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ABSTRACT 

Large-scale intracellular signalling during developmental growth or in response to environmental 

alterations are largely orchestrated by chromatin within the cell nuclei. Chemical and conformational 

modifications of the chromatin architecture are critical steps in the regulation of differential gene 

expression and ultimately cell fate determination. Therefore, establishing chemical properties of the 

nucleus could provide key markers for phenotypic characterisation of cellular processes on a scale of 

individual cells.  

Raman microscopy is a sensitive technique that is capable of probing single cell chemical 

composition - and sub-cellular regions - in a label-free optical manner. As such, it has great potential 

in both clinical and basic research. However, perceived limitations of Raman spectroscopy such as 

low signal intensity and the difficulty in linking alterations in vibrational signals directly with ensuing 

biological effects have hampered advances in the field. Here we use immune B lymphocyte 

development as a model to assess chromatin and transcriptional changes using confocal Raman 

microscopy in combination with microfluidic devices and correlative transcriptomics, thereby linking 

changes in chemical and structural properties to biological outcomes. Live B lymphocytes were 

assessed before and after maturation. Multivariate analysis was applied to distinguish cellular 

components within each cell. The spectral differences between non-activated and activated B 

lymphocytes were then identified, and their correlation with known intracellular biological changes 

were assessed in comparison to conventional RNA-seq analysis. Our data shows that spectral 

analysis provides a powerful tool to study gene activation that can complement conventional 

molecular biology techniques and opens the way for mapping the dynamics in the biochemical 

makeup of individual cells. 
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Introduction 

The ability to measure and quantify molecular changes during cellular development can enable the 

characterisation of cells during differentiation, cellular responses to extracellular cues, or disease 

progression. Conventional techniques, such as fluorescent tagging of molecules visualized with 

fluorescence microscopy(1) and transcriptomics and proteomics profiling (2), have been extensively 

used to assess molecular changes occurring within cells. However, their stark limitations are the need 

for target labelling and/or destruction of the biological specimens under study. That is why, non-

invasive and label free vibrational spectroscopy techniques – including Fourier Transform Infrared 

(FTIR) and Raman microscopy – stand out.  

Vibrational spectroscopy exploits the interaction between light and molecules to probe their 

vibrational modes in order to obtain a “chemical fingerprint” of a sample. Both FTIR and Raman have 

been used to monitor modifications to or changes in expression of specific biomolecules, such as DNA 

levels during cell cycle(3–7), protein modifications(8, 9) and DNA damage(10–13). However, it is 

becoming apparent that, although it is possible to identify specific signals associated with intracellular 

biochemical changes, a whole range of subtle spectral variations characterise cell state changes. This 

is not surprising, as cellular responses induce a swarm of transcriptional up- and down-regulation 

orchestrating changes to the transcriptomic and proteomic profile of the cell. Using multivariate 

analysis, spectral information enables classification of cell states or phenotypes of mammalian (14–

25), bacterial, and yeast cells (26, 27).   

It is this label-free classification that has great potential both in i) clinical settings, for disease diagnosis 

and prognosis, and ii) in biomedical research, for example in cell sorting for downstream processes. 

How powerful this tool can be, depends upon our understanding of the correlation between the 

spectral output and the underlying biochemical pathways within the cells. In bacterial research, 

antibiotic resistance is of great interest. Spectral markers of antibiotic resistance have been identified 

at the population level(26), and more recently a correlation between peak intensities and expression 

levels of antibiotic resistance contributing genes has been found (26). Importantly, this was done in 

the absence of antibiotics, indicating that the transcriptional profile of the given cells, affected on its 

turn by environmental changes(28), rather than their phenotypic response to the presence of 

antibiotics, were responsible for the spectral signatures (26). This correlation between Raman spectra 

and transcriptomic data has further been explored in a comprehensive manner in yeast where it has 

been shown that Raman spectra and transcriptomic data are linearly correlated (27). In both yeast 

and bacterial cells, several environmental conditions have been examined. A linear transformation 

matrix describing the relationship between the Raman data and the transcriptomic data has made it 
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possible to predict an environment-specific Raman spectrum based on transcriptomic data. 

Conversely, the transcriptome of specific environment has been predicted based on the Raman data 

(27).  

Transcriptomic readout consists of thousands of RNA transcripts, whereas Raman spectroscopy can 

measure the phenotypic expression of the RNA transcripts, i.e. the biochemical result of the 

transcriptomic profile. Noteworthy, all transcripts do not change independently; instead, strong 

correlations are found between transcripts that are controlled by global regulators, reflected in the 

Raman signals. In the yeast study, it has been determined that only 17 transcripts are sufficient for 

determining a linear correlation with the Raman spectra. The transcripts largely responsible for the 

linear correspondence have been identified by determining the variable importance in projection (VIP) 

values for each transcript. The top scoring transcripts were primarily non-coding RNAs in yeast and 

ribosome-related transcripts in bacteria (27). The correlation between them does not mean that the 

Raman spectra directly measure the expression levels of the transcripts in question. Instead, the 

downstream effects – i.e. changes to expression levels of large groups of genes and the resulting 

change in biochemical composition of the cells – are quantified by Raman. Thus, by analysing the 

correlation between Raman spectra and transcript expression levels, the key cellular pathways 

affecting the biochemical profile assessed by Raman spectroscopy may be identified.   

To our knowledge i) the correlation between Raman spectra and transcriptomic readouts has never 

been studied in mammalian cells, and ii) it has not been examined in the context of cell differentiation. 

To explore this correlation in mammalian cells, B lymphocytes were chosen as a model cell system. 

Immune activation of these cells initiates large-scale changes to the transcriptomes, resulting in the 

differentiation of naïve B cells into mature B cells and class switch recombination (CSR) of the 

immunoglobulin receptor. Furthermore, as CSR requires reorganisation of the DNA, it is a highly 

regulated process. A large number of regulatory proteins and RNAs have been shown to be involved 

(29–35). However, the complex coordination of regulatory pathways and expression modulations is 

not yet fully understood. Novel techniques and approaches are needed to identify key regulatory RNAs 

and proteins previously unlinked to the B cell activation differentiation process.  

 

Materials and Methods 

CH12F3 cell culture and immune activation 

CH12F3 cells were cultured in RPMI 1640 medium with 10% fetal bovine serum, 5% NCTC-109, 1% 

Pen-Strep, 1% glutamine, 1% sodium pyruvate and 50 µM β-mercaptoethanol. The cells were immune 
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activated by incubating them with a cytokine cocktail (CIT) consisting of 2.5 µg/ml anti-CD40, 10 ng/ml 

IL-4 and 50 ng/ml TGFβ.  

 

Flow cytometry and antibodies 

Flow cytometry measurements, for monitoring class switching assays of CH12F3 cells, were performed 

using a BD Accuri C6 Plus flow cytometer. 1% PFA fixed CH12F3 cells were stained with FITC Anti-

mouse IgA antibody and APC Anti-mouse IgM antibody, both 1:200 dilution.  

 

Microfluidic device preparation 

A microfluidic silicon mould was designed to create a small reservoir chip for maintaining cell viability 

during Raman measurements as previously described(36). This mould was then replicated in 

polydimethylsiloxane (PDMS) using a 9:1 ratio of base-to-curing agent. The PDMS was heated at 70°C 

for one hour and cut to size. A 1.5 mm biopsy punch was used to create an inlet and outlet within the 

reservoir. The chip was bonded to a glass coverslip using surface ionisation by oxygen plasma 

treatment (10 second exposure to 30 W plasma power in 1 mbar of air).  

 

Sample preparation and Raman mapping  

Cells were washed in PBS, pelleted, and resuspended in PBS. PBS was flowed into the bonded chip 

using Portex tubing PE 0.86×0.33mm BxW using a syringe and a 21G microlance. Cells were flowed 

into the chip in the same way and left to settle for minimum 30 minutes. Raman maps were collected 

using a WITec alpha300R confocal Raman microscope system consisting of a 532 nm laser, a fibre-

coupled UHTS spectrometer and an optical microscope with a 0.7 NA, 50× objective. The microfluidic 

chip containing the cells in PBS suspension was held coverslip side facing up in a custom holder. Single 

cells (adhering to the glass) were identified in white light imaging mode, then the focus was adjusted 

in Raman mode using the oscilloscope to maximise the scattered signal intensity (of the C-H stretching 

peak in the range 2700-3000 cm-1), and cells maps were collected with 5 measurement points per 

micrometre using a 0.1 s integration time per point. Cells were kept in the microfluidic chip for a 

maximum of four hours during measurements, before a new chip with fresh cells was prepared.  

 

Raman data analysis 
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Data processing was performed using MATLAB 2020a. Common k-means analysis with 10 clusters was 

performed on 118 cell maps (58×D0, 60×D4). This involved the calculation of similarity measures 

between each of the spectra from all 118 maps (a total of 716,250 spectra). As the most similar spectra 

are grouped together, the spectrum of the new group becomes the mean of its members. At the end 

of the process, when ten similar group clusters remained, they contained the spectra from regions of 

cells with similar biochemical constituents, each represented by a mean spectrum or centroid. Each 

of the 10 clusters was assigned as nucleus, cytoplasm or background, based on the spectral profiles of 

the cluster centroids. Hence, a mean nucleus, cytoplasm, whole cell (cytoplasm + nucleus) and 

background spectrum was extracted from each cell map. An array of 13 maps (5×D0, 8×D4) was 

discarded from the dataset before further analysis, since they either contained no pixels identified as 

nucleus or cytoplasm, or very few pixels associated with nucleus – with a nucleus size of less than 3 

µm.  

To remove the background signal (from the coverslip and PBS), the background spectra were 

subtracted from the nucleus and cytoplasm spectra for each map in three steps. (1) The spectra were 

baseline corrected by subtracting an offset (based on the mean intensity in the range 1780-1840 cm-

1). (2) The background spectra were smoothed using a Savitzky-Golay filter (order = 2, framelength = 

99) to reduce the effect of noise. (3) The smoothed background spectra were then subtracted from 

the nucleus, cytoplasm and whole cell spectra.  

Principal Component Analysis (PCA) was performed on nucleus, cytoplasm and whole cell spectra. For 

each principal component, a t-test was used to determine if scores were significantly different 

between D0 and D4 cells. Linear Discriminant Analysis (LDA) was also performed to calculate a 

supervised classification model based on a combination of the PC scores. The resulting linear 

discriminant function could be used to single out the key peaks responsible for the discrimination 

between D0 and D4 cells.  

 

RNA extraction 

Total cell RNA was extracted by TRIzol followed with chloroform for phase separation and 100% 

isopropanol for RNA precipitation. Total RNA was eluted in 30 µl RNase-free water after being washed 

twice in 75% ethanol. The RNA concentration was assessed using a NanoDrop 2000 

spectrophotometer (Thermo Scientific, Waltham, MA, USA). The RNA yield and size distribution were 

analysed using an Agilent 2200 Tapestation with RNA Screentape (Agilent Technologies, Foster City, 

CA, USA). 
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RNA-seq library preparation, next-generation sequencing and data processing 

For small RNA library preparation, RNA aliquots were used for library preparation using NEBNext 

Multiplex Small RNA library preparation kit (New England Biolabs, Ipswich, MA, USA). The PCR 

amplified cDNA construct (from 140–160 bp) was purified using a QIAquick PCR Purification kit 

(Qiagen). The purified cDNA was directly sequenced using an Illumina MiSeq 2000 platform (Illumina, 

San Diego, CA, USA).  

For long RNA library preparation, libraries were constructed using Ribo-Zero Magnetic Gold Kit 

(Human) (Illumina, San Diego, CA, USA) and NEBNext® Ultra™ RNA Library Prep Kit for Illumina (New 

England Biolabs) according to the manufacturer’s instructions. Libraries were tested for quality and 

quantified using qPCR (Kapa Biosystems, Woburn, MA, USA). The resulting libraries were sequenced 

on a HiSeq 2500 instrument that generated paired-end reads of 100 nucleotides. 

Raw sequencing reads were checked for potential sequencing issues and contaminants using FastQC. 

Adapter sequences, primers, number of fuzzy bases (Ns), and reads with quality scores below 30 were 

trimmed. Reads with a length of less than 20 bp after trimming were discarded. Clean reads were 

aligned to the mouse reference genome (GRCm38, 53,465 annotated genes in total) using the TopHat 

2.0 program, and the resulting alignment files were reconstructed with Cufflinks (37). The 

transcriptome of each sample was assembled separately using Cufflinks 2.0 program. 

 

Sequencing data analyses and statistical methods 

Read counts of each sample were subjected to cluster analysis (38) and differential expression analysis 

using RNA-seq 2G (39). Genes with |fold-change| ≥1, P value ≤0.05 and false discovery rate (FDR) 

≤0.05 were considered statistically significant. Expression of significant differentially expressed genes 

in different B cell subsets was determined using My Geneset ImmGen (40). Interaction and gene 

targets of identified DE ncRNAs in cells and paired EVs were predicted by miRNet and ENCORI (41, 42). 

ncRNAs-target interaction network was constructed by Cytoscape v3.8.0 (43).  

 

Partial least squares regression  

To analyse the potential correlation between the Raman data and the transcriptomic data, Partial 

Least Squares (PLS) regression was applied to the datasets. The transcriptomic data consisted of the 

read counts for 17,725 transcripts with three D0 samples (D0-1, D0-2, and D0-3) and three D4 samples 

(D4-1, D4-2, and D4-3). Dimension reduced Raman data were used in the form of PC scores. To 
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correspond to the three replicates for each condition of the transcriptomic data, the Raman cell 

measurements were randomly assigned to three groups of D0 and three groups of D4. 

PLS regression analysis was performed with a leave-one-out approach; each of the six samples was 

removed in turn. Each leave-one-out analysis determined a linear regression model between the 

Raman (R-i) and transcriptomic (T-i) datasets – meaning the PLS regression coefficients matrix, BETA-i 

was found, so that  

!!" = #$%&!" ∙ %!"   

For each PLS regression analysis, Raman PC scores were predicted for the left-out sample, i, using the 

transcriptomic data (Ti) and the BETA-i matrix.  

To assess the validity of the predicted Raman PC scores (and thus the regression model), they were 

compared against the single cell PCA scores. For further assessment, the predicted Raman PC scores 

were then converted to LDA scores and again compared with the single cell data.  

 

Results 

Identifying nucleus and cytoplasm in single cell Raman maps using common k-means  

Raman maps were collected from 118 live CH12F3 cells suspended in isotonic PBS-filled microfluidic 

chambers. The cells remained in place throughout measurements. Common k-means analysis was 

applied to identify cell (vs background) pixels, as well as to distinguish the nucleus from the cytoplasm 

within each cell (Figure 1a-c). Additional examples are shown in Figure S1a-c. Inspection of the cluster 

centroid spectra (Figure 1b) informed the segmentation.  

The quality of the segmentation was assessed in two ways. Firstly, the mean nucleus spectrum was 

compared to the mean cytoplasm spectrum (Figure 1d). The most pronounced differences were 

associated with nucleic acid and lipid/fatty acid signals, with higher intensities found in the nucleus. 

Secondly, the size of the nucleus relative to the whole cell was assessed and compared with that from 

epifluorescence microscopy images of CH12F3 cells incubated with nucleic acid stains (Figure 1e). No 

statistically significant difference was found between the Raman and epifluorescence data. A larger 

variance was seen for the Raman data – possibly attributed to a number of smaller and kidney shaped 

nuclei (Figure S1f-g). These were not excluded as they were not outliers in the Raman spectral dataset.  
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Quantifiable spectral differences between non-activated and activated B cells  

To assess large-scale chromatin conformational and transcriptomic alterations, two groups of CH12F3 

cells were compared: non-activated cells (D0) and cells at 96 hours post immune activation with 

cytokine (CIT: anti-CD40, IL-4 and TGFβ) cocktail (D4), as shown in Figure 2a. The immune activation 

of the cells was verified by quantifying the percentage of IgM-producing cells versus IgA-producing 

cells using flow cytometry (Figure S2).  

A prerequisite for further analysis and correlation with the transcriptomes was the ability to separate 

D0 and D4 cells based on their Raman spectra. Focusing on the nucleus, a number of spectral 

differences are apparent between D0 and D4 cells (Figure 2b). Namely, a peak at 786 cm-1 shows a 

large variation between the two activation states. The neighbouring peak at 752 cm-1 does not show 

this variation. Both of these peaks are associated with nucleic acids (44–46). The distribution of the 

752 cm-1 to 786 cm-1 peak ratios was found to be significantly different between D0 and D4 cells (Figure 

2c). This nucleic acid peak ratio therefore has the potential to provide a measure of activation status 

through the measurement of changes to DNA within the cells.   

To further explore the spectral differences between D0 and D4 cells, multivariate approaches were 

applied. An unsupervised method, Principal Component Analysis (PCA), showed a separation between 

D0 and D4 cells (Figure 2d-e and Figure S3a-c). Four PCs had a statistically significant difference 

between D0 and D4 scores. The loading spectra of those showed a range of peaks associated with 

both nucleic acids, lipids and proteins (Figure S3d-g). Nucleic acid peaks around 786 cm-1 (PC1) and 

752 cm-1 (PC1, PC4 and PC5) were amongst these, supporting the use of that peak ratio to distinguish 

between D0 and D4. Although a number of other nucleic acid peaks were identified, it is clear that 

intracellular changes of protein and lipid are also drivers for the spectral differences.   

A supervised method, Linear Discriminant Analysis (LDA) was then applied, building on the PC scores 

and determining a classifier to discriminate between D0 and D4 cells. The two groups showed a very 

good separation (Figure 2f). Using a leave-one-out analysis, it was determined that the LDA classifier 

had a sensitivity of 73.1% and a specificity of 81.1% for identification of D4 cells. The loading plot for 

the classifier, representing the spectral data separating D0 and D4 cells, consisted of a range of peaks 

(Figure 2g). Nucleic acid peaks in the 751-790 cm-1 range are again present. The largest peaks include 

nucleic acid, protein, sugar and lipid, such as guanine and cytosine (782 cm-1, 1251 cm-1, 1577 cm-1(47, 

48)), phosphodiester (812 cm-1, 897 cm-1, 1424 cm-1(47)), tryptophan (754 cm-1, 761 cm-1, 880 cm-1(48–

52)), polysaccharide structure and glucose (841 cm-1, 1117 cm-1(46, 53, 54)) and CH2 deformation 

(1304 cm-1, 1321 cm-1(46, 55)).  
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These results show that is possible to distinguish between D0 and D4 cells based on their Raman 

spectra. Peaks associated with nucleic acids are important for this separation, but alterations to other 

biomolecules are also detectable.  

 

Differing transcriptomic profiles of non-activated and activated B cells 

The transcriptomic profiles of D0 and D4 cells were determined and analysed. Read counts were 

measured for a total of 17,725 transcripts, and differential gene expression analysis using DESeq2 was 

applied to identify genes that were up- or down-regulated in response to immune activation. Figure 

3a shows transcripts with the largest change of expression between D0 and D4 samples clustered 

based on Euclidean distance. The two transcripts Ighm and Igha, which code for the immunoglobulin 

heavy chain constant regions of IgM and IgA respectively, are highlighted. Ighm expression is down-

regulated in D4, while Igha is up-regulated. This is a hallmark of the CH12F3 class switching response 

and in agreement with the IgM to IgA isotype switching measured by flow cytometry (Figure S2).  

The expression profiles of D0 and D4 cell samples clearly illustrate that several thousands of genes are 

up- or down-regulated upon immune activation of CH12F3 cells. These data are in line with published 

results regarding genes that are over-expressed during B cell maturation(56–59). For example, we 

could identify that genes AID, Bcl11a, CD40, and Ccr6 go up 2-, 3-, 2.6-, 8.7-fold in D4 compared to D0, 

respectively. This further illustrates the validity of our RNA-seq results. Further whole transcriptomic 

profiling, including PCA analysis (Figure 3b) and network comparison (Figure 3c), demonstrated a clear 

separation between D0 and D4 samples and the validity of our experimental approach.  

PCA analysis on the expression profiles of D0 and D4 CH12F3 cohort samples were performed using 

Clustvis software tool(38). Differences were assessed after log2 transformation of normalised read 

counts at a threshold of  p < 0.05 for multiple comparisons. The variation of expression profile 

between D0 and D4 CH12F3 was displayed in first and second dimensions (PC1 vs PC2). Statistical 

significance was set at false discovery rate (FDR) < 0.05. As a result, we could observe that the three 

D0 samples cluster in proximity together, as do the three D4 samples. But the D0 versus D4 clustered 

markedly separately from each other when plotted on the same graph (Figure 3b). This further 

validates the distinction in overall transcriptional profile of our cohorts. To further identify the specific 

basis for this distinction, we used Genemania pathway analysis tool(60). After including all hits in D4 

expressed at log2 fold change > 1 with FDR < 0.05, we identified the top pathways to include the 

chemokine signalling pathway, leukocyte activation, immune cell differentiation, and B cell activation 
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amongst other B cell related processes (Figure 3c). This further validates the specificity of our 

experimental design and its consistency. 

 

Linear correlation between transcriptomic and Raman data 

Alterations in gene expression can ultimately cause changes in intracellular protein levels, as well as 

in other biomolecules through changes to metabolic pathways and intracellular structures. All these 

changes are bound to affect Raman spectral readouts. That a correlation exists between 

transcriptomic data and Raman spectra, as demonstrated for yeast and bacteria(27), is therefore not 

unexpected, albeit it was hard to predict whether a linear correlation would exist in a complex 

mammalian cell such as a B lymphocyte.  

To test this hypothesis, a Partial Least Squares (PLS) regression analysis was applied to create a model 

for the prediction of Raman data from transcriptomic data of CH12F3 cells. A PLS regression model 

was determined from three D0 samples (D0-1, D0-2, D0-3) and three D4 samples (D4-1, D4-2, D4-3) 

of transcriptomic and Raman data (Figure 4a and Figure S4a). Using a leave-one-out approach, the 

validity of the linear regression model was tested on each sample in turn; one sample, i, was left out, 

and a PLS regression coefficients matrix, BETA-i, was determined from the remaining five samples. This 

matrix was then used to predict the Raman scores of the left-out sample.  

!#$%&"'(%& = #$%&!" ∙ %"  

To assess the validity of these predictions and thus the PLS regression model, the predicted Raman 

data were compared to the single cell D0 and D4 data for each sample. Plotting the predicted PC scores 

against the single cell scores shows D0-2 and D4-2 within their expected regions (Figure 4b) and the 

rest around the intersection between D0 and D4 (Figure S4b-e). Further, by converting the predicted 

PC scores into their respective LD scores, the predicted group membership (D0 or D4) could be 

assessed (Figure 4c). The three D0 samples are found within the D0 region, while the D4 samples are 

found within the D4 region.   

These results show that a linear correlation exists between transcriptomic profiles and Raman spectra 

of CH12F3 cells. Specifically, the variation in transcript expression levels between D0 and D4 cells is 

reflected in variation in Raman spectra of D0 and D4 cells – and transcriptomic data can be used to 

predict Raman data of CH12F3 cells.  

 

Identification of key transcripts for the correlation between Raman data and transcriptomic data  
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The importance of each transcript for the regression model is of particular interest, as this may reveal 

genes or pathways that are essential for the immune activation process. As shown in Figure 3, 

thousands of transcripts are significantly differentially expressed between D0 and D4. However, 

translation levels, protein modifications, and other regulatory mechanisms add further complexity to 

the final biochemical composition of the cell. A transcriptional profile does not account for these 

additional layers of regulation. Identifying transcripts of high importance for the correlation with the 

intracellular biochemical changes as measured by Raman microscopy may therefore be of great value. 

The Variable Importance in Projection (VIP) score was determined for each transcript. The top 20 

transcripts for the PLS regression are shown in Figure 5a.  We term these hits the VIP list. Upon further 

analyses of the protein coding entries in our VIP list, we could identify that many of our identified hits 

do indeed correlate with expression profiles from in vivo activated B cells isolated from murine 

germinal centre splenocytes (Figure 5b). Moreover, their expression quantifications (Figure 5c) 

correlate with post-activation B cell responses. It is worth noting that germinal centre splenocytes and 

CH12F3 cells are not directly comparable given the immortalised nature of the CH12F3 cell line. That 

is why we configured the in vivo germinal centre B cell response into three broad groups that we 

termed pre-, mid-, and post-activation (Figure 5b-c). We also took two representative in vivo cohorts 

for each of these three broad groups as represented in Figure 5b to ensure maximum congruency 

between ex vivo and in vivo analyses. 

Ighm and Igha are both found in the top four gene hits of the VIP list (Figure 5a). Although their change 

in expression levels results in the isotype switching from IgM to IgA, it is worth noting that they by no 

means are the most differentially expressed genes (Figure 3). Their high importance for the correlation 

with the Raman data therefore underlines that the transcripts with the highest fold change are not 

necessarily the most informative of the changing biochemical composition of a cell. The importance 

of IgM and IgA expression in the immune activation process is obvious, and their high presence on the 

VIP list supports the validity of the PLS regression model. Additional transcripts in the top 20 include 

regulatory and ribosomal RNAs, which is in line with data from yeast and bacterial analysis(27). A large 

number of regulatory proteins are also on the list, including a number of heat shock proteins, which 

have previously been shown to be important for CSR(61). Actin is also high on the list, in agreement 

with studies showing a regulatory role of the actin cytoskeleton in B cell activation (62, 63), as well as 

possibly the role of monomeric actin in DNA damage response (DDR) and chromatin modifications 

which happens during cell development or DNA repair(64–66). 

A PLS regression model was also determined for whole cell and cytoplasm Raman data (Figure S5a-b). 

These allowed for predictions in line with the nucleus data (cytoplasm shown in Figure S5c-h). The top 

20 VIP transcripts for those models (Table S1 and Table S2) were largely identical to the nucleus list. 
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The values and order of the transcripts varied slightly, but only one transcript differed between the 

nucleus and whole cell list. For cytoplasm compared to nucleus, only three transcripts were different 

in the top 20 hits.  

 

Discussion 

The cell segmentation used to isolate nucleus and cytoplasm regions within each cell using the Raman 

spectral maps proved useful for highlighting DNA Raman peaks. The 752/786 cm-1 peak ratio, shown 

to be statistically different between D0 and D4, has potential as a measure of activation status. If it is 

to be used as such, the biological significance of this peak ratio is of interest. The structure of DNA 

likely plays a role here. There are three biologically relevant double helical structures of DNA: A-DNA, 

B-DNA, and Z-DNA. B-DNA is the most common. A Raman peak at ~784-787 cm-1 has been shown to 

have a strong intensity for B-DNA, but much lower for the other two. The peak consists of two 

subpeaks; the breathing mode of the cytosine ring and the phosphodiester symmetric stretch of B-

DNA backbone(67, 68). During B to Z transition of DNA, the phosphodiester symmetric stretch signal 

downshifts(68). As Z-DNA is associated with the rate of transcription(69, 70), it is plausible that the 

restructuring of DNA during activation could account for the difference between D0 and D4.  

Looking at the whole Raman spectrum and downstream analyses, it is apparent that the spectra 

identified as from the nucleus are unlikely to be “pure” spectra (completely free of cytoplasmic signal). 

The similar VIP transcript lists of especially ‘nucleus’ and ‘whole cell’ analysis support this. Although a 

confocal microscope was used, optical signal from cytoplasm above and below the nucleus was likely 

measured too. The relatively large nucleus in CH12F3 cells and the round shape of the cells could have 

contributed to this. For larger and flatter adherent cells with smaller nuclei relative to the overall cell 

size, this may not occur to the same extent. Here it could be interesting to determine if a PLS regression 

model and its top VIP transcripts differed more between distinct cellular regions than for CH12F3 cells.   

Both the PCA and LDA analysis revealed a myriad of spectral differences that allowed for the 

classification of D0 versus D4 cells. These included a large number of nucleic acid associated peaks, 

but also protein, lipid and sugar peaks. Classification of cell types or cell states based on Raman spectra 

has great clinical and research potential. However, understanding the biological significance of the 

spectral changes is of importance if these tools are to be implemented as a standard technique in 

biological laboratories. Peak assignments based on single molecule measurements provide some help 

with interpretation of the spectral changes. Correlation with transcriptomic data and identification of 

top VIP transcripts could add further value to the Raman data.   
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Here we showed that a linear correlation between Raman data and conventional next generation 

transcriptomic data exists in CH12F3 cells. Raman data were predicted based on transcriptomic 

profiles. When comparing the predicted Raman data to single cell data, the classification of each 

prediction was within the expected groups (D0 vs D4). We also identified the transcripts with the 

highest importance for the correlation with Raman spectra of non-activated and activated CH12F3 

cells (Figure 5a). The immunoglobulin genes Ighm and Igha both featured in our top hits, highlighting 

the value of the PLS regression model as a valid phenotypic measurement for B cell activation. A 

number of regulatory RNAs and proteins were also in the top 20, some known to be involved in the 

regulation of CSR and activation, and others not previously shown to be involved. Further experiments 

exploring the role of these transcripts in B cell activation and CSR could be of great interest in the field 

of adaptive humoral immunity. This also suggests that our methodology could have the potential to 

identify novel molecular factors that other conventional assays might miss. One possible reason is the 

ability of our assay to combine both qualitative and quantitative analysis of nuclear signals along with 

a phenotypic readout of the overall status of the nucleus at the single cell level. RNA-seq, on the other 

hand, primarily measures quantitative readouts of bulk cells. Supported by similar results previously 

achieved in yeast cells(27), our work could provide a compelling argument for the use of Raman 

microscopy for phenotypic screening of a range of complex cellular processes.     

Additional time points between D0 and D4 could further elucidate the correlation between Raman 

spectra and transcriptomic profiles. As there is some, although minor, inter-sample variability due to 

confluency levels and number of cell passages, it may also be beneficial to extract RNA and measure 

Raman spectra of cells from the same population on the same day. It would also be very interesting 

in the future to combine single-cell transcriptomics with Raman measurements. This would be a very 

powerful approach to unravelling the direct relationship between the two complementary data types. 

Indeed, there is still much to be determined, but there most certainly is a correlation between 

transcriptomic profiles and Raman spectra and this correlation can be further enhanced by combining 

more refined biological techniques. Understanding the origin of this correlation in different case 

studies will add value to Raman measurements of biological samples and aid interpretation of spectral 

changes. Furthermore, the work outlined here, suggests that Raman may also aid in the identification 

of key regulatory transcripts for immune activation. Future work will demonstrate if this can be 

translated to elucidating other cellular developmental processes, occurring in healthy cells or during 

disease. 
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Figure 1: Identifying nucleus and cytoplasm associated areas using common K-means 

(a) An example cell map (specifically sample 200207-CH12-D4-006) after common K-means with 10 

clusters, which was used to analyse 118 individual cell maps concurrently.  (b) The 10 common K-

means centroid spectra. Spectral assignments were used to identify the clusters associated with 

cytoplasm (4 and 10) and nucleus (2, 3, and 8). (c) Example cell map (as seen in a) with nucleus (top 

left), cytoplasm (bottom left) and background (right) associated pixels highlighted. (d) Comparison of 

the mean cytoplasm and nucleus spectrum across all cells. The largest peak differences are highlighted 

and peak assignments are listed. (e) Comparison of nucleus/cell ratio between Raman maps and 

epifluorescence microscopy images.  
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Figure 2: Quantifiable spectral differences between D0 and D4 cells   

(a) Schematic representation of a CH12F3 cell undergoing class switch recombination in response to 

exposure to the cytokine cocktail. The expressed B cell receptor constant region changes from IgM to 
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IgA. (b) The mean nucleus spectrum of D0 and D4 cells. Two neighbouring peaks are highlighted. (c) 

Peak ratio (752 cm-1 peak/786 cm-1 peak). A t-test gave a statistically significant difference between 

samples (ns.: P>0.05, *: <0.05, **: P<0.01, ***:P<0.001). (d) Principal Component analysis. 

Comparison of the first 9 PC scores. A t-test was applied to identify the principal components with a 

statistically significant difference between D0 and D4. (e) PCA analysis. Scores plotted for components 

1, 4, and 5. (f) LDA analysis. Histogram of the distribution in the training model. (g) LDA analysis. 

Loading spectrum.  
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Figure 3: Transcriptomes of D0 and D4 cells  

(a) Heatmap of the log2 fold change of transcripts from D0 and D4 samples, calculated using the DESeq2 software. Transcripts with |log2 fold change|>0.5 

and FDR<0.05 are shown. Two transcripts, Ighm and Igha, are highlighted. Ighm and Igha code for the immunoglobulin heavy chain constant regions of IgM 

and IgA receptors, respectively. (b) PCA analysis showing separation of D0 and D4 samples. (c) Functional enrichment analysis of differentially expressed 

transcripts between D0 and D4. Table displaying significantly enriched gene ontology (GO) terms and associated biological processes.  
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Figure 4: Partial least squares regression model correlates Raman and transcriptomic data 

(a) Partial least squares regression model. (b) Raman scores predicted from transcriptomic read 

counts. Predicted D0-2 and D4-2 plotted with the single cell scores from PC1, PC4, and PC5. (c) 

Predicted Raman scores converted to LDA scores and plotted against the LDA scores histogram.  
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Figure 5: VIP transcript list and their expression in vivo 

(a) The 20 transcripts with the highest Variable Importance in Projection (VIP) scores. (b) Expression 

of VIP genes in vivo. Median normalised gene expression values in different B cell subsets in vivo as 

annotated in Immunological Genome Projects. Further subclassified into pre-, mid-, and post-

activation correlating to activation for CSR in CH12F3. (c) Quantification of normalised expression 

values of VIP genes in the dot plot.  
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Assessing the cell and nucleus segmentation 

The additional cell map examples (Figure S1a-c) provide a clearer idea of how the cell and nucleus 

segmentation worked. Three clusters were determined to be associated with nucleus. The primary 

nucleus cluster varies between cell maps. That is also the case for the cytoplasm and background 

clusters. The Hierarchical Clustering Analysis (HCA) plot (Figure S1d) depicts the relationship between 

the ten clusters. All three nucleus clusters (2, 3, and 8) are similar to each other. One cytoplasm cluster 

(4) resembles the nucleus clusters, while the other one (10) is more similar to the background clusters. 

The ten clusters were assigned to either nucleus, cytoplasm or background based on the centroid 

spectra (Figure 1b), the HCA plot, and their effect on the cell and nucleus segmentation within each 

cell map. The cell versus background segmentation was straightforward, as seen in both the example 

maps and the centroid spectra. Nucleus versus cytoplasm segmentation was based on peaks 

associated with nucleic acid, which is more abundant in the nucleus. Cluster 4 proved to be the most 

difficult to assign – it was found to be at the interface between nucleus and cytoplasm, as shown by 

the example maps and HCA plot. The assignment of cluster 4 to cytoplasm was based on the centroid 

spectrum and the resulting nucleus size distribution of all maps.  

The size and the shape of the nuclei vary between maps, as seen in Figure 1c and Figure S1a-c. This 

variation was quantified and assessed by measuring the major and minor axes of each nucleus and 

comparing them to those derived from epifluorescence images (Figure S1e-g). For both major and 

minor axes, the Raman mapped nuclei were smaller than the epifluorescence images nuclei. As both 

the measurement techniques and experimental setup were different between the two, this was not 

of great concern. Indeed, the Cell/Nucleus ratio was similar between the Raman maps and 

epifluorescence images (Figure 1e).  
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Figure S1: Assessing the cell and nucleus segmentation 

(a-c) Additional example cell maps (specifically samples 200114-CH12-D4-009 (a), 200212-CH12-D0-

002 (b), and 200228-CH12-D0-007 (c)) after common K-means with 10 clusters, as presented in 

Figure 1a-c. Nucleus (top right), cytoplasm (bottom left), and background (bottom right) associated 

pixels highlighted. (d) Hierarchical clustering analysis plot of the common K-means. The clusters 

identified as cytoplasm and nucleus are annotated. (e) Epifluorescence image of a CH12F3 cell: the 

nucleus is stained with Hoechst (blue) and the whole cell with SYTO13 (green). (f) Histograms 
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showing the nucleus size distribution (major axis, left and minor axis, right) of the cells measured 

from Raman maps (top) and epifluorescence microscopy images (bottom). (g) Quantification of (b). 

A t-test gave a statistically significant difference between samples (ns.: P>0.05, *: <0.05, **: P<0.01, 

***:P<0.001). 
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Quantifiable spectral differences between non-activated and activated B cells  

CH12F3 CSR in response to CIT treatment was verified by flow cytometry (Figure S2). D0 cells almost 

exclusively produce IgM BCRs, while a subset of D4 cells have undergone IgM to IgA isotype 

switching.  

PCA analysis was applied to identify the spectral differences between D0 and D4 cells. Four principal 

components (PC1, PC4, PC5, and PC8) had statistically significant different scores between D0 and 

D4 cells. Figure S3a-c show the separation between D0 (red) and D4 cells (blue) for these PCs, while 

Figure S3d-g show their PCA loading spectra.  

 

 

 

 

Figure S2: Monitoring CSR in CH12F3 cells 

(a) CSR in CH12F3 upon CIT stimulation monitored by identifying IgM- and IgA-producing cells using 

flow cytometry. (b) Quantification of IgA+ cells for D0 and D4.  
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Figure S3: PCA and LDA analysis for discrimination between D0 and D4 cells  

(a) PCA scores; PC1 versus PC4. (b) PCA scores; PC1 versus PC5. (c) PCA scores; PC5 versus PC8. (d) 

PCA loadings; PC1. (e) PCA loadings; PC4. (f) PCA loadings; PC5. (g) PCA loadings; PC8.  
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Predicting Raman data from transcriptomic data using PLS regression models 

The linear correlation between Raman data and transcriptomic data, as determined by the PLS 

analysis, is visualised in Figure S4a for component 1. The D0 samples cluster together, as do the D4 

samples. This is the basis for the model which enabled the prediction of Raman data from 

transcriptomic data (Figure 4b-c and Figure S4b-e).  

In addition to the Raman nucleus data (Figure 4 and Figure S4), Raman whole cell and cytoplasm data 

were also used for PLS analysis (Figure S5). The whole cell data analysis results were largely identical 

to those of the nucleus data analysis (Figure S5a). For the cytoplasm data, the results differed more. 

However, the linear correlation was still clear (Figure S5b), and it was still possible to accurately predict 

Raman data from transcriptomic data (Figure S5c-f).  
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Figure S4: PLS regression model can predict Raman data from transcriptomic data 

(a) PLS regression analysis shows a linear correlation between Raman nucleus data and 

transcriptomic data for component 1. (b-e) Raman scores predicted from transcriptomic read 

counts. D0-1 (b), D0-3 (c), D4-1 (d), and D4-3 (e) plotted with the single cell scores from components 

1, 4 and 5.  
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Figure S5: PLS regression model correlates Raman whole cell and cytoplasm data with 

transcriptomic data 

(a) PLS regression analysis shows a linear correlation between Raman whole cell data and 

transcriptomic data for component 1. (b) PLS regression analysis shows a linear correlation between 

Raman cytoplasm data and transcriptomic data for component 1. (c-f) Raman cytoplasm PLS model: 

Raman scores predicted from transcriptomic read counts. D0-1 and D4-1 (c), D0-2 and D4-2 (d), D0-3 

(e), D4-3 (f) plotted with the single cell scores from PC1, PC4, and PC5.  
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VIP score Transcript name Transcript type Gene name 

41.68549 ENSMUSG00000064339 Mt_rRNA mt-Rnr2 mitochondrially encoded 16S 
rRNA 

31.63403 ENSMUSG00000037742 protein_coding Eef1a1 Elongation factor 1-alpha 1 

30.71642 ENSMUSG00000095079 IG_C_gene Igha immunoglobulin heavy constant 
alpha 

30.42896 ENSMUSG00000092341 lncRNA Malat1 metastasis associated lung 
adenocarcinoma transcript 1 

29.63411 ENSMUSG00000076617 IG_C_gene Ighm immunoglobulin heavy constant 
mu 

28.14179 ENSMUSG00000029580 protein_coding Actb actin, beta 
23.71356 ENSMUSG00000097971 lncRNA Gm26917 predicted gene, 26917 
23.70888 ENSMUSG00000065037 misc_RNA Rn7sk RNA, 7SK, nuclear 
22.0795 ENSMUSG00000064351 protein_coding mt-Co1 mitochondrially encoded 

cytochrome c oxidase I 
20.93438 ENSMUSG00000047139 protein_coding Cd24a CD24a antigen 
20.11123 ENSMUSG00000034994 protein_coding Eef2 eukaryotic translation 

elongation factor 2 
15.38487 ENSMUSG00000011179 protein_coding Odc1 ornithine decarboxylase, 

structural 1 
14.87474 ENSMUSG00000031779 protein_coding Ccl22 chemokine (C-C motif) ligand 22 

14.05003 ENSMUSG00000032399 protein_coding Rpl4 60S ribosomal protein L4 
13.63799 ENSMUSG00000015656 protein_coding Hspa8 heat shock protein 8 
11.70491 ENSMUSG00000026864 protein_coding Hspa5 heat shock protein 5 
11.58428 ENSMUSG00000049775 protein_coding Tmsb4x thymosin, beta 4, X chromosome 

11.54382 ENSMUSG00000024359 protein_coding Hspa9 heat shock protein 9 
10.83353 ENSMUSG00000057113 protein_coding Npm1 Nucleophosmin 
10.81621 ENSMUSG00000022797 protein_coding Tfrc transferrin receptor 

 

Table S1: VIP list for Whole cell Raman data PLS regression analysis 
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VIP score Transcript name Transcript type Gene name 

36.48182 ENSMUSG00000037742 protein_coding Eef1a1 Elongation factor 1-alpha 1 

36.38903 ENSMUSG00000064339 Mt_rRNA mt-Rnr2 mitochondrially encoded 16S 
rRNA 

34.47657 ENSMUSG00000076617 IG_C_gene Ighm immunoglobulin heavy constant 
mu 

27.54574 ENSMUSG00000095079 IG_C_gene Igha immunoglobulin heavy constant 
alpha 

27.18289 ENSMUSG00000097971 lncRNA Gm26917 predicted gene, 26917 
27.03748 ENSMUSG00000029580 protein_coding Actb actin, beta 
24.54971 ENSMUSG00000065037 misc_RNA Rn7sk RNA, 7SK, nuclear 
24.41311 ENSMUSG00000064351 protein_coding mt-Co1 mitochondrially encoded 

cytochrome c oxidase I 
24.35519 ENSMUSG00000092341 lncRNA Malat1 metastasis associated lung 

adenocarcinoma transcript 1 
21.69827 ENSMUSG00000034994 protein_coding Eef2 eukaryotic translation 

elongation factor 2 
19.10295 ENSMUSG00000047139 protein_coding Cd24a CD24a antigen 

15.70651 ENSMUSG00000032399 protein_coding Rpl4 60S ribosomal protein L4 
15.32205 ENSMUSG00000011179 protein_coding Odc1 ornithine decarboxylase, 

structural 1 
13.15234 ENSMUSG00000031779 protein_coding Ccl22 chemokine (C-C motif) ligand 22 
12.79875 ENSMUSG00000057113 protein_coding Npm1 Nucleophosmin 
12.78879 ENSMUSG00000015656 protein_coding Hspa8 heat shock protein 8 
12.50920 ENSMUSG00000058655 protein_coding Eif4b Eukaryotic translation initiation 

factor 4B 
12.18672 ENSMUSG00000024359 protein_coding Hspa9 heat shock protein 9 
10.85725 ENSMUSG00000049775 protein_coding Tmsb4x thymosin, beta 4, X chromosome 
10.57061 ENSMUSG00000051506 protein_coding Wdfy4 WD repeat and FYVE domain 

containing 4 
 

Table S2: VIP list for Cytoplasm Raman data PLS regression analysis 
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