

1 **Antibiotics affect migratory restlessness orientation**

2 Yuval Werber¹, Eviatar Natan², Yizhar Lavner³, Yoni Vortman⁴

3

4 1. Hula Research Center, Department of Biotechnology, Tel-Hai College

5 2. The Aleph Lab, Oxford, England

6 3. Department of Computer Sciences, Tel Hai College

7 4. Hula Research Center, Department of Animal Sciences, Tel-Hai College

8 **Abstract**

9 Magnetoreception is a sense that allows the organism to perceive and act according to
10 different parameters of the magnetic field. This magnetic sense plays a part in many
11 fundamental processes in various living organisms. Much effort was expended in finding the
12 'magnetic sensor' in animals. While some experiments show a role of the ophthalmic nerve in
13 magnetic sensing, others show that effects of light on processes in the retina are involved.
14 According to these inconclusive and puzzling findings, the scientific community has yet to reach
15 an agreement concerning the underlying mechanism behind animal magnetic sensing. Recently,
16 the symbiotic magnetotaxis hypothesis has been forwarded as a mechanistic explanation for
17 the phenomenon of animal magnetoreception. It suggests a symbiotic relationship between
18 magnetotactic bacteria (MTB) and the navigating host. Here we show that in contrast to the
19 control group, antibiotic treatment caused a lack of clear directionality in an Emlen funnel
20 experiment. Accordingly, the antibiotics treatment group showed a significant increase in
21 directional variance. This effect of antibiotics on behaviors associated with animal magnetic
22 sensing is, to the best of our knowledge, the first experimental support of the symbiotic
23 magnetotactic hypothesis.

24

25 **Introduction**

26 Actively motile animals need to be able to navigate their environment. Using memory, timing
27 and external cues, organisms move deliberately and reach their designated destination. Any
28 non-random environmental feature is a candidate for use in orientation, from chemical cues
29 [1,2], and visual characteristics of the environment [3,4] to movement of celestial bodies [5]
30 and seismic signals [6]. In most cases, a combination of such signals is used [7].

31 Navigation using Earth's magnetic field is ubiquitous throughout the entire tree of life. It occurs
32 in a great variety of organisms, playing a part in many natural processes, from bacterial
33 movement to global migrations. Although magnetic sensation in navigating organisms has long
34 been accepted as fact, its underlying mechanism in multicellular animals is still being debated
35 [8].

36 The "magnetite based magnetoreception" hypothesis suggests that biogenic magnetite crystals
37 serve as magnetic field sensors by arousing mechanosensitive protein structures which
38 translate mechanic excitation to sensory information [8]. Alternatively, the "radical pair"
39 hypothesis predicts that the geomagnetic field modulates the outcome of biochemical
40 reactions by influencing the spin state of light-induced radical pairs in macromolecules on
41 vertebrate retinas [9]. Both theories fail to provide a complete magnetoreception mechanism
42 which is functional in a natural setting.

43 In the absence of convincing proof for a 'magnetotactic sensor', a new hypothesis was
44 proposed. The hypothesis suggests the existence of a symbiosis between magnetotactic
45 bacteria and magnetotactile vertebrates [10]. Magnetotactic bacteria (MTB) are gram-negative
46 aquatic prokaryotes which sense and act upon a magnetic field [11]. MTB mineralize
47 ferromagnetic crystals in unique organelles called magnetosomes, which are arrayed on the
48 longitudinal body axis of the bacterium, and respond to the ambient magnetic field much like a
49 compass needle [12]. Here, we examine the effects of antibiotics on the orientation of a
50 magnetic-sensing migrating passerine in order to provide first experimental support for the
51 symbiotic magnetic-sensing hypothesis. Led by a straightforward rationale, we explore whether
52 exposure to an antibiotic substance affects orientation-related, magnetic sensing behaviors of
53 migrating passerines, using a well-established protocol to quantify the influence of an antibiotic
54 substance on navigation-related behaviors.

55

56 **Materials and Methods**

57 The experiment took place during the spring of 2018 (March-May) at the Hula Research Center
58 in Israel's Hula Valley (33°06'43.8"N, 35°35'08.1"E), a major stopover site for avian migrants on
59 the Eurasian-African flyway every autumn and spring.

60 **Study animal:** Eurasian reed warblers (*Acrocephalus scirpaceus*) are small, night-migrating
61 passernines that show wide latitudinal variation in their breeding grounds and migration date
62 [13]. The location of the Hula Valley with respect to Eurasian reed warblers' migration route
63 suggests that during autumn migrating individuals will show a southward directional tendency
64 and during spring most individuals are expected to show a northward tendency. Eurasian reed
65 warblers were caught early in the morning at the Hula Ringing Station using mist nets. We
66 chose Eurasian reed warblers with high fat scores (≥ 3), as indicating that they are preparing to
67 migrate soon [14]. We only took specimens with primary wing feather length of ≥ 66 mm, to
68 make sure that they belong to populations that breed at higher latitudes and are not intending
69 to breed in or around the valley [13], which would mean their migration has ended. Suitable
70 specimens were put into cloth bags and taken to the research station.

71 **Experimental procedure**

72 Birds were housed in 30 cm X 23 cm X 40 cm wooden cages inside an air-conditioned container.
73 Each cage had a wooden perch, two water-filled bottle caps, and a retractable tray for food
74 provision. Since onset of capture birds had no view of the sky or the outside environment. The
75 first 24 hours after capture were set as an adjustment period. Birds that were eating and did
76 not show signs of stress by the evening of the day of capture were considered adjusted, and
77 were given food (*Tenebrio molitor*) and water ad libitum. At later stages of the experiment, a
78 bird that appeared stressed was immediately released. On the second day, birds were randomly
79 divided into a control group and a treatment group, and the first dose of treatment (or water,
80 according to group) was orally administered using a pipette. Antibiotic substance, dosage, and
81 method of administration were chosen according to avian veterinary advice, as would be
82 administered for treating bacterially induced symptoms in the oculonasal region. Enrofloxacin,
83 also known as Baytril, is a standard, FDA-approved substance for treating bacterial infections in
84 vertebrates from all groups. It is a broad-spectrum antibiotic, which we tested against MTB
85 during June 2017 at the molecular and environmental microbiology lab in CEA, Cadarache,

86 France, with the aid of Dr. Christopher Lefevre. Enrofloxacin proved lethal to various MTB types
87 including various unidentified morphotypes from the research area and cultivated
88 *Magnetospirillum magneticum* strain AMB-1 and *Magnetovibrio blakemorei* strain MV-1. One
89 dose comprised 2 μ l of the solution (or water), and each bird received four doses: one in the
90 morning and one before sunset, for two consecutive days. On the third day after capture, half
91 an hour after sunset, birds were removed from their cages and placed in Emlen funnels (plastic
92 funnels with a rim diameter of 45 cm, covered by a PVC sheet), which were placed in a mesh
93 enclosure with no view of the sky. Funnels were filmed from above using HIKvision 2.8 IR
94 cameras (one for each funnel), connected to an HIK vision HD DVR hard drive. Recording started
95 exactly one hour after sunset with a shot of the identity number and a compass, to indicate
96 north for later analysis. Filming continued for 90 minutes, of which the first ten allowed for
97 recovery, and were not analyzed. At the end of the 90-minute experiment birds were removed
98 from the funnels and released.

99 **Statistical analysis**

100 Each bird's average hop azimuth was transformed to its projection on both axes of the
101 trigonometric unit circle according to [15]. We used Rayleigh's Z test to examine whether
102 individuals and groups displayed significant directionality. To verify that the directional data fit
103 a unimodal distribution, we assessed the distribution using the AIC criterion, and dedicated
104 methods for circular data, according to [16]. Comparison of the variance in directional
105 tendencies between groups was done using Levene's test. Activity levels were compared using
106 two-tailed t-tests.

107

108 **Results and Discussion**

109 When examining orientation of individuals placed in Emlen funnels, we found significant
110 difference in orientation between the two experimental groups. Individuals from the control
111 group showed a highly significant south-westward orientation ($n = 14$, $Z = 8.84$, $P < 0.0001$,
112 Figure 1A), while individuals from the treatment group were more dispersed and showed no
113 significant orientation ($n = 14$, $Z = 1.33$, $P > 0.2$, Figure 1B). According to the significant
114 orientation of controls and lack of significant orientation of the treatment group, using Levene's

115 tests we show that variance of directionality was significantly lower in the control group in both
116 the north/south and the east/west axes: (north/south axis: $F = 6.5$, $P = 0.01$, sd : control = 0.5,
117 treatment = 0.78, Figure 2A; east/west axis: $F = 7.3$, $P = 0.01$, sd : control = 0.38, treatment = 0.6,
118 Figure 2B). As seen by standard deviation values, controls exhibit smaller variance in all aspects.
119 To verify that the lack of significant orientation of individuals from the treatment group is not a
120 result of reduced activity due to exposure to antibiotics, we compared the number of hops
121 between groups as a means of negating any non-navigation-related effects of antibiotics.
122 Groups did not differ in the number of hops per individual ($T = 0.1$, $n_c = 14$, $n_t = 14$, $P = 0.9$).
123 The results obtained from implementation of the well-established Emlen protocol indicate that
124 Enrofloxacin affects orientation-related behavior during migration restlessness in a night-
125 migrating passerine. This is the first documentation of such an effect. As seen in Figure 1,
126 treatment group graphs are similar to control graphs, with the exception that in the first,
127 individual azimuths are more dispersed over the diagram. Significant orientation is a function of
128 low directional variance. The significant difference in directional variance between the
129 experimental groups is exactly what would be expected if antibiotics are detrimental for
130 orientation. This difference is significant regardless of the lack of significant orientation of the
131 treatment group. The size and shape of the funnel do not allow birds to do much more than
132 take a small skip towards the direction in which they have decided to go, meaning that each
133 hop should represent the directional decision made prior to jumping. This narrows the window
134 of antibiotic effects further, to the decision-making process itself. Directional decisions during
135 migration depend on multiple internal and external factors [17]. Emlen funnels allow us to
136 examine this process in a highly controlled setting. According to widely used, standard
137 techniques, in our setup tested birds could only rely on magnetic information for the process of
138 directional decision making, as they had no access to other celestial cues. This narrows our
139 window of effect further still. The choice of specimens was such that only migrants at late
140 stages of preparation to migrate were tested. From these, only adjusted, heavily fueled
141 individuals were tested. A three-day stay in a cage, including treatment and handling prior to
142 migration could have affected the resulting patterns in various ways. But in this respect,
143 individuals from both groups underwent exactly the same procedure. This leaves us with the

144 potential physical effects of the antibiotic, Enrofloxacin, as the internal cause of the differences
145 between groups. The amount needed to cause any effect to vertebrate cells is two orders of
146 magnitude larger than the bactericidal, therapeutic amount [18]. This means that any
147 disruption of the directional, decision-making process caused by our treatment should have
148 been mediated by a bacterial factor, assuming, as discussed above, that the only external
149 directional stimuli to which the birds were exposed was magnetic. Namely, the process of
150 directional decision making involves (at least in part) bacterial factors. We regard these results
151 as experimental support for the symbiotic magnetic sensing hypothesis.

152 Today, many processes in multicellular organisms are found to include bacterial involvement
153 [19–21]. Thus, the conclusions from this experiment are not surprising. An immediate
154 conclusion would therefore be that antibiotic pollution should be considered a global concern
155 not only in the context of pathogen resistance and human health [22] but also for processes
156 involving magnetic field sensing such as migration in the air, on land, or at sea, pollination,
157 habitat choice, etc.

158 We expected the directional tendency in spring to be northwards, according to the migration
159 route of the species in the region [13]. The resulting south-western tendency could be
160 explained in several ways. Prior work with the study species has shown it to demonstrate axial
161 behavior, meaning that part of the population (up to 55%) shows reverse directionality with
162 regard to migration route [23]. Furthermore, “reverse migration” is a known phenomenon,
163 which has been related to stress, late night migration [24] and the lack of exposure to celestial
164 information and other directionally significant environmental factors for a long duration prior
165 to, and during the test [17,25,26]. The issue of exposure to celestial cues during Emlen tests is
166 debatable, and there are groups working on both methods [17,5]. We aimed to isolate the
167 magnetic factor of orientation, so obstruction of celestial cues was important. Regardless of the
168 reason for the seasonally inappropriate directionality, we show significant directional
169 tendencies in control groups which were absent in treatment groups. Most importantly, we
170 show a significant increase in directional variance in the antibiotic treatment group. Considering
171 all the above, this trend could indicate bacterial involvement in navigation-related processes in
172 a passerine, specifically magnetic sensing.

173 **Acknowledgments:**

174 We would like to thank Shay Agmon of the Hula ringing station and the Hula research center
175 staff for their assistance throughout the project.

176 **References**

- 177 1. Dittman, Quinn. 1996 Homing in Pacific salmon: mechanisms and ecological basis. *J. Exp. Biol.* **199**, 83–91.
- 179 2. Hansson BS. 1995 Olfaction in Lepidoptera. *Experientia* **51**, 1003–1027.
180 (doi:10.1007/BF01946910)
- 181 3. Deutschlander ME, Beason RC. 2014 Avian navigation and geographic positioning. *J. F. Ornithol* **85**, 111–133. (doi:10.1111/jofo.12055)
- 183 4. Wehner R, Michel B, Antonsen PER. 1996 Visual Navigation in Insects: Coupling of
184 Egocentric and Geocentric Information. **140**, 129–140.
- 185 5. Wiltschko, W. and Wiltschko. R. 1990 Magnetic orientation and celestial cues in
186 migratory orientation. *Experientia*. **46**, 342-352. (doi: 0.1007/BF01952167)
- 187 6. Narins PM, Lewis ER, Jarvis JUM, O'riain J. 1997 The use of seismic signals by fossorial
188 Southern African mammals: A neuroethological gold mine. *Brain Res. Bull.* **44**, 641–646.
189 (doi:10.1016/S0361-9230(97)00286-4)
- 190 7. Mouritsen H. 2018 Long-distance navigation and magnetoreception in migratory animals.
191 *Nature*. **558**, 50–59. (doi:10.1038/s41586-018-0176-1)
- 192 8. Nordmann GC, Hochstoeger T, Keays DA. 2017 Unsolved mysteries: Magnetoreception—
193 A sense without a receptor. *PLoS Biol.* **15**, 1–10. (doi:10.1371/journal.pbio.2003234)
- 194 9. Hore PJ, Mouritsen H. 2016 The radical pair mechanism of magnetoreception. *Annu. Rev.*
195 *Biophys.* **45**, 299-344.
- 196 10. Natan E, Vortman Y. 2017 The symbiotic magnetic-sensing hypothesis: do magnetotactic
197 bacteria underlie the magnetic sensing capability of animals. *Mov. Ecol.* **5**, 22-27. (doi:
198 10.1186/s40462-017-0113-1)
- 199 11. Edwards KJ, Simmons SL, Sievert SM, Frankel RB, Bazylinski D. 2004 Spatiotemporal
200 distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond
201 spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified
202 coastal salt pond. *Appl. Environ. Microbiol.* **70**, 6230–6239.
203 (doi:10.1128/AEM.70.10.6230)
- 204 12. Franckel RB. 1984 Magnetic guidance of organisms. *Annu Rev Biophys Bioeng.* **13**, 85–
205 103. (doi: 10.1146/annurev.bb.13.060184.000505)

206 13. Pearson DJ, Small BJ, Kennerley PR. 2002 Eurasian Reed Warbler: The characters and
207 variation associated with the Asian form *fuscus*. *Br. Birds* **95**, 42–61.

208 14. Weber TP, Houston AI, Ens BJ, Weber TP, Houston AI, Ens B. 2018 Optimal Departure Fat
209 Loads and Stopover Site Use in Avian Migration: An Analytical Model Stable URL:
210 <https://www.jstor.org/stable/49969> Linked references are available on JSTOR for this
211 article: Optimal departure fat loads arid stopover site use in av. **258**, 29–34.

212 15. Mora C V, Walker MM. 2012 Consistent effect of an attached magnet on the initial
213 orientation of homing pigeons, *Columba livia*. *Anim. Behav.* **84**, 377–383.
214 (doi:10.1016/j.anbehav.2012.05.005)

215 16. Marr PG. 2014 Directional (Circular) Statistics.
216 <http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%2016%20%20Directional%20Statistics.pdf>

217 17. Åkesson S, Walinder G, Karlsson L, Ehnbom S. 2001 Reed warbler orientation: Initiation
218 of nocturnal migratory flights in relation to visibility of celestial cues at dusk. *Anim.*
219 *Behav.* **61**, 181–189. (doi:10.1006/anbe.2000.1562)

220 18. Mitchell MA. 1988 Enrofloxacin. *Drugs Future*. **13**, 305–307.
221 (doi:10.1358/dof.1988.013.04.62402)

222 19. Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. 2011 The
223 mind-body-microbial continuum. *Dialogues Clin. Neurosci.* **13**, 55–62.

224 20. Logan AC, Katzman M. 2005 Major depressive disorder: Probiotics may be an adjuvant
225 therapy. *Med. Hypotheses*. **64**, 533–538. (doi:10.1016/j.mehy.2004.08.019)

226 21. Collins S, Berrick P. 2009 The relationship between intestinal microbiota and the central
227 nervous system in normal gastrointestinal function and disease. *Gastroenterology*. **136**
228 (6), 2003–2014. (doi:10.1053/j.gastro.2009.01.075)

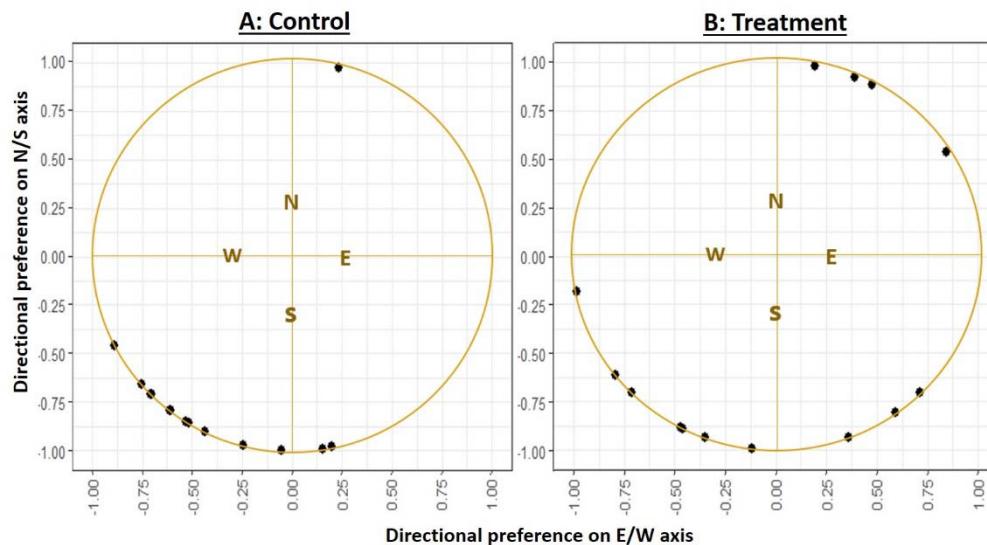
229 22. Inyinbor AA, Bello OS, Fadiji AE, Inyinbor HE. 2018 Threats from antibiotics: A serious
230 environmental concern. *J. Environ. Chem. Eng.* **6**, 784–793.
231 (doi:10.1016/j.jece.2017.12.056)

232 23. Formella M, Przemyslaw B. 2002 Directional preferences of the reed warbler
233 (*Acrocephalus scirpaceus*) and the sedge warbler (*A. schoenobaenus*) on autumn
234 migration at Lake Drużno (Poland). *The Ring*. **24**, 15–29. (doi 10.2478/v10050-008-0076-
235 0)

236 24. Muheim R, Åkesson S, Bäckman J, Sjöberg S. 2017 Magnetic compass orientation
237 research with migratory songbirds at Stenoffa Ecological Field Station in southern
238 Sweden: why is it so difficult to obtain seasonally appropriate orientation? *J. Avian Biol.*
239 **48**, 6–18. (doi:10.1111/jav.01303)

240 25. Able KP. 1982 Field studies of avian nocturnal migratory orientation I. interaction of sun,

242 wind and stars as directional cues. *Anim. Behav.* **30**, 761–767. (doi:10.1016/S0003-
243 3472(82)80148-6)


244 26. Engels S, Schneider N-L, Mouritsen H, Heyers D, Zapka M, Weiler S, Kishkinev D, Hein CM,
245 Wild JM, Dreyer D. 2009 Visual but not trigeminal mediation of magnetic compass
246 information in a migratory bird. *Nature*. **461**, 1274–1277. (doi:10.1038/nature08528)

247

248

249 **Figures**

Figure 1: Orientation of treated and untreated reed warblers

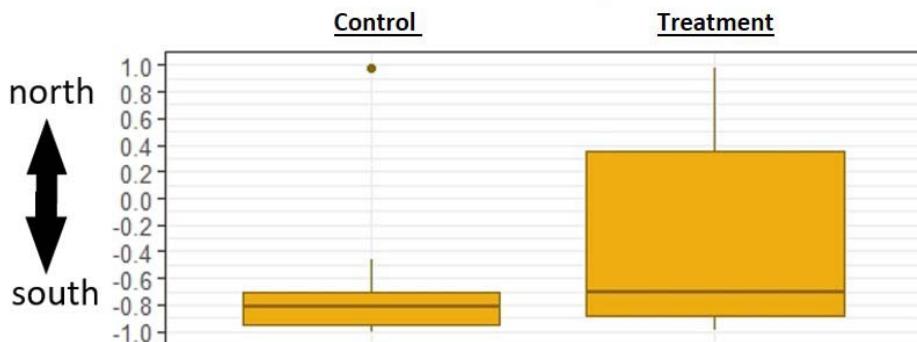

250

Figure 2: Variance of directional preference

A: Variance on east/west axis

B: Variance on north/south axis

251

252

253 **Figure Legends**

254 **Figure 1: Orientation of treated and untreated reed warblers:** Each dot represents the average
255 hop azimuth of an individual in an Emlen funnel. Scales are projections of azimuths on x/y axes
256 in the trigonometric unit circle (see Materials and Methods). On the north/south axis, positive
257 values indicate a northward tendency and negative values indicate a southward tendency. On
258 the east/west, positive values indicate east, while negative values indicate west.

259 **Figure 2: Variance of directional preference:** Differences in the variance of directional tendency
260 between treatment and control groups. Scales are projections of azimuths on x/y axes in the
261 trigonometric unit circle (see Materials and Methods).