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ABSTRACT

The NanoString RNA counting assay for formalin-fixed paraffin embedded samples is unique in its
sensitivity, technical reproducibility, and robustness for analysis of clinical and archival samples. While
commercial normalization methods are provided by NanoString, they are not optimal for all settings,
particularly when samples exhibit strong technical or biological variation or where housekeeping genes
have variable performance across the cohort. Here, we develop and evaluate a more comprehensive
normalization procedure for NanoString data with steps for quality control, selection of housekeeping
targets, normalization, and iterative data visualization and biological validation. The approach was
evaluated using a large cohort (N = 1,649) from the Carolina Breast Cancer Study, two cohorts of
moderate sample size (N = 359 and 130), and a small published dataset (N = 12). The iterative process
developed here eliminates technical variation (e.g. from different study phases or sites) more reliably than
the three other methods, including NanoString’s commercial package, without diminishing biological
variation, especially in long-term longitudinal multi-phase or multi-site cohorts. We also find that probe
sets validated for nCounter, such as the PAM50 gene signature, are impervious to batch issues. This
work emphasizes that systematic quality control, normalization, and visualization of NanoString nCounter

data is an imperative component of study design that influences results in downstream analyses.

Keywords: NanoString nCounter expression; gene expression normalization; quality control; data

visualization

INTRODUCTION

The NanoString nCounter platform offers a targeted strategy for gene expression quantification using a
panel of up to 800 genes without requiring cDNA synthesis or amplification steps [1]. The technology
offers advantages in sensitivity, technical reproducibility, and strong robustness for profiling formalin-
fixed, paraffin-embedded (FFPE) samples [2]. Given these advantages, nCounter is increasingly used for
longitudinal studies involving FFPE samples carried out over several years [3] and diagnostic assays in

clinical settings [4,5].
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Proper normalization and quality control of gene expression is necessary prior to statistical analysis to
reduce unwanted variation that may be associated with technical batches or RNA degradation from
sample fixation [6,7]. While some sources of variation can be enumerated a priori (e.g. different research
centers, batches over time, or RNA preservation methods), not all can be captured. In all cases, it is
advisable to define a quality control and normalization pipeline to detect and account for technical
variation in downstream statistical modeling. All normalization methods deal with a trade-off between bias

that needs correction and bias or variance that may be introduced in normalization [8].

Many approaches have been developed to normalize nCounter data. NanoString provides two forms of
normalization in its commonly-used nSolver Analysis Software [9]: (A) a graphical user interface with
optional background correction and positive-control and housekeeping gene normalization and (B) the
Advanced Analysis tool, which draws on the NormgPCR R package [10,11] to select co-expressed
housekeeping genes prior to normalization. The NanoStringNorm package implements the nSolver
algorithms in R [12]. The R packages NanoStringDiff and RCRnorm use hierarchical modeling methods
that incorporate information from the positive, negative, and housekeeping controls for normalization
[13,14]. The NACHO R package proposes a simple quality control and visualization pipeline that
precedes normalization using either NanoStringNorm or NanostringDiff [15], though, without post-
normalization visualization to assess normalization quality. When technical replicates are available, a
method from Molania et al, Remove Unwanted Variation-1ll (RUV-III), can be used along with an iterative
normalization process where several parameters (i.e. number of housekeeping genes, number of
detected outliers, number of dimensions of technical noise) are tuned with relevant visual and biological
checks [7]. RUV-IIl normalization frequently outperformed nSolver normalization by more efficiently
removing technical sources of variation while preserving biological variation [7]. Since many cohorts do
not have technical replicates, we extend Molania et al's iterative framework using RUVSeq [6-8], a

precursor of RUV-IIL.

Here, we provide a framework for the quality control and normalization of mMRNA expression count data

from the NanoString nCounter platform, using a large dataset (N = 1,649) of breast tumor expression
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from the Carolina Breast Cancer Study (CBCS) and three other cohorts of differing sample size (N =
12,130, and 359). We illustrate some of the pitfalls in the nSolver method of background correction and
positive control normalization, provide an alternative approach that uses RUVSeq [6,8], and benchmark
our framework against other normalization methods [9,13,14]. We find that, especially in longitudinal,
multi-phase or multi-site cohorts, RUVSeq outperforms nSolver in removing differences across technical
sources of variation. Lastly, we provide quality checks for normalization and outline the impact of proper

normalization on inference for biological associations and expression-based disease subtyping.

MATERIAL AND METHODS

Data collection

We used four cohorts with nCounter gene expression data to evaluate differences between normalization
procedures. Cohort details and the normalization parameters for each cohort are given below and

summarized in Supplemental Table S1.

CBCS gene expression data

The Carolina Breast Cancer Study (CBCS) is a multi-phase cohort of women with breast cancer in North
Carolina. Samples were collected during three study phases: Phase 1 (1993-1996), Phase 2 (1996-
2001), and Phase 3 (2008-2013). Paraffin-embedded tumor blocks were reviewed and assayed for gene
expression using the NanoString nCounter system as discussed previously [3,16,17]. Study phase gives
the relative age of the tumor block. In total, 1,649 samples from patients with invasive breast cancer from
CBCS, across all three study phases, were analyzed on a custom panel of 417 genes. All assays were
performed in the Translational Genomics Laboratory (TGL) at the University of North Carolina at Chapel
Hill (UNC). After quality control and normalization, 1,264 samples remained in the nSolver-normalized
data, and 1,219 samples remained in the RUVSeq-normalized data. This dataset was used to benchmark
against NanoStringDiff [13] and RCRnorm [14], using the same 1,264 samples in the nSolver-normalized

set.

Bladder tumor gene expression data
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85 FFPE Biospecimens from 42 samples of NMIBC from UNC (Chapel Hill, NC) and 88 samples from a

86  study conducted by the Memorial Sloan Kettering Cancer Center (New York, NY) with non-muscle

87 invasive bladder cancer (NMIBC) were analyzed. RNA was isolated using the RNeasy FFPE Kit (Qiagen)

88  at UNC and NanoString assays were performed at the TGL at UNC using a custom codeset consisting of

89 440 endogenous and 6 housekeeping genes. After quality control and normalization, 86 samples

90 remained in both the nSolver-normalized and RUVSeq-normalized datasets.

91

92 Kidney tumor gene expression data

93 This study includes 359 samples from patients with clear cell renal cell carcinoma (CCRCC) with fresh-

94  frozen tissue collected as part of a large case-control study of kidney cancer conducted in central and

95 eastern Europe [18] . Slides for each case were reviewed by a pathologist to assess tumor stage and

96 grade [19]. Manual microdissection was performed to remove non-tumor tissue. Frozen sections were

97 placed directly in Trizol reagent (Invitrogen, Carlsbad, CA), homogenized for 2 minutes on ice, and RNA

98  was isolated using the manufacturer’s protocol. NanoString assays were performed at UNC TGL using a

99 custom codeset consisting of 62 endogenous and 6 housekeeping genes commonly studied in kidney
100  cancer. After quality control and normalization, 331 samples remained in both the nSolver- and RUVSeqg-

101 normalized data.

102

103 Sabry et al gene expression data

104  We downloaded raw RCC files from Sabry et al [20] from the NCBI Gene Expression Omnibus (GEO)
105  with accession number GSE130286 and imported them using functions in NanoStringQCPro [21]. This
106 dataset comprised of 12 samples, all of which remained after normalization with both procedures. The
107 dataset measured 706 endogenous genes with 40 housekeeping genes from the NanoString nCounter
108 Human Myeloid Innate Immunity Panel [20].

109

110  Quality control and normalization

111 The full quality control and normalization process using nSolver and RUVSeq is summarized in Figure 1,

112 starting with familiarization of the raw data (Figure 1.1), technical quality control (Figure 1.2), pre-
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113 normalization assessment of housekeeping genes (Figure 1.3) and data visualization to detect

114 problematic samples and assess whether flagged samples should be removed (Figure 1.4).

115 Normalization is performed with either nSolver or RUVSeq (Figure 1.5), and the processed expression
116  datais assessed for validity through relevant visualization and biological checks (Figure 1.6). If validation
117  is unsatisfactory and technical variation is still present, this process is iterated.

118

119  Technical quality controls flags

120 nSolver provides quality control (QC) flags to assess the quality of the data for imaging, binding density,
121 linearity of the positive controls, and limit of detection. The definition and implementation of this QC is
122 summarized in nSolver [9] and NanoStringNorm [12] documentation. We mark any sample that is flagged
123 in at least one of these four QC assessments as technical quality control. We use these QC flags in both
124 nSolver normalization and RUVSeq normalization.

125

126 Below limit of detection quality control

127  We use high proportions of both endogenous and housekeeping genes below the limit of detection (LOD)
128 as a QC flag to assess reduced assay or sample quality. The per-sample LOD is defined as the mean of
129 the counts of negative control probes for a given sample. We assessed the percent of counts below the
130 LOD in the housekeeping genes per sample to flag both poor quality samples and housekeeping genes
131 with problems in their measurement. We used samples with all housekeeping genes above the LOD as a
132 reference group to determine the regular distribution of genes below the LOD. Samples were flagged if
133 (1) they had more than one housekeeping gene below the LOD and (2) the percent of endogenous genes
134  below the LOD was greater than the top quartile of the distribution of percent below LOD in the reference
135  group.

136

137 Housekeeping gene assessment

138 Housekeeping genes serve two purposes: 1) for QC purposes to remove samples with overall poor

139 quality and 2) for assessing the amount of technical variation present in the normalization procedure.

140 NanoString documentation suggests that ideal housekeeping genes are highly expressed, have similar
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141 coefficients of variation, and have expression values that correlate well with other housekeeping genes
142 across all samples [9,12]. Because of these definitions, these targets will ideally vary only due to the level
143 of technical variation present. RUVSeq relies on housekeeping genes, i.e. genes not influenced by the
144  condition of interest (e.g. cancer subtype), with no assumptions on co-expression of all housekeeping
145  genes. To assess the potential for housekeeping correction to introduce bias, housekeeping genes were
146  assessed for differential expression across a primary biological covariate of interest (estrogen receptor
147  status in CBCS, tumor stage in the kidney and bladder cancer data, and treatment groups in Sabry et al
148 [20]) using negative binomial regression on the raw counts from the MASS package [22].

149

150 nSolver normalization

151 Background correction

152 NanoString guidelines suggest background correction [9,12] by either subtraction or thresholding for an
153  estimated background noise level for experiments in which low expressing targets are common, or when
154  the presence of a transcript has an important research implication [7,12]. Data from all four cohorts

155 considered do not necessarily fall under this criterion, and accordingly, we did not background correct by
156  either method. To demonstrate the effect of background correction, we tested nSolver-normalized gene
157 expression with and without background thresholding in CBCS using relative log expression (RLE) plots.
158

159 Positive control and housekeeping gene-based normalization

160  The arithmetic mean of the geometric means of the positive controls for each lane was computed and
161 then divided by the geometric mean of each lane to generate a lane-specific positive control normalization
162  factor [9,12]. The counts for every gene were multiplied by their lane-specific normalization factor. To
163  account for any noise introduced into the nCounter assay by positive normalization, the housekeeping
164  genes were used similarly as the positive control genes to compute housekeeping normalization factors
165 to scale the expression values [9,12]. NanoString flagged samples with large housekeeping gene scaling
166  factors (we call this a housekeeping QC flag) and large positive control scaling factors (positive QC flag)

167 but note that samples with these flags simply indicate that a sample is divergent from other samples in
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168 the dataset and do not necessarily require removal. Pre-normalization visualization (Figure 1.4) is

169 important for confirming the inclusion or removal of these samples.

170

171 RUVSeq normalization pipeline

172 Normalization

173  The RUVSeq-based normalization process (Figure 1.5), an alternative approach to nSolver

174  normalization, proceeds following quality control and housekeeping assessment. Distributional

175 differences were scaled between lanes using upper-quartile normalization [23]. Unwanted technical

176  factors were estimated in the resulting gene expression data with the RUVg function from RUVSeq [8].
177 Unwanted variation was estimated using the final set of endogenous housekeeping genes on the

178 NanoString gene expression panel [24,25]. In general, the number of dimensions of unwanted variation to
179 remove was chosen by iteratively normalizing the data for a given number of dimensions and checking for
180  the removal of known technical factors already identified in the raw expression data (e.g. study phase),
181 and presence of key biological variation (e.g. bimodality of ESR1 expression in the CBCS breast cancer
182 data where estrogen receptor status is a known predominant feature). Further details about choosing this
183 dimension are given by Gagnon-Bartsch et al and Risso et al [6,8]. DESeq2 was used to compute a

184  variance stabilizing transformation of the original count data [25], and estimated unwanted variation was
185 removed using the removeBatchEffects function from limma [26]. Ultimately, we removed 1, 1, 3, and 1
186 dimensions of unwanted variation from CBCS, kidney cancer, bladder cancer, and the Sabry et al

187 datasets, respectively. RLE plots, principal component analysis and heatmaps were used to detect any
188  potential outliers before and after normalization.

189

190  Alternative normalization methods for benchmarking

191 Using CBCS data, we compared the normalized datasets from nSolver, RUVSeq, NanoStringDiff [13],
192 and RCRnorm [14] with the raw data through visualization methods outlined above (Figure 1.1 to 1.4,
193 RLE plots and scatter plots of principal components over important technical and biological sources of
194  variation). Details about these methods are provided in Supplemental Table S2.

195
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196 Downstream analyses

197  We used several data visualization or benchmarking methods for each cohort.

198

199  Silhouette width analysis in CBCS

200  Silhouette width, a measure used to assess how similar a sample is to its own group (i.e. study phase) as
201  compared to other groups, was used to determine the impact of the two normalization procedures on

202  technical and biological variation [27]. Many samples with large silhouettes can be interpreted as

203 indicating that the different study phases are distinct and that a batch effect is still present in the data.

204

205 eQTL analysis in CBCS

206  We assessed the additive relationship between the gene expression values and germline genotypes with
207 linear regression analysis using MatrixEQTL [28], applying the same linear model as detailed in previous
208  work [29]. Briefly, for each gene and SNP in our data, we constructed a simple linear regression, where
209 the dependent variable is the scaled expression of the gene with zero mean and unit variance, the
210 predictor of interest is the dosage of the alternative allele of the SNP, and the adjusting covariates are the
211  top five principal components of the genotype matrix. We considered both cis- (SNP is less than 0.5 Mb
212 from the gene) and trans-eQTLs in our analysis. We adjusted for multiple testing via the Benjamini-
213 Hochberg procedure [30].

214

215 PAMS50 subtyping in CBCS

216  We classified each subject into PAM50 subtypes using the procedure summarized by Parker et al [31,32].
217  Briefly, for each sample, we computed the Euclidean distance of the log-scale expression values for the
218 50 PAMS5O0 genes to the PAM50 centroids for each of the molecular subtypes. Each sample was classified
219  to the subtype with the minimal distance [31]. The PAM50 genes were clustered hierarchically for both
220  samples and genes and visualized in heatmaps. Subtype concordance was assessed between

221 normalization methods excluding normal-like cases.

222

223 RNA-seq normalization and distance correlation analysis in CBCS
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224  We obtained a separate set of samples (not included in the analysis described above) from CBCS with
225 both RNA-seq and nCounter expression (on a different codeset of 166 genes). We followed a standard
226 RNA-seq normalization process with DESeq2 [25], using the median of ratios method to estimate scaling
227  factors [24]. We calculated the distance correlation and conducted a multivariate permutation test of

228  independence between the RNA-seq data set (subset to the overlapping genes on the NanoString

229  codeset) with each of the nSolver-normalized and RUVSeg-normalized nCounter data using the energy
230  package [33]. The distance correlation and associated permutation test allow for detection of non-

231 independence across multivariate datasets of different distribution.

232

233 Differential expression analysis with Sabry et al. dataset [20]

234 We conducted differential expression analysis to compare both normalization methods in the Sabry et al.
235 dataset [20] using DESeq2 [25], and adjusting for multiple testing with the Benjamini-Hochberg [30]

236 procedure. We compared differential expression across IL-2—primed NK cells vs. NK cells alone and
237 CTV-1-primed NK cells for 6 hours vs. NK cells alone.

238

239 RESULTS

240  We evaluated the ability of normalization methods to remove technical variation while retaining

241 biologically meaningful variation across four cohorts of differing sample size and varying sources of

242 technical bias (Supplemental Table S1). Known sources of technical variation included age of sample
243 (study phase) and different study sites. The cohorts varied in preservation methods; two cohorts used
244 fresh-frozen specimens, while two used archival FFPE specimens. The number of genes measured for
245 both endogenous genes and housekeeping genes also varied by study. In addition, some studies used
246  validated and optimized code sets for specific gene signatures versus a more general code set.

247

248 In cohorts with large technical biases, RUVSeq provided superior normalization with more robust removal
249 of technical variation and provided stronger biological associations compared to other normalization

250 methods. In two of the datasets, we found that downstream analyses performed on data normalized with

251 nSolver and RUVSeq detected substantially different biological associations. However, when few strong
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252 technical biases were present or if a validated and optimized code set (e.g. PAM50 genes) was used,
253 nSolver and RUVSeq performed comparably.

254

255  Case study: Carolina Breast Cancer Study

256  Evaluation of background correction

257  Background thresholding led to increased per-sample variance while per-sample medians remained

258  relatively similar (Supplemental Figure S1A). The distributions of per-sample median expression values
259  were more right-skewed (greater mean than median) when using background thresholding prior to

260 normalization compared to not using background thresholding (Supplemental Figure S1B). Based on
261 this analysis, we did not perform background correction prior to normalization for all cohorts analyzed.
262

263 Quality assessment of expression levels using LOD of housekeeping genes

264  We used the housekeeping genes to assess if the lack of expression of endogenous genes was due to
265 biology or due to technical failures. We compared the level of missing endogenous genes in samples with
266 all housekeeping genes present to those with increasing number of housekeeping genes below LOD.
267  There was a strong positive correlation for increasing proportions of genes below the LOD in both the
268 endogenous and housekeeping genes (Figure 2A;Supplemental Figure S2). Samples with higher

269 numbers of genes below the LOD were from earlier phases of CBCS (i.e. Phase 1 from 1993-1996 and
270 Phase 2 from 1996-2001), and thus associated with sample age (Figure 2A;Supplemental Figure S3).
271 Samples with a higher proportion of endogenous genes below the LOD had increased numbers of QC
272  flags as well (Supplemental Figure S2).

273

274  Evaluation of normalization methods

275  We benchmarked RUVSeq and nSolver with two other normalization methods, NanoStringDiff [13] and
276 RCRnorm [14]. We observed differences across the four normalization strategies (described in

277 Supplemental Table S2), namely greater remaining technical variation using nSolver and NanoStringDiff
278  than RCRnorm and RUVSeq (Figure 2B-D). A large portion of the variation in the raw expression could

279 be attributed to study phase (Supplemental Figure S4A). While all methods reduced study phase
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280  associated variation compared to the raw data, there were considerable differences in the deviations from
281 the median log-expressions in the nSolver- and NanoStringDiff-normalized expression that are not

282 present in the RUVSeq- and RCRnorm-normalized data (Figure 2B). The nSolver and NanoStringDiff
283 methods retained technical variation, either not fully corrected or re-introduced during the nSolver

284  normalization process.

285

286  We examined the ability of each normalization method to retain biological variation. Estrogen Receptor
287 (ER) status is one of the most important clinical and biological features in breast cancer and is used for
288 determining course of treatment [34,35]. ER status drives many of the molecular classifications [36—38]
289 and even drives separate classification of breast tumors in TCGA'’s pan-cancer analysis of 10,000 tumors
290 [39]. Inthe raw expression, variation due to ER status was captured in PC2 rather than PC1 (study age);
291 however, after RUVSeq-normalization, ER status was reflected predominantly in PC1 (Figure 2C). In the
292 nSolver-, NanoStringDiff-, and RCRnorm-normalized data, ER status was shared between PC1 and PC2,
293  suggesting that unresolved technical variation was still present. RUVSeq demonstrated

294 effective removal of technical variation and boosting of the true biological signal. The PAM50 molecular
295 subtypes [31], which are also linked with ER status, were also clearly separated by PC1 for RUVSeq-

296 normalized data, but this was not thess case for nSolver-, NanoStringDiff-, or RCRnorm-normalization
297 (Supplemental Figure S4B). These results suggest that RUVSeq-normalization best balances the

298 removal of technical variation with the retention of important axes of biological variation, with RCRnorm
299 showing better performance than nSolver and NanoStringDiff, but not superior to RUVSeq. A significant
300 disadvantage of RCRnorm is its computational cost: RCRnorm was unable to run on the CBCS dataset
301 (N = 1278 after QC) on a 64-bit operating system with 8 GB of installed RAM, requiring RCRnorm-

302 normalization to be performed on a high-performance cluster. We summarize the maximum memory used
303 by method in CBCS in Supplemental Table S2.

304

305  We used silhouette width to assess extent of unwanted technical variation from study phase remaining by
306 the normalization methods. Larger positive silhouette values indicate within-group similarity (i.e. samples

307 clustering by study phase). Per-sample silhouettes across the alternatively normalized datasets showed
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308 that RUVSeq best addressed the largest source of technical variation identified in the raw data (Figure
309 2D; Supplemental Figure S5A) while also not removing a significant portion of biological variation

310 (Supplemental Figure S5B). NanoStringDiff also demonstrated less similarity of samples across study
311 phase similar to RUVSeq but removed biologically relevant similarity of samples grouped by ER status.
312 Due to the performance of NanoStringDiff and computational limitations of RCRnorm, for subsequent
313  analyses and datasets, we only illustrate differences between nSolver- and RUVSeq-normalized data.
314

315 Genomic analyses and expression profiles across normalization methods

316  We evaluated the impact of normalization choice on downstream analyses including eQTLs, PAM50
317 molecular subtyping, known expression patterns, and similarity to RNA-seq data. In a full cis-trans eQTL
318 analysis accounting for race and genetic-based ancestry, we found considerably more eQTLs using

319 nSolver as opposed to RUVSeq, thresholding at nominal P < 1073 (2,050 vs. 1,143). We identified strong
320 cis-eQTL signals in both normalized datasets; however, stronger FDR values were identified with

321 RUVSeq (Figure 3A, densely populated around the 45-degree line). We observed considerably more
322 trans-eQTLs using nSolver, including a higher proportion of trans-eQTLs across various FDR-adjusted
323  significance levels (Figure 3B; Supplemental Figures S6-S7). We suspected that spurious trans-eQTLs
324  may have resulted from residual technical variation in expression data that was confounded with study
325 phase, subsequently being identified as a QTL due to ancestry differences across study phase. In cross-
326  chromosomal trans-eQTL analysis, distributions of absolute differences in minor allele frequency (MAF)
327  for trans-eSNPs across women of African and European ancestry were wide for both methods

328 (Supplemental Figure S7). However, we observed substantially more trans-eSNPs with moderate

329 absolute MAF differences across study phase with nSolver, compared to RUVSeq. This provides some
330  evidence for the presence of residual confounding technical variation in the nSolver-normalized

331 expression data leading to spurious trans-eQTL results (with a directed acyclic graph for this hypothesis
332 in Supplemental Figure S8), though we cannot confirm this with eQTL analysis alone.

333

334  We compared each normalization method for the ability to classify breast cancer samples into PAM50

335 intrinsic molecular subtype using the classification scheme outlined by Parker et al [31]. Our PAM50
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336  subtyping calls were robust across normalization methods with 91% agreement and a Kappa of 0.87

337 (95% CI (0.85, 0.90)) (Supplemental Table S3). Among discordant calls, approximately half had low
338 confidence values from the subtyping algorithm, and half had differences in correlations to centroids less
339  than 0.1 between the discordant calls (data not shown). Most of these discordant calls were among

340 HER2-enriched, luminal B and luminal A subtypes, which are molecularly similar [40].

341

342  We observed noticeable differences between the RUVSeq- and nSolver-normalized gene expression
343  when visualized after hierarchical clustering via heatmaps, similar to the principal component analysis.
344 Using this method, we identified 14 additional samples with strong technical errors in the nSolver-

345 normalized data not previously marked by QC flags (Supplemental Figure S9), emphasizing the need for
346 post-normalization data visualization. In early breast cancer clustering papers, the first major division was
347 Dby ER status separating basal-like and HER2-enriched molecular subtypes (predominantly ER-negative)
348  from luminal A and B molecular subtypes (predominantly ER-positive) [31]. This pattern was observed in
349 RUVSeg-data but only partially preserved with nSolver normalization (Supplemental Figure S9). Rather,
350 nSolver data clustering was driven by a combination of ER status and study phase. Study phase

351 dominated two of the groups and were formed by Phase 1 and Phase 3 samples, respectively—samples
352  with a 10+ year difference in age.

353

354 Lastly, we compared normalization choices for NanoString data to RNA-seq data performed on the same
355 samples. CBCS collected RNA-seq measurements for 70 samples that have data on a different nCounter
356  codeset (162 genes instead of 417) and RNA-seq normalized using standard procedures. A permutation-
357  based test of independence using the distance correlation [33,41] revealed that the distance correlation
358  between the RNA-seq and nSolver data was small and near 0 (distance correlation = 0.051, P = 0.24)
359  while the distance correlation between the RNA-seq and RUVSeq- data was larger (distance correlation =
360  0.36, P = 0.02). The permutation-based test rejected the null hypothesis of independence (distance

361  correlation of zero for unrelated datasets) between RUVSeg-normalized nCounter data and RNA-seq

362  data but fails to reject the null hypothesis for nSolver-normalization nCounter and RNA-seq data. We
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363 conclude that RUVSeq produced normalized data with closer relation to the RNA-seq, in terms of

364  distance correlation and test of independence, compared to nSolver.

365

366  Case study: differential expression analysis in natural killer cells

367  We looked at the impact of the two normalization methods in a small cohort (N = 12) on DE analysis
368  across natural killer (NK) cells primed for tumor-specific cells and cytokines from Sabry et al [20]. RLE
369 plots before and after normalization showed minor differences between the two normalization methods
370 (Supplemental Figure S9).

371

372 Using DESeq2 [25], we identified genes differentially expressed in NK cells primed by CTV-1 or IL-2
373 cytokines compared to unprimed NK cells at FDR-adjusted P < 0.05. The two normalization methods led
374  to adifferent number of differentially expressed genes with a limited overlap of significant genes by both
375 methods (Figure 4A). The raw P-value histograms from differential expression analysis using nSolver-
376 normalized expression exhibited a slope toward O for P-values under 0.3, which can indicate issues with
377  unaccounted-for correlations among samples [42], such as residual technical variation. The distributions
378 of P-values using the RUVSeqg-normalized data were closer to uniform throughout the range [0,1] for most
379 genes (Figure 4B). While the log,-fold changes were correlated between the two normalization

380 procedures, the genes found to be differentially expressed only with nSolver-normalized data tended to
381 have large standard errors with RUVSeg-normalized data and therefore not statistically significant using
382 RUVSeq (Figure 4C). These differences in DE results emphasize the importance of properly validating
383 normalization prior to downstream genomic analyses.

384

385  Case study: bladder cancer gene expression

386 RUVSeq reduced technical variation (study site) while maintaining the biological variation (tumor grade).
387 RUVSeq data showed the most homogeneity in per-sample median deviation of log-expressions

388  compared to raw and nSolver data (Figure 5A). The first principal component of nSolver data had

389 significant differences by study sites, which was not present in RUVSeq data (Figure 5B). In addition,
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390 there was a stronger biological association with tumor grade in the first principal component of expression
391 using RUVSeq data (Figure 5C).

392

393  Case study: kidney cancer gene expression

394  We only found subtle differences in the deviations from the median expression between the normalization
395 procedures for the kidney cancer dataset (Figure 6A). This cohort did not have the same known technical
396  variables observed in the other cohorts such as study site or sample age, and the RNA came from fresh-
397  frozen material (Supplemental Table S1). We evaluated normalization methods on a source of technical
398  variation, DV300, the proportion of RNA fragments detected at greater than 300 base pairs as a source of
399 technical variation, and tumor stage as a biological variable of interest. The first two principal components
400  colored by level of DV300 (Figure 6B) and tumor stage (Figure 6C) showed little difference across the
401 two normalization methods. When there were limited sources of technical variation and a robust, high

402  quality dataset, we found both normalization methods performed equally well.

403

404  DISCUSSION

405 Proper normalization is imperative in performing correct statistical inference from complex gene

406 expression data. Here, we outline a sequential framework for NanoString nCounter RNA expression data
407  that provides both quality control checks, considerations for choosing housekeeping genes, and iterative
408 normalization with biological validation using both NanoString’s nSolver software [9,12] and RUVSeq

409 [6,8]. We show that RUVSeq provided a superior normalization to nSolver on three out of four datasets by
410  more efficiently removing sources of technical variation, while retaining robust biological associations.
411  We also benchmark RUVSeg-normalization with two other normalization methods implemented in R and
412  show that RUVSeq outperformed all methods in reducing technical variation.

413

414  We observed that normalization methods were sensitive to the quality and the set of housekeeping

415 genes. Several genes thought to behave exclusively in a “housekeeping” fashion in fact associate with
416 biological variables under certain conditions [43] or across different tissue types [44]. A careful validation

417 of housekeeping gene stability on a case-by-case basis and separately for new studies, considering both


https://doi.org/10.1101/2020.04.08.032490
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.032490; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

418  technical and biological sources of variation in each dataset, is therefore imperative for an optimized

419 normalization procedure.

420

421  We developed a quality metric to assess sample quality: samples with high proportions of genes detected
422 below the LOD in both endogenous genes and housekeepers were indicative of either low-quality

423  samples or reduced assay efficiency. Sample age was correlated with higher proportions of genes below
424  the LOD in both endogenous and housekeeping genes, which was likely due to RNA degradation over
425 time. We stress that missing counts in endogenous genes alone does not suggest poor sample quality in
426  the absence of additional QC flags but could represent genes not expressed and therefore not detected
427 under certain biological conditions or cell types. An example includes using an immuno-oncology gene
428 panel in a tumor sample with little to no immune cell infiltration. Conversely, many samples with counts
429 below the LOD in both endogenous genes and housekeepers had additional quality control flags including
430  those derived from nSolver’s assessment of data quality. We excluded these samples for analysis in both
431 the nSolver- and RUVSeq-based procedures.

432

433 nSolver-normalized data was prone to residual unwanted technical variation when there were known

434  technical biases, such as in CBCS and the bladder example. We checked for known biological

435 associations that are intrinsic to the sample, as in eQTL analysis, to judge the performance of the

436 normalization process [45,46]. A full cis-trans eQTL analysis using nSolver- and RUVSeq-normalized data
437  showed a strong cis-eQTL signal in data from both normalization methods. We found significantly more
438  trans-eQTLs with the nSolver-normalized data (Figure 3). However, many of the trans-eSNPs for the loci
439  found with nSolver-normalized data tended to have moderate MAF differences across phase, leading us
440  to suspect they were spurious associations driven by residual technical variation in gene expression

441 (Supplemental Figure 8). Such spurious associations from population stratification have been described
442 in many previous studies of eQTL analysis [47-50].

443

444  The choice of normalization procedure is less of a concern in cohorts with minimal sources of technical

445  variation or in nCounter targeted gene panels that have been optimized for robust measurement across
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446 preservation methods. In the CBCS breast cancer cohort, we identified significant differences in gene
447 expression between normalization methods across the entire gene set (417 total genes). However,

448 PAMS50 subtyping was robust across the two normalization procedures. The genes in the PAM50

449  classifier were selected due to their consistent measurement in both FFPE and fresh frozen breast

450  tissues [31], suggesting that robustly measured genes may be less affected by different normalization
451 procedures. Furthermore, we see minimal differences in residual technical variation in the kidney cancer
452  dataset and the Sabry et al dataset, both of which were measured on either robustly validated genes or
453 nCounter panels. The kidney cancer example had newer, fresh-frozen specimens that were profiled using
454  asmall and well-validated set of genes important in that cancer type. This dataset gives an opportunity to
455 stress the importance of the general principles of normalization: as Gagnon-Bartsch et al and Molania et
456 al recommend [6,7], normalization should be a part of scientific process and should be approached

457 iteratively with visual inspection and biological validation to tune the process. One normalization

458 procedure is not necessarily applicable to all datasets and must be re-evaluated on each dataset.

459

460 In conclusion, we outline a systematic and iterative framework for the normalization of NanoString

461 nCounter expression data. Even without background correction, a technique which has been shown to
462 impair normalization of microarray expression data [51,52], we believe that relying solely on positive

463 control and housekeeping gene-based normalization may result in residual technical variation after

464 normalization. Here, we show the merits of a comprehensive procedure that includes sample quality

465 control checks including the addition of new checks, assessments of housekeeping genes, normalization
466  with RUVSeq [6,8] and data analysis with popular count-based R/Bioconductor packages, as well as
467  iterative data visualization and biological validation to assess normalization. Researchers must pay close
468  attention to the normalization process and systematically assess pipelines that best suit each dataset.
469

470 KEY POINTS

471 e The NanoString nCounter RNA counting assay, an attractive option in archived samples, has

472 sub-optimal quality control and normalization pipelines.
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473 e We provide an iterative framework for nCounter data with steps for quality control, normalization,
474 and visualization/validation using RUVSeq.

475 e Using four real datasets, we show that our framework eliminates technical variation more reliably
476 than other methods, including NanoString's provided software nSolver, without diminishing

477 biological variation.

478 e We stress that quality control and normalization must be emphasized in study design and

479 evaluated using proper visualization and other checks, or else results in downstream analyses
480 may be biased.

481

482  AVAILABILITY
483 Relevant R code for these analyses are freely bundled into an R package on Github:

484  https://github.com/bhattacharya-a-bt/NanoNormiter. R code to recreate the Sabry et al analysis and a

485 tutorial for the iterative framework is also provided: https://github.com/bhattacharya-a-

486 bt/CBCS _normalization/ [53]. Summary statistics for eQTL analysis are available at

487 https://github.com/bhattacharya-a-bt/CBCS_TWAS_Paper [54], as a part of Bhattacharya et al [29].

488 CBCS genotype datasets analyzed in this study are not publicly available as many CBCS patients
489 are still being followed and accordingly CBCS data is considered sensitive; the data is available from
490  M.A.T upon reasonable request. Raw and normalized expression data from CBCS will be available on
491  GEO upon publication. For replication or review prior to publication, this data can be accessed from GEO
492  through a reviewer token or requested from M.A.T. Data from the bladder and kidney cancer datasets
493 may be provided by the authors upon reasonable request.

494

495 ACCESSION NUMBERS

496 Raw RCC files for nCounter expression from Sabry et al [20] are available NCBI Gene Expression

497 Omnibus (GEO) with the accession numbers GSE130286. Raw and normalized expression data from
498 CBCS will be available on GEO upon publication. For replication prior to publication, this data can be
499 requested from the authors.

500
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FIGURE CAPTIONS

Figure 1. Graphical summary of RUVSeq normalization pipeline. The quality control and normalization
process starts with familiarization with the data (Step 1) and technical quality control to flag samples with
potentially poor quality (Step 2). After a set of housekeeping genes are selected (Step 3), important
unwanted technical variables are also investigated through visualization techniques (Step 4). Problematic
samples (e.g. those that are flagged multiple times in technical quality control checks) are excluded. Next,
the data is normalized using upper quartile normalization and RUVSeq (Step 5), and the normalized data
is visualized to assess the removal of unwanted technical variation and retention of important biological
variation (Step 6). Steps 3—6 are iterated until technical variation is satisfactorily removed, changing the
set of housekeeping genes or the number of dimensions of unwanted technical variation (k) estimated

using RUVSeq. This data can then be used for downstream analysis (Step 7).

Figure 2: Quality control and normalization validation in CBCS. (A) Boxplot of percent of endogenous
genes below the limit of detection (LOD) (Y-axis) over varying numbers of the 11 housekeeping genes
below LOD (X-axis), colored by CBCS study phase. Note that the X-axis scale is decreasing. (B) Kernel
density plots of deviations from median per-sample log,-expression from the raw, nSolver-, RUVSeq-,
NanoStringDiff-, and RCRnorm-normalized expression matrices, colored by CBCS study phase. (C) Plots
of the first principal component (X-axis) vs. second principal component (Y-axis) colored by estrogen
receptor subtype of the raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-normalized expression
data. (D) Violin plots of the distribution of per-sample silhouette values, as calculated to study phase,
using raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-normalized expression. The boxplot
shows the 25% quartile, median, and 75% quartile of the distribution, and the plotted triangle shows the

mean of the distribution.

Figure 3. eQTL analysis in CBCS. (A) Cis-trans plots of eQTL results from nSolver-normalized (left) and
RUVSeg-normalized data with chromosomal position of eSNP on the X-axis and the transcription start
site of associated gene in the eQTL (eGene) on the Y-axis. Points for eQTLs are colored by FDR-

adjusted P-value of the association. The dotted line provides a 45-degree reference line for cis-eQTLs.
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(B) Number of cis- (left) and trans-eQTLs (right) across various FDR-adjusted significance levels. The
number of eQTLs identified in nSolver-normalized data is shown in red and the number of eQTLs

identified in RUVSeg-normalized data is shown in blue.

Figure 4: Differential expression analysis from Sabry et al [20]. (A) Venn diagram of the number of
differentially expressed genes using nSolver-normalized (blue) and RUVSeqg-normalized data (red)
across comparisons for IL-2-primed (top) and CTV-1-primed NK cells (bottom). (B) Raw P-value
histograms for differential expression analysis using nSolver-normalized (blue) and RUVSeq-normalized
(red) data across the two comparisons. (C) Scatterplots of log,-fold changes from differential expression
analysis using RUVSeq-normalized data (X-axis) and nSolver-normalized data (Y-axis) for any gene
identified as differentially expressed in either one of the two datasets. Points are colored by the datasets
in which that given gene was classified as differentially expressed. The size of point reflects the standard
error of the effect size as estimated in the RUVSeq-normalized data. X = 0,Y = 0, and the 45-degree

lines are provided for reference.

Figure 5. Normalization differences in bladder cancer dataset. (A) RLE plot from bladder cancer
dataset, ordered temporally from oldest to newest sample. (B) Boxplot of first principal component of
expression by tumor collection site (location) across nSolver- (left) and RUVSeqg-normalized (right) data.
(C) Boxplot of first principal component of expression by tumor grade across nSolver- (left) and RUVSeg-

normalized (right) data.

Figure 6: Equal performance of normalization procedures in kidney cancer dataset. (A) RLE plot of
per-sample deviations from the median for raw, nSolver-, and RUVSeqg-normalized data. (B) Scatter plot
of the first and second principal component of nSolver- (left) and RUVSeq-normalized (right) expression,
colored by high and low DV300. (C) Scatter plot of the first and second principal component of nSolver-

(left) and RUVSeqg-normalized (right) expression, colored by tumor stage.
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