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ABSTRACT

Large-scale intracellular signalling during developmental growth or in response to environmental
alterations are largely orchestrated by chromatin within the cell nuclei. Chemical and conformational
modifications of the chromatin architecture are critical steps in the regulation of differential gene
expression and ultimately cell fate determination. Therefore, establishing chemical properties of the
nucleus could provide key markers for phenotypic characterisation of cellular processes on a scale of

individual cells.

Raman microscopy is a sensitive technique that is capable of probing single cell chemical
composition - and sub-cellular regions - in a label-free optical manner. As such, it has great potential
in both clinical and basic research. However, perceived limitations of Raman spectroscopy such as
low signal intensity and the difficulty in linking alterations in vibrational signals directly with ensuing
biological effects have hampered advances in the field. Here we use immune B lymphocyte
development as a model to assess chromatin and transcriptional changes using confocal Raman
microscopy in combination with microfluidic devices and correlative transcriptomics, thereby linking
changes in chemical and structural properties to biological outcomes. Live B lymphocytes were
assessed before and after maturation. Multivariate analysis was applied to distinguish cellular
components within each cell. The spectral differences between non-activated and activated B
lymphocytes were then identified, and their correlation with known intracellular biological changes
were assessed in comparison to conventional RNA-seq analysis. Our data shows that spectral
analysis provides a powerful tool to study gene activation that can complement conventional
molecular biology techniques and opens the way for mapping the dynamics in the biochemical

makeup of individual cells.
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Introduction

The ability to measure and quantify molecular changes during cellular development can enable the
characterisation of cells during differentiation, cellular responses to extracellular cues, or disease
progression. Conventional techniques, such as fluorescent tagging of molecules visualized with
fluorescence microscopy(1) and transcriptomics and proteomics profiling (2), have been extensively
used to assess molecular changes occurring within cells. However, their stark limitations are the need
for target labelling and/or destruction of the biological specimens under study. That is why, non-
invasive and label free vibrational spectroscopy techniques — including Fourier Transform Infrared

(FTIR) and Raman microscopy — stand out.

Vibrational spectroscopy exploits the interaction between light and molecules to probe their
vibrational modes in order to obtain a “chemical fingerprint” of a sample. Both FTIR and Raman have
been used to monitor modifications to or changes in expression of specific biomolecules, such as DNA
levels during cell cycle(3—7), protein modifications(8, 9) and DNA damage(10-13). However, it is
becoming apparent that, although it is possible to identify specific signals associated with intracellular
biochemical changes, a whole range of subtle spectral variations characterise cell state changes. This
is not surprising, as cellular responses induce a swarm of transcriptional up- and down-regulation
orchestrating changes to the transcriptomic and proteomic profile of the cell. Using multivariate
analysis, spectral information enables classification of cell states or phenotypes of mammalian (14—

25), bacterial, and yeast cells (26, 27).

It is this label-free classification that has great potential both in i) clinical settings, for disease diagnosis
and prognosis, and ii) in biomedical research, for example in cell sorting for downstream processes.
How powerful this tool can be, depends upon our understanding of the correlation between the
spectral output and the underlying biochemical pathways within the cells. In bacterial research,
antibiotic resistance is of great interest. Spectral markers of antibiotic resistance have been identified
at the population level(26), and more recently a correlation between peak intensities and expression
levels of antibiotic resistance contributing genes has been found (26). Importantly, this was done in
the absence of antibiotics, indicating that the transcriptional profile of the given cells, affected on its
turn by environmental changes(28), rather than their phenotypic response to the presence of
antibiotics, were responsible for the spectral signatures (26). This correlation between Raman spectra
and transcriptomic data has further been explored in a comprehensive manner in yeast where it has
been shown that Raman spectra and transcriptomic data are linearly correlated (27). In both yeast
and bacterial cells, several environmental conditions have been examined. A linear transformation

matrix describing the relationship between the Raman data and the transcriptomic data has made it
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possible to predict an environment-specific Raman spectrum based on transcriptomic data.
Conversely, the transcriptome of specific environment has been predicted based on the Raman data

(27).

Transcriptomic readout consists of thousands of RNA transcripts, whereas Raman spectroscopy can
measure the phenotypic expression of the RNA transcripts, i.e. the biochemical result of the
transcriptomic profile. Noteworthy, all transcripts do not change independently; instead, strong
correlations are found between transcripts that are controlled by global regulators, reflected in the
Raman signals. In the yeast study, it has been determined that only 17 transcripts are sufficient for
determining a linear correlation with the Raman spectra. The transcripts largely responsible for the
linear correspondence have been identified by determining the variable importance in projection (VIP)
values for each transcript. The top scoring transcripts were primarily non-coding RNAs in yeast and
ribosome-related transcripts in bacteria (27). The correlation between them does not mean that the
Raman spectra directly measure the expression levels of the transcripts in question. Instead, the
downstream effects — i.e. changes to expression levels of large groups of genes and the resulting
change in biochemical composition of the cells — are quantified by Raman. Thus, by analysing the
correlation between Raman spectra and transcript expression levels, the key cellular pathways

affecting the biochemical profile assessed by Raman spectroscopy may be identified.

To our knowledge i) the correlation between Raman spectra and transcriptomic readouts has never
been studied in mammalian cells, and ii) it has not been examined in the context of cell differentiation.
To explore this correlation in mammalian cells, B lymphocytes were chosen as a model cell system.
Immune activation of these cells initiates large-scale changes to the transcriptomes, resulting in the
differentiation of naive B cells into mature B cells and class switch recombination (CSR) of the
immunoglobulin receptor. Furthermore, as CSR requires reorganisation of the DNA, it is a highly
regulated process. A large number of regulatory proteins and RNAs have been shown to be involved
(29-35). However, the complex coordination of regulatory pathways and expression modulations is
not yet fully understood. Novel techniques and approaches are needed to identify key regulatory RNAs

and proteins previously unlinked to the B cell activation differentiation process.

Materials and Methods
CH12F3 cell culture and immune activation

CH12F3 cells were cultured in RPMI 1640 medium with 10% fetal bovine serum, 5% NCTC-109, 1%

Pen-Strep, 1% glutamine, 1% sodium pyruvate and 50 uM B-mercaptoethanol. The cells were immune


https://doi.org/10.1101/2021.01.12.426344
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426344; this version posted January 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

activated by incubating them with a cytokine cocktail (CIT) consisting of 2.5 pg/ml anti-CD40, 10 ng/ml
IL-4 and 50 ng/ml TGFB.

Flow cytometry and antibodies

Flow cytometry measurements, for monitoring class switching assays of CH12F3 cells, were performed
using a BD Accuri C6 Plus flow cytometer. 1% PFA fixed CH12F3 cells were stained with FITC Anti-
mouse IgA antibody and APC Anti-mouse IgM antibody, both 1:200 dilution.

Microfluidic device preparation

A microfluidic silicon mould was designed to create a small reservoir chip for maintaining cell viability
during Raman measurements as previously described(36). This mould was then replicated in
polydimethylsiloxane (PDMS) using a 9:1 ratio of base-to-curing agent. The PDMS was heated at 70°C
for one hour and cut to size. A 1.5 mm biopsy punch was used to create an inlet and outlet within the
reservoir. The chip was bonded to a glass coverslip using surface ionisation by oxygen plasma

treatment (10 second exposure to 30 W plasma power in 1 mbar of air).

Sample preparation and Raman mapping

Cells were washed in PBS, pelleted, and resuspended in PBS. PBS was flowed into the bonded chip
using Portex tubing PE 0.86x0.33mm BxW using a syringe and a 21G microlance. Cells were flowed
into the chip in the same way and left to settle for minimum 30 minutes. Raman maps were collected
using a WITec alpha300R confocal Raman microscope system consisting of a 532 nm laser, a fibre-
coupled UHTS spectrometer and an optical microscope with a 0.7 NA, 50x objective. The microfluidic
chip containing the cells in PBS suspension was held coverslip side facing up in a custom holder. Single
cells (adhering to the glass) were identified in white light imaging mode, then the focus was adjusted
in Raman mode using the oscilloscope to maximise the scattered signal intensity (of the C-H stretching
peak in the range 2700-3000 cm™), and cells maps were collected with 5 measurement points per
micrometre using a 0.1 s integration time per point. Cells were kept in the microfluidic chip for a

maximum of four hours during measurements, before a new chip with fresh cells was prepared.

Raman data analysis
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Data processing was performed using MATLAB 2020a. Common k-means analysis with 10 clusters was
performed on 118 cell maps (58xD0, 60xD4). This involved the calculation of similarity measures
between each of the spectra from all 118 maps (a total of 716,250 spectra). As the most similar spectra
are grouped together, the spectrum of the new group becomes the mean of its members. At the end
of the process, when ten similar group clusters remained, they contained the spectra from regions of
cells with similar biochemical constituents, each represented by a mean spectrum or centroid. Each
of the 10 clusters was assigned as nucleus, cytoplasm or background, based on the spectral profiles of
the cluster centroids. Hence, a mean nucleus, cytoplasm, whole cell (cytoplasm + nucleus) and
background spectrum was extracted from each cell map. An array of 13 maps (5xD0, 8xD4) was
discarded from the dataset before further analysis, since they either contained no pixels identified as
nucleus or cytoplasm, or very few pixels associated with nucleus — with a nucleus size of less than 3

um.

To remove the background signal (from the coverslip and PBS), the background spectra were
subtracted from the nucleus and cytoplasm spectra for each map in three steps. (1) The spectra were
baseline corrected by subtracting an offset (based on the mean intensity in the range 1780-1840 cm”
1). (2) The background spectra were smoothed using a Savitzky-Golay filter (order = 2, framelength =
99) to reduce the effect of noise. (3) The smoothed background spectra were then subtracted from

the nucleus, cytoplasm and whole cell spectra.

Principal Component Analysis (PCA) was performed on nucleus, cytoplasm and whole cell spectra. For
each principal component, a t-test was used to determine if scores were significantly different
between DO and D4 cells. Linear Discriminant Analysis (LDA) was also performed to calculate a
supervised classification model based on a combination of the PC scores. The resulting linear
discriminant function could be used to single out the key peaks responsible for the discrimination

between DO and D4 cells.

RNA extraction

Total cell RNA was extracted by TRIzol followed with chloroform for phase separation and 100%
isopropanol for RNA precipitation. Total RNA was eluted in 30 ul RNase-free water after being washed
twice in 75% ethanol. The RNA concentration was assessed using a NanoDrop 2000
spectrophotometer (Thermo Scientific, Waltham, MA, USA). The RNA yield and size distribution were
analysed using an Agilent 2200 Tapestation with RNA Screentape (Agilent Technologies, Foster City,
CA, USA).
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RNA-seq library preparation, next-generation sequencing and data processing

For small RNA library preparation, RNA aliquots were used for library preparation using NEBNext
Multiplex Small RNA library preparation kit (New England Biolabs, Ipswich, MA, USA). The PCR
amplified cDNA construct (from 140-160 bp) was purified using a QlAquick PCR Purification kit
(Qiagen). The purified cDNA was directly sequenced using an lllumina MiSeq 2000 platform (lllumina,
San Diego, CA, USA).

For long RNA library preparation, libraries were constructed using Ribo-Zero Magnetic Gold Kit
(Human) (lllumina, San Diego, CA, USA) and NEBNext® Ultra™ RNA Library Prep Kit for lllumina (New
England Biolabs) according to the manufacturer’s instructions. Libraries were tested for quality and
guantified using qPCR (Kapa Biosystems, Woburn, MA, USA). The resulting libraries were sequenced
on a HiSeq 2500 instrument that generated paired-end reads of 100 nucleotides.

Raw sequencing reads were checked for potential sequencing issues and contaminants using FastQC.
Adapter sequences, primers, number of fuzzy bases (Ns), and reads with quality scores below 30 were
trimmed. Reads with a length of less than 20 bp after trimming were discarded. Clean reads were
aligned to the mouse reference genome (GRCm38, 53,465 annotated genes in total) using the TopHat
2.0 program, and the resulting alignment files were reconstructed with Cufflinks (37). The

transcriptome of each sample was assembled separately using Cufflinks 2.0 program.

Sequencing data analyses and statistical methods

Read counts of each sample were subjected to cluster analysis (38) and differential expression analysis
using RNA-seq 2G (39). Genes with |fold-change| >1, P value <0.05 and false discovery rate (FDR)
<0.05 were considered statistically significant. Expression of significant differentially expressed genes
in different B cell subsets was determined using My Geneset ImmGen (40). Interaction and gene
targets of identified DE ncRNAs in cells and paired EVs were predicted by miRNet and ENCORI (41, 42).

ncRNAs-target interaction network was constructed by Cytoscape v3.8.0 (43).

Partial least squares regression

To analyse the potential correlation between the Raman data and the transcriptomic data, Partial
Least Squares (PLS) regression was applied to the datasets. The transcriptomic data consisted of the
read counts for 17,725 transcripts with three DO samples (DO-1, DO-2, and DO-3) and three D4 samples

(D4-1, D4-2, and D4-3). Dimension reduced Raman data were used in the form of PC scores. To
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correspond to the three replicates for each condition of the transcriptomic data, the Raman cell

measurements were randomly assigned to three groups of DO and three groups of D4.

PLS regression analysis was performed with a leave-one-out approach; each of the six samples was
removed in turn. Each leave-one-out analysis determined a linear regression model between the
Raman (R.) and transcriptomic (T.) datasets — meaning the PLS regression coefficients matrix, BETA;

was found, so that
R—i = BETA_l " T—i

For each PLS regression analysis, Raman PC scores were predicted for the left-out sample, i, using the

transcriptomic data (T;) and the BETA,; matrix.

To assess the validity of the predicted Raman PC scores (and thus the regression model), they were
compared against the single cell PCA scores. For further assessment, the predicted Raman PC scores

were then converted to LDA scores and again compared with the single cell data.

Results
Identifying nucleus and cytoplasm in single cell Raman maps using common k-means

Raman maps were collected from 118 live CH12F3 cells suspended in isotonic PBS-filled microfluidic
chambers. The cells remained in place throughout measurements. Common k-means analysis was
applied to identify cell (vs background) pixels, as well as to distinguish the nucleus from the cytoplasm
within each cell (Figure 1a-c). Additional examples are shown in Figure S1a-c. Inspection of the cluster

centroid spectra (Figure 1b) informed the segmentation.

The quality of the segmentation was assessed in two ways. Firstly, the mean nucleus spectrum was
compared to the mean cytoplasm spectrum (Figure 1d). The most pronounced differences were
associated with nucleic acid and lipid/fatty acid signals, with higher intensities found in the nucleus.
Secondly, the size of the nucleus relative to the whole cell was assessed and compared with that from
epifluorescence microscopy images of CH12F3 cells incubated with nucleic acid stains (Figure 1e). No
statistically significant difference was found between the Raman and epifluorescence data. A larger
variance was seen for the Raman data — possibly attributed to a number of smaller and kidney shaped

nuclei (Figure S1f-g). These were not excluded as they were not outliers in the Raman spectral dataset.
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Quantifiable spectral differences between non-activated and activated B cells

To assess large-scale chromatin conformational and transcriptomic alterations, two groups of CH12F3
cells were compared: non-activated cells (DO) and cells at 96 hours post immune activation with
cytokine (CIT: anti-CD40, I1L-4 and TGFPB) cocktail (D4), as shown in Figure 2a. The immune activation
of the cells was verified by quantifying the percentage of IgM-producing cells versus IgA-producing

cells using flow cytometry (Figure S2).

A prerequisite for further analysis and correlation with the transcriptomes was the ability to separate
DO and D4 cells based on their Raman spectra. Focusing on the nucleus, a number of spectral
differences are apparent between DO and D4 cells (Figure 2b). Namely, a peak at 786 cm™ shows a
large variation between the two activation states. The neighbouring peak at 752 cm™ does not show
this variation. Both of these peaks are associated with nucleic acids (44—46). The distribution of the
752 cm™to 786 cm™ peak ratios was found to be significantly different between DO and D4 cells (Figure
2¢). This nucleic acid peak ratio therefore has the potential to provide a measure of activation status

through the measurement of changes to DNA within the cells.

To further explore the spectral differences between DO and D4 cells, multivariate approaches were
applied. An unsupervised method, Principal Component Analysis (PCA), showed a separation between
DO and D4 cells (Figure 2d-e and Figure S3a-c). Four PCs had a statistically significant difference
between DO and D4 scores. The loading spectra of those showed a range of peaks associated with
both nucleic acids, lipids and proteins (Figure S3d-g). Nucleic acid peaks around 786 cm™ (PC1) and
752 cm™ (PC1, PC4 and PC5) were amongst these, supporting the use of that peak ratio to distinguish
between DO and D4. Although a number of other nucleic acid peaks were identified, it is clear that

intracellular changes of protein and lipid are also drivers for the spectral differences.

A supervised method, Linear Discriminant Analysis (LDA) was then applied, building on the PC scores
and determining a classifier to discriminate between DO and D4 cells. The two groups showed a very
good separation (Figure 2f). Using a leave-one-out analysis, it was determined that the LDA classifier
had a sensitivity of 73.1% and a specificity of 81.1% for identification of D4 cells. The loading plot for
the classifier, representing the spectral data separating DO and D4 cells, consisted of a range of peaks
(Figure 2g). Nucleic acid peaks in the 751-790 cm™ range are again present. The largest peaks include
nucleic acid, protein, sugar and lipid, such as guanine and cytosine (782 cm™, 1251 cm™, 1577 cm™(47,
48)), phosphodiester (812 cm™, 897 cm™, 1424 cm™(47)), tryptophan (754 cm™, 761 cm™, 880 cm™(48-
52)), polysaccharide structure and glucose (841 cm™, 1117 cm™(46, 53, 54)) and CH, deformation
(1304 cm™, 1321 cm™(46, 55)).
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These results show that is possible to distinguish between DO and D4 cells based on their Raman
spectra. Peaks associated with nucleic acids are important for this separation, but alterations to other

biomolecules are also detectable.

Differing transcriptomic profiles of non-activated and activated B cells

The transcriptomic profiles of DO and D4 cells were determined and analysed. Read counts were
measured for a total of 17,725 transcripts, and differential gene expression analysis using DESeq2 was
applied to identify genes that were up- or down-regulated in response to immune activation. Figure
3a shows transcripts with the largest change of expression between DO and D4 samples clustered
based on Euclidean distance. The two transcripts Ighm and Igha, which code for the immunoglobulin
heavy chain constant regions of IgM and IgA respectively, are highlighted. Ighm expression is down-
regulated in D4, while Igha is up-regulated. This is a hallmark of the CH12F3 class switching response

and in agreement with the IgM to IgA isotype switching measured by flow cytometry (Figure S2).

The expression profiles of DO and D4 cell samples clearly illustrate that several thousands of genes are
up- or down-regulated upon immune activation of CH12F3 cells. These data are in line with published
results regarding genes that are over-expressed during B cell maturation(56-59). For example, we
could identify that genes AID, Bcl11a, CD40, and Ccr6 go up 2-, 3-, 2.6-, 8.7-fold in D4 compared to DO,
respectively. This further illustrates the validity of our RNA-seq results. Further whole transcriptomic
profiling, including PCA analysis (Figure 3b) and network comparison (Figure 3c), demonstrated a clear

separation between DO and D4 samples and the validity of our experimental approach.

PCA analysis on the expression profiles of DO and D4 CH12F3 cohort samples were performed using
Clustvis software tool(38). Differences were assessed after log, transformation of normalised read
counts at a threshold of p <0.05 for multiple comparisons. The variation of expression profile
between DO and D4 CH12F3 was displayed in first and second dimensions (PC1 vs PC2). Statistical
significance was set at false discovery rate (FDR) < 0.05. As a result, we could observe that the three
DO samples cluster in proximity together, as do the three D4 samples. But the DO versus D4 clustered
markedly separately from each other when plotted on the same graph (Figure 3b). This further
validates the distinction in overall transcriptional profile of our cohorts. To further identify the specific
basis for this distinction, we used Genemania pathway analysis tool(60). After including all hits in D4
expressed at log, fold change > 1 with FDR < 0.05, we identified the top pathways to include the

chemokine signalling pathway, leukocyte activation, immune cell differentiation, and B cell activation

10
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amongst other B cell related processes (Figure 3c). This further validates the specificity of our

experimental design and its consistency.

Linear correlation between transcriptomic and Raman data

Alterations in gene expression can ultimately cause changes in intracellular protein levels, as well as
in other biomolecules through changes to metabolic pathways and intracellular structures. All these
changes are bound to affect Raman spectral readouts. That a correlation exists between
transcriptomic data and Raman spectra, as demonstrated for yeast and bacteria(27), is therefore not
unexpected, albeit it was hard to predict whether a linear correlation would exist in a complex

mammalian cell such as a B lymphocyte.

To test this hypothesis, a Partial Least Squares (PLS) regression analysis was applied to create a model
for the prediction of Raman data from transcriptomic data of CH12F3 cells. A PLS regression model
was determined from three DO samples (D0-1, DO-2, DO-3) and three D4 samples (D4-1, D4-2, D4-3)
of transcriptomic and Raman data (Figure 4a and Figure S4a). Using a leave-one-out approach, the
validity of the linear regression model was tested on each sample in turn; one sample, i, was left out,
and a PLS regression coefficients matrix, BETA;, was determined from the remaining five samples. This

matrix was then used to predict the Raman scores of the left-out sample.
Rpredicted =BETA_; - T;

To assess the validity of these predictions and thus the PLS regression model, the predicted Raman
data were compared to the single cell DO and D4 data for each sample. Plotting the predicted PC scores
against the single cell scores shows D0-2 and D4-2 within their expected regions (Figure 4b) and the
rest around the intersection between DO and D4 (Figure S4b-e). Further, by converting the predicted
PC scores into their respective LD scores, the predicted group membership (DO or D4) could be
assessed (Figure 4c). The three DO samples are found within the DO region, while the D4 samples are

found within the D4 region.

These results show that a linear correlation exists between transcriptomic profiles and Raman spectra
of CH12F3 cells. Specifically, the variation in transcript expression levels between DO and D4 cells is
reflected in variation in Raman spectra of DO and D4 cells — and transcriptomic data can be used to

predict Raman data of CH12F3 cells.

Identification of key transcripts for the correlation between Raman data and transcriptomic data

11
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The importance of each transcript for the regression model is of particular interest, as this may reveal
genes or pathways that are essential for the immune activation process. As shown in Figure 3,
thousands of transcripts are significantly differentially expressed between DO and D4. However,
translation levels, protein modifications, and other regulatory mechanisms add further complexity to
the final biochemical composition of the cell. A transcriptional profile does not account for these
additional layers of regulation. Identifying transcripts of high importance for the correlation with the
intracellular biochemical changes as measured by Raman microscopy may therefore be of great value.
The Variable Importance in Projection (VIP) score was determined for each transcript. The top 20
transcripts for the PLS regression are shown in Figure 5a. We term these hits the VIP list. Upon further
analyses of the protein coding entries in our VIP list, we could identify that many of our identified hits
do indeed correlate with expression profiles from in vivo activated B cells isolated from murine
germinal centre splenocytes (Figure 5b). Moreover, their expression quantifications (Figure 5c)
correlate with post-activation B cell responses. It is worth noting that germinal centre splenocytes and
CH12F3 cells are not directly comparable given the immortalised nature of the CH12F3 cell line. That
is why we configured the in vivo germinal centre B cell response into three broad groups that we
termed pre-, mid-, and post-activation (Figure 5b-c). We also took two representative in vivo cohorts
for each of these three broad groups as represented in Figure 5b to ensure maximum congruency

between ex vivo and in vivo analyses.

Ighm and Igha are both found in the top four gene hits of the VIP list (Figure 5a). Although their change
in expression levels results in the isotype switching from IgM to IgA, it is worth noting that they by no
means are the most differentially expressed genes (Figure 3). Their high importance for the correlation
with the Raman data therefore underlines that the transcripts with the highest fold change are not
necessarily the most informative of the changing biochemical composition of a cell. The importance
of IgM and IgA expression in the immune activation process is obvious, and their high presence on the
VIP list supports the validity of the PLS regression model. Additional transcripts in the top 20 include
regulatory and ribosomal RNAs, which is in line with data from yeast and bacterial analysis(27). A large
number of regulatory proteins are also on the list, including a number of heat shock proteins, which
have previously been shown to be important for CSR(61). Actin is also high on the list, in agreement
with studies showing a regulatory role of the actin cytoskeleton in B cell activation (62, 63), as well as
possibly the role of monomeric actin in DNA damage response (DDR) and chromatin modifications

which happens during cell development or DNA repair(64—66).

A PLS regression model was also determined for whole cell and cytoplasm Raman data (Figure S5a-b).
These allowed for predictions in line with the nucleus data (cytoplasm shown in Figure S5c-h). The top

20 VIP transcripts for those models (Table S1 and Table S2) were largely identical to the nucleus list.
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The values and order of the transcripts varied slightly, but only one transcript differed between the
nucleus and whole cell list. For cytoplasm compared to nucleus, only three transcripts were different

in the top 20 hits.

Discussion

The cell segmentation used to isolate nucleus and cytoplasm regions within each cell using the Raman
spectral maps proved useful for highlighting DNA Raman peaks. The 752/786 cm™ peak ratio, shown
to be statistically different between DO and D4, has potential as a measure of activation status. If it is
to be used as such, the biological significance of this peak ratio is of interest. The structure of DNA
likely plays a role here. There are three biologically relevant double helical structures of DNA: A-DNA,
B-DNA, and Z-DNA. B-DNA is the most common. A Raman peak at ~784-787 cm-1 has been shown to
have a strong intensity for B-DNA, but much lower for the other two. The peak consists of two
subpeaks; the breathing mode of the cytosine ring and the phosphodiester symmetric stretch of B-
DNA backbone(67, 68). During B to Z transition of DNA, the phosphodiester symmetric stretch signal
downshifts(68). As Z-DNA is associated with the rate of transcription(69, 70), it is plausible that the

restructuring of DNA during activation could account for the difference between DO and D4.

Looking at the whole Raman spectrum and downstream analyses, it is apparent that the spectra
identified as from the nucleus are unlikely to be “pure” spectra (completely free of cytoplasmic signal).
The similar VIP transcript lists of especially ‘nucleus’ and ‘whole cell’ analysis support this. Although a
confocal microscope was used, optical signal from cytoplasm above and below the nucleus was likely
measured too. The relatively large nucleus in CH12F3 cells and the round shape of the cells could have
contributed to this. For larger and flatter adherent cells with smaller nuclei relative to the overall cell
size, this may not occur to the same extent. Here it could be interesting to determine if a PLS regression

model and its top VIP transcripts differed more between distinct cellular regions than for CH12F3 cells.

Both the PCA and LDA analysis revealed a myriad of spectral differences that allowed for the
classification of DO versus D4 cells. These included a large number of nucleic acid associated peaks,
but also protein, lipid and sugar peaks. Classification of cell types or cell states based on Raman spectra
has great clinical and research potential. However, understanding the biological significance of the
spectral changes is of importance if these tools are to be implemented as a standard technique in
biological laboratories. Peak assignments based on single molecule measurements provide some help
with interpretation of the spectral changes. Correlation with transcriptomic data and identification of

top VIP transcripts could add further value to the Raman data.
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Here we showed that a linear correlation between Raman data and conventional next generation
transcriptomic data exists in CH12F3 cells. Raman data were predicted based on transcriptomic
profiles. When comparing the predicted Raman data to single cell data, the classification of each
prediction was within the expected groups (DO vs D4). We also identified the transcripts with the
highest importance for the correlation with Raman spectra of non-activated and activated CH12F3
cells (Figure 5a). The immunoglobulin genes Ighm and Igha both featured in our top hits, highlighting
the value of the PLS regression model as a valid phenotypic measurement for B cell activation. A
number of regulatory RNAs and proteins were also in the top 20, some known to be involved in the
regulation of CSR and activation, and others not previously shown to be involved. Further experiments
exploring the role of these transcripts in B cell activation and CSR could be of great interest in the field
of adaptive humoral immunity. This also suggests that our methodology could have the potential to
identify novel molecular factors that other conventional assays might miss. One possible reason is the
ability of our assay to combine both qualitative and quantitative analysis of nuclear signals along with
a phenotypic readout of the overall status of the nucleus at the single cell level. RNA-seq, on the other
hand, primarily measures quantitative readouts of bulk cells. Supported by similar results previously
achieved in yeast cells(27), our work could provide a compelling argument for the use of Raman

microscopy for phenotypic screening of a range of complex cellular processes.

Additional time points between DO and D4 could further elucidate the correlation between Raman
spectra and transcriptomic profiles. As there is some, although minor, inter-sample variability due to
confluency levels and number of cell passages, it may also be beneficial to extract RNA and measure
Raman spectra of cells from the same population on the same day. It would also be very interesting
in the future to combine single-cell transcriptomics with Raman measurements. This would be a very
powerful approach to unravelling the direct relationship between the two complementary data types.
Indeed, there is still much to be determined, but there most certainly is a correlation between
transcriptomic profiles and Raman spectra and this correlation can be further enhanced by combining
more refined biological techniques. Understanding the origin of this correlation in different case
studies will add value to Raman measurements of biological samples and aid interpretation of spectral
changes. Furthermore, the work outlined here, suggests that Raman may also aid in the identification
of key regulatory transcripts for immune activation. Future work will demonstrate if this can be
translated to elucidating other cellular developmental processes, occurring in healthy cells or during

disease.

Data availability
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Figure 1: Identifying nucleus and cytoplasm associated areas using common K-means

(a) An example cell map (specifically sample 200207-CH12-D4-006) after common K-means with 10
clusters, which was used to analyse 118 individual cell maps concurrently. (b) The 10 common K-
means centroid spectra. Spectral assignments were used to identify the clusters associated with
cytoplasm (4 and 10) and nucleus (2, 3, and 8). (c) Example cell map (as seen in a) with nucleus (top
left), cytoplasm (bottom left) and background (right) associated pixels highlighted. (d) Comparison of
the mean cytoplasm and nucleus spectrum across all cells. The largest peak differences are highlighted
and peak assignments are listed. (e) Comparison of nucleus/cell ratio between Raman maps and

epifluorescence microscopy images.
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Figure 2: Quantifiable spectral differences between DO and D4 cells

(a) Schematic representation of a CH12F3 cell undergoing class switch recombination in response to

exposure to the cytokine cocktail. The expressed B cell receptor constant region changes from IgM to
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IgA. (b) The mean nucleus spectrum of DO and D4 cells. Two neighbouring peaks are highlighted. (c)
Peak ratio (752 cm™ peak/786 cm™ peak). A t-test gave a statistically significant difference between
samples (ns.: P>0.05, *: <0.05, **: P<0.01, ***:P<0.001). (d) Principal Component analysis.
Comparison of the first 9 PC scores. A t-test was applied to identify the principal components with a
statistically significant difference between DO and D4. (e) PCA analysis. Scores plotted for components
1, 4, and 5. (f) LDA analysis. Histogram of the distribution in the training model. (g) LDA analysis.

Loading spectrum.
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Figure 3: Transcriptomes of DO and D4 cells

(a) Heatmap of the log2 fold change of transcripts from DO and D4 samples, calculated using the DESeq2 software. Transcripts with |log2 fold change|>0.5
and FDR<0.05 are shown. Two transcripts, Ighm and Igha, are highlighted. Ighm and Igha code for the immunoglobulin heavy chain constant regions of IgM
and IgA receptors, respectively. (b) PCA analysis showing separation of DO and D4 samples. (c) Functional enrichment analysis of differentially expressed

transcripts between DO and D4. Table displaying significantly enriched gene ontology (GO) terms and associated biological processes.
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Figure 4: Partial least squares regression model correlates Raman and transcriptomic data

(a) Partial least squares regression model. (b) Raman scores predicted from transcriptomic read
counts. Predicted DO-2 and D4-2 plotted with the single cell scores from PC1, PC4, and PC5. (c)

Predicted Raman scores converted to LDA scores and plotted against the LDA scores histogram.
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a

VIP score Transcript name Transcript type Gene name

42.54684 ENSMUSGO00000064339 Mt_rRNA mt-Rnr2 mitochondrially encoded 16S
rRNA

35.21075 ENSMUSG00000092341 IncRNA Malat1 metastasis associated lung
adenocarcinoma transcript 1

31.19724 ENSMUSG00000095079 1G_C_gene Igha immunoglobulin heavy constant
alpha

29.12567 ENSMUSG00000076617 1G_C_gene Ighm immunoglobulin heavy constant
mu

28.97717 ENSMUSG00000037742 protein_coding Eeflal Elongation factor 1-alpha 1

27.09382 ENSMUSG00000029580 protein_coding Actb .
actin, beta

24.65058 ENSMUSG00000065037 misc_RNA Rn7sk RNA, 75K, nuclear

24.38713 ENSMUSG00000097971 IncRNA Gm26917 predicted gene, 26917

21.2204 ENSMUSG00000064351 protein_coding mt-Col mitochondrially encoded
cytochrome c oxidase |

20.35244 ENSMUSG00000047139 protein_coding Cd24a CD24a antigen

18.47201 ENSMUSG00000034994 protein_coding Eef2 eukaryotic translation
elongation factor 2

14.85389 ENSMUSG00000031779 protein_coding Ccl22 chemokine (C-C motif) ligand 22

14.37985 ENSMUSG00000011179 protein_coding Odcl ornithine decarboxylase,
structural 1

13.17376  ENSMUSG00000026864 protein_coding Hspa5 heat shock protein 5

13.09707 ENSMUSG00000015656 protein_coding Hspa8 heat shock protein 8

12.81861 ENSMUSG00000032399 protein_coding Rpl4 605 ribosomal protein L4

10.87438 ENSMUSG00000049775 protein_coding Tmsb4x thymosin, beta 4, X
chromosome

10.64323 ENSMUSG00000024359 protein_coding Hspa9 heat shock protein 9

10.40896 ENSMUSG00000022797 protein_coding  Tfrc .
transferrin receptor

10.36869 ENSMUSG00000020048 protein_coding Hsp90b1 heat shock protein 90, beta

(Grp94), member 1

Figure 5: VIP transcript list and their expression in vivo
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(a) The 20 transcripts with the highest Variable Importance in Projection (VIP) scores. (b) Expression

of VIP genes in vivo. Median normalised gene expression values in different B cell subsets in vivo as

annotated in Immunological Genome Projects. Further subclassified into pre-, mid-, and post-

activation correlating to activation for CSR in CH12F3. (c) Quantification of normalised expression

values of VIP genes in the dot plot.
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Assessing the cell and nucleus segmentation

The additional cell map examples (Figure Sla-c) provide a clearer idea of how the cell and nucleus
segmentation worked. Three clusters were determined to be associated with nucleus. The primary
nucleus cluster varies between cell maps. That is also the case for the cytoplasm and background
clusters. The Hierarchical Clustering Analysis (HCA) plot (Figure S1d) depicts the relationship between
the ten clusters. All three nucleus clusters (2, 3, and 8) are similar to each other. One cytoplasm cluster
(4) resembles the nucleus clusters, while the other one (10) is more similar to the background clusters.
The ten clusters were assigned to either nucleus, cytoplasm or background based on the centroid
spectra (Figure 1b), the HCA plot, and their effect on the cell and nucleus segmentation within each
cell map. The cell versus background segmentation was straightforward, as seen in both the example
maps and the centroid spectra. Nucleus versus cytoplasm segmentation was based on peaks
associated with nucleic acid, which is more abundant in the nucleus. Cluster 4 proved to be the most
difficult to assign — it was found to be at the interface between nucleus and cytoplasm, as shown by
the example maps and HCA plot. The assignment of cluster 4 to cytoplasm was based on the centroid

spectrum and the resulting nucleus size distribution of all maps.

The size and the shape of the nuclei vary between maps, as seen in Figure 1c and Figure Sla-c. This
variation was quantified and assessed by measuring the major and minor axes of each nucleus and
comparing them to those derived from epifluorescence images (Figure Sle-g). For both major and
minor axes, the Raman mapped nuclei were smaller than the epifluorescence images nuclei. As both
the measurement techniques and experimental setup were different between the two, this was not
of great concern. Indeed, the Cell/Nucleus ratio was similar between the Raman maps and

epifluorescence images (Figure 1e).
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Figure S1: Assessing the cell and nucleus segmentation

(a-c) Additional example cell maps (specifically samples 200114-CH12-D4-009 (a), 200212-CH12-DO-
002 (b), and 200228-CH12-D0-007 (c)) after common K-means with 10 clusters, as presented in
Figure 1a-c. Nucleus (top right), cytoplasm (bottom left), and background (bottom right) associated
pixels highlighted. (d) Hierarchical clustering analysis plot of the common K-means. The clusters
identified as cytoplasm and nucleus are annotated. (e) Epifluorescence image of a CH12F3 cell: the
nucleus is stained with Hoechst (blue) and the whole cell with SYTO13 (green). (f) Histograms


https://doi.org/10.1101/2021.01.12.426344
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426344; this version posted January 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

showing the nucleus size distribution (major axis, left and minor axis, right) of the cells measured
from Raman maps (top) and epifluorescence microscopy images (bottom). (g) Quantification of (b).
A t-test gave a statistically significant difference between samples (ns.: P>0.05, *: <0.05, **: P<0.01,
**%.p<0.001).
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Quantifiable spectral differences between non-activated and activated B cells

CH12F3 CSR in response to CIT treatment was verified by flow cytometry (Figure S2). DO cells almost
exclusively produce IgM BCRs, while a subset of D4 cells have undergone IgM to IgA isotype
switching.

PCA analysis was applied to identify the spectral differences between DO and D4 cells. Four principal
components (PC1, PC4, PC5, and PC8) had statistically significant different scores between DO and
D4 cells. Figure S3a-c show the separation between DO (red) and D4 cells (blue) for these PCs, while
Figure S3d-g show their PCA loading spectra.

CH12F3
Day 0 Day 4 -
. 5 —
10 -_ IgA 10 3 %
] 0.60 40
10 -: ’ : 10 3
: e 30-
< «
D -_ 10”3 K=y 20
o 4 o 3
] 10
10° 4 Thee
L L D R e A T T T
2t e 10° 10° 10° a0 o 10° 10" 0° 0__* T
IgM > Day0 Day4

Figure S2: Monitoring CSR in CH12F3 cells

(a) CSR in CH12F3 upon CIT stimulation monitored by identifying IgM- and IgA-producing cells using
flow cytometry. (b) Quantification of IgA+ cells for DO and D4.
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Figure S3: PCA and LDA analysis for discrimination between D0 and D4 cells

(a) PCA scores; PC1 versus PC4. (b) PCA scores; PC1 versus PC5. (c) PCA scores; PC5 versus PC8. (d)

PCA loadings; PC1. (e) PCA loadings; PC4. (f) PCA loadings; PC5. (g) PCA loadings; PC8.
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Predicting Raman data from transcriptomic data using PLS regression models

The linear correlation between Raman data and transcriptomic data, as determined by the PLS
analysis, is visualised in Figure S4a for component 1. The DO samples cluster together, as do the D4
samples. This is the basis for the model which enabled the prediction of Raman data from

transcriptomic data (Figure 4b-c and Figure S4b-e).

In addition to the Raman nucleus data (Figure 4 and Figure S4), Raman whole cell and cytoplasm data
were also used for PLS analysis (Figure S5). The whole cell data analysis results were largely identical
to those of the nucleus data analysis (Figure S5a). For the cytoplasm data, the results differed more.
However, the linear correlation was still clear (Figure S5b), and it was still possible to accurately predict

Raman data from transcriptomic data (Figure S5c-f).


https://doi.org/10.1101/2021.01.12.426344
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426344; this version posted January 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a Nucleus b

8
_ 6 oD4, L 04
< E - .
- @ O @ ~ -
8 . 5D4, § 02+ o P o Y
Q I E 5] 3
5] 0- ) o
@ 5] { OoRY
© o et s
5 2/ g 021
a oD4, 4 y 0 ©
8 c -04 4
a
x| =
o & 06
g L o
§-_2. 05 . =
£ — 2
o -
Sl 00, 0 o !
oo, Do, < -1
05 -2
Yy - - - B s 1st Principal Component
06 -04 -0.2 0 0.2 0.4 0.6 4th Principal Component
Component 1: Predictor Scores (X)
- 044 o 044
= [
2 o: ) P o® o g 2 o P o o g
g 02+ - : 5 024 2
N ; . E ? !
0+ ) 04 Do 0%
8 e @ 8 _2‘9“” I
T 024 g -024
5} o 5] - O
£ .04 © E 04 N
o o
= r
5 064 & 06+
05 T J 05 I
. o~ 2 - — 2
0 " 1 0 ~ 1
- P 0 = 0
- R — 1
0.5 -2 05 -2
1st Principal Component 1st Principal Component
4th Principal Component 4th Principal Component
. 044
c
2
S 02
3
S O 0
EL 02 o
£ 04 00f
o
&
706
05 )
I < 2
0 — 1
- i
R -1
0.5 2

1st Principal Component
4th Principal Component

Figure S4: PLS regression model can predict Raman data from transcriptomic data

(a) PLS regression analysis shows a linear correlation between Raman nucleus data and
transcriptomic data for component 1. (b-e) Raman scores predicted from transcriptomic read
counts. D0O-1 (b), DO-3 (c), D4-1 (d), and D4-3 (e) plotted with the single cell scores from components
1, 4 and 5.
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Figure S5: PLS regression model correlates Raman whole cell and cytoplasm data with
transcriptomic data

(a) PLS regression analysis shows a linear correlation between Raman whole cell data and
transcriptomic data for component 1. (b) PLS regression analysis shows a linear correlation between
Raman cytoplasm data and transcriptomic data for component 1. (c-f) Raman cytoplasm PLS model:
Raman scores predicted from transcriptomic read counts. DO-1 and D4-1 (c), DO-2 and D4-2 (d), DO-3
(e), D4-3 (f) plotted with the single cell scores from PC1, PC4, and PC5.
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VIP score Transcript name Transcript type Gene name

41.68549 ENSMUSG00000064339 Mt_rRNA mt-Rnr2 mitochondrially encoded 16S
rRNA

31.63403 ENSMUSGO00000037742 protein_coding Eeflal Elongation factor 1-alpha 1

30.71642 ENSMUSG00000095079 IG_C_gene Igha immunoglobulin heavy constant
alpha

30.42896 ENSMUSG00000092341 IncRNA Malatl metastasis associated lung
adenocarcinoma transcript 1

29.63411 ENSMUSG00000076617 IG_C_gene Ighm immunoglobulin heavy constant
mu

28.14179 ENSMUSG00000029580 protein_coding Actb actin, beta

23.71356  ENSMUSGO00000097971 IncRNA Gm26917  predicted gene, 26917

23.70888 ENSMUSG00000065037 misc_RNA Rn7sk RNA, 75K, nuclear

22.0795 ENSMUSGO00000064351 protein_coding mt-Col mitochondrially encoded
cytochrome c oxidase |

20.93438 ENSMUSG00000047139 protein_coding Cd24a CD24a antigen

20.11123 ENSMUSG00000034994 protein_coding Eef2 eukaryotic translation
elongation factor 2

15.38487 ENSMUSG00000011179 protein_coding Odcl ornithine decarboxylase,
structural 1

14.87474 ENSMUSG00000031779 protein_coding Ccl22 chemokine (C-C motif) ligand 22

14.05003 ENSMUSG00000032399 protein_coding Rpl4 60S ribosomal protein L4

13.63799 ENSMUSG00000015656 protein_coding Hspa8 heat shock protein 8

11.70491 ENSMUSG00000026864 protein_coding Hspa5 heat shock protein 5

11.58428 ENSMUSG00000049775 protein_coding Tmsb4x thymosin, beta 4, X chromosome

11.54382 ENSMUSG00000024359 protein_coding Hspa9 heat shock protein 9

10.83353 ENSMUSGO00000057113 protein_coding Npm1 Nucleophosmin

10.81621 ENSMUSG00000022797 protein_coding Tfrc transferrin receptor

Table S1: VIP list for Whole cell Raman data PLS regression analysis
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VIP score Transcript name Transcript type Gene name

36.48182 ENSMUSG00000037742 protein_coding Eeflal Elongation factor 1-alpha 1

36.38903 ENSMUSG00000064339 Mt_rRNA mt-Rnr2 mitochondrially encoded 16S
rRNA

34.47657 ENSMUSG00000076617 IG_C_gene Ighm immunoglobulin heavy constant
mu

27.54574 ENSMUSG00000095079 IG_C_gene Igha immunoglobulin heavy constant
alpha

27.18289 ENSMUSG00000097971 IncRNA Gm26917  predicted gene, 26917

27.03748 ENSMUSG00000029580 protein_coding Actb actin, beta

24.54971 ENSMUSG00000065037 misc_RNA Rn7sk RNA, 75K, nuclear

24.41311 ENSMUSG00000064351 protein_coding mt-Col mitochondrially encoded
cytochrome c oxidase |

24.35519 ENSMUSG00000092341 IncRNA Malatl metastasis associated lung
adenocarcinoma transcript 1

21.69827 ENSMUSGO00000034994 protein_coding Eef2 eukaryotic translation
elongation factor 2

19.10295 ENSMUSG00000047139 protein_coding Cd24a CD24a antigen

15.70651 ENSMUSG00000032399 protein_coding Rpl4 60S ribosomal protein L4

15.32205 ENSMUSG00000011179 protein_coding Odcl ornithine decarboxylase,
structural 1

13.15234 ENSMUSG00000031779 protein_coding Ccl22 chemokine (C-C motif) ligand 22

12.79875 ENSMUSG00000057113 protein_coding Npm1 Nucleophosmin

12.78879 ENSMUSG00000015656 protein_coding Hspa8 heat shock protein 8

12.50920 ENSMUSG00000058655 protein_coding Eifdb Eukaryotic translation initiation
factor 4B

12.18672 ENSMUSG00000024359 protein_coding Hspa9 heat shock protein 9

10.85725 ENSMUSG00000049775 protein_coding Tmsb4x thymosin, beta 4, X chromosome

10.57061 ENSMUSG00000051506 protein_coding Wdfy4 WD repeat and FYVE domain

containing 4

Table S2: VIP list for Cytoplasm Raman data PLS regression analysis
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