

480

481 **Acknowledgments:** We would like to acknowledge the Texas Biomedical Research Institute
482 Biology Core for their assistance with data collection for flow cytometry and Luminex assays.

483

484 **Funding:** This work was supported by a National Institutes of Health-National Institute on Aging
485 (NIA) program project grant JT (P01-AG051428) and a Texas Biomedical Research Institute
486 Douglass Foundation Graduate Fellowship to TJP.

487

488 **References**

- 489 1. WHO. 2020. Global tuberculosis report 2020.
- 490 2. Piergallini, T. J., and J. Turner. 2018. Tuberculosis in the elderly: Why inflammation
491 matters. *Experimental gerontology* 105: 32-39.
- 492 3. Verma, S., P. Du, D. Nakanjako, S. Hermans, J. Briggs, L. Nakiyingi, J. J. Ellner, Y. C.
493 Manabe, and P. Salgame. 2018. "Tuberculosis in advanced HIV infection is associated
494 with increased expression of IFNy and its downstream targets". *BMC Infect Dis* 18: 220.
- 495 4. Tsalamandris, S., A. S. Antonopoulos, E. Oikonomou, G. A. Papamikroulis, G. Vogiatzi,
496 S. Papaioannou, S. Deftereos, and D. Tousoulis. 2019. The Role of Inflammation in
497 Diabetes: Current Concepts and Future Perspectives. *Eur Cardiol* 14: 50-59.
- 498 5. Bourke, C. D., J. A. Berkley, and A. J. Prendergast. 2016. Immune Dysfunction as a
499 Cause and Consequence of Malnutrition. *Trends Immunol* 37: 386-398.
- 500 6. Franceschi, C., M. Bonafe, S. Valensin, F. Olivieri, L. M. De, E. Ottaviani, and B. G. De.
501 2000. Inflamm-aging. An evolutionary perspective on immunosenescence. *Ann. N. Y.
502 Acad. Sci* 908: 244-254.
- 503 7. Barregard, L., G. Sällsten, L. Andersson, A. C. Almstrand, P. Gustafson, M. Andersson,
504 and A. C. Olin. 2008. Experimental exposure to wood smoke: effects on airway
505 inflammation and oxidative stress. *Occup Environ Med* 65: 319-324.
- 506 8. Lee, J., V. Taneja, and R. Vassallo. 2012. Cigarette smoking and inflammation: cellular
507 and molecular mechanisms. *J Dent Res* 91: 142-149.
- 508 9. Chen, L., H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao. 2018.
509 Inflammatory responses and inflammation-associated diseases in organs. *Oncotarget* 9:
510 7204-7218.
- 511 10. Zumla, A., M. Rao, S. K. Parida, S. Keshavjee, G. Cassell, R. Wallis, R. Axelsson-
512 Robertsson, M. Doherty, J. Andersson, and M. Maeurer. 2015. Inflammation and
513 tuberculosis: host-directed therapies. *J Intern Med* 277: 373-387.
- 514 11. Kumar, N. P., K. F. Fukutani, B. S. Shruthi, T. Alves, P. S. Silveira-Mattos, M. S. Rocha,
515 K. West, M. Natarajan, V. Viswanathan, S. Babu, B. B. Andrade, and H. Kornfeld. 2019.
516 Persistent inflammation during anti-tuberculosis treatment with diabetes comorbidity.
517 *Elife* 8.
- 518 12. Ndlovu, H., and M. J. Marakalala. 2016. Granulomas and Inflammation: Host-Directed
519 Therapies for Tuberculosis. *Front Immunol* 7: 434.
- 520 13. Lafuse, W. P., M. V. S. Rajaram, Q. Wu, J. I. Moliva, J. B. Torrelles, J. Turner, and L. S.
521 Schlesinger. 2019. Identification of an Increased Alveolar Macrophage Subpopulation in
522 Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to
523 *Mycobacterium tuberculosis* Infection. *J Immunol* 203: 2252-2264.
- 524 14. Vesosky, B., E. K. Rottinghaus, C. Davis, and J. Turner. 2009. CD8 T Cells in old mice
525 contribute to the innate immune response to *Mycobacterium tuberculosis* via interleukin-
526 12p70-dependent and antigen-independent production of gamma interferon. *Infect.
527 Immun* 77: 3355-3363.

528 15. Canan, C. H., N. S. Gokhale, B. Carruthers, W. P. Lafuse, L. S. Schlesinger, J. B.
529 Torrelles, and J. Turner. 2014. Characterization of lung inflammation and its impact on
530 macrophage function in aging. *J. Leukoc. Biol* 96: 473-480.

531 16. Moliva, J. I., M. A. Duncan, A. Olmo-Fontánez, A. Akhter, E. Arnett, J. M. Scordo, R.
532 Ault, S. J. Sasindran, A. K. Azad, M. J. Montoya, N. Reinhold-Larsson, M. V. S.
533 Rajaram, R. E. Merrit, W. P. Lafuse, L. Zhang, S. H. Wang, G. Beamer, Y. Wang, K.
534 Proud, D. J. Maselli, J. Peters, S. T. Weintraub, J. Turner, L. S. Schlesinger, and J. B.
535 Torrelles. 2019. The Lung Mucosa Environment in the Elderly Increases Host
536 Susceptibility to *Mycobacterium tuberculosis* Infection. *J Infect Dis* 220: 514-523.

537 17. Sasindran, J., and J. Torrelles. 2011. *Mycobacterium tuberculosis* infection and
538 inflammation: What is beneficial for the host and for the bacterium? *Frontiers in*
539 *Microbiology* 2: 1-16.

540 18. Marakalala, M. J., F. O. Martinez, A. Plüddemann, and S. Gordon. 2018. Macrophage
541 Heterogeneity in the Immunopathogenesis of Tuberculosis. *Front Microbiol* 9: 1028.

542 19. Sugawara, I., T. Udagawa, and H. Yamada. 2004. Rat neutrophils prevent the
543 development of tuberculosis. *Infection and immunity* 72: 1804-1806.

544 20. Fulton, S. A., S. M. Reba, T. D. Martin, and W. H. Boom. 2002. Neutrophil-mediated
545 mycobacteriocidal immunity in the lung during *Mycobacterium bovis* BCG infection in
546 C57BL/6 mice. *Infect. Immun* 70: 5322-5327.

547 21. Turner, J., and I. M. Orme. 2004. The expression of early resistance to an infection with
548 *Mycobacterium tuberculosis* by old mice is dependent on IFN type II (IFN-gamma) but
549 not IFN type I. *Mech. Ageing Dev* 125: 1-9.

550 22. Cadena, A. M., J. L. Flynn, and S. M. Fortune. 2016. The Importance of First
551 Impressions: Early Events in *Mycobacterium tuberculosis* Infection Influence Outcome.
552 *MBio* 7: e00342-00316.

553 23. Tullius, M. V., G. Harth, and M. A. Horwitz. 2001. High extracellular levels of
554 *Mycobacterium tuberculosis* glutamine synthetase and superoxide dismutase in actively
555 growing cultures are due to high expression and extracellular stability rather than to a
556 protein-specific export mechanism. *Infect. Immun* 69: 6348-6363.

557 24. Beamer, G. L., J. Cyktor, D. K. Flaherty, P. C. Stromberg, B. Carruthers, and J. Turner.
558 2012. CBA/J mice generate protective immunity to soluble Ag85 but fail to respond
559 efficiently to Ag85 during natural *Mycobacterium tuberculosis* infection. *Eur. J. Immunol*
560 42: 870-879.

561 25. Schlesinger, L. S., C. G. Bellinger-Kawahara, N. R. Payne, and M. A. Horwitz. 1990.
562 Phagocytosis of *Mycobacterium tuberculosis* is mediated by human monocyte
563 complement receptors and complement component C3. *J. Immunol* 144: 2771-2780.

564 26. Beamer, G. L., D. K. Flaherty, B. Vesosky, and J. Turner. 2008. Peripheral blood gamma
565 interferon release assays predict lung responses and *Mycobacterium tuberculosis*
566 disease outcome in mice. *Clin. Vaccine Immunol* 15: 474-483.

567 27. Abdel-Salam, B. K., and H. Ebaid. 2014. Expression of CD11b and CD18 on
568 polymorphonuclear neutrophils stimulated with interleukin-2. *Cent Eur J Immunol* 39:
569 209-215.

570 28. Fu, B., Z. Tian, and H. Wei. 2014. Subsets of human natural killer cells and their
571 regulatory effects. *Immunology* 141: 483-489.

572 29. Boivin, G., J. Faget, P. B. Ancey, A. Gkasti, J. Mussard, C. Engblom, C. Pfirschke, C.
573 Contat, J. Pascual, J. Vazquez, N. Bendriss-Vermare, C. Caux, M. C. Vozenin, M. J.
574 Pittet, M. Gunzer, and E. Meylan. 2020. Durable and controlled depletion of neutrophils
575 in mice. *Nature communications* 11: 2762.

576 30. Hoebe, K., E. M. Janssen, S. O. Kim, L. Alexopoulou, R. A. Flavell, J. Han, and B.
577 Beutler. 2003. Upregulation of costimulatory molecules induced by lipopolysaccharide

578 and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. *Nat*
579 *Immunol* 4: 1223-1229.

580 31. Reith, W., S. LeibundGut-Landmann, and J. M. Waldburger. 2005. Regulation of MHC
581 class II gene expression by the class II transactivator. *Nature reviews. Immunology* 5:
582 793-806.

583 32. Ting, J. P., and J. Trowsdale. 2002. Genetic control of MHC class II expression. *Cell* 109
584 Suppl: S21-33.

585 33. Feng, C. G., L. Zheng, M. J. Lenardo, and A. Sher. 2009. Interferon-inducible immunity-
586 related GTPase Irgm1 regulates IFN gamma-dependent host defense, lymphocyte
587 survival and autophagy. *Autophagy* 5: 232-234.

588 34. Kamijo, R., H. Harada, T. Matsuyama, M. Bosland, J. Gerecitano, D. Shapiro, J. Le, S. I.
589 Koh, T. Kimura, S. J. Green, T. W. Mak, T. Taniguchi, and J. Vilcek. 1994. Requirement
590 for transcription factor IRF-1 in NO synthase induction in macrophages. *Science* 263:
591 1612-1615.

592 35. Takashiba, S., T. E. Van Dyke, S. Amar, Y. Murayama, A. W. Soskolne, and L. Shapira.
593 1999. Differentiation of monocytes to macrophages primes cells for lipopolysaccharide
594 stimulation via accumulation of cytoplasmic nuclear factor kappaB. *Infection and*
595 *immunity* 67: 5573-5578.

596 36. Seemann, S., F. Zohles, and A. Lupp. 2017. Comprehensive comparison of three
597 different animal models for systemic inflammation. *J Biomed Sci* 24: 60.

598 37. Iqbal, A. J., E. A. Fisher, and D. R. Greaves. 2016. Inflammation-a Critical Appreciation
599 of the Role of Myeloid Cells. *Microbiol Spectr* 4.

600 38. Moliva, J. I., M. V. Rajaram, S. Sidiki, S. J. Sasindran, E. Guirado, X. J. Pan, S. H.
601 Wang, P. Ross, Jr., W. P. Lafuse, L. S. Schlesinger, J. Turner, and J. B. Torrelles. 2014.
602 Molecular composition of the alveolar lining fluid in the aging lung. *Age (Dordr.)* 36:
603 9633.

604 39. Turner, J., A. A. Frank, and I. M. Orme. 2002. Old mice express a transient early
605 resistance to pulmonary tuberculosis that is mediated by CD8 T cells. *Infect. Immun* 70:
606 4628-4637.

607 40. Cooper, A. M., J. E. Callahan, J. P. Griffin, A. D. Roberts, and I. M. Orme. 1995. Old
608 mice are able to control low-dose aerogenic infections with *Mycobacterium tuberculosis*.
609 *Infect. Immun* 63: 3259-3265.

610 41. Vesosky, B., D. K. Flaherty, and J. Turner. 2006. Th1 cytokines facilitate CD8-T-cell-
611 mediated early resistance to infection with *Mycobacterium tuberculosis* in old mice.
612 *Infect. Immun* 74: 3314-3324.

613 42. Rottinghaus, E. K., B. Vesosky, and J. Turner. 2009. Interleukin-12 is sufficient to
614 promote antigen-independent interferon-gamma production by CD8 T cells in old mice.
615 *Immunology* 128: e679-e690.

616 43. Vesosky, B., D. K. Flaherty, E. K. Rottinghaus, G. L. Beamer, and J. Turner. 2006. Age
617 dependent increase in early resistance of mice to *Mycobacterium tuberculosis* is
618 associated with an increase in CD8 T cells that are capable of antigen independent IFN-
619 gamma production. *Exp. Gerontol* 41: 1185-1194.

620 44. Mirza, N., K. Pollock, D. B. Hoelzinger, A. L. Dominguez, and J. Lustgarten. 2011.
621 Comparative kinetic analyses of gene profiles of naïve CD4+ and CD8+ T cells from
622 young and old animals reveal novel age-related alterations. *Aging Cell* 10: 853-867.

623 45. Lowery, E. M., A. L. Brubaker, E. Kuhlmann, and E. J. Kovacs. 2013. The aging lung.
624 *Clinical interventions in aging* 8: 1489-1496.

625 46. Vesosky, B., and J. Turner. 2005. The influence of age on immunity to infection with
626 *Mycobacterium tuberculosis*. *Immunol. Rev* 205: 229-243.

627 47. Eum, S. Y., J. H. Kong, M. S. Hong, Y. J. Lee, J. H. Kim, S. H. Hwang, S. N. Cho, L. E.
628 Via, and C. E. Barry, III. 2010. Neutrophils are the predominant infected phagocytic cells
629 in the airways of patients with active pulmonary TB. *Chest* 137: 122-128.

630 48. Muefong, C. N., and J. S. Sutherland. 2020. Neutrophils in Tuberculosis-Associated
631 Inflammation and Lung Pathology. *Front Immunol* 11: 962.

632 49. Appelberg, R., and M. T. Silva. 1989. T cell-dependent chronic neutrophilia during
633 mycobacterial infections. *Clin. Exp. Immunol* 78: 478-483.

634 50. Lombard, R., E. Doz, F. Carreras, M. Epardaud, Y. Le Vern, D. Buzoni-Gatel, and N.
635 Winter. 2016. IL-17RA in Non-Hematopoietic Cells Controls CXCL-1 and 5 Critical to
636 Recruit Neutrophils to the Lung of Mycobacteria-Infected Mice during the Adaptive
637 Immune Response. *PLoS One* 11: e0149455.

638 51. Lyadova, I. V. 2017. Neutrophils in Tuberculosis: Heterogeneity Shapes the Way?
639 *Mediators Inflamm* 2017: 8619307.

640 52. Moreira-Teixeira, L., P. J. Stimpson, E. Stavropoulos, S. Hadebe, P. Chakravarty, M.
641 Ioannou, I. V. Aramburu, E. Herbert, S. L. Priestnall, A. Suarez-Bonnet, J. Sousa, K. L.
642 Fonseca, Q. Wang, S. Vashakidze, P. Rodríguez-Martínez, C. Vilaplana, M. Saraiva, V.
643 Papayannopoulos, and A. O'Garra. 2020. Type I IFN exacerbates disease in
644 tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and
645 NETosis. *Nature communications* 11: 5566.

646 53. Marzo, E., C. Vilaplana, G. Tapia, J. Diaz, V. Garcia, and P. J. Cardona. 2014.
647 Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.
648 *Tuberculosis (Edinb)* 94: 55-64.

649 54. Zhang, X., L. Majlessi, E. Deriaud, C. Leclerc, and R. Lo-Man. 2009. Coactivation of Syk
650 kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties
651 of neutrophils. *Immunity* 31: 761-771.

652 55. Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health
653 and inflammation. *Nat. Rev. Immunol* 13: 159-175.

654 56. Ernst, J. D. 1998. Macrophage receptors for *Mycobacterium tuberculosis*. *Infect. Immun*
655 66: 1277-1281.

656 57. Neufert, C., R. K. Pai, E. H. Noss, M. Berger, W. H. Boom, and C. V. Harding. 2001.
657 *Mycobacterium tuberculosis* 19-kDa lipoprotein promotes neutrophil activation. *J
658 Immunol* 167: 1542-1549.

659 58. Faldt, J., C. Dahlgren, A. Karlsson, A. M. Ahmed, D. E. Minnikin, and M. Ridell. 1999.
660 Activation of human neutrophils by mycobacterial phenolic glycolipids. *Clin. Exp.
661 Immunol* 118: 253-260.

662 59. Scott, N. R., R. V. Swanson, N. Al-Hammadi, R. Domingo-Gonzalez, J. Rangel-Moreno,
663 B. A. Kriel, A. N. Bucsan, S. Das, M. Ahmed, S. Mehra, P. Treerat, A. Cruz-Lagunas, L.
664 Jimenez-Alvarez, M. Muñoz-Torrico, K. Bobadilla-Lozoya, T. Vogl, G. Walzl, N. du
665 Plessis, D. Kaushal, T. J. Scriba, J. Zúñiga, and S. A. Khader. 2020. S100A8/A9
666 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. *J
667 Clin Invest* 130: 3098-3112.

668 60. Delahaye, J. L., B. H. Gern, S. B. Cohen, C. R. Plumlee, S. Shafiani, M. Y. Gerner, and
669 K. B. Urdahl. 2019. Cutting Edge: *Bacillus Calmette-Guérin*-Induced T Cells Shape
670 Mycobacterium tuberculosis Infection before Reducing the Bacterial Burden. *J Immunol*
671 203: 807-812.

672 61. Guirado, E., L. S. Schlesinger, and G. Kaplan. 2013. Macrophages in tuberculosis:
673 Friend or foe. *Semin. Immunopathol* 35: 563-583.

674 62. Liu, C. H., H. Liu, and B. Ge. 2017. Innate immunity in tuberculosis: host defense vs
675 pathogen evasion. *Cellular & molecular immunology*.

676 63. Queval, C. J., R. Brosch, and R. Simeone. 2017. The Macrophage: A Disputed Fortress
677 in the Battle against *Mycobacterium tuberculosis*. *Front Microbiol* 8: 2284.

678 64. Berrington, W. R., and T. R. Hawn. 2007. *Mycobacterium tuberculosis*, macrophages,
679 and the innate immune response: does common variation matter? *Immunol. Rev* 219:
680 167-186.
681 65. Rakotosamimanana, N., V. Richard, V. Raharimanga, B. Gicquel, T. M. Doherty, A.
682 Zumla, and V. Rasolofo Razanamparany. 2015. Biomarkers for risk of developing active
683 tuberculosis in contacts of TB patients: a prospective cohort study. *The European
684 respiratory journal* 46: 1095-1103.
685 66. Zelmer, A., L. Stockdale, S. A. Prabowo, F. Cia, N. Spink, M. Gibb, A. Eddaoudi, and H.
686 A. Fletcher. 2018. High monocyte to lymphocyte ratio is associated with impaired
687 protection after subcutaneous administration of BCG in a mouse model of tuberculosis.
688 *F1000Res* 7: 296.

689

690 **Figure Legends**

691 **Figure 1. Cytokines and CFUs in LPS mice** **A.** Schematic of injection scheme **B.** Male BALB/c
692 mice were injected with LPS as described. On Day 0, lungs were isolated, and protein content
693 determined via Luminex, normalized to organ mass. Protein levels of TNF, IL-1 β , IL-6, IL-12p70,
694 and IL-10 are shown. **C.D.** LPS or saline BALB/c mice were aerosol-infected with *M.tb* as
695 described. CFU burden at the indicated timepoint of whole (C) or partial (D) lungs from male (C)
696 and female (D) mice are shown. Partial lung CFU were normalized to lung mass. **E.** At the
697 indicated timepoint, protein levels via ELISA of IL-1 β and IFN- γ in male BALB/c mice are shown.
698 Data are representative of 2 independent experiments of 4 or 5 mice in each group. unpaired
699 Student's t test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

700

701 **Figure 2. Day 0 lung cell profiles** Single-cell lung suspensions were obtained at day 0
702 (uninfected) from male BALB/c mice. **A.** Total number of viable cells and **B.** myeloid cells
703 isolated from the lungs of the mice. **B-L.** Flow cytometric analysis of single cell suspensions.
704 Gating done as described in Supp. Fig. S2. **C-G.** Number (No.) of Neutrophils (CD11b $^+$ Ly6G $^+$)
705 (C), Alveolar macrophages (AMs) (Ly6G $^{\text{lo/neg}}$ CD11c $^+$ SiglecF $^+$) (D), CD11b $^+$
706 monocyte/macrophages (mon./mac.) (Ly6G $^{\text{lo/neg}}$ CD11b $^+$ CD11c $^-$) (E), CD11c $^+$ mon./mac.
707 (Ly6G $^{\text{lo/neg}}$ CD11b $^+$ CD11c $^+$) (F), and eosinophils (eos.) (Ly6G $^{\text{lo/neg}}$ CD11c $^-$ SiglecF $^+$) (G) per lung.
708 Absolute number of cells per lung are shown. **H-J.** No. of CD80 $^+$ CD11b $^+$ mon./mac. (H),

709 CD11c⁺ mon./mac. (I), and AMs (J) per lung. **K-L.** Relative fold change CD11b expression (MFI)
710 on neutrophils (K) and CD11b⁺ mon./mac. (L), relative to saline. Data are representative of 2-3
711 independent experiments with 4-5 mice in each group. ; unpaired Student's t test, **P<0.01,
712 ***P<0.001, ****P<0.0001.

713

714 **Figure 3. Lung cell profiles at 7 and 14 d.p.i.** Lung single cell suspensions prepared at the
715 indicated timepoint post-infection as described from male and female BALB/c mice. **A.** Total
716 number of viable cells and **B.** myeloid cells. **B-L.** Flow cytometric analysis of single cell
717 suspensions. Gating done as described in Supp. Fig. S2. **C-D.** No. of neutrophils
718 (CD11b⁺Ly6G⁺) (C), CD11b⁺ mon./mac. (Ly6G^{lo/neg}CD11b⁺CD11c⁻) (D), CD11c⁺ mon./mac.
719 (Ly6G^{lo/neg}CD11b⁺CD11c⁺) (E), AMs (Ly6G^{lo/neg}CD11c⁺SiglecF⁺) (F), and eos. (Ly6G^{lo/neg}CD11c⁻
720 SiglecF⁺) (G) per lung per lung. **H-I.** Relative fold change CD11b expression (MFI) on
721 neutrophils (H) and CD11b⁺ mon./mac. (I) relative to saline. Data are representative of 2
722 independent experiments with 4-5 mice in each group. unpaired Student's t test, *P<0.05,
723 **P<0.01, ****P<0.0001.

724

725 **Figure 4. Macrophages from LPS mice are transiently activated, but detrimental to *in vitro***
726 ***M.tb* infection** **A-C.** At the indicated timepoint, RNA was isolated from pulmonary macrophages
727 from female BALB/c mice and quantified using qRT-PCR. CIITA (A), IRF1 (B), and IRMG1 (C)
728 levels are shown. Data is expressed as relative numerical units (RNU) relative to saline mice,
729 and is representative of 2 independent experiments of 4 or 5 mice in each group. **D.** Mon./mac.
730 were isolated from uninfected female BALB/c mice and infected *in vitro* with *M.tb*. CFUs at the
731 indicated timepoint are shown. Data express as CFU/ml and are represented by 3 independent
732 experiments with 2-5 samples in each group. unpaired Student's t test, *P<0.05, **P<0.01,
733 ***P<0.001, ****P<0.0001.

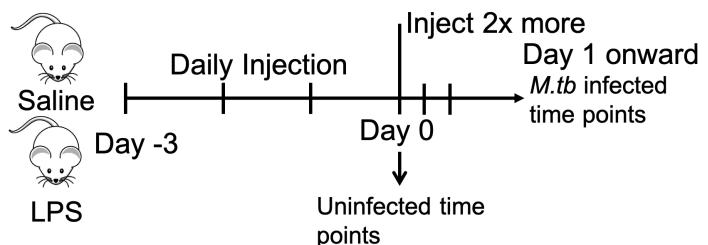
734

735 **Figure 5. Neutrophils from LPS mice are capable of increased *M.tb* killing.** Neutrophils
736 were isolated from uninfected female BALB/c mice as described. **A.** CFUs during *in vitro*
737 infections. **B.** Fold change of CFUs over 2 hr of neutrophil infection, calculated relative to paired
738 30 min. data. **C.** Immunocytochemistry of neutrophil infections. Pink-myeloperoxidase, red-
739 citrullinated histone H3 (R2+R8+R17), blue-DAPI, green-GFP *M.tb*. Representative images of a
740 GFP-*M.tb* event colocalized with an intact cell (neutrophil) shown. **D.** Percent fold change of the
741 location of GFP-*M.tb* in each well, relative to saline. Slides analyzed in a single-blinded manner.
742 19-22 GFP-*M.tb* events analyzed per well. Cell-associated, GFP-*M.tb* colocalized with an intact
743 cell; NET associated, GFP-*M.tb* colocalized with a neutrophil NET. Data are representative of 2
744 independent experiments with 4-5 samples in each group. unpaired Student's t test, **P<0.01.
745

746 **Figure 6. Neutrophils drive control in LPS mice.** Neutrophils were depleted from LPS and
747 saline female BALB/c mice using monoclonal antibodies against Ly6G as described. CFUs at 7
748 d.p.i. in LPS mice injected with depletion or isotype antibodies shown. Data are representative
749 of 3 independent experiments with 2-4 samples in each group. unpaired Student's t test, results
750 not statistically significant.
751

752 **Supplementary Figure 1. Cytokines and CFUs in LPS mice A-C.** On Day 0, male BALB/c
753 LPS and saline organs were isolated, and protein content determined via Luminex (A) and
754 ELISA (B). TNF, IL-1 β , IL-6, IL-12p70, and IL-10 in spleen (B), and CRP in lung, spleen, and
755 liver (B) and are shown. Data is normalized to organ mass **C.** LPS or saline male C57BL/6 mice
756 were aerosol-infected *M.tb* Erdman. CFU content shown at 14 d.p.i. **D.** LPS or saline male
757 BALB/c mice were aerosol-infected with *M.tb* as described. At the indicated timepoint, protein
758 levels via ELISA of TNF are shown. Data are representative of 2 (A,B,D) or 4 (C) independent
759 experiments of 2-5 mice in each group. unpaired Student's t test, **P<0.01, ***P<0.001,
760 ****P<0.0001.

761


762 **Supplementary Figure 2. Flow Cytometry Gating strategy used.** Gating based on
763 fluorescence minus one (FMO) controls. **A-H.** Doublets (A) and dead cells (B) gated out. Parent
764 gate used for absolute number quantification (C) . **D-H** Representative flow cytometry images
765 from LPS and saline mice. CD45⁺ cells (D) , myeloid cells (SSC-L^{hi}) (E), neutrophils
766 (CD45⁺SSC-L^{hi}CD11b⁺Ly6G^{hi}) (F), eosinophils (CD45⁺SSC-L^{hi}Ly6G^{lo/neg}SiglecF⁺CD11c⁻) and
767 alveolar macrophages (CD45⁺SSC-L^{hi}Ly6G^{lo/neg}SiglecF⁺CD11c⁺) (G), and
768 monocyte/macrophages (CD45⁺SSC-L^{hi}Ly6G^{lo/neg}SiglecF⁻ CD11b⁺CD11c⁺) and (CD45⁺SSC-
769 L^{hi}Ly6G^{lo/neg}SiglecF⁻ CD11b⁺CD11c⁻) (H).

770

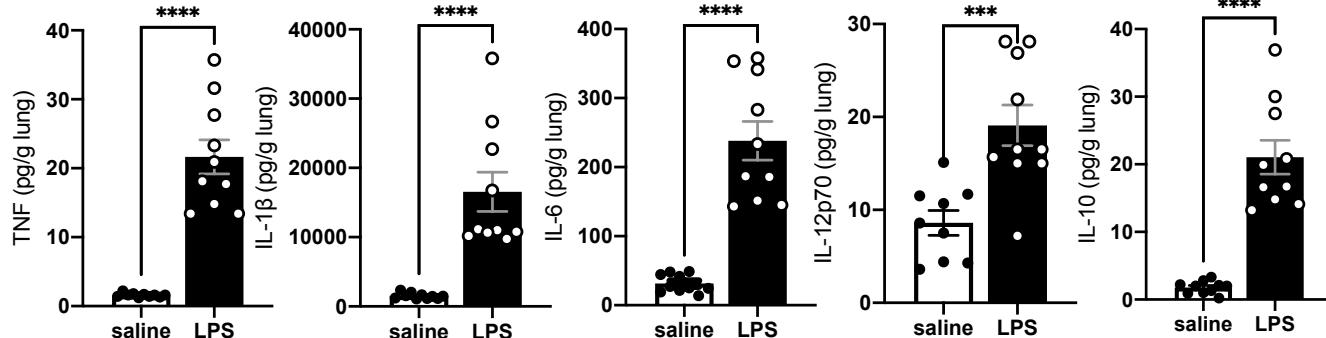
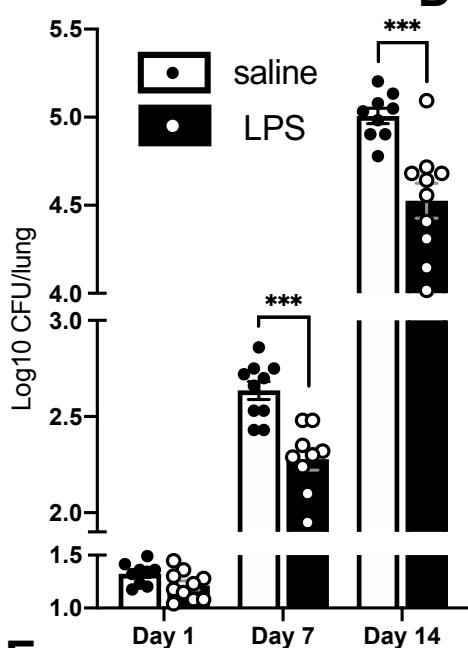
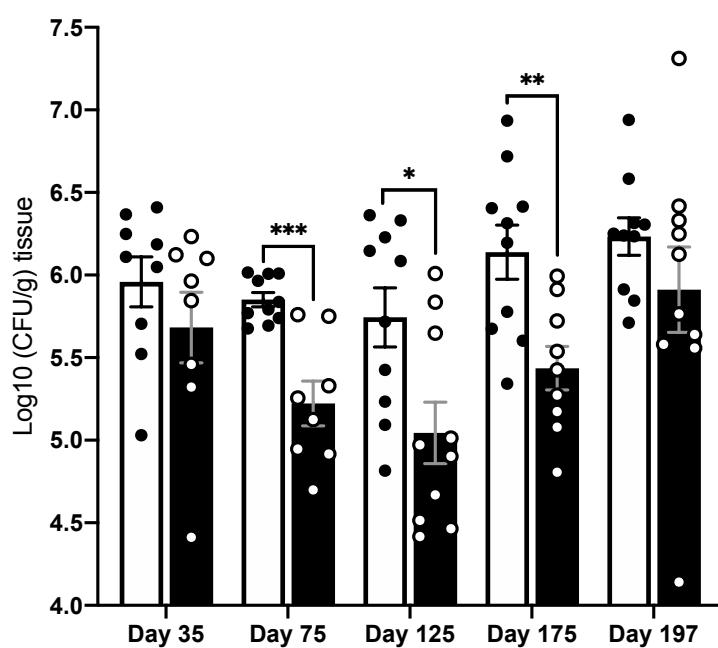
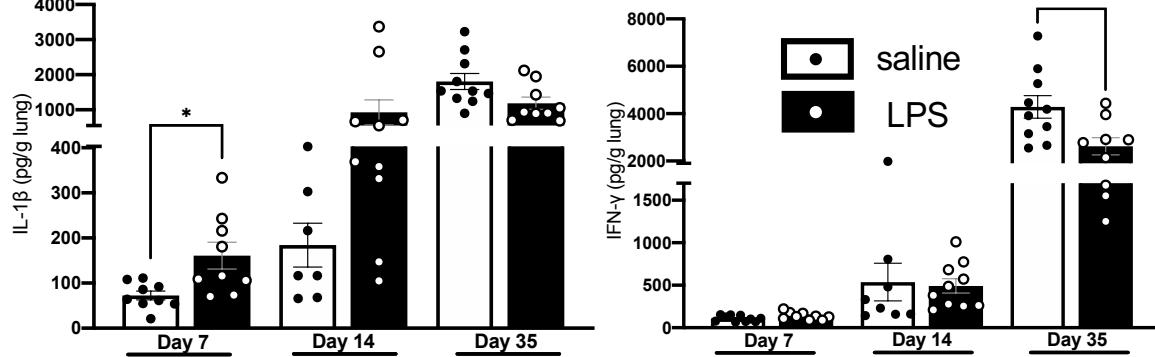
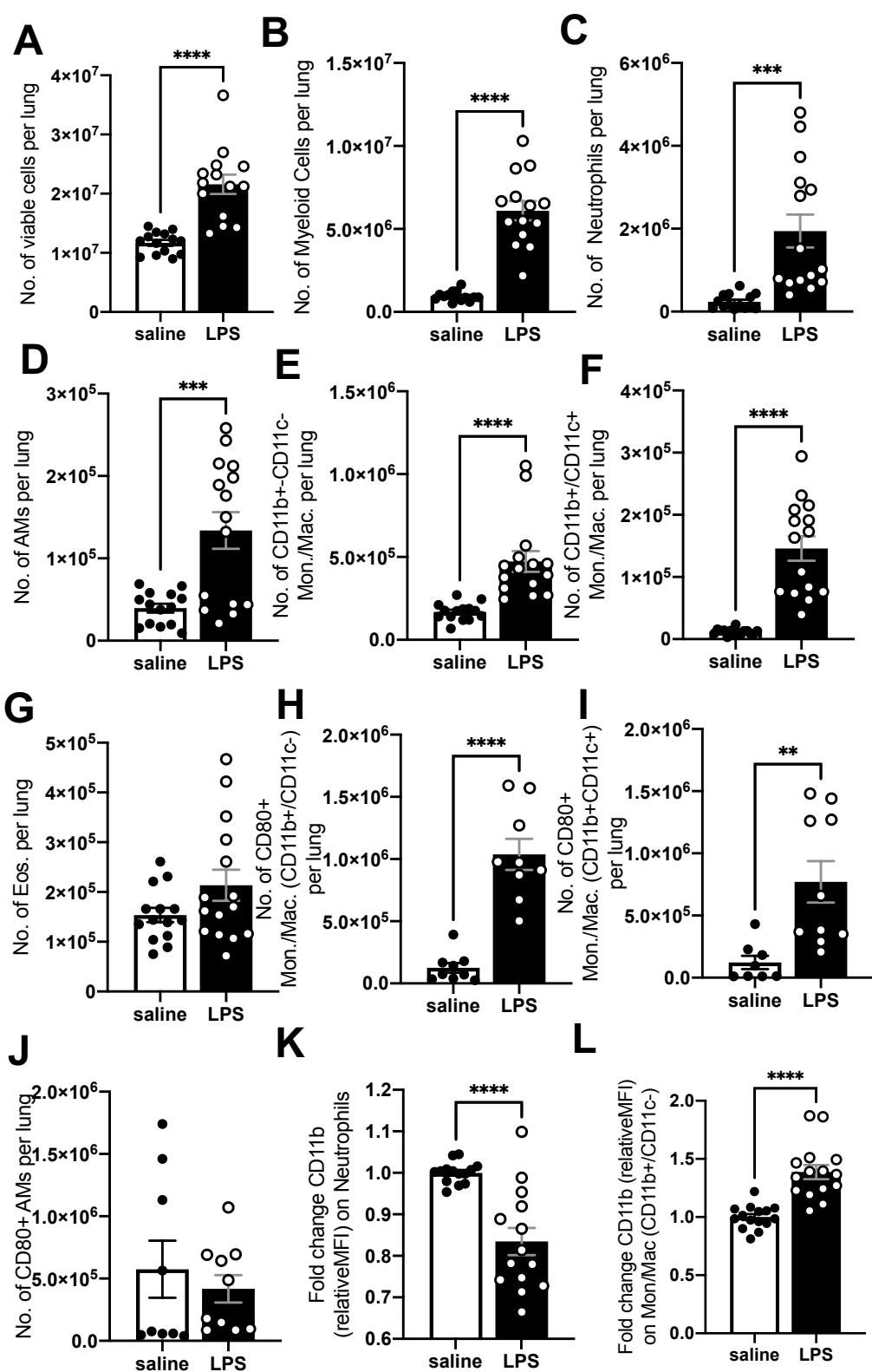

771 **Supplementary Figure 3. Intracellular flow cytometric analysis of lung neutrophils in mice**
772 **injected with neutrophil depleting antibody or isotype as described.** Gating strategy used
773 as in supp. Fig. S2. **A.** Representative images of surface Ly6G vs. intracellular Ly6G in LPS
774 mice. (CD45⁺SSC-L^{hi}CD11b⁺), gated from total CD11b⁺ myeloid cells. **B.** Representative images
775 of LPS/saline mice injected with depletion antibody/isotype at day 0. Ly6G is stained
776 intracellularly. (CD45⁺SSC-L^{hi}CD11b⁺Ly6G^{hi-intracellular}), gated from total myeloid cells.

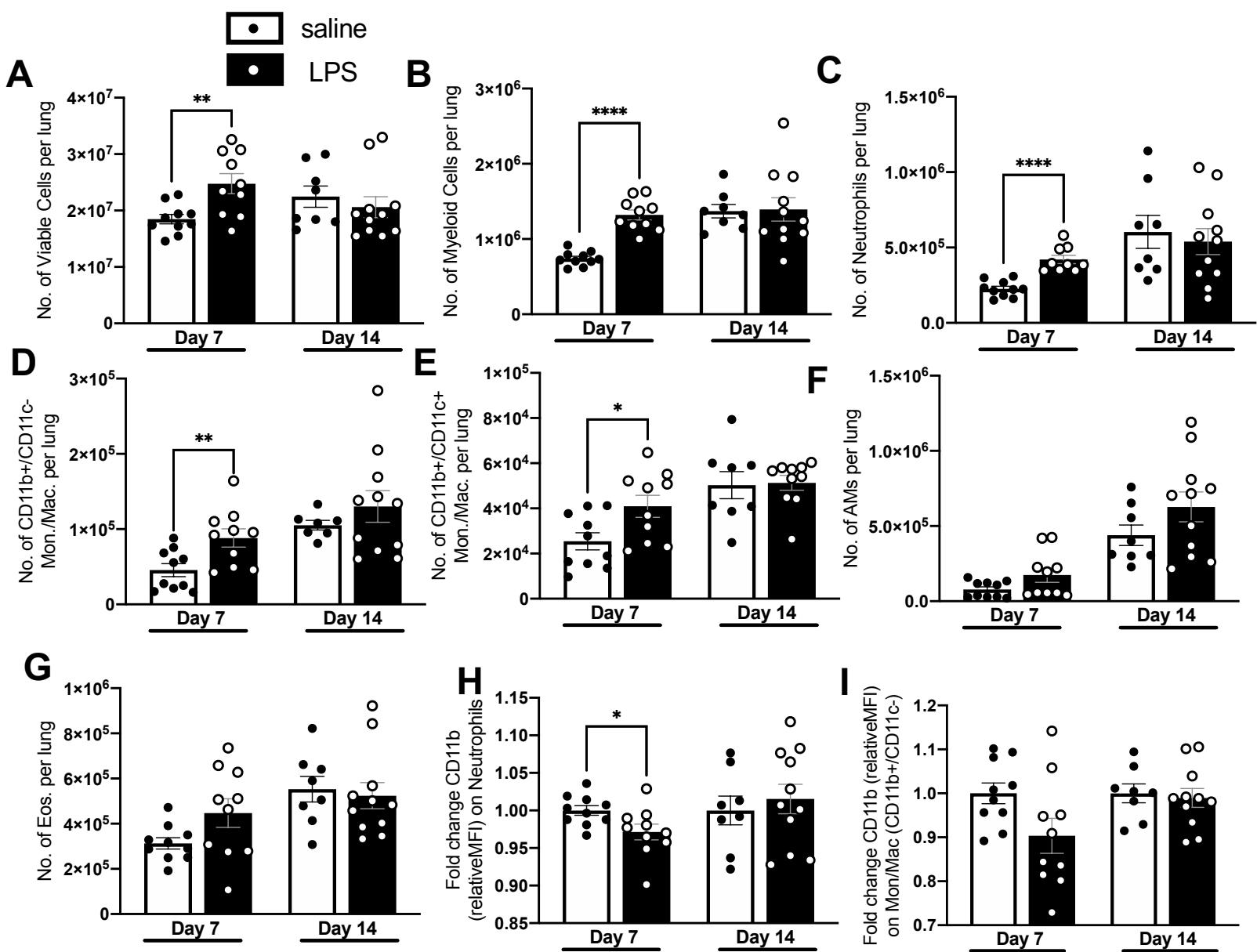
Figure 1. Cytokines and CFUs in LPS mice


A


B


C


D


E

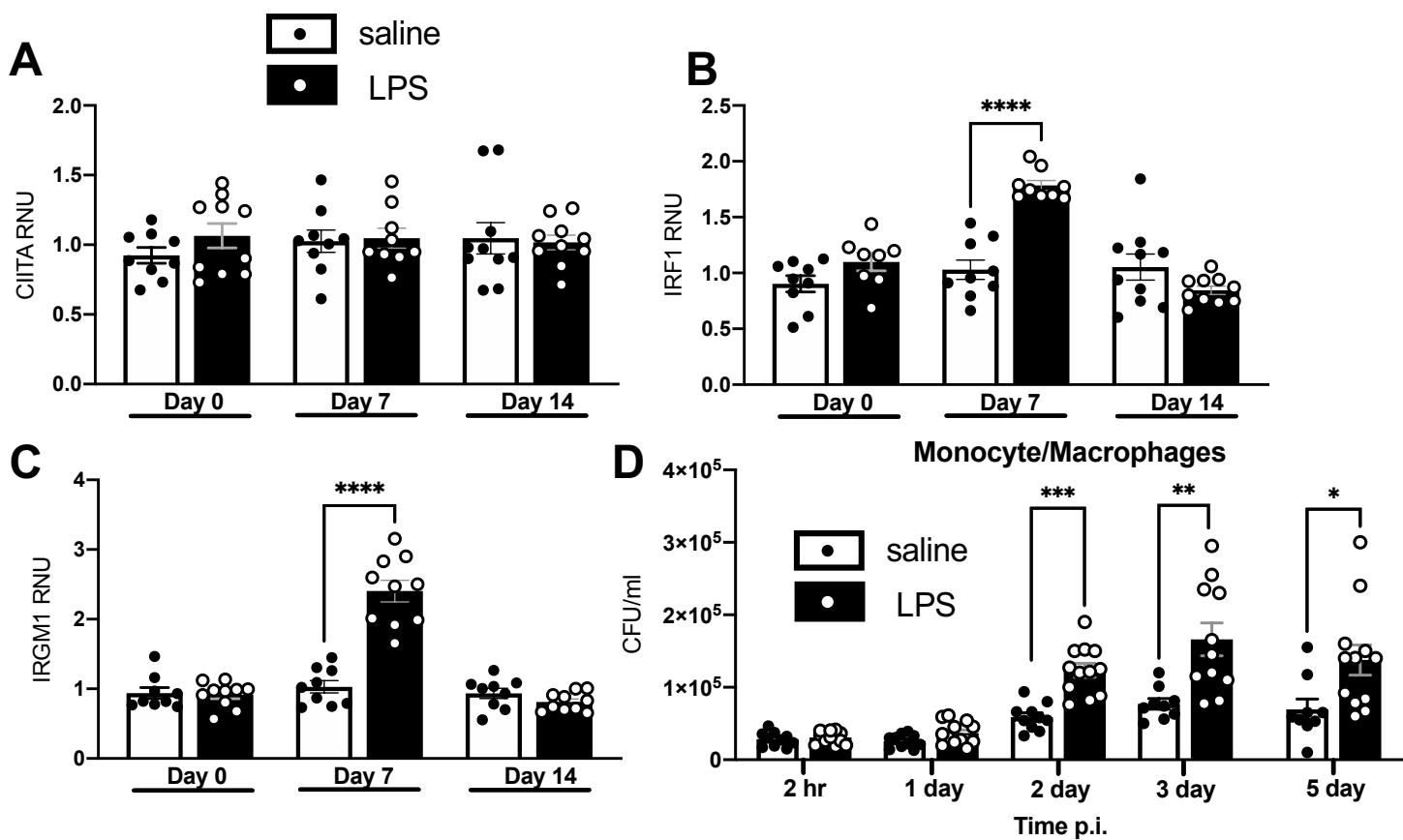

Figure 2. Day 0 lung cell profiles

Figure 3. Lung cell profiles at 7 and 14 d.p.i.

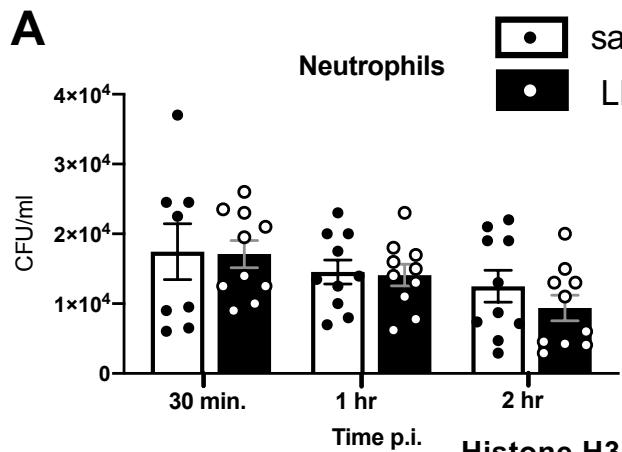


Figure 4. Macrophages from LPS mice are transiently activated, but detrimental to *in vitro* *M.tb* infection

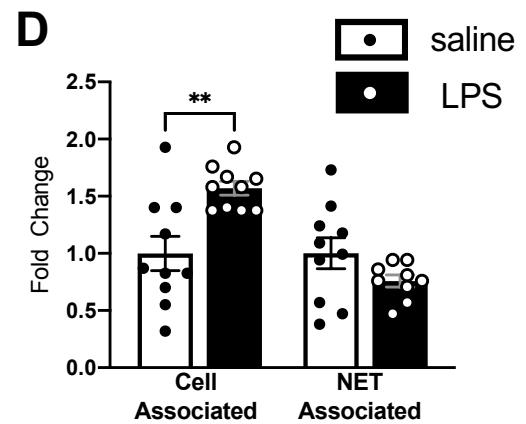
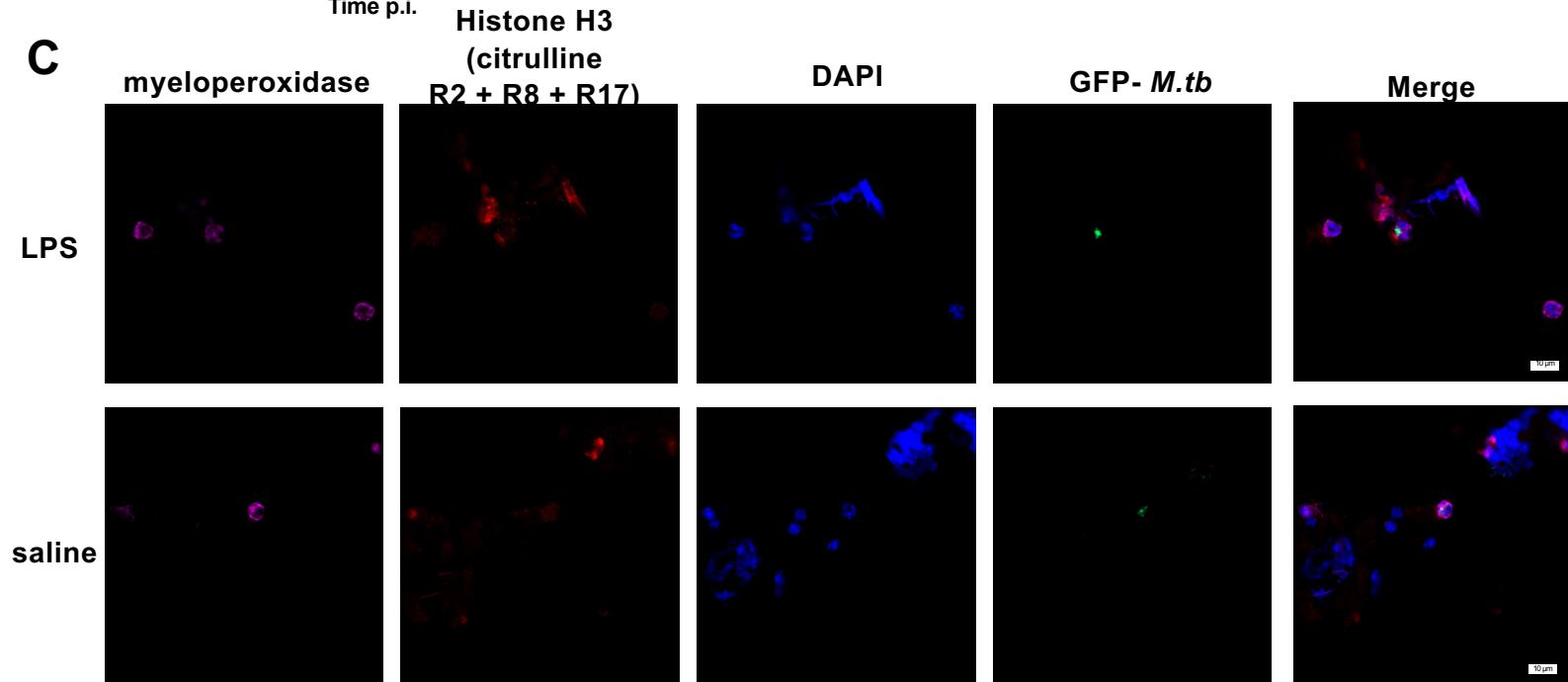
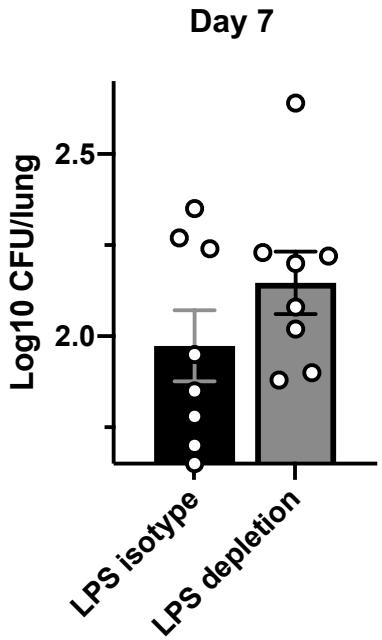


Figure 5. Neutrophils from LPS mice are capable of increased *M.tb* killing


A


D

C

Figure 6. Neutrophils drive control in LPS mice

Table 1: Neutrophils present in mice lungs depleted of neutrophils at day 0

Sample	Number of neutrophils \pm SD (if applicable)	Fold change vs. saline isotype
LPS isotype	7.08×10^6	32.32
LPS depletion	$3.58 \times 10^6 \pm 4.25 \times 10^5$	16.34
saline isotype	2.19×10^5	1.00
saline depletion	1.11×10^5	0.50

The average absolute number of neutrophils per lung at day 0 are shown. Saline mice included as reference. Data representative of 1 independent experiment with 1-2 samples in each group.