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Abstract

Cell fate decision making is known to be a complex process and is still far from
being understood. The intrinsic complexity, but also features such as molecular
noise represent challenges for modelling these systems. Waddington’s epigenetic
landscape has become the overriding metaphor for developmental processes: it both
serves as pictorial representation, and can be related to mathematical models. In
this work we investigate how the landscape is affected by noise in the underlying
system. Specifically, we focus on those systems where minor changes in the pa-
rameters cause major changes in the stability properties of the system, especially
bifurcations. We analyse and quantify the changes in the landscape’s shape as the
effects of noise increase. We find ample evidence for intricate interplay between
noise and dynamics which can lead to qualitative change in a system’s dynamics
and hence the corresponding landscape. In particular, we find that the effects can
be most pronounced in the vicinity of the bifurcation point of the underlying deter-
ministic dynamical systems, which would correspond to the cell fate decision event
in cellular differentiation processes.

1 Introduction

Cell-fate decision making processes are central to developmental biology. These
apparently highly choreographed processes are responsible for cells to change into new,
well defined states. Many facets of cell fate decision making have been investigated,
and improved experimental technologies allow us to investigate these fundamental
events in great detail. Theoretical studies are slowly catching and increasingly allow
us to make sense of the available and emerging data.

Waddington’s epigenetic landscape is the most famous metaphor used in this context
[1]: and it has inspired both the experimental investigation, as well as the classical
and modern theoretical investigations into cell-fate decision making: a cell is rolling
from the top of a mountain into the bottom of a valley, following the contours of
the valleys and hills and choosing its paths among all possible. In this simplified
illustration, the three dimensions of Waddington’s epigenetic landscape have very
specific interpretations. First, the z-axis represents the phenotype, e.g. defined by
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the levels of expression of the underlying genes. A stable gene expression pattern is
called a cell type and all of them are separated along this axis. Second, the y-axis
represents the time-dependent dimension in which the process occurs. It starts with
the initial condition and ends when a cells’ final gene expression pattern attains a
stable state (a valley bottom). One can identify this dimension with the system’s
driver [2]. And finally, the z-axis corresponds to the system’s potential [3,/4], which
via its shape determined the dynamics associated with the developmental process.
Often, and indeed originally, this has been likened to potential energy surfaces or the
energy needed for browsing the landscape from one point to another, as the image of
the gravitational forces. This potential is governed by a set of gene regulatory elements
— DNA, mRNAs, proteins and small molecules - that in concert control the cell fate [5].
From this point of view, qualitative changes of the landscape’s shape will modify the
cellular dynamics of fate decisions. In order to conserve the cellular population balance
in a multicellular system, the gene regulatory network (GRN) governing the shape
of the potential landscape must operate within defined limits; otherwise changes in
the landscape will distort the differentiation dynamics, potentially with detrimental
outcomes. However, within the GRN molecular noise does exist. Here we denote this
noise as the transcriptional stochasticity [6,/7]. For cells this can allow considerable
levels of flexibility in the fate decision making process. Unfortunately, however, for
non-linear dynamical systems the interplay between non-linearities in the dynamics
(for example, as encoded in the landscape) and noise largely defies intuition [8] and
makes the ensuing processes challenging to describe or understand. For even very
simple systems we can observe complex dynamics, once stochasticity and non-linear
dynamics both influence a system’s dynamics.

Inspired by the emerging theory of dynamical systems, Waddington’s representation
has from the outset enabled and encouraged the application to link mathematical
descriptions to cell fate decision making processes [9]. In particular it has encouraged
the analysis of development in terms of bifurcations: qualitative changes in a system’s
dynamics as parameters are varied. Bifurcations and their analysis have been central
to the analysis of deterministic dynamical systems, in particular, ordinary differential
equations (ODE). Despite important foundational work in this area dating back to at
least the 1970s, much less is known about qualitative changes, their determinants,
and their ramifications in stochastic dynamical systems. The extent to which the
bifurcation structure of an ODE is reflected in the dynamics of, e.g. a stochastic
differential equation (SDE) varies, depending on the system dynamics and the type
of noise [10,/11]. Here we explore this interplay for a set of generic bifurcations (for
deterministic dynamics) and a well-defined and tunable choice for noise. Noise is
incorporated via SDEs (see below) and we use simulations to construct the (empirical)
Waddington landscapes corresponding to the different types of bifurcations, and for
varying strengths of noise. Thus, a valley in the landscape corresponds to a stable
fixed point in the differential equation system and a hill to an unstable fixed point (well
defined in Section [2.1). The point where the system qualitatively changes is called the
bifurcation event and, in our case represents the commitment to a specific cell fate.
We systematically explore how this landscape changes upon the introduction of noise.
These associations between specific bifurcations and biological processes have already
been used in the past [2,/12H15]. For instance, a cell differentiating into two different
lineages (potential fates) is often seen to be represented by a supercritical pitchfork
bifurcation: the split of a valley into two distinct valleys in the epigenetic landscape
point of view [2].

Here we focus on the canonical co-dimension 1 bifurcations [16] and construct their
empirical quasi-potential landscapes. These bifurcations are chosen because they
represent many important cell-fate decision making systems in simplified form. We
then use these to explore how qualitative and quantitative features, including measures
of variability change with noise. We note, that both molecular noise and (deterministic)
qualitative change in cell state have been explored in some detail in the biological


https://doi.org/10.1101/2021.01.03.425143
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.03.425143; this version posted January 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

3

literature. There has been, however, a lack of analyses, where both noise and non-
trivial dynamics are simultaneously considered. As hinted at above, there are major
conceptual challenges even at the purely mathematical level in any such analysis.

2 Methods

2.1 Stochastic differential equations

Differential equations provide a convenient and popular framework to model many
dynamical systems in biology [11},[17]. Ordinary differential equations (ODE) are used
to describe continuous deterministic dynamical systems, and stochastic differential
equations (SDE) are one way to study the corresponding stochastic dynamics. Formally,
we can write for the ODE

= (X (1)

where X is the (potentially vector-valued) state of the system, ¢ denotes time, and f(X)
describes the deterministic dynamics of the system.

For SDEs we have to replace the derivative by differentials and write
dX(t) = f(X)dt + g(X)dW (2)

where again X represents the system state, ¢ represents the time, f(X) - also referred
to as the drift term - describes the deterministic part of the dynamics [18], and g(X) -
also referred to as the diffusion term - captures the stochastic aspects of the dynamics.
dW; is a Wiener process increment (see [18}/19] for detailed discussions). In g(X) the
type of the scaling of the noise is defined; we implement geometric random noise,
where the diffusion term of the SDE depends linearly on the system state

9(X) =0X. 3)

Other choices are possible, but the advantage of this type of noise is that it gives rise
to sufficiently non-trivial behaviour: in particular the distributions of X for the simple
geometric Brownian motion process, given by dX = uXdt + ¢ XdW,, can be shown to be
non log-Normal, i.e. non-Gaussian.

2.2 Co-dimension 1 bifurcations

A bifurcation in a deterministic dynamical system is associated with qualitative change
in the stability of the stationary solutions [16]. In this work we focus on co-dimension
1 bifurcations [11]; they differentiate themselves from other bifurcations as in that
the qualitative stability changes in the systems are caused by a single bifurcation
parameter (instead of a set of parameters). We here consider the three canonical
co-dimension 1 bifurcations in their simplest normal forms given by

f(X)=aX - X° 4)
for the supercritical pitchfork bifurcation,
f(X)=aX - X? (5)
for the transcritical bifurcation and
f(X)=a- X’ 6)

for the saddle-node bifurcation. We consider SDEs with drift terms given by these
equations, and diffusion terms corresponding to geometric random noise.
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Figure 1: Top: The bifurcation diagram of the supercritical pitchfork bifurcation where stable
(solid line) and unstable (dashed line) fixed points of the system are shown as a func-
tion of the bifurcation parameter «. Left: For negative «, the two time courses with no
noise (deterministic setting) and simulations with noise (stochastic setting) are shown.
They both contain trajectories of ten initial conditions. Appended to the time course
plot is the quasi-potential function built based on the ten simulations. In both cases (no
noise and with noise) we observe a clear peak in the graph of the function at X = 0.
The peak aligns with the stable fixed point at X = 0 for negative « in the supercritical
pitchfork bifurcation. Right: Again, the deterministic and stochastic cases are shown
but for positive values of . The graphs of the quasi-potential function peaks at the
positions of the stable fixed points at X = +/ — \/a.

2.3 Potential landscapes and uncertainty measure

We estimate the Waddington’s epigenetic landscape for a system with the states X
using the quasi-potential function,

Q(X) o —log(Ps(X)) (7)

where Ps is a the probability density function of the observed steady state distribution.
Ps is obtained through simulations, as described elsewhere [4,/13,20].

A simplified example for the construction of Q(X) is given in Figure [I where a range of
dynamical systems is defined for exemplar values of the bifurcation parameter « and
two noise levels. We constrain « to the interval [—4, 4] and the time series data together
with the corresponding quasi-potential function are displayed for scenarios with and
without noise. To construct the potentials (via the stationary distribution) we solve
the dynamics for a set of different initial conditions, /C. From this, P;(X) is estimated
using kernel density estimation (as described elsewhere).

We use the entropy,
H(X) =~} P(z)log(P(X)), (8)

reX

to quantify variability in system states as dynamics chance upon the introduction of
noise.
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Figure 2:

The quasi-potential Q(X) (a-d) and the entropy over the state space H(X) (e-h) are
visualised as a system undergoes a supercritical pitchfork bifurcation for different
representative noise levels (0.0 < o < 1.6). The first row (a and e) represents a
system with no noise (¢ = 0.0); here the steady state probability distribution in
state space would (for ¢t — o0) be a set of Dirac J-functions (the invariant set of
the dynamics [8}|21]); for convenience we have have stuck to finite time-series and
hence we observe broadened peaks. The next three rows show the same landscapes
and entropies but for noisy dynamics with ¢ = 0.6 in b and f, ¢ = 1.3 in c and g, and
o = 1.6 in d and h (which reflects also observations for larger noise levels).

3 Results

3.1 Quasi-potential landscape of the supercritical pitchfork bifur-
cation for increasing noise

We first investigate the quasi-potential for the supercritical pitchfork bifurcation, to
observe if and how the epigenetic landscape is qualitatively affected by noise. As
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shown in Figure [2|a, we observe valleys in the empirical quasi-potential function where
stable fixed points are expected for the deterministic system (at X = 0 for negative «
and X = +v/X for positive a). The quasi-potential thus reflects qualitatively aspects
of the bifurcations of the deterministic dynamics. Introduction of geometric noise,
Equation (2), alters the shape of the empirical quasi-potentials shown in Figure [2|b-d,
and sometimes quite profoundly: while for o < 0 we identify a clear valley at all noise
levels, for o > 0 valleys become shallower and for larger levels of noise they become flat
to the point of merging and/or disappearing altogether.

We can further quantify these changes by calculating the entropy of the state variable,
X at stationarity (that is ¢ — o0}, as a function of both the bifurcation parameter a
and noise intensity ¢. In Figure 2le-h we show the entropy change for the pitchfork
bifurcation. Two observations are readily apparent: (i) as « is varied, entropy first
increases and then decreases, at all noise levels considered here. Where this switch
occurs depends on the level of noise: for no or low levels of noise, the switch happens
at the bifurcation point, o = 0; for medium and large noise the happens well after the
bifurcation point (e.g. a =~ 2.5 for ¢ = 1); (ii) after the maximum in entropy has been
reached, the decrease in entropy with increasing « happens at different speeds: rapidly
for no noise; and much more slowly for noisy dynamics.

We consider the quasi-potentials for the transcritical and saddle node bifurcations
in the appendix (Figure [Al]and [A2). Noise modifies the shape of the empirical quasi-
potential landscapes, just as in the case of the pitchfork bifurcation; see Figure
and @, b-d). These variations become more pronounced with increasing noise (i.e. o).
For the transcritical and saddle node bifurcations, the behaviour of the entropy of the
state variable X, however, is different as shown in the appendix, Figures and [A2]
e-h. Neither do we observe distinct phases where entropy increases and decreases;
nor is there a switch in entropy behaviour at the bifurcation point. In the case of the
transcritical bifurcation (Figure e-h), the entropy increases with «, followed by only
a slight decrease in the slope after the a = 0; noise shifts this slightly. For the saddle
node bifurcation (Figure [A2] e-h) we observe that the entropy value decreases with «,
followed again by a slight decrease in the slope after the bifurcation point, a = 0, but
really only clearly discernible at medium and large noise.

The quasi-potentials corresponding to the different co-dimension 1 bifurcations clearly
reflect the qualitative changes inherent to the deterministic dynamics. But for moderate
and large (in the context of what we consider here) levels of noise we find that the
interplay between noise and dynamics changes the overall qualitative behaviour.

3.2 Noise non-trivially increases variability in co-dimension 1 bi-
furcations

We consider three types of co-dimension 1 bifurcations which are the supercritical
pitchfork bifurcation, the transcritical bifurcation and the saddle node bifurcation.
The respective bifurcation diagrams are shown in Figure [3h.

Alongside the bifurcation diagrams in Figure [3h, we show contour plots of entropy
values depending on the bifurcation parameter « and noise level o in Figure [3pb. In
the case of the pitchfork bifurcation (Figure [Bp, left), entropy increases progressively
with « and uniformly across o before then decreasing again. For low levels of noise,
the maximal entropy is reached in the vicinity of the bifurcation point, « = 0. For
positive a, entropy increases with noise, o, over the ranges considered here. For the
two other bifurcations, the contour plots are simpler. The transcritical bifurcation
quasi-potential landscape (Figure 3p, center) displays a progressive increase in entropy
as « increases. By contrast, for the saddle node bifurcation quasi-potential landscape
(Figure 3p, right) the entropy of the state decreases as « increases, and it does so more
rapidly as noise increases.
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Figure 3: The entropy over the state space is shown for systems undergoing the supercriti-
cal pitchfork bifurcation, the transcritical bifurcation and the saddle node bifurcation
(Equation[4[6). In the bifurcation diagrams (a) the stable fixed points and the unstable
fixed points are indictaed by solid and dashed lines, respectively. Entropies values
are displayed as functions of noise term o (Equation@ and the bifurcation parameter
« (b). Additionally, the entropies are also shown as functions of o _for selected o values
(—7.5,0.0 and 7.5 for the pitchfork bifurcation, and —2.5,0.0 and 2.5 for the transcritical
and saddle node bifurcations).

In Figure we show the change in entropy with o for three different values of
the bifurcation parameter, o« € {-7.5,0,7.5} for the pitchfork bifurcation, and « €
{-2.5,0,2.5} for the transcritical and saddle node bifurcations, respectively. For the
pitchfork bifurcation we see that the entropy peaks for finite ¢ for all three « values
considered. This suggests that at the transition-state of the dynamics (the vicinity
of the bifurcation point), noise is modulated. In fact, for all three bifurcations the
observations are similar: a decrease of entropy values with the increase of 0. However,
the pitchfork bifurcation (Figure , left) shows a transient increase for low values
of noise, suggesting that here the noise non-trivially interacts with the dynamics
especially around the transition state (the bifurcation point). Overall it appears that for
fixed bifurcation parameter the entropy — quantifying the uncertainty about the state
X of the system- ultimately to the level of noise. But this counter-intuitive result
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can be explained by the way the the quasi-potential function changes shape, and
ultimately flattens for large values of o.

3.3 The relationship between empirical quasi-potential function
and the potential function

In order understand the behaviour of the entropy, we need to compare the quasi-
potential function, Q(X), given by Eqn. (7), with the potential function, U(X), which
is here used to define the gradient system. In Figure 4, we contrast the potential
functions (a-d) and the corresponding empirical quasi-potentials (e-h). For geometric
random noise the positioning of the valley bottoms at X = 0 for negative « and at
X = +y/a for positive « remain unchanged (XXX). Thus we expect the dynamics of
the stochastic system to be centered around the stationary points of the deterministic
system. There are, however, also striking differences: (i) in the potential surface we
observe smoother, more gradual changes in the landscape, whereas the valleys of the
quasi-potential landscape are much more localised; (ii) the unstable fixed point at
x = 0 for positive « is discernible in the potential but not in the quasi-potential surface.
This is not surprising, as the system will never attain this state as t — oo.

We note that the empirical landscapes was, for practical purposes, calculated for large
but finite times. In the large time limit, the probability distribution for the deterministic
system (o = 0) would be a Dirac §-function and the landscape then becomes —4(X) (as
can be seen by taking the limit of a suitable approximation for ¢ and substituting it
into Eqn. (7)). Because we only simulate for finite times, our representation for o = 0
does not show this extreme shape. In Figure in the appendix we illustrate the
effects of finite time scales numerically.

4 Discussion

The objective of this study has been to analyse systematically the effects of increasing a
geometric random noise on dynamical systems undergoing co-dimension 1 bifurcations
that have been implicated in cell-fate decision making.

We have quantified uncertainty of the dynamical system undergoing three different
bifurcations (pitchfork, transcritical and saddle node) via the entropy. A number of
studies have considered such systems as frameworks for interpreting results from
single cell transcriptomic analysis. For instance, a pitchfork bifurcation can be seen
as a differentiation into two different lineages [2/,/12]. We find an increase in entropy
with a peak at the bifurcation point, but this becomes less pronounced as the noise
intensity increases. The “rise and fall shape” of uncertainty across transition processes
such as differentiation (into two lineages, reproducing a pitchfork bifurcation) has
been observed in several studies (using mainly but not only entropy as an uncertainty
measure) [23-25].

Biologically the increase in entropy may be relevant for the induction phase of cellular
differentiation to promote the transition from one valley (i.e. cell type) to another.
The decreasing uncertainty may be reflected in the stabilisation phase of the system
after the bifurcation point [26]. Our results suggest that this transient elevation of
uncertainty is inherent to bifurcation processes. In our analysis simulations we also
find that the switch point between the increasing and decreasing phases shifts as
noise increases; transcriptional variability inherent in cellular dynamics may therefore
directly (and endogenously) influence the modality of the cell fate decision making
process [26,/27].

For the two other bifurcations, the transcritical and the saddle node bifurcations, this
rise and fall shape is not observed. Compared to the pitchfork bifurcation both systems
only have one stable fixed point: for all values of « in the transcritical bifurcation
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Figure 4: Potential function P(X) (a-d) and quasi-potential function Q(X) (e-h) for a deterministic
system undergoing the supercritical pitchfork bifurcation (Equation [d). The example
presented includes a two dimensional comparison of P(X) and Q(X) in _function of the
bifurcation parameter o« and the state variable X (a and e) as well as one dimensional
comparisons of P(X) and Q(X) for three selected values of a which represent the
three qualitatively distinct global stability outcomes of the system whilst undergoing
the bifurcation. They are before the bifurcation event, o = —3.75 (b, f); at the bifurcation
event, a = 0.0 (c, g); and after the bifurcation event, o = 3.75 (d, h).
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case and for positive values of « in the saddle node case (see Figure top row).
First, the transcritical bifurcation can be interpreted as cells transitioning from one
stable state to a different state with the branching event inducing a switch in the
states’ stabilities. Thus, the first stable state becomes an unstable state after the
branching event, whereas the unstable state becomes the new stable state at the
bifurcation. Second, the saddle node bifurcation has been interpreted as a transition
between cell states where one state is destroyed while a new is created [12]. Like
the transcritical bifurcation there is only one stable fixed point for all values of the
bifurcation parameter, but there is no conversion between stable and unstable fixed
points; the hills and valleys in the landscape are simply destroyed at the (deterministic)
bifurcation.

A biological example suitable for the transcritical or saddle node bifurcation could be a
single lineage differentiating, such as the in vitro avian erythroid differentiation [28].
In this model, T2EC progenitor cells can only differentiate into one fate [29]. The
question then arises whether the transcritical or the saddle node suits the best to
describe this differentiation. Using single cell analysis during this erythropoiesis
process, rise and fall shape of the uncertainty has been observed [30]. However, we
do not observe this variation in our dynamical systems undergoing these bifurcations.
Indeed, entropy increases along « for the transcritical bifurcation and decreases for
the saddle node bifurcation, without any switch around the branching event in both
cases. In addition, the addition of noise slightly changes the shape but without net
effects compared to the pitchfork case. Bifurcations that allow for multistability such
as pitchfork bifurcation in our study matches well with biological transition processes
(branching shape, entropy and effect of noise) whereas single fixed point bifurcations
remain difficult to reconcile with some experimental observations. The reasons may
originate from the fact that in vivo monolineage differentiation (i.e. unipotency) is often
imposed on precursor cells, which have low differentiation potential and are not well
represented in literature [31]. In that case, we simply have a lack of data concerning
these type of differentiation in order to draw firm conclusions about the qualitative
dynamics in such systems. It is also important to realise that multistability can arise
in different ways; not all of these are necessarily apparent at the transcriptomic level.
For example, shuttling of transcription factors between nucleus and cytoplasm can
give rise to multistability [32], and has been observed experimentally [33].

All together, these results suggest that the change in entropy across cell differentiation
depends of the type of the transition (single-fate or multi-fate) and is sensitive to the
noise levels [34]. Our analysis, taken together with experimental observations, suggests
that a much more nuanced consideration of the potential differentiation dynamics
and noise may be advisable. For all three bifurcations, we observe a decrease of
the entropy at specific bifurcation points (3 different values of «) with the increase
of noise strength. There appears to be a tension between the change in entropy
as the bifurcation parameter is varied, and the decrease in entropy as noise-levels
increase. Indeed, in parallel with the transient increase of entropy observed during
differentiation processes, an apparently counter-intuitive increase of gene-to-gene
correlation has been reported [30,/35]. It is known that noise and dynamics can give
rise to complex behaviour of entropy and related measures [36]. Changes in entropy
across differentiation have been observed (experimentally and theoretically) [37,/38].
But concomitantly we can also often see an increase of gene-to-gene correlations,
which could be a direct consequence of the external signals received to differentiate,
activating genes and features allowing cells to achieve a reproductive transition [29].
Noise is probably allowing genes to explore the state space a more widely and this may
be ultimately linked to induction of cell-fate transitions.

Waddington’s epigenetic landscapes have influenced our way to see and interpret
cell dynamics across developmental processes; we show that there are systematic
differences between the potential (depicted by Waddington) and the empirical or
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quasi-potential landscapes: the quasi potential is much more localised than the
potential: the system’s dynamics, even with noise present explore only the valley
bottoms of the potential landscape.We note that this may entail practical limitations for
reconstructing the (deterministic) dynamics from single cell data (or, as here, solutions
of the stochastic dynamics.

In order to gain clearer insights into the mechanisms underlying cell fate decision-
making, we believe that more detailed analyses of bifurcations — qualitative changes
in system dynamics — will require further analysis: if even simple co-dimension
1 bifurcations can exhibit such rich dynamics, then more complicated bifurcation
systems will require much more detailed and careful analysis. Purely data-driven
analysis of such systems may otherwise risk missing or misinterpreting signals in
single cell data.
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A Appendix
A.1 Changing landscapes for the transcritical bifurcation
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Figure Al: The quasi-potential (a-d) and the entropy over the state space (e-h) are displayed as
the system undergoes the transcritical bifurcation (Equation[5) for the deterministic
case (a, e) and three selected stochastic cases (b, ¢, d and f, g, h). The noise levels
are o = 0.0, 0 = 0.6, 0 = 1.3, and o = 1.6 where o is the scaling factor in the noise
term in Equationg
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A.2 Changing landscapes for the saddle node bifurcation

a. e.
a=-5 a=-375 a=-25 a=-125 a=0 a=125 a=25 a=375 a=5
5 ‘ ‘ J ‘ 1
i ; . . § 3 3
No X ] : 1 § ) g ) \
noise ‘; ¢ ¢ § ] i J‘ H hg -
SRR i o
N R
-5 R I R T S IS T I S A R R A R | 4 0
Q(X) -5 5
a
b. f.
a=-5 a=-375 a=-25 a=-125 a=0 a=125 a=25 a=375 a=5
: | | |
| |
| | / -
| J | ‘ J / / / .~
o SIS TS
Low X | ! { N \ ! i H
noise { 1 { { |
Lot ] f | | .
NI A T e
) { |
EI I O O R B R 0
Q(X) 5 5
a
c. g.
a=-5 a=-375 a=-25 a=-125 a=0 a=125 a=25 a=375 a=5
] ] b 1
| f JJ | !
| ! | f / : g’} —
) } / | / / / \ \‘
Medium X § J / Z N \ \ H
noise g g { { h | |
i 1 i |
i | ! | [
. | L B
! —
[ {
-5 _% L L _] I B S _‘ L] 0
Q(X) -5 5
a
d. h.
a=-5 a=-375 a=-25 a=-125 a=0 a=125 a=25 a=375 a=5
i | ‘ | | ( 1
° f | | 1 | |
| | | !
| | | {
| ‘ | , ) .
) L] JI OOt ~
arge { / — ~ \ |
noise X ,} { (? \ N\ \ \‘ H
I | ‘
{ | | | e
\ |
5 1 J 4’ N R 0
Q(x) -5 5

Figure A2:

The quasi-potential (a-d) and the entropy over the state space (e-h) are shown as the
system undergoes the saddle node bifurcation (Equation[6). The four different levels
of noise are 0 = 0, 0 = 0.6, 0 = 1.3, and ¢ = 1.6 (top to bottom row, respectively)
where o is the scaling factor in the noise in Equation@

A.3 Numerical Considerations

We explored different simulation settings in order to understand how they effect the
shape of the retrieved quasi-potential surface for the supercritical pitchfork bifurcation
(as a function of the bifurcation parameter « and the state of the system X). The time
span and the numbers of SDE solutions clearly limit the insights we can gain into the
shape of the quasi-potential (see Section 2.2 and Figure 1 for details on the workflow).
All calculations presented in the main part of the manuscript were carried out with
the final parameter setting.
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Increasing noise

20 SDEs
simulated t: (0.0, 2.0)
10 selected in: (0.2, 2.0)

200 SDEs
simulated t: (0.0, 2.0)
10 selected in: (0.2, 2.0)

20 SDEs
simulated t: (0.0, 20.0)
10 selected in: (2.0, 20.0)

200 SDEs
simulated t: (0.0, 20.0)
10 selected in: (2.0, 20.0)

Figure A3: The quasi-potential surfaces for four different settings of the empirical quasi-potential
calculation are displayed. The quasi-potential surface is shown for four different
settings (row) and four different levels of noise (column). From the left to the right, the
JSour different levels of noise are o € (0,0.6,1.3,1.6). The settings vary in the number
of SDE solutions taken into account for each initial condition, and the time span of
each simulation.
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