bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

BayeSuites: An open web framework for massive
Bayesian networks focused on neuroscience

Mario Michiels, Pedro Larranaga, Concha Bielza
Universidad Politécnica de Madrid

Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad
Politécnica de Madrid, Boadilla del Monte, Madrid 28660, Spain

Abstract

BayeSuites|is the first web framework for learning, visualizing, and interpreting
Bayesian networks (BNs) that can scale to tens of thousands of nodes while pro-
viding fast and friendly user experience. All the necessary features that enable
this are reviewed in this paper; these features include scalability, extensibility,
interoperability, ease of use, and interpretability. Scalability is the key factor in
learning and processing massive networks within reasonable time; for a main-
tainable software open to new functionalities, extensibility and interoperability
are necessary. Ease of use and interpretability are fundamental aspects of model
interpretation, fairly similar to the case of the recent explainable artificial in-
telligence trend. We present the capabilities of our proposed framework by
highlighting a real example of a BN learned from genomic data obtained from
Allen Institute for Brain Science. The extensibility properties of the software
are also demonstrated with the help of our BN-based probabilistic clustering
implementation, together with another genomic-data example.

Keywords: Bayesian networks, web framework, open source software, large

scale interpretability, neuroscience, genomics

Email address: mmichiels@fi.upm.es (Mario Michiels)

Preprint submitted to Journal of BTEX Templates July 2, 2020

https://neurosuites.com/morpho/ml_bayesian_networks
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1. Introduction

Analysing neuroscience data can be particularly complex since some of these
datasets can have numerous instances and/or present an extremely high dimen-
sionality, such as fMRI or microarray data, which can be in the order of tens of

s thousands of variables. Learning models with massive datasets having numer-
ous features requires unique algorithms because they may encounter the curse
of dimensionality problem.

In addition to the complexity of learning in biological domains, it is par-
ticularly sensitive and risky to make decisions based on models for which the

w process of drawing conclusions and their implications is not understandable.

To fulfill the above-mentioned requirements, we focus on probabilistic graph-
ical models, particularly on Bayesian networks (BNs) [1], which use probability
theory to present a compact graphical representation of the joint probability
distribution over a set of random variables, X = {Xj, ..., X, }. With this theo-

15 retically rich and detailed model, we require appropriate software tools to learn,
visualize and interactively manipulate the resulting model, which is where the
state-of-the-art BNs fail when trying to deal with massive networks.

Current state-of-the-art BN tools (e.g., shinyBN [2]) not only are lacking in
proper ways to learn massive BNs but also are lacking in scalable inference and

2 interactive visualizations. In this paper, we present BayeSuites, a new open-
source framework, which is the first of its kind to overcome all of these issues
in a single framework. Note also how BayeSuites is not a wrapper of existing
tools into a graphical interface but is a comprehensive framework, integrating
both new algorithms and existing packages adaptations to create a single tool

s specifically designed to fully exploit the BN’s interpretability features even for
massive networks with tens of thousands of nodes. BN’s requirements are scal-
ability, extensibility, interoperability, ease of use, and interpretability.

BNs consist of two main parts: a graph, which is a directed acyclic graph
(DAG) representing the probabilistic conditional dependencies between the vari-

s ables in X', and parameters, which are a series of conditional probability distri-

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.70
0.30

A
a
a

A N|p(N|A) Age

an|0.20
an|0.80
é n 0.05 A SM
an| 095y ~. as 015
@Lﬁ'@ Stgke as 085
P(DIN,S) as 0.01
0.95 as 099

pWMS)

0.70
0.30
0.10
0.90

.05 Dementi heelchai
040 ementia %
0.60 D w

0.45
0.55
0.15
0.85

winln v OV
sls sl |S

SnaRa sSH |2
Ol ol 0 O
ala qlaclaQla O

Figure 1: Hypothetical BN example modelling the risk of dementia. Figure extracted from
M.

butions (CPDs) [3].

Each node in the graph represents a random variable, X;, in the vector of
variables, X = (X7, ..., X,,), and its arcs represent the probabilistic conditional
dependence relationships with respect to the other variables. Each node, X;,

5 has an associated CPD, which represents its probability distribution conditioned
on its parents, Pa(X;), in the graph (Figure . With all this information, the
joint distribution of all the random variables can be expressed as

n
P(X) = [[P(Xi[Pa(X5)). (1)
i=1

The graphical component in a BN is particularly useful because it presents
the probabilistic relationships between the variables. In addition, the inference

«» machinery offers prediction and interpretability capabilities about the proba-
bilistic reasoning and the model. For a more in-depth review of the inter-

pretability features of BNs, we refer the reader to [5] and [6]. Owing to their

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

interpretable nature, BNs have already been applied to neuroscience data with
successful results [4, [7].

" Following the example in Figure[] if a patient has neuronal atrophy but has
not had a stroke, by using inference tools, we can calculate that there is a 0.40
probability he will be demented: P(d|n,3) = 0.40.

Even if the current state-of-the-art BN tools supported massive BNs, they
would not have all the proper tools for their interpretation. Visual interpretation

5o of BNs has been studied for decades [8]. For example, [5] proposed that global
network visualization should allow focus on certain parts of the structure. [9]
used the arcs in a Bayesian network to show additional information; for example
the thickness of an arc could represent the strength of influence between the
nodes. [I0] introduced a software tool providing interactive visual exploration

55 and the comparison of conditional probability tables before and after introducing
some evidence. [I1] introduced multi-focus and multi-window techniques that
were useful in focusing on several areas of the Bayesian network structure at
the same time. Some of these advances have been implemented in major BN
frameworks, which will be discussed later, but to date, there was no tool where

0 all these features converge. BayeSuites not only focuses on scalable methods for
learning and inference but also incorporates all these interpretability features
with our modern implementations adapted for massive networks; in addition, it
includes many newly designed methods, which are discussed in later sections.

The paper is structured as follows: In Section [2] we review the abovemen-

s tioned requirements that BN software tools should meet by comparing state-of-
the-art tools and highlighting where all of them lack one or more fundamental
aspects so that they cannot fully express all the BN capabilities.

In Section [3] we organize the presentation of BayeSuites into the same cat-
egories as Section [2] but we explain how BayeSuites addresses all these inter-

70 pretability requirements that the other BN tools failed to address in any way.
We also, in this section, provide performance comparisons with other software
packages, when possible. We explain the last interpretability requirement (ease

of use, Section by providing real-world use cases with genomic data. The

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

objective of these use case examples is two-fold: (i) summarize BayeSuites ca-
75 pabilities in a detailed and graphical way and (ii) explain all the steps required
to learn, visualize and interpret BNs with BayeSuites.

Finally, in Section 4l we discuss different use cases where the frameworks
could prove useful. We also present future improvements to be implemented in
this line of research. We conclude in Section [5] by providing a summary of the

s features that makes BayeSuites a unique framework compared to the existing

BN software tools.

2. Problems with state-of-the-art of software in massive BN inter-

pretability

In this section, we review the problems with the current BN software frame-

s works and packages by explaining the contents summarized in Table |1} which

makes comparisons between the most comprehensive BN software. However,

there may exist other tools of particular importance for a specific purpose,
which will also be highlighted in each of these subsections below.

It is important to differentiate between individual software components ad-

o dressing specific tasks (e.g. a learning algorithm), referred to as software pack-

ages, and general frameworks, as the one presented in this paper, which provide

all the necessary tools to work with BN capabilities (learning, visualization,

and reasoning). When we classify software as tools, we are referring to both

frameworks and software package categories. Four of the major BN frameworks

s are BayesialLab [12], Hugin [13], and BayesFusion [14] (which uses the SMILE

engine under the hood, also with a proprietary license), and the recent shinyBN

[2], which uses bnlearn under the hood. In the category of software packages,

the most complete ones to date are bnlearn and pgmpy [I5]. We also want to

point out that we did not include other open source packages in Table [1] since

o most of them are outdated or nearly outdated (e.g., JavaBayes [16], BanJo [I7],

JNCC2 [18], BNJ [19], MSBNX [20], or Bayes Net Toolbox [2I]) and/or only

include very specific algorithms.

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Table 1: Comparison of the main BN software frameworks/packages

Features/software

BayeSuites

BayesiaLLab BayesFusion

Hugin

shinyBN bnlearn

pgmpy

Scalability

Learn massive networks
Visualize massive networks
Parallelized learning (single computer)

Parallelized learning (cluster computing)

Extensibility

Open source

Discrete variables learning
Discrete variables inference
Discrete variables visualization
Continuous variables learning
Continuous variables inference
Continuous variables visualization
Probabilistic clustering

Dynamic BNs

SR ENEEN

NN N RN

N N N RN

N N N RN

(\
NN N A RN

Interoperability

Connection with other languages
Connection with other science fields
Connection with online data sources

Import/export BNs from/to other software

Ease of use

Is a framework

Interactive visualization
Interpretation of massive networks
Has web interface

Web server available online

AN N N N AR NEENEEN

AN ENEEN

RN ENEEN

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.1. Scalability
Massive BNs present mainly three scalability problems: learning their graph
s structure, efficiently visualizing it, and developing a fast inference engine for the
reasoning.

When the number of variables is extremely small, the graph structure of a BN
can be even modelled with only expert knowledge. However, when the dataset
has numerous random variables, the graph must be learned by computational

o methods. Learning the structure of a BN is known to be an NP-hard problem
[22]. The search space for all the possible DAGs is super-exponential in the
number of nodes, i.e., O(n!Q(Z)) [23]. Different algorithms attempt to solve the
above problem by applying heuristics to this super-exponential space.

The problem becomes comparatively more complex when dealing with a

us massive number of variables of the order of thousands of nodes, requiring dis-
tinct types of algorithms for constraining the computational memory and time.
This problem can be solved in a reasonable time by two methods: constraining
the graph structure and developing new algorithms that completely utilize par-
allelization technologies. The first solution includes algorithms that inherently

120 constraint the structure (e.g., the Chow-Liu method [24]) and the generating
poly-tree recovery algorithm [25]; in the latter, the resulting graph can only
be a tree or a polytree. There are other algorithms which by default do not
constraint the structure; however, when the problem has an extremely high di-
mensionality, they include assumptions, like limiting the number of parents, for

125 each node to finish in a reasonable time. Some examples of this case are the PC
algorithm [26] and the max—min hill-climbing (MMHC) algorithm [27]. These
kinds of algorithms are included in most BN software tools such as bnlearn and
its related packages (such as shinyBN), pgmpy, Hugin, etc. For a more detailed
view of BN structure learning algorithms, we refer the reader to [28].

130 However, some problems like learning gene regulatory networks (GRNs) need
to be modelled without restricting the structure, because all types of relations
between the variables are possible. The algorithms available for these models

are highly limited because most of them cannot be parallelized; therefore, new

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

optimized algorithms are emerging [29] 80] [31]. Another problem is that some

135 of these state-of-the-art algorithms are not typically found in the existing BN
software frameworks, because the latter are not frequently updated to include
new algorithms. Indeed, none of the other BN tools in Table [1] includes any of
these new optimized algorithms.

Some tools such as Hugin and the bnlearn related packages support algo-

uo rithms that can make use of all the CPU cores in parallel but are limited to a
single CPU. However, none of the existing frameworks in Table [1] have a scal-
able software architecture to parallelize these algorithms on multiple computing
nodes. Of the software packages, only bnlearn can run some algorithms on
multiple CPUs communicating in a group (i.e. cluster computing), but these

us algorithms do not belong to this last category of non-restricted structure algo-
rithms that are highly optimized for speed.

Although there exist software packages that can visualize general-purpose
massive graphs such as sigmajs [32], Graphistry [33], and VivaGraphlJS [34]
using the GPU computational power, these are not included in any BN frame-

s0 works (Table . Furthermore, just including a graph visualization library with
GPU rendering is not enough functionality for BNs since viewing the nodes and
edges is not sufficient. We also need to visualize their node parameters and run
BN operations such as making queries and computing the posterior distribu-
tions. Essentially, it is necessary to adapt existing libraries, with GPU support,

155 to provide a rich set of interactive options to fully understand and exploit the
BN graph structure and parameters. This is clearly one of the most important
bottlenecks in the current frameworks when trying to deal with massive BNs
since they have not even done the first step of just including a GPU library.
The library would have to subsequently adapt for BNs.

160 Finally, we require an efficient inference engine, which in the ideal case would
include exact inference. Some tools such as pgmpy, BayesialLab, Bayes Net
Toolbox, etc. include exact inference for discrete BNs, but inference in discrete
BNs is NP-hard [35]; therefore, it is not a scalable solution. To reduce this cost,

the network structure can be constrained with unique algorithms. This is usually

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15 the preferred option for the tools in Table [l which sacrifices structure flexibility
in favour of inference speed. An approximate inference is the alternative when
we do not want to constrain the network structure; however, it is also NP-hard
[36] so it is not scalable either.

In any case, most massive datasets such as fMRI or microarray data are

wo continuous, so we need a scalable inference for continuous domains. Luckily,
exact inference is tractable in the continuous space for Gaussian BNs (see Section
3.4.4). However, from all the tools compared above, only Hugin and the Bayes
Net Toolbox (not in Table [1)) include exact inference for Gaussian BNs. There

are other tools that offer inference in continuous domains but only include it in

ws its approximate versions (e.g. BayesFusion and bnlearn).

2.2. Extensibility

Extensibility refers to the software’s capability to include new functionali-
ties easily and coherently. It is crucial for the software to be written modularly
to introduce new algorithms and functionalities. Three of the major BN soft-

1o ware frameworks are Bayesialab, Hugin, and BayesFusion, all of which have
proprietary licenses, and therefore, the code is not open-source (Table . This
presents a significant problem in an advancing research field such as this one,
because the research community cannot code its own extensions and changes.
In an ideal case, the frameworks should be open-source and have simple and

155 multiple approaches to introduce new extensions coded by the community.

Even if the commercial frameworks described above aim to be the most
complete solution as possible, new extensions are limited, and this is marked by
the slowness of their major updates. For example, some commercial frameworks
have been developed for several years and still do not have complete support

wo for continuous variables (e.g., Netica [37] and BayesiaLab).

In the arena of open source software, we can expect a more promising future.
In the software frameworks, we find shinyBN, which incorporates a set of R, tools
in a coherent way, making it a good candidate for extension with new features

by the software community. However, the server infrastructure is not optimal,

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15 since the shiny server is not extensible software that could be used in a large
production environment.

For open source software packages, bnlearn is still the most comprehensive
and widely used package for BNs. Its modular architecture and optimized al-
gorithms have allowed it to be a robust package for more than 12 years in the

20 software community. However, similar to other outdated packages such as Banjo
[17] and JavaBayes [16], bnlearn may also be experiencing a slow decay in its
extensibility features due to how much it has grown on its own. Without strong
collaboration with other people, it is hard for new people to implement new fea-
tures in the original C++ code since that code may not be fully documented. We

25 also note the more recent pgmpy open source package has software extensibility
that is much more attractive since it is fully coded in Python and also adheres
to a good modular architecture. Indeed, its code repository is very active and
there are usually new updates. We conclude that pgmpy is currently one of the

best examples of software extensibility in the BN software community.

a0 2.8. Interoperability

All the current frameworks in Table[l|except for shinyBN are proprietary and
are specifically designed for working only with probabilistic graphical models.
This lack of connection with tools from other science fields (Table is a common
shortcoming for both proprietary and open source tools. This means they lack

25 connections with other statistical tools, machine learning algorithms or any
other analysis and visualization tools specifically designed to overcome problems
in any science field such as neuroscience, etc.

A positive feature of proprietary frameworks, as opposed to open source
tools, is that they usually have API connections to other programming lan-

20 guages (such as BayesFusion and Hugin but not Bayesial.ab) and provide input
connections to general purpose online data sources (such as BayesiaLab and
BayesFusion but not Hugin). However, owing to their proprietary nature, the
community developers cannot implement some functionalities, such as having

direct API connections with specific data sources as neuroscientific databases.

10

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

225 The exception to proprietary frameworks is shinyBN. Its recent appearance,
however, makes it not the ideal candidate to exemplify the desired interoper-
ability requirements since it does not have any kind of connection with other
programming languages, algorithms, data sources or other BN tools (Table .

Finally, importing and exporting BNs from/to other tools is a fundamental

20 feature that currently is available in almost all BN tools, but still, some tools
lack it (such as Hugin and shinyBN) (Table [1)).

Nevertheless, the BN community has some open-source software packages
that are well maintained and have a good extensibility; however, they are de-
signed for highly specific tasks, e.g,. learning algorithms such as sparsebn [38]

25 and he-ET [39] and inference packages such as gRain [40]. Other packages, such
as bnlearn [41] and pgmpy [15], comprise a set of interconnected tools, but they
lack some basic modules, e.g., a graphical interface or connection with other
packages, which would make them considered to be frameworks. Thus, the cen-
tral problem of these types of packages is the lack of completeness, unlike the

20 proprietary options.

Furthermore, some software packages are developed for the specific purpose
of a scientific research. While this is appropriate for advancing the research
field, frequently these software tools are overlooked and not maintained once
the corresponding paper is published. The first consequence is a waste of time

25 associated with coding again previously written algorithms by other researchers
when the existing code becomes obsolete and not extensible. Another conse-
quence is the difficulty of integration to other software, because they may be
written in a different programming language. Therefore, the library can have

data format problems, software incompatibilities between versions, etc.

w0 2.4. Ease of use and interpretability
Software packages regularly do not include a graphical interface; therefore,
the learning curve is extremely steep for users not experts in programming,
which commonly is the case with some neuroscientists. Graph visualization

cannot even be considered for software packages because they mostly rely on

11

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

»s third-party software to display a static view of the BN structure and cannot
display node parameters in the graph (e.g. bnlearn, pgmpy).

In comparison, frameworks are much more user friendly because they pro-
vide a sophisticated interactive graphical interface to work with (see Table .
However, as a direct implication of their low scalability, they are not capable

x0 of visualizing massive networks. Furthermore, even if they had the proper tools
to display massive networks, none of them currently has the proper tools to
interpret them (i.e. multiple specific layouts, rich filtering tools, etc). Indeed,
some of them (e.g., shynyBN), do not even have a complete set of tools for inter-
preting small size BNs, since they lack some functionalities such as displaying
s BN parameters attached to each node of the graph.

Ease of use also depends on the accessibility of the tool. Web interfaces are
currently robust enough to be considered as the preferred option here, since
they are accessible from everywhere and are platform independent. We can see,
therefore, an increasing number of tools developing web interfaces as the entry

20 point to their software (e.g., Bayesialab, BayesFusion and shinyBN). However,
not all these tools deploy their software in their own web server to be accessible
from everywhere, which forces the users to locally deploy the server in their
own computers if they want to make use of their web interfaces. Indeed, only
shinyBN provides its tool in an already deployed web server accessible from the

s Internet (see Table [1).

Moreover, in the case of proprietary frameworks, specific solutions for dis-
tinct use cases (e.g., automatically running a set of algorithms when new data
emerges from a database) cannot be developed by different research teams, be-
cause of their extensibility problem. This problem is another bottleneck when

20 customized solutions need to have an easy and rapid workflow, ranging from

acquiring the data to analysing them.

12

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3. BayeSuites

In this section, we present BayeSuites, whose software architecture has been
specifically designed to overcome all the problems highlighted in the previous

285 section (see also Table . Summarizing, we find ourselves stuck in incomplete
open source solutions versus more complete solutions in the proprietary field.
The objective of the framework presented in this paper is to combine the best
properties of both worlds and present one complete open-source solution, with
the possibility of further improvement and becoming increasingly complete.

200 The name of BayeSuites originates from the fact that it is embedded in the
NeuroSuites platform, which we developed for integrating different neuroscience
tools. Its inclusion in the NeuroSuites platform, instead of deploying it on
an isolated platform, is because this tool is specifically designed to overcome
large scale problems, which are common in some neuroscience topics, as in the

205 genomics examples presented here.

BayeSuites has already been successfully used with genomic data in [31], and
as genomic examples, here we present real-world use cases to illustrate how we

addressed the four interpretability requirements explained above.

8.1. Scalability

300 NeuroSuites is developed as a scalable web application to run the heavy
operations in the backend while providing a lightweight rapid experience in the
frontend. Its framework follows a modular architecture (Figure , where each
fundamental component is isolated as a Docker [42] microservice (Figure [2]1);
therefore, the system can be easily scalable horizontally and work as a whole.

s Moreover, multiple monitoring tools have been included since the architecture
became large and complex, and a set of tools is provided to monitor the state
of the hardware, logs, task queues, etc.

The scalable architecture is designed to be efficient and solve the compu-
tational problems of visualizing and managing large learning algorithms and

a0 graph operations. The nginx web server [43] provides the entry point for the

13

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

web requests (Figure 2) and also acts as the load balancer in case the server
has multiple instances running the web application.

The frontend code (Figure [23) is based on vanilla JavaScript (JS) and
JQuery, to provide a simple but efficient architecture, and the style is in HTML5,

ais CSS3, and Bootstrap3. To provide a scalable visualization of the BN graphs,
we have made various extensions to the sigmajs library [32], which range from
visualizing the node parameters to numerous specific BN operations, fully ex-
plained in section. Sigmajs uses a WebGL engine, which utilizes a GPU
card to efficiently visualize massive graphs.

320 To transmit the requests and responses from the frontend to the backend, we
employ the uWSGI software [44], which acts as a web server gateway interface to
communicate with the Python backend (Figure[2]4). The backend core (Figure
225) is written in the Django framework [45], to allow us to use optimized Python
libraries for managing the graph and also other scientific libraries (e.g., Numpy

»s [46], Scipy [47], or Scikit-learn [48]) is the main library used in the backend
to store the graphs and run the graph manipulation tasks. Lightweight graph
operations, such as colouring groups of the nodes, are completely conducted in
the frontend with the sigmajs library. The heavyweight operations are sent to
the backend where they are processed with NetworkX, and the result is sent

s back to sigmajs to update the graph (Figure 6).

Standard HTTP requests and responses have time and computational limi-
tations, which make them unfeasible to run long-duration tasks, e.g., some BN
structure learning algorithms. To overcome these limitations, we have included
a queue-workers system using RabbitMQ [49] and Celery [50] (Figure[2]7). The

35 system arranges all the long time-consuming requests and queues them to be
executed in the most efficient order. The system administrator can opt to scale
the necessary containers when the workload is not sufficient for the number of
concurrent users. For instance, when the workload is highly intense in the heavy
operations, the system administrators will increase the number of workers and

s the queue system will automatically distribute the workload.

For high memory efficiency, the uploaded datasets are internally stored on

14

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Neuro Suites @
2

| NGiNX
3 ¢
HTML LSS ,Ji“ Jauery
(B E E \‘ ‘7\7‘ ““ ‘ Q; SlgmaJS \l Frontend
Bootstrap -
& 4

docker

“} Microservice container

“} Microsenvice container

Other modules \

* Statistical tools

* Specific neuroscience tools
(morphological reconstructions,
microscopy data, others)

<«

WSGI

Web server gateway interface
© Web interface to Python

10 5 {

django

* Python 3

« Automatically process
requests and responses

« Database model (PostgreSQL)

1..n nodes

7

1..n nodes

)

Message broker
(Asynchronous long tasks)

MaRabbit
\

r Backend

L a o nnoes
\ —
!

copean e o X,
« Learning structure (FGES-Merge, others) / 9 Q

8 /

/' Save session data \\ 6

\ 1...n nodes

B

« Learning parameters

« Inference engine

« Graph computational costly tasks
(NetworkX and others)

N J

additional tools

* Statistical tools
© bnleam

Figure 2: Software architecture of BayeSuites.

our server using the Apache Parquet [51] format . To save the internal state of an

application, the data session of the user is stored in a PostgreSQL database [52]

connected to the Django framework to process all the operations in transparently
us (Figure[2]8).

The included BN structure learning algorithms are categorized into the fol-
lowing six groups: (a) Statistical based (from Scikit-learn [48], only for con-
tinuous variables): Pearson correlation, mutual information, linear regression,
graphical lasso, and GENIE3 [53]; (b) Constraint based: PC, grow shrink, iamb,

30 fast.iamb, and inter.iamb; (c) Score and search: hill climbing, hill climbing with

tabu search, Chow-Liu tree, Hiton parents and children, sparsebn [38], and

15

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

FGES-Merge [31]; (d) Hybrid: MMHC and MMPC; (e) Tree structure: naive

Bayes, tree augmented naive Bayes; (f) Multi-dimensional Bayesian network

classifier. All the algorithms where we have not specified a reference here, were
35 implemented in bnlearn.

Only some structure learning algorithms are suitable for large-scale networks,
such as the Chow—Liu algorithm, GENIE3, sparsebn, MMHC, and FGES-Merge.
However, for massive networks only the FGES-Merge can learn a network in a
reasonable time without constraining the structure, because it is coded to run in

;0 parallel in multiple computing instances. BayeSuites includes MPT [54], which
allows this type of parallelism using the mpidpy Python package [55]. However,
owing to the computational limitations of our production server, we cannot
provide more than one computing node. Nevertheless, developers who install
their own NeuroSuites instance can make use of this parallelization capability

s by deploying multiple computing nodes to run their desired Docker containers.

BN parameter learning and inference engine (Figure 6) have also been

designed to be scalable for massive BNs and are explained in detail in Sections

-4 and [3:44] respectively.

Performance analysis

370 For this performance analysis, it is important to note that BayeSuite’s goal
is to be a scalable framework for massive BNs. This means our target is not
to implement several learning or inference algorithms to surpass the state-of-
the-art algorithms but to have a solid basis of scalable methods to be able, for
the first time ever, to manage massive BNs in a user friendly interactive web

375 environment.

3.1.1. Structure learning performance analysis

Structure learning is usually the most computationally costly process when
learning BNs. Comparison with other BN tools in terms of speed is not always
a meaningful measure since most BN tools use the same algorithms under the

s hood, just with different implementations. Indeed, some frameworks such as

16

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Network 1 times

25
24
23
22
21
20
19
18
17
16
15
13
12
11
10
— N

Chow-Liu FGES-Merge GENIE3 MMPC Other BNs

Time (h)
=
=

O N WA UG~ O

Algorithm

Figure 3: Performance time comparisons of the main BN structure algorithms. All methods
were run in BayeSuites. The network learned is the Network 1 (1000 nodes) from the DREAMS5
challenge dataset [57]. FGES-Merge is the method specifically designed and implemented by
us for massive BNs. GENIES3 is also a method designed for large-scale networks whose original
implementation was included in BayeSuites. For the other methods, their original implemen-
tations were coded in bnlearn and so were included in BayeSuites. The last category named
?Other BNs”, refers to all the remaining BN methods (i.e., PC algorithm, grow shrink,hill
climbing, IAMB-related algorithms, MMHC), which ran for more than 26 hours and did not
finish.

shinyBN or even BayeSuites reuse the same implementations of bnlearn for
some of their algorithms. For this reason, we compare our specific algorithm for
massive BNs, which was implemented by us, named FGES-Merge [31], with the
most common structure learning algorithms implemented in bnlearn. Moreover,
s we include the GENIE3 algorithm in the comparisons since it is specifically
created for large scale problems such as gene regulatory networks (GRNs). The
network learned in this test is the Network 1 (1000 nodes) from the DREAMS5
challenge dataset [56]. We ran the test on this medium network to be able to

compare our algorithm with others. Running the same test with a larger network

17

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

30 with 20,000 nodes would not be possible since other algorithms would run for
a very long time without finishing. This test shows not only that FGES-Merge
improves the speed in comparison to other algorithms (except for the Chow-Liu
algorithm, which is expected since it limits the graph structure to be a tree)
but also that algorithms can run for a long time in BayeSuites without any

35 network/memory problems thanks to its scalable architecture with asynchronous
tasks (see Figure 7). It is important also to acknowledge that FGES-Merge
is implemented with parallelization capabilities and therefore is executed in 3
computer nodes, while the other algorithms do not support this parallelization,
so they are run on one computer node. Every computing node ran on Ubuntu

wo 16.04, Intel i7-7700K CPU 4 cores at 4.2 GHz, and 64GB RAM. In terms of
structure recovery benchmarks, it was proven that FGES-Merge outperforms
existing BNs methods for the largest GRN of the DREAMS5 challenge dataset,
corresponding to the Saccharomyces cerevisiae network (5,667 nodes) (see [31]

for a detailed comparison).

ws 3.1.2. Inference performance analysis
As reviewed in Section[2.3] inference performance is critical, even for medium
size networks. BayeSuites has implemented exact inference for Gaussian BNs
(see Section 7 which makes it possible to resolve inference questions in <
5s for small networks (approximately < 300 nodes and edges). The interesting
a0 point here is the scalability nature of this algorithm, which makes it possible
to run inference for massive networks in less than 30-40 seconds, even in the
network in the example of Section[3.4.3] that has 20,787 nodes and 22,639 edges.
It is also critical to note that the resulting multivariate joint distribution and
the original joint distribution are cached in the backend. This means that this
a5 40-50 s process is done only when evidence or a group of evidence is fixed. Once
this is done, any query operation with these parameters are nearly instantaneous
(< 25).
Again, here, it is not possible to make meaningful comparisons with other

BN frameworks because they do not include exact inference for Gaussian BN,

18

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

20 except in the case of Hugin. However, Hugin does not support deploying mas-
sive networks, so it is complicated to run these tests, although we assume that
performance should be similar to ours if massive networks were supported. To
just get a grasp of the times for running inference for other algorithms applica-
ble to Gaussian BNs, we can see in [57] how typical sampling algorithms such

w5 as Gibbs sampling takes more than 8 minutes to run inference in the ANDES
network (223 nodes and 338 edges). However, also in [57] we can see how new
algorithms are clearly outperforming these older sampling algorithms, such as
new importance sampling algorithms that can run inference in 8 s for the same
ANDES networks. All these sampling experiments were run in SMILE (the

w0 computational engine of BayesFusion). Another promising research line is vari-
ational inference, which shows a good performance time of around 9 s for a
randomly created network of 500 nodes and 1000 edges [5§]. In summary, all
these advances perform well for medium size networks, even for other param-
eters different than Gaussian distributions, but for now they cannot reach the

a5 performance of exact Gaussian BNs in terms of accuracy and speed.

3.1.3. Visualization performance analysis
Performance times to load small networks is similar to other BN frameworks
(i.e. < 2 s for networks of approximately < 500 nodes. For massive BNs this
time is increased (about 10-15s for networks of approximately 20,000 nodes and
wo 20,000 edges). However, performance comparisons with other BN frameworks
for massive BNs is not possible since they do not even support the visualiza-
tion of these networks. Hence, when trying to load massive networks, any kind
of computational problem can arise, but mainly graphic problems strike since
these frameworks do not use GPUs. Moreover, even if they supported massive
ws networks visualization, they are not prepared to properly manage them with
multiple layouts and filtering tools. These BayeSuites functionalities are dis-
cussed in detail in Section [3:4.1] To advance, running one of the proper layout
algorithms for massive BNs takes less than a minute (or even less since some are

iterative algorithms that can be stopped at any moment) to provide a clear and

19

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w0 coherent graph visualization. They run without needing computational power

on the user’s computer since most of these layout algorithms are executed in
the backend.

Comparison of two BNs superposed in the same window is another unique

functionality of BayeSuites (Section7 which is highly optimized since actu-

sss ally only one graph is maintained in memory, but edges are specific to either one

or both BNs. The performance speed, therefore, is instantaneous when chang-

ing between the two BNs once they have been loaded. But again, performance

speed comparisons with other BN frameworks is not possible since they do not

provide this kind of BN comparison.

wo 3.1.4. Server performance analysis
Finally, server performance is also an important metric in the case of web
architectures. As a performance example, we can see an uptime of 99.8 % for
the last month thanks to the extensive use of monitoring tools for the server
deployment. Downtimes were only caused by necessary updates, which are fast
ws and nearly automated. Moreover, periodic backups ran during non-excessive
use hours such as nighttimes to improve the performance of the server during

working hours.

3.2. Extensibility

NeuroSuites follows an extensible architecture where each module has inter-
«0 nal submodules, allowing the modules to extend in any manner.
This extensibility enables highly easy integration of new learning algorithms
or new graph functionalities for BNs and other modules. For example, to include
a new structure learning algorithm, the only requirements are taking the dataset
as a Pandas data frame [59] and outputting a NetworkX graph object. The
a5 changes in the frontend would be minimal, only adding a new button to run
the new learning algorithm. The entire workflow is automated, and the learning

algorithm would be directly queued to the system when a request is sent.

20

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

As the backend core is written in Python, the easiest method to extend it is

by coding a Python extension. Because we aimed to support maximal scientific

w0 communities, we also included bindings to the R programming language for the

BN learning algorithms and other statistical packages. The binding was easily
achieved via the wrappers provided using the Rpy2 package [60] (Figure [219).

To demonstrate the extensibility of the models, we also included support for

BNs-based clustering models. Thus, in the backend side, a subclass of the BN

s model was created with the necessary extensions, and for the frontend side, the

same Javascript core for BNs was recycled and the necessary extensions were

included (see Section [3.4.4)).

3.3. Interoperability

To provide an interoperable ecosystem, we designed a well-defined workflow

w0 consisting of first uploading the raw dataset and then selecting the desired tools

to analyse it. Therefore, different sections can be found on NeuroSuites, where

each refers to a tool or a specific set of processing tools. The focus of this study

is on the BNs section; however, users can also use other tools already integrated

in NeuroSuites. Some of these tools, such as the statistical analysis Section

w5 (Figure 10), can provide significant preliminary analysis for improved better
understanding of the data to then create better BN models.

As a use case regarding interoperability, there exists an API client that
can connect a data source; it is the latest live version of the NeuroMorpho.org
database. This type of direct connection to a data source is convenient when the

so0 data from a specific neuroscience field are required to be connected. This allows
the users to easily access the data without the need to first download the data
on their computer and then upload them to the NeuroSuites server. Thanks
to the extensibility properties of NeuroSuites, it would be straightforward to
implement numerous data source connectors to any database, e.g., the Allen
ss Cell Types Database [61] and the DisGeNET database for genes-human disease

associations [62].

21

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) Upload data set section

stepl

Select the
source of the

Upload a dataset
Upload a dataset in CSV or Apache Parquet format. (CSV dataset example from the Allen Brain Atlas)
neurons

Has columnid: ()

Label instances: What are your instances? (e.g. neuron morphologies, gene expression levels, etc). If no label is given, the instances will be named "Instances".

NeuroMorpho.org

Upload dataset from
your computer

Cancel 1 fle selected

Continue without
selecting neurons T
Demo

etz xpression gt csv
atme

(b) Select variables to create the BN

Step2
selecta Bayesian networks
software
analyzer (’,, This project has
Progamme or Reseatcn and Inovation unce Spociic Grant Agrement No. 765007
i i Pvject (48P SGA2)

1. Upload dataset/Bayesian network

Machine learning

Bayesian networks

Probabilistic clustering

Select the dataset and features:
(Load discrete dataset example)
(Load continuous dataset example)

Upload only structure (graph):
Formats supported: .csv or .gzip Apache Parquet file
(first column is the id, first row are nodes names).

Supervised classification Note: For large networks (thousands of nodes) it is recommended to upload

3Dspines Dataset: the network as a .gzip Apache Parquet file.
selectall | Deselectall Very large networks can take up to a couple of minutes to load.
aDsomans
3DSynapsesSA P
Denciite arboriation ooctan | Desaetat Drag & drop files here
I e

Export datasets

Class features (optional):

Seloctall | Doseloctall

Add additional structure

Soloct ono or moro classos

Go back to select
another set of
neurons

Upload only continuous parameters:
This must be uploaded after uploading a graph file or a Bayesian network file
Formats supported: json
(Template file)

(7 Discretize continuous values

Instructions

Figure 4: Steps to upload a data set and select its desired variables.

3.4. Ease of use and interpretability
Here, we review the capabilities of BayeSuites by presenting a complete
real use case: learning and interpreting the GRN of the full human genome

using brain data extracted from microarrays, provided by the Allen Brain Atlas

510
[63]. The dataset consists of 20,708 protein-coding genes as predictor features
with 3500 samples; therefore, each element in the dataset corresponds to a
measurement of a gene expression level.

In step 1, the desired dataset (Figure is uploaded. In our deployed
si5. production server, we accept CSV and Apache Parquet gzip formats. Note that

the BNs can also be created by different software, e.g., Bayesial.ab or bnlearn,

and then be imported in a BIF/CSV/Apache Parquet format to BayeSuites to

22

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

visualize and interpret the model. However, for this example, we present the
entire workflow to create and interpret a new model.

520 In step 2, we move to the BNs section under ”Machine Learning” and select
the desired variables to learn the model (Figure . For this example, we select
some continuous variables that correspond to the expression level of some genes.
It is also possible to discretize the selected variables with different methods or
select the class variables for a supervised classification model; however, this is

s not the case in our example.

Following the selection of the desired variables, the BN structure graph is
learned by selecting a structure learning algorithm, as described in the field
below (Figure [5al). For this example, we use FGES-Merge because it is specif-
ically designed for genomic data, being memory and computationally efficient

s and having the ability to readjust the final structure to follow the topology of
the GRN [64].

Once the algorithm is completed, the obtained graph is displayed in the
visualizer, and we can immediately manipulate it. Nevertheless, to provide a
complete example, we also present how to learn the model parameters for each

s node. For this, we select the maximum likelihood estimation (MLE) of a Gaus-
sian distribution (Figure , which provide the learned Gaussian distribution
for each node and the weights corresponding to the relationships with its par-

ents. Mathematically, the CPD of a node, Y, given its parents Pa(Y") is
p(Y[Pa(Y)) = N (6o + B Pa(Y);0%) . (2)

To estimate the parameters, 3y, 3, and o}, for each node, the Gaussian
s0 MLE learns a multilinear regression between Y and Pa(Y). The regression
coefficients provide estimations of By and 3, and the mean of the regression
residuals sum of the squares yields the o? estimate.
Having learned the node parameters, we can utilize the inference engine by
asking some queries to the BN and obtain the predicted results when some node
sis values are fixed, as explained in detail in Section

There are several visualization and interpretability options, which are catego-

23

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) BN structure learning algorithm selection

2.Learn the structure of the Bayesian network

Select the structure learning algorithm: FGES-Merge algorithm parameters

Learning algorithm: Bernaola et al (2019). Details can be found here.

Penalty 60 ©
Mode:

Localtoglobal

Backend:

Neurositos

MMHC (Max-Min Hil-Glimbing)

(b) BN parameter learning algorithm selection

3.Learn the parameters of the Bayesian network
Select the parameter learning algorithm: Maximum likelihood estimation (MLE) of a Gaussian distribution
Learning algorithm: BT

Maximum likelihood estimation (MLE) of a Gaussian

- Neurosuites

Continue

Figure 5: Steps to learn a BN.

rized into four groups: layouts, general viewing options, highlighting nodes/edges,

and parameter visualization and inference.

3.4.1. Layouts
550 A predefined layout is displayed in the visualizer when the BN is loaded for
the first time, but depending on the problem, a different one might be needed to
be set. Choosing the appropriate layout should be the first step to understand
the graph structure of a BN. The layouts (Figure [6a] right corner) can be tree-
based layouts (Dot [65], Sugiyama [66]), force-directed layouts (Fruchterman-
s Reingold [67, [68], ForceAtlas2 [69] [70]), circular, grid, and image layouts. The
last one is a novel method developed by us to create a layout by detecting the
edges from any image. It is particularly useful for creating user-defined layouts
or complex layouts that cannot be implemented by other algorithms. Layouts
are computed in the backend side for efficiency, although we also provide a
so0 frontend (client version) implementation for the ForceAtlas2 algorithm [71].
For small or medium BNs, tree layouts are recommended, whereas force-

directed layouts are recommended for large BNs, because with this type of

24

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

565

available under aCC-BY-NC-ND 4.0 International license.

(a) Lower bar options

Edgos thicknoss dopendent
= of weights Continue
Nodes size dependent £ oot(cetaut)
© of markov biariot P show varkovblanket [% sugyoma
-
-_ po S— P ® -
sh b
Visualize Bayesian netwoi O of drectneighbors 1 shounagnior
o . 1 show parents B forceatios2
@ Green nodes are class fes Highlightimportant nodes es, red nodes have f s
N = ramtothe | showehid B Fruchterman-reingold
Double click to reset the ¢ | Betweenness Cenirality v ne s copied into the ow children
a P T cropnneignt O circular
Find one node: cioct Q) Highight communities Iltiple nodes: % Show connectionsinfo svidenc Show group 5 o
© check d-separation: Louvain v = shownodeparameters @ 1 || cel Foup! B8l image
Viewoptions | # Highlight nodes/edges | @ Onselectgroup | ®Onciicknode | «”scale options | «Layoutsize | B Exportas imago ® Change layout
»
@ showlabels & show neighbors @ nodossize & sve
oo op
4 showarrows 9 Hide others nodesfedges a
#g Alow drag and drop nodes o .
o — dges thickness
€ Fullscreen o 00 .
€ Reload graph
.
@ comatntioatons L, .
. . .
(b) Upper bar options
Visualize Bayesian network graph
@ Green nodes are class features, blue nodes are predictor features, red nodes have fixed evidence.
R Double click to reset the colors. When a node is clicked, its name is copied into the clipboard.
@ Findonenode: scloctanodetozoomin. ~ | = Select multiple nodes: <ol Creategroup | Setevidence | Clecrevidence | Show group
o Check d-separation: roup roup of observed r roup Check d-separation | Get reachable nodes from group1

% Filter edges by weight: | NN] Fitcrcdges

1000 5500 10000

(c) Lower bar options when groups are created and inference is conducted

G List of groups: disease_name ~ | Category: ry to highlight it.a Setevidence in Clear evidence in

KL divergence: T-Eeta-hydroxylase deficiency Standard deviation:

- 12g14 microdeletion syndrome r s,

ih Nodes by evidences effect:

comin. ¥

Y B 14412 microdeletion syndrome
*>" Groups by evidences effect (KL divergence):

15024 Microdeletion

16G24.3 microdeletion syndrome

' a18500.| |147998¢| 17 20-Lyase Deficiency, Isclated

) . T7-Hydroxysteroid Dehydrogenase
% Filter edges by weight: (|]] Filter edges A

Figure 6: BN visualization options.

layout cluster formation occurs. In this example, we select the ForceAtlas2
algorithm because it can clearly yield the topology properties of GRNs (locally
dense but globally sparse) (Figure . Note that the extensibility nature of a
project affect the convenience for the developers to add new layout algorithms

or modify the existing ones to meet their own needs.

25

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8.4.2. General viewing options
For general viewing options, we can easily navigate through the graph, allow-
s ing to zoom any region of interest. The lower bar of the visualizer has buttons
to show/hide the labels for each node, arrows, drag and drop nodes, full screen,
and reloading the graph (Figure left side).
Multiple relevant scale options are also implemented (Figure right side),
such as node sizes dependent on the number of nodes in their Markov blanket
ss or edge thickness dependent on their weights, irrespective of their reference.
For instance, the edge weights can correspond to a score that refers to their
importance in the network, such as the BIC score [72]. It is a penalized likelihood
of the dataset calculated with the BIC difference of adding that edge versus not
adding it. A filtering option to remove the edges below or above a certain weight

so0 threshold is also included (Figure [6b] bottom left).

3.4.3. Highlighting nodes/edges

Subsequent to selecting the appropriate layout and configuring the general
viewing options, the next step is highlighting the relevant nodes or edges. We
provide tools for highlighting the nodes isolated in the Markov blanket of a given

ss node or its parents or children (Figure [6a] centre).

When dealing with massive networks, one of the most important features is
the creation of groups. The groups can be created by three ways: manually,
automatically, or uploading a list of already defined groups of nodes. A node or a
set of nodes manually can be selected by searching for them by their name in the

so0 search fields with auto-completion (Figure middle left, "Find one node”).
Once we have selected the desired nodes to highlight, we can opt to create
a group with them, and our node selection is saved to be used subsequently
(Figure upper middle, ”Select multiple nodes”). A name and colour can
also be assigned to each created custom group.

595 To generate groups automatically, we can run some algorithms designed for
community detection, such as the Louvain algorithm [73], which optimizes a

modularity score for each community. In this case, the modularity evaluates

26

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) Nodes coloured by the Louvain algorithm for

communities detection

(b) Metadata groups information uploaded

7

VAL

@ 20787 nodes (336 selected) %o 22639 edges (24 selected)

Figure 7: BN structure of the full human brain genome, where independent nodes are not
shown. (a) ForceAtlas2 layout is applied. (b) Same network as in (a) but now only a subset of

the nodes associated with the schizophrenia disease and the edges between them are selected.

the density of edges inside a community compared to that of the edges outside
it. To select groups already created externally, we can upload the metadata
so JSON file, so that each node has some associated tags.
Finally, we can select a specific group (Figure upper left), and each node
is displayed according to the colour of its category (Figure . Moreover, we

27

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

can select a specific category within a group (Figure centre), and only the
nodes with that category are shown (Figure .

605 When selecting a group of nodes, the arcs between these nodes are also
selected to provide a clear view of the group. A user can also opt to highlight
the neighbours of the nodes for that group, even if they do not belong to that
group (Figure centre). Finally, to realize a clear understanding of where
a group is within the global network, a user can enable an almost transparent

e view of all the other nodes that are not in the selected group.

Additionally, individual important nodes can also be selected by fixing a
threshold for their minimum number of neighbours. An automatic approach
has also been included to highlight the important nodes using the betweenness
centrality algorithm (Figure implementation in NetworkX. It can detect

a5 the importance of a node is according to the number of shortest paths (for
every pair of nodes) that pass through the node.

Comparisons of two different BNs are also possible by displaying both struc-
tures in the same graph and colouring the edges depending on which network
they belong to. To achieve this, we must first upload a BN or learn it from a

e0 dataset, and then repeat this with the second BN. However, a visual comparison
is not sufficient when the networks are large. Hence, we include a summary ta-
ble displaying some structural measures, such as the accuracy, precision, recall,
F-Score, and Matthews correlation coefficient, which use the confusion matrix

of the edge differences of the second BN with respect to the first BN.

o5 3.4.4. Parameter visualization and inference
The next step is to visualize the node parameters and make some queries to
the BN, to demonstrate how the inference engine works. BayeSuites supports
visualization for both discrete and continuous nodes. In the case of discrete
nodes, the marginal CPD table is provided, whereas in the continuous case, an
s0 interactive plot of its marginal Gaussian PDF is displayed (Figure .
Because our example has only continuous Gaussian nodes, we describe the

continuous exact inference engine. This involves converting the network pa-

28

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

rameters into a multivariate Gaussian distribution, A (u;X); therefore, the
marginalization operation for a query variable, p(Q = ¢), is trivial, because
65 we only need to extract its mean and variance from the multivariate Gaussian
distribution. For the conditioning probability density of a query variable given a
set of evidence variables, p(Q = ¢|E), we also utilize the multivariate Gaussian
distribution, following the equations described in [3].
Performing the inference operations in this manner allows a highly rapid
so inference engine because the most time consuming operation is conditioning
over a large set of evidence variables in E, which is O(I®), being [is the number
of evidence variables E to condition on. This complexity is directly a result of
the formulas for conditioning, as it is needed to invert a matrix of size [x [.

From the user perspective, this entire process is transparent, which is a key

s factor for the ease of use and interpretability of BNs. The inference process is as
follows: to set the evidence nodes, F, the user either clicks on the desired node
and fixes the exact value (Figure or selects a group of nodes. The last option
only allows fixing a shared value of the evidence for the whole group, because
the standard deviation of each member of the group varies from its mean value.

0 Setting different values at each node would be inefficient because the group can
be large and the nodes can have different scales.

To view how the parameters of the query nodes, p(Q = ¢|E), change, the
user clicks on a specific node and both the original and new distributions are
shown in the same plot, allowing a better comparison of how the parameters

s changed (Figure . Note that when no evidences are selected, only the orig-
inal marginal distribution, p(Q = ¢), is displayed on clicking or searching a
desired node in the search bar. As both the original and updated distributions
are cached in the backend, the estimated time for presenting the marginal dis-
tribution of a specific node is highly optimized having a constant complexity,

e0 which in real time is equivalent to only a couple of seconds.

To provide useful insights about the inference effects, we display multiple
sorted lists of the query nodes, demonstrating how much their distribution

changes according to the KL divergence value, mean variation, and standard

29

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) Selection of one random node associated with schizophrenia disease, following

inclusion of the metadata information about the gene-disease association

* Highlight nodes/edges W m B Exportasimage | @ Change layout
1 St
"

Selected: | 5 S

.-

KIF17 | (Schizophrenia)

CCK | (Schizophrenia)
KCNIP3 | (Malignant neoplasm of breast)

NPTX2 | (Substance Withdrawal Syndrome)

AGBL4 | (Drug abuse)

(b) Evidence node set (KIF17) (top) and one of its children (bottom), correspond-

ing to gene KCNIP3 associated with malignant neoplasm of a breast

View options | # Highlight nodes/edges | @ Onselectgroup | @Onclicknode | «”Scale options | < Layoutsize | BExportasimage | @ Change layout

KIF17 | (Schizophrenia)

selected:

evicence: [[E5)))

.Kcuwa | (Malignant neoplasm of breast)

Figure 8: Inference workflow in BNs. The network corresponds to the full human brain
genome from the Allen Institute for Brain Science. (a) In this case, we select the node on
top, corresponding to gene KIF17, fix its value to make it an evidence node, E = e, and only
show its children to have a clear view of their relations. (b) The plot includes its original
marginal Gaussian PDF in blue, p(Q), as it is before setting any evidence, and the new one in
black, p(Q|F), which corresponds to its PDF after setting the evidence of gene KIF17. The
exact parameters are also displayed. Therefore, the inference process demonstrates how fixing
a low value for the gene associated with schizophrenia (KIF17) also results in a value near
zero for the gene associated to the malignant breast neoplasm (KCNIP3), which indicates a

relationship between these two genes.

30

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

@ List of groups: disease_name ~ |Category:| Selecta catec

KL divergence: Mean: Standard deviation:

th Nodes by evidences effect: Select a node to zoom ir - Select a node to zoom ir - Select a node to zoom ir -

-? Groups by evidences effect ABR 7776049652561 h 80700 4232131 c9 000
146223 76728613000.88 2087 9482937 MRPL4S 000

5084 76485038736.01 PQLCI 8643127 E INHIT2 0.00

CTNND2 TEM26717271 ITPK 6465858 744 0.00

58526 73589079197 61 DBNI 2277051 745 0.00

23552 7208600283755 CDKN2D 1592099 748 0.00

26012 7108076748979 146223 1368938 747 0.00

Figure 9: Inference effect in the query nodes. We can now infer the extent the evidence
of a node (or group of nodes) affects the PDF of other nodes or group of nodes, p(Q|E),
by examining the Kullback—Leibler (KL) divergence between the original and the posterior
distributions or their mean or standard deviation variation. The left column in each drop-
down box corresponds to the genes id, and the right column presents the score values. Note
that in this example, the standard deviation values seem to be zero, because they are rounded
to two decimals. Further, the effect of fixing the evidence of only one node in a network of

more than 20,000 nodes can be minimal for the standard deviation of the other nodes.

deviation variation (Figure E[) When the case groups are created, a list of the
es multivariate KL divergence values for each group is also be displayed.

In addition, to support another functionality for understanding the graph,
we implemented the D-separation criterion following the reachable algorithm
described in [3], which can automatically check for conditional independences.
Two random variables X and Y are conditionally independent given a random

e0 variable Z, if for any assignment of values X = z, Y = y, Z = 2, knowing
the value of X does not affect the probability of Y when the value of Z is
already known, i.e., P(Y|X,Z) = P(Y|Z). Thus, the D-separation algorithm
can be particularly useful when we are running inference and want to determine
whether some nodes are conditionally independent when some evidence nodes
675 are given.

We have implemented further extensions to support BN-based probabilistic
clustering models. The utilized dataset for this use case is also from the Allen
Brain Atlas, specifically the one in the Cell Types Database: RNA-Seq Data,
which contains single-cell gene expression levels across the human cortex. There-

0 fore, the genes correspond to a set of continuous attributes X = {Xy,..., X,,}

31

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) Network edges for four clusters, each one with a different colour

Visualize Probabilistic clustering model graph

® 51ue nodes are predictor features, red nodes have fxed evidence.
N Double click to reset the camera and the colors.

@ Find one node: ~ | = Select multiple nodes: Croctogroup | Setovidenco | Cloar ovidence || Showgroup

@ List of groups: Rolovantfaotures ~ | Category: | Sokect o catogory to hgnignt =

B seiect cluster: a ~ | Fiter common eages: | no B it 1050 | Cluster2(024) | chuster3(012) | [CiSEA G|
Sortlist by: Namo

KL dvergence: Mean Standiard devition:
11 Nodes by evidences effect: Seloctanode tozoomin + Seloctanode tozoomin + Soloctanodetozoomin v
“® Groups by evidences effect (KL dvergence): socl o oroup to ngnignt i~

3 Inference mode:

(‘0.0001 [‘0.0001 | ["000 |

Update parameters
Graphical asso parameters: oy ch oby odbo 1cbo mbo stbo ko
Alpna Tol Max ter

[viwoptons | 4ghigtnocsledges | @ onselecigroup | @oncicknods | «*solaptons | +Loyoutsie | Bisporcsimage | @ changeloyout.

o=

(b) Selection of a group with the 20 most relevant nodes according to the metadata
uploaded file

* Highlight nodes/edges | @ onselectgroup | ®onclicknode | .”Scale options | «Layoutsize | BExportasimage | @ change layout..

X8857

00 01 015 02
— Clustr1(0.08,00) —— Cluser20017,002)
— Cluser3(0.18,001) —— Cluser 40.04,00)
Selected:

Evidence: E

3 X6857

@ 2000 nodes (20 selected) % 6261 edges (54 selected)

Figure 10: BN-based probabilistic clustering model of 2000 nodes of the human brain genome.
(a) The upper part of the image also presents the cluster weights. Node sizes are adjusted to
highlight the most important nodes with the betweenness centrality algorithm. Nodes colours
are according to external metadata to organize them in three groups given their importance.
(b) The plot displays the parameters of gene X6857. Each of the four clusters (different
colours), presents a Gaussian distribution. In this example, we can easily notice that the most

probable cluster assignation for this gene is cluster 1 (in grey), p(X6857|C = c1).

for the cell measurements (i.e., the dataset instances).

32

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In model-based clustering [74], it is assumed that the data follow a joint
probability distribution, P(X), which can be expressed as a finite mixture of K
components. This implies that each mixture component, P(X|C = ¢), refers to

s the CPD of X variables given a cluster, ¢, where the hidden cluster, ¢, has its

own probability distribution, P(C' = ¢). Thus,

K
P(X) =Y P(C=c)P(X|C=c). (3)
c=1

Learning the parameters for this mixture model requires a more advanced
technique than MLE, because the cluster variable is hidden. Therefore, we
learn the parameters (mixture weights P(C' = ¢) and the CPD parameters, i.e.,

o0 P(X|C = c)) with the expectation maximization algorithm [75] because it can
handle incomplete data.

In genomics it is typically assumed that P(X|C = ¢) follows a multivariate
Gaussian distribution, A (u,). Hence, the parameters are the mixture weight
vector, 7, and the multivariate Gaussian distribution parameters, i.e., the mean

s vector p, and the covariance matrix, 3.

Numerous genes require a high-dimensional model, which can lead to major
computational problems, in terms of both memory and time. For instance, we
would have to work with 3, which is an n X n matrix, where n is the number
of X variables (genes in this case). To reduce the computational complexity

w0 and improve the interpretability, we can factorize this expression to encode the
conditional independences between the X variables in a cluster. This allows dif-
ferent graphical models for different clusters, because the relationships between

the X variables are conditioned on each cluster as

n
P(X|C =) = [[P(X:|Pa(X.),C = ¢) (4)
i=1
To represent this, we display each graph corresponding to P(X|C = ¢) in
705 the same BN, colouring the edges with different colours for each cluster (Figure

10al). Selection tools are also implemented to show/hide the different cluster
edges and filter them (Figure [10b)).

33

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Finally, we express the joint probability distribution of X (Equation fac-
torized according to Equation [d] We call this BN-based probabilistic clustering
710 [76],

K n

P(X)=) P(C=¢][P(Xi[Pa(X,).C =) (5)

c=1 i=1

Therefore, inference can be performed on each graph corresponding to a
cluster without affecting the other cluster CPDs. For instance, we can fix the
evidence for the distribution of a gene, as X; = e, given a cluster C = ¢, where
e is a scalar value, and then query another gene to determine how its CPD for

75 that cluster has changed, P(X;|C =c¢, X; =e).

The obtained BN can be exported as an SVG image or as a CSV file contain-
ing the graph information about the arcs between the nodes. This exported file
can be loaded subsequently in another session to continue working. Finally, it is
important to acknowledge that the user data in a session remains in our servers

720 for 48 h since the last modification of the data. This limit is imposed by our
hardware limitations. To overcome this limitation, a user can always create new
sessions, and the data will be stored again for 48 h. Users are also encouraged
to deploy their own server instance to modify the framework according to their

needs.

»s 4. Discussion

Here, we review future directions for BayeSuites by first introducing new
use cases for which we believe this tool could be of great interest, and then,
we also indicate potential extensions and new functionalities that would make
BayeSuites even more complete.

730 We believe that the ease of use will be helpful in initiating collaborations
between experts of multiple disciplines. This will be extremely important for
the adoption of these models by experts of other disciplines who are not used
to programming or software engineering, such as some neuroscientists or physi-

cians.

34

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

735 A useful use case could be the use of a private server instance in closed local
networks environments, such as hospitals, clinical laboratories, or companies.
A workflow could be easily designed to have a clear pipeline to process the
data with machine learning techniques. New data sources connections could
be implemented to automatically plug into the data acquisition machines. In

0 addition, some type of specific pre-processing for the data could be implemented
in NeuroSuites (e.g., for genomic data it could be the removal of irrelevant
genes and the inclusion of domain knowledge about the most important genes).
Further, the experts could analyse the data with the BayeSuites framework. The
web characteristics of the frameworks would make the tool available in a web

us browser for each employee in the local network without the need of installing
the software on their computer.

Finally, we also believe this simplicity could be a great aid for educational
purposes when teaching BNs allowing the theorical properties to be shown in a
dynamic environment.

750 The framework aims to be a complete product; however, this is an extremely
large research field, and at the time of writing this paper it does not include all
the existing state-of-the-art functionalities. Its extensibility properties can make
it possible to include numerous extensions and implement new functionalities.

A useful implementation to be included would be some inference algorithms

s for discrete BNs. We have provided the support to learn and visualize discrete
parameters in BNs. However, we have not included yet any inference algorithm
for them owing to the development time constraints and the difficulty to visualize
the changes in the parameters when there are many parameters per node and
numerous nodes. Moreover, massive datasets in various neuroscience fields, such

w0 as genomics and electrophysiology, comprise only continuous features.

Another interesting extension would be the inclusion of dynamic BNs [77].
The steps to implement this would be similar to the ones described in the
last section to include BN-based clustering models. However, there would be
an increased complexity to visualize the network for each timeframe and for

765 performing new types of inferences (e.g., filtering, smoothing, etc.).

35

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Finally, we want to highlight that NeuroSuites also offers different tools

for other neuroscience domains, such as morphological reconstructions and mi-
croscopy data visualization. However, although this framework is designed fo-
cusing on the neuroscience field, many other tools can also be used in other

o research fields. Developers can modify the platform to target a different re-
search field. However, it is also important to note that no modifications are
needed if the user wants to upload his own dataset and learn a probabilistic
graphical model and interpret it, despite the neuroscience background theme of

the website. For instance, the use case that we followed here needs a specific

75 BN structure learning algorithm designed for genomics (FGES-Merge) along
with all the visualization tools for understanding its massive network. However,

for other domains, where datasets are relatively smaller, other algorithms could

also be applied.

5. Conclusion

780 In this paper, we have presented BayeSuites, which aims not only to get the
best from the proprietary and open source worlds but also to extend it. The
result is an open source web framework for learning, visualizing, and interpreting
BNs, with the peculiarity of being the first web framework that is scalable
and able to manage massive BNs of tens of thousands of nodes and edges.

s This ability is required to overcome the main obstacles for managing massive
BNs, and accurate and fast methods for structure learning, visualization and
inference were developed. This development was done by providing a friendly
and interactive user experience.

To test our tool, we extensively compared BayeSuites with the major BN

70 tools currently available; we divided the necessary BNs functionalities into four
categories: scalability, extensibility, interoperability and ease of use. We con-
clude that, presently, BayeSuites is the only tool that fully incorporates all these
functionalities for massive BNs.

Finally, we showcased the utility of BayeSuites by providing two real use

36

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

795

800

805

810

815

available under aCC-BY-NC-ND 4.0 International license.

cases of the entire process of learning, visualizing and interpreting BNs from

genomic data obtained from the Allen Institute for Brain Science.

6. Data availability

Our production server on |https: //neurosuites.com/morpho/ml_bayesian_networks
can be freely accessed, where all the futures updates will be live. We also pro-
vide access to the NeuroSuites source code repository in
https://gitlab.com/mmichiels /neurosuite. The BNs used in the examples for
showcasing BayeSuites can be found in https://gitlab.com/mmichiels/fges_parallel

_production/tree/master /BNs_results_paper

7. Author contributions

Mario Michiels designed the software architecture, developed the software
and wrote the manuscript. Pedro Larranaga and Concha Bielza conceived the
project, oversaw the development process, contributing with new ideas and cor-
rections, and reviewed the manuscript. All authors gave final approval for pub-

lication and agree to be held accountable for the work performed therein.

8. Competing interests

We declare we have no competing interests.

9. Funding

This project has received funding from the European Union’s Horizon 2020
Framework Programme for Research and Innovation under Specific Grant Agree-
ment No. 785907 (HBP SGA2) and from the Spanish Ministry of Economy and
Competitiveness through the TIN2016-79684-P project.

37

https://neurosuites.com/morpho/ml_bayesian_networks
https://gitlab.com/mmichiels/neurosuite
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10. Acknowledgments

The authors would like to thank Sergio Paniego for his help in the develop-

ment of the BayeSuites visualization tool, Nikolas Bernaola for his assistance in

g0 Pprogramming the continuous inference engine for BNs, and Fernando Rodriguez-
Sanchez for his research in BN-based probabilistic clustering models and his help

in reviewing that section in this paper.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems : Networks
825 of Plausible Inference, Morgan Kaufmann, 1988. doi:10.1016/
c2009-0-27609-4.

[2] J. Chen, R. Zhang, X. Dong, L. Lin, Y. Zhu, J. He, D. C. Christiani,
Y. Wei, F. Chen, ShinyBN: an online application for interactive Bayesian
network inference and visualization, BMC Bioinformatics 20 (1) (2019) 1-5.

830 doi:10.1186/s12859-019-3309-0.

[3] D. Koller, N. Friedman, Probabilistic Graphical Models - Principles and
Techniques, MIT press, 2009.

[4] C. Bielza, P. Larraniaga, Bayesian networks in neuroscience: A survey, Fron-
tiers in Computational Neuroscience 8 (2014) 131. doi:10.3389/fncom.
835 2014.00131.

[5] C. Lacave, M. Luque, F. J. Diez, Explanation of Bayesian networks and
influence diagrams in Elvira, IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 37 (4) (2007) 952-965.

[6] C.Yuan, H. Lim, T. C. Lu, Most relevant explanation in bayesian networks,
840 Journal of Artificial Intelligence Research 42 (2011) 309-352. doi:10.
1613/jair.3301.

38

http://dx.doi.org/10.1016/c2009-0-27609-4
http://dx.doi.org/10.1016/c2009-0-27609-4
http://dx.doi.org/10.1016/c2009-0-27609-4
http://dx.doi.org/10.1186/s12859-019-3309-0
http://dx.doi.org/10.3389/fncom.2014.00131
http://dx.doi.org/10.3389/fncom.2014.00131
http://dx.doi.org/10.3389/fncom.2014.00131
http://dx.doi.org/10.1613/jair.3301
http://dx.doi.org/10.1613/jair.3301
http://dx.doi.org/10.1613/jair.3301
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[7] S. Luengo-Sanchez, P. Larranaga, C. Bielza, A Directional-Linear Bayesian
Network and Its Application for Clustering and Simulation of Neural So-
mas, IEEE Access 7 (2019) 69907-69921. doi:10.1109/ACCESS.2019.

845 2918494\

[8] J. Zapata-Rivera, Visualization of Bayesian belief networks, ... of IEEE
Visualization’99, ... (1999) 6-9.
URL http://www.researchgate.net/publication/2945574_
Visualization_of_Bayesian_Belief_Networks/file/

850 79e4150b3cfc3b3cea.pdf

[9] J. R. Koiter, Visualizing inference in Bayesian networks, Man-machine
interaction group Master of.
URL http://www.kbs.twi.tudelft.nl/Publications/MSc/
2006-JRKoiter-Msc.html

ss [10] M. Cossalter, O. Mengshoel, T. Selker, Visualizing and understanding
large-scale Bayesian networks, AAAI Workshop - Technical Report WS-
11-17 (2011) 12-21.

[11] P. K. Sundarararajan, O. J. Mengshoel, T. Selker, Multi-focus and multi-
window techniques for interactive network exploration, Visualization and

860 Data Analysis 2013 8654 (2013) 865400. doi:10.1117/12.2005659.

[12] S. Conrady, L. Jouffe, Introduction to Bayesian Networks & BayesiaLab,
Bayesia SAS, USA.

[13] A. L. Madsen, F. Jensen, U. B. Kjeerulff, M. Lang, The Hugin Tool for
probabilistic graphical models, International Journal on Artificial Intelli-

865 gence Tools 14 (3) (2005) 507-543. |doi:10.1142/50218213005002235.

[14] M. J. Druzdzel, SMILE: Structural Modeling, Inference, and Learning
Engine and GeNle: A development environment for graphical decision-

theoretic models, in: AAAI/TAAT, 1999, pp. 902-903.

39

http://dx.doi.org/10.1109/ACCESS.2019.2918494
http://dx.doi.org/10.1109/ACCESS.2019.2918494
http://dx.doi.org/10.1109/ACCESS.2019.2918494
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://dx.doi.org/10.1117/12.2005659
http://dx.doi.org/10.1142/S0218213005002235
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[15] A. Ankan, A. Panda, pgmpy: Probabilistic Graphical Models using Python,
870 in: Proceedings of the 14th Python in Science Conference, 2015, pp. 6-11.
doi:10.25080/majora-7b98e3ed-001.

[16] F. G. Cozman, | Javabayes-bayesian networks in java.

URL https://www.cs.cmu.edu/\simjavabayes/Home/

[17] A. Hartemink, Others, Banjo: Bayesian network inference with java objects

a75 (2005).

[18] G. Corani, M. Zaffalon, JNCC2: The Java implementation of naive credal
classifier 2, Journal of Machine Learning Research 9 (Dec) (2008) 2695—
2698.

[19] W. H. Hsu, R. Joehannes, J. A. Thornton, B. B. Perry, L. M. Haverkamp,
880 N. D. Gettings, H. Guo, Bayesian network tools in Java (BNJ) v2. 0, Kansas

State University Laboratory for Knowledge Discovery in Databases.

[20] C. M. Kadie, D. Hovel, E. Horvitz, MSBNx: A component-centric toolkit
for modeling and inference with Bayesian networks, Microsoft Research,

Richmond, WA, Technical Report MSR-TR-2001-67 28.

s [21] K. Murphy, The bayes net toolbox for matlab, Computing science and
statistics 33 (2) (2001) 1024-1034.

[22] D. M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks is
NP-hard, Tech. rep., MSR-TR~94-17, Microsoft Research, Advanced Tech-
nology Division, Microsoft Corporation, Redmond, WA (1994).

s0 [23] R. Robinson, Counting labeled acyclic digraphs, in: Academic Press (Ed.),
New Directions in the Theory of Graphs (Proc. Third Ann Arbor Conf.,
Univ. Michigan, Ann Arbor, Mich., 1971), 1973, pp. 239-273.

[24] C. K. Chow, C. N. Liu, Approximating Discrete Probability Distributions
with Dependence Trees, IEEE Transactions on Information Theory 14 (3)
895 (1968) 462-467. doi:10.1109/TIT.1968.1054142.

40

http://dx.doi.org/10.25080/majora-7b98e3ed-001
https://www.cs.cmu.edu/$\sim $javabayes/Home/
https://www.cs.cmu.edu/$\sim $javabayes/Home/
http://dx.doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

900

905

910

915

920

[25]

[30]

[31]

available under aCC-BY-NC-ND 4.0 International license.

G. Rebane, J. Pearl, The Recovery of Causal Poly-trees from Statistical
Data, in: Proceedings of the Third Conference on Uncertainty in Artificial
Intelligence, UAT’87, AUAI Press, Arlington, Virginia, United States, 1987,
pp. 222-228.

P. Spirtes, C. N. Glymour, R. Scheines, D. Heckerman, C. Meek, G. Cooper,
T. Richardson, Causation, prediction, and search, MIT press, 2000.

I. Tsamardinos, L. E. Brown, C. F. Aliferis, The max-min hill-climbing
Bayesian network structure learning algorithm, Machine Learning 65 (1)

(2006) 31-78. doi:10.1007/s10994-006-6889-7.

T. J. T. Koski, J. Noble, A review of Bayesian networks and structure

learning, Mathematica Applicanda 40 (1).

A. L. Madsen, F. Jensen, A. Salmerén, H. Langseth, T. D. Nielsen, A
parallel algorithm for Bayesian network structure learning from large data

sets, Knowledge-Based Systems 117 (2017) 46-55.

F. Liu, S.-W. Zhang, W.-F. Guo, Z.-G. Wei, L. Chen, Inference of gene
regulatory network based on local bayesian networks, PLoS computational

biology 12 (8) (2016) e1005024.

N. Bernaola, M. Michiels, P. Larranaga, C. Bielza, Learning massive inter-
pretable gene regulatory networks of the human brain by merging Bayesian
Networks, bioRxivdoi:10.1101/2020.02.05.935007.

URL https://www.biorxiv.org/content/early/2020/02/05/2020.02.
05.935007

A. Jacomy, G. Plique, Sigmajs.
URL http://sigmajs.org/

Graphistry, PyGraphistry: A library to extract, transform, and visually
explore big graphs.
URL https://github.com/graphistry/pygraphistry

41

http://dx.doi.org/10.1007/s10994-006-6889-7
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
http://dx.doi.org/10.1101/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
http://sigmajs.org/
http://sigmajs.org/
https://github.com/graphistry/pygraphistry
https://github.com/graphistry/pygraphistry
https://github.com/graphistry/pygraphistry
https://github.com/graphistry/pygraphistry
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[34] A. Kashcha, VivaGraphJS: Graph drawing library for JavaScript.
URL https://github.com/anvaka/VivaGraphJs

o5 [35] G. F. Cooper, The computational complexity of probabilistic inference us-

ing Bayesian belief networks, Artificial intelligence 42 (2-3) (1990) 393—405.

[36] P. Dagum, M. Luby, Approximating probabilistic inference in Bayesian
belief networks is NP-hard, Artificial intelligence 60 (1) (1993) 141-153.

[37] Netica, Netica application for belief networks and influence diagrams:

930 user’s guide (1996).

[38] B. Aragam, J. Gu, Q. Zhou, Learning large-scale Bayesian Networks with
the sparsebn package, Journal of Statistical Software 91 (11) (2019) 1-38.
doi:10.18637/jss.v091.111.

[39] M. Benjumeda, C. Bielza, P. Larranaga, Learning tractable Bayesian net-
935 works in the space of elimination orders, Artificial Intelligence 274 (2019)

66-90. |doi:10.1016/j.artint.2018.11.007.

[40] S. Hgjsgaard, Graphical independence networks with the gRain package for
R, Journal of Statistical Software 46 (10) (2012) 1-26.

[41] M. Scutari, Learning Bayesian networks with the bnlearn R Package, Jour-
040 nal of Statistical Software 35 (3) (2010) 1-22. doi:10.18637/jss.v035.
103l

[42] D. Merkel, Docker: Lightweight Linux containers for consistent develop-
ment and deployment, Linux Journal 2014 (239) (2014) 2. doi:10.1097/
01.NND.0000320699.47006. a3.

us [43] 1. Sysoev, nginx (2004).
URL https://nginx.org/

[44] Unbit, tWSGL

URL https://uwsgi-docs.readthedocs.io/en/latest/

42

https://github.com/anvaka/VivaGraphJS
https://github.com/anvaka/VivaGraphJS
http://dx.doi.org/10.18637/jss.v091.i11
http://dx.doi.org/10.1016/j.artint.2018.11.007
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.1097/01.NND.0000320699.47006.a3
http://dx.doi.org/10.1097/01.NND.0000320699.47006.a3
http://dx.doi.org/10.1097/01.NND.0000320699.47006.a3
https://nginx.org/
https://nginx.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

950

955

960

965

970

[45]

[47]

[48]

[51]

[52]

[53]

available under aCC-BY-NC-ND 4.0 International license.

Django Software Foundation, The Web framework for perfectionists with
deadlines — Django| (2013).
URL https://www.djangoproject.com/

S. Van Der Walt, S. C. Colbert, G. Varoquaux, The NumPy array: A
structure for efficient numerical computation, Computing in Science and

Engineering 13 (2) (2011) 22-30. |doi:10.1109/MCSE.2011.37.

E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for
Pythonl
URL http://www.scipy.org/

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn:

Machine Learning in Python, Journal of Machine Learning Research 12

(2011) 2825-2830.

RabbitMQ, RabbitMQ!

URL https://www.rabbitmq.com/

Celery, Celery: Distributed task queue.
URL http://www.celeryproject.org/

D. Vohra, Apache Parquet, in: Practical Hadoop Ecosystem, Springer,
2016, pp. 325-335. |[doi:10.1007/978-1-4842-2199-0_8.

PostgreSQL, PostgreSQL: The world’s most advanced open source
database.

URL https://wuw.postgresql.org/

A. Trrthum, L. Wehenkel, P. Geurts, Others, Inferring regulatory networks
from expression data using tree-based methods, PloS one 5 (9) (2010)
el2776.

43

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://dx.doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://dx.doi.org/10.1007/978-1-4842-2199-0_8
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o5 [54] D. W. Walker, J. J. Dongarra, MPI: A standard message passing interface,
Supercomputer 12 (1) (1996) 56-68.

[65] L. Dalcin, mpidpy: Python bindings for MPI.
URL https://github.com/mpidpy/mpidpy

[56] D. Marbach, J. C. Costello, R. Kiiffner, N. M. Vega, R. J. Prill, D. M. Ca-

980 macho, K. R. Allison, M. Kellis, J. J. Collins, A. Aderhold, G. Stolovitzky,
R. Bonneau, Y. Chen, F. Cordero, M. Crane, F. Dondelinger, M. Drton,

R. Esposito, R. Foygel, A. De La Fuente, J. Gertheiss, P. Geurts, A. Green-

field, M. Grzegorczyk, A. C. Haury, B. Holmes, T. Hothorn, D. Hus-

meier, V. A. Huynh-Thu, A. Irrthum, G. Karlebach, S. Lebre, V. De Leo,

o5 A. Madar, S. Mani, F. Mordelet, H. Ostrer, Z. Ouyang, R. Pandya, T. Petri,
A. Pinna, C. S. Poultney, S. Rezny, H. J. Ruskin, Y. Saeys, R. Shamir,

A. Sirbu, M. Song, N. Soranzo, A. Statnikov, N. Vega, P. Vera-Licona,

J. P. Vert, A. Visconti, H. Wang, L. Wehenkel, L. Windhager, Y. Zhang,

R. Zimmer, Wisdom of crowds for robust gene network inference, Nature

590 Methods 9 (8) (2012) 796-804. [doi:10.1038/nmeth.2016.

[57] C. Yuan, M. J. Druzdzel, Importance sampling algorithms for Bayesian
networks: Principles and performance, Mathematical and Computer Mod-

clling 43 (9-10) (2006) 1189-1207. |doi:10.1016/3.mcm.2005.05. 020!

[58] F. C. Francisco J. Rodriguez Lera, Camino Ferndndez, V. Matelldn, Social

905 Navigation Restrictions for Interactive Robots Using Augmented Reality,

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) 9422 (2015)
347-356. doi:10.1007/978-3-319-24598-0.

[59] W. McKinney, Data Structures for Statistical Computing in Python, in:
1000 S. van der Walt, J. Millman (Eds.), Proceedings of the 9th Python in
Science Conference, 2010, pp. 51-56.

[60] L. Gautier, rpy2.
URL https://rpy2.bitbucket.io/

44

https://github.com/mpi4py/mpi4py
https://github.com/mpi4py/mpi4py
http://dx.doi.org/10.1038/nmeth.2016
http://dx.doi.org/10.1016/j.mcm.2005.05.020
http://dx.doi.org/10.1007/978-3-319-24598-0
https://rpy2.bitbucket.io/
https://rpy2.bitbucket.io/
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[61] S. M. Sunkin, L. Ng, C. Lau, T. Dolbeare, T. L. Gilbert, C. L. Thompson,
1005 M. Hawrylycz, C. Dang, Allen Brain Atlas: an integrated spatio-temporal
portal for exploring the central nervous system, Nucleic Acids Research

41 (D1) (2012) D996—D1008. [doi:10.1093/nar/gks1042.

[62] J. Pifero, A. Bravo, N. Queralt-Rosinach, A. Gutiérrez-Sacristan, J. Deu-
Pons, E. Centeno, J. Garcia-Garcia, F. Sanz, L. I. Furlong, DisGeNET:
1010 A comprehensive platform integrating information on human disease-
associated genes and variants, Nucleic Acids Research 45 (D1) (2016) D833—

D839. |[doi:10.1093/nar/gkw943.

[63] M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-Bongaarts, E. H. Shen, L. Ng,
J. A. Miller, L. N. Van De Lagemaat, K. A. Smith, A. Ebbert, Z. L. Riley,
1015 Others, An anatomically comprehensive atlas of the adult human brain

transcriptome, Nature 489 (7416) (2012) 391.

[64] A. Nair, M. Chetty, P. P. Wangikar, Improving gene regulatory network
inference using network topology information, Molecular BioSystems 11 (9)

(2015) 2449-2463. |doi : 10.1039/c5mb00122f!

w0 [65] E. Koutsofios, S. North, Drawing Graphs with Dot, Tech. rep., 910904-
59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ (1991).

[66] K. Sugiyama, S. Tagawa, M. Toda, Methods for Visual Understanding of
Hierarchical System Structures, IEEE Transactions on Systems, Man and

Cybernetics 11 (2) (1981) 109-125. |doi:10.1109/TSMC. 1981 .4308636!

ws [67] T. M. Fruchterman, E. M. Reingold, Graph drawing by force-directed
placement, Software: Practice and Experience 21 (11) (1991) 1129-1164.
doi:10.1002/spe.4380211102.

[68] G. Csardi, T. Nepusz, The igraph software package for complex network
research, InterJournal Complex Sy (2006) 1695.

0o [69] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a con-

tinuous graph layout algorithm for handy network visualization designed

45

http://dx.doi.org/10.1093/nar/gks1042
http://dx.doi.org/10.1093/nar/gkw943
http://dx.doi.org/10.1039/c5mb00122f
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1002/spe.4380211102
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934174; this version posted July 1, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

for the Gephi software, PLoS ONE 9 (6) (2014) €98679. |doi:10.1371/
journal .pone.0098679.

[70] B. Chippada, ForceAtlas2 for Python.
1035 URL https://github.com/bhargavchippada/forceatlas2

[71] G. Plique, ForceAtlas2 sigmajs plugin/ (2017).
URL https://github.com/jacomyal/sigma.js/tree/master/plugins/

sigma.layout.forceAtlas2

[72] G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics
1040 6 (2) (1978) 461-464. [doi:10.1214/a0s/1176344136!

[73] V. D. Blondel, J. L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding
of communities in large networks, Journal of Statistical Mechanics: Theory
and Experiment 2008 (10) (2008) P10008. doi:10.1088/1742-5468/2008/
10/P10008!

ws [74] C. Fraley, A. E. Raftery, Model-based clustering, discriminant analysis,
and density estimation, Journal of the American Statistical Association

97 (458) (2002) 611-631.

[75] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royal Statistical
1050 Society: Series B (Methodological) 39 (1) (1977) 1-22.

[76] D. T. Pham, G. A. Ruz, Unsupervised training of Bayesian networks for
data clustering, Proceedings of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences 465 (2109) (2009) 2927-2948.

[77] K. Murphy, Dynamic Bayesian Networks: Representation, Inference and
1055 Learning, Ph.D. thesis, University of California (2002).

46

http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1371/journal.pone.0098679
https://github.com/bhargavchippada/forceatlas2
https://github.com/bhargavchippada/forceatlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Problems with state-of-the-art of software in massive BN interpretability
	Scalability
	Extensibility
	Interoperability
	Ease of use and interpretability

	BayeSuites
	Scalability
	Structure learning performance analysis
	Inference performance analysis
	Visualization performance analysis
	Server performance analysis

	Extensibility
	Interoperability
	Ease of use and interpretability
	Layouts
	General viewing options
	Highlighting nodes/edges
	Parameter visualization and inference

	Discussion
	Conclusion
	Data availability
	Author contributions
	Competing interests
	Funding
	Acknowledgments

