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ABSTRACT

Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage
of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines
activating the same signaling pathway have different biological roles. We found that IL-27
induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing
comparable levels of STAT3 phosphorylation. Mathematical and statistical modelling of IL-6
and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Ra, as the
main dynamical processes contributing to sustained pSTAT1 by IL-27. Mutation of Tyr613 on
IL-27Ra decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on
STAT3 phosphorylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene
expression program, which required sustained STAT1 phosphorylation and IRF1 expression
and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor
coupling exhibited by IL-6/IL-27 was altered in patients with Systemic lupus erythematosus
(SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy
controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of
JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1
activation by IL-6. Our data show that receptor and STATs concentrations critically contribute
to shape cytokine responses and generate functional pleiotropy in health and disease.
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INTRODUCTION

IL-27 and IL-6 both have intricate functions regulating inflammatory responses (7). IL-27 is a
hetero-dimeric cytokine comprised of p28 and EBI3 subunits (2). IL-27 exerts its activities by
binding GP130 and IL-27Ra receptor subunits in the surface of responsive cells, triggering the
activation of the JAK1/STAT1/STAT3 signaling pathway. IL-27 elicits both pro- and anti-
inflammatory responses, although the later activity seems to be the dominant one (3). IL-27
stimulation inhibits RORyt expression, thereby suppressing Th-17 commitment and limiting
subsequent production of pro-inflammatory IL-17 (4, 5). Moreover, IL-27 induces a strong
production of anti-inflammatory IL-10 on (Tbet® and FoxP3) Tr-1 cells (6-8) further
contributing to limit the inflammatory response. IL-6 engages a hexameric receptor complex
comprised of each of two copies of IL-6Ra, GP130 and IL-6 (9), triggering the activation, as
IL-27 does, of the JAK1/STAT1/STAT3 signaling pathway. However, opposite to IL-27, IL-6 is
known as a paradigm pro-inflammatory cytokine (70, 77). IL-6 inhibits lineage differentiation
to Treg cells (72) while promoting Th-17 (13, 14), thus supporting its pro-inflammatory role.
How IL-27 and IL-6 elicit opposite immuno-modulatory activities despite activating almost
identical signaling pathways is currently not completely understood.

The relative and absolute STATSs activation levels seem to have intricate roles, which lead to
a strong signaling and functional plasticity by cytokines. Although IL-6 robustly activates
STATS, it is capable to mount a considerable STAT1 response as well (15). Moreover, in the
absence of STAT3, IL-6 induces a strong STAT1 response comparable to IFNy — a prototypic
STAT1 activating cytokine (76). Likewise, the absence of STAT1 potentiates the STAT3
response for IL-27, which normally elicits a strong STAT1 response, rendering it to mount an
IL-6-like response (75). Furthermore, negative feedback mechanisms like SOCSs and
phosphatases have been described as critical players influencing STAT1 and STAT3
phosphorylation kinetics and thereby shaping their signal integration for GP130-utilizing
cytokines (17-20). Yet, how all these molecular components are integrated by a given cell to
produce the desired response is still an open question. Among the IL-6/IL-12 cytokine family,
IL-27 exhibits a unique STAT activation pattern. The majority of GP130-engaging cytokines
activate preferentially STAT3, with activation of STAT1 being an accessory or balancing
component (21, 22). IL-27, however, triggers STAT1 and STAT3 activation with high potency
(23). Indeed, different studies have shown that IL-27 responses rely on either STAT1 (24-26)
or STAT3 activation (7, 27). Moreover, recent transcriptomics studies showed that in the
absence of STATS3, IL-6 and IL-27 lost more than 75% of target gene induction. Yet, STAT1
was the main factor driving the specificity of the IL-27 versus the IL-6 response, highlighting a
critical interplay of STAT1 and STAT3 engagement (28).

While the biological responses induced by IL-27 and IL-6 have been extensively studied (3,
11), the very initial steps of signal activation and kinetic integration by these two cytokines
have not been comprehensively analysed. Since the different biological outcomes elicited by
IL-27 and IL-6 are most likely encoded in the early events of cytokine stimulation, here we
specifically aimed to identify the molecular determinants underlying functional selectivity by
IL-27 in human T-cells. We asked how a defined cytokine stimulus is propagated in time over
multiple layers of signaling to produce the desired response. To this end, we probed IL-27 and
IL-6 signaling at different scales, ranging from cell surface receptor assembly and early
STAT1/3 effector activation to an unbiased and quantitative multi-omics approach: phospho-
proteomics after early cytokine stimulation, kinetics of transcriptomic changes and alteration
of the T-cell proteome upon prolonged cytokine exposure.
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IL-6 and IL-27 induced similar levels of assembly of their respective receptor complexes,
which resulted in comparable phosphorylation of STAT3 by the two cytokines. IL-27, on the
other hand, triggered a more sustained STAT1 phosphorylation. To decipher the molecular
events which determine sustained STAT1 phosphorylation by IL-27, we mathematically model
the STAT1 and STATS3 signaling kinetics induced by each of these cytokines. We identified
differential binding of STAT1 and STAT3 to IL-27Ra. and GP130, respectively, as the main
factor contributing to a sustained STAT1 activation by IL-27. At the transcriptional level, IL-27
triggered the expression of a unique gene program, which strictly required the cooperative
action between sustained pSTAT1 and IRF1 expression to drive the induction of an interferon-
like gene signature that profoundly shaped the T-cell proteome. Interestingly, our
mathematical models of IL-6 and IL-27 signaling predicted that changes in receptor and STAT
expression could fundamentally change the magnitude and timescale of the IL-6 and IL-27
responses. We found high levels of STAT1 expression in SLE patients when compared to
healthy donors, which correlated with biased STAT1 responses induced by IL-6 and IL-27 in
these patients. Strikingly, we could specifically inhibit STAT1 activation by IL-6 using
suboptimal doses of the JAK inhibitor Tofacitinib. This could provide a new strategy to
specifically target individual STATs engaged by cytokines.
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RESULTS:
IL-27 induces a more sustained STAT1 activation than HyplL-6 in human Th-1 cells

IL-6 and IL-27 are critical immuno-modulatory cytokines. While IL-6 engages a hexameric
surface receptor comprised of two molecules of IL-6Ra and two molecules of GP130 to trigger
the activation of STAT1 and STAT3 transcription factors (Figure 1a), IL-27 binds GP130 and
IL-27Ra to trigger activation of the same STATs molecules (Figure 1a). Despite sharing a
common receptor subunit, GP130, and activating similar signaling pathways, these two
cytokines exhibit non-redundant immuno-modulatory activities, with IL-6 eliciting a potent pro-
inflammatory response and IL-27 acting more as an anti-inflammatory cytokine. Here, we set
to investigate the molecular rules that determine the functional specificity elicited by IL-6 and
IL-27 using human Th-1 cells as a model experimental system. Due to the challenging
recombinant expression of the human IL-27, we have recombinantly produced a murine
single-chain variant of IL-27 (p28 and EBI3) which cross-reacts with the human receptors and
triggers potent signaling, comparable to the signaling output produced by commercial human
IL-27 (29) (Supp. Fig. 1a). In addition, we have used a linker-connected single-chain fusion
protein of IL-6Ra and IL-6 termed HyperlL-6 (HyplL-6) (30) to diminish IL-6 signaling variability
due to changes in IL-6Ra expression during T cell activation (37).

CD4+ T cells from human buffy coat samples were isolated by magnetic activated cell sorting
(MACS) and grew under Th-1 polarizing conditions. Th-1 cells were then used to study in vitro
signaling by IL-27 and IL-6 (Supp. Fig. 1b). We took advantage of a barcoding methodology
allowing high-throughput multiparameter flow cytometry to perform detailed dose/response
and kinetics studies induced by HyplL-6 and IL-27 in Th-1 cells (32) (Supp. Fig. 1b). Dose-
response experiments with IL-27 and HypIL-6 on Th-1 cells showed concentration-dependent
phosphorylation of STAT1 and STAT3. Phosphorylation of STAT1/3 was more sensitive to
activation by IL-27 with an ECso of ~20pM compared to ~400pM for HyplL-6 (Figure 1b).
Despite this difference in sensitivity, both cytokines yielded the same activation amplitude for
pSTAT3. For pSTAT1, however, we observed a significantly reduced maximal amplitude for
HyplL-6 relative to IL-27 (Figure 1b). We next performed kinetic studies to assess whether the
poor STAT1 activation by HyplL-6 was a result from different activation kinetics. For STAT3,
we saw the peak of phosphorylation after ~15-30 minutes, followed by a gradual decline. Both
cytokines exhibited an almost identical sustained pSTAT3 profile, with ~20% of activation still
seen after 3h of continuous stimulation. Interestingly, IL-27 did not only activate STAT1 with
higher amplitude but also more sustained than HypIL-6 (Figure 1c¢). This could be better
appreciated when pSTAT1 levels were normalized to maximal MFI for each cytokine, with IL-
27 inducing clearly a more sustain phosphorylation of STAT1 than HyplL-6 (Supp. Fig. 1c).
The same phenotype was observed in other T-cell subsets of activated PBMCs
(Supp. Fig. 1d). As cell surface GP130 levels are significantly reduced upon T-cell activation
(33), we next investigated whether the transient STAT1 activation profile induced by HyplL-6
resulted from limited availability of GP130. For that we generated a RPE1 cell clone stably
expressing ten times higher levels of GP130 in its surface (Figure 1d, right panel). Stimulation
of this RPE1 clone with HyplL-6 resulted in a more sustained activation of STAT3, with very
little effect on STAT1 activation kinetics when compared to RPE1 wild type cells, suggesting
that GP130 receptor density does not contribute to the transient STAT1 activation kinetics
elicited by HyplIL-6 (Figure 1d).

Ligand-induced cell-surface receptor assembly by IL-27 and HyplL-6


https://doi.org/10.1101/2021.01.08.425379
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425379; this version posted January 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

We next investigated whether IL-27 and HyplL-6 elicited differential cell surface receptor
engagement that could explain their distinct signaling output. For that, we measured the
dynamics of receptor assembly in the plasma membrane of live cells by simultaneous dual-
colour total internal reflection fluorescence (TIRF) imaging. RPE1 cells were chosen as a
model experimental system since they do not express endogenous IL-27Ra. (Supp. Fig. 1e).
We used previously described RPE1 GP130 KO cells (Supp. Fig. 2a) (34) to transfect and
express tagged variants of IL-27Ra and GP130, to allow quantitative site-specific
fluorescence cell surface labelling by dye-conjugated nanobodies (NBs) (Figure 1e) as
recently described in (35). For both IL-27Ra and GP130 we found a random distribution and
unhindered lateral diffusion of individual receptor monomers (Figure 1f). Single molecule co-
localization combined with co-tracking analysis was then used to identify correlated motion of
IL-27Ra and GP130 which was taken as a readout for receptor heterodimer formation (36)
(Figure 1f, Figure 1 supp. Movie 1). In the resting state, we did not observe pre-assembly of
IL-27Roc and GP130. However, after stimulation with IL-27 we found substantial
heterodimerization (Figure 1f & 1g, Supp. Fig. 2b, Figure 1 supp. Movie 1 & 2). At elevated
laser intensities, bleaching analysis of individual complexes confirmed a one-to-one (1:1)
complex stoichiometry of IL-27Ra and GP130, whereas single-molecule Forster resonance
energy transfer (FRET) further corroborated close molecular proximity of the two receptor
chains (Figure 1h). We also observed association and dissociation events of receptor
heterodimers, pointing to a dynamic equilibrium between monomers and dimers as proposed
for other heterodimeric cytokine receptor systems (37, 38) (Figure1 supp. Movie 3).

To measure homodimerization of GP130 by HyplL-6, we stochastically labelled GP130 with
equal concentrations of the same NB species conjugated to either of the two dyes (39). We
saw strong homodimerization of GP130 after stimulation with HyplL-6 (Figure 1g,
Supp. Fig. 2b , Figure 1 supp. Movie 4). Homodimerization was confirmed either by single-
color dual-step bleaching or dual-color single-step bleaching as shown for other homodimeric
cytokine receptors (Supp. Fig. 2c) (40). For both cytokine receptor systems, we saw a
cytokine-induced reduction of the diffusion mobility, which has been ascribed to increased
friction of receptor dimers diffusing in the plasma membrane. However, we note that HyplL-6
stimulation impaired diffusion of GP130 more strongly than IL-27 did, possibly indicating faster
receptor internalization (Supp. Fig. 2d). Based on the dimerization data, we were able to
calculate the two-dimensional equilibrium dissociation constants (K3?) according to the law of
mass action for a dynamic monomer-dimer equilibrium: for IL-27-induced heterodimerization
of IL-27Ra. and GP130, we calculated a 2D Kp of ~0.81 um™. In activated T-cells with high
levels and a significant excess of IL-27Ra over GP130, this K2 ensures strong receptor
assembly by IL-27 (41). The 2D Kp for GP130 homodimerization by HyplL-6 was ~0.21 pm™.
This higher affinity is most likely due to the two high-affinity binding sites engaged in the
hexameric receptor complex (9). However, in T-cells the expression of GP130 can be
particularly low, thus, probably limiting HyplL-6. Taken together, these experiments marked
ligand-induced receptor assembly as the initial step triggering downstream signaling for both
IL-27 and HyplL-6, with no obvious differences in their receptor activation mechanism which
could support the observed more sustained STAT1 activation elicited by IL-27.

Mathematical and statistical analysis of HypIL-6 and IL-27 induced STAT kinetic
responses

To gain further insight into the molecular rules and kinetics that define IL-27 sustained STAT1
phosphorylation, we developed two mathematical models of the initial steps of HypIL-6 and
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IL-27 receptor-mediated signaling, respectively. The mathematical model for each cytokine
considers the following events: i) cytokine association and dissociation to a receptor chain
(Figure 2a, Supp. Fig. 3a and 3b, top panel), ii) cytokine-induced dimer association and
dissociation (Supp. Fig. 3a and 3b, bottom panel), iii) STAT1 (or STAT3) binding and
unbinding to dimer (Supp. Fig. 3c and 3d), iv) STAT1 (or STAT3) phosphorylation when bound
to dimer (Supp. Fig. 3c and 3d), v) internalisation/degradation of complexes (Supp. Fig. 3e
and 3f), and vi) dephosphorylation of free STAT1 (or STAT3) (Supp. Fig. 3g). Details of model
assumptions, model parameters and parameter inference have been provided in the Material
and Methods under Mathematical models and Bayesian inference.

We first wanted to explore if there existed a potential feedback mechanism in the way in which
receptor molecules are internalised/degraded over time. To this end, and for each cytokine
model, we considered two hypotheses: hypothesis 1 assumes that receptor complexes
(Supp. Fig. 3e and 3f) are internalised with rate proportional to the concentration of the
species in which they are contained (e.g., different dimer types), and hypothesis 2, that
receptor complexes are internalised with rate proportional to the product of the concentration
of the species in which they are contained and the sum of the concentrations of free
phosphorylated STAT1 and STAT3. Hypothesis 2 is consistent with a negative feedback
mechanism in which pSTAT molecules translocate to the nucleus, where they increase the
production of negative feedback proteins such as SOCS3. As described in the Material and
Methods (Mathematical models and Bayesian inference) we made use of the RPE1
experimental data set to carry out mathematical model selection for the two different
hypotheses. We found that hypothesis 1 could explain the data better than hypothesis 2, with
a probability of 70%. This result can be seen in Figure 2b, in which we plot, for different values
of the distance threshold between the mathematical model output and the data (see
Mathematical models and Bayesian inference in Material and Methods, for details), the relative
probability of each hypothesis, where hypothesis 1 is denoted H; and hypothesis 2 is denoted
H,. It can be observed that for smaller values of the distance threshold, which indicate better
support from the data to the mathematical model, the relative probability of hypothesis 1 is
higher than that of hypothesis 2.

We then made use of this result to explore the mathematical models for both cytokines under
hypothesis 1, in particular we performed parameter calibration. To this end (and as described
in Material and Methods under Mathematical models and Bayesian inference), we carried out
Bayesian inference together with the mathematical models (hypothesis 1) and the
experimental data sets to quantify the reaction rates (see Supp. Fig. 3) and initial molecular
concentrations (see Table 1 and Table 2). The Bayesian parameter calibration of the two
models of cytokine signaling allows one to quantify the observed kinetics of pSTAT1/3
phosphorylation induced by HyplIL-6 and IL-27 in RPE1 and Th-1 cells (Figure 2c). Substantial
differences in STAT association rates to and dissociation rates from the dimeric complexes
were inferred to critically contribute to defining pSTAT1/3 kinetics. Figure 2d shows the kernel
density estimates (KDEs) for the posterior distributions of the rate constants and initial
concentrations in the models. kj, denotes the rate at which STATi binds to GP130 and k;,
denotes the rate at which STATi binds to IL-27Ra, for i € {1,3}. Our results indicate that
STAT1 and STAT3 exhibit different binding preferences towards IL-27Ro and GP130,
respectively. While STAT1 exhibits stronger binding to IL-27Ra than GP130 (ki > ki,),
STAT3 exhibits stronger binding to GP130 than IL-27Ra, (k3, > k3,) in agreement with
previous observations (42).
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IL-27Ra cytoplasmic domain is required for sustained pSTAT1 kinetics

The Bayesian inference carried out with the experimental data and the mathematical models
clearly indicated statistically significant differences in the binding rates of STAT1/STAT3 to
GP130 and IL-27Ra, to account for the different phosphorylation kinetics exhibited by HyplL-
6 and IL-27. Thus, we next investigated whether the more sustained STAT1 activation by IL-
27 resulted from its specific engagement of IL-27Ra. For that, we used RPE1 cells, which do
not express IL-27Ra (Supp. Fig. 1e), to systematically dissect the contribution of the IL-27Ra
cytoplasmic domain to the differential pSTAT activation by IL-27. IL-27Ra’s intracellular
domain is very short and only encodes two Tyr susceptible to be phosphorylated in response
to IL-27 stimulation, i.e., Tyr543 and Ty613 (Figure 3a). We mutated these two Tyr to Phe to
analyse their contribution to IL-27 induced signaling. We stably expressed WT IL-27Ra as
well as different IL-27Ra Tyr mutants in RPE1 cells with comparable cell surface expression
levels (Figure 3b). Importantly, this reconstituted experimental system mimicked the
pSTAT1/3 activation kinetics of T-cells (Supp. Fig. 4a). As the endogenous GP130 expression
levels remain unaltered, all generated clones exhibited very comparable responses to HyplL-
6 (Figure 3b, bottom panels). IL-27 triggered comparable levels of STAT1 and STAT3
activation in RPE1 cells reconstituted with IL-27Ra WT and IL-27Ra Y543F mutant,
suggesting that this Tyr residue does not contribute to signaling by this cytokine (Figure 3b
and Supp. Fig. 4b). In RPE1 cells reconstituted with the IL-27Ra Y613F or Y543F-Y613F
mutants, IL-27 stimulation resulted in 80% of the STAT3 activation, but only 20% of the STAT1
activation levels induced by this cytokine relative to IL-27Roa WT (Figure 3b) (43). These
observations suggest a tight coupling of STAT phosphorylation to one of the receptor chains;
namely, IL-27Ro with pSTAT1 and GP130 with pSTATS3, respectively. We next tested how
the cytoplasmic domains of GP130 and IL-27Ra shape the pSTAT kinetic profiles. Thus, we
generated a stable RPE1 clone expressing a chimeric construct comprised of the extracellular
and transmembrane domain of IL-27Ra but the cytoplasmic domain of GP130 (Figure 3c,
Supp. Fig. 5a). Again, as both cell lines express unaltered endogenous GP130 levels, they
exhibited comparable responses to HylL-6 (Figure 3c). Strikingly, this domain-swap resulted
in a transient pSTAT1 kinetic response by IL-27 comparable to HyplL-6 stimulation. STAT3
activation on the other hand remained unaltered suggesting that the cytoplasmic domain of
IL-27Ra is essential for a sustained pSTAT1 response but not for pSTATS3.

Two plausible scenarios could explain the observed pSTAT 1/3 activation differential by HyplL-
6 and IL-27: i) IL-27Ra-JAK2 complex phosphorylates STAT1 faster than GP130-JAK1
complex or ii) pSTAT1 is more quickly dephosphorylated in the IL-6/GP130 receptor
homodimer. In the latter case, pSTAT deactivation by constitutively expressed phosphatases
could be an additional factor of regulation. Indeed, SHP-2 has been described to bind to
GP130 and shape IL-6 responses (44). However, our Bayesian inference results (together
with the mathematical models and the experimental data) identified the STAT/receptor
association rates as the only rates that could account for the greater and more sustained
activation of STAT1 by IL-27. We note (as described in the Material and Methods) that the
phosphorylation rate, denoted by q, of STAT1 and STAT3 when bound to a dimer (homo- or
hetero-) has been assumed to be independent of the STAT type and the receptor chain.
Moreover, the model also included dephosphorylation of free pSTAT molecules, and predicted
that the rates at which these reactions occur (d; and d;) had rather similar posterior
distributions, hence arguing against the potential role of phosphatases to specifically target
STAT1 upon HyplL-6 stimulation. To distinguish between the two plausible scenarios, we next
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determined the rates of pSTAT1/3 dephosphorylation by blocking JAK activity upon cytokine
stimulation making use of the JAK inhibitor Tofacitinib in RPE1 cells. Tofacitinib was added
15 minutes after stimulation with either cytokine and pSTAT1 and pSTAT3 levels were
measured at the indicated times. JAK inhibition markedly shortened the pSTAT1/3 activation
profiles induced by both cytokines (Figure 3d, Supp. Fig. 5b). The relative dephosphorylation
rates could then be determined by the signal intensity ratio of +/- Tofacitinib. Even though
pSTAT1 levels were more affected by JAK inhibition than those of pSTAT3, the observed
relative changes were nearly identical for IL-27 and HyplL-6. These findings were also
confirmed for Th-1 cells (Supp. Fig. 5¢ & 5d) and indicate, that selective phosphatase activity
cannot serve as an explanation for the pSTAT1/3 differential by HyplL-6 and IL-27, in
agreement with our mathematical modelling predictions. Similarly, we tested whether
neosynthesis of feedback inhibitors such as SOCS3 (19) would selectively impair signaling by
HyplL-6 but not by IL-27. To this end we pre-treated cells with Cycloheximide (CHX) and
followed the pSTAT1/3 kinetics induced by the two cytokines (Supp. Fig. 6a & 6b). CHX
treatment resulted in more sustained pSTAT3 activity for both cytokines. To our surprise,
STAT1 phosphorylation by IL-27 was even more sustained while pSTAT1 levels induced by
IL-6 remained unaffected. These observations exclude that feedback inhibitors selectively
impair STAT1 activation kinetics by HyplL-6 and thus do not account for the faster STAT1
dephosphorylation kinetics observed under HyplL-6 stimulation. Overall our data from the
chimera and mutant experiments, which were not used in the Bayesian calibration, provide
strong and independent support, as well as validation, to the mathematical models of HyplIL-
6 and IL-27 signaling, and point to the differential association/dissociation of STAT1 and
STAT3 to IL-27Ra and GP130, respectively, as the main factor defining STAT phosphorylation
kinetics in response to HyplL-6 and IL-27 stimulation.

Unique and overlapping effects of IL-27 and HyplIL-6 on the Th-1 phosphoproteome

Thus far, we have investigated the differential activation of STAT1/STAT3 induced by HyplL-
6 and IL-27. Next, we asked whether IL-27 and IL-6 induced the activation of additional and
specific intracellular signaling programs that could contribute to their unique biological profiles.
To this end, we investigated the IL-27 and HyplL-6 activated signalosome using quantitative
mass-spectrometry-based phospho-proteomics. MACS-isolated CD4+ were polarized into Th-
1 cells and expanded in vitro for stable isotope labelling by amino acids in cell culture (SILAC).
Cells were then stimulated for 15 min with saturating concentrations of IL-27, HyplL-6 or left
untreated. Samples were enriched for phosphopeptides (Ti-IMAC), subjected to mass
spectrometry and raw files analysed by MaxQuant software (Supp. Fig. 7a). In total we could
quantify ~6400 phosphopeptides from 2600 proteins, identified across all conditions
(unstimulated, IL-27, HypIL-6) for at least two out of three tested donors. For IL-27 and HyplL-
6 we detected similar numbers of significantly upregulated (87 vs. 78) and downregulated (155
vs. 140) phosphorylation events (Figure 4a) and systematically categorized them in context
with their cellular location and ascribed biological functions (Supp. Fig. 7b & 7¢) (45). The two
cytokines shared approximately half of the upregulated and one third of the downregulated
phospho-peptides (Supp. Fig. 8a) but also exhibited differential target phosphorylation
(Figure 4b and Supp. Fig. 8b). As expected, we found multiple members of the STAT protein
family among the top phosphorylation hits by the two cytokines, validating our study
(Figure 4b & 4c). In line with our previous observations, we detected the same relative
amplitudes for tyrosine phosphorylated STAT3 and STAT1. In addition to tyrosine-
phosphorylation, we detected robust serine-phosphorylation on S727 for STAT1 and STAT3
(Figure 4c). While pS-STAT1 activity correlated with pY-STAT1 with IL-27 being more potent
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than HyplL-6, this was not the case for STAT3. Despite an identical pY-STAT3
phosphorylation profile, HypIL-6 induced a ~50% higher pS-STAT3 relative to IL-27
(Figure 4c). These results were corroborated, following the phosphorylation kinetics of pS-
STAT1 and pS-STAT3 by flow-cytometry (Figure 4d).

Given the overlapping phospho-proteomic changes, gene ontology (GO) analysis associated
several sets of phosphopeptides with biological processes that were mostly shared between
both cytokines (Figure 4e, Supp. Fig. 8c). A large set of phospho-peptides was linked to
transcription initiation (including JAK/STAT signaling) or mRNA maodification (Figure 5e).
Interestingly, IL-27 stimulation was associated to negative regulation of RNA polymerase I,
whereas a positive regulation was detected for HypIL-6. A closer look into the functional
regulation of RNA-pol Il activity by the two cytokines revealed that multiple proteins involved
in this process were differentially regulated by HyplIL-6 and IL-27 (Figure 5f). While positive
regulators of RNA-pol Il transcription, such as Negative Elongation Factor A (NELFA),
PPM1G, RCHY1 and POL2RA, were much more phosphorylated in response to HyplIL-6 than
IL-27, negative regulators of RNA-pol Il transcription, such as LARP7, were much more
engaged by IL-27 treatment than by HyplIL-6 (Figure 4f). Interestingly, in a previous study we
linked RNA-pol Il regulation with the levels of STAT3 S727phosphorylation induced by HyplL-
6 via recruitment of CDK8 to STAT3 dependent genes (46). Our phospho-proteomic analysis
thus, suggests that IL-27 and HypIL-6 recruit different transcriptional complexes that ultimately
could contribute to provide gene expression specificity by the two cytokines. Additionally, we
identified several interesting IL-27-specific phosphorylation targets. One example was
Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBRS5). Phosphorylated UBRS5 leads
to ubiquitination and subsequent degradation of Roryc (47), the key transcription factor
required for Th-17 lineage commitment, thus limiting Th-17 differentiation (Supp. Fig. 8d). A
second example is PAK2, which phosphorylates and stabilizes FoxP3 leading to higher levels
of Treg cells (Supp. Fig. 8d) (48). Moreover, IL-27 stimulation led to a very strong
phosphorylation of BCL2-associated agonist of cell death (BAD), a critical regulator of T-cell
survival and a well-known substrate of the PAK2 kinase (49). Overall, our data show a large
overlap between the IL-6 and IL-27 signaling program, with a strong focus on JAK/STAT
signaling. However, IL-27 engages additional signaling intermediaries that could contribute to
its unique immuno-modulatory activities. Further studies will be required to assess how these
IL-27 specific signaling pockets contribute to shape IL-27 responses.

Kinetic decoupling of gene induction programs depends on sustained STAT1 activation
and IRF1 expression by IL-27

Next, we investigated how the different kinetics of STAT activation induced by HypIL-6 and
IL-27 ultimately modulated gene expression by these two cytokines. To this end, we performed
RNA-seq analysis of Th-1 cells stimulated with HypIL-6 or IL-27 for 1h, 6h and 24h to obtain
a dynamic perspective of gene regulation. We identified ~12500 shared genes that could be
quantified for all three donors and throughout all tested experimental conditions. In a first step,
we compared how similar the gene programs induced by HyplL-6 and IL-27 were. Principal
component analysis (PCA) was run for a subset of genes, found to be significantly up-
(total ~250) or downregulated (total ~950) by either of the experimental conditions (p value<
0.05, fold change >+2 or <-2). At one hour of stimulation HyplL-6 and IL-27 induced very
similar gene programs, with the two cytokines clustering together in the PCA analysis
regardless of whether we focused on the subsets of upregulated or downregulated genes
(Figure 5a). However, the similarities between the two cytokines changed dramatically in the
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course of continuous stimulation. While the two cytokines induced the downregulation of
comparable gene programs at 6h and 24h stimulation, as denoted by the close clustering in
the PCA analysis (Figure 5a, right panel) and the fraction of shared genes (~40%, Figure 5b,
Supp. Fig. 9a-c, Supp. Fig. 10a), this was not observed for upregulated genes. Although the
two cytokines induced comparable gene upregulation programs after 1h of stimulation (~80%
shared genes), this trend almost completely disappeared at later stimulation times
(Figure 5a & 5b, Supp. Fig. 10b). This is well-reflected by the absolute numbers of up- or
downregulated genes observed for IL-27 and HyplL-6 (Figure 5c). Stimulation with both
cytokines yielded a similar trend of gene downregulation (Figure 5c, right panel). However,
while HyplL-6 stimulation resulted in a spike of gene upregulation at 1h that quickly
disappeared at later stimulation times, IL-27 stimulation was capable to increase the number
of upregulated genes beyond 6h of stimulation and maintains it even after 24h (Figure 5c, left
panel). This “kinetic decoupling” of gene induction seems to have a striking functional
relevance. Gene set enrichment analysis (GSEA) (50) identified several reactome pathways
to be enriched for IL-27 over the course of stimulation — most of them linked with Interferon
signaling and immune responses (Figure 5d). In contrast, for HypIL-6 stimulation no pathway
enrichment was detected. Most importantly, the vast majority of IL-27-induced genes that were
associated to these pathways belonged to genes upregulated by IL-27 treatment and that
have been previously linked to STAT1 activation (57, 52) (Supp. Fig. 10c). Although HyplL-6
treatment resulted in the induction of some of these genes, their expression was very transient
in time, in agreement with the short STAT1 activation kinetic profile exhibited by HyplL-6
(Supp. Fig. 10b & 10c).

Next, we performed cluster analysis to find further similarities and discrepancies between the
gene expression programs engaged by HyplL-6 and IL-27 (Figure 5e). Since genes
downregulated by IL-27 and HyplL-6 showed overall good similarity throughout the whole
kinetic series, we mainly focused on differences in upregulated gene induction. We identified
three functionally relevant gene clusters. The first gene cluster corresponds to genes that are
transiently and equally induced by HyplL-6 and IL-27. These genes peak after one hour and
return to basal levels after 6h and 24h of stimulation (Figure 5e). Interestingly, this cluster
contains classical IL-6-induced and STAT3-dependent genes, such as members of the NFkB
and Jun/Fos transcriptional complex (53), as well as the feedback inhibitor Suppressor Of
Cytokine Signaling 3 (SOCS3) (54) and T-cell early activation marker CD69. (Figure 5e). A
second cluster of genes corresponded to genes that were persistently activated by IL-27 but
only transiently by HyplL-6 (Figure 5e). Among these genes we found classical STAT1-
dependent genes, such as SOCS1, Programmed Cell Death Ligand 1 (PDL1 = CD274) (55)
and members of the interferon-induced protein with tetratricopeptide repeats (IFIT) family. The
third cluster of genes corresponded to genes exhibiting strong and sustained activation by IL-
27 after 6h and 24h stimulation but no activation by HyplL-6 at all. This “2™ wave” of gene
induction by IL-27 was almost exclusively comprised of classical Interferon Stimulated Genes
(ISGs) (Supp. Fig. 10c), such as STAT1 & 2, Guanylate Binding Protein 1 (GBP1), GBP2, 4
& 5, and IRF8 & 9.

It is worth mentioning, that genes in the third cluster appear to require persistent STAT1
activation (56, 57) and were the basis for the IFN signature identified in our reactome pathway
analysis. Still, we were surprised about the magnitude of this 2" gene wave. Even though IL-
27 exerts a sustained pSTAT1 kinetic profile, pSTAT1 levels were down to ~10% of maximal
amplitude after 3h of stimulation. We reasoned that additional factors could further amplify the
STAT1 response for IL-27 but not for HypIL-6. Within the 1% wave of STAT1-dependent genes,
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we also spotted the transcription factor Interferon Response Factor 1 (/RF1), that was
continuously induced throughout the kinetic series in response to IL-27 but only transiently
spiking after 1h of HypIL-6 stimulation (Figure 5e). IRF1 expression was shown to prolong
pSTAT1 kinetics (58) and to be required for IL-27-dependent Tr-1 differentiation and function
(59). We confirmed the kinetics of IRF1 protein expression by flow cytometry and showed
higher and more sustained protein levels after IL-27 stimulation relative to HyplL-6 (Figure 6a).
Next, we tested in our RPE1 cell system, whether siRNA mediated knockdown of IRF1 would
alter the gene induction profiles of certain STAT1 or STAT3-dependent marker genes. In
RPE1 cells, reconstituted with IL-27Ra, IRF1 protein levels were peaking around 6h after
stimulation with IL-27 and transfection with IRF1-targeting siRNA knocked down expression
by >80% (Figure 6b). Importantly, knockdown of IRF1 did not alter the overall kinetics of
pSTAT1 and pSTAT3 activation (Figure 6¢). Induction of STAT1-dependent genes STATT,
GBP5 and OAS1 as well as STAT3-dependent gene SOCS3 were followed by RT qPCR
(Figure 6d). Interestingly, up to 6h of stimulation, the gene induction curves were identical for
control- and IRF1-siRNA treated cells. Later than 6h — that is, when IRF1 protein levels are
peaking — the gene induction was decreased between 40-70% in absence of IRF1. Strikingly,
expression of SOCS3, a classical STAT3-dependent reporter gene was transient and
independent on IRF1 levels, highlighting that IRF1 selectively amplifies STAT1-dependent
gene induction. Taken together our data support a scenario whereby IL-27 by exhibiting a
kinetic decoupling of STAT1 and STATS3 activation is capable of triggering independent gene
expression waves, which ultimately contribute to shape its distinct biology.

IL-27-induced STAT1 response drives global proteomic changes in Th-1 cells

Next, we aimed to uncover how the distinct gene expression programs engaged by HyplL-6
and IL-27 ultimately relate to alterations of the Th-1 cell proteome. For that, we continuously
stimulated SILAC labelled Th-1 cells for 24h with saturating doses of IL-27 and HyplIL-6 and
compared quantitative proteomic changes to unstimulated controls (Figure 7a). We quantified
~3600 proteins present in all three biological replicates and in all tested conditions
(unstimulated/IL-27/HyplL-6). Both cytokines downregulated a similar number of proteins (IL-
27: 57, HyplL-6: 52) (Figure 7b) with approximately half of them being shared by the two
cytokines, mimicking our observations in the RNA-seq studies (Figure 7c, Supp. Fig. 11a).
With 68 upregulated proteins, IL-27 was almost twice as potent as HyplL-6 (35 proteins) with
very little overlap.

Among the upregulated proteins by IL-27 but not HyplL-6, we detected several proteins with
described immune-modulatory functions on T-cells. One of these proteins was Transforming
Growth Factor § (TGF-B), which is a key regulator with pleiotropic functions on T-cells (60).
TGF-B has been identified to synergistically act with IL-27 to induce IL-10 secretion from Tr-1
cells — thus accounting for one of the key anti-inflammatory functions of IL-27 (67). On the
other hand, we also found SELPLG-encoded protein RSGL-1 which is critically required for
efficient migration and adhesion of Th-1 cells to inflamed intestines (62, 63). Interestingly, we
found LARP7 moderately upregulated by IL-27. This negative regulator for RNA pol Il was
also identified in our phospho-target screening and selectively engaged by IL-27 (Figure 4f).
IL-27 and HyplL-6 share ~60% of downregulated proteins, but without strong functional
patterns. Both cytokines downregulated several proteins related to mitotic cell cycle (LIG1,
CSNK2B, PSMB1) mRNA processing and splicing (NCBP2, PCBP2, NUDT21) (64).

Strikingly, a significant number (~40%) of proteins upregulated by IL-27 belong to the group
of ISGs (Figure 7b & 7c, Supp. Fig. 11b). This particular set of proteins including STAT1,
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STAT2, MX Dynamin like GTPase 1 (MX1), Interferon Stimulated Gene 20 (1SG20) or
Poly(ADP-Ribose) Polymerase Family Member 9 (PARP9) was not markedly altered by
HyplL-6. Of note: the overall expression patterns of the most significantly altered proteins are
congruent to the gene induction patterns observed after 6h and 24h (Figure 7d & 7e,
Supp. Fig. 10b). Similar to this, GSEA reactome analysis identified again pathways associated
with interferon signaling and cytokine/immune system but failed to detect any significant
functional enrichment by HyplL-6 (Figure 7e, Supp. Fig. 11b & 11c). Finally, we correlated
RNAseq-based gene induction patterns with detected proteomic changes. To our surprise we
only found a relatively low number of shared hits. However, the identified proteins belong
exclusively to a group upregulated by IL-27 (Figure 7f). They are all located in the “2"* gene
wave” cluster and all of them are regulated by ISGs (Figure 5e). Taken together these results
provide compelling evidence that sustained pSTAT1 activation by IL-27 accounts for its gene
induction and proteomic profiles, thus, giving a mechanistic explanation for the diverse
biological outcomes of IL-27 and IL-6. Our observations are in good agreement with previous
findings in cancer cells, showing that particularly the involvement of STAT1 activation is
responsible for proteomic remodeling by IL-27 (65).

Receptor and STAT concentrations determine the nature of the IL-6/IL-27 response

Our data suggest that STAT molecules compete for binding to a limited number of phospho-
Tyr motifs in the intracellular domains of cytokine receptors. A direct consequence derived
from this hypothesis is that cells can adjust and change their responses to cytokines by altering
their concentrations of specific STATs or receptors molecules. To assess to what degree
immune cells differ in their expression of cytokine receptors and STATSs, we investigated levels
of IL-6Ra, GP130, IL-27Ra, STAT1 and STAT3 protein expression across different immune
cell populations making use of the Immunological Proteomic Resource (ImmPRes -
http://immpres.co.uk) database. Strikingly, the level of expression of these proteins change
dramatically across the populations studied (Figure 8a), suggesting that these cells could
potentially produce very different responses to HyplL-6 and IL-27 stimulation.

In order to quantify (and predict) how changes in expression levels of different proteins modify
the kinetics of pSTAT, we made use of the two mathematical models of HyplL-6 and IL-27
stimulation and the parameters inferred with Bayesian methods. Our mathematical models
could accurately reproduce the experimental results generated across our study, i.e., signaling
by the IL-27Ra chimeric and IL-27Ra-Y616F mutant receptors and dose/response studies
(Supp. Fig. 12a-c), making use of the posterior parameter distributions generated from the
Bayesian parameter calibration. Having developed mathematical models which are able to
accurately explain the experimental data (Supp. Fig. 5b and 5c) and reproduce independent
experiments (Fig. 3b and 3c), we then sought to use the models to predict pSTAT signaling
kinetics under different concentration regimes of receptors and STATs. To simplify the
simulations, we focused our analysis in GP130 and STAT1 proteins, two of the proteins that
greatly vary in the different immune populations (Figure 8a). As baseline values for the
concentrations [GP130(0)], [IL27Ra(0)] [STAT1(0)] and [STAT3(0)] we used approximately
the median values from the posterior distributions for each parameter: [GP130(0)] = 25 nM,
[IL27Ra(0)] = 50 nM and [STAT1(0)] = [STAT3(0)] = 500 nM. To see the effect of varying
GP130 concentrations on pSTAT signaling, we decreased the initial concentration of GP130
and simulated the model using the accepted parameters sets from the ABC-SMC to inform
the other parameter values. A tenfold reduction on GP130 concentration ([GP130(0)] =
2.5nM) resulted in a striking loss in pSTAT1 levels induced by HyplL-6, with very little effect
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on pSTAT3 levels induced by this cytokine (Figure 8b). pSTAT1/3 kinetics induced by IL-27
however was not affected by this decrease in GP130 concentration (Figure 8b). Interestingly,
the HyplL-6 signaling profile predicted by our model at low GP130 concentrations strongly
resemble the one induced by HyplIL-6 in Th-1 cells (Figure 1c), where very low levels of GP130
are found, further confirming the robustness of the predictions generated by our mathematical
models. When the concentration of STAT1 was increased by a factor of ten ([STAT1(0)] =
5000 nM, both HyplL-6 and IL-27 induced significantly higher levels of pSTAT1 activation
(Figure 8b). pSTATS levels were not affected for HyplL-6 stimulation but were decreased for
IL-27 stimulation (Figure 8b), further indicating the competitive nature of the binding of STAT1
and STAT3 to IL-27Ra and GP130. Overall, our mathematical model predicts that changes
on GP130 and STAT1 expression produce a substantial remodeling of the HyplIL-6 and IL-27
signalosome, which ultimately could lead to aberrant responses.

STAT1 protein levels in SLE patients modify HypIL-6 and IL-27 signhaling responses

STAT1 is a classical IFN responsive gene and STAT1 levels are highly increased in
environments rich in IFNs (66). Thus, we next ask whether STAT1 levels would be increased
in SLE patients, an examples of disease where IFNs have been shown to correlate with a poor
prognosis, making use of available gene expression datasets (67). We did not find differences
in the expression of GP130, IL-6Ra or IL-27Ra in SLE patients (Figure 8c). However, we
detected a significant increase in the levels of STAT1 and STAT3 transcripts in these patients
when compared to healthy controls, with the increase on STAT1 expression being significantly
more pronounced (Figure 8c). Since our mathematical model predicted that increases in
STAT1 expression could significantly change cytokine-induced cellular responses by HypIL-6
and IL-27, we next experimentally tested this prediction. For that, we primed Th-1 cells with
IFNa2 overnight to increase total STAT1 levels (and to a lower extent STAT3) in these cells
(Supp. Fig. 13a). While both HyplL-6 and IL-27 induced comparable levels of pSTAT3 in
primed and non-primed Th-1 cells, levels of pSTAT1 induced by the two cytokines were
significantly upregulated in primed Th-1 cells, resulting in a bias STAT1 response and
confirming our model predictions (Figure 8d). We next investigated whether this bias STAT1
activation by HypIL-6 and IL-27 observed in IFNa.2-primed Th-1 cells was also present in SLE
patients. For that we collected PBMCs from six SLE patients or five age-matched healthy
controls and measured STAT1 and STAT3 expression, as well as pSTAT1 and pSTAT3
induction by HylL-6 and IL-27 after 15 min treatments in CD4 T cells. Importantly, comparable
results to those obtained with IFN-primed Th-1 cells were obtained, with signaling bias towards
pSTAT1 in CD4+ T cells from SLE patients stimulated with HyplIL-6 and IL-27 (Figure 8e,
Supp. Fig. 13b & c), further supporting the fact that STAT concentrations play a critical role in
defining cytokine responses in autoimmune disorders.

Our data show that STAT1 and STAT3 compete for phospho-Tyr motifs in GP130, with STAT3
having an advantage resulting from its tighter affinity to GP130. Finally, we asked whether
crippling JAK activity by using sub-saturating doses of JAK inhibitors could differentially affect
STAT1 and STATS3 activation by HyplL-6 and therefore rescue the altered cytokine responses
found in SLE patients. To test this, RPE1 and Th-1 cells were stimulated with saturated
concentrations of HyplL-6 and titrating the concentrations of Tofacitinib, a clinically approved
JAK inhibitor. Strikingly, Tofacitinib inhibited HyplL-6 induced pSTAT1 more efficiently than
pSTAT3 in both RPE1 cells and Th-1 cells (Figure 8f). At 50 nM concentration, Tofacitinib
inhibited pSTAT1 levels induced by HyplL-6 by 60%, while only inhibited pSTAT3 levels by
30% (Figure 8f) — an effect that we did not observe for IL-27 stimulation (Supp. Fig. 13d).
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Overall, our results show that the changes in STATs concentration found in autoimmune
disorders shape cytokine signaling responses and could contribute to disease progression.
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DISCUSSION:

Cytokine pleiotropy is the ability of a cytokine to exert a wide range of biological responses in
different cell types. This functional pleiotropy has made the study of cytokine biology extremely
challenging given the strong cross-talk and shared usage of key components of their signaling
pathways, leading to a high degree of signaling plasticity, yet still allowing functional selectivity
(68, 69). Here we aimed to identify the underlying determinants that define cytokine functional
selectivity by comparing IL-27 and IL-6 at multiple scales — ranging from cell surface receptors
to proteomic changes. We show that IL-27 triggers a more sustained STAT1 phosphorylation
than IL-6, via a high affinity STAT1/IL-27Ra interaction centered around Tyr613 on IL-27Ra.
This in turn results in a more sustained IRF1 expression induced by IL-27, which leads to the
upregulation of a second wave of gene expression unique to IL-27 and comprised of classical
ISGs. We go one step further and show that this strong receptor/STAT coupling is altered in
autoimmune disorders where STATs concentrations are often dysregulated. Increased
expression of STAT1 in SLE patients biases HypIL-6 and IL-27 responses towards STAT1
activation, further contributing to the worsening of the disease. By using suboptimal doses of
the JAK inhibitor Tofacitinib we show that specific STAT proteins engaged by a given cytokine
can be targeted. Overall, our study highlights a new layer of cytokine signaling regulation,
whereby STAT affinity to specific cytokine receptor phospho-Tyr motifs controls STAT
phosphorylation kinetics and the identity of the gene expression program engaged, ultimately
ensuing the generation of functional diversity through the use of a limited set of signaling
intermediaries.

The tight coupling of one receptor subunit to one particular STAT that we have identified in
our study is a rather unusual phenomenon for heterodimeric cytokine receptor complexes,
which has been first suggested by Owaki et al. (27). Generally, the entire signaling output
driven by a cytokine-receptor complex emanates from a dominant receptor subunit, which
carries several Tyr residues susceptible of being phosphorylated (70, 77). This in turn results
in competition between different STATs for binding to shared phospho-Tyr motifs in the
dominant receptor chain, leading to different kinetics of STAT phosphorylation as observed
for IL-6 stimulation (75) (Figure 1b). Moreover, this localized signaling quantum allows
phosphatases and feedback regulators — induced upon cytokine stimulation —to act in synergy
to reset the system to its basal state, generating a very synchronous and coordinated signaling
wave. Although very effective, this molecular paradigm presents its limitations. STAT
competition for the same pool of phospho-Tyr makes the system very sensitive to changes in
STAT concentration. IFNy primed cells, which exhibit increased STAT1 levels, trigger an IFNy-
like STAT1 response upon IL-6 stimulation (76). IL-10 anti-inflammatory properties are lost in
cells with high levels of STAT1 expression, as a result of a pro-inflammatory environment rich
in IFNs (72). Indeed, we show that STAT1 transcripts levels are increased in Crohn’s disease
and SLE patients and they contributed to alter IL-6 responses. Strikingly, IL-27 appears to
have evolved away from this general model of cytokine signaling activation. Our results show
that STAT1 activation by IL-27 is tightly coupled to IL-27Ra, while STAT3 activation by this
cytokine mostly depends on GP130. This decoupled STAT1 and STAT3 activation by IL-27
is possible thanks to the presence of a putative high affinity STAT1 binding site on IL-27Ra
that resembles the one present in IFNyR1 (47). As a result of this, IL-27 can trigger sustained
and independent phosphorylation of both STAT1 and STAT3. This unique feature of IL-27
allows it to induce robust responses in dynamic immune environments. Indeed, our
mathematical models of cytokine signaling and Bayesian inference, together with the
experimental observations show that changes in receptor concentration minimally affected
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pSTAT1/3 induced by IL-27, while they fundamentally alter IL-6 responses. Overall, our data
show that cytokine responses are versatile and adapt to the continuously changing cell
proteome, highlighting the need to measure cytokine receptors and STATs expression levels,
in addition to cytokine levels, in disease environments to better understand and predict altered
responses elicited by dysregulated cytokines.

In recent years, it has become apparent that the stability of the cytokine-receptor complex
influences signaling identity by cytokines (73). Short-lived complexes activate less efficiently
those STAT molecules that bind with low affinity phospho-Tyr motif in a given cytokine receptor
(34). Our current results further support this kinetic discrimination mechanism for STAT
activation. Our statistical inference identified differences in STAT recognition to the cytokine
receptor phospho-Tyr motifs as one of the major determinants of STAT phosphorylation
kinetics. This parameter alone was sufficient to explain transient and sustained STAT1
phosphorylation induced by IL-6 and IL-27, respectively, without the need to invoke the action
of phosphatases or negative feedback regulators such as SOCSs. Indeed, our results indicate
that the rate of STAT1 dephosphorylation is similar between the IL-6 and IL-27 systems,
suggesting that phosphatases do not contribute to these early kinetic differences. Moreover,
blocking protein translation, and therefore the upregulation of negative feedback regulators by
IL-6 treatment did not result in a more sustained STAT1 phosphorylation by IL-6, again
indicating that the transient kinetics of STAT1 phosphorylation by IL-6 is encoded at the
receptor level and does not require further regulation. However, recent reports have found
that the amplitude of STAT1 phosphorylation in response to IL-6 is regulated by levels of
PTPN2 expression, suggesting that phosphatases can play additional roles in shaping IL-6
responses beyond controlling the kinetics of STAT activation (74). STAT1 phosphorylation
levels by IL-27 on the other hand were significantly more sustained in the absence of protein
translation, suggesting that negative feedback mechanisms are required to downmodulate
signaling emanating from high affinity STAT-receptor interactions. Overall our results suggest
that while phosphatases and negative feedback regulators play an important role in
maintaining cytokine signaling homeostasis (75), the kinetics of STAT activation appears to
be already encoded at the level of receptor engagement, thus ensuring maximal efficiency
and signal robustness.

Cytokine signaling plasticity can occur at the level of receptor activation. In the past years, a
scenario has emerged suggesting that the absolute number of signaling active receptor
complexes is a critical determinant for signal output integration. Accordingly, specific biological
responses were shown to be tuned either by abundance of cell surface receptors (76, 77) or
by the level of receptor assembly (34, 38, 78). Here, we show for the first time that IL-27-
induced dimerization of IL-27Roa and GP130 at the cell surface of live cells — in good
agreement with previous studies on heterodimeric cytokine receptor systems (38, 73). For IL-
27, the receptor subunits IL-27Ra and GP130 can be expressed at different ratios as seen for
naive vs. activated T-cells (79) as well as intestinal cells (80). On T-cells, particularly after
activation, IL-27Ra is expressed in strong excess over GP130, rendering GP130 as the
limiting factor for receptor complex assembly (47). Interestingly, we observe that in addition to
a faster kinetic of STAT1 phosphorylation, HypIL-6 treatment induces a lower maximal
amplitude in pSTAT1 activation in T cells. This is in stark contrast to our results in RPE1 cells,
where high abundance of GP130 (~3000-4000 copies of cell surface GP130) is found. In these
cells both cytokines elicited similar amplitudes of STAT1 phosphorylation. Our results suggest
that surface receptor density in synergy with STATs binding dynamics to phospho-Tyr motif
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on cytokine receptors act to define the amplitude and kinetics of STAT activation in response
to cytokine stimulation.

The distinct STAT1 and STAT3 kinetic profiles induced by IL-6 and IL-27 are the prerequisite
for time-correlated decoupling of genetic programs: a “shared GP130/STAT3-dependent
wave” and an IL-27-“unique IL-27Ro/STAT1-dependent wave”. However, pSTAT1 levels
induced by IL-27 at 3h were down to ~10% of maximal amplitude, suggesting that additional
factors would be required to amplify the initial STAT1 response elicited by IL-27. We observed
that IL-27 induces the expression of an early wave of classical STAT1-dependent genes,
which is also shared by IL-6. However, while IL-27 induces the upregulation of these genes
throughout the entire duration of the experiment, IL-6 only resulted in a transient spike. We
reasoned that this additional factor required for IL-27 signal amplification would be among
these early STAT1-dependent genes. Among this set of genes we found the transcription
factor IRF1, which had been shown to act as a feedback amplificant for pSTAT1 activity (58).
Importantly, IRF1 protein levels have been shown to be upregulated in response to IL-27 and
IFNy but not to IL-6 stimulation in hepatocytes (87). IRF1 plays a key role in chromatin
accessibility which is critically required for IL-27-induced differentiation of Tr1 cells and
subsequent IL-10 secretion (69). Here, we could prove that the contribution of IRF1 on STAT1-
but not STAT3-dependent genes is a generic feature of IL-27 signaling. This readily explains
the significant transcriptomic overlap of IL-27 with type | (82) or type Il interferons (15) after
long-term stimulation with these cytokines. Along this line, it is not surprising that IL-27 —
beyond its well-described effects on T-cell development — can also mount a considerable
antiviral response as shown in hepatic cells and PBMCs (83, 84). Our results suggest that by
modulating the kinetics of STAT phosphorylation, cytokines can modulate the expression of
accessory transcription factors, such as IRF1, that act in synergy with STATS to fine-tune gene
expression and provide functional diversity.
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MATERIAL AND METHODS

Protein expression and purification:

Murine IL-27 was cloned as a linker-connected single-chain variant (p28+EBI3) as described
in (29). Human HyperlL-6 (HyplL-6), and murine single-chain IL-27 were cloned into the
pAcGP67-A vector (BD Biosciences) in frame with an N-terminal gp67 signal sequence and a
C-terminal hexahistidine tag, and produced using the baculovirus expression system, as
described in (85). Baculovirus stocks were prepared by transfection and amplification in
Spodoptera frugiperda (Sf) cells grown in SF900II media (Invitrogen) and protein expression
was carried out in suspension Trichoplusiani ni (High Five) cells grown in InsectXpress media
(Lonza).

Purification was performed using the method described in (86). For IL-27, the cells were
pelleted with centrifugation at 2000 rpm, prior to a precipitation step through addition of Tris
pH 8.0, CaCl; and NiCl: to final concentrations of 200mM, 50mM and 1mM respectively. The
precipitate formed was then removed through centrifugation at 6000 rpm. Nickel-NTA agarose
beads (Qiagen) were added and the target proteins purified through batch binding followed by
column washing in HBS-Hi buffer (HBS buffer supplemented to 500mM NaCl and 5% glycerol,
pH 7.2). Elution was performed using HBS-Hi buffer plus 200mM imidazole. Final purification
was performed by size exclusion chromatography on an ENrich SEC 650 300 column (Biorad),
again equilibrated in HBS-Hi. Concentration of the purified sample was carried out using
10kDa Millipore Amicon-Ultra spin concentrators. For HyplL-6, proteins were purified likewise,
butin 10 mM HEPES (pH 7.2) containing 150 mM NaCl. Recombinant cytokines were purified
to greater than 98% homogeneity.

For cell surface labeling, the anti-GFP nanobody (NB) “enhancer” and “minimizer” were used,
which bind mMEGFP with subnanomolar binding affinity (87). NB was cloned into pET-21a with
an additional cysteine at the C-terminus for site-specific fluorophore conjugation in a 1:1
fluorophore:nanobody stoichiometry. Furthermore, (PAS)s sequence to increase protein
stability and a His-tag for purification were fused at the C-terminus. Protein expression in E.
coli Rosetta (DE3) and purification by immobilized metal ion affinity chromatography was
carried out by standard protocols. Purified protein was dialyzed against HEPES pH 7.5 and
reacted with a two-fold molar excess of DY647 maleimide (Dyomics), ATTO 643 maleimide
(AT643) and ATTO Rho11 maleimide (Rho11) (ATTO-TEC GmbH), respectively. After 1 h, a
3-fold molar excess (with respect to the maleimide) of cysteine was added to quench excess
dye. Protein aggregates and free dye were subsequently removed by size exclusion
chromatography (SEC). A labeling degree of 0.9-1:1 fluorophore:protein was achieved as
determined by UV/Vis spectrophotometry.

CD4+ T cell purification and Th-1 differentiation:

Human buffy coats were obtained from the Scottish Blood Transfusion Service and peripheral
blood mononuclear cells (PBMCs) of healthy donors were isolated from buffy coat samples by
density gradient centrifugation according to manufacturer's protocols (Lymphoprep,
STEMCELL Technologies). From each donor, 100x10° PBMCs were used for isolation of
CD4+ T-cells. Cells were decorated with anti-CD4™'"C antibodies (Biolegend, #357406) and
isolated by magnetic separation according to manufacturer’s protocols (MACS Miltenyi) to a
purity >98% CD4+. Freshly isolated resting CD4" T cells (3x10” per donor) were activated
under Th-1 polarizing conditions using ImmunoCult™ Human CD3/CD28 T Cell Activator
(StemCell, Cat#10971) following manufacturer instructions for 3 days in RPMI-1640, 10% v/v
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FBS, 100 U/ml penicillin-streptomycin (Gibco) in the presence of the cytokines IL-2 (Novartis,
#709421, 20 ng/ml), anti-IL-4 antibody (10 ng/ml, BD Biosciences, #554481), IL-12 (20 ng/ml,
BioLegend, #573002). After three days of priming, cells were expanded for another 5 days in
the presence of IL-2 (20 ng/ml).

Human SLE patient samples:

This study was authorized by the French Competent Authority dealing with Research on
Human Biological Samples namely the French Ministry of Research. The Authorization
number is ECH 19/04. To issue such authorization, the Ministry of Research has sought the
advice of an independent ethics committee, namely the “Comité de Protection des
Personnes,” which voted positively, and all patients gave their written informed consent. The
healthy volunteer was recruited to serve as healthy control individuals. Healthy and patients’
blood samples were collected in heparinized tubes (BD Vacutainer 368886, BD Biosciences
San Jose, CA, USA) and PBMC samples were isolated using Ficoll (Pancoll, Pan Biotech
#P04-60500) density gradient centrifugation. The isolated PBMCs were washed with PBS and
the remaining red blood cells were lysed using RBC lysis buffer (ACK lysing buffer, Gibco
#A10492-01), incubate 3min at room temperature. Cells were washed in PBS and resuspend
the cells with 1ml of freezing medium (with DMSO, PAN Biotech, #P07-90050) and transfer
the cells in a cryotube. cryotube in a Freezing container (Nalgene) and at -80°C and then
transferred into liquid nitrogen container for long term storage.

Classification and demographic information about SLE patients and healthy controls:

SLE patients were included if they fulfilled the American College of Rheumatology (ACR)
Classification Criteria (Hochberg MC. Updating the American College of Rheumatology
revised criteria for the classification of systemic lupus erythematosus (88). Exclusion criteria
were current intake of 10 mg or more of prednisone or equivalent and/or use of
immunosupressants within the previous 6 months before inclusion. Use of hydroxychloroquine
was not an exclusion criterion. Patients were mostly in clinical remission, half with biological
remission, half with persistent anti native DNA autoantibodies. All SLE patients and healthy
controls were females between 41 and 58 years old.

(Phospho-) Proteomics:

For (phospho-) proteomic experiments, Th-1 cells from each donor were split into three
different conditions after initial expansion: Light SILAC media (40 mg/ml L-Lysine KO (Sigma,
#L8662) and 84 mg/ml L-Arginine RO (Sigma, #A8094)), medium SILAC media (49 mg/ml L-
Lysine U-13C6 K6 (CKGAS, #CLM-2247-0.25) and 103 mg/ml L-Arginine U-13C6 RG6
(CKGAS, #CLM-2265-0.25)) and heavy SILAC media (49.7 mg/ml L-Lysine U-13C6,U-15N2
K8 (CKGAS, #CNLM-291-H-0.25) and 105.8 mg/ml L-Arginine U-13C6,U-15N2 R10 (CKGAS,
#CNLM-539-H-0.25)) prepared in RPMI SILAC media (Thermo Scientific, #88365)
supplemented with 10% dialyzed FBS (HyClone, #SH30079.03), 5 ml L-Glutamine
(Invitrogen, #25030024), 5 ml Pen/Strep (Invitrogen, #15140122), 5 ml MEM vitamin solution
(Thermo Scientific, #11120052), 5 ml Selenium-Transferrin-Insulin (Thermo Scientific,
#41400045) and expanded in the presence of 20 ng/ml IL-2 and 10 ng/ml anti-IL4 for another
10 days in order to achieve complete labelling. Media was exchanged every two days.
Incorporation of medium and heavy version of Lysine and Arginine was checked by mass
spectrometry and samples with an incorporation greater than 95% were used.

After expansion, cells were starved without IL-2 for 24 hours before stimulation with 10 nM IL-
27 or 20 nM HyIL-6 for 15 minutes (phosphoproteomics) or 24 h (global proteomic changes).
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Cells were then washed three times in ice-cold PBS, mix in a 1:1:1 ratio, resuspended in SDS-
containing lysis buffer (1% SDS in 100 mM Triethylammonium Bicarbonate buffer (TEAB))
and incubated on ice for 10 min to ensure cell lysis. Then, cell lysates were centrifuged at
20000 g for 10 minutes at +4°C and supernatant was transferred to a clean tube. Protein
concentration was determined by using BCA Protein Assay Kit (Thermo, #23227), and 10 mg
of protein per experiment were reduced with 10mM dithiothreitol (DTT, Sigma, #D0632) for
1 h at 55°C and alkylated with 20mM iodoacetamide (IAA, Sigma, #16125) for 30 min at RT.
Protein was then precipitated using six volumes of chilled (-20°C) acetone overnight. After
precipitation, protein pellet was resuspended in 1 ml of 100 mM TEAB and digested with
Trypsin (1:100 w/w, Thermo, #90058) and digested overnight at 37.C. Then, samples were
cleared by centrifugation at 20000 g for 30 min at +4°C, and peptide concentration was
quantified with Quantitative Colorimetric Peptide Assay (Thermo, #23275).

Phosphopeptide enrichment in the peptide fractions generated as described above was
carried out using MagResyn Ti-IMAC following manufacturer instructions (2BScientific,
MRTIMO002).

High pH reverse phase fractionation for phosphoproteomics:

Samples were dissolved in 200 uL of 10 mM ammonium formate buffer pH 9.5 and peptides
are fractionated using high pH RP chromatography. A C18 Column from Waters (XBridge
peptide BEH, 130A, 3.5 um 4.6 X 150 mm, Ireland) with a guard column (XBridge, C18, 3.5
um, 4.6 X 20mm, Waters) are used on a Ultimate 3000 HPLC (Thermo-Scientific). Buffers A
and B used for fractionation consist, respectively of 10 mM ammonium formate in milliQ water
(Buffer A) and 10 mM ammonium formate in 90% acetonitrile (Buffer B), both buffers were
adjusted to pH 9.5 with ammonia. Fractions are collected using a WPS-3000FC autosampler
(Thermo-Scientific) at 1 min intervals. Column and guard column were equilibrated with 2%
buffer B for 20 min at a constant flow rate of 0.8 ml/min and a constant temperature 0f 21°C.
Samples (193 pl) are loaded onto the column at 0.8 ml/min, and separation gradient started
from 2% buffer B, to 8% B in 6 min, then from 8% B to 45% B within 54 min and finaly from
45% B to 100% B in 5 min. The column is washed for 15 min at 100% buffer B and equilibrated
at 2% buffer B for 20 min as mentioned above. The fraction collection started 1 min after
injection and stopped after 80 min (total of 80 fractions, 800 pl each). Each peptide fraction
was acidified immediately after elution from the column by adding 20 to 30 ul 10% formic acid
to each tube in the autosampler. The total number of fractions concatenated was set to 10.
The content of fractions from each set was dried prior to further analysis.

LC-MS/MS Analysis:

LC-MS analysis was done at the FingerPrints Proteomics Facility (University of Dundee).
Analysis of peptide readout was performed on a Q Exactive™ plus, Mass Spectrometer
(Thermo Scientific) coupled with a Dionex Ultimate 3000 RS (Thermo Scientific). LC buffers
used are the following: buffer A (0.1% formic acid in Milli-Q water (v/v)) and buffer B (80%
acetonitrile and 0.1% formic acid in Milli-Q water (v/v). Dried fractions were resuspended in
35ul, 1% formic acid and aliquots of 15 pL of each fraction were loaded at 10 uL/min onto a
trap column (100 ym x 2 cm, PepMap nanoViper C18 column, 5 um, 100 A, Thermo Scientific)
equilibrated in 0.1% TFA. The trap column was washed for 5 min at the same flow rate with
0.1% TFA and then switched in-line with a Thermo Scientific, resolving C18 column (75 pm x
50 cm, PepMap RSLC C18 column, 2 ym, 100 A). The peptides were eluted from the column
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at a constant flow rate of 300 nl/min with a linear gradient from 2% buffer B to 5 % buffer B in
5 min then from 5% buffer B to 35% buffer B in 125 min, and finally from 35% buffer B to 98%
buffer B in 2 min. The column was then washed with 98% buffer B for 20 min and re-
equilibrated in 2% buffer B for 17 min. The column was kept at a constant temperature of
50°C. Q-exactive plus was operated in data dependent positive ionization mode. The source
voltage was set to 2.5 Kv and the capillary temperature was 250°C.

A scan cycle comprised MS1 scan (m/z range from 350-1600, ion injection time of 20 ms,
resolution 70 000 and automatic gain control (AGC) 1x10°) acquired in profile mode, followed
by 15 sequential dependent MS2 scans (resolution 17500) of the most intense ions fulfilling
predefined selection criteria (AGC 2 x 10°, maximum ion injection time 100 ms, isolation
window of 1.4 m/z, fixed first mass of 100 m/z, spectrum data type: centroid, intensity threshold
2 x 10*, exclusion of unassigned, singly and >7 charged precursors, peptide match preferred,
exclude isotopes on, dynamic exclusion time 45 s). The HCD collision energy was set to 27%
of the normalized collision energy. Mass accuracy is checked before the start of samples
analysis.

Mass spectrometry data analysis:

Q Exactive Plus Mass Spectrometer .RAW files were analyzed, and peptides and proteins
quantified using MaxQuant (89), using the built-in search engine Andromeda (90). All settings
were set as default, except for the minimal peptide length of 5, and Andromeda search engine
was configured for the UniProt Homo sapiens protein database (release date: 2018_09).
Peptide and protein ratios only quantified in at least two out of the three replicates were
considered, and the p-values were determined by Student’s t test and corrected for multiple
testing using the Benjamini—-Hochberg procedure (Benjamini and Hochberg, 1995).

Plasmid constructs:

For single molecule fluorescence microscopy, monomeric non-fluorescent (Y67F) variant of
eGFP was N-terminally fused to GP130. This tag (mXFPm) was engineered to specifically
bind anti-GFP nanobody “minimizer’ (aGFP-miNB). This construct was inserted into a
modified version of pSems-26 m (Covalys) using a signal peptide of Igk. The ORF was linked
to a neomycin resistance cassette via an IRES site. A mXFPe-IL-27Ra construct was
designed likewise but is recognized by aGFP nanobody “enhancer” (mXFPe). The chimeric
construct mXFP-IL-27Ra (ECD & TMD)-GP130(ICD) was a fusion construct of IL-27Ra (aa
33-540) and GP130 (aa 645-918).

Cell lines and media:

Hela cells were grown in DMEM containing 10% v/v FBS, penicillin-streptomycin, and L-
glutamine (2 mM). RPE1 cells were grown in DMEM/F12 containing 10% v/v FBS, penicillin-
streptomycin, and L-glutamine (2 mM). RPE1 cells were stably transfected by mXFPe-IL-
27Ra, mutants and the chimeric construct by PEI method according to standard protocols.
Using G418 selection (0.6 mg/ml) individual clones were selected, proliferated and
characterized. For comparing receptor cell surface expression levels of stable clones
expressing variants of IL-27Ra., cells were detached using PBS+2mM EDTA, spun down
(300g, 5 min) and incubated with “enhancer’” aGFP-enNBP*%” (10 nM, 15 min on ice). After
incubation, cells were washed with PBS and run on cytometer.
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Flow cytometry staining and antibodies:

For measuring dose-response curves of STAT1/3 phosphorylation (either Th-1 cells or RPE1
clones), 96-well plated were prepared with 50ul of cell suspensions at 2x10° cells/ml/well for
Th-1 and 2x10° cells/ml/well for RPE1. The latter were detached using Accutase (Sigma).
Cells were stimulated with a set of different concentrations to obtain dose-response curves.
To this end cells were stimulated for 15 min at 37°C with the respective cytokines followed by
PFA fixation (2%) for 15 min at RT.

For kinetic experiments, cell suspensions were stimulated with a defined, saturating
concentration of cytokines (10 nM IL-27, 20 nM HyplL-6, 100 nM wt-IL-6) in a reverse order
so that all cell suspensions were PFA-fixed (2%) simultaneously. For pSTAT1/3 kinetic
experiments at JAK inhibition, Tofacitinib (2 uM, Stratech, #52789-SEL) was added after 15
min of stimulation and cells were PFA-fixed in correct order.

After fixation (15 min at RT), cells were spun down at 300g for 6 min at 4°C. Cell pellets were
resuspended and permeabilized in ice-cold methanol and kept for 30 min on ice. After
permeabilization cells were fluorescently barcoded according to (97). In brief: using two NHS-
dyes (PacificBlue, #10163, DyLight800, #46421, Thermo Scientific), individual wells were
stained with a combination of different concentrations of these dyes. After barcoding, cells are
pooled and stained with anti-pSTAT14®*#47 (Cell Signaling Technologies, #8009) and anti-
pSTAT3"ea488 (Bjolegend, #651006) at a 1:100 dilution in PBS+0.5%BSA for 1h at RT. T-cells
were also stained with anti-CD8"®x@"°u7% (1:120, Biolegend, #300920), anti-CD4"F (1:120,
Biolegend, #357404), anti-CD3P"iantViclets10 (1:100, Biolegend, #300448). Cells were analzyed
at the flow cytometer (Beckman Coulter, Cytoflex S) and individual cell populations were
identified by their barcoding pattern. Mean fluorescence intensity (MFI) of pSTAT1%"and
pSTAT3*®was measured for all individual cell populations.

For measuring total STAT levels, methanol-permeabilized cells were stained with anti-
STAT1A®X647 (1:70, Biolegend, #558560) or anti-STAT3""C (1:50, Biolegend, #560392). Total
IRF1 levels methanol-permeabilized cells were stained with anti-IRF 1447 (1:50, Biolegend,
#14105). For measuring cell surface levels of GP130, cells were detached with Accutase
(Sigma) and stained with anti-GP130*"° (1:100, Biolegend, #362006) for 1h on ice.

RNA Transcriptome Sequencing:

Human Th-1 cells from three donors each (StemCell Technologies) were cultivated and
stimulated as described in above. Cells were washed in Hank’s balanced salt solution (HBSS,
Gibco) and snap frozen for storage. RNA was isolated using the RNeasy Kit (Quiagen)
according to manufacturer’s protocol. All RNA 260/280 ratios were above 1.9. Of each sample,
1 ug of RNA was used. Transcriptomic analysis was done by Novogene as follows.
Sequencing libraries were generated using NEBNext® UltraTM RNALibrary Prep Kit for
lllumina® (NEB, USA) following manufacturer's recommendations and index codes were
added to attribute sequences to each sample. Briefly, mMRNA was purified from total RNA using
poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations
under elevated temperature in NEBNext First StrandSynthesis Reaction Buffer (5X). First
strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase (RNase H-). Second strand cDNA synthesis was subsequently performed using
DNA Polymerase | and RNase H. Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylation of 3’ ends of DNA fragments, NEBNext
Adaptor with hairpin loop structure were ligated to prepare for hybridization. In order to select
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cDNA fragments of preferentially 150~200 bp in length, the library fragments were purified
with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 pl USER Enzyme (NEB,
USA) was used with size-selected, adaptor-ligated cDNA at 37 °C for 15 min followed by 5
min at 95 °C before PCR. Then PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers and Index (X) Primer. At last, PCR products were purified
(AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100
system.

RNA Sequencing Data Analysis:

Primary data analysis for quality control, mapping to reference genome and quantification was
conducted by Novogene as outlined below.

Quality control: Raw data (raw reads) of FASTQ format were firstly processed through in-
house scripts. In this step, clean data (clean reads) were obtained by removing reads
containing adapter and poly-N sequences and reads with low quality from raw data. At the
same time, Q20, Q30 and GC content of the clean data were calculated. All the downstream
analyses were based on the clean data with high quality.

Mapping to reference genome: Reference genome and gene model annotation files were
downloaded from genome website browser (NCBI/UCSC/Ensembl) directly. Paired-end clean
reads were mapped to the reference genome using HISAT2 software. HISAT2 uses a large
set of small GFM indexes that collectively cover the whole genome. These small indexes
(called local indexes), combined with several alignment strategies, enable rapid and accurate
alignment of sequencing reads.

Quantification: HTSeq was used to count the read numbers mapped of each gene, including
known and novel genes. And then RPKM of each gene was calculated based on the length of
the gene and reads count mapped to this gene. RPKM, (Reads Per Kilobase of exon model
per Million mapped reads), considers the effect of sequencing depth and gene length for the
reads count at the same time and is currently the most commonly used method for estimating
gene expression levels.

For each identified gene, the fold change was calculated by the ratio of cytokine
stimulated/unstimulated expression levels within each donor and an unpaired, two-tailed t test
was applied to calculate p values. Genes were considered to be significantly altered if: p value
< 0.05, and logz fold change >+1 or <-1. Genes with an RPKM of less than 1 in two or more
donors were excluded from analysis so as to remove genes with abundance near detection
limit. Genes without annotated function were also removed. Functional annotation of genes
(KEGG pathways, GO terms) was done using DAVID Bioinformatics Resource functional
annotation tool (92, 93). Clustered heatmap was generated using R Studio Pheatmap
package.

siRNA-mediated knockdown of IRF1 in RPE1 cells:

A set of four IRF1-siRNAs were purchased from Dharmacon and tested individually to
determine levels of knockdown achieved. The siRNA providing the highest level of IRF1.
knockdown (Horizon, LQ-011704-00-0005, siRNA #2: UGAACUCCCUGCCAGAUAU) were
subsequently used in all the experiments. RPE1-IL27Ra cells were plated in 6-well dishes
(0.4x10° cells per well) and transfected the next day with IRF1-siRNA or control-GAPDH
siRNA (Horizon, D-001830-10-05) (Dharmacon) using DharmaFect 1 transfection reagent
(Dharmacon) following the manufacturer’s instructions for 24h. At different timepoints of IL-27
(2nM) or HyplL-6 (10nM) stimulation, samples were collected from each one 6-well. Cells were
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trypsinized and each sample was spun down and pellets snap-frozen in liquid nitrogen for
subsequent RNA isolation (90%) or PFA-fixed for total IRF1 staining (10%) by flow cytometry.

Real-time quantitative PCR:

Cells were subject to RNA isolation using the Qiagen RNeasy kit. RNA (100 ng) was reverse
transcribed to complementary DNA (cDNA) using an iScript cDNA synthesis kit (BioRad,
#1708890), which was used as template for quantitative PCR. PowerTrack™ SYBR Green
Master Mix (Takara, #A46109) was used for the reaction with the following primers:

target For Rev Size
B-actin | CATGTACGTTGCTATCCAGGC | CTCCTTAATGTCACGCACGAT | 250bp
STAT1 | CTAGTGGAGTGGAAGCGGAG CACCACAAACGAGCTCTGAA 252bp
GBP5 | TCCTCGGATTATTGCTCGGC CCTTTGCGCTTCAGCCTTTT 309bp
OAS1 | GAAGGCAGCTCACGAAACC AGGCCTCAGCCTCTTGTG 114bp
SOCS3 | GTCCCCCCAGAAGAGCCTATTA | TTGACGGTCTTCCGACAGAGAT | 118

B-actin was used as housekeeping gene for normalization. Each siRNA knockdown
experiment was performed in three replicates with each sample for gqPCR being done in two
technical replicates.

Mathematical models and Bayesian inference:

We developed two new mathematical models, making use of ordinary differential equations
(ODEs), for the initial steps of cytokine-receptor binding, dimer formation and signal activation
by HyplL-6 and IL-27, respectively; namely, a set of ODEs for the HyplL-6 system and a
separate set of ODEs for the IL-27 system (see end of this section for the set of ODEs included
in each model). These ODEs describe the rate of change of the concentration for each
molecular species considered in the receptor-ligand systems (HyplIL-6 and IL-27) over time.
By solving these ODEs, a time-course for the concentration of total (free and bound)
phosphorylated STAT1 and STAT3 can be obtained and compared to the experimental data
(Supp. Fig. 5b & c). The HyplL-6 and IL-27 mathematical models differ due to the reactions
involved in the formation of the signaling dimer for each cytokine. Under stimulation with
HypIL-6, two HyplL-6 bound GP130 monomers are required to form the homodimer
(Supp. Fig. 3a), whereas under IL-27 stimulation, we assume that IL-27 binds to the IL-27Ra
chain and not to GP130 (Supp. Fig. 3b) and hence the heterodimer is comprised of an IL-27
molecule bound to an IL-27Ra monomer and one GP130 chain. In the mathematical models,
we assume that upon formation of the dimers (homo- or heterodimer), these receptor chains
become immediately phosphorylated. The models do not consider JAK molecules explicitly.
We are assuming that these molecules are constitutively bound to their corresponding
receptor chains and that they phosphorylate immediately upon receptor phosphorylation
(dimer formation). After the formation of the dimer, which we denote by D¢ or D,,, formed by
HyplL-6 or IL-27 respectively, the biochemical reactions included in each mathematical model
are similar, and are summarized as follows. Table 1 provides a description of the rates for
each reaction considered in each (and both) mathematical model(s). In what follows we
assume mass action kinetics for all the reactions. A free cytoplasmic unphosphorylated STAT1
or STAT3 molecule can bind to either receptor chain in the dimer, provided that the intracellular
tyrosine residue of the receptor in the dimer is free (Supp. Fig. 3c & d). The STAT1 or STAT3
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molecule can subsequently dissociate from the receptor chain in the dimer or can become
phosphorylated (with rate g) whilst bound to the dimer. We have assumed that the rate of
STAT1 or STAT3 phosphorylation when bound does not depend on the STAT type (1 or 3) or
on the receptor chain (Supp. Fig. 3c & d). Phosphorylated STAT1 (pSTAT1) and STAT3
(pSTAT3) molecules can dissociate from the dimer. Once free in the cytoplasm, they can then
dephosphorylate (Supp. Fig. 3g). We have assumed that this rate of STAT dephosphorylation
only depends on the concentration of the respective pSTAT type, free in the cytoplasm. We
note that no allostery has been considered in the models and hence, phosphorylated and
unphosphorylated STAT molecules dissociate from the receptor with the same rate
(Supp. Fig. 3c & d). Finally, any molecular species containing receptor molecules can be
removed from the system, due to internalisation or degradation, via one of two hypothesised
mechanisms (Supp. Fig. 3e & f):

o hypothesis 1 (H1): receptors (free or bound, phosphorylated or unphosphorylated) are
internalised/degraded with a rate proportional to the concentration of the species in
which they are contained, or

o hypothesis 2 (H2): receptors (free or bound, phosphorylated or unphosphorylated) are
internalised/degraded with a rate proportional to the product of the concentration of the
species in which they are contained and the sum of the concentrations of free
cytoplasmic phosphorylated STAT1 and STAT3.

We note that hypothesis 1 assumes that receptor molecules (free or bound, phosphorylated
or unphosphorylated) are being internalised/degraded as part of the natural cellular trafficking
cycle. Hypothesis 2 is consistent with a potential feedback mechanism, whereby the free
cytoplasmic pSTAT molecules would migrate to the nucleus and increase the production of
negative feedback proteins, such as SOCSS3, which down-regulate cytokine signaling. Thus,
the internalisation/degradation rate of receptor molecules (free or bound, phosphorylated or
unphosphorylated) under hypothesis 2 increases with the total amount of free cytoplasmic
phosphorylated STAT1 and STAT3, to account for this surface receptor down-regulation. A
depiction of the reactions in both the HyplIL-6 and IL-27 mathematical models and under each
hypothesis is given in Supp. Fig. 3 where a), c), ) and g) describe the HypIL-6 model and b),
d), f) and g) describe the IL-27 model. In this figure, i € {1,3} so that the reactions shown can
either involve STAT1 or STAT3. Above or below the reaction arrows is a symbol which
represents the rate at which the reaction occurs (under the assumption of mass action
kinetics). The notation for the rate constants and initial concentrations in the models, along
with their descriptions and units, are given in Table 1.

Parameter Description Unit
e 1127 Rate of receptor-ligand binding nMs™
161127  Rate of receptor-ligand dissociation s
)6 7227  Rate of monomers binding to form a dimer nMs™
T2.6: 12,27 Rate of dissociation of the dimer s

kf, Rate of STATi binding to GP130 nM's™
ki, Rate of STATi binding to IL-27Ra. nM's™
ki, Rate of STATi dissociating GP130 s’
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ki Rate of STATi dissociating IL-27Ra s

q Rate of STAT phosphorylation on the dimer s

d; Rate of free pSTATi dephosphorylation s
Be, B27 Rate of receptor internalisation/degradation under hypothesis 1 s
Ve, V27 Rate of receptor internalisation/degradation under hypothesis 2 nM's™
[R1(0)] Initial concentration of GP130 nM
[R,(0)] Initial concentration of IL-27Ra nM
[S;(0)] Initial concentration of STATi nM

Table 1: Notation, definitions and units for the parameter values used in the mathematical
models, where i € {1,3} so that STATi corresponds to STAT1 or STAT3.

The HyplL-6 mathematical model was formulated based on reactions involving the following

species:
o Ls = HyplL-6,
e R; = GP130,
e (; = GP130 - HypIL-6 monomer,
e D¢ = Phosphorylated GP130 - HyplIL-6 - HyplL-6 - GP130 homodimer,
e S; = Unbound cytoplasmic unphosphorylated STAT1,
e S = Unbound cytoplasmic unphosphorylated STAT3,
e D¢ - S; = Dimer bound to STAT1,
e D¢ S3 = Dimer bound to STAT3,
e D¢ pS; = Dimer bound to pSTATT1,
o D¢ pS; = Dimer bound to pSTAT3,
o S, Dg- S; = Dimer bound to two molecules of STAT1,
o pS;- Dg- S, = Dimer bound to two molecules of STAT1, one of which is

phosphorylated,

pS1 - D¢ - pS; = Dimer bound to two molecules of pSTAT1,

e S;: Dg- S3 = Dimer bound to two molecules of STATS3,

pSs - Dg- S; = Dimer bound to two molecules of STAT3, one of which is
phosphorylated,

pSs - Dg - pS; = Dimer bound to two molecules of pSTATS3,

S1 - Dg - S3 = Dimer bound to one molecule of STAT1 and one of STAT3,

pS: - D¢ - S3 = Dimer bound to one molecule of pSTAT1 and one of STATS3,
S1 - Dg - pS3 = Dimer bound to one molecule of STAT1 and one of pSTATS3,
pS1 - D¢ - pS3 = Dimer bound to one molecule of pSTAT1 and one of pSTATS3,
pS; = Unbound cytoplasmic phosphorylated STAT1,

pS3; = Unbound cytoplasmic phosphorylated STAT3.

The initial reactions in the HyplL-6 signaling pathway can then be described by the ODEs (1)
— (22), under the law of mass action, where the terms involving the parameter g, apply only
to the model under hypothesis 1 and the terms involving the parameter y, apply only to the
model under hypothesis 2. Square brackets around a species is a notation that denotes the
concentration of this species with unit nM, and “” implies a reaction bond between two
molecules/species. The ODEs are valid for any time t, with t > 0, but time has been omitted
in the species concentration for ease of notation. We note here that, for example [R;] = [R,](t)
forallt = 0.
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d[R
[dtl] = —176[R11[Le] + 174[C1] — B¢[R1] — ¥4 ([pS1] + [PS3DIR1] (1)
dEiL:] = —116[R11[Ls] + 17 6[C1] (2)
d[C
Eitl] = 11 6[R11[Ls] — r16[C1] — 213 4[C1]* + 2156[Dg] — B,[C1] 3)
—Y¢([PS1] + [PS3DIC1]
d[D
[dtG] =136[C11* = 156[D6] — 2k14[D61[S1] + k1a([Ds - S1] + [Dg - pS1])
— 2k34[D6][S3] + k3a(IDs - S3] + [Ds - pS3]) — B [De] 4)
—Y¢([PS1] + [PS3D[D¢]
d[S4]

L = —k1,[S112IDe] + [Dg - S11+ [Ds - S5] + D - pS1] + [Ds - pSs]) i
+ Kia(IDs - S1] + 2[S1 - Dg - S11+ [S1 - Dg - S3] + [S1 - D - pSi] ®)
+ [S1 - D6 - pS3]) + d1[pSi]
=2 = —kf,[S312ID¢] + [Dg - S31+ [Ds - S11 + D - pSs] + [Ds - pSi]) .
+ k32(ID6 - S3] + 2[S3 - Dg - S3] + [S1 - D - S3] + [S3 - D - pSs] ©)
+ [pS1 - D - S3]) + d3[pSs]
= 2k{o[$1][D6] — k1a[De  S11 — kia[De  S1151] + 2k1a[S1 + Dg - S1]

— k3a[Ds - S11[S3] + k3a[S1 - D - S3] — q[D¢ - S1] (7)
+ k1a[S1 - De - pS1] + k3a[S1 - Dg - pS3] — B4[Ds - S1]

—Y¢([pS1] + [pS3D[Ds - S1]
= 2k3,[S3][D¢) — k3a[Ds - S3] — k3a[Ds - S3][S3] + 2k34[S3 - D - S3]
— IaDe - S31[S1] + Ki[S1 - Dg - S3] — qIDg - S3] + kralpSy - Dg - 53] &
+ k34[S3 * D - pS3] — B¢[Ds - S3]1 — v ([pS1] + [pS3D[Ds - S3]
= —ki,[S11[Dg - pS1] + k1a[S1 - D - pS1] — k3a[S3][Ds - pS1]

+ k3a[pS1 - D S3] + q[Ds - S1] — k14[Ds - pS1] (9)
+ 2k14[pS1 - Ds - pS1] + k3a[pS1 - De - pS3] — B¢[Ds - pS1]

—Ve([pS1] + [pS3D[D6 - pS1]
d[Dg - pS
% ~k3alS3][Ds * S3] + k3alS3 - D - pS3] = k1alS1][Ds - pS3]
+ k14[S1 - D6 - pS3] + q[Ds - S3] — k34[Ds - pSs] (10)
+ 2k34[pS3 - Dg - pS3] + k1a[pS1 - De - pS3] — B¢[Ds - pS3]
—Ve([pS1] + [PS3D[D6 - pS3]
= k1a[S11[D¢ - S11 — 2k14[S1 - D - S11 — 2q[S1 - D - S1]
— B[S1 - Ds - S1] — v ([pS1] + [PS3D[S1 - D6 - S1]

d[Ds - $1]
dt

d[Dg - S3]
dt

d[D¢ - pS1]
dt

d[Sy - D - S4]
dt (11)
d[S3 - D¢ - S3]

I = k3a[S3][Dg - S3] — 2k34[S3 - Dg - S3] — 2q[S3 - D¢ - S3]

— B[S3 - D6 - S3] —v4([pS1] + [pS3DI[S3 - De - S3]

d[pSy - Dg - S4] T
: 1dt6 = = ki4[pS1 - Del[S1] — 2k1a[pS1 - Ds - S1l (13)

+2q[S; - Dg - S11 — qlpS; - D¢ - S11 — Bs[pS1 - Ds - 511

(12)
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—Y6([pS1] + [pS3D[pS1 - Ds - Si]
d[pSs - D - S3]

dt

= k34[pS3 - D6l[S3] — 2k34[pS3 - D - S31 + 2q[S3 - D - S3] (14)
— q[pS3 - De - S3] — B¢[pS3 - D¢ - S3]
— Ye([pS1] + [PS3D[pS3 - D6 - S3]

d[pS; - Ds - pSi] T
- dt6 = = q[pS1- D - S1] — 2k14[pS1 - D¢ - pS1] (15)

—Bs[pS1 - Dg - pS1] — v6([pS1] + [pS3D[pS: - D6 - pSi]

d[pS; - D¢ - pSs] 2
- dt6 = = q[pS3 - D - S3] — 2k34[pS3 - D¢ - pSs] (16)

—Bs[pSs - De - pS3] — v6([pS1] + [pS3D[pS5 - Ds - pSs]

= k14[S11[D6 - S3] — k1alS1 - D - S3] + k34[S1 - D6][S3]

— k3alS1 - D - S3] — 2q[Sy - D - S3]1 — B[S1 - Dg - S3] (17)
—¥6([pS1] + [PS3DIS1 - D¢ - S3]

d[pS; - D¢ - S3]

d[Sq - D¢ - S3]
dt

= q[S1 - Dg - S3] + k3a[pS1 - Dg][Ss3]

dt _ _ (18)
—k34[pS; - De - S3] — qpSy - D¢ - S3] — ki,4[pSy - De - S3]
—BelpS1 - Dg - S3] — v6([pS1] + [pS3D[pS1 - De - S5]
d[S{- D¢ - pSs]
L0 P05 — ISy - D - S3]+ KialS11D6 - pSs] )
—k14[S1 - Dg - pS3] — q[S; - De - pS3] — k34[S1 - Dg - pS3] (19)
—BelS1 * Dg - pS3] — v6([pSi1] + [pS3D[S1 - Dg - pSs]
d[pS1 - D¢ - pS3]
- dt6 o = q([S1- D¢ - pS3] + [pS1 - D¢ - S3]) 20
—[pS1 - Dg - pS31(kiy + k34) — Bs[pS1 - De - pSs] (20)
—¥6([pS1] + [pS3D[pS; - De - pSs]
d[pSi] -
ac =~ K1a([De pS1]+ [S1 - De - pS1] + [S3 - De - pS1] + [pS3 - De - pSil 1)
+ 2[pS1 - Dg - pS1]) — di[pSi]
d[pSs] -
qc =~ K3a([De * pS3] + [S3 - De * pS3] + [S1 - D - pS3] + [pS1- De - pSs] (22)

+ 2[pS3 - D¢ - pS3]) — d3[pSs]

Similarly, and with some species in common with the HyplL-6 model, the IL-27 model has
been formulated based on reactions involving the following species:

L27 = ”_'27,
R; = GP130,
R, = IL-27Ra,

C, =1L-27Ra. - IL-27 monomer,

D,, = Phosphorylated IL-27Ra. - IL-27 - GP130 heterodimer,
S: = Unbound cytoplasmic unphosphorylated STAT1,

S; = Unbound cytoplasmic unphosphorylated STATS3,

S: - D,; = Dimer bound to STAT1 via R,
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e S3- D,; =Dimer bound to STAT3 via R4,

e pS; - Dy; =Dimer bound to pSTAT1 via Ry,

e pS;- D,;, =Dimer bound to pSTAT3 via R,

e D,;- S, =Dimer bound to STAT1 via R,,

o Dy, = Dimer bound to STAT3 via R,,

e D, - pS; =Dimer bound to pSTAT1 via R,,

e D,; - pS; =Dimer bound to pSTATS3 via R,,

o S, Dy, - S; =Dimer bound to two molecules of STAT1,

e pS;- Dy; - S; =Dimer bound to two molecules of STAT1, one of them phosphorylated
on R4,

o S, Dy;- pS; = Dimer bound to two molecules of STAT1, one of them phosphorylated
on R,,

o pS;- Dy; - pS; = Dimer bound to two molecules of pSTAT1,

o S3- Dy, S3 =Dimer bound to two molecules of STAT3,

e pS;- Dy, - S; =Dimer bound to two molecules of STAT3, one of them phosphorylated
on R4,

e S:- Dy, pS; = Dimer bound to two molecules of STAT3, one of them phosphorylated

on R,,

pSs - Dy - pS3 = Dimer bound to two molecules of pSTATS3,

S1 - Dy7 - §3 = Dimer bound to STAT1 via R; and STAT3 via R,,

S3 - Dy - S; = Dimer bound to STAT1 via R, and STAT3 via Ry,

pS: - D, - S; = Dimer bound to pSTAT1 via R, and STAT3 via R,,

S3 - Dy - pS; = Dimer bound to pSTAT1 via R, and STAT3 via Ry,

S1 - Dy7 - pS; = Dimer bound to STAT1 via R, and pSTAT3 via R,,

pSs - Dy - S; = Dimer bound to STAT1 via R, and pSTAT3 via Ry,

pS1 - Dy - pS; = Dimer bound pSTAT1 via R; and pSTAT3 via R,,

pS3 - Dy - pS; = Dimer bound pSTAT3 via R; and pSTAT1 via Ry,

pS; = Unbound cytoplasmic phosphorylated STAT1,

pS3; = Unbound cytoplasmic phosphorylated STAT3.

Again, under the law of mass action, the initial reactions in the IL-27 signaling pathway can be
described by the ODEs (23) — (55).

d[R4]

7t = ~"227[C2l[R1] + 7557 [D27] = By [R1] = 55 ([pS1] + [pS3DIR,] (23)
d[R

[dtz] et 27[R2][L27] + 171271C2] ,827 [R2] — v,,([pS1] + [pS3DIR:] 24)
d[L
% = =17 37[R2][L27] + 1727[C2] (25)
d[C

EitZ] =11 57[R21[L27] — 1127[C2] = 73 27[C21[R1] + 7227[D27] — B, [C2]

— ¥,,([pS1] + [pS3DIC-] (26)

d[D27]

T 173.27[C21[R1] — 12.27[D27] — (kia + K1) [D27]1S1]
+ k14([S1 - D27] + [PS1 - D27]) + k1p([D27 - S1]1 + [D27 - pS1D) 07
— (k3a + k3,)[D271[S5] + k3a([S3 D71 + [pS3 - D7) @7)
+ k3p([D27 - S3] + [D27 - pS3]) — B,,[D27]
—V,,([pS1] + [pS3DI[D27]
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d[S]
dtl = —k1a[S11([D27] + [D27 - S11 + [Da7 - pS1] + [D27 - S31 + [Da7 - pS3])

+ k14([S1 - D27] + [S1 - D27 - S1] + [S1 - D27 - pS1] + [S1 - D27 - S3]
+ [3;1 D37 - pS3))
— k1p[S1]1([D27] + [S1 - D271 + [pS1 - D27] + [S3 - D27] (28)
+ [pS3 - Da7])
+ k1p([D27 - S1]1 + [S1* D27 - S1]1 + [pS1 - D27 - S1]1 + [S3+ D27 - S1]
+ [pS3 - D27 - $1D) + d1[pS4]

d[S;]

dt3 = —k3u[S31(ID27] + [D27 - S11 + [Da7 - pS1] + [D27 - S31 + [Da7 - pS3])

+ k34([S3 - Da7] +[S3 - D27 - S11 4 [S3 - D27 - pS1] 4 [S3 - D27 - S3]
+ [3;3 " D7 - pS3))
— k3p[S3]([D27] + [S1 - D27] + [pS1 - D27] + [S3 - D27] (29)
+ [pS3 - Da7])
+ k3p([D27 - S3] + [S1 - D27 - S3] + [pS1 - D27 - S3] + [S3 - D27 - S3]
+ [pS3 - D27 - $3]) + d3[pS3]

d[S, - Dyy] _

—— 7 = k1a[$111D27] = k1a[S1 - D271 = ISy - Da7] = kiy[S11[S1 - D7)
+ k1p[S1 - Da7 - S1] — k3p[S31[S1 - Dozl + k3p[S1 - Doy - S3] (30)
+ k1p[S1 - D27 - pS1] + k3p[S1 - D27 - pS3] — B,,[S1 - D27]
— V47 ([PS1] + [PS3DI[S1 - D27l

d[D,7 - S4] _

——— = kip[$11[D27] = k1p[D27 - S11 = q[D27 - S1] = k{a[S1][Dz7 - 1]
+ k14[S1 - D27 - $1] — k;a_[53][D27 - S1] + k3a[S3 - D27 - S4] (31)
+ k14[pS1 - D27 - S1] + k3a[pS3 - D27 - S11 — B,,[D27 - S1]
— ¥, ([PS1] + [PS3D[D27 - S1]

d[Ss - Dy ] _

7 = k3a[S31[D27] = k3alS3 - Da7] = 1S3 - Da7] = k3y[S31(S3 - D7)
+ k3p[S3 - Da7 - S31 — kip[S11[S3 - Dozl + k1p[S3 - Doy - S1] (32)
+ k3p[S3 - D27 - pS3] + k1p[S3 - D27 - pS1]1 — B,,[S3 - D27]
—¥,;([PS1] + [PS3DI[S3 - D27l

d[Dy, - Sa] _

——— = k3p[S31[D27] = kp[D27 - S31 = qD27 - S3] = kia[S3][Dz7 - S3]
+ k3a[S3 - Da7 - S3] — kig[S11[D27 - S31 + kig[S1 - D27 - S3] (33)
+ k34[pS3 - D27 - S3] + k1a[pS1 - D27 - S31 — B,,[D27 - S3]
— ¥4, ([PS1] + [PS3D[D27 - S3]

d[pS, - Dyr] _

L — k391 - DyslISi]+ Kip[pS1 - D7 - Sil = ky[pS: - Da7]IS3)

[
+ k3p[pS1 - D27 - S31 +q[S1 - D27] — k14[pS1 - D27l (34)
+ k1p[pS1 - D27 - pS1] + k3p[pS1 - D27 - pS3] — B4, [pS1 - D27l

—V,,([pS1] + [pS3D[pS1 - D27l
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d[D,; - pS{] _

S PO — kfalDay  pSiIS1] + KialSy - Doy - pSi] = KalDa7 - pS111S3)
+ k3a[S3 - D27 - pS1] 4 q[D27 - S11 — k1p[D27 - pS1] 35
+ k1a[pS1 - D27 - pS1] + k3a[pS3 - D27 - pS1] — B4, (D27 - pSil (35)
—Y,,([pS1] + [pS3DI[D27 - pS1]

d[pSs - Dyr] _

% = —k3p[pS3 - D271[S3] + k3p[pSs - D27 - S31 — kip[pSs - D271[S1]
+ k1p[pS3 - D27 - S1]1 + q[S3 - D27] — k34[pS3 - D27l 36
+ k3p[pS3 - D27 - pS3] + k1p[pS3 - D27 - pS1] — B4, [pS3 - D27] (36)
—V,,([pS1] + [pS3D[pS3 - D27l

d[D,; - pS;] _

S PO — —kialDay - pS31IS3] + KaalS3 - Doy - pS5] = KialDa7 - pS31IS1)

[
+ k1a[S1 - D27 - pS3] + q[D27 - S3] — k3p[D2y - pS3] 37
+ k3a[pS3 - D27 - pS3] + k1a[pS1 - D27 - pS3] — B,;[D27 - pSs3l (37)

—V,,([pS1] + [pS3DI[D27 - pS3]

d[Sy - Dy7 - 541]
dt

= kialS11[D27 - S1] — k1a[S1 - D27 - Si]
+kip[S1 - Doy 1[S1] = k1 [S1 - Dyy - S11 = 2q([Sy - Dyy - S4] (38)
—B27[S1 - Dag - S11 = v27([pS1] + [pS3D[S1 - Da7 - 84
d[pS1 - D,7 - 5] _

L2 = ey pS: - Dysl[S1] = KiplpSy - Doy - S1]
+q[S; - Dy7 - S1] — qlpSy - Dy7 - S11 = kig[pSy - Dyy -S4 (39)
—B27[pS1 - Da7 - S11 = v2,([pS1] + [pS3D ISy - Da7 - 84

d[S{-D,; - pSq{] N
1 d2t7 bo1 _ kira[Sl][D27 - pS1] — k14[S1 - D27 - pS1]

+q[S; - Dy7 - S11 — qlSy - Dyy - pS11 — kip[S1 - Doy - 0S4 ] (40)
—B27[S1 - Da7 - pS1] = v2,([pS1] + [pS3DI[S1 - Dyy - pSi]
d[pS1 - D,7 - pSq]
P22 P — 41 D7+ pSil + [pS1 - Dy - Si)

—[pS1 - Da7 - pS1](kig + k1) — B27[DS1 - Da7 - pSi] (41)
—¥27([pS1] + [pS3D[pS; - Dy7 - pSi]

d[S3 - Dy7 - S3]

= = k34[S3][D27 - S3] — k3a[S3 - D27 - S3]

+k3,[Ss - Dp71[S3] — k3p[Ss - Dy7 - S31 = 2q[S5 - Dy7 - S5] (42)
—B27[S3 - Dyy - S3] — v27([pS1] + [pSsDI[Ss - Dy7 - S3]
d[pSs - D,7 - S3] _
P3 dt27 3L = k3, [pS3 - D27][S3) — k3 [pS3 - D27 - S3]
+q[S3 - Dyy - S31 — qlpSs - Dyy - S3] — k3, [pS3 - Dy7 - S5] (43)
—B27[pS3 - D7 - S31 — v27([pS1] + [pS3D[pSs - Dy7 - S3

d[S3 - Dy7 - pSs]

= = k3alS5][D27 * pS3] = k3alSs - D27 - pSs] (44)
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+q[S3 - Dyy - S31 — qlS3 - Dy7 - pS3] — k3p[S3 - Dy - pSs]
—B27[S3 - Dyy - pS3] — v27([pS1] + [pS3D[S3 - Dy7 - pS3]

d[pSs - Dy7 - pSs]
dt

= q([S3 - D27 - pS3] + [pS3 - D27 - S3])
—[pSs - D37 - pS3](k3q + k3p,) — B27[pS5 - Dy7 - pSs] (45)
—¥27([pS1] + [pS3D[pSs - Dy7 - pSs]

d[Sy - Dy7 - S3]
dt

= k1a[S1][D27 - S3] — k1a[S1 - D27 - S3]
+k3,[S1 - D271[S3] — k3p[S1 - Dy - S3]1 — 2q[Sy - Dy - S3] (46)
—B27[S1 * Dyy - S3] — v27([pS1] + [pS3D[S1 - D7 - S5

d[S3 - Dy7 - 541]

= = k34[S3][D27 - S1] — k3al[S3 - D27 - S1]

+kip[S3 - D27][S1] = ki [S5 - Dy7 - S1]1 — 2q[S5 - Dy7 - 4] (47)
—B27[S3 * Dy7 - S1] — v27([pS1] + [pS3DI[S5 - Dy - 4]

d[pS; - Dy7 - S3]
dt

= kip[pS1 - D271[S3] — k3p[pS1 - D27 - S3]
+q[S; - Dy7 - S3]1 — qlpS; - D7 - S3] — kig[pSy - Da7 - S5l (48)
—B27[pS1 - Da7 - S3] — var ([pS1] + [pS3DIpSy - D7 - S5]

d[pSs - D,7 - 5] .
pos3 dt27 u_ k-llrb[p53 - D271[S1] — k1p[pS3 - D27 - S1]
+q[S5 - Dy - S11— q[pSs - Doy - S11 — k34[pSs - Dyy - 51l (49)

—B27[DS3 - Da7 - S1] — v27([pS1] + [pS3D[pS5 - Dy7 - S4]

d[Sy - Dy7 - pSs]
dt

= kia[S11[D27 - pS3] — k1alS1 - D27 - PS3]
+q[S; - Dy7 - S3]1 = q[Sy - Dyy - pS3] — k3[S1 - Dy7 - pSs] (50)
—B27[S1 - Da7 - pS3] — v2r ([pS1] + [pS3DIS1 - D27 - pSs]

d[S3 - Dy7 - pSq]

= = k3alS5][D27 - pS1] = k3alSs - D27 - pS1]

+q[S3 - Dyy - S11 = qlSs - Dy7 - pS1] — k1p[Ss - Dy7 - pSi] (51)
—B27[S3 - Dyy - pS1] — v27 ([pS1] + [pS3DI[S3 - Dy7 - pSi]

d[pS; - D37 - pSs]
dt

= q([S1 - D27 - pS3] + [pS1- D27 - S3])
—[pS1 - D27 - pS31(kiq + k3p) — B2y [PS1 - Dyy - 0S5] (52)
—¥27([pS1] + [pS3D[pS; - Dyy - pSs]

d[pSs - Dy7 - pSq]
dt

= q([S3 - D37 - pS1] + [pS3 - D27 - S1])

—[pSs - D37 - pS1] (k34 + kip) — B2y (PS5 - D27 - 0S4] (93)
—¥27([pS1] + [pS3D[pSs - D27 - pSi]
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d[pSq] _
Ztl = k14([pS1 - D27] + [pS1 - D37 - S1] + [pS1 - D27 - pS1] + [pS1 - D27 - S3]
+ [pS1 - D27 - pS3)) (54)
+ k1p([D27 - pS1] + [S1 - D27 - pS1] + [pS1 - D27 - pSi]
+ [S3 - D3y - pS1] + [pS3 - D27 - pS1]) — d1[pSi]
d[pSs] _
Ztg = k3o([pS3 - Da7] + [pS3 - D7 - S3] + [pS3 - Doy - pS3] + [pS3 - D7 - S1]
+ [pS3 - D27 - pS1D) (55)

+ k3p([D27 - pS3] + [S3 - D27 - pS3] + [pS3 - Da7 - pS3]
+ [S1 - D3y - pS3] + [pS1 - D27 - pS3]) — d3[pSs]

Similarly to the HyplL-6 model, the terms in Equations (23) - (55) involving the parameter 3,
apply only to the model under hypothesis 1 and the terms involving the parameter y,, apply
only to the model under hypothesis 2.

We now describe how we have made use of the experimental data (Fig. 6b and 6¢ supp.) to
parameterise the mathematical models described above. Since the experimental outputs are
levels of pPSTAT1 and pSTAT3 as a function of time under HypIL-6 and IL-27 stimulation (Fig.
6b and 6¢ supp.), we consider two model outputs of interest for the HyplL-6 and IL-27
mathematical models, which are proportional to the experimental data in Supp. Figure 6b and
6¢; namely, the sum of all molecular species (variables) containing phosphorylated STAT1
(free or bound) ([pS;]7/, for j € {6,27}) and the sum of all species (variables) containing
phosphorylated STAT3 (free or bound) ([pS;]™/, for j € {6,27}). The concentrations of the two
model outputs of interest at any time t are given by

[pS1176(t) = [Dg - pS11(t) + [pS1 - D - S11(t) + 2[pSy - Dg - pS11(t) + [pSi - Ds - S31(t) (56)
+ [pS1 - De - pS5](t) + [pS11(t),

[pS3]76(t) = [De - pS3](t) + [pS3 - Dg - S31(t) + 2[pSs - D - pS3](t) + [pS3 - De - S11(t) (57)
+ [pSs - Dg - pS1](t) + [pS3](t),

for the HyplL-6 model, and by

[pS117%7(t) = [pS1 - Da71(t) + [D27 - pS11(t) + [pS1 - Dyy - S11(t) + [S1 - Doy - pS11(E)
+ 2[pSy - Dy7 - pS11(t) + [pS1 - Doy - S3](t) + [S3 - D7 - pS11(E) (58)
+ [pS1 * Dg - pS3](t) + [pS5 - Dg - pS11(¢) + [pS11(2),

[pS3]727(t) = [pS3 - D271(t) + [Da7 - pS31(t) + [pSs - Dy - S31(t) + [S3 - Dy - pS31(t)
+ 2[pS3 - Dy - pS3](t) + [pS3 - D7 - S11(t) + [S1 - Dy7 - pS31(8) (59)
+ [pS1 * Dg - pS3](t) + [pSs - De - pS11(¢) + [pS3](2),

for the IL-27 model.

Having developed two mathematical models for the stimulation of the experimental system
with HyplIL-6 and IL-27, it was then our objective to parameterise these models making use of
approximate Bayesian computation sequential Monte Carlo (ABC-SMC). Firstly, a Bayesian
model selection was carried out to determine which hypothesis (mechanism) of
internalisation/degradation of receptor molecules is most likely given the data. Once a
hypothesis was selected, together with the experimental data, the ABC-SMC method allows
one to obtain posterior distributions for each of the parameter values and initial concentrations
in the mathematical models. In this way, we can learn about which reactions and parameters
in the models are causing the differential signaling by pSTAT1 observed when stimulating with
HyplL-6 and IL-27. The experimental data we used to compare with the mathematical model
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outputs, was the mean relative fluorescence intensity of total phosphorylated STAT1 and total
phosphorylated STAT3 in both RPE1 and Th-1 cells (Supp. Figure 5b and 5c). We normalised
the data to obtain dimensionless values, which can be compared with the mathematical model
outputs. Firstly, we constructed a linear model for the fluorescence intensity (background
fluorescence) of antibodies for phosphorylated STAT1 and STAT3 in unstimulated cells. We
subtracted the value of this linear model at each time point from the corresponding
fluorescence intensity in HyplL-6 and IL-27 stimulated cells, for each repeat of the experiment
and each cell type. Denoting by f the experimental fluorescence intensity, f(r,i,tp,j,d)
corresponds to the fluorescence intensity for the rth repeat, r € R = {1,2,3,4} with antibody
for STATI, i €1 = {1,3} at time point
tp TP = {0 min,5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 180 min}

under stimulation by cytokine IL-j (HyplL-j when j = 6), with j € ] = {6,27} and in cell type d €
D = {RPE1,Th-1}. Each data point data(r, i, tp, j, d), to be used in the Bayesian inference and
Bayesian model selection was then computed as

f(rr ir tp'j' d)

. d) = .
data(r,i, tp,j,d) Foritp = 30 min,j = 27, d)

To compare the model output, sim, with the data, the output was normalised in the same way
as the data, i.e.,

[pS:17 (tp, d)
[pSi1727(30 min, d)’

Sim(i, tp:j: d) =

where [pS;]™/ (tp, d) denotes the total concentration of phosphorylated STATi at time tp (see
Equations 56-59) when considering cell type d. In this way, experimental data and the
mathematical model outputs are comparable.

The similarity between the model output and the data points is then computed by the
introduction of a distance measure §(sim, data). Here, this distance measure was chosen as
a generalisation of the Euclidean distance, where

Sd(SimJ data)z = z z z(Slm(l' tp»j' d) - .udata(if tp:j» d))zp

i€l tpeTP jEJ

for d € D = {RPE1,Th-1}, where pgq:4 (i, tp, j, d) is the mean of the four repeats of the data
and is given by

4
1
Haaralitp,J,d) = 7 ) data(r, i, tp,,d).

r=1

To carry out the Bayesian model selection and Bayesian parameter inference, prior beliefs
about the parameters were firstly defined. Each of the parameters (reaction rates) and initial
concentrations in the model were sampled from a prior distribution, where the distribution was
informed by experimental data or values from the literature, when possible. The choice of prior
distributions is given in Table 2.

Parameter Prior distribution Reference
T1'e 10" for r ~ N(—3,1.5) *
Tie 10" for r ~ N(—3.9,1.96) *
117 10" for r ~ N(—2.34,1.17) *
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Ti27 10" for r ~ N(—2.82,1.41) *
ry; forj € {6,27} 107 for r ~ Unif (=2, 3) (94)
1y, forj € {6,27} 10" for r ~ Unif (=3,1) (94)
kr ki fori € {1,3} 10" for r ~ Unif (-7,1) x
kg ki, fori € {1,3} 10" for r ~ Unif(—=2,1) **

q 10" for r ~ Unif (-3, 2) Assumed
d; fori €{1,3} 10" for r ~ Unif (=5, —-2) b
Bj forj € {6,27} 10" for r ~ Unif (—5,—1) T
[R1(0)] N(12.7,6.35) +
[R2(0)] N(33.8,16.9) +
[S1(0)] N(300,100) (95)
[S5(0)] N(400,100) (95)

Table 2: Prior distributions assigned to each parameter and initial concentration in the model.
* These distributions are centred around measurements obtained from cell surface receptor
quantification experiments. ** These distributions were derived based on K, values obtained
from the literature (42). *** These distributions are based on values derived from experimental
data in which the cells were treated with Tofacitinib. T These distributions were based on
values derived from experimental data in which the cells were treated with cycloheximide.
These distributions were based on computations involving approximate cell sizes and average
numbers of molecules per cell.

We made use of the prior distributions from Table 2 to then carry out a Bayesian model
selection to determine which hypothesis is most likely given the RPE1 data for both HypIL-6
and IL-27 signaling. We ran 10° simulations for each mathematical model (HypIL-6 and IL-27)
and for each hypothesis, sampling model parameters from their prior distributions. We then
computed a summary statistic for varying values of §%°EL* the distance threshold between
the mathematical model and data at which parameters are accepted (or rejected) in the ABC.
Finally, we computed f (Hg), the number of accepted parameter sets for hypothesis k, where
the parameter sets are accepted if they result in a distance value less than or equal to §®PEL*,
the distance threshold. This allowed us to compute the relative probability, p(Hy), for each
hypothesis, as defined by the following equation

F(H87P)
FCHT8F7E) + f (Hp 1571

p(Hy 8°751) =

for k € {1,2}. The results of the model selection analysis for RPE1 are shown in Figure 2d,
where the relative probability of hypothesis 1 increases as §*°EL* tends to 0, whilst the relative
probability of hypothesis 2 decreases as a function of §%°EL*. We hence concluded that the
experimental data together with the mathematical models for HyplL-6 and IL-27 signaling
provide greater support to hypothesis 1 (around 70%) when compared to hypothesis 2 (around
30%). We note that as the distance threshold, §%P£1* | is increased, both hypotheses become
equally likely, as is to be expected. Given the results of the model selection, the Bayesian
parameter inference for the mathematical models of HyplL-6 and IL-27 signaling was only
carried out for hypothesis 1.

We used the ABC, sequential Monte Carlo (ABC-SMC), approach (96), to obtain posterior
distributions for the parameters in Table 1, making use of the prior distributions in Table 2. All
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model parameters in Table 1 were estimated for the RPE1 data set. A subset of the
parameters, which we would expect may vary with cell type, were then estimated for the Th-1
data set. In particular, the parameters not being estimated for Th-1 were sampled from the
posterior distributions obtained via the ABC-SMC for RPE1, and those parameters estimated
separately for Th-1 were: q, d4, ds, Be, B27, [R1(0)], [R2(0)], [S1(0)] and [S5(0)].

To further validate the two mathematical models of cytokine signaling, we aimed to reproduce
additional experimental results making use of the posterior parameter predictions from the
RPE1 data ABC-SMC. Firstly, and in order to replicate the experimental dose response curve
seen in Supp. Fig. 2a, we run both models using the 10* accepted parameters sets from the
ABC-SMC for 18 different values of cytokine concentration, within the range [10~* — 102] log
nM. The results of this analysis are seen in Supp. Fig. 12b. We also modified the mathematical
models to allow them to describe the IL-27Ra-GP130 chimera experiments (Fig. 3c). In
particular, a new mathematical model for the chimera experiments was developed as follows:
it consisted of the ODEs from the IL-27 model which are involved in the formation of the dimer,
(Equations (23) — (26)) and the ODEs from the HyplIL-6 model post-dimer formation (Equations
(5) — (22)), in which Dg was replaced by D,;. The ODE for the IL-27 induced dimer in the
chimera model was as follows

d[Dyy]
dt

= 15 27[C21[R1] = 1327[D27] — 2kT4[D27]1[S1] + ki ([S1 - D27] + [pSy - D27])
— 2k34[D271[S3] + k34 ([S3 - D27] + [pS3 - D27]) — B27[Da7].

We simulated both the original mathematical model of IL-27 and the chimera model using the
accepted parameter sets from the ABC-SMC. The results can be seen in Supp. Fig. 12a.
Finally, we focussed on one of the mutant varieties of IL-27Ra, Y613F and sought to
reproduce the results of Fig. 3b making use of the mathematical model of IL-27 signaling.
Since the mutation decreases the affinity of STAT1 to IL-27Ra, we fixed the association and
dissociation rates of STAT1 to the IL-27Ra chain, k{,, and k;,, at values which resulted in a
high uM affinity. The specific values chosen were kj;, = 1075 nM's™ and k;;, = 10* s which
yields an affinity of 102 uM. The rate k;, was chosen as approximately the median of the
posterior distribution for this parameter from the ABC-SMC, and the rate kj, was then
significantly decreased in order to increase the affinity value. We simulated the mathematical
model of IL-27 signaling using the 10* accepted parameter sets from the ABC-SMC, but where
the rates k7, and k;,, were fixed as described above. The pointwise medians and 95% credible
intervals of these simulations are plotted in Supp. Fig. 12c, as well as the simulations for the
WT, without altering any of the parameter values from the posterior distributions. Altering the
binding affinity of STAT1 to IL-27Ra in this way in the mathematical model allows us to
generate results which replicate reasonably well, the experimental observations for the Y613F
mutant in Figure 3b.

Live-cell dual-color single-molecule imaging studies:

Single molecule imaging experiments were carried out by total internal reflection fluorescence
(TIRF) microscopy with an inverted microscope (Olympus IX71) equipped with a triple-line
total internal reflection (TIR) illumination condenser (Olympus) and a back-illuminated electron
multiplied (EM) CCD camera (iXon DU897D, 512 x 512 pixel, Andor Technology) as recently
described (38-40). A 150 x magnification objective with a numerical aperture of 1.45 (UAPO
150 3 /1.45 TIRFM, Olympus) was used for TIR illumination. All experiments were carried out
at room temperature in medium without phenol red supplemented with an oxygen scavenger
and a redox-active photoprotectant to minimize photobleaching (97). For Heterodimerization
experiments of IL-27Ra and GP130 cell surface labeling of RPE1 GP130 KO, co-transfected
with mXFPe-IL-27Ro. and mXFPm-GP130, was achieved by adding o GFP-enNBR"°'" and
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aGFP-miNBP"® to the medium at equal concentrations (5 nM) and incubated for at least 5
min prior to stimulation with IL-27 (20 nM) or HypIL-6 (20 nM). For homodimerization
experiments with mXFPm-GP130, aGFP-miNBP"®*" and a GFP-miNBR"°"" (98) were used for
cell surface receptor labelling as described above. The nanobodies were kept in the bulk
solution during the whole experiment in order to ensure high equilibrium binding to mXFP-
GP130. For simultaneous dual color acquisition, aGFP-NBR""" was excited by a 561 nm
diode-pumped solid-state laser at 0.95 mW (~32 W/cm?) and o. GFP-NBPY%*" by a 642 nm laser
diode at 0.65 mW (~22 W/cm?). Fluorescence was detected using a spectral image splitter
(DualView, Optical Insight) with a 640 DCXR dichroic beam splitter (Chroma) in combination
with the bandpass filter 585/40 (Semrock) for detection of RHO11 and 690/70 (Chroma) for
detection of DY647 dividing each emission channel into 512x256 pixel. Image stacks of 150
frames were recorded at 32 ms/frame.

Single molecule localization and single molecule tracking were carried out using the multiple-
target tracing (MTT) algorithm (99) as described previously (100). Step-length histograms
were obtained from single molecule trajectories and fitted by two fraction mixture model of
Brownian diffusion. Average diffusion constants were determined from the slope (2-10 steps)
of the mean square displacement versus time lapse diagrams. Immobile molecules were
identified by the density-based spatial clustering of applications with noise (DBSCAN)
algorithm as described recently (107). For comparing diffusion properties and for co-tracking
analysis, immobile particles were excluded from the data set. Prior to co-localization analysis,
imaging channels were aligned with sub-pixel precision by using a spatial transformation. To
this end, a transformation matrix was calculated based on a calibration measurement with
multicolour fluorescent beads (TetraSpeck microspheres 0.1 mm, Invitrogen) visible in both
spectral channels (cp2tform of type ‘affine’, The MathWorks MATLAB 2009a).

Individual molecules detected in the both spectral channels were regarded as co-localized, if
a particle was detected in both channels of a single frame within a distance threshold of
100 nm radius. For single molecule co-tracking analysis, the MTT algorithm was applied to
this dataset of co-localized molecules to reconstruct co-locomotion trajectories (co-
trajectories) from the identified population of co-localizations. For the co-tracking analysis, only
trajectories with a minimum of 10 steps (~320 ms) were considered in order to robustly remove
random receptor co-localizations (39). For heterodimerization experiments of mXFPe-IL-27Ra
and mXFPm-GP130, the relative fraction of dimerized receptors was calculated from the
number of co-trajectories relative to the number of IL-27Ra. trajectories. GP130 was expressed
in moderate excess (~1.5-2 fold), so that maximal receptor assembly was not limited by
abundance of the low-affinity subunit GP130.

For homodimerization experiments with GP130, the relative fraction of co-tracked molecules
was determined with respect to the absolute number of trajectories and corrected for GP130

stochastically double-labelled with the same fluorophore species as follows:

AB , 2XAB*
AB* , rel.co — locomotion = x
)] (A+B)

(G (aE
where A, B, AB and AB* are the numbers of trajectories observed for Rho11, DY647, co-
trajectories and corrected co-trajectories, respectively.

The two-dimensional equilibrium dissociation constants (K2°) were calculated according to
the law of mass action for a monomer-dimer equilibrium:

Heterodimerization (IL-27Ra+GP130):
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K20 — ([GP130] — (@ x [IL27Ra])) x ([IL27Ra] — (a x [IL27Ra]))
b= (a x [IL27Ra))

or
1
K3P = [GP130] x (E - 1) + [IL27Ra] X (a — 1)

with: a@ = fraction of IL27 bound IL27Ra in complex with GP130
Homodimerization (GP130+GP130):

K2D — [M]? _ ([M]y—2[D])?
b [D] [D]
([(;P130]—2><(oz><[G1>130]))2
2x(ax[GP130])

2D _
Kp" =

with: @ = fraction of GP130 homodimers relative to [GP130]/2

Where [M] and [D] are the concentrations of the monomer and the dimer, respectively, and
[M]o is the total receptor concentration.
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FIGURE LEGENDS:

Figure 1 Cytokine receptor activation by IL-27 and (Hyp)IL-6:

a) Cartoon model of stepwise assembly of the IL-27 and HyplL-6-induced receptor
complex and subsequent activation of STAT1 and STATS3.

b) Dose-dependent phosphorylation of STAT1 and STAT3 as a response to IL-27 and
HyplIL-6 stimulation in TH-1 cells, normalized to maximal IL-27 stimulation. Data was
obtained from three biological replicates with each two technical replicates, showing
mean = std dev.

c) Phosphorylation kinetics of STAT1 and STAT3 followed after stimulation with
saturating concentrations of IL-27 (2nM) and HypIL-6 (20nM) or unstimulated TH-1
cells, normalized to maximal IL-27 stimulation. Data was obtained from five biological
replicates with each two technical replicates, showing mean + std dev.

d) Top: Phosphorylation kinetics of STAT1 and STAT3 followed after stimulation with
HyplIL-6 (20nM) or left unstimulated, comparing wt RPE1 and RPE1 GP130KO
reconstituted with high levels of mXFPm-GP130 (=10x [GP130]). Data was normalized
to maximal stimulation levels of wt RPE1. Left: cell surface GP130 levels comparing
RPE1 GP130KO, wt RPE1 and RPE1 GP130KO stably expressing mXFPm-GP130
measured by flow cytometry. Data was obtained from one biological replicate with each
two technical replicates, showing mean + std dev. Bottom right: cell surface levels of
GP130 measured by flow cytometry for indicated cell lines.

e) Cartoon model of cell surface labeling of mXFP-tagged receptors by dye-conjugated
anti-GFP nanobodies (NB) and identification of receptor dimers by single molecule
dual-colour co-localization.

f) Raw data of dual-colour single-molecule TIRF imaging of mXFPe-IL-27Ra and
GP130NBPY64 after stimulation with IL-27. Particles from the insets (IL-27Ra: red &
GP130: blue) were followed by single molecule tracking (150 frames ~ 4.8s) and
trajectories >10 steps (320ms) are displayed. Receptor heterodimerization was
detected by co-localization/co-tracking analysis.

g) Relative number of co-trajectories observed for heterodimerization of IL-27Ra and
GP130 as well as homodimerization of GP130 for unstimulated cells or after indicated
cytokine stimulation. Each data point represents the analysis from one cell with a
minimum of 23 cells measured for each condition. *P < 0.05, **P < 0.01,***P < 0.001;
n.s., not significant.

h) Stoichiometry of the IL-27—induced receptor complex revealed by bleaching analysis.
Left: Intensity traces of mXFPe-IL27RaNE-RHO" and GP130N8-PY64% were followed until
fluorophore bleaching. Middle: Merged imaging raw data for selected timepoints. Right:
overlay of the trajectories for IL-27Ra (red) and GP130 (blue).

NB-RHO11

Figure 2: Mathematical modelling results in RPE1 and Th-1 cells.

a) Simplified cartoon model of IL-27/HypIL-6 signal propagation layers and coverage of
the mathematical modelling approach.

b) Model selection results showing the relative probabilities of each hypothesis, for
different values of the distance threshold, §*, in RPE1 cells.

c) Pointwise median and 95% credible intervals of the predictions from the mathematical
model, calibrated with the experimental data, using the posterior distributions for the
parameters from the ABC-SMC.
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d) Kernel density estimates of the posterior distributions for the parameters p €
{rlfj,rl_’j, Tzfjrrz_,j' ki kg ki, kip, g, di, Bj, [R1(0)], [R2(0)], [S1(0)], [S5(0)]} in the
mathematical models where j € {6,27} and i € {1,3}.

Figure 3: IL-27Ra cytoplasmic domain is required for sustained pSTAT1 kinetics.

a) Representation of the cytoplasmic domain of IL-27Ra with its highlighted tyrosine
residues Y543 and Y613.

b) STAT1 and STATS3 phosphorylation kinetics of RPE1 clones stably expressing wt and
mutant IL-27Ra after stimulation with IL-27 (10 nM, top panels) or after stimulation with
HyplIL-6 (20 nM, bottom panels), normalized to maximal levels of wt IL-27Ra stimulated
with IL-27 (top) or HypIL-6 (bottom). Data was obtained from three experiments with
each two technical replicates, showing mean = std dev. Bottom right: cell surface levels
variants measured by flow cytometry for indicated IL-27Ra cell lines.

c) Cytoplasmic domain of IL-27Ra is required for sustained pSTAT1 activation. Left:
Cartoon representation of receptor complexes. Right: STAT1 and STAT3
phosphorylation kinetics of RPE1 clones stably expressing wt IL-27Ra and IL-27Ra-
GP130 chimera after stimulation with IL-27 (10 nM, top panels) or after stimulation with
HyplIL-6 (20 nM, bottom panels). Data was normalized to maximal levels for each
cytokine and cell line. Data was obtained from two experiments with each 2 technical
replicates, showing mean + std dev.

d) Phosphatases do not account for differential pSTAT1/3 activity induced by IL-27 and
HyplL-6. Left: Schematic representation of workflow using JAK inhibitor Tofacitinib.
Right: MFI ratio of Tofacitinib-treated and non-treated RPE1 mXFPe-IL-27Ra cells for
pSTAT1 and pSTATS3 after stimulation with IL-27 (10nM) and HyplL-6 (20nM). Data
was obtained from two experiments with each two technical replicates, showing mean
* std dev.

Figure 4: Unique and overlapping effects of IL-27 and HyplIL-6 on the phosphoproteome
of Th-1 cells.

a) Volcano plot of the phospho-sites regulated (p value < 0.05, fold change >+1.5 or <-
1.5) by IL-27 (left) and HypIL-6 (right). Data was obtained from three biological
replicates.

b) Heatmap representation (examples) of shared and differentially up- (left) and
downregulated (right) phospho-sites after IL-27 and HyplIL-6 stimulation. Data
represents the mean (log.) fold change of three biological replicates.

c) Tyrosine and Serine phosphorylation of selected STAT proteins after stimulation with
IL-27 (red) and HyplL-6 (blue). *P < 0.05, **P < 0.01,***P < 0.001; n.s., not significant.

d) pS727-STAT1 and pS727-STAT3 phosphorylation kinetics in Th-1 cells after
stimulation with IL-27 or HyplL-6, normalized to maximal IL-27 stimulation. Data was
obtained from three biological replicates with each two technical replicates, showing
mean = std dev.

e) GO analysis “biological processes” of the phospho-sites regulated by IL-27 (red) and
HyplL-6 (blue) represented as bubble-plots.

f) Phosphorylation of target proteins associated with STAT3/CDK transcription initiation
complex after stimulation with IL-27 (blue) and HyplL-6 (red) and schematic
representation of transcription regulation of RNA polymerase Il with identified
phospho-sites (red flags).
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Figure 5: Kinetic decoupling of gene induction programs depends on sustained STAT1
activation by IL-27.

a) Principal component analysis for genes found to be significantly upregulated (left) or
downregulated (right) for at least one of the tested conditions (time & cytokine). Data
was obtained from three biological replicates.

b) Kinetics of gene induction shared between IL-27 and HyplIL-6 (relative to IL-27) for
upregulated genes (red) or downregulated genes (green).

c) Kinetics of gene numbers induced after IL-27 and HyplL-6 stimulation for upregulated
genes (left) and downregulated genes (right).

d) GSEA reactome analysis of selected pathways with significantly altered gene induction
in response to IL-27 or HyplL-6 stimulation. Data represents the mean (logz) fold
change of three biological replicates.

e) Cluster analysis comparing the gene induction kinetics after IL-27 or HyplL-6
stimulation. Gene induction heatmaps for example genes as well as induction kinetics
(mean) are shown for highlighted gene clusters. Data represents the mean (log.) fold
change of three biological replicates.

Figure 6: IL-27-induced upregulation of IRF1 amplifies induction of STAT1-dependent
genes

a) Kinetics of IRF1 protein expression as a response to continuous IL-27 and HyplL-6
stimulation in Th-1 cells. Data was obtained from three biological replicates with each
two technical replicates, showing mean + std dev. Dotted line indicates baseline level.

b) Kinetics of IRF1 protein expression and siRNA-mediated IRF1 knockdown in RPE1 IL-
27Ra cells stimulated with IL-27 (2nM). Data was obtained from one representative
experiment with each two technical replicates, normalized to maximal IRF1 induction
(6h), showing mean + std dev.

c) Kinetics of STAT1 (left) and STAT3 (right) phosphorylation after siRNA-mediated IRF1
knockdown in RPE1 IL-27Ra cells stimulated with IL-27 (2nM). Data was obtained
from one representative experiment with each two technical replicates, showing mean
* std dev.

d) Kinetics of gene induction (STAT1, GBP5, OAS1, SOCS3) followed by RT gPCR in
RPE1 IL-27Ra cells stimulated with IL-27 (2nM) with and without siRNA-mediated
knockdown of IRF1. Data was obtained from three experiments with each two technical
replicates, showing mean + SEM.

Figure 7: IL-27-induced STAT1 response drives global proteomic changes in Th-1 cells.

a) Workflow for quantitative SILAC proteomic analysis of Th-1 cells continuously
stimulated (24h) with IL-27 (10nM), HypIL-6 (20nM) or left untreated.

b) Global proteomic changes in Th-1 cells induced by IL-27 (left) or HyplL-6 (right)
represented as volcano plots. Proteins significantly up- or downregulated are
highlighted in red (p value < 0.05, fold change >+1.5 or <-1.5). Significantly altered
ISG-encoded proteins by IL-27 are highlighted in yellow. Data was obtained from three
biological replicates.

c) Venndiagrams comparing unique upregulated (left) and downregulated (right) proteins
by IL-27 (blue) and HyplIL-6 (red) as well as shared altered proteins. ISG-encoded
proteins are highlighted in yellow.
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d) Heatmaps of the top 30 up- and downregulated proteins by IL-27 compared to HyplL-
6. Data representation of the mean (log.) fold change of three biological replicates.

e) Heatmap representation and enrichment plot of proteins identified by GSEA reactome
pathway enrichment analysis “Cytokine signaling and immune system” induced by IL-
27. Data representation of the mean (logz) fold change of three biological replicates.

f) Correlation of IL-27 and HypIL-6-induced RNA-seq transcript levels (>+2 or <-2 fc) with
quantitative proteomic data (>+1.5 or <-1.5 fc). Data representation of the mean (log»)
fold change of three biological replicates.

Figure 8: Receptor and STAT concentrations determine the nature of the cytokine
response.

a) Copy numbers of indicated proteins determined for different T-cell subsets using mass-
spectrometry based proteomics (ImmPRes - http://immpres.co.uk).

b) Model predictions for varying levels of STAT1 and STAT3 (left panel) or IL-27Ra and
GP130 (right panel) for phosphorylation kinetics of STAT1 and STAT3.

c) Gene expression profiles determined by RNAseq analysis comparing indicated genes
of a cohort of SLE risk patients with a cohort of healthy controls. Data obtained from:
Proc Natl Acad Sci U S A 115, 12565-12572 . *P < 0.05, **P < 0.01,***P < 0.001; n.s.,
not significant.

d) Dose-dependent phosphorylation of STAT1 and STAT3 as a response to IL-27 and
HyplL-6 stimulation in naive and IFNa2-primed (2nM, 24h) Th-1 cells, normalized to
maximal IL-27 stimulation (ctrl). Data was obtained from four biological replicates with
each two technical replicates, showing mean + std dev.

e) Phosphorylation of STAT1 (left) and STAT3 (right) as a response to IL-27 (2nM, 15min)
and HyplL-6 (10nM, 15min) stimulation in healthy control (ctrl) and SLE patient CD4+
T-cells. Data was obtained from five healthy control donors (5) and six SLE patients.
*P < 0.05, **P <0.01,"*P < 0.001; n.s., not significant.

f) Tofacitinib titration to inhibit STAT1 and STAT3 phosphorylation by HypIL-6 (10nM,
15min) in Th-1 cells (left) and RPE1 cells stably expressing wt IL-27Ra (right).

Supp. Figure 1:

a) Comparison of dose-dependent phosphorylation (STAT1/3) of purchased IL-27 and
miL-27sc in activated CD4+ cells, normalized to maximal MFI levels. Data was
obtained from one (purchased) or two (mlL-27sc) biological replicates with each two
technical replicates, showing mean = std dev.

b) Schematic workflow of T-cell isolation, TH1 differentiation, fluorescence barcoding and
gating strategy for high throughput flow cytometry.

c) Phosphorylation kinetics of STAT1 and STAT3 followed after stimulation with IL-27
(10nM) and HyplIL-6 (20nM) or unstimulated TH1 cells. Data (from Fig. 1c) was
normalized to maximal MFI levels for each cytokine. Data was obtained from five
biological replicates with each two technical replicates, showing mean + std dev.

d) Phosphorylation kinetics of activated PBMCs (CD4+, CD8+) of STAT1 and STAT3
followed after stimulation with IL-27 (2nM) and HyplL-6 (20nM) or unstimulated cells.
Data was normalized to maximal IL-27 stimulation. Data was obtained from two
biological replicates with each two technical replicates, showing mean + std dev.

e) Dose-response experiments in wt RPE1 cells for pSTAT1 (left) and pSTAT3 (right),
stimulated with IL-27 or HyplIL-6, normalized to maximal HyplL-6 stimulation. Data was
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obtained from one representative experiment with each two technical replicates,
showing mean + std dev.

Supp. Figure 2:

a) Dose-response experiments for pSTAT1 and pSTAT3 comparing RPE1 GP130 KO
cells (left), wt RPE1 (middle) and RPE1 mXFPe-IL27Ra (right) after stimulation with
IL-27 or HyplL-6, normalized to maximal HypIL-6 stimulation. Data was obtained from
one representative experiment with each two technical replicates, showing mean + std
dev.

b) Ligand-induced receptor dimerization: Top panel: Dual-colour co-tracking of IL-27Ra
and GP130 in the absence (top) and presence (bottom) of IL-27 (20nM). Trajectories
(150 frames, ~4.8 s) of individual mXFPe-IL27RaN8RHO" (red) and GP130NB-DY64
(blue) and co-trajectories (magenta) are shown for a representative cell. Bottom panel:
Dual-colour co-tracking of GP130 in the absence (top) and presence (bottom) of
HyplL-6 (20nM). Trajectories (150 frames, ~4.8 s) of individual mXFPe-IL27RaNE-RHO1
(red) and GP130N8PY64 (blue) and co-trajectories (magenta) are shown for a
representative cell.

c) Top: Cartoon model of cell surface labeling of mXFP-tagged GP130 by dye-conjugated
anti-GFP nanobodies (NB) and formation of single-colour homodimers (left) or dual-
colour homodimers (right). Below: Examples for intensity traces of single-colour dual-
step bleaching (left) or dual-colour single-step bleaching (right). Insets show raw data
for selected timepoints and corresponding trajectories.

d) Top: comparison of diffusion coefficients (D) for mXFPe-IL-27Ra"®R"°" (red) and
mXFPmMGP130"8PY849 (plue) in presence and absence of IL-27 stimulation (20nM), as
well as co-trajectories after IL-27 stimulation (magenta). Bottom: comparison of
diffusion coefficients for mXFPm-GP130"8RHO" (red) in presence and absence of
HyplL-6 stimulation (20nM), as well as co-trajectories after HyplL-6 stimulation
(magenta). Each data point represents the analysis from one cell with a minimum of
23 cells measured for each condition. *P < 0.05, **P < 0.01,**P < 0.001; n.s., not
significant.

Supp. Figure 3:

a) Reactions involving ligand binding and dimerization in the HyplIL-6 model.

b) Reactions involving ligand binding and dimerization in the IL-27 model.

c) Reactions involving the STAT molecules (S; forj € {1,3}) in the HypIL-6 model.

d) Reactions involving the STAT molecules (S; for j € {1,3}) in the IL-27 model.

e) Reactions involving receptor internalisation/degradation in the HyplL-6 model. Here
H1 = fsand H2 = y4([pS1] + [pS1]).

f) Reactions involving receptor internalisation/degradation in the IL-27 model. Here H1 =
B27 and H2 = y,;([pS1] + [pS1]).

g) Dephosphorylation of (S; for j € {1,3}) in the cytoplasm. This reaction occurs in both
models.

h) Key for the molecules in the reactions.

Supp. Figure 4:
a) STAT1 (left) and STAT3 (right) phosphorylation kinetics of RPE1 clones stably
expressing wt IL-27Ra after stimulation with IL-27 or after stimulation with HyplL-6
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normalized to maximal IL-27 stimulation. Data was obtained from three experiments
with each two technical replicates, showing mean + std dev.

b) Dose-response experiments for pSTAT1 (left) and pSTATS3 (right) in RPE1 cells stably
expressing wt IL-27Ra or tyrosine-mutants after stimulation with IL-27, normalized to
maximal stimulation of wt IL-27Ra. Data was obtained from one representative
experiment with each two technical replicates, showing mean + std dev.

Supp. Figure 5:

a) Dose-response experiments for pSTAT1 (left) and pSTAT3 (right) in RPE1 cells stably
expressing wt IL-27Ra or IL-27Ra-GP130 chimera after stimulation with IL-27. Data
normalized to maximal stimulation of wt IL-27Ra. Data was obtained from one
representative experiment with each two technical replicates, showing mean + std dev.

b) STAT1 (left) and STAT3 (right) phosphorylation kinetics in RPE1 IL-27Ra cells
stimulated with IL-27 or HypIL-6 with and without JAK inhibition by Tofacitinib. Data
was normalized to maximal IL-27 stimulation. Data was obtained from two experiments
with each two technical replicates, showing mean + std dev.

c) STAT1 (left) and STAT3 (right) phosphorylation kinetics in Th-1 cells stimulated with
IL-27 or HyplL-6 with and without JAK inhibition by Tofacitinib. Data was normalized
to to maximal IL-27 stimulation. Data was obtained from two biological replicates with
each two technical replicates, showing mean + std dev.

d) MFI ratio of Tofacitinib-treated and non-treated Th-1 cells for pSTAT1 (left) and
pSTAT3 (right) after stimulation with IL-27 (10nM) and HypIL-6 (20nM). Data was
obtained from two biological replicates with each two technical replicates, showing
mean = std dev.

Supp. Figure 6:

a) STAT1 (left) and STAT3 (right) phosphorylation kinetics in RPE1 IL-27Ra cells
stimulated with IL-27 or HyplIL-6 with and without pretreatment with cycloheximide
(CHX). Data was normalized to to maximal IL-27 stimulation. Data was obtained from
two experiments with each two technical replicates, showing mean + std dev.

b) STAT1 (left) and STAT3 (right) phosphorylation kinetics in TH1 cells stimulated with
IL-27 or HyplL-6 with and without pretreatment with cycloheximide (CHX). Data was
normalized to to maximal IL-27 stimulation. Data was obtained from two biological
replicates with each two technical replicates, showing mean + std dev.

Supp. Figure 7:

a) Workflow for quantitative SILAC phospho-proteomic analysis of TH-1 cells stimulated
(15min) with IL-27 (10 nM), HypIL-6 (20 nM) or left untreated.

b) Schematic representation of the main GO terms regulated by IL27 as inferred from our
p-proteomics studies. Red represents downregulated p-sites and blue represents
upregulated p-sites upon IL27 stimulation of human primary Th-1 cells.

c) Schematic representation of the main GO terms regulated by HylL6 as inferred from
our p-proteomics studies. Red represents downregulated p-sites and blue upregulated
p-sites upon HyIL6 stimulation of human primary Th-1 cells.

Supp. Figure 8:
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a) Venn diagrams comparing the numbers of unique upregulated (left) and
downregulated (right) phospho-sites by IL-27 (blue) and HypIL-6 (red) as well as the
number of shared phospho-sites.

b) List of most strongly altered phosphosites (downregulated: green; upregulated: red) in
response to IL-27 (left) or HyplL-6 (right).

c) GO analysis “cellular location” and “UP keywords” of the phospho-sites regulated by
IL27 (red) and HypIL-6 (blue) represented as bubble-plots.

d) Phosphorylation of target proteins related to Treg functions and schematic
representation of their activity on T-cells.

Supp. Figure 9:

a) Kinetics of gene induction in Th-1 cells induced by IL-27 represented as volcano plots.
Genes significantly up- or downregulated are highlighted in red (p value < 0.05, fold
change >+2 or <-2). Data was obtained from three biological replicates.

b) Kinetics of gene induction in Th-1 cells induced by HyplL-6 represented as volcano
plots. Genes significantly up- or downregulated are highlighted in red (p value < 0.05,
fold change >+2 or <-2). Data was obtained from three biological replicates.

c) Kinetics of gene induction in Th-1 cells induced by HyplL-6 represented as volcano
plots. Genes identified to be significantly up- or downregulated by IL-27 are highlighted
in red (p value < 0.05, fold change >+2 or <-2). Data was obtained from three biological
replicates.

Supp. Figure 10:

a) Gene induction kinetics represented as pie-charts, separated for upregulated genes
(top panel) and downregulated genes (bottom panel).

b) Kinetics of ISG induction (examples) as heatmap representation comparing IL-27 with
HypIL-6 (top) and GSEA reactome pathway enrichment “IFN signaling” for genes
induced by IL-27 after 6h (bottom). Data represents the mean (logz) fold change of
three biological replicates.

c) Heatmaps of the top 30 up- and downregulated genes by IL-27 compared to HyplIL-6
for 1h, 6h and 24h. Data represents the mean (log.) fold change of three biological
replicates.

d) Kinetics of IRF1 protein expression as a response to continuous IL-27 and HyplL-6
stimulation in Th-1 cells. Data was obtained from three biological replicates with each
two technical replicates, showing mean + std dev.

Supp. Figure 11:

a) Pie charts of proteomic changes (unique & shared) for upregulated (left) and
downregulated (right) proteins in response to IL-27 or HyplIL-6 stimulation in Th-1 cells.

b) Left: GSEA reactome pathway enrichment analysis “Interferon signaling” for proteins
induced by IL-27. Middle: heatmap representation pathway-associated proteins
comparing IL-27 with HyplL-6 stimulation. Data represents the mean (logz) fold change
of three biological replicates. Right: Localization of the identified proteins in context to
the data distribution of IL-27-induced proteomic changes. Pathway-associated
proteins are highlighted for IL-27 (blue) and HyplL-6 (red) as well as non-significant
data distribution (grey).
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c) Left: GSEA reactome pathway enrichment analysis “Cytokine signaling and immune
system” for proteins induced by IL-27. Middle: heatmap representation pathway-
associated proteins comparing IL-27 with HyplL-6 stimulation. Data represents the
mean (log2) fold change of three biological replicates. Right: Localization of the
identified proteins in context to the data distribution of IL-27-induced proteomic
changes. Pathway-associated proteins are highlighted for IL-27 (blue) and HyplL-6
(red) as well as non-significant data distribution (grey).

d) Average Intensity distribution of untreated proteomic data. Top up- and downregulated
proteins (= +4x or < -4x change) altered by IL-27 (left) or HyplL-6 (right) stimulation are
indicated.

Supp. Figure 12:

a) Pointwise median and 95% credible intervals of the WT and chimera mathematical
models, using the posterior distributions for the parameters from the ABC-SMC.

b) Dose response curve in RPE1 using the posterior distributions from the ABC-SMC and
varying the concentrations of HyplL-6 and IL-27 in the model.

c) Pointwise median and 95% credible intervals of the WT mathematical model and
simulations of a mutant model with kf, = 1075 nM™ s™ and kj, = 10° s, using the
posterior distributions for the parameters from the ABC-SMC for the other parameters.

Supp. Figure 13:

a) Fold induction of total STAT1 and STAT3 levels in Th-1 measured by flow cytometry.
Data was obtained from two biological replicates.

b) Total levels of STAT1 and STAT3 measured in CD4+ by flow cytometry for healthy
control (ctrl) and Lupus patients (SLE). Data was obtained from five (ctrl) and six (SLE)
biological replicates. *P < 0.05, **P < 0.01,"*P < 0.001; n.s., not significant.

c) Ratio of pSTAT1 and pSTAT3 after IL-27 (15min, 2nM) or HypIL-6 (15 min, 10nM)
stimulation measured in CD4+ by flow cytometry for healthy control (ctrl) and Lupus
patients (SLE). Data was obtained from five (ctrl) and six (SLE) biological replicates
normalized to mean ratio of healthy control samples.

d) Tofacitinib titration to inhibit STAT1 and STAT3 phosphorylation by IL-27 (2nM) in Th-
1 cells (left) and RPE1 cells stably expressing wt IL-27Ra (right).
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Supp. Movie 1:

Single-molecule co-tracking as a readout for dimerization of cytokine receptors. Cell surface
labelling of mXFPe-IL-27Ra by eNBRHO!" (left, top) and mXFPm-GP130 by mNBP"®*° (left,
bottom) after stimulation with IL-27 (20nM). In the overlay of the zoomed section of both
spectral channels (mXFPe-IL-27Ra®"°"": Red, mXFPm-GP130°Y%*°: Blue), yellow lines
indicate co-locomotion of IL-27Ra and GP130 (= 10 steps). Acquisition frame rate: 30 Hz,
Playback: real time.

Supp. Movie 2:

Dynamics of IL-27-induced receptor assembly. Formation of a single-molecule heterodimer of
mXFPe-IL-27Ra®"°"" (Red) and mXFPm-GP130°Y%*° (Blue) in presence of IL-27. Yellow lines
indicate co-locomotion of IL-27Ra and GP130 (= 10 steps). Acquisition frame rate: 30 Hz,
Playback: real time with break at time of receptor dimerization.

Supp. Movie 3:

Ligand-induced heterodimerization of IL-27Ra and GP130. Overlay of the two spectral
channels (MmXFPe-IL-27RaR"°"": Red, mXFPm-GP130°Y%*°: Blue) in absence (left) or
presence (right) of IL-27 (20nM). Yellow lines indicate co-locomotion of IL-27Ra and GP130
(= 10 steps). Acquisition frame rate: 30 Hz, Playback: real time.

Supp. Movie 4:

Ligand-induced homodimerization of GP130. Overlay of the two spectral channels (mXFPm-
GP130R"°"": Red, mXFPm-GP130°Y%*°: Blue) in absence (left) or presence (right) of HypIL-6
(20nM). Yellow lines indicate co-locomotion of IL-27Ra and GP130 (= 10 steps). Acquisition
frame rate: 30 Hz, Playback: real time.
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