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Abstract: 
Histology plays an essential role in therapeutic decision-making for lung cancer patients. 
However, the molecular determinants of lung cancer histology are largely unknown. We 
conducted whole-exome sequencing(WES) and microarray profiling on 19 micro-dissected 
tumor regions of different histologic subtypes from 9 patients with lung cancers of mixed 
histology. A median of 68.9% of point mutations and 83% of copy number aberrations were 
shared between different histologic components within the same tumors. Furthermore, different 
histologic components within the tumors demonstrated similar subclonal architecture. On the 
other hand, transcriptomic profiling revealed shared pathways between the same histologic 
subtypes from different patients, which was supported by the analyses of the transcriptomic 
data from 141 cell lines and 343 lung cancers of different histologic subtypes. These data 
suggest that histology of lung cancers may be determined at the transcriptomic level rather than 
the genomic level. 
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Introduction 
  
Lung cancer is the leading cause of cancer death in the United States with an estimated 
228,820 new cases and 135,520 deaths expected in 20201. Histopathology continues to play an 
essential role in prognosis and choosing appropriate treatment2. Largely determined by 
morphology, primary lung cancers are histologically classified into small cell lung cancers 
(SCLC) and non-small cell lung cancers (NSCLC) and the latter include adenocarcinoma 
(LUAD), squamous cell (LUSC), and large-cell neuroendocrine (LCNEC) as the main histologic 
subtypes. However, consensus histologic confirmation can sometimes be challenging and 
therefore impacts optimal treatment choices3,4. 
 
The molecular mechanisms determining the tumor histology are unknown. Previous studies 
revealed that tumors from different patients or even multiple independent primary lung cancers 
within the same patients can have identical morphology yet shared no mutations5, while there 
can be a morphologic difference in different regions within the same tumors that share the 
majority of mutations6. These findings suggest that morphology may not be primarily determined 
by genomic features. 
  
About 5% of primary lung cancers can present with a mixed histologic pattern, where additional 
components with distinct histologic types present within the same tumors, often referred to as 
combined or mixed histology7,8. Tumors with mixed histology provide a unique opportunity to 
study the molecular basis for histology determination as different histologic components share 
the same clinical and genetic backgrounds, and exposure history. There have been a few 
studies on lung cancers of mixed histology, most of which focused on the genomic changes of 
adenosquamous lung cancers. The majority of these studies revealed shared driver mutations 
between different histologic components8–14. These findings are overall in line with the prior 
hypothesis that genomic changes were not the main determinants of histology. However, these 
studies only covered hotspot driver mutations or small gene panels while mutations of other 
genes with essential biological functions and other genomic alterations such as somatic copy 
number alterations (SCNA) were not investigated. Thus the relationship between genomic 
alterations and histology was not fully addressed. 
  
In the current study, we leveraged three unique datasets to fill this void: 1) whole-exome 
sequencing (WES) and transcriptomic data from 19 micro-dissected tumor regions of different 
histology from 9 primary lung cancer patients with mixed histologic patterns including 6 LUAD, 6 
LCNEC, 3 SCLC, 3 LUSC, and one poorly differentiated NSCLC-NOS; 2) transcriptomic data 
from 141 cell lines of different histologic subtypes from the cancer cell line encyclopedia 
(CCLE)15 including 14 LCNEC, 57 LUAD, 48 SCLC, and 22 LUSC; 3) transcriptomic data from a 
total of 343 patients including 14 LCNEC, 273 LUAD, 9 SCLC and 47 LUSC with lung cancers 
of different histologic subtypes16,17. 
 
Results 
Patients characteristics 
The clinicopathologic characteristics of the 9 patients with lung cancers of mixed histology are 
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summarized in Table 1. The median age at diagnosis with lung cancer was 67 years (range 47-
79 years). All patients were current (3/9) or former (6/9) smokers. Eight patients had two 
different distinct histologic subtypes, while one patient had 3 different histologic subtypes (Table 
1). Different histologic components of each tumor of mixed histology were manually micro-
dissected, which resulted in 19 different tumor tissues including 6 LUAD, 6 LCNEC, 3 SCLC, 3 
LUSC, and one poorly differentiated NSCLC-NOS that were subjected to WES and microarray 
RNA profiling. The most common combination of mixed histology was LCNEC-LUAD in 4/9 
patients, followed by LCNEC-LUSC and SCLC-LUAD subtypes in 2/9 patients each, and one 
patient had SCLC-LUSC subtypes. 
  
Shared mutations across different patients and distinct histologic subtypes 
We first investigated whether the mutations overlapped between different histologic components 
within the same tumors and whether there were particular mutations shared across the same 
histologies from different patients. Overall, different histologic components from the same 
tumors shared the majority of mutations (Fig. 1 and Supplementary Fig. 1 a-i). The percentage 
of shared mutations within the same tumors ranged from 12.1% to 98.4% with a median of 
68.9%, similar to that between different regions within the same tumors of the same histology 
(68.9% vs 72%, p=0.46, Wilcoxon rank-sum test)6. Of note, except Pa35, who had 12.1% 
shared mutations between the SCLC and LUAD histologic subtypes, all other patients had 
>40% mutations shared amongst distinct histologies. On the other hand, the same histologic 
subtypes across different patients barely shared any mutations. Specifically, only 1 intronic 
mutation in RABL6 (chr9:139731607:A:G) was shared between LUAD components of Pa31 and 
Pa35 as well as the SCLC components of the same two patients, whereas no mutations were 
shared among the 6 LCNEC or 3 LUSC histologic subtypes consistent with previous findings 6 
suggesting somatic mutations may not be the primary determinant of histology in these tumors. 
  
Similar mutational processes between different histologic subtypes within the same 
tumors 
It is well known that different cancer types have distinct mutational signatures18 suggesting 
different mutational processes in play reflecting different genetic backgrounds and exposure 
etiologies associated with different cancer types. To understand whether the mutational 
processes are histology-specific in these lung tumors of mixed histology in the context of 
identical genetic background and exposure history, we calculated the mutational spectrum and 
mutational signatures in each histologic component. Overall, a similar mutational spectrum was 
observed between different histologic components within the same tumors (Fig. 2a). We next 
calculated the contribution of 30 signatures of mutational processes in cancer18 (Fig. 2b-c). Not 
surprisingly, Signature 4 (associated with smoking and tobacco carcinogenesis) was the most 
dominant in 7 of 9 patients consistent with their smoking history (Fig. 2c). Two exceptions were 
patients Pa35 and Pa26, who were both former light smokers with a 2.5 and 5 pack-year 
smoking history, respectively and both quit >20 years ago. Other common signatures in this 
cohort of tumors included Signature 1 (associated with spontaneous deamination of 5-
methylcytosine), Signatures 2 and 13 (associated with APOBEC-mediated mutagenesis), and 
Signature 16 (etiology-unknown). Similar to the mutation spectrum, the mutational signatures 
were also overall similar between different histologic components within the same tumors, while 
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none of the mutational signatures enriched in certain histologic components was shared across 
different patients. Taken together, these data suggest that mutational processes were not 
histology-specific, but rather patient-specific, likely determined by the particular exposure history 
and host factors in each patient. 
  
Similar subclonal architecture between different histologic components 
We next inferred cancer cell fractions (CCF) of all somatic mutations using PyClone19 to 
determine the subclonal architecture in each histologic component. Overall, the subclonal 
architecture was similar between different histologic components within the same tumors. A 
substantial proportion of clonal mutations20,21, were shared across different histologic 
components of the same tumors and only a small proportion of clonal mutations were private 
(Fig. 3a-k). Specifically, among the shared mutations, an average of 54.6% (ranging 16% - 
96.5%) were clonal, while only 10.7% (ranging 0.14% - 35.8%) private mutations were clonal. 
Taken together, these data support that those different histologic components within the same 
tumors were derived from the same progenitor cell and that the divergence of distinct histologic 
components was a relatively late molecular event. 
  
Similar somatic copy number aberration profiles between different histologic subtypes 
within the same tumors 
SCNA is another key feature of human malignancies that could potentially impact the 
expression of large groups of genes. We next delineated the genome-wide SCNA profiles. As 
shown in Fig. 4a and 4b, the overall SCNA profiles were similar between different histologic 
components within the same patients, while drastically different among different patients. 
Furthermore, we quantified SCNA events using a gene-based SCNA analysis algorithm22 for 
exome sequencing data that allows comparing the SCNAs between different samples to identify 
shared and unique SCNA events between different histologic components within the same 
tumors. To minimize the impact of tumor purity on SCNA analysis, we obtained purity-adjusted 
log2 copy number ratios for each tumor in this study (see Methods for details). On average, 
83% of SCNA events (ranging from 54.7% to 99.1%) were shared between different histologic 
components within the same tumors suggesting the majority of SCNA events were early 
molecular events before the separation of different histologic components. No particular SCNAs 
were found to be enriched in certain histologic subtypes. Furthermore, compared to the 
intratumor heterogeneity (ITH) dataset from the TRACERx study 25, at the gene level, the extent 
of shared SCNA landscape between different histologic components was comparable to that 
between spatially separated tumor regions within the same NSCLC tumors of the same 
histology (83% in mixing histology cohort vs 72% in TRACERx cohort, p=0.25, Wilcoxon rank-
sum test). 
  
The majority of cancer gene alterations occurred before the divergence of different 
histologic components of the same tumors 
Cancer gene mutations are known to determine distinct molecular subsets of lung cancers with 
unique clinical presentation and cancer biology and certain cancer gene mutations are even 
considered pathognomonic for certain histologic subtypes23. Therefore, we investigated whether 
specific cancer gene mutations could determine different histologic patterns in these tumors of 
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mixed histology. A total of 11 canonical cancer gene mutations, defined as nonsynonymous 
mutations identical to those previously reported in known cancer genes24,25 or truncating 
mutations in known tumor suppressor genes, were identified in these 19 specimens and 10 of 
the 11 canonical cancer gene mutations were clonal in each histologic component except for 
PIK3CA (p.E545K) in Pa37 LCNEC component that was subclonal (Fig. 3). Furthermore, 7 of 
the 11 cancer gene mutations were shared between different histologic components within the 
same tumor, while 4 were private. Interestingly, in patient Pa35, a PIK3CA p.M1043I mutation 
was shared between the SCLC (CCF = 0.9) and LUAD (CCF = 0.09) components while a 
PIK3CA p.E542K was only detected in the LUAD component (CCF = 0.8) (Fig. 3i). Similarly, in 
Pa37, a PIK3CA p.E545K was identified in both LUAD (CCF = 0.009)  and LCNEC (CCF = 0.4) 
components, while a PIK3CA p.H1047R was private to the LUAD component (CCF = 0.85) (Fig. 
3k). These findings are reminiscent of heterogeneity studies in kidney 26 and lung cancers5,27,28, 
where different mutations in the same cancer genes were identified in different regions within 
the same tumors or different independent primary tumors within the same patients. These 
results imply convergent evolution that even with an identical genetic background and 
environmental exposure, the evolution of different cancer cell subclones can be driven by 
distinct molecular events, with possible genetic constraints around certain genes or pathways 
(PIK3CA in case of patient Pa35 and Pa37) that are pivotal for cancer evolution.   
 
Furthermore, we estimated copy number gains of oncogenes and copy losses of tumor 
suppressor genes (TSG) in this cohort of tumors of mixed histology based on the COSMIC 
database24(Fig. 4c). A total of 11 copy number gains of 5 oncogenes and 129 copy number 
losses of 27 TSGs were detected in this cohort of tumors of mixed histology. Similar to cancer 
gene point mutations, 53.8% of SCNA in oncogenes and TSGs were shared within the same 
patients. These data suggested that the cancer gene mutations and copy number changes were 
early molecular events acquired before the divergence of different histologic subtypes and 
maybe not the major mechanisms determining the histologic fate of cancer cells in lung cancers 
of mixed histology. 
  
Specific transcriptomic patterns may be associated with specific histologic subtypes 
As the histology of lung cancers did not appear to be determined by genomic aberrations, we 
next sought to explore whether the cell fate is determined at the transcriptomic level. We first 
performed the gene expression profiling of the same tumor regions of distinct histologic 
subtypes to investigate whether transcriptomic signatures could differentiate histological 
subtypes. By principal component analysis (PCA), the normal lung tissues were separated from 
the tumor samples highlighting the distinct transcriptomic changes associated with malignant 
cells (Fig. 5a). Tumor specimens of different histologic subtypes from the same patients overall 
clustered together although there was a small cluster of LUAD samples from different patients 
clustered close to each other (Fig. 5a). In unsupervised hierarchical clustering, different 
histologic components within the same tumors also tended to cluster together highlighting 
substantial inter-patient heterogeneity. On the other hand, 8 of the 19 specimens were clustered 
with specimens from a different patient, significantly more common than that of different tumor 
regions within the same tumors of same histology, where 2 of 35 specimens were clustered with 
a different patient (p=0.001 by Chi-Square test)29. Among these 8 specimens, 4 LUAD 
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specimens (Pa26T2, Pa30T2, Pa31T2, and Pa37T1) were clustered together, while Pa35T1 
(LCNEC) clustered with Pa37T2 (SCLC) and P30T1 (LCNEC) clustered with P31T1 (SCLC) 
(Fig. 5b) - both LCNEC and SCLC are considered as neuroendocrine tumors sharing many 
biological and clinical features30. Similarly, the LCNEC components of patients Pa26 and Pa29 
were clustered together. Taken together, these data suggested that in the background of 
patient-specific gene expression profiles, there may be histology-specific transcriptomic 
features, associated with distinct histological phenotypes. 
  
Histology-specific pathways shared with independent cohorts 
To further understand the transcriptomic features associated with different histologies, we 
evaluated if any Hallmark pathways31 were enriched in different histologic subtypes. To identify 
histology-specific pathways, we looked specifically at overlapping pathways in the histologic 
comparison pairs in different patients that had the same direction of enrichment (either positive 
or negative). The most concordant pattern was noted in Pa31 and Pa35 with SCLC versus 
LUAD, whereas 3 pathways were upregulated and 9 pathways were down-regulated in SCLC 
components compared to LUAD components (Fig. 5c). Interestingly, the 3 up-regulated 
pathways in SCLC (E2F_Target, G2M_checkpoint, and MYC_target) were associated with cell 
proliferation while 6 of the 9 down-regulated pathways in SCLC components (IL2, complement, 
INFG, INFA, TNFA, and inflammatory response) were associated with inflammatory/immune 
response. In the LCNEC versus LUAD comparisons, there were no pathways with consistent 
enrichment in all 4 patients. However, compared to LUAD, MYC, G2M, and E2F pathways were 
up-regulated in LCNEC components in 3/4, ¾, and 2/4 and patients, respectively, while 
interferon-alpha and interferon-gamma responses were down-regulated in LCNEC components 
in 2/4 and 2/4 patients, respectively (Supplementary Table 2). 
 
To validate these findings, we analyzed the transcriptomic data from another 3 different cohorts: 
two previously published large cohorts of primary lung cancers by Karlsson et al17, which 
encompassed 126 primary lung cancers (83 LUAD, 26 LUSC, 3 SCLC, and 14 LCNEC) and by 
Bhattacharjee et al16 with 217 lung cancer patients (190 LUAD, 21 LUSC, and 6 SCLC), as well 
as 141 cell lines (57 LUAD, 22 LUSC, 48 SCLC, and 14 LCNEC) from CCLE database32. Using 
the same approach for data from tumors of mixed histology, we identified enriched pathways by 
comparing LCNEC versus LUAD, LCNEC versus LUSC, SCLC versus LUAD, and SCLC versus 
LUSC of each cohort respectively (Supplementary Table 2). We next focused on the pathways 
that were 1) identified in at least 2 patients from our mixed histology cohort and 2) validated by 
at least two of the 3 datasets (Karlsson cohort, Bhattacharjee cohort, and CCLE). With these 
criteria, SCLC versus LUAD comparison demonstrated the most consistent pattern with cell 
proliferation-related pathways upregulated and inflammatory/immune response pathways 
downregulated in SCLC (p. adj<0.05) (Fig. 5c). Also, for LCNEC versus LUAD histology 
pathway analysis, there was significant positive enrichment for cell cycle G/M cell cycle 
checkpoint and MYC targets for Pa30, Pa34, Pa37, and in the Karlson dataset (p.adj <0.05) 
(Fig. 5d). 
  
 
Discussion 
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In the immuno-oncology era, histological subtype remains to play essential roles in determining 
the optimal treatment for lung cancer patients34–36

  For example, surgical resection is the main 
treatment modality for localized NSCLC, while SCLC is usually treated with chemotherapy and 
radiation even at localized stage33. In the metastatic setting, the chemotherapy regimens are 
also different for different histologic subtypes.  
 
Currently, the mechanisms underlying histologic cell fate are unknown. Understanding the 
molecular determinants of histology may provide novel insights to understand the different 
responses to various treatment regimens and to more effectively leverage histology to guide 
lung cancer management. Although large-scale studies such as in TCGA have demonstrated 
that genomic features are largely distinct between different lung cancer histologic 
subtypes23,37,38, genomic alterations do not always agree with histologic subtypes. Targetable 
genomic alterations such as EGFR mutations and ALK/ROS1 translocations that are 
pathognomonic for LUAD have been reported in some LUSC patients and SCLC patients39,40, 
suggesting that the histology is not primarily determined by genomic features. However, these 
analyses are complicated by the distinct genetic background and exposure history in different 
cancer patients. 
  
Cancers of mixed histology provide a unique opportunity to identify the molecular features 
associated with different histologic components in the setting of identical genetic background 
and exposure history. Among the mixed histology lung tumors, the adenosquamous is the most 
frequently studied subtype while other mixed histology subtypes were rarely investigated. In the 
current study, we focused on lung cancers of non-adenosquamous subtypes and applied WES 
and gene expression microarray with the intent to depict the comprehensive molecular bases of 
histology. Analysis of WES data from 9 patients with mixed histology demonstrated that different 
histological components within the same tumors shared a large proportion of identical point 
mutations, which is consistent with previous studies in adenosquamous subtypes by cancer 
gene panel sequencing7–11. In addition to more comprehensive point mutation data, WES also 
allowed us to compare different histologic components regarding the SCNA profiles, which 
demonstrated that different histologic components from the same tumors share the majority of 
SCNA events. Furthermore, different histologic components from the same tumors also 
demonstrated overall similar subclonal architecture and canonical cancer gene alterations. 
Taken together, these data suggest that different histologic components were derived from the 
same progenitor cells and that the divergence of distinct histologic components was a relatively 
late molecular event conferring inter-histologic heterogeneity. Thus, the histologic subtype was 
not primarily determined by genomic alterations. 
  
There is ample evidence that gene expression profiling can inform lung cancer histology16,17,41. 
Our transcriptomic profiling from histologic subtypes in tumors of the same patient allowed 
decoupling of the effect of the patient’s genetic background and exposures in influencing the 
transcriptomic signatures. Unlike the similar genomic landscape between different histologic 
components, intra-tumor heterogeneity of transcriptomic profiles between different histologic 
components was significantly higher than spatially separated regions from tumors of the same 
histology. A substantial proportion of tumor regions clustered more closely together with tumor 
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regions of the same histology from different patients, significantly more common than that in 
different tumor regions of the same histology29. Pathway analysis demonstrated common 
pathways between different histologic components across different patients, which were further 
supported by integrative analysis from cell lines and larger cohorts of patient datasets. These 
were mostly accentuated between SCLC and LUAD as well as LCNEC and LUAD. Compared to 
LUAD components, SCLC and LCNEC tumors, both of which are high-grade neuroendocrine 
carcinomas, demonstrated up-regulation of pathways associated with cell proliferation including 
G2M, E2F, and MYC consistent with the high proliferative nature of SCLC and LCNEC42. Of 
particular interest, 6 of 9 down-regulated pathways in SCLC were inflammatory/immune 
pathways in line with reported cold immune microenvironment and inferior response to 
immunotherapy in SCLC43. These results also suggest histology-specific modulation of the 
tumor microenvironment even within the same tumors with the same genetic background and 
exposure. 
 
In summary, we sought to provide novel insights to dissect the molecular basis for the histologic 
determination by multi-omics analysis of 3 unique datasets: lung cancers of mixed histology 
providing a unique opportunity to identify the molecular features associated with different 
histologic components in the setting of identical genetic background and exposure history; 
CCLE cell lines of different histology allowing analyzing pure epithelial cancer cells without 
confounding effect from stromal components; and large cohorts of human lung cancers of 
different histologic subtypes. Our analysis demonstrated that the different histologic components 
from the same patients share the majority of point mutations, SCNA, and cancer gene 
alterations suggesting a shared cell of origin and indicated that histology may not be determined 
at the genomic level. On the other hand, although essentially no genomic mutations were 
shared, different tumor regions of the same histology across different patients tended to be 
more closely clustered based on transcriptomic profiles. Pathway analysis revealed important 
pathways encircled for certain histologies, which were validated by CCLE cell lines and two 
large cohorts of human lung cancers. These data suggested that histology of lung cancers may 
be determined at the transcriptomic level although the exact mechanisms of gene expression 
regulation remain to be determined. These intriguing findings have to be validated on larger 
cohorts of tumors of mixed histology and by functional analyses in future studies. 
  
 
Methods 
  
Sample Collection and Processing 

Patients with mixed histology lung cancer were included in this study after confirmation with two 
independent pathologists. Unstained slides were microdissected after delineating the different 
regions of histologic components and then extracted for RNA and DNA. A written informed 
consent that was approved by the internal review board of the University of Texas M D 
Anderson Cancer Center was obtained. The study was conducted in accordance with the 
Declaration of Helsinki. 

Whole-exome sequencing 
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DNA was extracted using the QIAamp DNA FFPE Tissue Kit (QIAGEN) and the resulting 
genomic DNA was sheared into 300–400�bp segments and subjected to library preparation for 
whole-exome sequencing using KAPA library prep (Kapa Biosystems) with the Agilent 
SureSelect Human All Exon V4 kit according to the manufacturer’s instructions. Paired-end 
multiplex sequencing of DNA samples was performed on the Illumina HiSeq 2000 sequencing 
platform. 
  
Somatic mutation calling and overlapping mutations 
The whole-exome sequencing raw FASTQ files were aligned using bwa-mem. Mutations were 
called using mutect44 and Lancet following GATK best practice 
(www.broadinstitute.org/gatk/guide/best-practices.php) for duplicate removal, indel realignment, 
and base recalibration. Lancet45 was used for SNV and indel calling using localized colored de 
Bruijn graph. For SNVs, only those which were called by more than one caller or called in more 
than one sample from the same patient were retained. For all mutations, we recovered the raw 
allelic counts from the bam file if it occurred in one of the different histologic subtypes from the 
same patient. The process was implemented as a Snakemake pipeline and can be found at 
https://gitlab.com/tangming2005/snakemake_DNAseq_pipeline/tree/multiRG. The number of 
overlapping mutations across all samples were plotted in an UpSet plot46 and Venn diagrams. 
  
Clonal architecture analysis  
A high-quality list of SNVs was combined from all samples from the same patient and the allelic 
counts for those positions were obtained using bam-readcount (https://github.com/genome/bam-
readcount) Copy number variations and tumor purity were obtained from sequenza47, and the 
mutation allelic counts were analyzed with PyClone for clonality analysis19. PyClone was run 
with 10,000 iterations and a burn-in of 1,000 as suggested by the authors. 
  
Mutational signature and spectrum analysis 
Mutation signatures and spectrum analysis were analyzed by Bioconductor package 
MutationalPatterns48 with 30 COSMIC signatures following the standard workflow. 
  
Somatic Copy number analysis (SCNA) 
Copy number analysis was carried out using Sequenza47. Both copy number and tumor purity 
were inferred by Sequenza. Since the signal to noise ratio of SCNA could be reduced in the 

samples with lower tumor purity, we obtained purity-adjusted log2 ratios by log2((original copy 

ratio-1)/purity+1)49. The segment files were visualized in IGV50. We then used the log2 
thresholds of log2(4/2) and log2(1/2) to determine whether a gene is gained or lost focusing only 
on cancer genes that have shown to have copy number changes in the COSMIC database. The 
matrices of log2 ratio or binarized copy number status for all genes and cancer genes, 
respectively, across all samples, were clustered using hierarchical clustering and plotted in a 
heatmap using ComplexHeatmap51.  
  

In-house microarray and public microarray/RNAseq data analysis 
The in-house clariom.s.human microarray data were analyzed using Bioconductor packages 
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Oligo52, pd.clariom.s.human, and limma53 following standard workflow. GSE94601 microarray 
data were downloaded using GEOquery54 and analyzed by the limma package. The 
Bhattacharjee et al microarray data were downloaded from http://portals.broadinstitute.org/cgi-
bin/cancer/publications/view/62 and analyzed using the affy55 and limma package. The CCLE 
lung cancer RNAseq count data were downloaded from the Broad CCLE data portal and 
processed using DESeq256. Gene set enrichment analysis using Hallmark dataset was carried 
out using fgsea Bioconductor package57 and the genes are pre-ranked by (signed 
log2FoldChange) * -log10(p-value) for all the public datasets. For the in-house microarray data, 
we computed the fold change between distinct histologies within the same patient and rank the 
genes by the fold change.  
  
Data availability and code availability 
The whole-exome sequencing data have been deposited at the European Bioinformatics 
Institute European Genome–phenome Archive (EGA) (accession number: pending) through 
controlled access. To protect patient privacy, interested researchers need to apply via data 
access committee (DAC), which will grant all reasonable requests. And source data are 
provided with this study. All other data may be found within the main manuscript or 
supplementary information or available from the authors upon request. Public and in-house 
microarray ExpressionSet objects can be found at https://osf.io/gxc4r/. The code used to 
generate the figures can be found at 
https://github.com/crazyhottommy/mixed_histology_lung_cancer. 
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Figure Legends. 
  
Fig 1:  Overlapping somatic mutations across different histologic subtypes within the 
same patient. The upset plot demonstrates the shared mutations across samples. Blue bars in 
the y-axis represent the total number of mutations in each sample. Black bars in the x-axis 
represent the number of mutations shared across samples connected by the black dots in the 
body of the plot. 
  
Fig 2: Mutational spectrums and signatures are similar across different histologic 
subtypes within the same patient. (a) Bar plots represent the mutational spectrum 
decomposed by trinucleotide context. (b) Heatmap of the contribution of the 30-COSMIC 
mutation signatures in each sample. (c) Stacked barplot for the contribution of the top 10 
mutation signatures in each sample. 
  
Fig 3:  Clonality analysis revealed shared clonal mutations between different histologies 
within the same patients. (a-k) Scatter plots of the cellular prevalence of somatic mutations 
calculated by PyClone for the two histological components within the same patient. Mutations 
were clustered by PyClone and mutations of the same cluster were labeled with the same color. 
Labeled genes represent canonical cancer gene mutations. 
  
Fig 4: Somatic copy number aberration (SCNA)  analysis demonstrated similar copy-
number changes between different histologic subtypes within the same patient. (a) IGV 
screenshot of genome-wide SCNA profile for each sample. (b) Heatmap of the correlation of 
SCNA at gene-level. (c) Heatmap of copy number changes from canonical cancer genes of the 
COSMIC database. 

  
Fig 5: Gene expression profile revealed some extent of similarity of the same histologic 
components across different patients. (a) Principal component analysis (PCA) of all 
histologic subtypes based on gene expression data. (b) Heatmap of the top 500 most variable 
genes across the samples clustered by both genes and the samples. (c) Commonly up-
regulated and down-regulated pathways comparing SCLC with LUAD across public datasets 
and in-house dataset.  (d) Commonly up-regulated and down-regulated pathways comparing 
LCNEC with LUAD across public datasets and in-house dataset. 
  
Supplementary Fig1. (a-i) Venn-diagram showing the number of overlapping mutations in each 
patient across different histological components. 
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