

1 **Title:** Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal
2 single-particle analysis platforms

3

4 **Authors:**

5 Tanina Arab^{1, #} ORCID 0000-0003-4485-1096, tarab1@jhu.edu

6 Emily R. Mallick^{1, #}, emilymallick@gmail.com

7 Yiyao Huang¹ ORCID 0000-0003-1749-963X, yiyoahuang@jhu.edu

8 Liang Dong² ORCID 0000-0001-7689-3237, ldong4@jhmi.edu

9 Zhaohao Liao¹, zliao@jhmi.edu

10 Zezhou Zhao¹ ORCID 0000-0003-4792-6073, zach.zhao621@gmail.com

11 Olesia Gololobova¹, ORCID 0000-0002-0392-268X, ogololo1@jhmi.edu

12 Barbara Smith³, bsmit112@jhmi.edu

13 Norman J. Haughey⁴ ORCID 0000-0001-5194-4122, nhaughe1@jhmi.edu

14 Kenneth J. Pienta² ORCID 0000-0002-4138-2186, kpienta1@jhmi.edu

15 Barbara S. Slusher^{4,5} ORCID 0000-0001-9814-4157, bslusher@jhmi.edu

16 Patrick M. Tarwater⁶ ORCID 0000-0002-6791-1090, tarwater@jhu.edu

17 Juan Pablo Tosar^{7,8} ORCID 0000-0002-2021-2479, jptosar@pasteur.edu.uy

18 Angela M. Zivkovic⁹ ORCID 0000-0002-2828-7862, amzivkovic@ucdavis.edu

19 Wyatt N. Vreeland¹⁰ ORCID 0000-0003-0524-8403, wyatt.vreeland@nist.gov

20 Michael E. Paulaitis¹¹ ORCID 0000-0002-9628-1091, michaelp@jhmi.edu

21 Kenneth W. Witwer^{1,4,12,*} ORCID 0000-0003-1664-4233, kwitwer1@jhmi.edu

22

23 **Author Information:**

24 ¹Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of
25 Medicine, Baltimore, MD, US

26 ²Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, US

27 ³Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD,
28 US

29 ⁴Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, US

30 ⁵Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore,
31 MD

32 ⁶Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health,
33 Baltimore, MD, US

34 ⁷Faculty of Science, Universidad de la República, Montevideo, Uruguay

35 ⁸Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay

36 ⁹Department of Nutrition, University of California Davis, Davis, CA, US

37 ¹⁰Bioprocess Measurements Group, National Institute of Standards and Technology,
38 Gaithersburg, MD, US

39 ¹¹Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of
40 Medicine, Baltimore, MD, US

41 ¹²The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns
42 Hopkins University School of Medicine, Johns Hopkins Medicine and Johns Hopkins Bayview
43 Medical Center, Baltimore, MD, US
44

45 [#]These authors contributed equally to this work
46

47 ***Corresponding Author:**

48 Kenneth W. Witwer, PhD
49 733 North Broadway
50 Miller Research Building, Room 827
51 Baltimore, MD 21205
52 Phone: 1-410-955-9770
53 Fax: 1-410-955-9823
54 Email: kwitwer1@jhmi.edu

55
56 **Keywords:** extracellular vesicles, exosomes, microvesicles, ectosomes, nanoparticle tracking
57 analysis, single particle interferometric reflectance imaging sensing, resistive pulse sensing,
58 nanoflow cytometry
59
60

61 **ABSTRACT**

62 We compared four orthogonal technologies for sizing, counting, and phenotyping of extracellular
63 vesicles (EVs) and synthetic particles. The platforms were: single-particle interferometric
64 reflectance imaging sensing (SP-IRIS) with fluorescence, nanoparticle tracking analysis (NTA)
65 with fluorescence, microfluidic resistive pulse sensing (MRPS), and nanoflow cytometry
66 measurement (NFCM). EVs from the human T lymphocyte line H9 (high CD81, low CD63) and
67 the promonocytic line U937 (low CD81, high CD63) were separated from culture conditioned
68 medium (CCM) by differential ultracentrifugation (dUC) or a combination of ultrafiltration (UF)
69 and size exclusion chromatography (SEC) and characterized by transmission electron
70 microscopy (TEM) and Western blot (WB). Mixtures of synthetic particles (silica and
71 polystyrene spheres) with known sizes and/or concentrations were also tested. MRPS and NFCM
72 returned similar particle counts, while NTA detected counts approximately one order of
73 magnitude lower for EVs, but not for synthetic particles. SP-IRIS events could not be used to
74 estimate particle concentrations. For sizing, SP-IRIS, MRPS, and NFCM returned similar size
75 profiles, with smaller sizes predominating (per power law distribution), but with sensitivity
76 typically dropping off below diameters of 60 nm. NTA detected a population of particles with a
77 mode diameter greater than 100 nm. Additionally, SP-IRIS, MRPS, and NFCM were able to
78 identify at least three of four distinct size populations in a mixture of silica or polystyrene
79 nanoparticles. Finally, for tetraspanin phenotyping, the SP-IRIS platform in fluorescence mode
80 was able to detect at least two markers on the same particle, while NFCM detected either CD81
81 or CD63. Based on the results of this study, we can draw conclusions about existing single-
82 particle analysis capabilities that may be useful for EV biomarker development and mechanistic
83 studies.

84 **INTRODUCTION**

85

86 Classification of extracellular vesicles (EVs) into subtypes has been proposed based on size,
87 biogenesis pathway, separation procedure, cellular or tissue origin, and function, among others
88 [1–6]. However, reproducible classification of EV subtypes will require single-particle
89 characterization techniques including phenotyping by surface molecules or molecular signatures
90 [7,8]. In this sense, current knowledge of EV subtypes could be compared with knowledge of
91 immune cells in the 1970s and early 1980s. Around that time, multiplexed flow cytometry
92 capabilities and cell sorting were developed, allowing more precise identification,
93 characterization, and molecular and functional profiling of immune cell subsets [9]. Single-
94 particle technologies for much smaller biological entities will be needed to divide heterogeneous
95 EV populations into well-defined and easily recognized subgroups.

96

97 In this study, we evaluated several particle types and single-particle characterization platforms.
98 For input, we used a selection of biological and synthetic particles. EVs were separated from
99 culture medium of H9 T lymphocytic cells and U937 promonocytic cells using several methods.
100 These two cell lines were chosen because they display different levels of the tetraspanins CD63
101 and CD81. H9 cells have high CD81 and low CD63 levels, while U937 produce little CD81 but
102 abundant CD63. Mixtures of distinct sizes of synthetic silica and traceable polystyrene beads
103 were also tested, not because they mimic EVs or can serve as EV reference materials, but
104 precisely because of their known size and composition, creating a “best case scenario” to assess
105 ability to measure particles. The technology platforms (Text Box 1) were: single-particle
106 interferometric reflectance imaging sensing (SP-IRIS, NanoView) [10–12] with fluorescence,

107 nanoparticle tracking analysis (NTA, ParticleMetrix) [13–15] with fluorescence, microfluidic
108 resistive pulse sensing (MRPS, Spectradyne) [15–17] (which does not have fluorescence
109 capabilities), and nanoflow cytometry measurement (NFCM, NanoFCM) [18,19] with
110 fluorescence.

Text Box 1: Evaluated Technologies

Single-particle interferometric reflectance imaging sensing (SP-IRIS) captures particles (*e.g.* EVs) onto a chip by affinity reagents, usually antibodies, to surface antigens. Particles are imaged by interferometric reflectance for sizing and counting, and fluorescence detection may be done for up to three channels for surface antigens or internal molecules following fixation and permeabilization. Website for the platform we used: <https://www.nanoviewbio.com/>

Nanoparticle tracking analysis (NTA) is an optical method to track single particles and assign sizes and counts. Measuring Brownian motion allows calculation of a hydrodynamic sphere-equivalent radius of each tracked particle. Additionally, fluorescence filters can be used for detection of particle-associated fluorescence moieties channels. Website for the platform we used: <https://www.particle-metrix.de/en/particle-metrix>

Microfluidic resistive pulse sensing (MRPS) counts and sizes particles as they pass through a pore between microfluidic chambers. Occlusion of the pore results in a measurable change in electrical signal (defining an event) that is proportional to the volume of the particle. Often, this technique uses different disposable cartridge pore sizes to detect particle populations within specific size ranges. As a non-optical technology, fluorescence detection is not available. Website for the platform we used: <https://nanoparticlecleanalyzer.com/>

Nanoflow cytometry measurement (NFCM) is a flow-based technique that detects nano-sized particles by scatter and/or fluorescence. Compared with traditional flow cytometry, a smaller flow channel reduces background signal, and lower system pressure increases dwell time of particles for enhanced signal integration. Website for the platform we used:

<http://www.nanofcm.com/products/flow-nanoanalyzer>

111

112

113 **MATERIALS AND METHODS**

114

115 *Please see Table 1 for manufacturer, part number, and (where applicable) dilution of reagents.*

116 ***Certain commercial equipment, instruments, and reagents are identified in this paper to foster***
117 ***understanding. Such identification does not imply recommendation or endorsement by the***
118 ***National Institute of Standards and Technology or any other entity, nor does it imply that the***
119 ***materials or equipment identified are necessarily the best available for the purpose.***

120

121 **Particle preparation:** Human cells lines H9 (T lymphocytic) and U937 (pro-monocytic) were
122 obtained from the American Type Culture Collection (ATCC). Cells were maintained in Roswell
123 Park Memorial Institute (RPMI) 1640 Medium supplemented with either replete or EV-depleted
124 10% heat-inactivated fetal bovine serum, with 1% HEPES buffer, 1% Penicillin-Streptomycin,
125 and 1% L-Glutamine. Cells were cultured at 37 °C in 5% CO₂. Silica spheres (SS, NanoFCM,
126 Nottingham, England) were a premixed combination of diameters 68 nm, 91 nm, 113 nm, and
127 151 nm. Individual polystyrene spheres (PS, Thermo Fisher) of diameters 70 nm, 90 nm, 125
128 nm, and 150 nm were purchased. Nominally equal concentrations (1 × 10¹² particles/mL) of
129 beads were mixed.

130

131 **Size-exclusion chromatography (SEC):** 60 mL of culture-conditioned medium (CCM) from
132 each cell line was centrifuged at 1,000 × g for 5 minutes at 4 °C to remove cells and cellular
133 debris. 3 kDa molecular weight cut off (MWCO) Centricon Plus-70 centrifugal filters (Millipore
134 Sigma) were used to concentrate the initial volume to 1.5 mL. Size exclusion chromatography
135 (SEC) was done with qEV Automated Fraction Collectors (AFC; Izon Science, Cambridge, MA)

136 and qEV original 70 nm columns (Izon Science, Cambridge, MA). Columns were left at room
137 temperature for 30 minutes and washed with phosphate-buffered saline (PBS). 0.5 mL of
138 concentrated CCM was loaded onto each of three columns, and 0.5 mL fractions
139 were collected by adding additional PBS to the column. EV-enriched fractions (SEC; fractions 7-
140 9) were pooled altogether from the three columns used for each sample and further concentrated
141 using 3 kDa MWCO Amicon Ultra-15 Centrifugal Filters to a final volume of 1 mL. 50- μ L
142 aliquots were stored at -20°C for downstream assays.

143

144 **Differential ultracentrifugation (dUC):** 60 mL of CCM from each cell line was centrifuged at
145 $1,000 \times g$ for 5 minutes at 4°C to remove cells and cellular debris and $2,000 \times g$ for 10 minutes
146 at 4°C to remove additional debris. The supernatant was transferred to polypropylene thin-wall
147 ultracentrifugation (UC) tubes and centrifuged at $10,000 \times g$ for 30 minutes at 4°C using a
148 swinging bucket rotor (Thermo Scientific rotor model AH-629, k-factor 242, acceleration and
149 deceleration settings of 9) to pellet large EVs. Supernatant was transferred into new
150 polypropylene thin wall UC tubes and centrifuged at $100,000 \times g$ for 70 minutes at 4°C using
151 the same swinging bucket rotor. The 100K pellets containing small EVs were resuspended in 1
152 mL of PBS, vigorously vortexed, and placed on ice for 20 minutes. 50- μ L aliquots were stored at
153 -20°C for downstream assays.

154

155 **Transmission electron microscopy (TEM):** 10 μ L freshly thawed aliquots were adsorbed to
156 glow-discharged carbon-coated 400 mesh copper grids by flotation for 2 minutes. Grids were
157 quickly blotted and rinsed by flotation on 3 drops (1 minute each) of 1 \times Tris-buffered saline.
158 Grids were negatively stained in 2 consecutive drops of 1% uranyl acetate (UAT)

159 with tylose (1% UAT in deionized water (dIH₂O), double filtered through a 0.22 μm filter),
160 blotted, then quickly aspirated to cover the sample with a thin layer of stain. Grids were imaged
161 on a Hitachi 7600 TEM operating at 80 kV with an AMT XR80 CCD (8 megapixel). SS and PS
162 were absorbed to grids as above, but with initial flotation for 5 minutes and imaging on a Phillips
163 CM-120 TEM operating at 80 kV with an AMT XR80 CCD (8 megapixel).

164

165 **Western blot (WB):** H9 and U937 cell pellets and isolated EVs were lysed in 1×
166 radioimmunoprecipitation assay buffer (RIPA) supplemented with protease inhibitor cocktail.
167 Protein quantification of cell and EV lysates was done using a bicinchoninic acid assay (BCA)
168 (Pierce BCA Protein Assay Kit). 5 μg of lysates were resolved using a 4% to 15% Criterion
169 TGX Stain-Free Precast gel, then transferred onto an Immuno-Blot PVDF membrane. Blots were
170 probed using primary antibodies in PBS-T and 5% Blotting Grade Blocker. Primary antibodies
171 were against CD81, CD63, CD9, TSG101, calnexin, BiP/GRP78, and GM130. Secondary
172 antibodies were rabbit anti-mouse IgGκ BP-HRP and mouse anti-rabbit IgGκ BP-
173 HRP. SuperSignal West Pico PLUS Chemiluminescent Substrate was used for detection and
174 blots were visualized with an iBright Western Blot (Thermo Fisher, Waltham, MA) imaging
175 system.

176

177 **Single particle interferometric reflectance imaging (SP-IRIS):** Measurements were
178 performed largely as described previously [20,21]. 35 μL of H9 and U937 EVs isolated by SEC
179 or dUC were diluted 1:1 in incubation buffer (IB) and incubated at room temperature
180 on ExoView R100 (NanoView Biosciences, Brighton, MA) chips printed with anti-human CD81
181 (JS-81), anti-human CD63 (H5C6), anti-human CD9 (HI9a), and anti-mouse IgG1 (MOPC-21).

182 After incubation for 16 hours, chips were washed with IB 4 times for 3 minutes each under
183 gentle horizontal agitation at 500 rpm. Chips were then incubated for 1 hour at room temperature
184 with a fluorescent antibody cocktail of anti-human CD81 (JS-81, CF555), anti-human CD63
185 (H5C6, CF647), and anti-human CD9 (HI9a, CF488A) at a dilution of 1:1200 (v:v) in a 1:1 (v:v)
186 mixture of IB and blocking buffer. The buffer was then exchanged to IB only, followed by 1
187 wash with IB, 3 washes with wash buffer, and 1 wash with rinse buffer (3 minutes each at 500
188 rpm). Chips were immersed twice in rinse buffer for approximately 5 seconds each and removed
189 at a 45-degree angle to allow the liquid to vacate the chip. All reagents and antibodies were
190 supplied by NanoView Biosciences (Brighton, MA, Cat #EV-TETRA-C). Both SS and PS were
191 diluted in dIH₂O to load 10,000 particles, nominally, per antibody capture spot on
192 the ExoView chips. 35 µL of diluted spheres were incubated on ExoView chips and allowed to
193 fully dry. All chips were imaged in the ExoView scanner (NanoView Biosciences, Brighton,
194 MA) by interferometric reflectance imaging and fluorescent detection. Data were analyzed
195 using NanoViewer 2.8.10 Software (NanoView Biosciences). Fluorescent cutoffs were as
196 follows: CF555 channel 230, CF488 channel 475, CF647 channel 250 (biological particles) and
197 CF555 channel 675, CF488 channel 600, and CF647 channel 375 (SS and PS).

198

199 **Nanoparticle tracking analysis (NTA):** ZetaView QUATT-NTA Nanoparticle Tracking-Video
200 Microscope PMX-420 and BASIC NTA-Nanoparticle Tracking Video Microscope PMX-120
201 (Particle Metrix, Inning am Ammersee, Germany) instruments were used for particle
202 quantification in both scatter and fluorescence (488 nm) modes. Calibration beads and biological
203 samples were diluted in distilled water and PBS, respectively, to a final volume of 1 mL.
204 Calibration was done for both scatter and fluorescence measurements. For scatter-mode

205 calibration, 100 nm PS beads were diluted 1:250,000 (v:v). Capture settings were: sensitivity 65,
206 shutter 100, minimum trace length 10. Cell temperature was maintained at 25 °C for all
207 measurements. For fluorescence calibration, 488 nm yellow-green FluoSpheres were diluted
208 1:250,000 (v:v), and both scatter and fluorescence were measured. Scatter was recorded as
209 above, and fluorescence was measured at sensitivity 80, shutter 100, and minimum trace length
210 15. To measure SS and PS mixtures and individual size populations of PS, samples were diluted
211 such that at least 200 particles could be counted per frame. Technical triplicates were measured
212 for each sample. A washing step was done between each measurement using dIH₂O. For H9 and
213 U937 EVs separated by SEC or dUC, one cycle was performed by scanning 11 cell positions.
214 Capture was done at medium video setting, corresponding to 30 frames per position. ZetaView
215 software 8.5.10 was used to analyze the recorded videos with the following settings: minimum
216 brightness 30, maximum brightness 255, minimum area 10, and maximum area 1000. Since
217 subpopulations of particles might also be identified based on signal intensity, we used manual
218 and population distribution gates in the ZetaView software to assess this possibility for SS and
219 PS mixtures. PE-conjugated mouse anti-human CD81 and AF488-conjugated mouse anti-human
220 CD63 were used for fluorescence detection of EVs. Antibodies were mixed 1:9 (v:v) with PBS,
221 incubated 2 hours at room temperature, and diluted to a final volume of 1 mL. Supplementary
222 Table 2 lists all antibodies tested with this platform.

223

224 **Microfluidic resistive pulse sensing (MRPS):** Microfluidics resistive pulse sensing
225 measurements were conducted using the nCS1 instrument (Spectradyne, Torrance, CA) as
226 described previously [20]. For biological particles, sample volumes of a few µL of H9 and U937
227 EVs isolated by SEC or dUC were diluted with an equal volume of 1% polysorbate 20 (Tween

228 20) in 1× PBS (PBST) and further diluted as indicated with 1× PBS, and loaded onto
229 polydimethylsiloxane cartridges (diameter range 65 nm to 400 nm). A different cartridge was
230 used for each sample and replicate. Approximately 5 μ L of the diluted sample was used and
231 about 25,000 events were recorded for each analyte. For synthetic nanoparticles, SS and PS were
232 diluted 100-fold by volume in dH₂O, then 10-fold by volume with equal volumes of PBST and
233 the remainder with 1× PBS and loaded onto TS-400 polydimethylsiloxane cartridges.
234 Approximately 3,000 events were obtained for each SS and PS repeat. All acquired results were
235 analyzed using the nCS1 Data Analyzer (Spectradyne, Torrance, CA). For all samples, user-
236 defined filtering was applied by defining 2D polygonal boundaries based on transition time and
237 diameter to exclude false positive signals, similar to gating commonly used in analyzing flow
238 cytometry data. Effects of Tween 20 on EV integrity or counts were assessed by diluting samples
239 to a final concentration of Tween 20 (in PBS) ranging from 0.1% to 0.9%.

240

241 **Nano-flow cytometry measurement (NFCM):** The nFCM flow nano-analyzer was used to
242 measure concentration and size of particles following the manufacturer's instructions and as
243 described previously [22]. Briefly, two single photon-counting avalanche photodiodes (APDs)
244 were used for the simultaneous detection of side scatter (SSC) and fluorescence of individual
245 particles. The instrument was calibrated separately for concentration and size using 200 nm PE-
246 and AF488 fluorophore-conjugated PS beads and a Silica Nanosphere Cocktail, respectively.
247 20 μ L of each EV preparation was incubated with 20 μ L PE-conjugated CD81 and 5 μ L AF488-
248 conjugated CD63 antibodies at 37 °C for 30 minutes. After incubation, the mixture was washed
249 twice with PBS and centrifuged at 110,000 \times g for 70 min at 4 °C (TH-641 rotor, k-factor 114,
250 Thermo Fisher, using thin-wall polypropylene tubes with 13.2 ml capacity and acceleration and

251 deceleration settings of 9). The pellet was resuspended in 50 μ L PBS. Events were recorded for 1
252 minute. Using the calibration curve, the flow rate and side scattering intensity were converted
253 into corresponding particle concentrations and size.

254

255 **Dynamic light scattering (DLS):** To check the nominal size values of PS beads, particle
256 diameter was measured by dynamic light scattering using a Malvern Zetasizer Nano-ZS90. Each
257 suspension was diluted 10 \times in ultrapure water, and measurements were carried out in triplicate
258 at 25 °C. A single peak was observed for each individual run.

259

260 **Data and methods availability:** We have submitted all relevant data of our experiments to the
261 EV-TRACK knowledgebase (EV-TRACK ID: EV200090) [23]. Reporting for NFCM was
262 submitted to FlowRepository as ID:FR-FCM-Z2U3 [24]. Any and all data are available on
263 reasonable request.

264

265 **Table 1**

Antibodies	Manufacturer	Cat #	Dilution
Primary Anti-CD81	Santa Cruz, Dallas, TX	sc-23962	1:500
Primary Anti-CD63	BD Pharmigen, San Diego, CA	556019	1:1000
Primary Anti-CD9	BioLegend, San Diego, CA	312102	1:1000
Primary Anti-TSG101	AbCam, Cambridge, MA	ab125011	1:1000
Primary Anti-Calnexin	AbCam Cambridge, MA	ab22595	1:2000
Primary Anti-BiP/GRP78	BD Pharmigen, San Diego, CA	619078	1:500
Primary Anti-GM130	AbCam, Cambridge, MA	ab52649	1:400
Secondary Mouse Anti-Rabbit IgG BP-HRP	Santa Cruz, Dallas, TX	sc-2357	1:5000
Secondary Rabbit Anti-Mouse IgGk BP-HRP	Santa Cruz, Dallas, TX	516102	1:5000
PE-Conjugated Mouse Anti-Human CD81	BD Biosciences, Franklin Lakes, NJ	555676	n/a
AF488-Conjugated Mouse Anti-Human CD63	Novus Biologicals, Littleton, CO	NBP2-42225	n/a
Reagents	Manufacturer	Cat #	
3K MWCO Centricon Plus-70	Millipore Sigma	UFC700308	
3K MWCO Amicon Ultra-15	Millipore Sigma	UFC900396	
Blotting Grade Blocker	Bio-Rad	170-6404	
Carbon Coated 400 Mesh Copper Grids	Electron Microscopy Science	CF400-Cu-UL	
Criterion TGX Stain-Free Precast Gel	Bio-Rad	5678084	
Distilled Water	Gibco	15230-162	
FluoSpheres Carboxylate-Modified Microspheres, 0.1 μ m, Yellow Green Fluorescent	Thermo Scientific	F8803	
H9 Cell Line	American Type Culture Collection	HTB-176	
Heat-Inactivated Fetal Bovine Serum	GE Healthcare	SH30396.03	
Heat-Inactivated Fetal Bovine Serum, Exosome-Depleted	Gibco	A2720801	
HEPES buffer	Gibco	15630080	
Immuno-Blot PVDF Membrane	Bio-Rad	1620177	
L-Glutamine	Gibco	25030081	
Open-Top Thin Wall Ultra-Clear Tubes	Beckman Coulter	344091	

Penicillin-Streptomycin	Gibco	15140122
Phosphatidylserine Beads	NanoFCM	S16M-Exo
Phosphate-Buffered Saline (PBS)	Gibco	14190-144
Pierce BCA Protein Assay Kit	Thermo Scientific	23225
Polypropylene Ultracentrifugation (UC) Tubes	Sorvall	03-141
Polystyrene Spheres 150 nm	Thermo Scientific	3150A
Polystyrene Spheres 125 nm	Thermo Scientific	3125A
Polystyrene Spheres 90 nm	Thermo Scientific	3090A
Polystyrene Spheres 70 nm	Thermo Scientific	3070A
Protease Inhibitor Cocktail	Millipore Sigma	11697498001
RIPA	Cell Signaling Technology	9806
Roswell Park Memorial Institute (RPMI) 640 Medium	Gibco	11875093
Silica Nanosphere Cocktail	NanoFCM	n/a
SuperSignal West Pico PLUS Chemiluminescent Substrate	Thermo Scientific	34577
Swinging Bucket Rotor AH-629	Thermo Scientific	54284
Tris Buffered Saline (TBS)	Bio-Rad	1706435
Tween-20	Millipore Sigma	P7949
U937 Cell Line	American Type Culture Collection	CRL-1593.2
Ultra-Pure Distilled Water	Invitrogen	10977015
Uranyl Acetate	Polysciences	2144725

267 **RESULTS**

268

269 **Production, separation, and characterization of input materials**

270 Supernatants were collected from cultured human cell lines: H9 (T-lymphocytic) and U937 (pro-
271 monocytic). Our goal was to obtain EV-enriched or -depleted biological material from cells with
272 different tetraspanin expression. EVs were partially separated by size exclusion chromatography
273 and ultrafiltration or differential ultracentrifugation (Figure 1A). Marker expression and
274 morphology were assessed by WB (Figure 1B and Supplementary Figure 1) and TEM. WB
275 revealed characteristic cellular CD63 and CD81 expression patterns, with CD81 above the limit
276 of detection only for H9 and CD63 predominating for U937 (Figure 1B). CD81 was apparently
277 enriched in EV fractions from H9, while CD63 appeared to be present, but not enriched, in EVs
278 from U937, suggesting relatively inefficient release. Please note, however, that protein amount
279 was used to normalize WB input, so per-particle content cannot be easily compared across
280 sample types, and see also additional blots in Supplementary Figure 1B-D. Calnexin was
281 detected in cell lysates, with little or no signal in EV fractions (Figure 1B). For EVs concentrated
282 and separated by each method, TEM showed heterogeneous populations (particles ranging from
283 approximately 50 to approximately 500 nm in diameter) including EVs with the typical “cup-
284 shaped” fixation artifact (Figure 1C and Supplementary Figure 2). UC pellets displayed higher
285 background and apparent non-EV particles than SEC EV fractions, possibly consistent with
286 proteinaceous material that elutes in later, relatively EV-depleted fractions of SEC (Figure
287 1C and Supplementary Figure 2).

288

289 Silica spheres (SS) and polystyrene spheres (PS) of known size were obtained from commercial
290 sources. These artificial nanoparticles were measured here not as reference materials for EV

291 studies, but simply because they have known diameters and composition, along with higher
292 refractive indices (RIs) than EVs. Note that such particles can be used as reference materials in
293 EV studies if the RI of the material is accounted for, for example with several available software
294 packages [25–28]. For PS, we used National Institute of Standards and Technology (NIST)-
295 traceable size standards. These beads are among the most commonly used size calibrants for
296 materials in their size ranges and are compared with a known standard maintained by NIST. A
297 Certificate of Calibration and Traceability allows labs to show compliance with various ISO and
298 GMP standards and regulations. Additionally, uncertainty of measurement is indicated on a
299 certificate of analysis for each bead lot. We nevertheless confirmed size and purity of SS and PS
300 mixtures using TEM (Figure 1D). Beads corresponding to all four sizes in each mixture were
301 clearly present on the grids, with little or no contaminating material. Bead diameters as measured
302 by TEM were consistent with the nominal diameters and data sheet specifications
303 (Supplementary Table 1, n=at least 30 per population over 4 TEM frames). We also measured
304 individual PS bead populations by dynamic light scattering (DLS), a method best suited for
305 measurement of monodisperse populations (three bead preparations each, measured thrice each).
306 Results showed a single peak for each individual run and polydispersity indices consistent with
307 monodispersity (Supplementary Table 1).

308

309 **Artificial nanoparticle sizing**

310 Mixed silica spheres (SS) with nominal diameters of 68 nm, 91 nm, 113 nm, and 151 nm were
311 measured with the four platforms. SP-IRIS identified four distinct populations with diameter
312 modes around 75 nm, 100 nm, 120 nm, and 150 nm (Figure 2A). Since the SP-IRIS technology
313 uses affinity to capture particles, particle mixtures were dried onto the SP-IRIS chips before

314 imaging. NTA detected a broad population distribution with a mode around 105 nm diameter
315 (Figure 2B). MRPS resolved four distinct peaks for each individual chip, but this distinction was
316 masked somewhat by averaging all results (Figure 2C; see inset for an example of an individual
317 reading and also Supplementary Figure 3). NFCM resolved four populations with distinct peaks
318 at diameters of approximately 66 nm, 85 nm, 112 nm, and 154 nm (Figure 2D). Polystyrene
319 spheres (PS) with nominal diameters 70 nm, 90 nm, 125 nm, and 150 nm were mixed to a
320 nominal concentration of 1×10^{12} particles/mL. SP-IRIS detected four distinct peaks around 80
321 nm, 110 nm, 140 nm, and 170 nm (Figure 2E). NTA returned a broad population distribution
322 centered around 105 nm (Figure 2F). MRPS identified distinct peaks at diameters 71 nm, 92 nm,
323 123 nm, and 150 nm (Figure 2G). Nano-flow showed four populations around 85 nm, 120 nm,
324 170 nm, and 225 nm in diameter, as well as a possible smaller population around 60 nm (Figure
325 2H). We also measured several dilutions of SS and PS particles using MRPS and NFCM, with
326 results similar to those described above. Raw and dilution-corrected data are presented in
327 Supplementary Figure 4.

328 Because the NTA platform did not appear to resolve different populations, we also assessed
329 individual PS bead sizes and also tried to use intensities to resolve individual bead populations.
330 Individually, the four bead sizes returned measurements (arithmetic mean +/- SD) of 109.0 nm
331 +/- 0.4 nm (70 nm PS), 105.2 nm +/- 0.3 nm (90 nm PS), 126.5 nm +/- 0.4 nm (125 nm PS), and
332 148.7 nm +/- 3.6 nm (150 nm PS). Mixed beads again produced a single broad peak averaging
333 124.2 nm. Using the NTA software to assign gates based on intensity, we assessed the possibility
334 that individual bead sizes could be resolved. For PS beads, the most intense signals skewed
335 slightly towards larger returned sizes (Supplementary Figure 5A); however, there was no
336 apparent size or distribution difference between medium- and low-intensity populations

337 (Supplementary Figure 5A,B). Similar results were obtained for SS beads (Supplementary Figure
338 5C). Gating on intensity might, however, be a useful tool in some settings.

339

340 **Counting of synthetic nanoparticles**

341 In addition to particle size, we also assessed counts. For SP-IRIS, a mean of around 3000 SS
342 particles were detected per printed antibody spot (Figure 3A), with no overall differences
343 between groups of antibody spots (*i.e.*, three spots per chip each of three tetraspanins and an
344 isotype control; note that no differences would be expected, since particles were dried onto the
345 chips). However, per-spot events ranged considerably from <2000 SS particles per spot to >4500
346 SS particles per spot (Figure 3A). SP-IRIS performed similarly for PS. There were no differences
347 between spots printed with different antibodies, with a mean of around 1400 events/antibody
348 spot (Figure 3B), but events per spot ranged from <1000 PS particles/spot to 3000 PS
349 particles/spot. Based on the nominal PS bead concentration and the surface area of the chips,
350 10,000 particles per spot would have been expected (Figure 3B, dotted line); however, it is
351 possible that beads may not have dried evenly, for example, if they were relatively repelled by
352 antibody-printed surfaces. Following SP-IRIS measurements, chips were probed with three
353 fluorescently labeled antibodies (anti-CD81, anti-CD63, and anti-CD9) to assess background
354 binding. Background binding was negligible for both SS and PS (Supplementary Figure 6A and
355 B, respectively). Some outliers were observed for CD9 (SS) or CD63 (PS); however, none
356 exceeded 1000 events. Particle concentrations were also measured by NTA, MRPS, and NFCM.
357 For SS (Figure 3C), MRPS estimated a concentration approximately one log higher than NTA
358 (5.1×10^{11} particles/mL vs. 5.4×10^{10} particles/mL, respectively), with NFCM in the middle
359 (1.7×10^{11} particles/mL). For PS, all three methods were in close agreement (Figure 3D). The

360 difference for SS, but not for PS, likely reflects the sensitivity of the optical techniques to the
361 refractive index of the particles being counted. Furthermore, the measured concentration was
362 very close to the nominal PS concentration of 1×10^{12} particles/mL (Figure 3D, dotted line).

363

364 **Biological particle sizing**

365 EV preparations from H9 and U937 cell supernatants enriched by ultrafiltration and SEC (SEC
366 EVs) or by differential ultracentrifugation (100K EVs) were next measured using each platform.
367 For H9-derived materials, SP-IRIS returned an almost identical size distribution profile for both
368 EV enrichment methods (Figure 4A). In contrast, NTA, MRPS, and NFCM returned data
369 indicating particles at smaller diameters for the 100K EVs compared with the SEC EVs, with
370 roughly similar particle size distributions (Figure 4B-D). However, substantial variation between
371 replicates might limit the conclusions that can be drawn from this observation; we also expect
372 that the polydisperse nature of EVs will naturally lead to greater CVs. For U937-derived
373 materials, SP-IRIS and NTA (Figure 4E,F) detected more particles at smaller diameters from the
374 100K EVs compared with the SEC-EVs, again with roughly similar particle size distribution.
375 MRPS produced equivalent particle size distribution and particle number between the two
376 enrichment techniques (Figure 4G). In contrast, NFCM detected a higher particle count of
377 smaller particle diameters from the SEC EVs than the 100K EVs, with the particle size
378 distributions significantly different (Figure 4H). Please see Supplementary Figure 7 for plots
379 drawn without error bars for clarity. Again, variability between replicates limits conclusions.
380 Overall, the results are broadly consistent with the reported power-law size distribution of EVs
381 [29,30] and the expectation that UC pellets may contain non-EV extracellular particles (EPs)
382 around the same size as EVs [1].

383

384 **Biological particle counting**

385 Particle counts were next assessed. As before, we present the SP-IRIS data separately because
386 this platform does not provide an overall particle count, but rather a number of events detected
387 on surfaces printed with antibodies (shown here: to CD81 and to CD63 plus an isotype control).
388 Consistent with expectations based on cellular tetraspanin expression and release, SP-IRIS
389 showed that more H9 particles were captured by anti-CD81 than by anti-CD63 (Figure 5A) and
390 that U937 particles could be captured by CD63 capture antibodies and not by CD81 capture
391 antibodies (Figure 5B). For the remaining three platforms, which measure overall concentration,
392 several trends were apparent (Figure 5C,D). First, for both the H9 and the U937 source, and for
393 both EV separation methods, data were consistent with the results of SS counting in that NTA,
394 NFCM, and MRPS measurements ordinally ranked from least particles/mL to greatest
395 particles/mL. Second, MRPS and NFCM measured greater particle concentrations for 100K EVs
396 than for SEC EVs (corrected for processing and dilution), although NTA results were similar.
397 Finally, this is in contrast to results for the PS particles, where the three techniques returned
398 roughly equivalent particle counts.

399

400 **Do low concentrations of detergent affect MRPS measurements?**

401 During the review process for this manuscript, a question arose about the possible effect of
402 detergent on the reported results for biological particles measured by MRPS since a
403 manufacturer-recommended dilution buffer contains 1% Tween 20. Specifically, it was proposed
404 that the higher particle counts obtained for the same samples by MRPS and NTA could be due to
405 artifactual small particle production when EVs are disrupted by detergent (see the comments

406 section of [31]). We thus studied the effects of different concentrations of Tween 20 on MRPS
407 measurements using archived aliquots of H9 EVs and U937 EVs. Because the maximum Tween
408 20 concentration used in any reported experiment was 0.5%, we conducted dilution series such
409 that the same biological samples were measured in the presence of Tween 20 concentrations
410 ranging from 0.1% to 0.9%. For reference, our highest concentration of Tween 20 was well
411 below the concentrations previously reported to affect any of three classes of EVs [32]. Across
412 Tween 20 concentrations, measured EV concentrations averaged $1.7 \times 10^{11} \pm 2.2 \times 10^{10}$ (H9 EVs)
413 and $1.5 \times 10^{11} \pm 2.9 \times 10^{10}$ (U937 EVs), with no correlation between counts and detergent
414 concentration (Supplementary Figure 8). Despite some variability in size profiles, there was also
415 no evidence of a clear decrease in particle size with increasing detergent concentration
416 (Supplementary Figure 8B,C).

417

418

419 **Single particle phenotyping by fluorescence**

420 Fluorescence measurements for biological particles were done with three platforms. The MRPS
421 platform has no fluorescence capabilities, so it was used only for sizing and counting. SP-IRIS
422 performs a kind of single-particle phenotyping even in label-free mode, since diameter is
423 measured for individual particles captured by antibodies and thus putatively positive for an
424 antigen. What is more, captured particles can additionally be probed with fluorescently labeled
425 antibodies. For chips incubated with H9 EVs (Figure 6A,B), EVs captured by CD81 antibodies
426 were also generally positive for CD81 by fluorescence, and some also appeared to be CD63
427 positive. In contrast, CD63 capture spots were largely devoid of fluorescence for H9 EVs, as
428 were (most) control capture spots. For chips incubated with U937 EVs (Figure 6C,D), events on
429 CD63 capture spots were also positive for CD63 by fluorescence. CD81-linked fluorescence was

430 at background levels for all spots. Note that numbers of “positive” events are higher in
431 fluorescence mode than with label-free imaging (Figure 5A,B), likely, as discussed later, because
432 fluorescence detection is more sensitive than reflectance imaging.
433 For the two remaining platforms with fluorescence capabilities, NTA and NFCM, results are
434 shown as percent of total particles (Figure 6E-H). Approximately 40% to 50% of detected
435 particles from H9 cells were positive for CD81 according to fluorescent NTA, while little to no
436 CD81 signal was detected for U937 materials, consistent with expectations. However, we could
437 not detect CD63-linked signal by fluorescent NTA for any sample. In contrast, NFCM detected
438 either CD81 or CD63 on a small percentage of particles. The percentages were similar for the
439 two tetraspanins for H9-derived particles. For U937 material, CD63-positive particles were more
440 abundant than CD81-positive particles. No major differences between the SEC and 100K
441 separation methods were apparent according to these data (Figure 6E-H).

442 **DISCUSSION**

443

444 This study evaluated the abilities of four orthogonal technology platforms to size, count, and/or
445 phenotype biological EVs and synthetic nanoparticles. Three of the technologies—SP-IRIS,
446 NTA, and NFCM—are optical in nature and can perform some form of
447 phenotyping/fluorescence analysis, while the other, MRPS, is an electric sensing platform that
448 we did not attempt to apply to particle phenotyping. Although numerous comparisons of EV
449 characterization platforms have been published previously [16,33–36], this study includes
450 NFCM and MRPS and focuses in part on single-particle phenotyping.

451

452 ***Detected particles: size-range sensitivity and refractive index matter.***

453 Whereas NTA, MRPS, and NFCM accurately and consistently measured the concentration of a
454 known mixture of polystyrene particles, estimates of the number of silica particles varied
455 substantially. NTA measured approximately 10-fold fewer SS particles than MRPS, while
456 NFCM measured ~ 3-fold fewer SS particles than MRPS. Since SS have a lower refractive index
457 ($n_{\text{SS}} \sim 1.42$ [37]) than PS ($n_{\text{PS}} \sim 1.59$ [38]), one might predict that a mixture of EVs, with an even
458 lower refractive index than silica [33,39], would have even larger variability between methods.
459 Indeed, for EV preparations, average counts by NTA and MRPS differed by between one and
460 two orders of magnitude. These outcomes emphasize that each platform has an effective range of
461 measurement. MRPS is not sensitive to refractive index, but cartridges may clog (although we
462 did not see evidence of this). In contrast, optical methods are quite sensitive to refractive index,
463 and r^6 variation of scattered intensity limits dynamic range for a single instrument setting.
464 Thus, differences in output in part reflect different or overlapping particle populations that can be
465 detected by the specific technologies, as indeed reported previously for several of these

466 technologies [40]. That is, NTA and MRPS are similarly capable to detect a wide range of PS
467 particle sizes. However, NTA may detect a more limited range of biological particles [41] than
468 the MRPS platform using a small pore-size cartridge, in that MRPS may detect more of the
469 smaller EVs along the power-law distribution. Signal for NTA and NFCM scales with radius to
470 the 6th power, which is general for light scattering in the Rayleigh approximation, whereas signal
471 scales for MRPS and SP-IRIS with radius to the 3rd power. Thus, because of finite dynamic
472 range, NTA will be biased to detecting fewer of the small particles in a sample compared with
473 MRPS. Of course, this will also depend on how the NTA the instrument and analysis settings are
474 configured. One might over-expose the large particles in order to see the small ones, for
475 example, or to increase sensitivity and maximize counts, but the outcome of this adjustment may
476 be limited by glare from the large particles.

477

478 ***Is it important to resolve different particle size populations?***

479 SP-IRIS, MRPS, and NFCM could resolve up to four populations of synthetic nanoparticles with
480 different diameters. We note that distinct populations were somewhat obscured when MRPS
481 results were averaged for SS, but not for PS – see also Supplementary Figure 6 – which may
482 reflect aggregation of the SS due to the electrolyte solution (PBS) required for MRPS and the
483 convolution of experimental uncertainties in particle concentration and size measurements.
484 Alternatively, as suggested by an astute reviewer, a PS standard could be run later on the same
485 sample for scaling of size and concentration. Also noteworthy is that the NFCM platform
486 distinguished subpopulations of SS particles quite well, but that this is likely because the same
487 beads are used to calibrate the instrument. While detecting the expected concentration of high
488 refractive index PS particles, NTA was unable to resolve individual particle populations and

489 instead characterized the SS particles as a broad population distribution centered on an “average”
490 size. To be sure, it may be possible to resolve discretely sized particle populations using NTA
491 with mixtures at different ratios of sizes. We could not do so with the mixtures we used. Whether
492 this matters for biological particles is unclear. It does not seem that biological samples would
493 contain unique EV subpopulations with exquisitely defined sizes, except perhaps for samples
494 from sources infected with specific enveloped viruses. NTA does seem to be capable of detecting
495 shifts in population distributions, and this capability might be more important for biological
496 particles than resolving subpopulations.

497

498 ***On counting by SP-IRIS/fluorescence.***

499 In this study, neither SP-IRIS label-free measurements nor subsequent fluorescence detection
500 could be used directly to estimate overall particle concentration. Instead, SP-IRIS is best used to
501 understand ratios within populations and for single-particle phenotyping. Only a subset of EVs
502 bind to any given affinity reagent “spot.” Binding is determined by diffusion (which is slow for
503 EVs), presence and density of recognized surface markers, and affinity characteristics of
504 antibody-to-antigen binding. The bound population of particles remaining after wash steps is
505 only a small proportion of the total in the input material and cannot be used to determine overall
506 concentration. Interestingly, fluorescence results often indicated higher particle concentrations
507 than returned by label-free counting, even though particles positive for a particular antigen are
508 expected to be only a subset of the captured population (different antigens) or to approach
509 equality (if the capture antigen is targeted and antigen is abundant). Counts are higher because
510 fluorescence detection is more sensitive than label-free. That is, fluorescence detects positive
511 particles that may be below the limit of label-free detection. Also of note, capturing EVs onto the

512 chip via surface markers may render those markers less available to subsequent binding by
513 fluorescently-labeled antibodies. For example, in Figure 6A and B, CD81-captured particles that
514 also display CD63 appear to have more CD63 available for binding by fluorescent antibodies
515 compared with CD63+ particles that have had at least some portion of their CD63 sequestered by
516 the surface-bound antibodies.

517

518 ***Did any platforms identify differences between EV separation technologies?***

519 For both biological sources of EVs, we used two methods of EV separation: dUC (100K EVs),
520 which has been the most common method for EV separation [42–44], and a combination of
521 filtration and size exclusion chromatography (SEC EVs) [45]. According to some evidence in the
522 literature, dUC leads to more protein contamination and aggregation and damage of EVs [46–
523 48]. It should be noted that alternative viewpoints can also be found [18]. However, protein
524 particle contamination might be expected to introduce more and smaller particles. This outcome
525 is indeed observed based upon TEM background and particle profile shifts towards smaller
526 particles for several of the platforms. On the other hand, evidence of aggregation by dUC is not
527 apparent in the data presented here. We cannot rule out aggregation, however, only that the
528 techniques used here did not appear to detect it; we also do not wish to put too fine a point on
529 these comparisons, which are based on limited data.

530

531 ***Single-particle phenotyping.*** For the three techniques with single-particle phenotyping
532 capabilities (SP-IRIS, NTA, and NFCM), each has advantages and challenges. SP-IRIS was able
533 to achieve true “multiplexed” detection, in that signal could be obtained above background for
534 up to three fluorescent channels. At the time of our evaluations, the NTA platform we used could

535 not perform simultaneous multi-channel measurements and thus was not a true single-particle
536 multiplexing platform. Instead, sequential filter switches were required, such that the same
537 particles could not be tracked in different channels. Finally, although the nano-flow technology
538 may be capable of multiplexed phenotyping, we did not explore this capability here.

539

540 ***Summary of findings: Table 2***

541 In Table 2, we attempt to summarize our findings and views about the four investigated
542 techniques. **Detectable size ranges** for biological particles: these should be considered to be
543 rough estimates. If we accept the assumption that EVs follow a power-law size distribution (the
544 smaller, the more abundant, with lower bounds defined by membrane curvature constraints), then
545 no evaluated platform effectively detects the very smallest particles. However, SP-IRIS, MRPS,
546 and NFCM appear to detect slightly smaller particles than NTA **under the conditions and**
547 **settings we tested**. For NTA, MRPS, and NFCM, linear ranges for **particle concentration** for
548 all instruments begin around 1×10^7 particles/mL (or slightly lower) and extend from about one
549 order of magnitude (NTA) to multiple orders of magnitude (MRPS). This spread is important,
550 since the wider the range, the fewer time-consuming concentrations or dilutions must be done to
551 place an unknown particle population into the measurable range. SP-IRIS is a special case, since
552 particles are captured by affinity, and overall concentration cannot easily be estimated. In our
553 hands, particle concentrations must be high ($>>1\times10^7$ particles /mL) even for abundant antigens.
554 Furthermore, the optimal captured particle counts are roughly several thousand per antibody spot
555 (although this may vary). To hit a tight "sweet spot", trial dilutions may be needed. Furthermore,
556 the optimal dilution may differ for different antibodies on the chip because of different
557 percentages of EVs positive for a particular antigen, per-EV antigen abundance, and antibody

558 performance. Hence, dilutions are usually most important and potentially time-consuming for
559 SP-IRIS. Related to dilution is the **volume of input material** required for a single reading.
560 Assuming each platform is provided with a suspension at 1×10^7 particles per mL, the required
561 volume of a dilution at this concentration ranges from 5 μ L (MRPS) to around 1 mL (NTA). Of
562 course, the actual volume/number of EVs needed will also depend on the number of
563 concentrations/dilutions required to reach the measurable concentration range. The input volume
564 difference is also inconsequential for highly abundant materials, but may be important for low-
565 abundance EV samples. **If done, optional calibration steps** are rapid for NTA and MRPS
566 (around 20 minutes). For NFCM, we find that calibration can be as short as 20 minutes but can
567 sometimes take longer. Time for sample dilutions is most difficult to estimate, but is expected to
568 correlate inversely with the range of measurement for each platform. **Read time** ranges from five
569 minute to about half an hour per sample. Note that the times we indicate are for sizing and
570 counting only. Optional fluorescence measurements for the relevant platforms would in some
571 cases add processing time for antibody incubations and removal, as well as for read times (except
572 for NFCM). For SP-IRIS, we should also note that, although the total hands-on and read time is
573 longer than for other techniques, each reading includes on-chip replicates, multiple capture
574 antibodies, and up to three fluorescence readouts per capture antibody.

575

576 **Costs** for the platforms include initial outlay, disposable costs, and maintenance costs. For
577 acquisition, the MRPS system is most economical, while the NFCM platform is the most
578 expensive. For basic counting and sizing, operating costs for NTA and NFCM are negligible.
579 Adding optional fluorescence increases these costs by amounts that are antibody-dependent. The
580 MRPS system uses disposable cartridges that currently cost USD 8 to USD 12 each. The SP-

581 IRIS platform has the highest disposable costs, with each sample requiring at least one chip that
582 costs from USD 50 to >USD 100 each. Since optimal dilutions must be made and may be
583 different for different capture materials on the same chip, multiple chips may be needed for the
584 same sample. Chips also cannot be chemically stripped and re-used, at least not in our hands
585 (Mallick and Witwer, unpublished data). Shelf-life of the chips is also a consideration. However,
586 the company's development of chips with extended shelf-life may overcome this potential
587 hindrance. As noted, though, under optimal conditions, the platform provides multi-dimensional
588 information that may justify costs and logistical challenges. We should also mention that chips
589 for the SP-IRIS and MRPS instruments are currently available only from the instrument
590 manufacturer for that particular measurement technique. As for maintenance costs, we are unable
591 to estimate them at this time for any platform.

592

593 There are several limitations of our study as well as questions that might be investigated in the
594 future. Since several of the platforms easily distinguished multiple populations of synthetic
595 particles, but did not always identify the expected size for each population, normalization
596 strategies including spiked-in standards could be useful. However, a question we have not
597 addressed here is how components of the suspension medium might affect spiked-in synthetic
598 material. For example, if synthetic beads are spiked into biological fluids, will they acquire
599 "coronas" that change their measured properties? Our study, by examining only several distinct
600 sizes of synthetic particles, also does not rigorously define the range of size detection for
601 biological particles for each platform. Likewise, our estimates of range of concentration
602 measurement for each instrument are simplistic. In theory, a "single particle" detection
603 instrument is capable of detecting a single particle, although measurement noise, contaminants,

604 and the time required to “find” the single particle are real-world considerations that make this
605 unlikely.

606

607 ***In conclusion:***

- 608 • For any platform and configuration, particle counting is accurate only within a certain
609 range. Sensitivity for particles of different sizes and refractive indices should be
610 considered. Recall that signal for light scattering methods like NTA and NFCM scales
611 with radius to the sixth power, while signal for SP-IRIS and MRPS scales with radius to
612 the third power. However, in our hands, the NFCM platform is more sensitive than NTA
613 for small and low refractive index particles.
- 614 • Different size populations within a mixture of synthetic nanoparticles can be identified by
615 SP-IRIS, MRPS, and NFCM, but not, in our hands, by NTA. The individual sizes are not
616 always accurately assigned, however, emphasizing the importance of calibration.
- 617 • SP-IRIS, NTA, and NFCM offer fluorescent particle phenotyping, while MRPS does not.
618 Multiplexed biological particle phenotyping of tetraspanins was easily achieved with the
619 SP-IRIS platform (one-antibody capture and up to three-antibody fluorescence detection).
- 620 • Appropriate reference materials are needed for better evaluation of single particle
621 phenotyping capabilities, including multiplexed phenotyping.
- 622 • Rather than relying on a single platform, consider using orthogonal technologies.
- 623 • Both acquisition and recurring costs should be considered before choosing a platform.
- 624 • No evaluated platform is necessarily “better” or “worse” than others; rather, it is
625 important to be aware of the capabilities of each platform with respect to each particle
626 population of interest and the population attributes that are of greatest interest.

627 **FIGURE LEGENDS**

628

629 **Figure 1: Methodology and EV separation.** (A) EVs were separated from H9 and U937
630 culture-conditioned media by a combination of ultrafiltration and size exclusion chromatography
631 (SEC EVs) or by differential ultracentrifugation (100K EVs). (B) Immunoblots of
632 cell lysates from H9 and U937, EVs separated by ultracentrifugation (100K EVs) and SEC (SEC
633 EVs), and later fractions of SEC (enriched for protein; SEC-P). Antibodies are specified in Table
634 1; see also Supplementary Figure 1. (C) Electron micrograph of SEC EVs and 100K EVs from
635 both cell lines. As indicated for each subpanel, leftmost scale bars represent 500 nm at
636 magnification 40,000 \times ; rightmost scale bars are 100 nm at magnification 100,000 \times . (D) EM of
637 SS and PS. Leftmost scale bars are 500 nm at magnification 17,500 \times ; rightmost scale bars are
638 100 nm at magnification 65,000 \times .

639

640 **Figure 2: SS and PS size distribution.** Size distributions for SS (n=3) with standard deviation
641 for (A) SP-IRIS, (B) NTA, (C) MRPS, and (D) NFCM. Nominal SS diameters are indicated by
642 vertical dotted lines: 68 nm, 91 nm, 113 nm, and 151 nm. Size distributions for PS (n=3; with
643 SD) for (E) SP-IRIS, (F) NTA, (G) MRPS, and (H) NFCM. Nominal PS diameters are indicated
644 by vertical dotted lines: 70 nm, 90 nm, 125 nm, and 150 nm. Inset in Figure 2C shows a single
645 MRPS measurement of the size distribution; see also Supplementary Figure 3 for individual
646 readings.

647

648 **Figure 3: SS and PS quantification.** (A) SP-IRIS label-free capture for SS and PS using four
649 capture spots (n=3 per group; mean particle count per spot with SD). B) SS quantification (n=3;

650 mean particles/mL with SD). (C) PS quantification (n=3; mean particles/mL with SD). In panels
651 B and D, nominal PS concentration is indicated by a horizontal dotted line (1.0×10^{12}
652 particles/mL).

653

654 **Figure 4: H9 and U937 particle size distribution.** Diameters of particles for H9 SEC EVs and
655 100K EVs (n=3 per group, with standard deviation) for (A) SP-IRIS, (B) NTA, (C) MRPS, and
656 (D) NFCM. Size distributions for U937 SEC EVs and 100K EVs (n=3 per group; with SD) for
657 (E) SP-IRIS, (F) NTA, (G) MRPS, and (H) NFCM. Please see Supplementary Figure 7 for
658 graphs without error bars.

659

660 **Figure 5: H9 and U937 particle quantification.** SP-IRIS label-free capture for (A) H9 SEC
661 EVs and 100K EVs and (B) U937 SEC EVs and 100K EVs using CD81, CD63, and mouse
662 isotype control capture antibodies (measured on n=3 SP-IRIS chips and with n=3 antibody spots
663 each; mean particle count/spot with SD). H9 and U937 particle quantification (n=3; mean
664 particles/mL with SD) for (C) SEC EVs and (D) 100K EVs using NTA, MRPS, and NFCM.

665

666 **Figure 6: Particle phenotyping.** SP-IRIS fluorescence detection using labeled anti-CD81 and
667 anti-CD63 after particle capture with CD81, CD63, and mouse isotype control (n=3 per group;
668 mean and SD) for (A) H9 SEC EVs, (B) H9 100K EVs, (C) U937 SEC EVs, and (D) U937 100K
669 EVs. Percent of particles detected with fluorescently-labeled anti-CD81 and anti-CD63 by NTA
670 and NFCM (n=3 per group; mean and SD) for (E) H9 SEC EVs, (F) H9 100K EVs, (G) U937
671 SEC EVs, and (H) U937 100K EVs. Asterisk. An asterisk indicates that, in the authors' view, an

672 antibody did not perform on the instrument; it does not necessarily mean that the antibody would
673 not perform in another context or with additional optimization.

674

675 **Supplementary Figure 1: Additional EV characterization.** (A) Representative BCA assay
676 (protein concentration) results from one batch of EV separations. (B) Immunoblot analysis of
677 separated EVs using the same samples as in Figure 1 but probing for GM130 and BiP/GRP78
678 (expected to be depleted in EVs) and TSG101 and CD9 (expected to be enriched in EVs). (C) An
679 immunoblot from a previous experiment that was shown in Figure 1 of a previous version of this
680 manuscript. (D) Overexposed CD63 results from a previous set of EV separations from U937
681 and H9 cells (here, using differential ultracentrifugation at $2K \times g$, $10K \times g$, and $100K \times g$)
682 showing that, in some experiments, CD63 is indeed enriched in the $100K$ EV-enriched pellet,
683 and that lengthy exposure confirms the presence of CD63 in H9 cell lysate, albeit at low levels.

684

685 **Supplementary Figure 2: Additional TEM of EVs and SEC protein fractions.** Scale bars, as
686 indicated, are 500 nm.

687

688 **Supplementary Figure 3: Individual SS measurements by MRPS.** Repeat 1 (A) can also be
689 found as an inset in Figure 2C. (B) and (C) are additional repeats using the same SS mixture.

690

691 **Supplementary Figure 4: MRPS and NFCM dilution series.** SS (A) and PS (B) were diluted
692 $2\times$, $5\times$, and $10\times$ by volume to determine the optimal dilution for NTA analysis. SS (C) were
693 diluted 1:1000 (v:v), 1:2000 (v:v), and 1:4000 (v:v) and PS (D) were diluted 1:2500 (v:v),
694 1:5000 (v:v), and 1:10000 (v:v) to determine the optimal dilution for NFCM analysis. The upper

695 four panels are dilution-corrected data. Bottom four panels: raw data for SS (E) and PS (F) on
696 MRPS and SS (G) and PS (H) on NFCM. Optimal dilutions are indicated by green or yellow
697 (MRPS and NFCM, respectively).

698

699 **Supplementary Figure 5: Intensity gates for assessment of populations by NTA.** Data from
700 NTA measurements of PS (A, B) and SS (C) were used to assign gates based on intensity. Note
701 that (A) and (B) are the same data with different gates. Left panels are intensity vs diameter
702 plots. Right panels are abundance vs diameter for each indicated (color-coded) intensity gate.

703

704 **Supplementary Figure 6: SP-IRIS background fluorescence for SS and PS.** SP-IRIS
705 fluorescence detection using fluorescently labeled anti-CD81, anti-CD63, and anti-CD9 after
706 drying (A) SS and (B) PS onto SP-IRIS chips and measuring particles dried onto spots
707 corresponding to the four antibody groups (n=3 chips per group and 3 spots per antibody per
708 chip; mean and SD are indicated by bars and whiskers).

709

710 **Supplementary Figure 7: H9 and U937 EV size distribution, no error bars.** This figure
711 depicts the same data as shown in Figure 4, but without error bars for clarity.

712

713 **Supplementary Figure 8: Effects of Tween 20 on MRPS measurements.** H9 and U937-
714 derived EVs were mixed with Tween 20 to final concentrations ranging from 0.1% to 0.9% and
715 measured by MRPS. (A) Particle counts. (B) and (C) depict size distributions for H9 and U937
716 EVs, respectively, along with insets displaying concentrations.

717 **Supplementary Table 1. TEM and DLS measurements of selected PS beads.** Three
718 preparations of each PS bead population were measured three times each. Avg = arithmetic
719 mean; SD = standard deviation

Nominal diameter (nm)	Diameter per data sheet (nm)	TEM: Avg diameter (nm) +/- SD (nm)	DLS: Z-avg diameter (nm) +/- SD (nm)	DLS: Polydispersit index +/- SD
70	70 +/- 3	70.5 +/- 4.8	72.8 +/- 0.8	0.03 +/- 0.01
90	92 +/- 3	91.1 +/- 5.3	91.0 +/- 0.6	0.07 +/- 0.01
125	125 +/- 3	119.0 +/- 6.1	114.6 +/- 0.3	0.01 +/- 0.00
150	147 +/- 3	147.7 +/- 5.2	129.5 +/- 6.6	0.16 +/- 0.03

720

721 **Supplementary Table 2: Antibodies tested with fluorescent NTA.** H9 100K EVs were diluted
722 1:1 (v:v) in PBS. 9 μ L of diluted EVs were mixed with 1 μ L of antibody and incubated for 2
723 hours at room temperature. Samples were then diluted 1:1000 and measured in scatter and
724 fluorescent modes using NTA. We would like to stress that our inability to obtain signal with
725 these antibodies likely indicates that further optimization is needed, not necessarily that the
726 antibodies are unsuited to this use.

Tetraspanin	Fluorophore	Manufacturer	Catalog Number	Signal
CD81	AF488	Santa Cruz	sc-166029	No
	PE	BD Biosciences	BDB555676	Yes
	PerCP	BD Biosciences	BDB565430	No
	APC	BD Biosciences	BDB561958	No
CD63	AF488	Santa Cruz	sc-5275	No
	AF488	Novus Biologicals	NBP2-42225	No
	PE	AbCam	ab205540	No
	V450	BD Biosciences	BDB561984	No
CD9	PE	BioLegend	312106	No
	PerCP	BD Biosciences	BDB561329	No
	FITC	AbCam	ab34162	No

727

728 **Acknowledgements:**

729

730 The authors thank members of the Witwer Laboratory and the Retrovirus Laboratory and various
731 members of the International Society for Extracellular Vesicles for discussions and support. The
732 authors acknowledge NanoView Biosciences, Particle Metrix, Spectradyne, and NanoFCM
733 representatives for discussions, for arranging demonstrations, and for helpful comments on the
734 preprint. Electron microscopy images were acquired in the Johns Hopkins University School of
735 Medicine Institute for Basic Biomedical Sciences Microscope Facility.

736

737 **Disclosure Statement:**

738 Authors report no conflicts of interest.

739

740 **Funding:**

741 This work was supported in part by the National Institute on Drug Abuse (NIDA; R01DA040385
742 and R01DA047807), the National Institute of Mental Health (NIMH; R21/R33MH118164), The
743 National Institute of Allergy and Infectious Diseases (NIAID, R01AI144997), the National
744 Cancer Institute (NCI) and Office of the Director (UG3CA241694), the Michael J. Fox
745 Foundation (MJFF; Grant 00900821), and the Richman Family Precision Medicine Center of
746 Excellence in Alzheimer's Disease at Johns Hopkins Medicine.

747

748 **REFERENCES**

749

750 [1] Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular
751 vesicles 2018 (MISEV2018): a position statement of the International Society for
752 Extracellular Vesicles and update of the MISEV2014 guidelines. *J Extracell Vesicles*
753 2018;7:1535750.

754 [2] Yáñez-Mó M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular
755 vesicles and their physiological functions. *J Extracell Vesicles* 2015;4:27066.

756 [3] Witwer KW, Théry C. Extracellular vesicles or exosomes? On primacy, precision, and
757 popularity influencing a choice of nomenclature. *J Extracell Vesicles* 2019;8:1648167.

758 [4] Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between
759 extracellular vesicles. *Trends Cell Biol* 2015;25:364–72.

760 [5] Lázaro-Ibáñez E, Lässer C, Shelke GV, et al. DNA analysis of low- and high-density
761 fractions defines heterogeneous subpopulations of small extracellular vesicles based on
762 their DNA cargo and topology. <Https://DoiOrg/101080/2001307820191656993> 2019.

763 [6] Russell AE, Sneider A, Witwer KW, et al. Biological membranes in EV biogenesis,
764 stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV
765 membranes and EVs workshop. *J. Extracell. Vesicles*, vol. 8, Taylor and Francis Ltd.;
766 2019.

767 [7] Tkach M, Kowal J, Théry C. Why the need and how to approach the functional diversity
768 of extracellular vesicles. *Philos Trans R Soc Lond B Biol Sci* 2018;373:20160479.

769 [8] Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic
770 potential. *Mol Aspects Med* 2018;60:1–14.

771 [9] Lanier LL, Engleman EG, Gatenby P, et al. Correlation of functional properties of human
772 lymphoid cell subsets and surface marker phenotypes using multiparameter analysis and
773 flow cytometry. *Immunol Rev* 1983;74:143–60.

774 [10] Reddington AP, Trueb JT, Freedman DS, et al. An Interferometric Reflectance Imaging
775 Sensor for Point of Care Viral Diagnostics. *IEEE Trans Biomed Eng* 2013;60:3276–83.

776 [11] Lopez CA, Daaboul GG, Vedula RS, et al. Label-free multiplexed virus detection using
777 spectral reflectance imaging. *Biosens Bioelectron* 2011;26:3432–7.

778 [12] Daaboul GG, Gagni P, Benussi L, et al. Digital Detection of Exosomes by Interferometric
779 Imaging. *Sci Rep* 2016;6:37246.

780 [13] Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles
781 using Nanoparticle Tracking Analysis. *Nanomedicine* 2011;7:780–8.

782 [14] Sokolova V, Ludwig AK, Hornung S, et al. Characterisation of exosomes derived from
783 human cells by nanoparticle tracking analysis and scanning electron microscopy. *Colloids
784 Surf B Biointerfaces* 2011;87:146–50.

785 [15] Giebel B, Helmbrecht C. Methods to analyze EVs. *Methods Mol. Biol.*, vol. 1545,
786 Humana Press Inc.; 2017, p. 1–20.

787 [16] Anderson W, Kozak D, Coleman VA, et al. A comparative study of submicron particle
788 sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size
789 distributions. *J Colloid Interface Sci* 2013;405:322–30.

790 [17] Fraikin JL, Teesalu T, McKenney CM, et al. A high-throughput label-free nanoparticle
791 analyser. *Nat Nanotechnol* 2011;6:308–13.

792 [18] Tian Y, Gong M, Hu Y, et al. Quality and efficiency assessment of six extracellular
793 vesicle isolation methods by nano-flow cytometry. *J Extracell Vesicles* 2020;9.

794 [19] Tian Y, Ma L, Gong M, et al. Protein Profiling and Sizing of Extracellular Vesicles from
795 Colorectal Cancer Patients via Flow Cytometry. *ACS Nano* 2018;12:671–80.

796 [20] Ahn JY, Datta S, Bandeira E, et al. Release of extracellular vesicle miR-494-3p by ARPE-
797 19 cells with impaired mitochondria. *Biochim Biophys Acta Gen Subj* 2020;129598.

798 [21] Gámbaro F, Li Calzi M, Fagúndez P, et al. Stable tRNA halves can be sorted into
799 extracellular vesicles and delivered to recipient cells in a concentration-dependent manner.
800 *RNA Biol* 2019.

801 [22] Huang Y, Cheng L, Turchinovich A, et al. Influence of species and processing parameters
802 on recovery and content of brain tissue-derived extracellular vesicles. *J Extracell Vesicles*
803 2020.

804 [23] Van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK: Transparent reporting and
805 centralizing knowledge in extracellular vesicle research. *Nat Methods* 2017;14:228–32.

806 [24] Welsh JA, Van Der Pol E, Arkesteijn GJA, et al. MIFlowCyt-EV: a framework for
807 standardized reporting of extracellular vesicle flow cytometry experiments. *J Extracell
808 Vesicles* 2020.

809 [25] Welsh JA, Horak P, Wilkinson JS, et al. FCMPASS Software Aids Extracellular Vesicle
810 Light Scatter Standardization. *Cytom Part A* 2020;97:569–81.

811 [26] Welsh JA, Jones JC. Small Particle Fluorescence and Light Scatter Calibration Using
812 FCMPASS Software. *Curr Protoc Cytom* 2020;94.

813 [27] Welsh JA, van der Pol E, Bettin BA, et al. Towards defining reference materials for
814 measuring extracellular vesicle refractive index, epitope abundance, size and
815 concentration. *J Extracell Vesicles* 2020;9:1816641.

816 [28] Exometry B. Rosetta Calibration - Exometry.

817 [29] van der Pol E, Böing AN, Gool EL, et al. Recent developments in the nomenclature,
818 presence, isolation, detection and clinical impact of extracellular vesicles. *J Thromb
819 Haemost* 2016;14:48–56.

820 [30] Paulaitis M, Agarwal K, Nana-Sinkam P. Dynamic Scaling of Exosome Sizes. *Langmuir*
821 2018;34:9387–93.

822 [31] Mallick ER, Witwer KW, Arab T, et al. Characterization of extracellular vesicles and
823 artificial nanoparticles with four orthogonal single-particle analysis platforms. *BioRxiv*
824 2020:2020.08.04.237156.

825 [32] Osteikoetxea X, Sódar B, Németh A, et al. Differential detergent sensitivity of
826 extracellular vesicle subpopulations. *Org Biomol Chem* 2015;13:9775–82.

827 [33] Van Der Pol E, Coumans FAW, Sturk A, et al. Refractive index determination of
828 nanoparticles in suspension using nanoparticle tracking analysis. *Nano Lett*
829 2014;14:6195–201.

830 [34] Bachurski D, Schuldner M, Nguyen PH, et al. Extracellular vesicle measurements with
831 nanoparticle tracking analysis—An accuracy and repeatability comparison between
832 NanoSight NS300 and ZetaView. *J Extracell Vesicles* 2019;8.

833 [35] Erdbrügger U, Lannigan J. Analytical challenges of extracellular vesicle detection: A
834 comparison of different techniques. *Cytom Part A* 2016;89:123–34.

835 [36] Corso G, Heusermann W, Trojer D, et al. Systematic characterization of extracellular
836 vesicles sorting domains and quantification at the single molecule–single vesicle level by
837 fluorescence correlation spectroscopy and single particle imaging. *J Extracell Vesicles*
838 2019;8.

839 [37] García-Santamaría F, Míguez H, Ibisate M, et al. Refractive index properties of calcined

silica submicrometer spheres. *Langmuir* 2002;18:1942–4.

[38] Kasarova SN, Sultanova NG, Ivanov CD, et al. Analysis of the dispersion of optical plastic materials. *Opt Mater (Amst)* 2007;29:1481–90.

[39] Gardiner C, Shaw M, Hole P, et al. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. *J Extracell Vesicles* 2014;3.

[40] van der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. *J Thromb Haemost* 2014;12:1182–92.

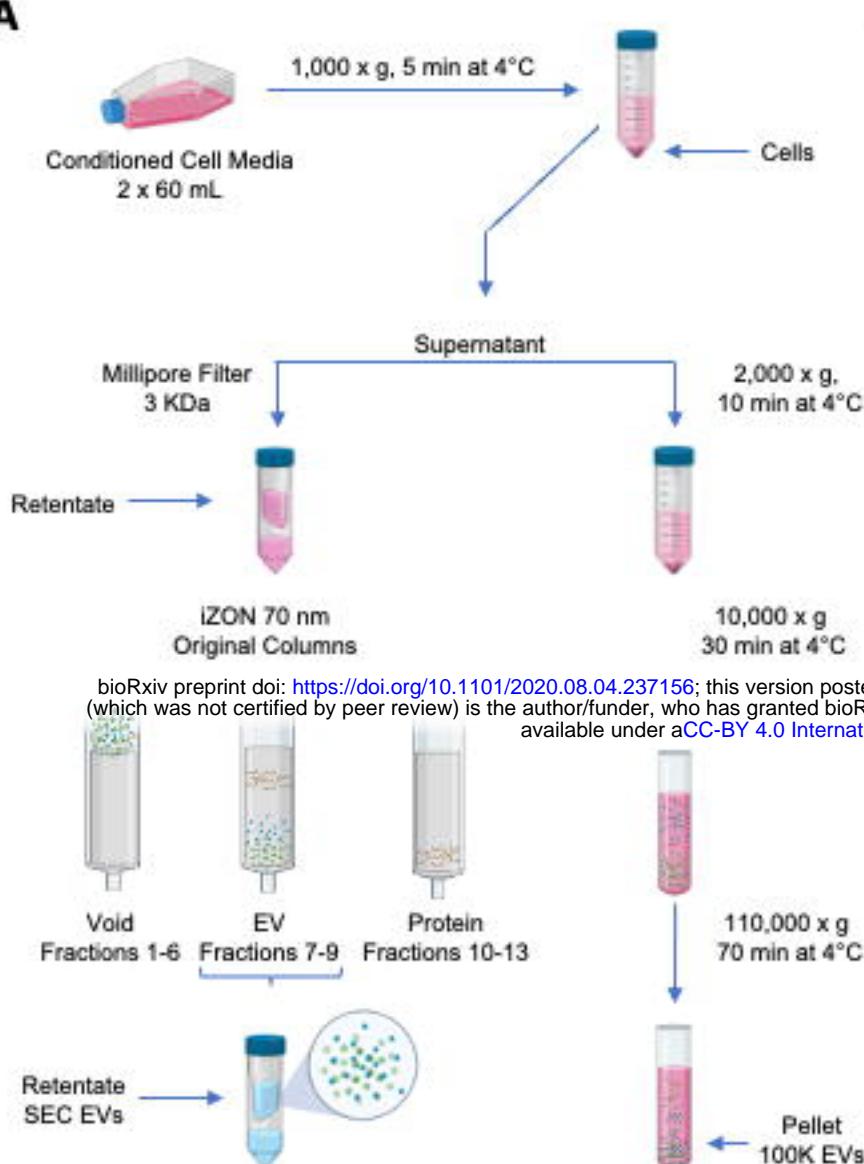
[41] Defante AP, Vreeland WN, Benkstein KD, et al. Using Image Attributes to Assure Accurate Particle Size and Count Using Nanoparticle Tracking Analysis. *J Pharm Sci* 2018;107:1383–91.

[42] Théry C, Amigorena S, Raposo G, et al. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. *Curr. Protoc. Cell Biol.*, vol. Chapter 3, Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006, p. Unit 3.22.

[43] Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. *J Extracell Vesicles* 2016;5:32945.

[44] Royo F, Thery C, Falcon-Perez JM, et al. Methods for Separation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey Performed by the ISEV Rigor and Standardization Subcommittee. *Cells* 2020;9:1955.

[45] Böing AN, van der Pol E, Grootemaat AE, et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. *J Extracell Vesicles* 2014;3:23430.


[46] Linares R, Tan S, Gounou C, et al. High-speed centrifugation induces aggregation of extracellular vesicles. *J Extracell Vesicles* 2015;4:29509.

[47] Van Deun J, Mestdagh P, Sormunen R, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. *J Extracell Vesicles* 2014;3:24858.

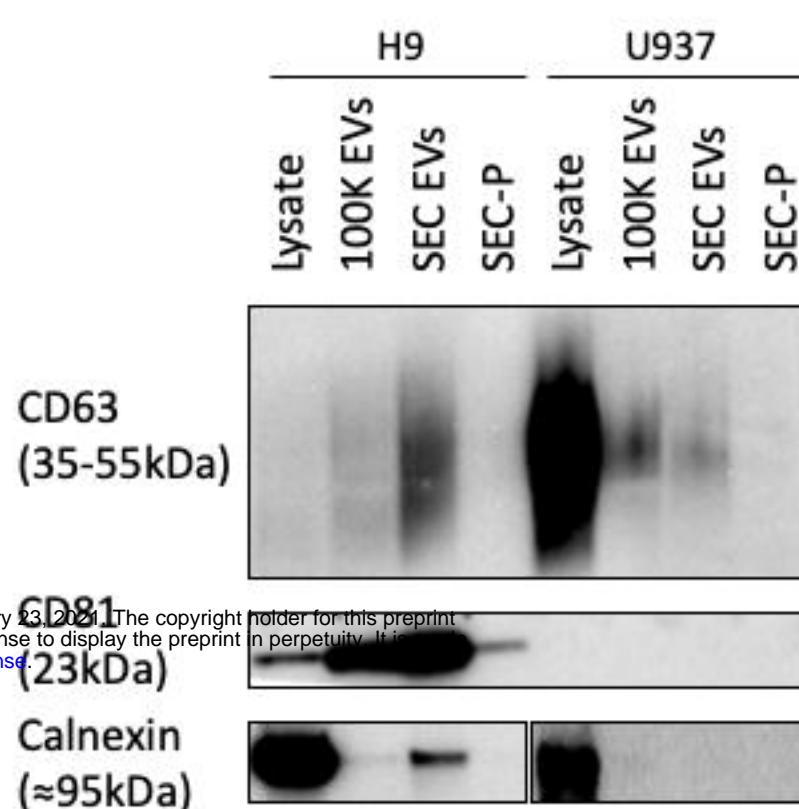
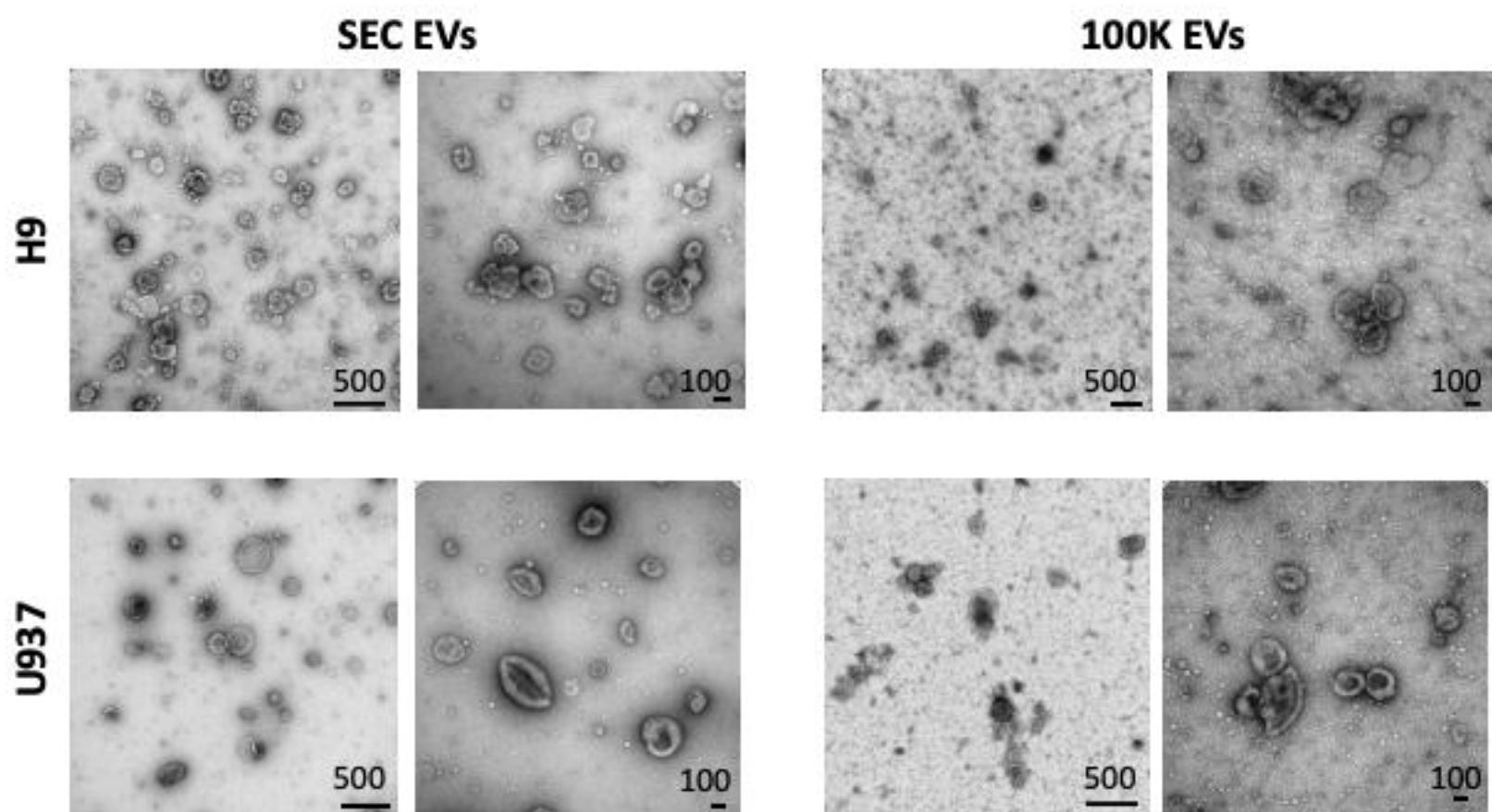
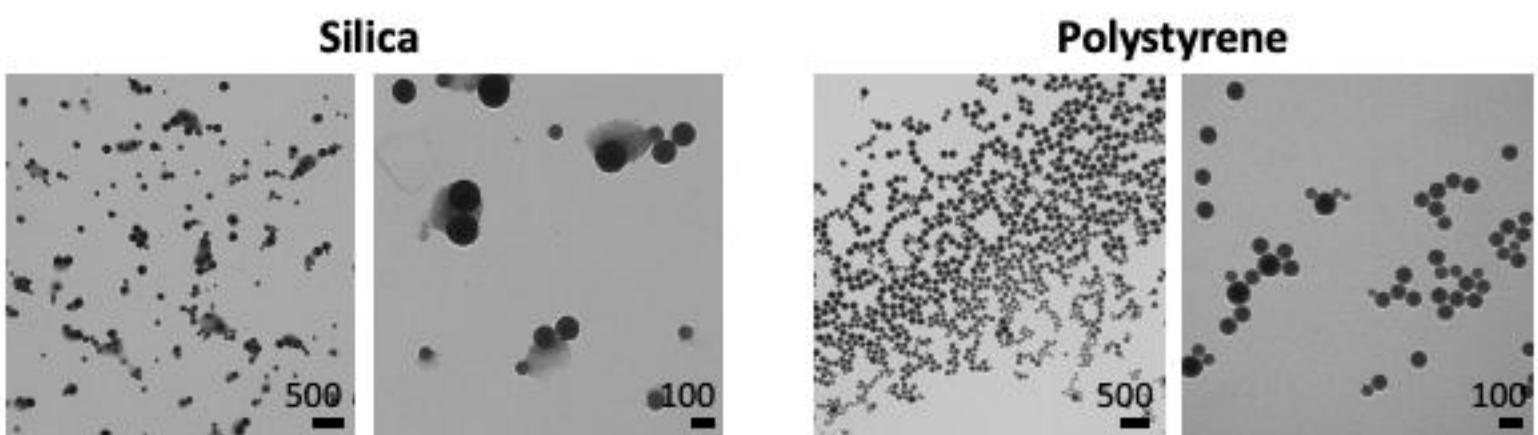
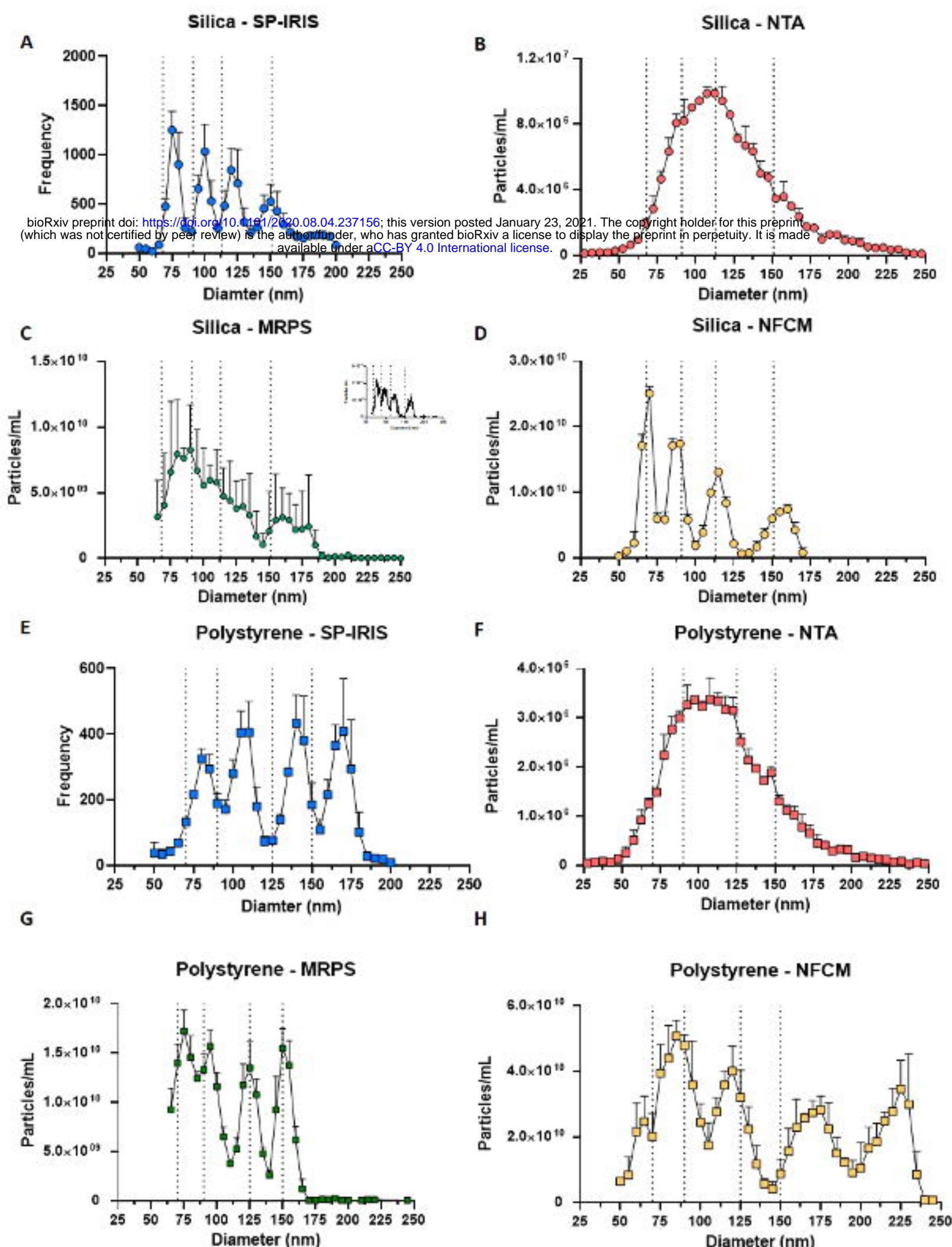

[48] Arab T, Raffo-Romero A, Van Camp C, et al. Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and OptiprepTM density gradient isolation. *J Extracell Vesicles* 2019;8:1603048.

Figure 1. Methodology and EV separation


A


B


C

D

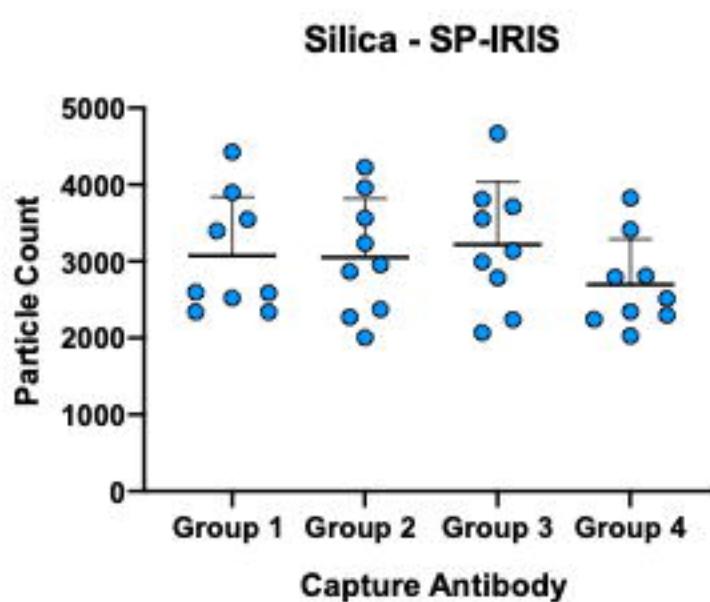


Figure 2. SS and PS size distribution

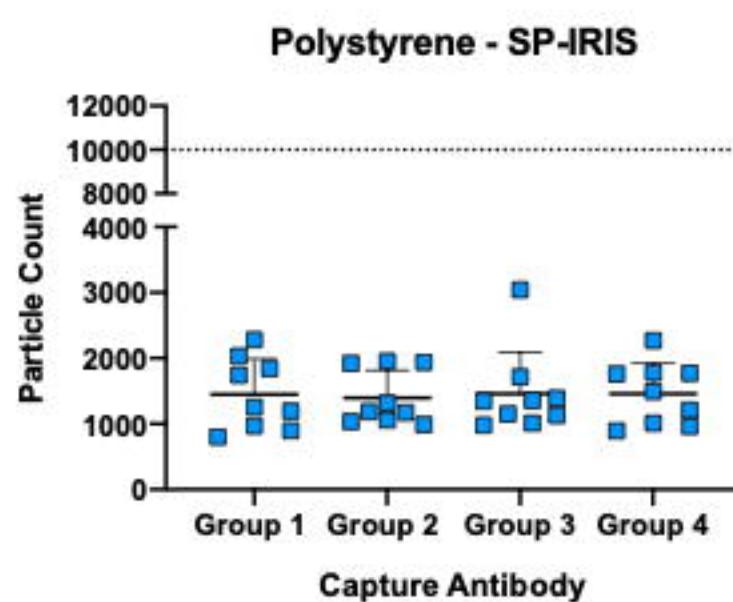
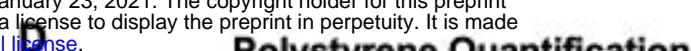
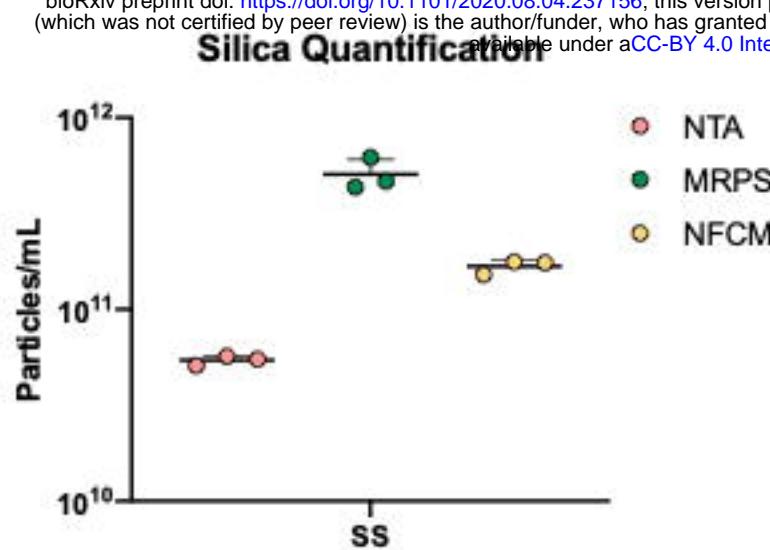
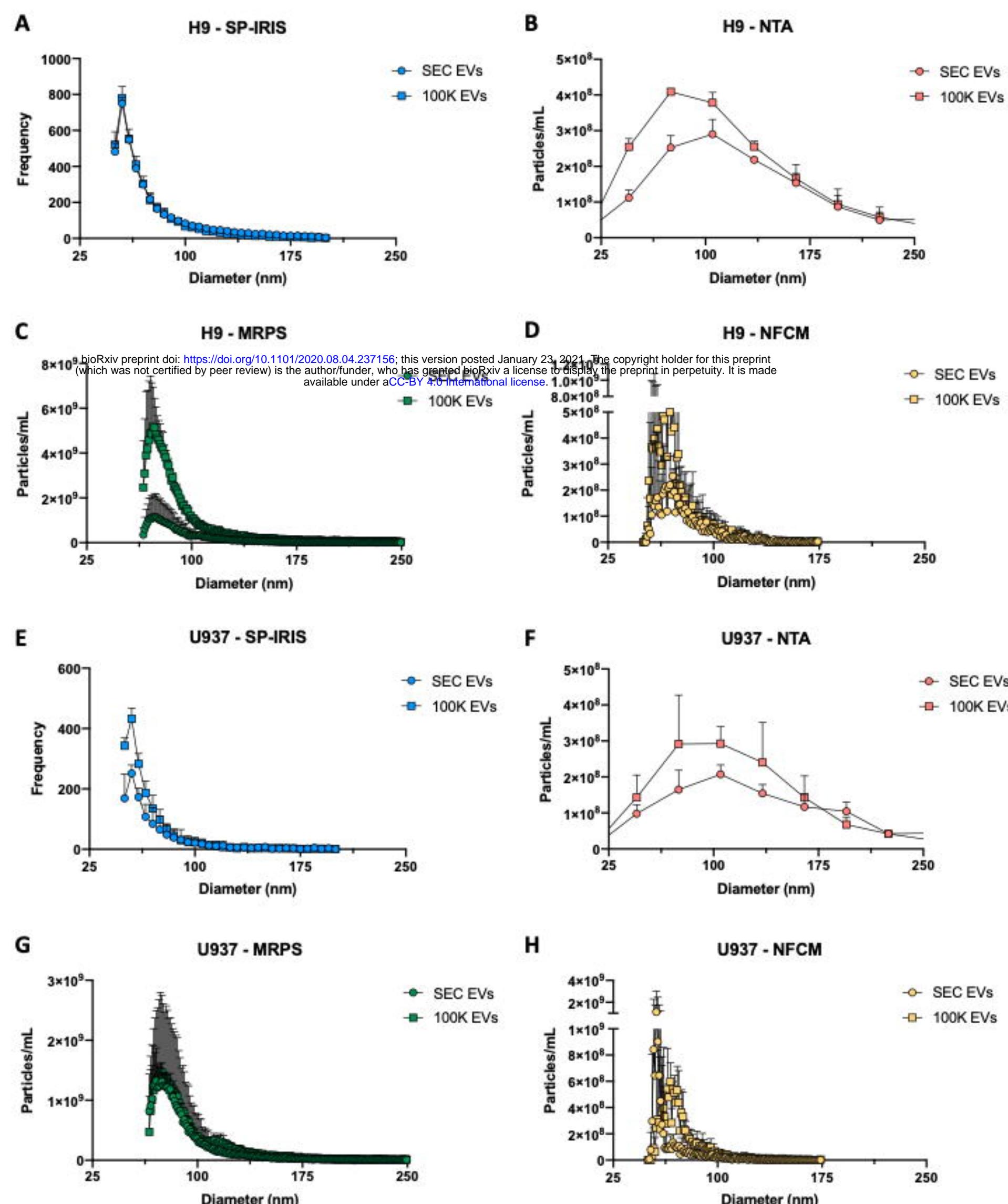


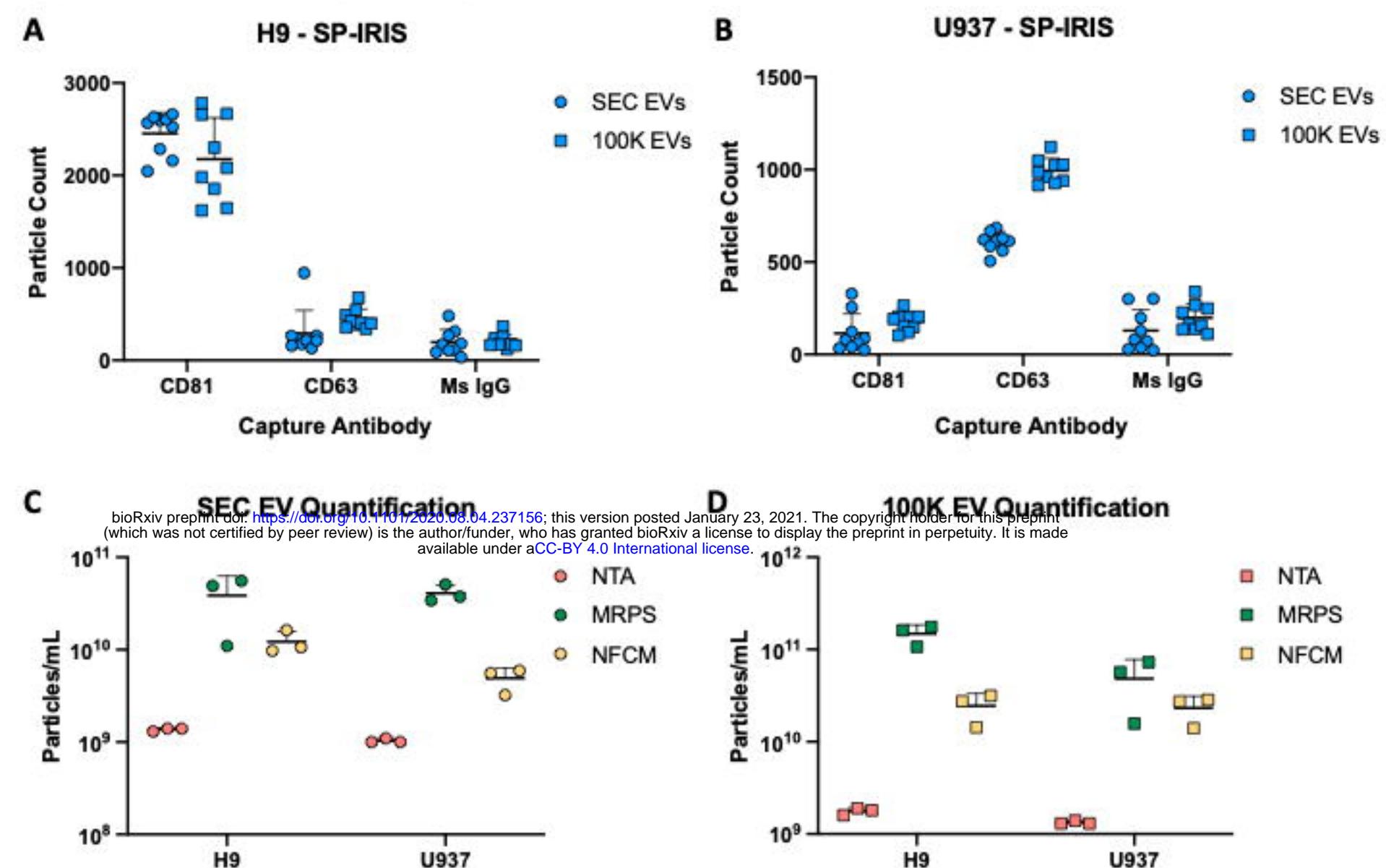
Figure 3. SS and PS quantification



A

B



C



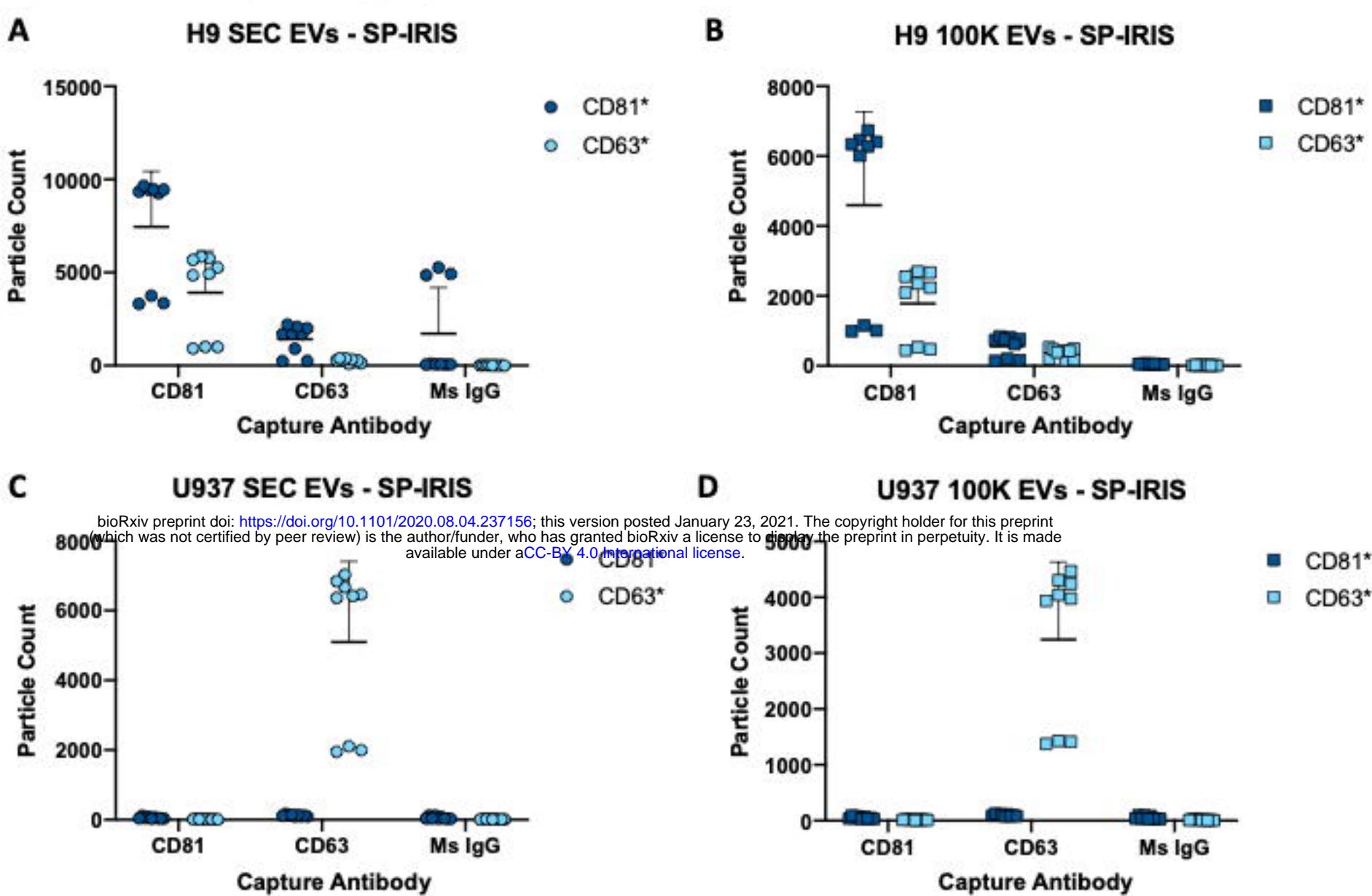

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 4. H9 and U937 Size Distribution

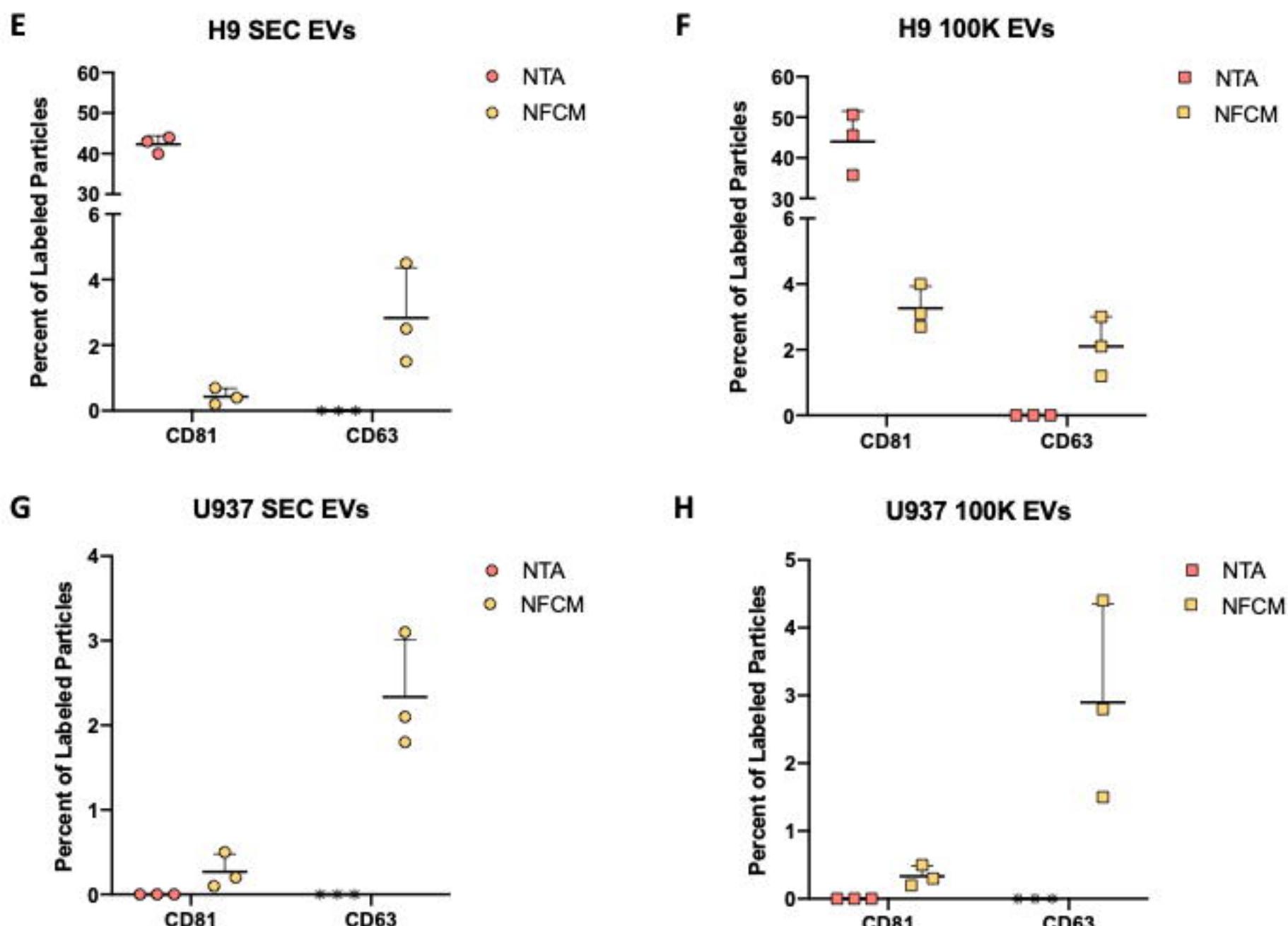
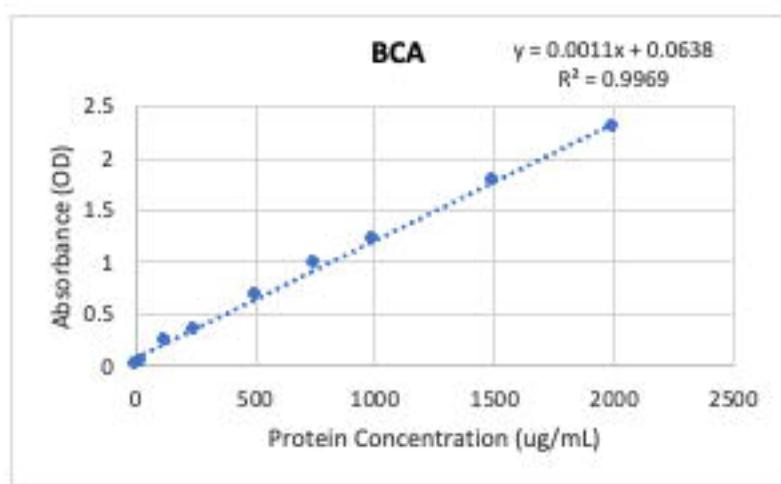


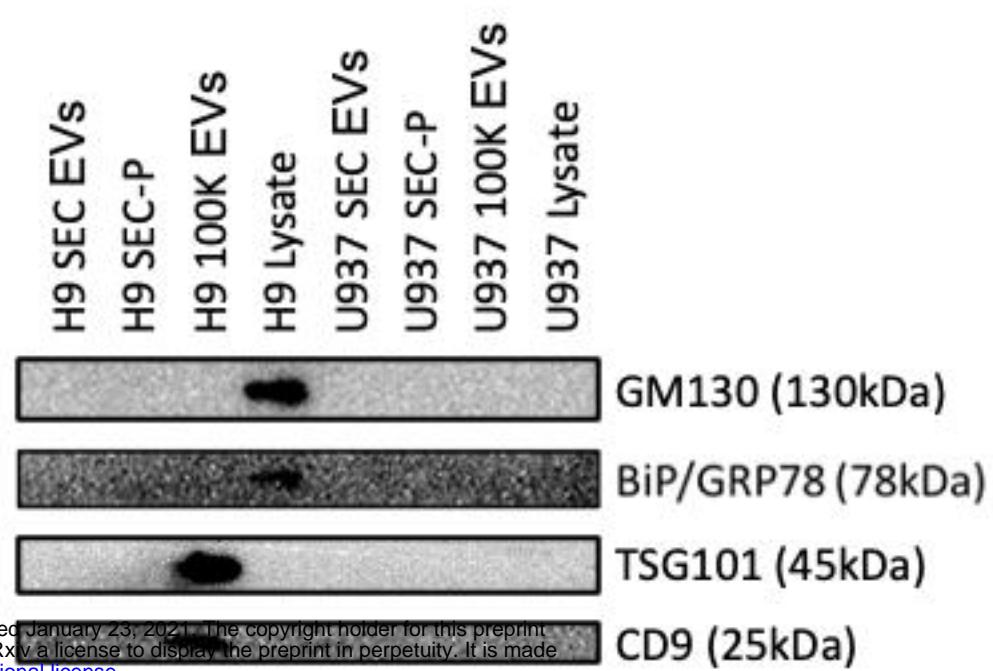
Figure 5. H9 and U937 particle quantification

Figure 6. Particle phenotyping

Panels A-D: *Indicates target of fluorescent detection antibody

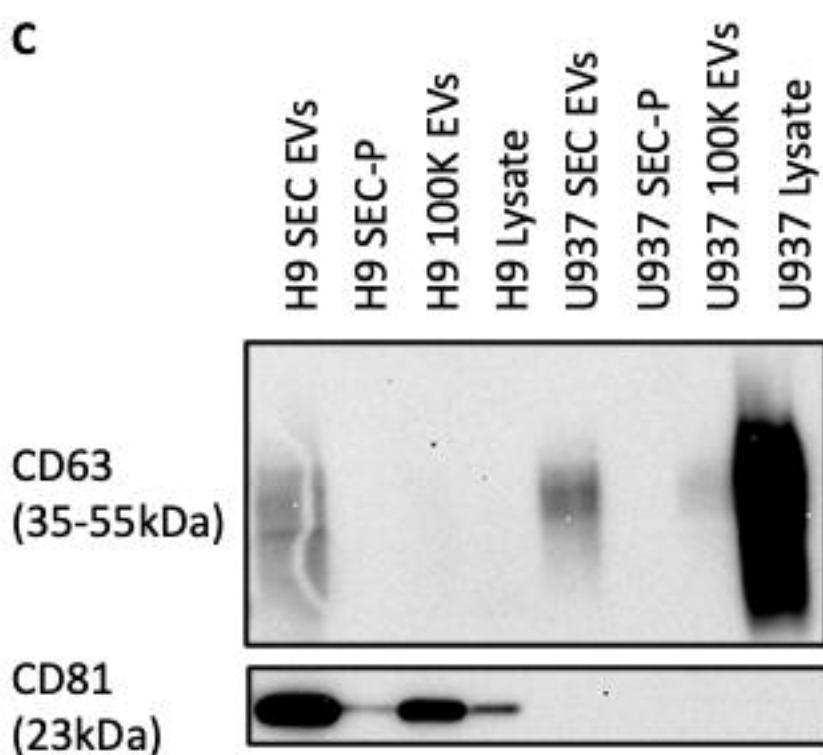

Table 2. Evaluation summary

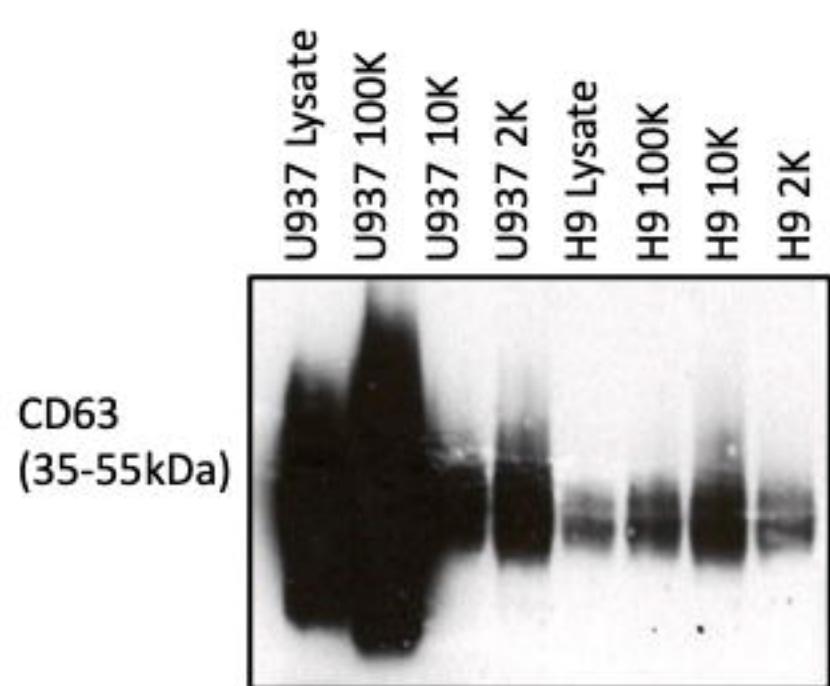
Technique	Logistics						Performance		
	Estimated biological particle size detection range (diameter)	Concentration Detection Range	Input volume (μ L; may be a dilution)	Operation Time: Hands-on (HO)/ Read time (R) (does not include optional labeling)	Instrument Cost	Costs for disposables (USD)	Sizing (including discrimination of different size populations)	Quantification (across all particles, biological and synthetic)	Fluorescence (channels; for instruments we evaluated)
SP-IRIS	~50 nm to ~200 nm (label-free imaging)	n/a; depends on capture Ab, but usually $>>1 \times 10^7$ particle/mL preferred	35	Day 1: 10 min sample prep (HO) Day 2: 2 hour (HO); 10 min to 30 min per sample (R)	\$\$	\$\$\$: Chip/antibody kits (starting at \$50/sample to >\$100 for custom; ordered from manufacturer)	++	N/A (unless a universal capture agent is available)	Up to 3
NTA	~70 nm to several hundred nm	5×10^6 to 1×10^{10} particle/mL	1000 (slightly smaller volumes are possible in our instrument)	Optional 20 min calibration (HO/P); 5 min to 15 min per sample (HO/P)	\$\$	\$: <\$1 per sample; 1 mL syringes (~\$25 per 100, multiple suppliers; Ab not included)	+(could not identify different populations in our instrument here)	+	Up to 4
MRPS	~50 nm to 2 μ m (cartridge-dependent)	1×10^7 to 1×10^{10} particle/mL (in PBS/PBST)	5	Optional 20 min calibration (HO/R); 15 min to 30 min per sample (HO/R)	\$	\$\$: Cartridges (\$8 to \$12 each, ordered from manufacturer)	++	+++	N/A: No fluorescence capability
NFCM	~40 nm to ~200 nm	1×10^7 to 1×10^9 particle/mL (in PBS)	20	20 min to 120 min calibration (HO/P); 5 min per sample (HO/P)	\$\$\$	\$: <\$1 per sample; 0.5 mL Tubes (~\$25 per 1000, multiple suppliers; Ab not included)	++	+++	Up to 2 (more now available)


RI = refractive index; p/mL = particles per milliliter; Price range: \$\$\$ > \$\$ > \$; Performance indicator: +++ > ++ > +; N/A = not applicable

Supplementary Figure 1. Additional EV characterization

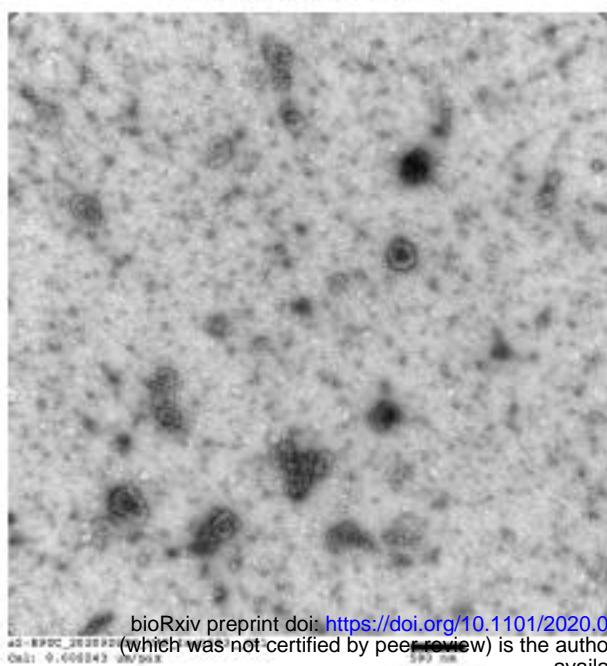
A


B

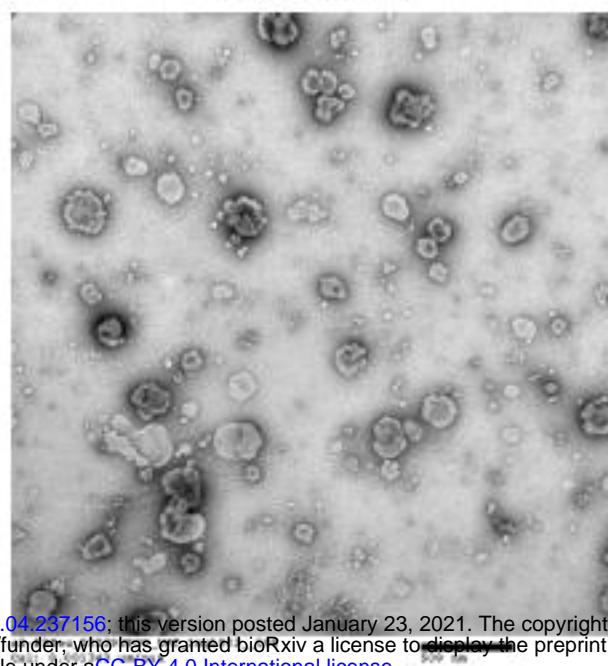

Sample	Protein Concentration (ug/mL)
H9 SEC EVs	116.00
H9 SEC-P	1547.27
H9 100K EVs	2013.94
H9 Cell lysate	3941.21
U937 SEC EVs	550.30
U937 SEC EVs	1762.42
U937 100K EVs	1747.27
U937 Cell lysate	6320.00

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

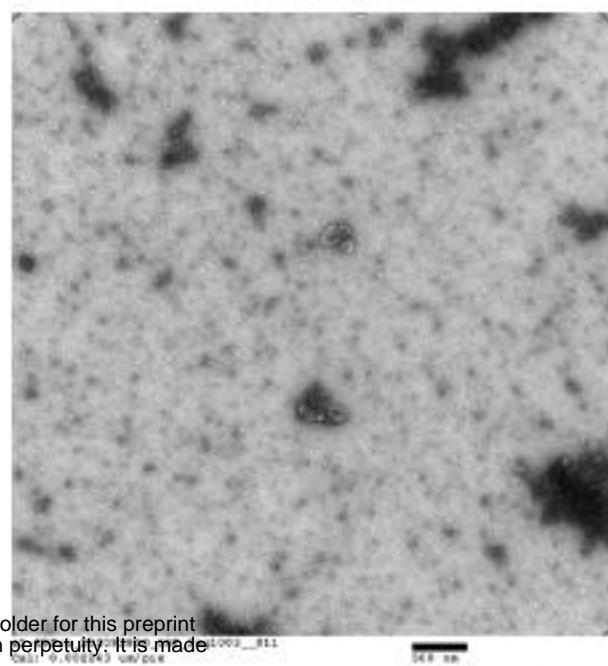
C

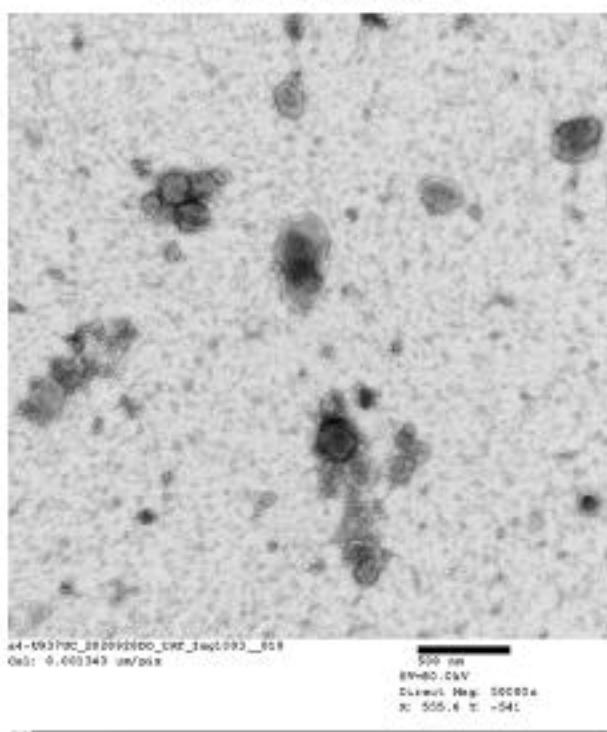


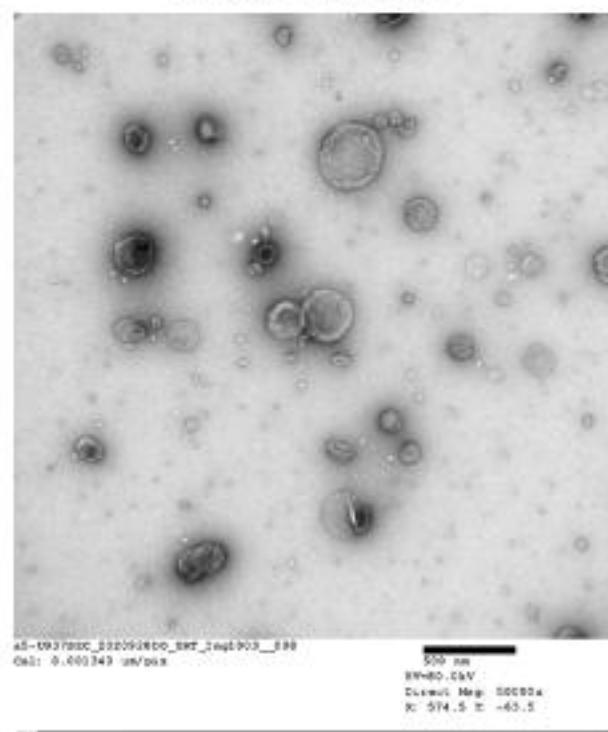
D

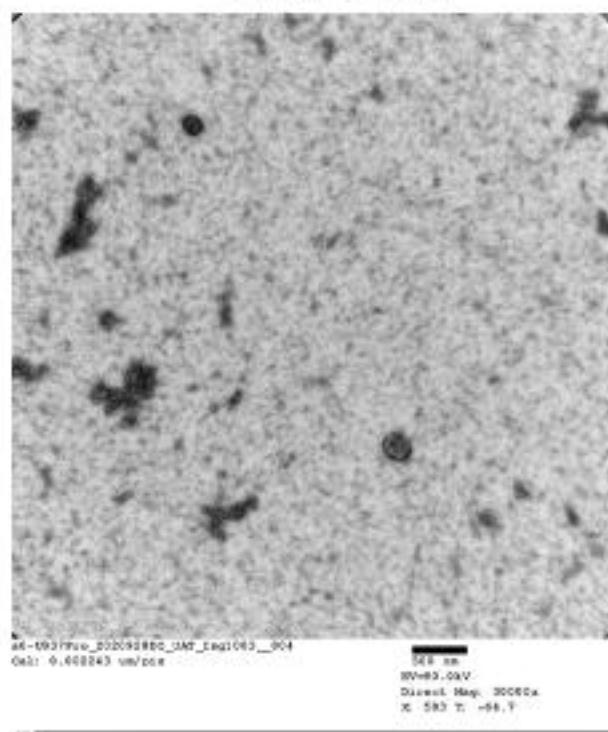


Supplementary Figure 2. Additional TEM of EVs and SEC protein fractions

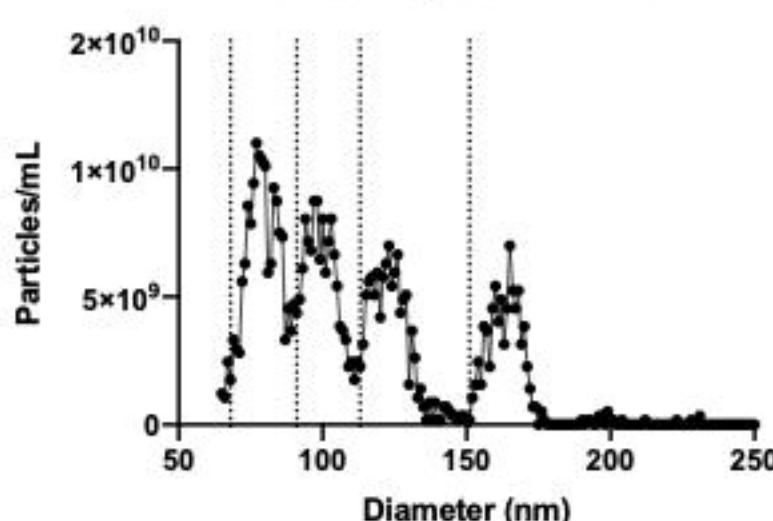

H9 100K EVs


H9 SEC EVs

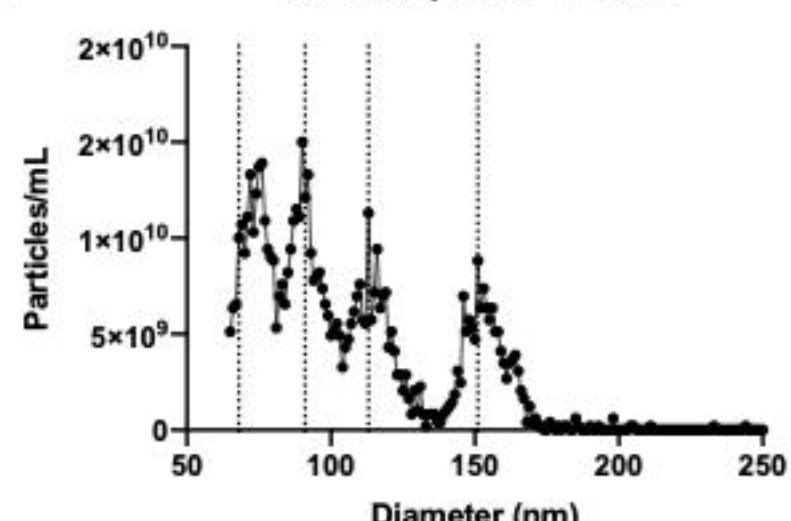

H9 SEC-P


U937 100K EVs

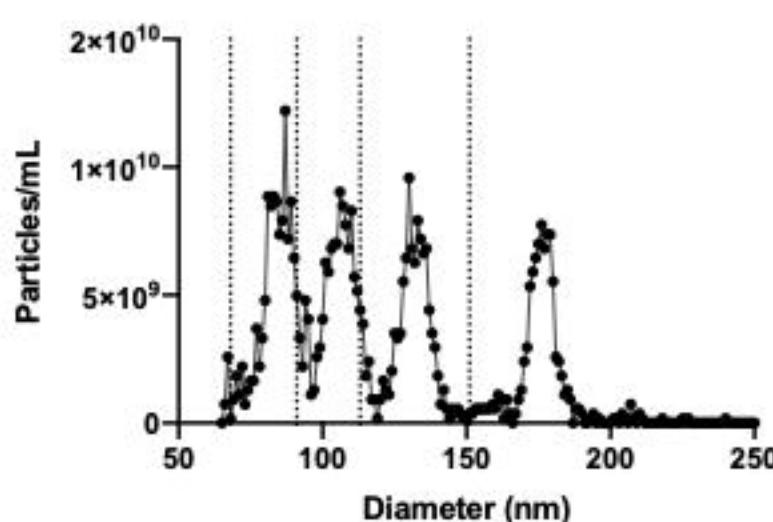
U937 SEC EVs


U937 SEC-P

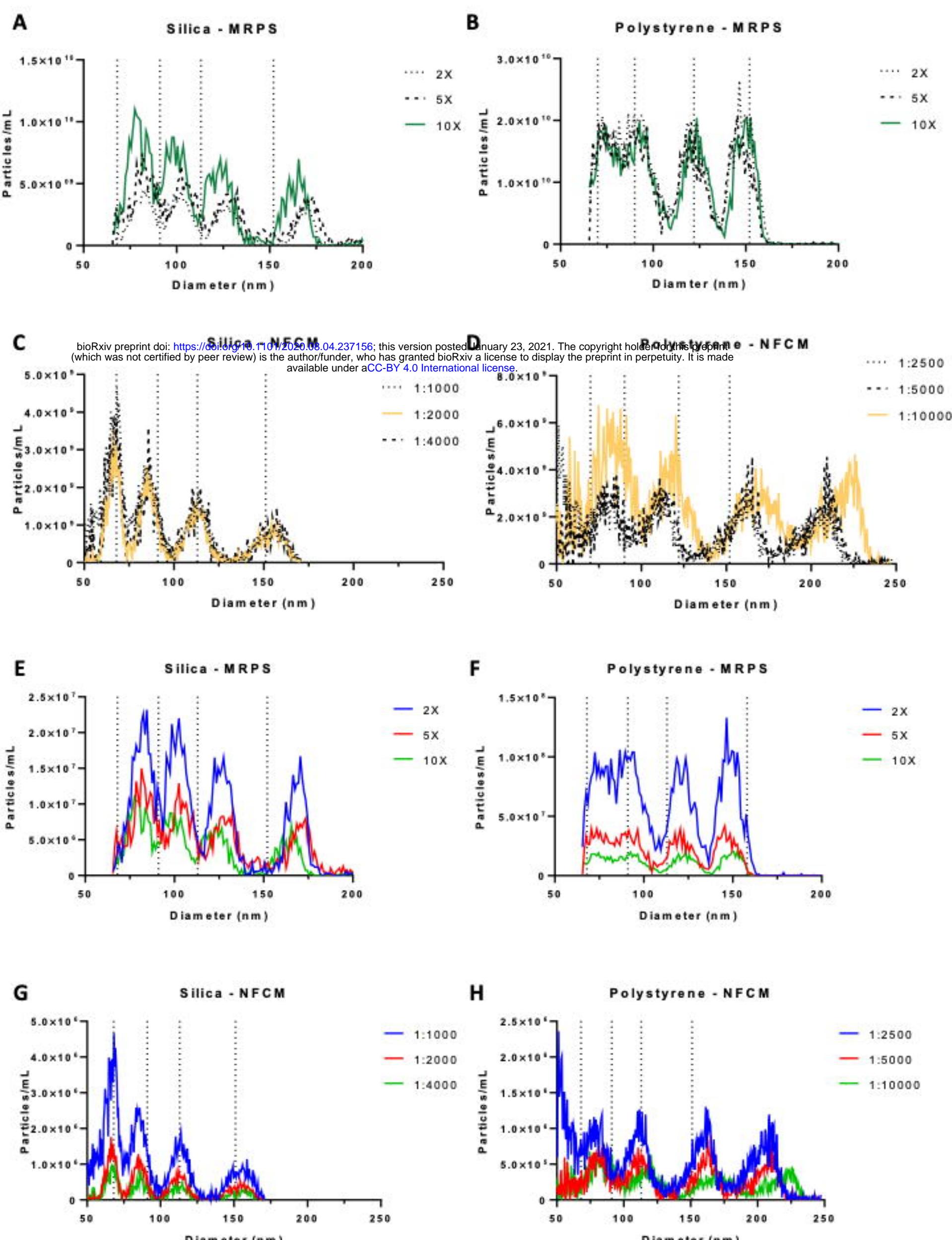
Supplementary Figure 3. Individual SS measurements by MRPS


A

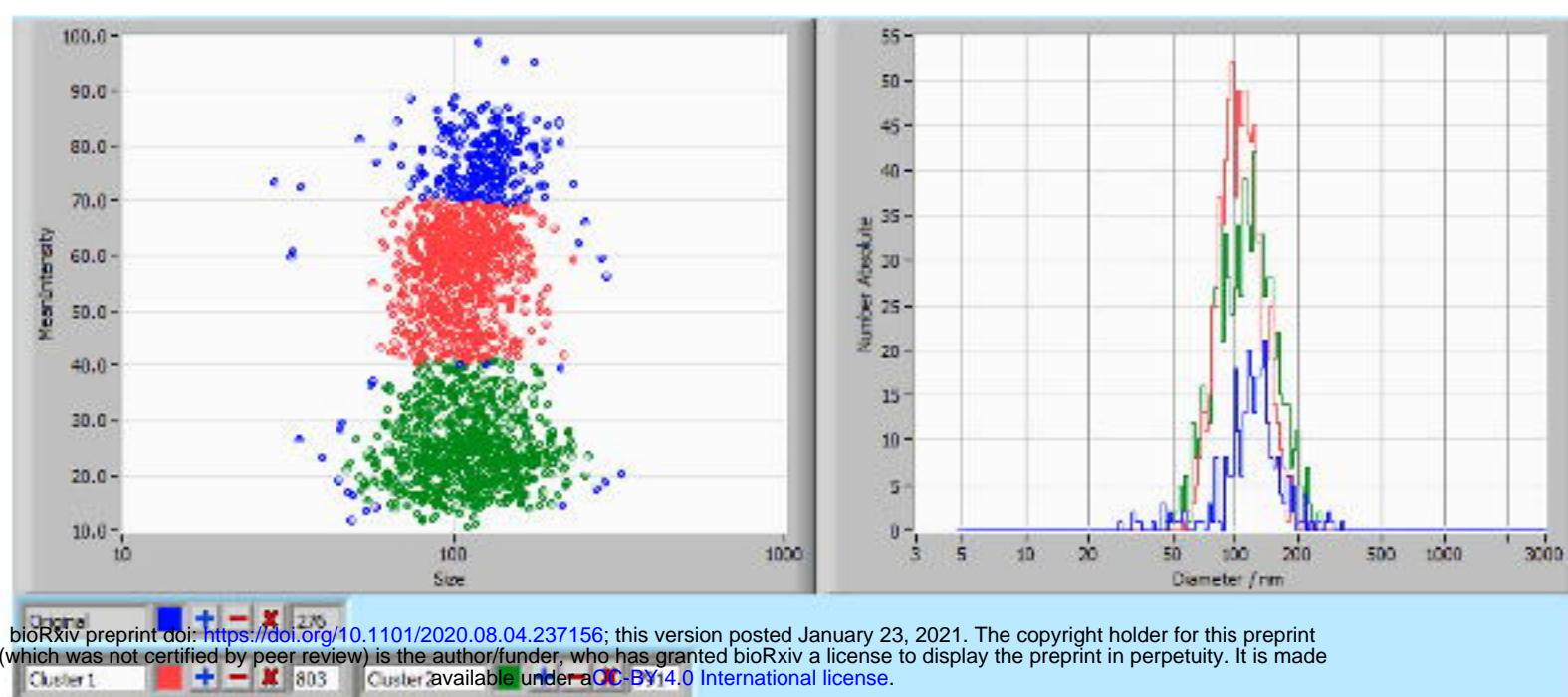
Silica Repeat 1 - MRPS


B

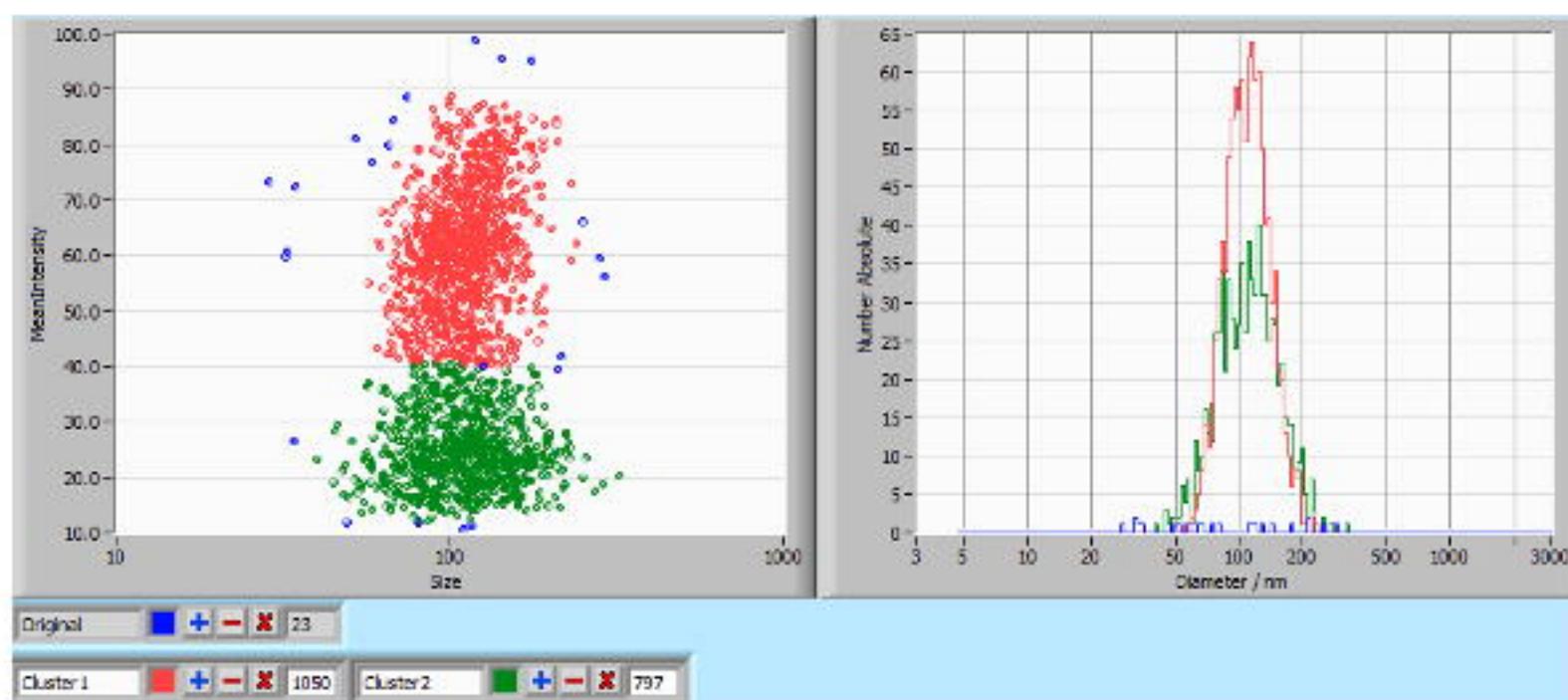
Silica Repeat 2 - MRPS


C

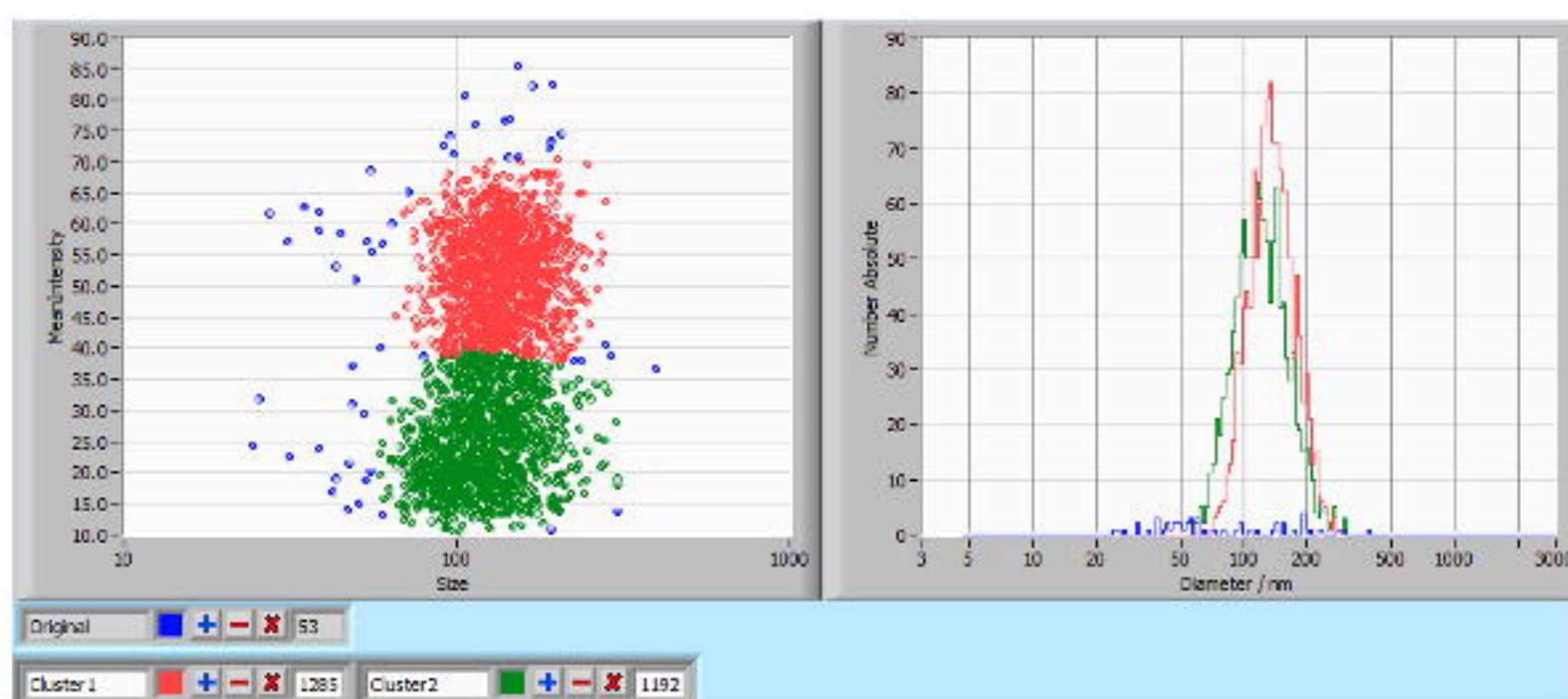
Silica Repeat 3 - MRPS


bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

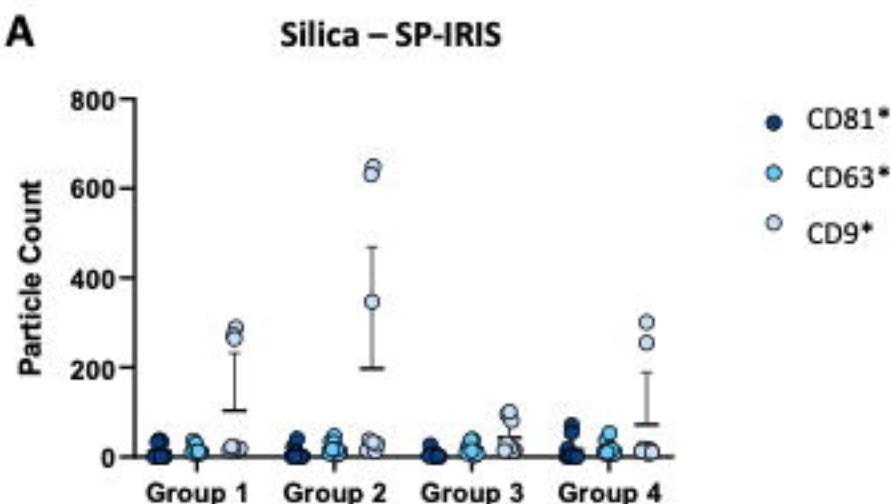
Supplementary Figure 4. MRPS and NFCM dilution series



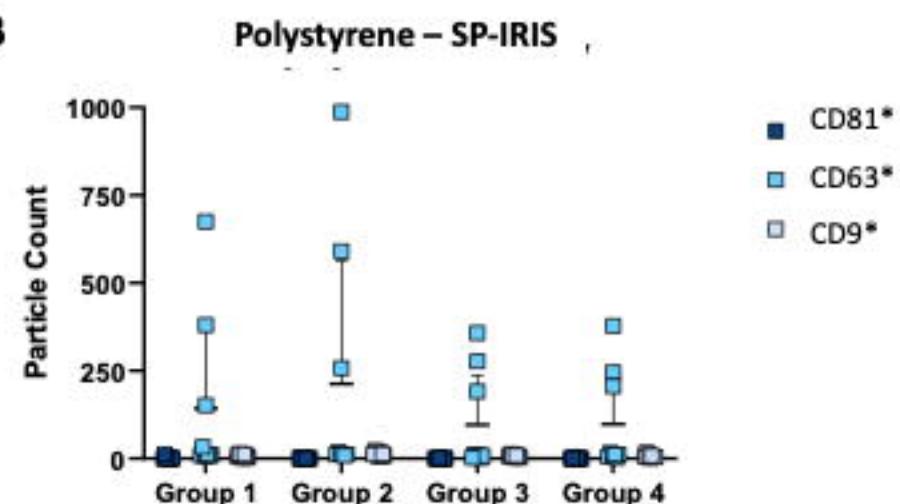
Supplementary Figure 5. Intensity gates for assessment of populations by NTA


A

B

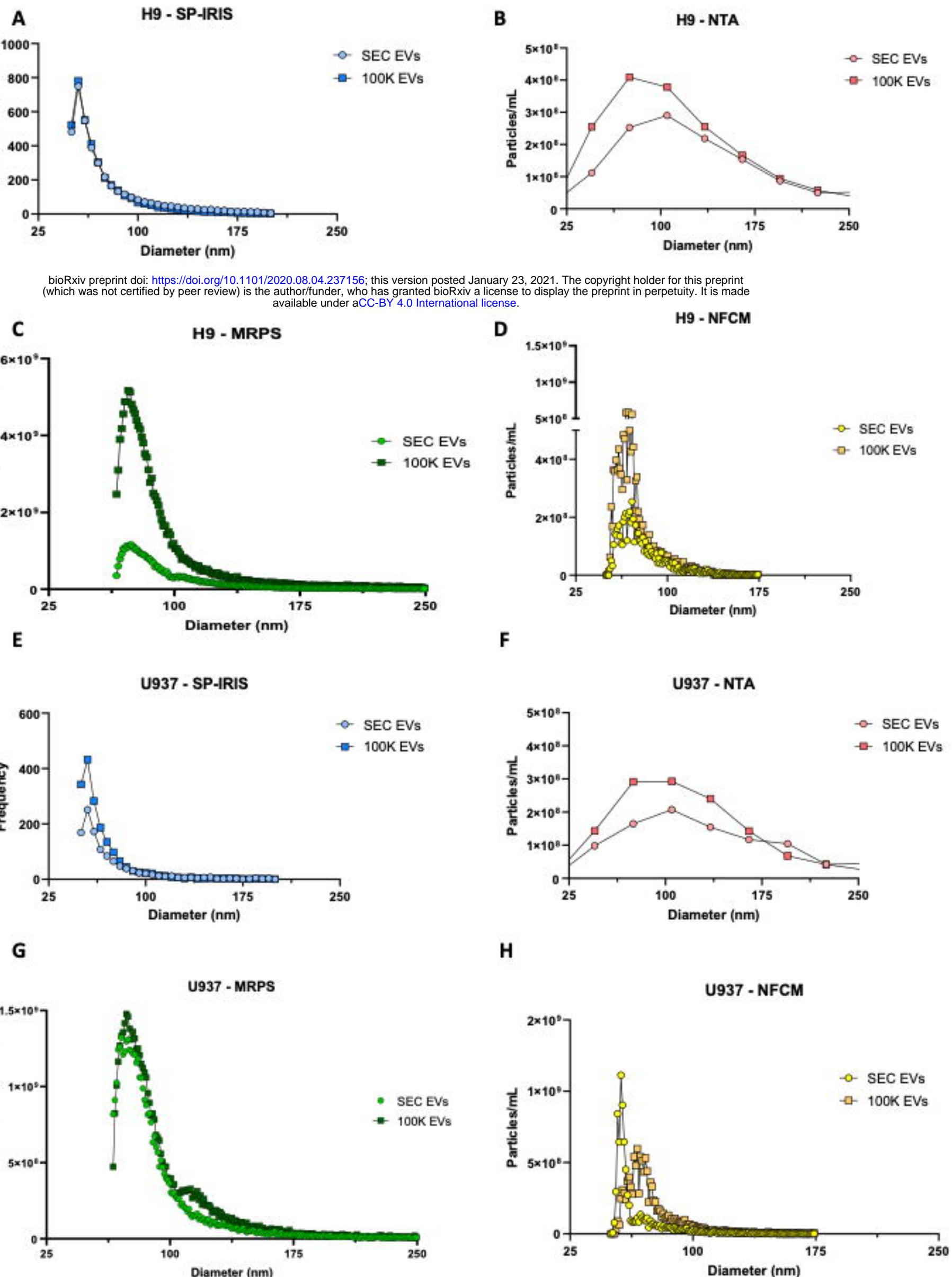


C



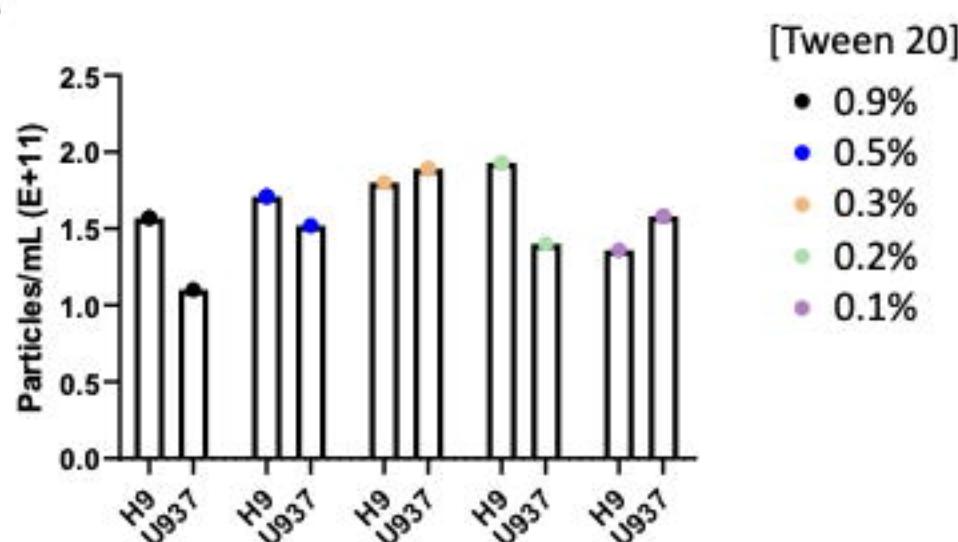
Supplementary Figure 6. SP-IRIS background fluorescence for SS and PS

A

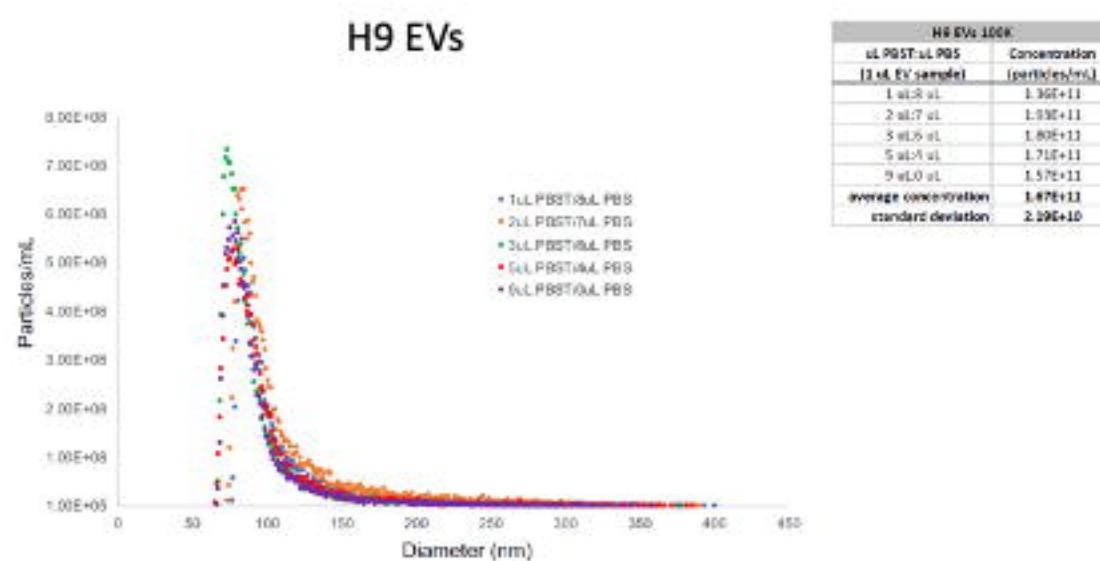

B

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

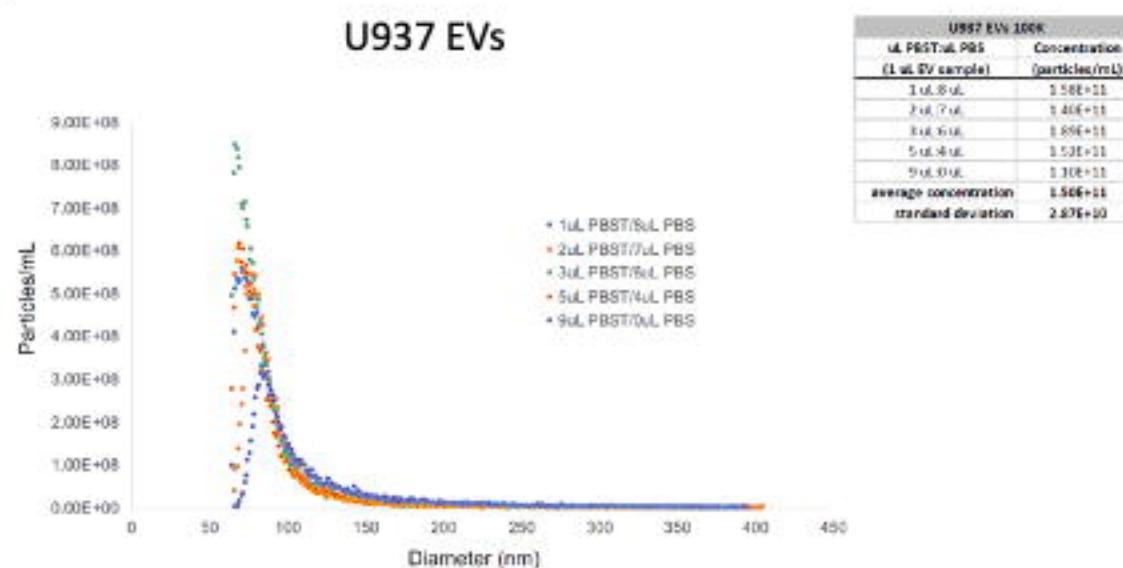
*Indicates target of fluorescent detection antibody


Supplementary Figure 7. H9 and U937 size distribution, no error bars

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Supplementary Figure 8. Effects of Tween 20 on MRPS measurements

A



bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

C

Supplementary Table 1. TEM and DLS measurements of selected PS beads

Nominal diameter (nm)	Diameter per data sheet (nm)	TEM: Avg diameter (nm) +/- SD (nm)	DLS: Z-avg diameter (nm) +/- SD (nm)	DLS: Polydispersity index +/- SD
70	70 +/- 3	70.5 +/- 4.8	72.8 +/- 0.8	0.03 +/- 0.01
90	92 +/- 3	91.1 +/- 5.3	91.0 +/- 0.6	0.07 +/- 0.01
125	125 +/- 3	119.0 +/- 6.1	114.6 +/- 0.3	0.01 +/- 0.00
150	147 +/- 3	147.7 +/- 5.2	129.5 +/- 6.6	0.16 +/- 0.03

Avg = arithmetic mean; SD = standard deviation

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Supplementary Table 2. Antibodies tested with fluorescent NTA

Tetraspanin	Fluorophore	Manufacturer	Catalog Number	Signal
CD81	AF488	Santa Cruz	sc-166029	No
	PE	BD Biosciences	BDB555676	Yes
	PerCP	BD Biosciences	BDB565430	No
	APC	BD Biosciences	BDB561958	No
CD63	AF488	Santa Cruz	sc-5275	No
	PE	AbCam	ab205540	No
	V450	BD Biosciences	BDB561984	No
	PE	BioLegend	312106	No
CD9	PerCP	BD Biosciences	BDB561329	No
	FITC	AbCam	ab34162	No

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.237156>; this version posted January 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.