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ABSTRACT 1 

The NanoString RNA counting assay for formalin-fixed paraffin embedded samples is unique in its 2 

sensitivity, technical reproducibility, and robustness for analysis of clinical and archival samples. While 3 

commercial normalization methods are provided by NanoString, they are not optimal for all settings, 4 

particularly when samples exhibit strong technical or biological variation or where housekeeping genes 5 

have variable performance across the cohort. Here, we develop and evaluate a more comprehensive 6 

normalization procedure for NanoString data with steps for quality control, selection of housekeeping 7 

targets, normalization, and iterative data visualization and biological validation. The approach was 8 

evaluated using a large cohort (N �  1,649) from the Carolina Breast Cancer Study, two cohorts of 9 

moderate sample size (N �  359 and 130), and a small published dataset (N �  12). The iterative process 10 

developed here eliminates technical variation (e.g. from different study phases or sites) more reliably than 11 

the three other methods, including NanoString’s commercial package, without diminishing biological 12 

variation, especially in long-term longitudinal multi-phase or multi-site cohorts. We also find that probe 13 

sets validated for nCounter, such as the PAM50 gene signature, are impervious to batch issues. This 14 

work emphasizes that systematic quality control, normalization, and visualization of NanoString nCounter 15 

data is an imperative component of study design that influences results in downstream analyses. 16 

 17 

Keywords: NanoString nCounter expression; gene expression normalization; quality control; data 18 

visualization 19 

 20 

INTRODUCTION 21 

The NanoString nCounter platform offers a targeted strategy for gene expression quantification using a 22 

panel of up to 800 genes without requiring cDNA synthesis or amplification steps [1]. The technology 23 

offers advantages in sensitivity, technical reproducibility, and strong robustness for profiling formalin-24 

fixed, paraffin-embedded (FFPE) samples [2]. Given these advantages, nCounter is increasingly used for 25 

longitudinal studies involving FFPE samples carried out over several years [3] and diagnostic assays in 26 

clinical settings [4,5]. 27 

 28 
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Proper normalization and quality control of gene expression is necessary prior to statistical analysis to 29 

reduce unwanted variation that may be associated with technical batches or RNA degradation from 30 

sample fixation [6,7]. While some sources of variation can be enumerated a priori (e.g. different research 31 

centers, batches over time, or RNA preservation methods), not all can be captured. In all cases, it is 32 

advisable to define a quality control and normalization pipeline to detect and account for technical 33 

variation in downstream statistical modeling. All normalization methods deal with a trade-off between bias 34 

that needs correction and bias or variance that may be introduced in normalization [8].  35 

 36 

Many approaches have been developed to normalize nCounter data. NanoString provides two forms of 37 

normalization in its commonly-used nSolver Analysis Software [9]: (A) a graphical user interface with 38 

optional background correction and positive-control and housekeeping gene normalization and (B) the 39 

Advanced Analysis tool, which draws on the NormqPCR R package [10,11] to select co-expressed 40 

housekeeping genes prior to normalization. The NanoStringNorm package implements the nSolver 41 

algorithms in R [12]. The R packages NanoStringDiff and RCRnorm use hierarchical modeling methods 42 

that incorporate information from the positive, negative, and housekeeping controls for normalization 43 

[13,14]. The NACHO R package proposes a simple quality control and visualization pipeline that 44 

precedes normalization using either NanoStringNorm or NanostringDiff [15], though, without post-45 

normalization visualization to assess normalization quality. When technical replicates are available,  a 46 

method from Molania et al, Remove Unwanted Variation-III (RUV-III), can be used along with an iterative 47 

normalization process where several parameters (i.e. number of housekeeping genes, number of 48 

detected outliers, number of dimensions of technical noise) are tuned with relevant visual and biological 49 

checks [7]. RUV-III normalization frequently outperformed nSolver normalization by more efficiently 50 

removing technical sources of variation while preserving biological variation [7]. Since many cohorts do 51 

not have technical replicates, we extend Molania et al’s iterative framework using RUVSeq [6–8], a 52 

precursor of RUV-III. 53 

 54 

Here, we provide a framework for the quality control and normalization of mRNA expression count data 55 

from the NanoString nCounter platform, using a large dataset (N �  1,649) of breast tumor expression 56 
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from the Carolina Breast Cancer Study (CBCS) and three other cohorts of differing sample size (N �57 

12, 130,  and 359). We illustrate some of the pitfalls in the nSolver method of background correction and 58 

positive control normalization, provide an alternative approach that uses RUVSeq [6,8], and benchmark 59 

our framework against other normalization methods [9,13,14]. We find that, especially in longitudinal, 60 

multi-phase or multi-site cohorts, RUVSeq outperforms nSolver in removing differences across technical 61 

sources of variation. Lastly, we provide quality checks for normalization and outline the impact of proper 62 

normalization on inference for biological associations and expression-based disease subtyping. 63 

 64 

MATERIAL AND METHODS 65 

Data collection 66 

We used four cohorts with nCounter gene expression data to evaluate differences between normalization 67 

procedures. Cohort details and the normalization parameters for each cohort are given below and 68 

summarized in Supplemental Table S1. 69 

 70 

CBCS gene expression data 71 

The Carolina Breast Cancer Study (CBCS) is a multi-phase cohort of women with breast cancer in North 72 

Carolina. Samples were collected during three study phases: Phase 1 (1993-1996), Phase 2 (1996-73 

2001), and Phase 3 (2008-2013). Paraffin-embedded tumor blocks were reviewed and assayed for gene 74 

expression using the NanoString nCounter system as discussed previously [3,16,17]. Study phase gives 75 

the relative age of the tumor block. In total, 1,649 samples from patients with invasive breast cancer from 76 

CBCS, across all three study phases, were analyzed on a custom panel of 417 genes. All assays were 77 

performed in the Translational Genomics Laboratory (TGL) at the University of North Carolina at Chapel 78 

Hill (UNC). After quality control and normalization, 1,264 samples remained in the nSolver-normalized 79 

data, and 1,219 samples remained in the RUVSeq-normalized data. This dataset was used to benchmark 80 

against NanoStringDiff [13] and RCRnorm [14], using the same 1,264 samples in the nSolver-normalized 81 

set. 82 

 83 

Bladder tumor gene expression data 84 
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FFPE Biospecimens from 42 samples of NMIBC from UNC (Chapel Hill, NC) and 88 samples from a 85 

study conducted by the Memorial Sloan Kettering Cancer Center (New York, NY) with non-muscle 86 

invasive bladder cancer (NMIBC) were analyzed. RNA was isolated using the RNeasy FFPE Kit (Qiagen) 87 

at UNC and NanoString assays were performed at the TGL at UNC using a custom codeset consisting of 88 

440 endogenous and 6 housekeeping genes. After quality control and normalization, 86 samples 89 

remained in both the nSolver-normalized and RUVSeq-normalized datasets. 90 

 91 

Kidney tumor gene expression data 92 

This study includes 359 samples from patients with clear cell renal cell carcinoma (CCRCC) with fresh-93 

frozen tissue collected as part of a large case-control study of kidney cancer conducted in central and 94 

eastern Europe [18] . Slides for each case were reviewed by a pathologist to assess tumor stage and 95 

grade [19]. Manual microdissection was performed to remove non-tumor tissue. Frozen sections were 96 

placed directly in Trizol reagent (Invitrogen, Carlsbad, CA), homogenized for 2 minutes on ice, and RNA 97 

was isolated using the manufacturer’s protocol. NanoString assays were performed at UNC TGL using a 98 

custom codeset consisting of 62 endogenous and 6 housekeeping genes commonly studied in kidney 99 

cancer. After quality control and normalization, 331 samples remained in both the nSolver- and RUVSeq-100 

normalized data. 101 

 102 

Sabry et al gene expression data 103 

We downloaded raw RCC files from Sabry et al [20] from the NCBI Gene Expression Omnibus (GEO) 104 

with accession number GSE130286 and imported them using functions in NanoStringQCPro [21]. This 105 

dataset comprised of 12 samples, all of which remained after normalization with both procedures. The 106 

dataset measured 706 endogenous genes with 40 housekeeping genes from the NanoString nCounter 107 

Human Myeloid Innate Immunity Panel [20]. 108 

 109 

Quality control and normalization 110 

The full quality control and normalization process using nSolver and RUVSeq is summarized in Figure 1, 111 

starting with familiarization of the raw data (Figure 1.1), technical quality control (Figure 1.2), pre-112 
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normalization assessment of housekeeping genes (Figure 1.3) and data visualization to detect 113 

problematic samples and assess whether flagged samples should be removed (Figure 1.4). 114 

Normalization is performed with either nSolver or RUVSeq (Figure 1.5), and the processed expression 115 

data is assessed for validity through relevant visualization and biological checks (Figure 1.6). If validation 116 

is unsatisfactory and technical variation is still present, this process is iterated. 117 

  118 

Technical quality controls flags 119 

nSolver provides quality control (QC) flags to assess the quality of the data for imaging, binding density, 120 

linearity of the positive controls, and limit of detection. The definition and implementation of this QC is 121 

summarized in nSolver [9] and NanoStringNorm [12] documentation. We mark any sample that is flagged 122 

in at least one of these four QC assessments as technical quality control. We use these QC flags in both 123 

nSolver normalization and RUVSeq normalization. 124 

 125 

Below limit of detection quality control 126 

We use high proportions of both endogenous and housekeeping genes below the limit of detection (LOD) 127 

as a QC flag to assess reduced assay or sample quality. The per-sample LOD is defined as the mean of 128 

the counts of negative control probes for a given sample. We assessed the percent of counts below the 129 

LOD in the housekeeping genes per sample to flag both poor quality samples and housekeeping genes 130 

with problems in their measurement. We used samples with all housekeeping genes above the LOD as a 131 

reference group to determine the regular distribution of genes below the LOD. Samples were flagged if 132 

(1) they had more than one housekeeping gene below the LOD and (2) the percent of endogenous genes 133 

below the LOD was greater than the top quartile of the distribution of percent below LOD in the reference 134 

group. 135 

 136 

Housekeeping gene assessment 137 

Housekeeping genes serve two purposes: 1) for QC purposes to remove samples with overall poor 138 

quality and 2) for assessing the amount of technical variation present in the normalization procedure.  139 

NanoString documentation suggests that ideal housekeeping genes are highly expressed, have similar 140 
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coefficients of variation, and have expression values that correlate well with other housekeeping genes 141 

across all samples [9,12]. Because of these definitions, these targets will ideally vary only due to the level 142 

of technical variation present. RUVSeq relies on housekeeping genes, i.e. genes not influenced by the 143 

condition of interest (e.g. cancer subtype), with no assumptions on co-expression of all housekeeping 144 

genes. To assess the potential for housekeeping correction to introduce bias, housekeeping genes were 145 

assessed for differential expression across a primary biological covariate of interest (estrogen receptor 146 

status in CBCS, tumor stage in the kidney and bladder cancer data, and treatment groups in Sabry et al 147 

[20]) using negative binomial regression on the raw counts from the MASS package [22].  148 

 149 

nSolver normalization 150 

Background correction 151 

NanoString guidelines suggest background correction [9,12] by either subtraction or thresholding for an 152 

estimated background noise level for experiments in which low expressing targets are common, or when 153 

the presence of a transcript has an important research implication [7,12]. Data from all four cohorts 154 

considered do not necessarily fall under this criterion, and accordingly, we did not background correct by 155 

either method. To demonstrate the effect of background correction, we tested nSolver-normalized gene 156 

expression with and without background thresholding in CBCS using relative log expression (RLE) plots. 157 

 158 

Positive control and housekeeping gene-based normalization 159 

The arithmetic mean of the geometric means of the positive controls for each lane was computed and 160 

then divided by the geometric mean of each lane to generate a lane-specific positive control normalization 161 

factor [9,12]. The counts for every gene were multiplied by their lane-specific normalization factor. To 162 

account for any noise introduced into the nCounter assay by positive normalization, the housekeeping 163 

genes were used similarly as the positive control genes to compute housekeeping normalization factors 164 

to scale the expression values [9,12]. NanoString flagged samples with large housekeeping gene scaling 165 

factors (we call this a housekeeping QC flag) and large positive control scaling factors (positive QC flag) 166 

but note that samples with these flags simply indicate that a sample is divergent from other samples in 167 
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the dataset and do not necessarily require removal. Pre-normalization visualization (Figure 1.4) is 168 

important for confirming the inclusion or removal of these samples. 169 

 170 

RUVSeq normalization pipeline 171 

Normalization 172 

The RUVSeq-based normalization process (Figure 1.5), an alternative approach to nSolver 173 

normalization, proceeds following quality control and housekeeping assessment. Distributional 174 

differences were scaled between lanes using upper-quartile normalization [23]. Unwanted technical 175 

factors were estimated in the resulting gene expression data with the RUVg function from RUVSeq [8].  176 

Unwanted variation was estimated using the final set of endogenous housekeeping genes on the 177 

NanoString gene expression panel [24,25]. In general, the number of dimensions of unwanted variation to 178 

remove was chosen by iteratively normalizing the data for a given number of dimensions and checking for 179 

the removal of known technical factors already identified in the raw expression data (e.g. study phase), 180 

and presence of key biological variation (e.g. bimodality of ESR1 expression in the CBCS breast cancer 181 

data where estrogen receptor status is a known predominant feature). Further details about choosing this 182 

dimension are given by Gagnon-Bartsch et al and Risso et al [6,8]. DESeq2 was used to compute a 183 

variance stabilizing transformation of the original count data [25], and estimated unwanted variation was 184 

removed using the removeBatchEffects function from limma [26]. Ultimately, we removed 1, 1, 3, and 1 185 

dimensions of unwanted variation from CBCS, kidney cancer, bladder cancer, and the Sabry et al 186 

datasets, respectively. RLE plots, principal component analysis and heatmaps were used to detect any 187 

potential outliers before and after normalization. 188 

 189 

Alternative normalization methods for benchmarking 190 

Using CBCS data, we compared the normalized datasets from nSolver, RUVSeq, NanoStringDiff [13], 191 

and RCRnorm [14] with the raw data through visualization methods outlined above (Figure 1.1 to 1.4, 192 

RLE plots and scatter plots of principal components over important technical and biological sources of 193 

variation). Details about these methods are provided in Supplemental Table S2. 194 

 195 
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Downstream analyses 196 

We used several data visualization or benchmarking methods for each cohort. 197 

 198 

Silhouette width analysis in CBCS 199 

Silhouette width, a measure used to assess how similar a sample is to its own group (i.e. study phase) as 200 

compared to other groups, was used to determine the impact of the two normalization procedures on 201 

technical and biological variation [27]. Many samples with large silhouettes can be interpreted as 202 

indicating that the different study phases are distinct and that a batch effect is still present in the data.  203 

 204 

eQTL analysis in CBCS 205 

We assessed the additive relationship between the gene expression values and germline genotypes with 206 

linear regression analysis using MatrixEQTL [28], applying the same linear model as detailed in previous 207 

work [29]. Briefly, for each gene and SNP in our data, we constructed a simple linear regression, where 208 

the dependent variable is the scaled expression of the gene with zero mean and unit variance, the 209 

predictor of interest is the dosage of the alternative allele of the SNP, and the adjusting covariates are the 210 

top five principal components of the genotype matrix. We considered both cis- (SNP is less than 0.5 Mb 211 

from the gene) and trans-eQTLs in our analysis. We adjusted for multiple testing via the Benjamini-212 

Hochberg procedure [30]. 213 

 214 

PAM50 subtyping in CBCS 215 

We classified each subject into PAM50 subtypes using the procedure summarized by Parker et al [31,32]. 216 

Briefly, for each sample, we computed the Euclidean distance of the log-scale expression values for the 217 

50 PAM50 genes to the PAM50 centroids for each of the molecular subtypes. Each sample was classified 218 

to the subtype with the minimal distance [31]. The PAM50 genes were clustered hierarchically for both 219 

samples and genes and visualized in heatmaps. Subtype concordance was assessed between 220 

normalization methods excluding normal-like cases. 221 

 222 

RNA-seq normalization and distance correlation analysis in CBCS 223 
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We obtained a separate set of samples (not included in the analysis described above) from CBCS with 224 

both RNA-seq and nCounter expression (on a different codeset of 166 genes). We followed a standard 225 

RNA-seq normalization process with DESeq2 [25], using the median of ratios method to estimate scaling 226 

factors [24]. We calculated the distance correlation and conducted a multivariate permutation test of 227 

independence between the RNA-seq data set (subset to the overlapping genes on the NanoString 228 

codeset) with each of the nSolver-normalized and RUVSeq-normalized nCounter data using the energy 229 

package [33]. The distance correlation and associated permutation test allow for detection of non-230 

independence across multivariate datasets of different distribution. 231 

 232 

Differential expression analysis with Sabry et al. dataset [20] 233 

We conducted differential expression analysis to compare both normalization methods in the Sabry et al. 234 

dataset [20] using DESeq2 [25], and adjusting for multiple testing with the Benjamini-Hochberg [30] 235 

procedure. We compared differential expression across IL-2–primed NK cells vs. NK cells alone and 236 

CTV-1-primed NK cells for 6 hours vs. NK cells alone. 237 

 238 

RESULTS 239 

We evaluated the ability of normalization methods to remove technical variation while retaining 240 

biologically meaningful variation across four cohorts of differing sample size and varying sources of 241 

technical bias (Supplemental Table S1). Known sources of technical variation included age of sample 242 

(study phase) and different study sites. The cohorts varied in preservation methods; two cohorts used 243 

fresh-frozen specimens, while two used archival FFPE specimens.  The number of genes measured for 244 

both endogenous genes and housekeeping genes also varied by study. In addition, some studies used 245 

validated and optimized code sets for specific gene signatures versus a more general code set.   246 

 247 

In cohorts with large technical biases, RUVSeq provided superior normalization with more robust removal 248 

of technical variation and provided stronger biological associations compared to other normalization 249 

methods. In two of the datasets, we found that downstream analyses performed on data normalized with 250 

nSolver and RUVSeq detected substantially different biological associations. However, when few strong 251 
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technical biases were present or if a validated and optimized code set (e.g. PAM50 genes) was used, 252 

nSolver and RUVSeq performed comparably.  253 

 254 

Case study: Carolina Breast Cancer Study 255 

Evaluation of background correction 256 

Background thresholding led to increased per-sample variance while per-sample medians remained 257 

relatively similar (Supplemental Figure S1A). The distributions of per-sample median expression values 258 

were more right-skewed (greater mean than median) when using background thresholding prior to 259 

normalization compared to not using background thresholding (Supplemental Figure S1B). Based on 260 

this analysis, we did not perform background correction prior to normalization for all cohorts analyzed.   261 

 262 

Quality assessment of expression levels using LOD of housekeeping genes 263 

We used the housekeeping genes to assess if the lack of expression of endogenous genes was due to 264 

biology or due to technical failures. We compared the level of missing endogenous genes in samples with 265 

all housekeeping genes present to those with increasing number of housekeeping genes below LOD. 266 

There was a strong positive correlation for increasing proportions of genes below the LOD in both the 267 

endogenous and housekeeping genes (Figure 2A;Supplemental Figure S2). Samples with higher 268 

numbers of genes below the LOD were from earlier phases of CBCS (i.e. Phase 1 from 1993-1996 and 269 

Phase 2 from 1996-2001), and thus associated with sample age (Figure 2A;Supplemental Figure S3). 270 

Samples with a higher proportion of endogenous genes below the LOD had increased numbers of QC 271 

flags as well (Supplemental Figure S2).  272 

 273 

Evaluation of normalization methods 274 

We benchmarked RUVSeq and nSolver with two other normalization methods, NanoStringDiff [13] and 275 

RCRnorm [14].  We observed differences across the four normalization strategies (described in 276 

Supplemental Table S2), namely greater remaining technical variation using nSolver and NanoStringDiff 277 

than RCRnorm and RUVSeq (Figure 2B-D). A large portion of the variation in the raw expression could 278 

be attributed to study phase (Supplemental Figure S4A). While all methods reduced study phase 279 
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associated variation compared to the raw data, there were considerable differences in the deviations from 280 

the median log-expressions in the nSolver- and NanoStringDiff-normalized expression that are not 281 

present in the RUVSeq- and RCRnorm-normalized data (Figure 2B). The nSolver and NanoStringDiff 282 

methods retained technical variation, either not fully corrected or re-introduced during the nSolver 283 

normalization process. 284 

 285 

We examined the ability of each normalization method to retain biological variation. Estrogen Receptor 286 

(ER) status is one of the most important clinical and biological features in breast cancer and is used for 287 

determining course of treatment [34,35]. ER status drives many of the molecular classifications [36–38]  288 

and even drives separate classification of breast tumors in TCGA’s pan-cancer analysis of 10,000 tumors 289 

[39].   In the raw expression, variation due to ER status was captured in PC2 rather than PC1 (study age); 290 

however, after RUVSeq-normalization, ER status was reflected predominantly in PC1 (Figure 2C).  In the 291 

nSolver-, NanoStringDiff-, and RCRnorm-normalized data, ER status was shared between PC1 and PC2, 292 

suggesting that unresolved technical variation was still present. RUVSeq demonstrated 293 

 effective removal of technical variation and boosting of the true biological signal. The PAM50 molecular 294 

subtypes [31], which are also linked with ER status, were also clearly separated by PC1 for RUVSeq-295 

normalized data, but this was not thess case for nSolver-, NanoStringDiff-, or RCRnorm-normalization 296 

(Supplemental Figure S4B).  These results suggest that RUVSeq-normalization best balances the 297 

removal of technical variation with the retention of important axes of biological variation, with RCRnorm 298 

showing better performance than nSolver and NanoStringDiff, but not superior to RUVSeq. A significant 299 

disadvantage of RCRnorm is its computational cost: RCRnorm was unable to run on the CBCS dataset 300 

(
 �  1278 after QC) on a 64-bit operating system with 8 GB of installed RAM, requiring RCRnorm-301 

normalization to be performed on a high-performance cluster. We summarize the maximum memory used 302 

by method in CBCS in Supplemental Table S2. 303 

 304 

We used silhouette width to assess extent of unwanted technical variation from study phase remaining by 305 

the normalization methods. Larger positive silhouette values indicate within-group similarity (i.e. samples 306 

clustering by study phase). Per-sample silhouettes across the alternatively normalized datasets showed 307 
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that RUVSeq best addressed the largest source of technical variation identified in the raw data (Figure 308 

2D; Supplemental Figure S5A) while also not removing a significant portion of biological variation 309 

(Supplemental Figure S5B). NanoStringDiff also demonstrated less similarity of samples across study 310 

phase similar to RUVSeq but removed biologically relevant similarity of samples grouped by ER status. 311 

Due to the performance of NanoStringDiff and computational limitations of RCRnorm, for subsequent 312 

analyses and datasets, we only illustrate differences between nSolver- and RUVSeq-normalized data. 313 

 314 

Genomic analyses and expression profiles across normalization methods 315 

We evaluated the impact of normalization choice on downstream analyses including eQTLs, PAM50 316 

molecular subtyping, known expression patterns, and similarity to RNA-seq data. In a full cis-trans eQTL 317 

analysis accounting for race and genetic-based ancestry, we found considerably more eQTLs using 318 

nSolver as opposed to RUVSeq, thresholding at nominal � � 10�� (2,050 vs. 1,143). We identified strong 319 

cis-eQTL signals in both normalized datasets; however, stronger FDR values were identified with 320 

RUVSeq (Figure 3A, densely populated around the 45-degree line). We observed considerably more 321 

trans-eQTLs using nSolver, including a higher proportion of trans-eQTLs across various FDR-adjusted 322 

significance levels (Figure 3B; Supplemental Figures S6-S7). We suspected that spurious trans-eQTLs 323 

may have resulted from residual technical variation in expression data that was confounded with study 324 

phase, subsequently being identified as a QTL due to ancestry differences across study phase. In cross-325 

chromosomal trans-eQTL analysis, distributions of absolute differences in minor allele frequency (MAF) 326 

for trans-eSNPs across women of African and European ancestry were wide for both methods 327 

(Supplemental Figure S7). However, we observed substantially more trans-eSNPs with moderate 328 

absolute MAF differences across study phase with nSolver, compared to RUVSeq. This provides some 329 

evidence for the presence of residual confounding technical variation in the nSolver-normalized 330 

expression data leading to spurious trans-eQTL results (with a directed acyclic graph for this hypothesis 331 

in Supplemental Figure S8), though we cannot confirm this with eQTL analysis alone.  332 

 333 

We compared each normalization method for the ability to classify breast cancer samples into PAM50 334 

intrinsic molecular subtype using the classification scheme outlined by Parker et al [31]. Our PAM50 335 
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subtyping calls were robust across normalization methods with 91% agreement and a Kappa of 0.87 336 

(95% CI (0.85, 0.90)) (Supplemental Table S3). Among discordant calls, approximately half had low 337 

confidence values from the subtyping algorithm, and half had differences in correlations to centroids less 338 

than 0.1 between the discordant calls (data not shown).  Most of these discordant calls were among 339 

HER2-enriched, luminal B and luminal A subtypes, which are molecularly similar [40]. 340 

 341 

We observed noticeable differences between the RUVSeq- and nSolver-normalized gene expression 342 

when visualized after hierarchical clustering via heatmaps, similar to the principal component analysis. 343 

Using this method, we identified 14 additional samples with strong technical errors in the nSolver-344 

normalized data not previously marked by QC flags (Supplemental Figure S9), emphasizing the need for 345 

post-normalization data visualization. In early breast cancer clustering papers, the first major division was 346 

by ER status separating basal-like and HER2-enriched molecular subtypes (predominantly ER-negative) 347 

from luminal A and B molecular subtypes (predominantly ER-positive) [31]. This pattern was observed in 348 

RUVSeq-data but only partially preserved with nSolver normalization (Supplemental Figure S9). Rather, 349 

nSolver data clustering was driven by a combination of ER status and study phase. Study phase 350 

dominated two of the groups and were formed by Phase 1 and Phase 3 samples, respectively—samples 351 

with a 10+ year difference in age.  352 

 353 

Lastly, we compared normalization choices for NanoString data to RNA-seq data performed on the same 354 

samples. CBCS collected RNA-seq measurements for 70 samples that have data on a different nCounter 355 

codeset (162 genes instead of 417) and RNA-seq normalized using standard procedures. A permutation-356 

based test of independence using the distance correlation [33,41] revealed that the distance correlation 357 

between the RNA-seq and nSolver data was small and near 0 (distance correlation = 0.051, � � 0.24) 358 

while the distance correlation between the RNA-seq and RUVSeq- data was larger (distance correlation = 359 

0.36, � � 0.02). The permutation-based test rejected the null hypothesis of independence (distance 360 

correlation of zero for unrelated datasets) between RUVSeq-normalized nCounter data and RNA-seq 361 

data but fails to reject the null hypothesis for nSolver-normalization nCounter and RNA-seq data. We 362 
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conclude that RUVSeq produced normalized data with closer relation to the RNA-seq, in terms of 363 

distance correlation and test of independence, compared to nSolver. 364 

 365 

Case study: differential expression analysis in natural killer cells 366 

We looked at the impact of the two normalization methods in a small cohort (
 �  12) on DE analysis 367 

across natural killer (NK) cells primed for tumor-specific cells and cytokines from Sabry et al [20]. RLE 368 

plots before and after normalization showed minor differences between the two normalization methods 369 

(Supplemental Figure S9). 370 

 371 

Using DESeq2 [25], we identified genes differentially expressed in NK cells primed by CTV-1 or IL-2 372 

cytokines compared to unprimed NK cells at FDR-adjusted � � 0.05. The two normalization methods led 373 

to a different number of differentially expressed genes with a limited overlap of significant genes by both 374 

methods (Figure 4A). The raw �-value histograms from differential expression analysis using nSolver-375 

normalized expression exhibited a slope toward 0 for �-values under 0.3, which can indicate issues with 376 

unaccounted-for correlations among samples [42], such as residual technical variation. The distributions 377 

of �-values using the RUVSeq-normalized data were closer to uniform throughout the range [0,1] for most 378 

genes (Figure 4B). While the log2-fold changes were correlated between the two normalization 379 

procedures, the genes found to be differentially expressed only with nSolver-normalized data tended to 380 

have large standard errors with RUVSeq-normalized data and therefore not statistically significant using 381 

RUVSeq (Figure 4C). These differences in DE results emphasize the importance of properly validating 382 

normalization prior to downstream genomic analyses. 383 

 384 

Case study: bladder cancer gene expression 385 

RUVSeq reduced technical variation (study site) while maintaining the biological variation (tumor grade). 386 

RUVSeq data showed the most homogeneity in per-sample median deviation of log-expressions 387 

compared to raw and nSolver data (Figure 5A). The first principal component of nSolver data had 388 

significant differences by study sites, which was not present in RUVSeq data (Figure 5B). In addition, 389 
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there was a stronger biological association with tumor grade in the first principal component of expression 390 

using RUVSeq data (Figure 5C). 391 

 392 

Case study: kidney cancer gene expression 393 

We only found subtle differences in the deviations from the median expression between the normalization 394 

procedures for the kidney cancer dataset (Figure 6A). This cohort did not have the same known technical 395 

variables observed in the other cohorts such as study site or sample age, and the RNA came from fresh-396 

frozen material (Supplemental Table S1). We evaluated normalization methods on a source of technical 397 

variation, DV300, the proportion of RNA fragments detected at greater than 300 base pairs as a source of 398 

technical variation, and tumor stage as a biological variable of interest. The first two principal components 399 

colored by level of DV300 (Figure 6B) and tumor stage (Figure 6C) showed little difference across the 400 

two normalization methods. When there were limited sources of technical variation and a robust, high 401 

quality dataset, we found both normalization methods performed equally well.  402 

 403 

DISCUSSION 404 

Proper normalization is imperative in performing correct statistical inference from complex gene 405 

expression data. Here, we outline a sequential framework for NanoString nCounter RNA expression data 406 

that provides both quality control checks, considerations for choosing housekeeping genes, and iterative 407 

normalization with biological validation using both NanoString’s nSolver software [9,12] and RUVSeq 408 

[6,8]. We show that RUVSeq provided a superior normalization to nSolver on three out of four datasets by 409 

more efficiently removing sources of technical variation, while retaining robust biological associations.  410 

We also benchmark RUVSeq-normalization with two other normalization methods implemented in R and 411 

show that RUVSeq outperformed all methods in reducing technical variation.  412 

 413 

We observed that normalization methods were sensitive to the quality and the set of housekeeping 414 

genes. Several genes thought to behave exclusively in a “housekeeping” fashion in fact associate with 415 

biological variables under certain conditions [43] or across different tissue types [44]. A careful validation 416 

of housekeeping gene stability on a case-by-case basis and separately for new studies, considering both 417 
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technical and biological sources of variation in each dataset, is therefore imperative for an optimized 418 

normalization procedure.  419 

 420 

We developed a quality metric to assess sample quality: samples with high proportions of genes detected 421 

below the LOD in both endogenous genes and housekeepers were indicative of either low-quality 422 

samples or reduced assay efficiency. Sample age was correlated with higher proportions of genes below 423 

the LOD in both endogenous and housekeeping genes, which was likely due to RNA degradation over 424 

time. We stress that missing counts in endogenous genes alone does not suggest poor sample quality in 425 

the absence of additional QC flags but could represent genes not expressed and therefore not detected 426 

under certain biological conditions or cell types. An example includes using an immuno-oncology gene 427 

panel in a tumor sample with little to no immune cell infiltration. Conversely, many samples with counts 428 

below the LOD in both endogenous genes and housekeepers had additional quality control flags including 429 

those derived from nSolver’s assessment of data quality. We excluded these samples for analysis in both 430 

the nSolver- and RUVSeq-based procedures. 431 

 432 

nSolver-normalized data was prone to residual unwanted technical variation when there were known 433 

technical biases, such as in CBCS and the bladder example. We checked for known biological 434 

associations that are intrinsic to the sample, as in eQTL analysis, to judge the performance of the 435 

normalization process [45,46]. A full cis-trans eQTL analysis using nSolver- and RUVSeq-normalized data 436 

showed a strong cis-eQTL signal in data from both normalization methods. We found significantly more 437 

trans-eQTLs with the nSolver-normalized data (Figure 3). However, many of the trans-eSNPs for the loci 438 

found with nSolver-normalized data tended to have moderate MAF differences across phase, leading us 439 

to suspect they were spurious associations driven by residual technical variation in gene expression 440 

(Supplemental Figure 8). Such spurious associations from population stratification have been described 441 

in many previous studies of eQTL analysis [47–50]. 442 

 443 

The choice of normalization procedure is less of a concern in cohorts with minimal sources of technical 444 

variation or in nCounter targeted gene panels that have been optimized for robust measurement across 445 
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preservation methods. In the CBCS breast cancer cohort, we identified significant differences in gene 446 

expression between normalization methods across the entire gene set (417 total genes). However, 447 

PAM50 subtyping was robust across the two normalization procedures. The genes in the PAM50 448 

classifier were selected due to their consistent measurement in both FFPE and fresh frozen breast 449 

tissues [31], suggesting that robustly measured genes may be less affected by different normalization 450 

procedures. Furthermore, we see minimal differences in residual technical variation in the kidney cancer 451 

dataset and the Sabry et al dataset, both of which were measured on either robustly validated genes or 452 

nCounter panels. The kidney cancer example had newer, fresh-frozen specimens that were profiled using 453 

a small and well-validated set of genes important in that cancer type.  This dataset gives an opportunity to 454 

stress the importance of the general principles of normalization: as Gagnon-Bartsch et al and Molania et 455 

al recommend [6,7], normalization should be a part of scientific process and should be approached 456 

iteratively with visual inspection and biological validation to tune the process. One normalization 457 

procedure is not necessarily applicable to all datasets and must be re-evaluated on each dataset. 458 

 459 

In conclusion, we outline a systematic and iterative framework for the normalization of NanoString 460 

nCounter expression data. Even without background correction, a technique which has been shown to 461 

impair normalization of microarray expression data [51,52], we believe that relying solely on positive 462 

control and housekeeping gene-based normalization may result in residual technical variation after 463 

normalization. Here, we show the merits of a comprehensive procedure that includes sample quality 464 

control checks including the addition of new checks, assessments of housekeeping genes, normalization 465 

with RUVSeq [6,8] and data analysis with popular count-based R/Bioconductor packages, as well as 466 

iterative data visualization and biological validation to assess normalization. Researchers must pay close 467 

attention to the normalization process and systematically assess pipelines that best suit each dataset. 468 

 469 

KEY POINTS 470 

• The NanoString nCounter RNA counting assay, an attractive option in archived samples, has 471 

sub-optimal quality control and normalization pipelines. 472 
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• We provide an iterative framework for nCounter data with steps for quality control, normalization, 473 

and visualization/validation using RUVSeq. 474 

• Using four real datasets, we show that our framework eliminates technical variation more reliably 475 

than other methods, including NanoString’s provided software nSolver, without diminishing 476 

biological variation. 477 

• We stress that quality control and normalization must be emphasized in study design and 478 

evaluated using proper visualization and other checks, or else results in downstream analyses 479 

may be biased. 480 

 481 

AVAILABILITY  482 

Relevant R code for these analyses are freely bundled into an R package on Github: 483 

https://github.com/bhattacharya-a-bt/NanoNormIter. R code to recreate the Sabry et al analysis and a 484 

tutorial for the iterative framework is also provided: https://github.com/bhattacharya-a-485 

bt/CBCS_normalization/ [53]. Summary statistics for eQTL analysis are available at 486 

https://github.com/bhattacharya-a-bt/CBCS_TWAS_Paper [54], as a part of Bhattacharya et al [29]. 487 

CBCS genotype datasets analyzed in this study are not publicly available as many CBCS patients 488 

are still being followed and accordingly CBCS data is considered sensitive; the data is available from 489 

M.A.T upon reasonable request. Raw and normalized expression data from CBCS will be available on 490 

GEO upon publication. For replication or review prior to publication, this data can be accessed from GEO 491 

through a reviewer token or requested from M.A.T. Data from the bladder and kidney cancer datasets 492 

may be provided by the authors upon reasonable request.  493 

 494 

ACCESSION NUMBERS 495 

Raw RCC files for nCounter expression from Sabry et al [20] are available NCBI Gene Expression 496 

Omnibus (GEO) with the accession numbers GSE130286.  Raw and normalized expression data from 497 

CBCS will be available on GEO upon publication. For replication prior to publication, this data can be 498 

requested from the authors. 499 

  500 
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FIGURE CAPTIONS 

Figure 1: Graphical summary of RUVSeq normalization pipeline. The quality control and normalization 

process starts with familiarization with the data (Step 1) and technical quality control to flag samples with 

potentially poor quality (Step 2). After a set of housekeeping genes are selected (Step 3), important 

unwanted technical variables are also investigated through visualization techniques (Step 4). Problematic 

samples (e.g. those that are flagged multiple times in technical quality control checks) are excluded. Next, 

the data is normalized using upper quartile normalization and RUVSeq (Step 5), and the normalized data 

is visualized to assess the removal of unwanted technical variation and retention of important biological 

variation (Step 6). Steps 3—6 are iterated until technical variation is satisfactorily removed, changing the 

set of housekeeping genes or the number of dimensions of unwanted technical variation (�) estimated 

using RUVSeq. This data can then be used for downstream analysis (Step 7). 

 

Figure 2: Quality control and normalization validation in CBCS. (A) Boxplot of percent of endogenous 

genes below the limit of detection (LOD) (�-axis) over varying numbers of the 11 housekeeping genes 

below LOD (�-axis), colored by CBCS study phase. Note that the �-axis scale is decreasing. (B) Kernel 

density plots of deviations from median per-sample log2-expression from the raw, nSolver-, RUVSeq-, 

NanoStringDiff-, and RCRnorm-normalized expression matrices, colored by CBCS study phase.  (C) Plots 

of the first principal component (�-axis) vs. second principal component (�-axis) colored by estrogen 

receptor subtype of the raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-normalized expression 

data. (D) Violin plots of the distribution of per-sample silhouette values, as calculated to study phase, 

using raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-normalized expression. The boxplot 

shows the 25% quartile, median, and 75% quartile of the distribution, and the plotted triangle shows the 

mean of the distribution.  

 

Figure 3: eQTL analysis in CBCS. (A) Cis-trans plots of eQTL results from nSolver-normalized (left) and 

RUVSeq-normalized data with chromosomal position of eSNP on the �-axis and the transcription start 

site of associated gene in the eQTL (eGene) on the �-axis. Points for eQTLs are colored by FDR-

adjusted �-value of the association. The dotted line provides a 45-degree reference line for cis-eQTLs. 
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(B) Number of cis- (left) and trans-eQTLs (right) across various FDR-adjusted significance levels. The 

number of eQTLs identified in nSolver-normalized data is shown in red and the number of eQTLs 

identified in RUVSeq-normalized data is shown in blue. 

 

Figure 4: Differential expression analysis from Sabry et al [20]. (A) Venn diagram of the number of 

differentially expressed genes using nSolver-normalized (blue) and RUVSeq-normalized data (red) 

across comparisons for IL-2-primed (top) and CTV-1-primed NK cells (bottom). (B) Raw �-value 

histograms for differential expression analysis using nSolver-normalized (blue) and RUVSeq-normalized 

(red) data across the two comparisons. (C) Scatterplots of log2-fold changes from differential expression 

analysis using RUVSeq-normalized data (�-axis) and nSolver-normalized data (�-axis) for any gene 

identified as differentially expressed in either one of the two datasets. Points are colored by the datasets 

in which that given gene was classified as differentially expressed. The size of point reflects the standard 

error of the effect size as estimated in the RUVSeq-normalized data. � � 0, � � 0, and the 45-degree 

lines are provided for reference. 

  

Figure 5: Normalization differences in bladder cancer dataset. (A) RLE plot from bladder cancer 

dataset, ordered temporally from oldest to newest sample. (B) Boxplot of first principal component of 

expression by tumor collection site (location) across nSolver- (left) and RUVSeq-normalized (right) data. 

(C) Boxplot of first principal component of expression by tumor grade across nSolver- (left) and RUVSeq-

normalized (right) data. 

 

Figure 6: Equal performance of normalization procedures in kidney cancer dataset. (A) RLE plot of 

per-sample deviations from the median for raw, nSolver-, and RUVSeq-normalized data. (B) Scatter plot 

of the first and second principal component of nSolver- (left) and RUVSeq-normalized (right) expression, 

colored by high and low DV300. (C) Scatter plot of the first and second principal component of nSolver- 

(left) and RUVSeq-normalized (right) expression, colored by tumor stage. 
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1. Data familiarization
• Determine limit of detection
• Determine raw median expression per sample

2. Technical quality control
• Using nSolver Functions: Flag samples with Imaging, Binding Density, Positive Control

Linearity, and Limit of Detection QC flags
• Using Endogenous Genes: Flag samples with high proportions of endogenous genes

below the limit of detection (LOD)
• Using Housekeeping Genes: Flag samples with high proportions of housekeeping genes

below the LOD

3. Identify housekeeping genes for normalization
• Assess expression of housekeeping genes across biological variables
• Flag housekeeping genes frequently detected below the LOD

4. Pre-normalization data visualization
• Create RLE plots/principal component plots to visually inspect flagged samples and 

identify outliers indicative of sample/assay-level failure
• Assess variation across technical and experimental variables

5. RUVSeq normalization
• Perform upper quartile normalization (Bullard 2010)
• Perform normalization with RUVg (Risso 2014)

4a. Exclude problematic 
samples

7. Downstream analysis

6a. Visualization
• Create RLE plots/principle component plots
• Assess variation across technical variables

6b. Biological checks
• Assess known intrinsic biological 

associations/patterns

Unsatisfactory

Iterate over k
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