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Abstract:

Histology plays an essential role in therapeutic decision-making for lung cancer patients.
However, the molecular determinants of lung cancer histology are largely unknown. We
conducted whole-exome sequencing(WES) and microarray profiling on 19 micro-dissected
tumor regions of different histologic subtypes from 9 patients with lung cancers of mixed
histology. A median of 68.9% of point mutations and 83% of copy number aberrations were
shared between different histologic components within the same tumors. Furthermore, different
histologic components within the tumors demonstrated similar subclonal architecture. On the
other hand, transcriptomic profiling revealed shared pathways between the same histologic
subtypes from different patients, which was supported by the analyses of the transcriptomic
data from 141 cell lines and 343 lung cancers of different histologic subtypes. These data
suggest that histology of lung cancers may be determined at the transcriptomic level rather than
the genomic level.
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Introduction

Lung cancer is the leading cause of cancer death in the United States with an estimated
228,820 new cases and 135,520 deaths expected in 2020". Histopathology continues to play an
essential role in prognosis and choosing appropriate treatment®. Largely determined by
morphology, primary lung cancers are histologically classified into small cell lung cancers
(SCLC) and non-small cell lung cancers (NSCLC) and the latter include adenocarcinoma
(LUAD), squamous cell (LUSC), and large-cell neuroendocrine (LCNEC) as the main histologic
subtypes. However, consensus histologic confirmation can sometimes be challenging and
therefore impacts optimal treatment choices®*.

The molecular mechanisms determining the tumor histology are unknown. Previous studies
revealed that tumors from different patients or even multiple independent primary lung cancers
within the same patients can have identical morphology yet shared no mutations®, while there
can be a morphologic difference in different regions within the same tumors that share the
majority of mutations®. These findings suggest that morphology may not be primarily determined
by genomic features.

About 5% of primary lung cancers can present with a mixed histologic pattern, where additional
components with distinct histologic types present within the same tumors, often referred to as
combined or mixed histology”®. Tumors with mixed histology provide a unique opportunity to
study the molecular basis for histology determination as different histologic components share
the same clinical and genetic backgrounds, and exposure history. There have been a few
studies on lung cancers of mixed histology, most of which focused on the genomic changes of
adenosquamous lung cancers. The majority of these studies revealed shared driver mutations
between different histologic components®**. These findings are overall in line with the prior
hypothesis that genomic changes were not the main determinants of histology. However, these
studies only covered hotspot driver mutations or small gene panels while mutations of other
genes with essential biological functions and other genomic alterations such as somatic copy
number alterations (SCNA) were not investigated. Thus the relationship between genomic
alterations and histology was not fully addressed.

In the current study, we leveraged three unique datasets to fill this void: 1) whole-exome
sequencing (WES) and transcriptomic data from 19 micro-dissected tumor regions of different
histology from 9 primary lung cancer patients with mixed histologic patterns including 6 LUAD, 6
LCNEC, 3 SCLC, 3 LUSC, and one poorly differentiated NSCLC-NOS; 2) transcriptomic data
from 141 cell lines of different histologic subtypes from the cancer cell line encyclopedia
(CCLE)* including 14 LCNEC, 57 LUAD, 48 SCLC, and 22 LUSC; 3) transcriptomic data from a
total of 343 patients including 14 LCNEC, 273 LUAD, 9 SCLC and 47 LUSC with lung cancers
of different histologic subtypes®®*’.

Results
Patients characteristics
The clinicopathologic characteristics of the 9 patients with lung cancers of mixed histology are
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summarized in Table 1. The median age at diagnosis with lung cancer was 67 years (range 47-
79 years). All patients were current (3/9) or former (6/9) smokers. Eight patients had two
different distinct histologic subtypes, while one patient had 3 different histologic subtypes (Table
1). Different histologic components of each tumor of mixed histology were manually micro-
dissected, which resulted in 19 different tumor tissues including 6 LUAD, 6 LCNEC, 3 SCLC, 3
LUSC, and one poorly differentiated NSCLC-NOS that were subjected to WES and microarray
RNA profiling. The most common combination of mixed histology was LCNEC-LUAD in 4/9
patients, followed by LCNEC-LUSC and SCLC-LUAD subtypes in 2/9 patients each, and one
patient had SCLC-LUSC subtypes.

Shared mutations across different patients and distinct histologic subtypes

We first investigated whether the mutations overlapped between different histologic components
within the same tumors and whether there were particular mutations shared across the same
histologies from different patients. Overall, different histologic components from the same
tumors shared the majority of mutations (Fig. 1 and Supplementary Fig. 1 a-i). The percentage
of shared mutations within the same tumors ranged from 12.1% to 98.4% with a median of
68.9%, similar to that between different regions within the same tumors of the same histology
(68.9% vs 72%, p=0.46, Wilcoxon rank-sum test)°. Of note, except Pa35, who had 12.1%
shared mutations between the SCLC and LUAD histologic subtypes, all other patients had
>40% mutations shared amongst distinct histologies. On the other hand, the same histologic
subtypes across different patients barely shared any mutations. Specifically, only 1 intronic
mutation in RABL6 (chr9:139731607:A:G) was shared between LUAD components of Pa31 and
Pa35 as well as the SCLC components of the same two patients, whereas no mutations were
shared among the 6 LCNEC or 3 LUSC histologic subtypes consistent with previous findings °
suggesting somatic mutations may not be the primary determinant of histology in these tumors.

Similar mutational processes between different histologic subtypes within the same
tumors

It is well known that different cancer types have distinct mutational signatures™® suggesting
different mutational processes in play reflecting different genetic backgrounds and exposure
etiologies associated with different cancer types. To understand whether the mutational
processes are histology-specific in these lung tumors of mixed histology in the context of
identical genetic background and exposure history, we calculated the mutational spectrum and
mutational signatures in each histologic component. Overall, a similar mutational spectrum was
observed between different histologic components within the same tumors (Fig. 2a). We next
calculated the contribution of 30 signatures of mutational processes in cancer'® (Fig. 2b-c). Not
surprisingly, Signature 4 (associated with smoking and tobacco carcinogenesis) was the most
dominant in 7 of 9 patients consistent with their smoking history (Fig. 2c). Two exceptions were
patients Pa35 and Pa26, who were both former light smokers with a 2.5 and 5 pack-year
smoking history, respectively and both quit >20 years ago. Other common signatures in this
cohort of tumors included Signature 1 (associated with spontaneous deamination of 5-
methylcytosine), Signatures 2 and 13 (associated with APOBEC-mediated mutagenesis), and
Signature 16 (etiology-unknown). Similar to the mutation spectrum, the mutational signatures
were also overall similar between different histologic components within the same tumors, while
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none of the mutational signatures enriched in certain histologic components was shared across
different patients. Taken together, these data suggest that mutational processes were not
histology-specific, but rather patient-specific, likely determined by the particular exposure history
and host factors in each patient.

Similar subclonal architecture between different histologic components

We next inferred cancer cell fractions (CCF) of all somatic mutations using PyClone™ to
determine the subclonal architecture in each histologic component. Overall, the subclonal
architecture was similar between different histologic components within the same tumors. A
substantial proportion of clonal mutations®*?*, were shared across different histologic
components of the same tumors and only a small proportion of clonal mutations were private
(Fig. 3a-k). Specifically, among the shared mutations, an average of 54.6% (ranging 16% -
96.5%) were clonal, while only 10.7% (ranging 0.14% - 35.8%) private mutations were clonal.
Taken together, these data support that those different histologic components within the same
tumors were derived from the same progenitor cell and that the divergence of distinct histologic
components was a relatively late molecular event.

Similar somatic copy number aberration profiles between different histologic subtypes
within the same tumors

SCNA is another key feature of human malignancies that could potentially impact the
expression of large groups of genes. We next delineated the genome-wide SCNA profiles. As
shown in Fig. 4a and 4b, the overall SCNA profiles were similar between different histologic
components within the same patients, while drastically different among different patients.
Furthermore, we quantified SCNA events using a gene-based SCNA analysis algorithm?* for
exome sequencing data that allows comparing the SCNAs between different samples to identify
shared and uniqgue SCNA events between different histologic components within the same
tumors. To minimize the impact of tumor purity on SCNA analysis, we obtained purity-adjusted
log2 copy number ratios for each tumor in this study (see Methods for details). On average,
83% of SCNA events (ranging from 54.7% to 99.1%) were shared between different histologic
components within the same tumors suggesting the majority of SCNA events were early
molecular events before the separation of different histologic components. No particular SCNAs
were found to be enriched in certain histologic subtypes. Furthermore, compared to the
intratumor heterogeneity (ITH) dataset from the TRACERX study #°, at the gene level, the extent
of shared SCNA landscape between different histologic components was comparable to that
between spatially separated tumor regions within the same NSCLC tumors of the same
histology (83% in mixing histology cohort vs 72% in TRACERX cohort, p=0.25, Wilcoxon rank-
sum test).

The majority of cancer gene alterations occurred before the divergence of different
histologic components of the same tumors

Cancer gene mutations are known to determine distinct molecular subsets of lung cancers with
unique clinical presentation and cancer biology and certain cancer gene mutations are even
considered pathognomonic for certain histologic subtypes®. Therefore, we investigated whether
specific cancer gene mutations could determine different histologic patterns in these tumors of
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mixed histology. A total of 11 canonical cancer gene mutations, defined as nonsynonymous
mutations identical to those previously reported in known cancer genes®*?* or truncating
mutations in known tumor suppressor genes, were identified in these 19 specimens and 10 of
the 11 canonical cancer gene mutations were clonal in each histologic component except for
PIK3CA (p.E545K) in Pa37 LCNEC component that was subclonal (Fig. 3). Furthermore, 7 of
the 11 cancer gene mutations were shared between different histologic components within the
same tumor, while 4 were private. Interestingly, in patient Pa35, a PIK3CA p.M1043I mutation
was shared between the SCLC (CCF = 0.9) and LUAD (CCF = 0.09) components while a
PIK3CA p.E542K was only detected in the LUAD component (CCF = 0.8) (Fig. 3i). Similarly, in
Pa37, a PIK3CA p.E545K was identified in both LUAD (CCF = 0.009) and LCNEC (CCF =0.4)
components, while a PIK3CA p.H1047R was private to the LUAD component (CCF = 0.85) (Fig.
3k). These findings are reminiscent of heterogeneity studies in kidney ?® and lung cancers®>*"%,
where different mutations in the same cancer genes were identified in different regions within
the same tumors or different independent primary tumors within the same patients. These
results imply convergent evolution that even with an identical genetic background and
environmental exposure, the evolution of different cancer cell subclones can be driven by
distinct molecular events, with possible genetic constraints around certain genes or pathways
(PIK3CA in case of patient Pa35 and Pa37) that are pivotal for cancer evolution.

Furthermore, we estimated copy number gains of oncogenes and copy losses of tumor
suppressor genes (TSG) in this cohort of tumors of mixed histology based on the COSMIC
database®(Fig. 4c). A total of 11 copy number gains of 5 oncogenes and 129 copy number
losses of 27 TSGs were detected in this cohort of tumors of mixed histology. Similar to cancer
gene point mutations, 53.8% of SCNA in oncogenes and TSGs were shared within the same
patients. These data suggested that the cancer gene mutations and copy number changes were
early molecular events acquired before the divergence of different histologic subtypes and
maybe not the major mechanisms determining the histologic fate of cancer cells in lung cancers
of mixed histology.

Specific transcriptomic patterns may be associated with specific histologic subtypes

As the histology of lung cancers did not appear to be determined by genomic aberrations, we
next sought to explore whether the cell fate is determined at the transcriptomic level. We first
performed the gene expression profiling of the same tumor regions of distinct histologic
subtypes to investigate whether transcriptomic signatures could differentiate histological
subtypes. By principal component analysis (PCA), the normal lung tissues were separated from
the tumor samples highlighting the distinct transcriptomic changes associated with malignant
cells (Fig. 5a). Tumor specimens of different histologic subtypes from the same patients overall
clustered together although there was a small cluster of LUAD samples from different patients
clustered close to each other (Fig. 5a). In unsupervised hierarchical clustering, different
histologic components within the same tumors also tended to cluster together highlighting
substantial inter-patient heterogeneity. On the other hand, 8 of the 19 specimens were clustered
with specimens from a different patient, significantly more common than that of different tumor
regions within the same tumors of same histology, where 2 of 35 specimens were clustered with
a different patient (p=0.001 by Chi-Square test)**. Among these 8 specimens, 4 LUAD
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specimens (Pa26T2, Pa30T2, Pa31T2, and Pa37T1) were clustered together, while Pa35T1
(LCNEC) clustered with Pa37T2 (SCLC) and P30T1 (LCNEC) clustered with P31T1 (SCLC)
(Fig. 5b) - both LCNEC and SCLC are considered as neuroendocrine tumors sharing many
biological and clinical features®. Similarly, the LCNEC components of patients Pa26 and Pa29
were clustered together. Taken together, these data suggested that in the background of
patient-specific gene expression profiles, there may be histology-specific transcriptomic
features, associated with distinct histological phenotypes.

Histology-specific pathways shared with independent cohorts

To further understand the transcriptomic features associated with different histologies, we
evaluated if any Hallmark pathways®" were enriched in different histologic subtypes. To identify
histology-specific pathways, we looked specifically at overlapping pathways in the histologic
comparison pairs in different patients that had the same direction of enrichment (either positive
or negative). The most concordant pattern was noted in Pa31 and Pa35 with SCLC versus
LUAD, whereas 3 pathways were upregulated and 9 pathways were down-regulated in SCLC
components compared to LUAD components (Fig. 5c¢). Interestingly, the 3 up-regulated
pathways in SCLC (E2F_Target, G2M_checkpoint, and MYC_target) were associated with cell
proliferation while 6 of the 9 down-regulated pathways in SCLC components (IL2, complement,
INFG, INFA, TNFA, and inflammatory response) were associated with inflammatory/immune
response. In the LCNEC versus LUAD comparisons, there were no pathways with consistent
enrichment in all 4 patients. However, compared to LUAD, MYC, G2M, and E2F pathways were
up-regulated in LCNEC components in 3/4, %, and 2/4 and patients, respectively, while
interferon-alpha and interferon-gamma responses were down-regulated in LCNEC components
in 2/4 and 2/4 patients, respectively (Supplementary Table 2).

To validate these findings, we analyzed the transcriptomic data from another 3 different cohorts:
two previously published large cohorts of primary lung cancers by Karlsson et al'’, which
encompassed 126 primary lung cancers (83 LUAD, 26 LUSC, 3 SCLC, and 14 LCNEC) and by
Bhattacharjee et al*® with 217 lung cancer patients (190 LUAD, 21 LUSC, and 6 SCLC), as well
as 141 cell lines (57 LUAD, 22 LUSC, 48 SCLC, and 14 LCNEC) from CCLE database®. Using
the same approach for data from tumors of mixed histology, we identified enriched pathways by
comparing LCNEC versus LUAD, LCNEC versus LUSC, SCLC versus LUAD, and SCLC versus
LUSC of each cohort respectively (Supplementary Table 2). We next focused on the pathways
that were 1) identified in at least 2 patients from our mixed histology cohort and 2) validated by
at least two of the 3 datasets (Karlsson cohort, Bhattacharjee cohort, and CCLE). With these
criteria, SCLC versus LUAD comparison demonstrated the most consistent pattern with cell
proliferation-related pathways upregulated and inflammatory/immune response pathways
downregulated in SCLC (p. adj<0.05) (Fig. 5¢). Also, for LCNEC versus LUAD histology
pathway analysis, there was significant positive enrichment for cell cycle G/M cell cycle
checkpoint and MYC targets for Pa30, Pa34, Pa37, and in the Karlson dataset (p.adj <0.05)
(Fig. 5d).

Discussion
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In the immuno-oncology era, histological subtype remains to play essential roles in determining
the optimal treatment for lung cancer patients®3 For example, surgical resection is the main
treatment modality for localized NSCLC, while SCLC is usually treated with chemotherapy and
radiation even at localized stage®. In the metastatic setting, the chemotherapy regimens are
also different for different histologic subtypes.

Currently, the mechanisms underlying histologic cell fate are unknown. Understanding the
molecular determinants of histology may provide novel insights to understand the different
responses to various treatment regimens and to more effectively leverage histology to guide
lung cancer management. Although large-scale studies such as in TCGA have demonstrated
that genomic features are largely distinct between different lung cancer histologic
subtypes®3"* genomic alterations do not always agree with histologic subtypes. Targetable
genomic alterations such as EGFR mutations and ALK/ROSL1 translocations that are
pathognomonic for LUAD have been reported in some LUSC patients and SCLC patients®**°,
suggesting that the histology is not primarily determined by genomic features. However, these
analyses are complicated by the distinct genetic background and exposure history in different
cancer patients.

Cancers of mixed histology provide a unique opportunity to identify the molecular features
associated with different histologic components in the setting of identical genetic background
and exposure history. Among the mixed histology lung tumors, the adenosquamous is the most
frequently studied subtype while other mixed histology subtypes were rarely investigated. In the
current study, we focused on lung cancers of non-adenosquamous subtypes and applied WES
and gene expression microarray with the intent to depict the comprehensive molecular bases of
histology. Analysis of WES data from 9 patients with mixed histology demonstrated that different
histological components within the same tumors shared a large proportion of identical point
mutations, which is consistent with previous studies in adenosquamous subtypes by cancer
gene panel sequencing”**. In addition to more comprehensive point mutation data, WES also
allowed us to compare different histologic components regarding the SCNA profiles, which
demonstrated that different histologic components from the same tumors share the majority of
SCNA events. Furthermore, different histologic components from the same tumors also
demonstrated overall similar subclonal architecture and canonical cancer gene alterations.
Taken together, these data suggest that different histologic components were derived from the
same progenitor cells and that the divergence of distinct histologic components was a relatively
late molecular event conferring inter-histologic heterogeneity. Thus, the histologic subtype was
not primarily determined by genomic alterations.

There is ample evidence that gene expression profiling can inform lung cancer histology*®*".
Our transcriptomic profiling from histologic subtypes in tumors of the same patient allowed
decoupling of the effect of the patient’s genetic background and exposures in influencing the
transcriptomic signatures. Unlike the similar genomic landscape between different histologic
components, intra-tumor heterogeneity of transcriptomic profiles between different histologic
components was significantly higher than spatially separated regions from tumors of the same
histology. A substantial proportion of tumor regions clustered more closely together with tumor
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regions of the same histology from different patients, significantly more common than that in
different tumor regions of the same histology?®. Pathway analysis demonstrated common
pathways between different histologic components across different patients, which were further
supported by integrative analysis from cell lines and larger cohorts of patient datasets. These
were mostly accentuated between SCLC and LUAD as well as LCNEC and LUAD. Compared to
LUAD components, SCLC and LCNEC tumors, both of which are high-grade neuroendocrine
carcinomas, demonstrated up-regulation of pathways associated with cell proliferation including
G2M, E2F, and MYC consistent with the high proliferative nature of SCLC and LCNEC*?. Of
particular interest, 6 of 9 down-regulated pathways in SCLC were inflammatory/immune
pathways in line with reported cold immune microenvironment and inferior response to
immunotherapy in SCLC*. These results also suggest histology-specific modulation of the
tumor microenvironment even within the same tumors with the same genetic background and
exposure.

In summary, we sought to provide novel insights to dissect the molecular basis for the histologic
determination by multi-omics analysis of 3 unique datasets: lung cancers of mixed histology
providing a unique opportunity to identify the molecular features associated with different
histologic components in the setting of identical genetic background and exposure history;
CCLE cell lines of different histology allowing analyzing pure epithelial cancer cells without
confounding effect from stromal components; and large cohorts of human lung cancers of
different histologic subtypes. Our analysis demonstrated that the different histologic components
from the same patients share the majority of point mutations, SCNA, and cancer gene
alterations suggesting a shared cell of origin and indicated that histology may not be determined
at the genomic level. On the other hand, although essentially no genomic mutations were
shared, different tumor regions of the same histology across different patients tended to be
more closely clustered based on transcriptomic profiles. Pathway analysis revealed important
pathways encircled for certain histologies, which were validated by CCLE cell lines and two
large cohorts of human lung cancers. These data suggested that histology of lung cancers may
be determined at the transcriptomic level although the exact mechanisms of gene expression
regulation remain to be determined. These intriguing findings have to be validated on larger
cohorts of tumors of mixed histology and by functional analyses in future studies.

Methods

Sample Collection and Processing

Patients with mixed histology lung cancer were included in this study after confirmation with two
independent pathologists. Unstained slides were microdissected after delineating the different
regions of histologic components and then extracted for RNA and DNA. A written informed
consent that was approved by the internal review board of the University of Texas M D
Anderson Cancer Center was obtained. The study was conducted in accordance with the
Declaration of Helsinki.

Whole-exome sequencing
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DNA was extracted using the QlAamp DNA FFPE Tissue Kit (QIAGEN) and the resulting
genomic DNA was sheared into 300—-4000bp segments and subjected to library preparation for
whole-exome sequencing using KAPA library prep (Kapa Biosystems) with the Agilent
SureSelect Human All Exon V4 kit according to the manufacturer’s instructions. Paired-end
multiplex sequencing of DNA samples was performed on the lllumina HiSeq 2000 sequencing
platform.

Somatic mutation calling and overlapping mutations

The whole-exome sequencing raw FASTQ files were aligned using bwa-mem. Mutations were
called using mutect* and Lancet following GATK best practice
(www.broadinstitute.org/gatk/quide/best-practices.php) for duplicate removal, indel realignment,
and base recalibration. Lancet* was used for SNV and indel calling using localized colored de
Bruijn graph. For SNVs, only those which were called by more than one caller or called in more
than one sample from the same patient were retained. For all mutations, we recovered the raw
allelic counts from the bam file if it occurred in one of the different histologic subtypes from the
same patient. The process was implemented as a Snakemake pipeline and can be found at
https://gitlab.com/tangming2005/snakemake DNAseq_pipeline/tree/multiRG. The number of
overlapping mutations across all samples were plotted in an UpSet plot*® and Venn diagrams.

Clonal architecture analysis

A high-quality list of SNVs was combined from all samples from the same patient and the allelic
counts for those positions were obtained using bam-readcount (https://github.com/genome/bam-
readcount) Copy number variations and tumor purity were obtained from sequenza*’, and the
mutation allelic counts were analyzed with PyClone for clonality analysis™®. PyClone was run
with 10,000 iterations and a burn-in of 1,000 as suggested by the authors.

Mutational signature and spectrum analysis
Mutation signatures and spectrum analysis were analyzed by Bioconductor package
MutationalPatterns*® with 30 COSMIC signatures following the standard workflow.

Somatic Copy number analysis (SCNA)
Copy number analysis was carried out using Sequenza®’. Both copy number and tumor purity
were inferred by Sequenza. Since the signal to noise ratio of SCNA could be reduced in the

samples with lower tumor purity, we obtained purity-adjusted log2 ratios by log2((original copy

ratio-1)/purity+1)*°. The segment files were visualized in IGV*°. We then used the log2
thresholds of l0og2(4/2) and log2(1/2) to determine whether a gene is gained or lost focusing only
on cancer genes that have shown to have copy number changes in the COSMIC database. The
matrices of log; ratio or binarized copy humber status for all genes and cancer genes,
respectively, across all samples, were clustered using hierarchical clustering and plotted in a
heatmap using ComplexHeatmap®'.

In-house microarray and public microarray/RNAseq data analysis
The in-house clariom.s.human microarray data were analyzed using Bioconductor packages
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Oligo®?, pd.clariom.s.human, and limma®® following standard workflow. GSE94601 microarray
data were downloaded using GEOquery®* and analyzed by the limma package. The
Bhattacharjee et al microarray data were downloaded from http://portals.broadinstitute.org/cqi-
bin/cancer/publications/view/62 and analyzed using the affy®®> and limma package. The CCLE
lung cancer RNAseq count data were downloaded from the Broad CCLE data portal and
processed using DESeq2%°. Gene set enrichment analysis using Hallmark dataset was carried
out using fgsea Bioconductor package®’ and the genes are pre-ranked by (signed
log2FoldChange) * -logio(p-value) for all the public datasets. For the in-house microarray data,
we computed the fold change between distinct histologies within the same patient and rank the
genes by the fold change.

Data availability and code availability

The whole-exome sequencing data have been deposited at the European Bioinformatics
Institute European Genome—phenome Archive (EGA) (accession number: pending) through
controlled access. To protect patient privacy, interested researchers need to apply via data
access committee (DAC), which will grant all reasonable requests. And source data are
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generate the figures can be found at
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Figure Legends.

Fig 1: Overlapping somatic mutations across different histologic subtypes within the
same patient. The upset plot demonstrates the shared mutations across samples. Blue bars in
the y-axis represent the total number of mutations in each sample. Black bars in the x-axis
represent the number of mutations shared across samples connected by the black dots in the
body of the plot.

Fig 2: Mutational spectrums and signatures are similar across different histologic
subtypes within the same patient. (a) Bar plots represent the mutational spectrum
decomposed by trinucleotide context. (b) Heatmap of the contribution of the 30-COSMIC
mutation signatures in each sample. (c) Stacked barplot for the contribution of the top 10
mutation signatures in each sample.

Fig 3: Clonality analysis revealed shared clonal mutations between different histologies
within the same patients. (a-k) Scatter plots of the cellular prevalence of somatic mutations
calculated by PyClone for the two histological components within the same patient. Mutations
were clustered by PyClone and mutations of the same cluster were labeled with the same color.
Labeled genes represent canonical cancer gene mutations.

Fig 4: Somatic copy number aberration (SCNA) analysis demonstrated similar copy-
number changes between different histologic subtypes within the same patient. (a) IGV
screenshot of genome-wide SCNA profile for each sample. (b) Heatmap of the correlation of
SCNA at gene-level. (c) Heatmap of copy number changes from canonical cancer genes of the
COSMIC database.

Fig 5: Gene expression profile revealed some extent of similarity of the same histologic
components across different patients. (a) Principal component analysis (PCA) of all
histologic subtypes based on gene expression data. (b) Heatmap of the top 500 most variable
genes across the samples clustered by both genes and the samples. (c) Commonly up-
regulated and down-regulated pathways comparing SCLC with LUAD across public datasets
and in-house dataset. (d) Commonly up-regulated and down-regulated pathways comparing
LCNEC with LUAD across public datasets and in-house dataset.

Supplementary Figl. (a-i) Venn-diagram showing the number of overlapping mutations in each
patient across different histological components.
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