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Abstract

Much is still unknown about the neurobiology of Alzheimer’s disease (AD). To better understand
AD, we generated 636 ATAC-seq libraries from cases and controls to construct detailed genome-
wide chromatin accessibility maps of neurons and non-neurons from two AD-affected brain
regions, the entorhinal cortex and superior temporal gyrus. By analyzing a total of 19.6 billion read
pairs, we expanded the known repertoire of regulatory sequences in the human brain. Multi-omic
data integration associated global patterns of chromatin accessibility with gene expression and
identified cell-specific enhancer-promoter interactions. Using inter-individual variation in
chromatin accessibility, we define cis-regulatory domains capturing the 3D structure of the
genome. Multifaceted analyses uncovered disease associated perturbations impacting chromatin
accessibility, transcription factor regulatory networks and the 3D genome, and implicated
transcriptional dysregulation in AD. Overall, we applied a systematic approach to understand the
role of the 3D genome in AD and to illuminate novel disease biology that can advance diagnosis
and therapy.
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Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized, clinically, by
cognitive decline and, neuropathologically, by accumulation of amyloid beta (Ap) plaques and
intracellular neurofibrillary tangles. Although a growing number of common and rare genetic risk
variants have been identified (/), the neurobiological causes and substrates of AD in the vast
majority of the population remain unknown. As such, additional approaches should be considered
in an attempt to better understand the molecular mechanisms that mediate this debilitating disease.
Abnormalities in the epigenomic regulation of brain function could result from primary genetic
and non-genetic causal factors and epiphenomena, including changes secondary to disease
progression. Thus, the epigenome could elucidate disease mechanisms, especially in late-onset
AD, where there can be a gap of multiple decades before the initial changes in brain function
become clinically apparent.

A number of recent studies have identified AD-associated epigenomic changes (2—6). These
studies, however, have been limited to bulk tissue and have only examined one brain region at a
time. This, naturally, impedes identification of brain region and cell-type specific disease
signatures. Furthermore, although analyses of bulk tissue can identify apparent changes in gene
expression and the epigenome, bulk tissue level changes can reflect alterations in cell composition
rather than changes in the function of individual cells. This is particularly important for
neurodegenerative diseases, including AD, where disease progression involves neuronal loss.

Due to the inherent difficulty in obtaining fresh specimens, most molecular studies of the human
brain are restricted to frozen post-mortem samples. Working with frozen material is not without
its challenges, including the loss of cytoplasm (and, with it, many cell-specific antigens) as a
consequence of freeze-thawing. Nevertheless, an increasing number of human brain studies have
employed cell-type specific nuclear markers to isolate nuclei of interest via Fluorescence-
Activated Nuclear Sorting (FANS) (7-9). Using FANS to study individual cell-types increases the
power to identify cell-specific, disease-associated changes and, importantly, mitigates the
aforementioned changes in cell type composition.

In this study, we expanded the panel of genomic assays in the Mount Sinai Brain Bank AD
(MSBB-AD) cohort (0), a collection of human post-mortem brain samples from individuals who
have been deeply phenotyped, both clinically and histopathologically. In particular, we generated
genome-wide maps of chromatin accessibility using ATAC-seq from neuronal and non-neuronal
nuclei isolated by FANS from the entorhinal cortex (EC) and superior temporal gyrus (STG) of
AD cases and controls. Both brain regions are affected in AD, with the EC showing earlier and
more severe pathological changes and neuronal loss (/7). We initially used these data to expand
the repertoire of identified cell type specific regulatory regions and studied their relationship to
gene expression. We then examined the shared and distinct molecular mechanisms associated with
clinical dementia and neuropathological lesions. Subsequently, we identified regulatory genomic
signatures associated with AD, including variability in discrete open chromatin regions (OCRs),
transcription factor (TF) regulatory networks and cis-regulatory domains (CRDs). AD-associated
signatures showed brain-region and cell-type specificity, implicating non-coding regulatory
regions within AD genetic risk loci that participate in a variety of biological pathways as well as
changes in transcription factor regulation.
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Results

Population-scale datasets of brain region and cell type specific chromatin accessibility
expand the repertoire of known human brain regulatory elements

100 We performed ATAC-seq profiling in neuronal (NeuN+) and non-neuronal (NeuN-) nuclei
isolated by FANS from the STG and EC of AD cases (n=153) and controls (n=56) derived from
the Mount Sinai NIH Brain and Tissue Repository (Fig. 1A). All samples were part of the MSBB-
AD cohort, which has been extensively analyzed as part of Accelerating Medicines Partnership -
Alzheimer's Disease (AMP-AD) project and have additional functional omics data, including

105 whole genome sequencing and multiregional RNA-seq profiling (/0) (Data S1). The individuals
were selected to represent the full spectrum of clinical and pathological severity (Data S2) based
on the following phenotypes: (1) case-control status defined using the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) criteria (/2); (2) Braak AD-staging score for
progression of neurofibrillary neuropathology (Braak & Braak-score or BBScore) (13, 14); (3)

110 mean density of neuritic plaques (plaque mean); and (4) assessment of dementia and cognitive
status based on clinical dementia rating scale (CDR) (/3). These phenotypes were moderately
correlated (fig. S1), indicating shared and distinct disease processes.

We processed 403 brain dissections from 2 brain regions to yield a total of 773 neuronal (NeuN+)
and non-neuronal (NeuN-) FANS-sorted samples (fig. S2). Chromatin accessibility in each sample

115 was then determined through ATAC-seq profiling. Extensive quality control of ATAC-seq
libraries based on cell-type, sex, and genotype concordance, as well as sample quality metrics and
sequencing depth, yielded a total of 636 samples constituting a total of 19.6 billion read pairs with
an average of 30.8 million non-duplicated read pairs per library (fig. S3 and S4, Data S3). Given
the large differences in chromatin accessibility profiles between the two cell types (Fig. 1B, fig.

120 S5), neuronal and non-neuronal samples were considered separately for subsequent downstream
analysis. A total of 315,630 neuronal and 205,120 non-neuronal open chromatin regions (OCRs)
were identified, respectively. One reason for this high number of OCRs is the sequencing depth in
the aggregated read files used for peak calling. The OCRs were proximal to genes (Fig. 1C) and,
as expected, showed enrichment in known cell type markers (Fig. 1D).

125 Next, we compared our extensive catalog of OCRs to previous reference studies from the Roadmap
Epigenomics Project (/8), Cancer Atlas (/9), and the Brain Open Chromatin Atlas (20). We
identified 157,944 novel OCRs (126,903 neuronal and 68,054, partially overlapping, non-neuronal
OCRs), thereby expanding the repertoire of known OCRs in human brain tissue/cells by 58%. In
addition, 61.1% of the OCRs identified in this study overlapped with previously observed

130 regulatory elements detected in the OCR reference repositories (Fig. 1E), highlighting the
consistency of our results with published datasets. We found a higher (median Jaccard J=0.21)
overlap between OCRs from the reference studies and non-neuronal OCRs compared to neuronal
OCRs (median Jaccard J=0.14), indicating that our open chromatin atlas significantly expands our
knowledge of the neuroepigenome (Fig. 1F, fig. S6). Overall, we have generated the largest

135 resource of chromatin accessibility in the central nervous system to date and expanded the
repertoire of identified cell type specific regulatory sequences in the human brain.

Proximal and distal chromatin accessibility explains variation in gene
expression
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140 Chromatin structure is integral to transcriptional regulation, with chromatin accessibility
regulating gene expression by facilitating, or inhibiting, binding of the transcriptional machinery.
Given the availability of RNA-seq data from the same individuals and brain region homogenates
from which we generated our cell-type specific ATAC-seq data, we sought to quantify the relative
contribution of proximal (i.e. promoter) and distal (i.e. enhancer) chromatin accessibility to

145 transcriptional variance. We applied variance decomposition models to each of 20,709 expressed
RNA-seq genes using the covariance of OCRs at transcription start sites (TSSs) and distal
regulatory elements as inputs (fig. S7). We analyzed neuronal and non-neuronal OCRs separately,
but included OCRs and gene expression from two brain regions (STG and EC) and corrected for
donor effects by adding inter-individual covariance in the models.

150 In this model, more than 70% of expression variance (76.1% for neuronal and 71.7% for non-
neuronal) was explained by promoter and enhancer OCRs, confirming that gene expression is
broadly associated with chromatin accessibility (Fig. 2, A to B). To assess the validity of these
findings, we permuted our dataset and, as expected, found that little variance was attributed to the
epigenome in this shuffled analysis (fig. S8 and S9). The proportion of expression attributed to

155 enhancer OCRs was twice as large in neuronal samples (Fig. 2C, Data S4), confirming a larger
impact of distal regulatory mechanisms in neuronal cell types (20). In contrast, a higher proportion
of expression variance in non-neuronal samples was attributed to promoter OCRs. Gene set
enrichment analysis of the genes with the highest proportion of variance explained by promoter
OCRs showed enrichment with known cell type markers (fig. SI0A).

160 The proportion of expression attributed to inter-individual covariance was similar for neuronal
(mean 13.4%) and non-neuronal (mean 13.7%) samples. We hypothesized that the inter-individual
covariance was, in part, driven by genetic regulation of gene expression (27). In order to test this
hypothesis, we estimated, for each gene, the fraction of gene expression variation explained by the
cis-genetic component via training transcriptomic imputation models with the EpiXcan method

165 (17) in an independent RNA-seq + SNP-array dataset, comprised of human postmortem brains
from the PsychENCODE Consortium (22); the cross validation R-squared (R?cv) model is known
to be a good proxy for how much of the expression variance is driven by cis-genetic variation (23).
Here we observed significant correlations between per-gene inter-individual covariance and R2CV
in neuronal (Spearman p=0.22, P-value=1.3x10% fig. S10B) and non-neuronal (Spearman

170 p=0.16, P-value=3.7x10, fig. S10C) OCRs. The remaining covariance was unexplained and was
found to be larger in non-neuronal (mean 14.6%) compared to neuronal (mean 10.5%) samples.
Overall, these results suggest that gene expression in human brain tissue is associated with global
patterns of chromatin accessibility that differ between neuronal and non-neuronal cells.

175 Neuronal and non-neuronal enhancer—promoter interactions regulate the
majority of human brain expressed genes

Having shown that our data capture the transcriptional regulation associated with global patterns
of proximal and distal chromatin accessibility, we next sought to determine enhancer-promoter (E-
P) interactions. E-P contacts have, with some success, been inferred from genomic distance and
180 Hi-C derived chromatin loops (24). To improve upon this, however, the “activity-by-contact”
(ABC) approach (25) model was employed, which quantifies the regulatory impact of enhancers
quantitatively by assuming proportionality with both E-P contact frequency (inferred from Hi-C)
and enhancer activity (inferred from chromatin accessibility and H3K27ac histone modification).
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To apply this approach using our ATAC-seq data, we generated cell type-specific ChIP-seq and
185 Hi-C data.

Across the neuronal and non-neuronal datasets, we identified 37,056 and 38,233 E-P interactions,
respectively. We determined that at least 63% of the expressed genes (13,135 of 20,709) were
linked to one or more distal OCR (OCRagc) (Fig. 3A, fig. S11A, Data S5). While the majority of
these enhancers were predicted to interact with a single gene, about one quarter seemingly

190 regulated two or more genes (Fig. 3B, fig. S11B). Jointly, the enhancers that participate in E-P
interactions cover 13.2-13.3Mb in each cell type (0.45-0.46% of the genome). On average, 43-
47% of the E-P links were shared between neurons and non-neurons, whereas 83-90% of E-P links
were shared across brain regions when comparing within the same cell type, with a high correlation
of ABC score (fig. S11F). Among the predicted OCRagc enhancers, only 25% were linked to the

195 nearest gene, clearly demonstrating the shortcomings of purely distance based regulatory
annotation (Fig. 3F, fig. S11C). Still, the frequency of E-P links decreased sharply with distance
and 86% were within 100kb (Fig. 3, Cto E, fig. S11, D to E) (206).

To corroborate the results of our regulatory analyses, we compared distal OCRs predicted to
participate in E-P interactions (OCRagc) with a subset of distal OCRs not predicted to take part in

200 such interactions but matched by distance to nearest TSS and OCR width (OCRoher). We used
orthogonal evidence for E-P interactions assigned based on fine mapping of GTEx eQTL analysis.
OCRAagc, but not OCRomer, were found to be enriched in fine-mapped eQTLs from GTEx (27) (OR
1.5-1.8, P-value < 104, fig. S12A, Data S6). When compared based on chromatin states from the
Roadmap Epigenomics Project, OCRagc showed a relative depletion in repressed chromatin states

205 as opposed to OCRomer (fig. S12, B to C). Finally, chromatin accessibility at predicted promoter
regions was significantly more highly correlated with accessibility at OCRagc than accessibility
at OCRomer (Fig. 3G, fig. S11G).

AD associated epigenetic changes vary markedly by cell type and brain region

210 To explore AD-associated changes in chromatin accessibility, we performed differential analyses
across multiple phenotypes (case/control status, BBScore, plaque mean and CDR) considering the
brain regions (STG/EC) separately, or in combination, to increase statistical power (Fig. 4A, fig.
S13, Data S7). EC neurons showed the highest number of associations across all AD phenotypes,
with 19,336 OCRs (6.1%) associated with one or more AD phenotype(s) (Fig. 4B). For STG

215 neurons, the corresponding number was 10,490 (3.3%), highlighting the regional specificity of
AD-associated epigenetic changes. For non-neurons, the number of significant associations was
markedly smaller, with STG and EC non-neurons jointly showing an association in 4,625 OCRs
(2.3%) for one or more AD phenotype(s). Thus, the epigenomic changes in AD vary markedly by
cell type and brain region. In terms of phenotypes, CDR and PlaqueMean identified the highest

220 number of differential OCRs (Fig. 4B, Data S7 and S8) and, furthermore, yielded the highest m;
estimates, i.e. the highest estimates of the true proportion of differential OCRs (Data S9). These
phenotypes, therefore, appear better powered to assay disease changes than the dichotomous case-
control status.

Epigenetically perturbed regulatory regions in AD were located near transcripts as well as in
225 intergenic regions, suggesting that a combination of proximal and distal regulatory elements
contribute to AD (Fig. 4C, Data S7). For both neurons and non-neurons, we found a higher fraction
of AD-associated OCRs in the promoter area compared to all OCRs tested (Fig. 4C, fig. S14).

6
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However, a higher proportion of epigenetically perturbed regulatory regions in AD were located

in proximity to the transcription start sites in non-neuronal compared to neuronal OCRs (Fisher's
230 exact one-sided P-value=1.07x10"'%%). We then examined the robustness of our differential

chromatin accessibility analysis by checking the concordance (based on correlation of OCR fold-

change) with three epigenetic studies of AD in human postmortem brains (3) and iPSC-derived

neurons (3, 28) (fig. S15). We found significant concordance with an average Pearson coefficient

of 0.31, while higher correlations were observed in neuronal compared to non-neuronal analysis
235 (mean Pearson correlation of 0.38 vs 0.22).

While it is well-established that AD genetic risk variants are enriched in OCRs in microglia and
astrocyte genes (29), the relationship with quantitative regulation of chromatin accessibility in AD
is less clear. Besides considering the relationship between AD risk variants and OCRs genome-
wide, the detailed phenotype data of our samples allowed us to explore the relationship between

240 genetic risk variation and AD-associated OCRs using LD-score partitioned heritability (30). Here,
we found the set of all non-neuronal OCRs and the PlaqueMean-associated non-neuronal OCRs to
be significantly enriched in AD genetic variants, even when accounting for the general genetic
context of the OCRs (Fig. 4D). Interestingly, disease-associated non-neuronal OCRs showed a
higher heritability coefficient than other OCRs highlighting the overlap between AD genetic risk

245 variants and the subsequent epigenetic perturbations seen in the disease. Finally, we saw moderate
enrichment when we overlapped OCRs with common variants of AD co-heritable traits, such as
neuroticism, insomnia or bipolar disorder (29) (fig. S16, Data S10).

AD associated epigenetic changes are concordant with gene expression
250 alterations

To investigate changes in gene expression, we reprocessed 833 homogenate RNA-seq samples
from four brain regions (including STG, EC, IFG - inferior frontal gyrus, and FP - frontal pole) in
a highly overlapping set of individuals (fig. S17). The differential analysis was performed across
multiple phenotypes as with the ATAC-seq data. A deconvolution parameter was added to account

255 for differences in cell type composition in the bulk tissue, driven by the neuronal loss associated
with disease progression (fig. S18 and S19). A higher proportion of genes was differentially
expressed in EC and FP (24.4% and 21.5% of expressed genes, respectively), followed by STG
and IFG (8.1% and 3.0% of expressed genes, respectively) (fig. S20, Data S11).

Comparing the epigenomic changes at transcription start sites with the changes in gene expression,
260 revealed strong correlations (Fig. 4E, fig. S21). This concordance was higher for non-neuronal
than neuronal samples (Pearson correlation of 0.31 and 0.14, respectively), suggesting that bulk
tissue transcriptome studies in AD capture expression changes in non-neurons better than in
neurons. Two illustrative examples demonstrating decreased chromatin accessibility and gene
expression for AD cases through differentially regulated OCRs in promoters and distal intergenic
265 regions are shown in Fig. 4F. NYAPI (Neuronal Tyrosine Phosphorylated Phosphoinositide-3-
Kinase Adaptor 1), represents a late onset AD GWAS-linked candidate gene (3/) that plays a role
in the regulation of PI3K signaling pathway in neurons and controls cytoskeletal remodeling in
outgrowing neurites (32). Loss of CCKBR (Cholecystokinin B Receptor) negatively affects spatial
reference memory (33) and has repeatedly been identified among the top hits in differential gene
270 expression analyses between AD cases and controls (34=36).
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Epigenome and transcriptome AD perturbations are enriched for biological
processes and canonical pathways

To elucidate biological processes implicated in AD, we performed gene set enrichment analyses

275 for our two ATAC-seq cell types, bulk RNA-seq, as well as the aforementioned GWAS study (29).
We did this separately for each phenotype (fig. S22 and S23), and aggregated these by taking the
most significant association across all phenotypes (Fig. 5, fig. S24).

The AD-associated changes in gene expression seen in RNA-seq implicated very general
molecular pathways, such as “Oxidative Phosphorylation” and “Translation”. On the other hand,

280 chromatin accessibility pointed to more specific molecular pathways. For example, using neuronal
ATAC-seq we identified “the endocytotic role of NDK, phosphins and dynamin” and “RHO
GTPase activation of PAKs”, among the top associations. Interestingly, PAKs (p21-activated
kinases) are abundant in the brain where they have been associated with cell death and survival
signaling (37). The non-neuronal ATAC-seq samples implicated “establishment of the blood-brain

285 barrier”, which was also nominally significant with neuronal ATAC-seq, RNA-seq, and the AD
GWAS. The blood-brain barrier has a purported role in the initiation and maintenance of chronic
inflammation during AD (38). Other pathways associated with multiple assays included
“regulation of neutrophil activation” and “regulation of localization of FOXO transcription
factors”. Of note, the latter is involved in cell death and longevity (39, 40), and one member of the

290 gene set, FOXO3 (47), showed at least a nominal association across all assays. Within these top
gene sets, the top genes (e.g. ABCA7, BINI, and PICALM) often showed an association across
multiple assays (Fig. 5). We further highlight the top genes regardless of whether they were a
member of one of the top gene sets or not (fig. S25, Data S12).

Finally, to examine changes in brain function, we performed a targeted gene set enrichment

295 analysis using the synaptic gene ontology resource (42) (fig. S23 and S24). This implicated both
pre- and post-synaptic dysfunction in post-mortem brain function. For the AD GWAS, synaptic
dysfunction was also implicated, which, to the best of our knowledge, has not previously been
reported. Of particular interest, “synaptic vesicle cycle” was significant in both the GWAS and
RNA-seq, as well as in neuronal ATAC-seq, highlighting the shared enrichment of fundamental

300 neuronal functions between the genetic drivers and subsequent chromatin accessibility and gene
expression profiling in post-mortem brain.

Cell type-specific transcription factor regulatory networks are perturbed in AD

Using footprinting analyses (43) we systematically examined transcription factor (TF) activity
305 patterns underlying cell type differences and AD-related chromatin changes. We utilized 431 TF
motifs, which, due to sharing of binding motifs, represented 798 TFs. TFs clustered into two cell
type-specific groups with predominantly neuronal and non-neuronal regulatory patterns,
complemented by a third group lacking cell-type specificity (Fig. 6, A to B, fig. S26A, Data S13).
The TF cell specificity identified here was broadly concordant with existing literature (Data S14).
310 For instance, Fos and Jun family members form an AP-1 heterodimer that is implicated in neuronal
activity linked to learning and memory processes (44, 49). In contrast, Activating Transcription
Factor 3 (ATF3) transcriptionally represses and regulates pro-inflammatory astrocytic and
microglial activity (46). Genomic screen homeobox (GSX2), as a further example, acts as a
gatekeeper of adult neurogenesis by mediating the recruitment in to the cell cycle of multipotent
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315 NSCs that can give rise to both neuronal and non-neuronal cells (47, 48). Corroborating our
findings, the TF cell type specificities identified here were also highly concordant (Fig. 6A,
Spearman p = 0.87, P-value < 10°'°) with TF footprinting analyses performed in the BOCA study
(Brain Open Chromatin Atlas, (20)). Next, we leveraged differences in footprinting signals from
neuronal and non-neuronal samples (bound/unbound status per transcription factor binding site),

320 to identify a set of 1,432 and 1,834 genes whose transcription were controlled exclusively by TFs
in our neuronal and non-neuronal TF clusters, respectively (Data S15). Convincingly, these genes
showed enrichment in known cell type markers of the appropriate cells (fig. S26B).

Having broadly characterized TF activity in the two cell types, we then sought to examine TF
dynamics in AD. For this, we constructed TF regulatory networks (TFRNs) for each cell type and

325 brain region by analyzing actively bound TF motifs within proximal regulatory regions of genes
representing the aforementioned 798 TFs. Due to high similarity of the network topology across
brain regions (Jaccard J of 0.84 and 0.93 for neuronal and non-neuronal TFRNSs, respectively), we
subsequently merged TFRNs from the same cell type, resulting in a neuronal and a non-neuronal
TFRN. Here, we identified a total of 26,976 and 40,348 unique, directed TF-to-TF interactions

330 among the 431 analyzed TF motifs for neuronal and non-neuronal TFRNs, respectively, with a
moderate overlap among the two networks (Jaccard J=0.56).

Using the neuronal and non-neuronal TFRN topology of directed TF-to-TF interactions and TF
risk scores based on RNA-seq (across four AD-related phenotypes) and GWAS (29) data, we
identified high-scoring subnetworks associated with AD (based on empirical P-value<0.05) (Fig.

335 6C). For each cell type, we subsequently combined the resulting subnetworks derived from the
five TF risk scores into consensus subnetworks. Overall, we identified 46 and 45 TF motifs
enriched in AD risk genes for the neuronal and non-neuronal TFRNs, respectively. To whittle
down a list of candidate TF genes represented by the TF motifs prioritized by the TFRN analysis,
we filtered out genes that were not differentially expressed between AD cases and controls (Fig.

340 6C, fig. S27). The resultant set of 56 TF genes shows a notable overlap with three studies that
sought to identify AD regulatory hubs based on transcriptomics and epigenomics data (49—517).
We found the TF gene USF2 to be highlighted in all three studies, as well as in our data, where
AD perturbation on TFRN was supported by both GWAS and RNA-seq evidence.

Genes regulated by USF2 were enriched primarily in lysosomal dependent protein degradation
345 pathways, which are processes known to be affected in AD (52) (Fig. 6D). While the literature on
USF2 is very limited, there is evidence that USF2 plays a role in regulating lysosomal gene
expression (33). To further support the link between USF2 and lysosomal dysfunction, we
evaluated the effects of USF2 knockdown and over-expression on key components of the
lysosomal pathway essential for maintaining lysosomal pH (54) and activity in a human neuronal
350 cell line, SH-SY5Y. We found a reduction in the abundance of the members of the VO (VOb, V0d1)
and V1 (V1D, VIE1, VIGI1, VIH) subunits of v-ATPase, which are responsible for maintaining
intra-lysosomal pH (fig. S28, A to D), indicating impairments in lysosomal enzyme function.
Convincingly, we observed changes in protein abundance in the opposite direction when USF2
was overexpressed (fig. S28, E to H). v-ATPase hydrolyzes ATP via its V1 domain and uses the
355 energy released to transport protons across membranes via its VO domain. This activity is critical
for pH homeostasis and generation of a membrane potential that drives cellular metabolism (33).
Accordingly, reduced levels of V1 sector v-ATPase subunits on lysosomes isolated from USF2
knockdown cells lowered the rate of ATP hydrolysis of v-ATPase by ~60% (fig. S28, I). The
ATPase activity decline is expected to block proton translocation via the VO sector (56) and impair
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360 acidification of lysosomes, as we observed (fig. S28, J to K). The increased level of VOal may be
a compensatory, but incomplete, response to the loss of V1 subunits. Taken together, these findings
suggest that the TF USF2 plays a role in maintaining pH dependent lysosomal function via v-
ATPase activity.

365 Three-dimensional chromatin interactions from population-level maps of
chromatin accessibility

Studying correlation structures in chromatin accessibility at the population level has yielded high-
resolution maps of cis-regulatory domains (CRDs) in lymphoblastoid cell lines (57). We employed
this approach to explore the coordinated activity and chromatin organization of neuronal and non-
370 neuronal OCRs in the adult human brain and its perturbations in AD (Fig. 7A, fig. S29 to S31).
Initially, we explored the correlation of chromatin accessibility between pairs of OCRs and found
that they decrease in frequency with genomic distance, which is in accordance with our ABC
analyses of enhancer-promoter interactions (fig. S32A). Subsequently, we used adjacency
constrained hierarchical clustering (38, 39), across both brain regions, to identify 13,671 STG
375 neuronal, 13,334 EC neuronal and 8,861 STG non-neuronal, 8,688 EC non-neuronal CRDs, which
included 37-39% of all OCRs (Fig. 7B, Data S17). Each CRD contained an average of 8 OCRs,
but this varied substantially (29-30% with 5 or fewer OCRs; 44-45% with 9 or more OCRs). As
expected, CRDs showed higher similarity across brain regions (Jaccard J of 0.33 for neurons and
0.34 for non-neurons) than across cell types (Jaccard J of 0.10 for STG and 0.10 for EC) (Fig. 7C).

380 Next, we examined the composition of our CRDs and found 22% of OCRs within neuronal CRDs
to be promoters, whereas 27% of OCRs within non-neuronal CRDs were promoters (fig. S32B).
The remaining OCRs were enhancers. Further, a higher fraction of neuronal CRDs contained only
enhancers, compared to non-neurons (fig. S32C). For example, ~40% of CRDs that include 8-10
OCRs are only enhancers in neurons, while non-neurons have a lower fraction (~30%) (fig. S32D).

385 On average, within each neuronal CRD, a promoter coordinated with ~3.5 enhancers, whereas an
enhancer coordinated with ~0.93 promoters. For non-neuronal CRDs, a promoter coordinated with
~3 enhancers, whereas an enhancer coordinated with ~1.1 promoters. Thus, the coordinated
activity of OCRs within a CRD included a higher proportion of putative enhancers in neurons
when compared to non-neuronal samples.

390 Hi-C has been considered the gold standard in establishing the three-dimensional (3D) genomic
structure (60). We compared CRDs to cell type-specific Hi-C-derived Topologically Associated
Domains (TADs) to investigate the efficiency with which CRD captured the 3D genome. CCCTC-
binding factor (CTCF) binding sites at TAD boundaries enhance contact insulation between
regulatory elements of adjacent TADs (6/). Both CRD and TAD boundaries were enriched in
395 CTCEF binding sites, with the former showing the highest density (Fig. 7D). Furthermore, there
was a marked overlap between CRD and TAD boundaries (fig. S32, E and G). While TADs capture
the spatial organization of the genome at the scale of hundreds of kb (mean of 413kb in neurons;
409kb in non-neurons), CRDs represent finer-scale regulatory clusters on the order of tens of kb
(mean of 92kb in EC neurons; 87kb in STG neurons; 117kb in non-neurons; 123kb in non-neurons)
400 (Fig. 7E). We leveraged Hi-C to divide the genome into A and B compartments, which are known
to be associated with active and inactive chromatin, respectively (62), and confirmed that CRDs
were enriched in type A compartments (fig. S32H). To explore the regulatory interactions within
each CRD, we leveraged the outcome of the ABC analysis and found enrichment of E-P
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interactions that are within the same CRDs (Fig. 7F). Enrichment of CRDs with E-P interactions
405 decreased sharply with distance, and interactions were not significantly enriched beyond ~500kb

for neurons and ~250kb for non-neurons. Additionally, the correlation was higher for OCR

interactions that have support for Hi-C loops and diminished with distance (fig. S32I).

In conclusion, interrogating inter-individual correlation between OCRs elucidates the coordinated
activity of cis-regulatory elements and identified thousands of CRDs. These CRDs are highly

410 concordant with, but substantially smaller than Hi-C-defined TADs, indicating that a CRD is a
functional unit of the 3D genome, capturing intra-chromosomal interactions of active regulatory
elements with higher spatial resolution.

Differential analysis of CRDs defined perturbations of the three-dimensional
415 genome in AD

We next took advantage of the CRD outcome to explore the association of AD with perturbations
of the 3D genome. We performed differential analyses of CRDs across all AD-related phenotypes
considering the brain regions (STG/EC) separately (fig. S29, Data S17). The AD epigenomic
changes in CRDs varied markedly by cell type, brain region, and phenotype (Fig. 8A, Data S18),

420 and showed similar patterns with the changes observed in the single OCR analysis (Fig. 4A). For
instance, EC neurons showed the highest number of associations across all AD phenotypes,
followed by STG neurons and then non-neuronal CRDs. The highest number of significant CRDs
(n=2,603) was observed for the CDR phenotype in EC neurons and involved 26,365 OCRs (21.6%)
that were also dysregulated (Fig. 8A). On average, across every phenotype, brain region, and cell

425 type, dysregulation of the 3D genome in AD spanned 92.5 Mb or 3% of the genome (fig. S33, A
to B). For the Plaque mean phenotype, perturbations of CRDs in EC neurons spanned 362.7 Mbp,
or 12.1% of the genome, suggesting that restructuring of the 3D genome is widespread in these
regions of the AD brain.

Having shown that the 3D genome is significantly altered in AD, we asked if AD-associated

430 structural epigenomic perturbations cause transcriptional changes in nearby genes. For this, we
mapped OCRs within CRDs to genes using the E-P interactions of our ABC analysis (Data S5).
We next correlated changes in OCR accessibility with changes in gene expression and found our
ABC-mapped CRD-derived OCRs to show a similar degree of correlation to genes when compared
to the single OCR analysis (fig. S33, C to D). Using CRDs as the functional unit, we identified

435 dysregulation of the transcriptome in AD (Fig. 8B, Data S18), which show similar cell type, brain
region, and phenotype specificity as the epigenetically defined perturbations (Fig. 8A).
Transcriptome-defined CRD perturbations were highly reproducible (range of m estimates from
0.39 to 0.88) in an independent gene expression dataset from the Religious Orders Study and
Memory and Aging Project cohort (63) (fig. S34A, B). Gene set enrichment analysis for the

440 transcriptome-defined CRD perturbations identified significant associations for multiple canonical
pathways, including AD, cell adhesion molecules from the immunoglobulin family, chemokine
receptors CXCR3 and CXCR4, SHC adaptor proteins, glutamate metabolic processes, and G
protein coupled receptors (fig. S34, C to D).

A previous study reported a larger effect for tau-related changes in H3K9ac peaks located in Hi-C
445 defined type A (active) compared to B (inactive) compartments (3). To elaborate on this finding,
we characterized the spatial organization of differential CRDs in higher order chromatin structures
i.e. type A vs. B compartments. Consistent with previous results (3), differentially upregulated
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CRDs in AD were enriched for type A compartments (Fig. 8C); in contrast, downregulated CRDs
were enriched in B compartments. Spatial organization of differential CRDs was further

450 corroborated by a negative correlation between the magnitude of AD-related phenotypic effects of
CRDs that had no overlap with segments of nuclear lamina compared to those that had an overlap
(lamina is associated with repressive chromatin) (64) (fig. S34E). An illustrative example of a
differentially upregulated CRD in EC neurons associated with BBScore is shown in Fig. 8D. The
spatial organization of this CRD was observed in type A (active) compartments in neurons and it

455 involved proximal and distal OCRs regulating EPB41L1, which were all upregulated in more
severe tau pathology (based on BBScores). The EPB41L1 gene, encoding the Band 4.1-like protein
1 (also known as Neuronal protein 4.1) (65), links cell adhesion molecules to G protein coupled
receptors at the neuronal plasma membrane (66) and has been associated with neurofibrillary
tangles in AD brains (67).

460
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Discussion

Here we provide an extensive characterization of the cell type and regional chromatin regulatory
landscape in human brain tissue derived from AD cases and controls. This resource increases our

465 current understanding of the gene expression regulatory mechanisms in the human brain and
deepens our understanding of AD etiopathogenesis. We initially utilized 19.6 billion read pairs
from 636 individual ATAC-seq libraries to identify hundreds of thousands of cell type specific
regulatory regions, expanding the annotation of the chromatin accessibility landscape in the brain
from previous large-scale efforts (/8—20).

470 Studying the epigenome at the population level allowed for broad inferences about gene regulation
in the human brain. In fact, chromatin accessibility explained, globally, over 70% of the variance
in gene expression. Building on this observation, we generated additional epigenome datasets and
performed integrative analysis to define cell-specific enhancer-promoter interactions. This
analysis identified putative links for more than half of the protein-coding genes in the genome,

475 expanding previous efforts to catalogue E-P interactions in the human brain (7) and further
increasing our understanding of the cell type-specific regulome in brain tissue. This valuable
resource can be leveraged in future studies to better understand how genetic variation can affect
regulatory regions, and to link these risk variants to specific genes.

AD is a highly complex disease, where both genetic and environmental factors, either directly or

480 indirectly, shape the molecular perturbations that drive disease progression. In this study we
explored the shared and distinct molecular mechanisms associated with clinical dementia and
neuropathological lesions. We identified regulatory genomic signatures associated with AD,
including variability in discrete open chromatin regions, TF regulatory networks and cis-regulatory
domains.

485 Disease-associated changes to chromatin accessibility were extensive, involving thousands of
regulatory sequences, many of which displayed specificity for a given cell-type and/or brain
region. In addition to overlapping with AD common risk variation and gene expression
perturbations revealed by bulk tissue analysis, these epigenetic changes also revealed additional
cell-type specific AD associated molecular perturbations. Of note, common genetic variants

490 related to the non-neuronal epigenome showed the most pronounced changes in AD, particularly
so for non-neurons of the entorhinal cortex. Importantly, our FANS strategy accounts for the
neuronal loss in AD and more precisely quantifies epigenetic dysregulation compared to bulk
tissue studies, which, without applying deconvolution approaches, cannot distinguish molecular
signatures arising through changes in cell type composition.

495 By applying footprinting analyses (43), we generated TFRNs and identified AD perturbations
related to TF activity patterns that captured changes in gene expression and genetic variation in
AD. This approach has the potential to elucidate biology as an aggregate of the multitudinous
disease signals telling the story of gene dysregulation and dysfunction. As an example, we
highlighted a putative role for USF2 in Alzheimer’s disease. This TF was predicted, in silico, to

500 affect lysosomal genes, an observation that was supported by subsequent validation experiments
using a human neuronal cell line.

Further, we used covariance of epigenetic changes to infer cis-regulatory domains, where OCRs
work in concert to regulate nearby or more distant genes. These domains also recaptured
chromosomal conformation information as evidenced by their overlap with Hi-C derived TADs.

13
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505 Using these domains to investigate changes in gene co-regulation structures turned out to be a
powerful tool for interrogating epigenetic changes in AD. Of note, perturbed domains were
enriched in active “A” compartments of the genome and depleted in inactive “B” compartments.
On a more general level, we saw a disease associated decrease in both chromatin accessibility and
gene expression for the lamina associated domains. This is in accordance with previous reports

510 (3), but we do not yet understand the biological significance of this finding.

Collectively, this study augments our knowledge of the pathogenesis of AD, but also represents a

valuable omics resource. With this cell specific map of chromatin accessibility, the MSBB-AD

cohort contains information at the level of genetics, epigenomics and gene expression, which can

be applied to downstream studies both genome wide and the single gene level, and, in time, should
515 contribute to improved diagnosis and/or treatment of the disease.

14


https://doi.org/10.1101/2021.01.11.426303
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426303; this version posted January 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Materials and methods summary

The dataset of 636 ATAC-seq samples generated from postmortem human brains of 209
520 individuals represents a new addition to the panel of genomic assays in the Mount Sinai Brain
Bank AD cohort. Brain tissue dissections spanning two brain regions were FANS-sorted to isolate
DAPI positive neuronal (NeuN+) and non-neuronal (NeuN-) nuclei. ATAC-seq libraries were
generated using an established protocol (68) and processed through our bioinformatics pipeline
(fig. S2). We applied the variance component analysis (69) to quantify the proportion of gene
525 expression variation that is attributable to promoter, enhancer and individual covariance. To
predict enhancer-promoter interactions, we employed the “activity-by-contact” method that is
based on the combination of frequency (derived from Hi-C) and enhancer activity (derived from
ATAC-seq and H3K27ac ChIP-seq). To avoid the inflation of false discovery rate in the
differential chromatin accessibility analysis, we applied dream (70), which properly accounts for
530 correlation structures of repeated measures in the study designs utilizing cross-individual testing.
For gene sets enrichment analysis with general (7/) and synaptic (42) ontology gene sets, we
employed cameraPR (72) that is taking into account test statistics from the differential analysis.
Transcription factors involved in the regulation of gene expression were identified by footprinting
analysis in TOBIAS (43) and modeled as a regulatory network. Then, HotNet (73) was used to find
535 altered subnetworks containing TF motifs that are highly dysregulated between AD cases and
controls based on transcriptomics and GWAS weights. Lastly, decorate (59) was used to identify
co-regulated clusters of OCRs and run the differential analysis to find dysregulated AD-related
clusters.

540
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Fig. 1. Large-scale chromatin accessibility analysis in the human brain. (A) Description of the study design.
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significant at P-value<0.05. (E) Novelty of OCRs compared to known OCRs from the union of three broad OCR
resources (Roadmap Epigenomics Consortium, The Cancer Genome Atlas, and a brain epigenome atlas). (F) Overlap
of neuronal and non-neuronal OCRs with sets of reference studies (as in panel E). For this, we considered only the

known OCRs.
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Fig. 4. Disease-associated chromatin changes. (A) Disease-associated OCRs stratified by cell type, brain regions,
and AD-related phenotypes. (B) Disease-associated OCRs stratified by brain regions or AD-related phenotypes (C)
genetic context of disease-associated OCRs. (D) Enrichment of common genetic variants in AD with disease-
associated OCRs when assayed by LD-score regression. Only sets of OCRs covering at least 0.05% of the genome
were tested. Positive coefficients signify enrichment. “*”: FDR significant after correction across all tests. (E)
Correlation between disease-associated chromatin changes at promoters (ATAC-seq) and disease-associated changes
in gene expression (RNA-seq) at the corresponding genes. Pearson correlations were used and only comparisons with
over 100 differential OCRs and genes were tested. (F) Examples of changes in chromatin accessibility and gene
expression near the genes encoding NYAPI and CCKBR.
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805 Fig. 5. Gene set enrichment analysis using general gene sets. (A) Top five gene sets of the four overall assays and
the top genes within these. Thickness indicates the strength of association. A full line indicates significance at
FDR<5%, whereas a dashed line indicates nominal significance. Grey lines between genes and gene sets indicate gene
set membership and the thickness is inversely proportional to the size of the gene set. The numbers in square brackets
indicate the number of assays in which the gene or gene set was found significant at FDR<5%. The gene sets are
810 clustered based on the constituent member genes. FDR throughout is calculated for all tests within one assay (e.g. all
contrasts analyzed in ATAC Neuron times the number of gene sets tested). (B) heatmap of P-values for the associated
gene sets. (C) Heatmap of fold changes in chromatin accessibility/gene expression and significance of change. The
GWAS associations are genetic variants, which might increase or decrease or otherwise alter gene function. Thus no
colors are applied to these. “#” Significance at FDR<5%. “ - ””: Nominal significance. “NA”: not available. “Bi”:

815 Biocarta. “GO”: Gene Ontology. “KG”: Kegg. “Re”: Reactome. The ApoE- and MHC-loci were excluded from the
GWAS analysis, as is customary. Not all genes have an OCR directly linked to it in neuron and non-neuron ATAC-
seq.
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Fig. 6. Mapping of transcription factors to cell types and AD-related phenotypes. (A) Hierarchical clustering of
transcription factor motifs based on a cell type specificity score across neuronal and non-neuronal promoter OCRs.
High specificity scores indicate high specificity to the given cell type. The concordance with Brain Open Chromatin
Atlas is indicated as “BOCA score* ranging from blue (strong non-neuronal signal) to red (strong neuronal signal).

825 Select motifs are further described in Data S14. (B) Aggregated footprint scores across all potential transcription factor
binding sites for three motifs that represent the three major clusters of TFs according to cell type specificity. (C) Left:
Overview of TF motifs whose neuronal and/or non-neuronal TFRNs show enrichment in AD genes. Right: subsequent
prioritization of specific TF genes. The TF genes highlighted here meet the criteria of (1) significant correlation of
their RNA-seq with TF regulatory targets and (2) significantly different TF gene expression between AD cases and

830 controls. “TF”: transcription factor. (D) Heatmap showing top ten pathways for neuronal and non-neuronal genes
regulated by USF2 transcription factor with general gene sets. “#’: FDR < 0.05 “ - ””: nominal P-value < 0.05. (E)
Top: Schematic of the VO and V1 subunits of the v-ATPase complex responsible for maintaining lysosomal pH.
Bottom: Summary of western blot data in SH-SYS5Y human neuroblastoma cells transfected with siUSF2 or stable
overexpression of USF2. Arrow direction indicates protein level increase or decrease while the number of arrows

835 represents statistical significance by Student’s two-tailed unpaired t-test, i.e. one arrow: P-value<0.05; two arrows: P-
value<0.005; three arrows: P-value<0.0005.

31


https://doi.org/10.1101/2021.01.11.426303
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426303; this version posted January 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

D STG CRD boundaries EC CRD boundaries TAD boundaries
AC092835.2++ TRIM43 + ANKRD3EC ewssesseseress TMEM127 * = neuron = neuron = neuron
PROM2 # GPAT2 CIAO1 w! = = non-—neuron = non-—neuron = non-neuron
KCNIP3 = ADRA2B ¢ §0A15 0.15
FAHD2A ASTL - 5 0.010
DUSP2 1 # STARD? ¢
=0.10 0.10
95,100,000 95,400,000 95,700,000 96,000,000 96,300,000 &
Hi-C TAD chr2 S 0.005
© bt 0.05
Hi-C loop W\ 0.05 - —
OCR | [SSWE | | W { | —200kb 0 200kb —-200kb 0 200kb  -200kb 0 200kb
CRD EEEENE NS EEEEEEEEEEEEE ERE—— ] Distance from CRD and TAD boundaries
E STG EC TAD
2.59 neuron: p=87kb + 194kb 2.54 neuron: p=92kb + 255kb 254 neuron: p=413kb + 213kb
non-neuron: p=123kb + 265kb non-neuron: p=117kb + 181kb non-neuron: p=409kb + 217kb
2.0 20 2.0
215 1.5 1.5
)
5
o 1. 1.0 1.0
Correlation 10
| 05 05 0s
-1 -05 0 05 1
0.0 0.0-+——————"— 00"~ T T T T
F 1kb 10kb 100kb 1Mb 10Mb 1kb 10kb 100kb 1Mb 10Mb 1kb 10kb 100kb 1Mb 10Mb
Brain region Cell type ® Genomic Size
S c
o
STG EC sT6 STG § % Neuron STG Non-neuron STG Neuron EC Non-neuron EC
559 81. «Pvale<005 « P-value < 0.05 * P-value < 0.05 « P-value < 0.05
EE0 I P-value > 0.05 P-value > 0.05 I P-value > 0.05 I P-value > 0.05
J=0.33 J=0.10 Qo o I
g E 3 T
STG EC EC EC cc @
g82 | ITIIITLIT T E ianE BT R AR
85<
J=0.34 J=0.11 5%
£© L O 8% sl : " " - . - . .
\s‘°‘\$z\>‘°“\><°(\ @ Il neuron il non-neuron =< O0Mb 0.5Mb 1Mb Obp 0.5Mb 1Mb Obp 0.5Mb 1Mb Obp 0.5Mb 1Mb
W ‘\\0«‘\6\\\0« S¢ Distance between enhancer-promoter pairs

Fig. 7. Definition of neuronal and non-neuronal cis-regulatory domains. (A) An example of cis-regulatory
840 domains in STG neurons identified by estimating the interindividual correlation structure between nearby OCRs. From
top to bottom: genes that are present in the locus; a single Hi-C TAD (dark gray horizontal bar) and Hi-C loops (red
arcs); OCRs (gray vertical bars); CRDs, where each colorbar represents a different regulatory domain; correlation
matrix of OCRs including colored triangles that highlight CRDs. (B) Number of CRDs stratified by cell type and brain
region. The percentage is the fraction of OCRs that was within CRDs to the total number of OCRs. (C) Venn diagrams
845 by cell type and brain region summarizing the overlap of CRDs. “J” indicates the Jaccard index between the respective
CRDs. (D) CTCF density at and around CRD and TAD boundaries. (E) Size distribution of cell type and region
specific CRDs and cell type specific TADs. (F) Associations of enhancer-promoter regions (ABC method) that are
within the same CRDs. The odds ratios with their 95% confidence intervals are plotted as a function of the distance
between enhancer and gene TSSs. P-values are estimated based on a two-sided Fisher’s exact test. CRD: cis-regulatory
850 domain; TAD: topologically associating domain; kb: kilobase; and Mb: megabase.
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Fig. 8. Disease-associated perturbations in CRDs. (A) Counts of CRDs and OCRs within CRDs that are associated
with AD-related phenotypes stratified by cell type and brain regions. (B) Counts of CRDs and genes mapped to CRDs

855 using the ABC model, that showed association with AD-related phenotypes in both epigenomic and transcriptomic
levels using differential CRD test, stratified by brain region and cell type. (C) Odds ratios of disease associated EC
neuronal CRDs to be in A compartments vs. B compartments, measured for each AD related phenotype. (D) Odds
ratios of disease associated genes in EC neuronal CRDs to be in A compartments vs. B compartments, measured for
each AD related phenotype. (E) Examples of changes in OCR expression and gene expression near the EPB41L1 gene

860 in BBScore associated CRD in EC neurons. Promoter and enhancer annotations of OCRs were obtained from
ChIPSeeker and ABC results.
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