
BayeSuites: An open web framework for massive
Bayesian networks focused on neuroscience

Mario Michiels, Pedro Larrañaga, Concha Bielza

Universidad Politécnica de Madrid

Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad
Politécnica de Madrid, Boadilla del Monte, Madrid 28660, Spain

Abstract

BayeSuites is the first web framework for learning, visualizing, and interpreting

Bayesian networks (BNs) that can scale to tens of thousands of nodes while pro-

viding fast and friendly user experience. All the necessary features that enable

this are reviewed in this paper; these features include scalability, extensibility,

interoperability, ease of use, and interpretability. Scalability is the key factor in

learning and processing massive networks within reasonable time; for a main-

tainable software open to new functionalities, extensibility and interoperability

are necessary. Ease of use and interpretability are fundamental aspects of model

interpretation, fairly similar to the case of the recent explainable artificial in-

telligence trend. We present the capabilities of our proposed framework by

highlighting a real example of a BN learned from genomic data obtained from

Allen Institute for Brain Science. The extensibility properties of the software

are also demonstrated with the help of our BN-based probabilistic clustering

implementation, together with another genomic-data example.

Keywords: Bayesian networks, web framework, open source software, large

scale interpretability, neuroscience, genomics

Email address: mmichiels@fi.upm.es (Mario Michiels)

Preprint submitted to Journal of LATEX Templates July 2, 2020

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://neurosuites.com/morpho/ml_bayesian_networks
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

Analysing neuroscience data can be particularly complex since some of these

datasets can have numerous instances and/or present an extremely high dimen-

sionality, such as fMRI or microarray data, which can be in the order of tens of

thousands of variables. Learning models with massive datasets having numer-5

ous features requires unique algorithms because they may encounter the curse

of dimensionality problem.

In addition to the complexity of learning in biological domains, it is par-

ticularly sensitive and risky to make decisions based on models for which the

process of drawing conclusions and their implications is not understandable.10

To fulfill the above-mentioned requirements, we focus on probabilistic graph-

ical models, particularly on Bayesian networks (BNs) [1], which use probability

theory to present a compact graphical representation of the joint probability

distribution over a set of random variables, X = {X1, ..., Xn}. With this theo-

retically rich and detailed model, we require appropriate software tools to learn,15

visualize and interactively manipulate the resulting model, which is where the

state-of-the-art BNs fail when trying to deal with massive networks.

Current state-of-the-art BN tools (e.g., shinyBN [2]) not only are lacking in

proper ways to learn massive BNs but also are lacking in scalable inference and

interactive visualizations. In this paper, we present BayeSuites, a new open-20

source framework, which is the first of its kind to overcome all of these issues

in a single framework. Note also how BayeSuites is not a wrapper of existing

tools into a graphical interface but is a comprehensive framework, integrating

both new algorithms and existing packages adaptations to create a single tool

specifically designed to fully exploit the BN’s interpretability features even for25

massive networks with tens of thousands of nodes. BN’s requirements are scal-

ability, extensibility, interoperability, ease of use, and interpretability.

BNs consist of two main parts: a graph, which is a directed acyclic graph

(DAG) representing the probabilistic conditional dependencies between the vari-

ables in X , and parameters, which are a series of conditional probability distri-30

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Hypothetical BN example modelling the risk of dementia. Figure extracted from

[4].

butions (CPDs) [3].

Each node in the graph represents a random variable, Xi, in the vector of

variables, X = (X1, ..., Xn), and its arcs represent the probabilistic conditional

dependence relationships with respect to the other variables. Each node, Xi,

has an associated CPD, which represents its probability distribution conditioned35

on its parents, Pa(Xi), in the graph (Figure 1). With all this information, the

joint distribution of all the random variables can be expressed as

P (X) =

n∏
i=1

P (Xi|Pa(Xi)). (1)

The graphical component in a BN is particularly useful because it presents

the probabilistic relationships between the variables. In addition, the inference

machinery offers prediction and interpretability capabilities about the proba-40

bilistic reasoning and the model. For a more in-depth review of the inter-

pretability features of BNs, we refer the reader to [5] and [6]. Owing to their

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

interpretable nature, BNs have already been applied to neuroscience data with

successful results [4, 7].

Following the example in Figure 1, if a patient has neuronal atrophy but has45

not had a stroke, by using inference tools, we can calculate that there is a 0.40

probability he will be demented: P (d|n, s̄) = 0.40.

Even if the current state-of-the-art BN tools supported massive BNs, they

would not have all the proper tools for their interpretation. Visual interpretation

of BNs has been studied for decades [8]. For example, [5] proposed that global50

network visualization should allow focus on certain parts of the structure. [9]

used the arcs in a Bayesian network to show additional information; for example

the thickness of an arc could represent the strength of influence between the

nodes. [10] introduced a software tool providing interactive visual exploration

and the comparison of conditional probability tables before and after introducing55

some evidence. [11] introduced multi-focus and multi-window techniques that

were useful in focusing on several areas of the Bayesian network structure at

the same time. Some of these advances have been implemented in major BN

frameworks, which will be discussed later, but to date, there was no tool where

all these features converge. BayeSuites not only focuses on scalable methods for60

learning and inference but also incorporates all these interpretability features

with our modern implementations adapted for massive networks; in addition, it

includes many newly designed methods, which are discussed in later sections.

The paper is structured as follows: In Section 2, we review the abovemen-

tioned requirements that BN software tools should meet by comparing state-of-65

the-art tools and highlighting where all of them lack one or more fundamental

aspects so that they cannot fully express all the BN capabilities.

In Section 3, we organize the presentation of BayeSuites into the same cat-

egories as Section 2, but we explain how BayeSuites addresses all these inter-

pretability requirements that the other BN tools failed to address in any way.70

We also, in this section, provide performance comparisons with other software

packages, when possible. We explain the last interpretability requirement (ease

of use, Section 3.4) by providing real-world use cases with genomic data. The

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

objective of these use case examples is two-fold: (i) summarize BayeSuites ca-

pabilities in a detailed and graphical way and (ii) explain all the steps required75

to learn, visualize and interpret BNs with BayeSuites.

Finally, in Section 4, we discuss different use cases where the frameworks

could prove useful. We also present future improvements to be implemented in

this line of research. We conclude in Section 5 by providing a summary of the

features that makes BayeSuites a unique framework compared to the existing80

BN software tools.

2. Problems with state-of-the-art of software in massive BN inter-

pretability

In this section, we review the problems with the current BN software frame-

works and packages by explaining the contents summarized in Table 1, which85

makes comparisons between the most comprehensive BN software. However,

there may exist other tools of particular importance for a specific purpose,

which will also be highlighted in each of these subsections below.

It is important to differentiate between individual software components ad-

dressing specific tasks (e.g. a learning algorithm), referred to as software pack-90

ages, and general frameworks, as the one presented in this paper, which provide

all the necessary tools to work with BN capabilities (learning, visualization,

and reasoning). When we classify software as tools, we are referring to both

frameworks and software package categories. Four of the major BN frameworks

are BayesiaLab [12], Hugin [13], and BayesFusion [14] (which uses the SMILE95

engine under the hood, also with a proprietary license), and the recent shinyBN

[2], which uses bnlearn under the hood. In the category of software packages,

the most complete ones to date are bnlearn and pgmpy [15]. We also want to

point out that we did not include other open source packages in Table 1 since

most of them are outdated or nearly outdated (e.g., JavaBayes [16], BanJo [17],100

JNCC2 [18], BNJ [19], MSBNX [20], or Bayes Net Toolbox [21]) and/or only

include very specific algorithms.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: Comparison of the main BN software frameworks/packages

Features/software BayeSuites BayesiaLab BayesFusion Hugin shinyBN bnlearn pgmpy

S
ca

la
b

il
it

y

Learn massive networks X

Visualize massive networks X

Parallelized learning (single computer) X X X X

Parallelized learning (cluster computing) X X

E
x
te

n
si

b
il

it
y

Open source X X X X

Discrete variables learning X X X X X X X

Discrete variables inference X X X X X X

Discrete variables visualization X X X X

Continuous variables learning X X X X

Continuous variables inference X X X X

Continuous variables visualization X X X

Probabilistic clustering X X

Dynamic BNs X X X X

In
te

ro
p

er
ab

il
it

y

Connection with other languages X X X

Connection with other science fields X

Connection with online data sources X X X

Import/export BNs from/to other software X X X X X

E
as

e
of

u
se

Is a framework X X X X X

Interactive visualization X X X X X

Interpretation of massive networks X

Has web interface X X X X

Web server available online X X

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.1. Scalability

Massive BNs present mainly three scalability problems: learning their graph

structure, efficiently visualizing it, and developing a fast inference engine for the105

reasoning.

When the number of variables is extremely small, the graph structure of a BN

can be even modelled with only expert knowledge. However, when the dataset

has numerous random variables, the graph must be learned by computational

methods. Learning the structure of a BN is known to be an NP-hard problem110

[22]. The search space for all the possible DAGs is super-exponential in the

number of nodes, i.e., O(n!2(n
2)) [23]. Different algorithms attempt to solve the

above problem by applying heuristics to this super-exponential space.

The problem becomes comparatively more complex when dealing with a

massive number of variables of the order of thousands of nodes, requiring dis-115

tinct types of algorithms for constraining the computational memory and time.

This problem can be solved in a reasonable time by two methods: constraining

the graph structure and developing new algorithms that completely utilize par-

allelization technologies. The first solution includes algorithms that inherently

constraint the structure (e.g., the Chow–Liu method [24]) and the generating120

poly-tree recovery algorithm [25]; in the latter, the resulting graph can only

be a tree or a polytree. There are other algorithms which by default do not

constraint the structure; however, when the problem has an extremely high di-

mensionality, they include assumptions, like limiting the number of parents, for

each node to finish in a reasonable time. Some examples of this case are the PC125

algorithm [26] and the max–min hill-climbing (MMHC) algorithm [27]. These

kinds of algorithms are included in most BN software tools such as bnlearn and

its related packages (such as shinyBN), pgmpy, Hugin, etc. For a more detailed

view of BN structure learning algorithms, we refer the reader to [28].

However, some problems like learning gene regulatory networks (GRNs) need130

to be modelled without restricting the structure, because all types of relations

between the variables are possible. The algorithms available for these models

are highly limited because most of them cannot be parallelized; therefore, new

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

optimized algorithms are emerging [29, 30, 31]. Another problem is that some

of these state-of-the-art algorithms are not typically found in the existing BN135

software frameworks, because the latter are not frequently updated to include

new algorithms. Indeed, none of the other BN tools in Table 1 includes any of

these new optimized algorithms.

Some tools such as Hugin and the bnlearn related packages support algo-

rithms that can make use of all the CPU cores in parallel but are limited to a140

single CPU. However, none of the existing frameworks in Table 1 have a scal-

able software architecture to parallelize these algorithms on multiple computing

nodes. Of the software packages, only bnlearn can run some algorithms on

multiple CPUs communicating in a group (i.e. cluster computing), but these

algorithms do not belong to this last category of non-restricted structure algo-145

rithms that are highly optimized for speed.

Although there exist software packages that can visualize general-purpose

massive graphs such as sigmajs [32], Graphistry [33], and VivaGraphJS [34]

using the GPU computational power, these are not included in any BN frame-

works (Table 1). Furthermore, just including a graph visualization library with150

GPU rendering is not enough functionality for BNs since viewing the nodes and

edges is not sufficient. We also need to visualize their node parameters and run

BN operations such as making queries and computing the posterior distribu-

tions. Essentially, it is necessary to adapt existing libraries, with GPU support,

to provide a rich set of interactive options to fully understand and exploit the155

BN graph structure and parameters. This is clearly one of the most important

bottlenecks in the current frameworks when trying to deal with massive BNs

since they have not even done the first step of just including a GPU library.

The library would have to subsequently adapt for BNs.

Finally, we require an efficient inference engine, which in the ideal case would160

include exact inference. Some tools such as pgmpy, BayesiaLab, Bayes Net

Toolbox, etc. include exact inference for discrete BNs, but inference in discrete

BNs is NP-hard [35]; therefore, it is not a scalable solution. To reduce this cost,

the network structure can be constrained with unique algorithms. This is usually

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

the preferred option for the tools in Table 1, which sacrifices structure flexibility165

in favour of inference speed. An approximate inference is the alternative when

we do not want to constrain the network structure; however, it is also NP-hard

[36] so it is not scalable either.

In any case, most massive datasets such as fMRI or microarray data are

continuous, so we need a scalable inference for continuous domains. Luckily,170

exact inference is tractable in the continuous space for Gaussian BNs (see Section

3.4.4). However, from all the tools compared above, only Hugin and the Bayes

Net Toolbox (not in Table 1) include exact inference for Gaussian BNs. There

are other tools that offer inference in continuous domains but only include it in

its approximate versions (e.g. BayesFusion and bnlearn).175

2.2. Extensibility

Extensibility refers to the software’s capability to include new functionali-

ties easily and coherently. It is crucial for the software to be written modularly

to introduce new algorithms and functionalities. Three of the major BN soft-

ware frameworks are BayesiaLab, Hugin, and BayesFusion, all of which have180

proprietary licenses, and therefore, the code is not open-source (Table 1). This

presents a significant problem in an advancing research field such as this one,

because the research community cannot code its own extensions and changes.

In an ideal case, the frameworks should be open-source and have simple and

multiple approaches to introduce new extensions coded by the community.185

Even if the commercial frameworks described above aim to be the most

complete solution as possible, new extensions are limited, and this is marked by

the slowness of their major updates. For example, some commercial frameworks

have been developed for several years and still do not have complete support

for continuous variables (e.g., Netica [37] and BayesiaLab).190

In the arena of open source software, we can expect a more promising future.

In the software frameworks, we find shinyBN, which incorporates a set of R tools

in a coherent way, making it a good candidate for extension with new features

by the software community. However, the server infrastructure is not optimal,

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

since the shiny server is not extensible software that could be used in a large195

production environment.

For open source software packages, bnlearn is still the most comprehensive

and widely used package for BNs. Its modular architecture and optimized al-

gorithms have allowed it to be a robust package for more than 12 years in the

software community. However, similar to other outdated packages such as Banjo200

[17] and JavaBayes [16], bnlearn may also be experiencing a slow decay in its

extensibility features due to how much it has grown on its own. Without strong

collaboration with other people, it is hard for new people to implement new fea-

tures in the original C++ code since that code may not be fully documented. We

also note the more recent pgmpy open source package has software extensibility205

that is much more attractive since it is fully coded in Python and also adheres

to a good modular architecture. Indeed, its code repository is very active and

there are usually new updates. We conclude that pgmpy is currently one of the

best examples of software extensibility in the BN software community.

2.3. Interoperability210

All the current frameworks in Table 1 except for shinyBN are proprietary and

are specifically designed for working only with probabilistic graphical models.

This lack of connection with tools from other science fields (Table 1) is a common

shortcoming for both proprietary and open source tools. This means they lack

connections with other statistical tools, machine learning algorithms or any215

other analysis and visualization tools specifically designed to overcome problems

in any science field such as neuroscience, etc.

A positive feature of proprietary frameworks, as opposed to open source

tools, is that they usually have API connections to other programming lan-

guages (such as BayesFusion and Hugin but not BayesiaLab) and provide input220

connections to general purpose online data sources (such as BayesiaLab and

BayesFusion but not Hugin). However, owing to their proprietary nature, the

community developers cannot implement some functionalities, such as having

direct API connections with specific data sources as neuroscientific databases.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

The exception to proprietary frameworks is shinyBN. Its recent appearance,225

however, makes it not the ideal candidate to exemplify the desired interoper-

ability requirements since it does not have any kind of connection with other

programming languages, algorithms, data sources or other BN tools (Table 1).

Finally, importing and exporting BNs from/to other tools is a fundamental

feature that currently is available in almost all BN tools, but still, some tools230

lack it (such as Hugin and shinyBN) (Table 1).

Nevertheless, the BN community has some open-source software packages

that are well maintained and have a good extensibility; however, they are de-

signed for highly specific tasks, e.g,. learning algorithms such as sparsebn [38]

and hc-ET [39] and inference packages such as gRain [40]. Other packages, such235

as bnlearn [41] and pgmpy [15], comprise a set of interconnected tools, but they

lack some basic modules, e.g., a graphical interface or connection with other

packages, which would make them considered to be frameworks. Thus, the cen-

tral problem of these types of packages is the lack of completeness, unlike the

proprietary options.240

Furthermore, some software packages are developed for the specific purpose

of a scientific research. While this is appropriate for advancing the research

field, frequently these software tools are overlooked and not maintained once

the corresponding paper is published. The first consequence is a waste of time

associated with coding again previously written algorithms by other researchers245

when the existing code becomes obsolete and not extensible. Another conse-

quence is the difficulty of integration to other software, because they may be

written in a different programming language. Therefore, the library can have

data format problems, software incompatibilities between versions, etc.

2.4. Ease of use and interpretability250

Software packages regularly do not include a graphical interface; therefore,

the learning curve is extremely steep for users not experts in programming,

which commonly is the case with some neuroscientists. Graph visualization

cannot even be considered for software packages because they mostly rely on

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

third-party software to display a static view of the BN structure and cannot255

display node parameters in the graph (e.g. bnlearn, pgmpy).

In comparison, frameworks are much more user friendly because they pro-

vide a sophisticated interactive graphical interface to work with (see Table 1).

However, as a direct implication of their low scalability, they are not capable

of visualizing massive networks. Furthermore, even if they had the proper tools260

to display massive networks, none of them currently has the proper tools to

interpret them (i.e. multiple specific layouts, rich filtering tools, etc). Indeed,

some of them (e.g., shynyBN), do not even have a complete set of tools for inter-

preting small size BNs, since they lack some functionalities such as displaying

BN parameters attached to each node of the graph.265

Ease of use also depends on the accessibility of the tool. Web interfaces are

currently robust enough to be considered as the preferred option here, since

they are accessible from everywhere and are platform independent. We can see,

therefore, an increasing number of tools developing web interfaces as the entry

point to their software (e.g., BayesiaLab, BayesFusion and shinyBN). However,270

not all these tools deploy their software in their own web server to be accessible

from everywhere, which forces the users to locally deploy the server in their

own computers if they want to make use of their web interfaces. Indeed, only

shinyBN provides its tool in an already deployed web server accessible from the

Internet (see Table 1).275

Moreover, in the case of proprietary frameworks, specific solutions for dis-

tinct use cases (e.g., automatically running a set of algorithms when new data

emerges from a database) cannot be developed by different research teams, be-

cause of their extensibility problem. This problem is another bottleneck when

customized solutions need to have an easy and rapid workflow, ranging from280

acquiring the data to analysing them.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

3. BayeSuites

In this section, we present BayeSuites, whose software architecture has been

specifically designed to overcome all the problems highlighted in the previous

section (see also Table 1). Summarizing, we find ourselves stuck in incomplete285

open source solutions versus more complete solutions in the proprietary field.

The objective of the framework presented in this paper is to combine the best

properties of both worlds and present one complete open-source solution, with

the possibility of further improvement and becoming increasingly complete.

The name of BayeSuites originates from the fact that it is embedded in the290

NeuroSuites platform, which we developed for integrating different neuroscience

tools. Its inclusion in the NeuroSuites platform, instead of deploying it on

an isolated platform, is because this tool is specifically designed to overcome

large scale problems, which are common in some neuroscience topics, as in the

genomics examples presented here.295

BayeSuites has already been successfully used with genomic data in [31], and

as genomic examples, here we present real-world use cases to illustrate how we

addressed the four interpretability requirements explained above.

3.1. Scalability

NeuroSuites is developed as a scalable web application to run the heavy300

operations in the backend while providing a lightweight rapid experience in the

frontend. Its framework follows a modular architecture (Figure 2), where each

fundamental component is isolated as a Docker [42] microservice (Figure 2.1);

therefore, the system can be easily scalable horizontally and work as a whole.

Moreover, multiple monitoring tools have been included since the architecture305

became large and complex, and a set of tools is provided to monitor the state

of the hardware, logs, task queues, etc.

The scalable architecture is designed to be efficient and solve the compu-

tational problems of visualizing and managing large learning algorithms and

graph operations. The nginx web server [43] provides the entry point for the310

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

web requests (Figure 2.2) and also acts as the load balancer in case the server

has multiple instances running the web application.

The frontend code (Figure 2.3) is based on vanilla JavaScript (JS) and

JQuery, to provide a simple but efficient architecture, and the style is in HTML5,

CSS3, and Bootstrap3. To provide a scalable visualization of the BN graphs,315

we have made various extensions to the sigmajs library [32], which range from

visualizing the node parameters to numerous specific BN operations, fully ex-

plained in 3.4 section. Sigmajs uses a WebGL engine, which utilizes a GPU

card to efficiently visualize massive graphs.

To transmit the requests and responses from the frontend to the backend, we320

employ the uWSGI software [44], which acts as a web server gateway interface to

communicate with the Python backend (Figure 2.4). The backend core (Figure

2.5) is written in the Django framework [45], to allow us to use optimized Python

libraries for managing the graph and also other scientific libraries (e.g., Numpy

[46], Scipy [47], or Scikit-learn [48]) is the main library used in the backend325

to store the graphs and run the graph manipulation tasks. Lightweight graph

operations, such as colouring groups of the nodes, are completely conducted in

the frontend with the sigmajs library. The heavyweight operations are sent to

the backend where they are processed with NetworkX, and the result is sent

back to sigmajs to update the graph (Figure 2.6).330

Standard HTTP requests and responses have time and computational limi-

tations, which make them unfeasible to run long-duration tasks, e.g., some BN

structure learning algorithms. To overcome these limitations, we have included

a queue-workers system using RabbitMQ [49] and Celery [50] (Figure 2.7). The

system arranges all the long time-consuming requests and queues them to be335

executed in the most efficient order. The system administrator can opt to scale

the necessary containers when the workload is not sufficient for the number of

concurrent users. For instance, when the workload is highly intense in the heavy

operations, the system administrators will increase the number of workers and

the queue system will automatically distribute the workload.340

For high memory efficiency, the uploaded datasets are internally stored on

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: Software architecture of BayeSuites.

our server using the Apache Parquet [51] format . To save the internal state of an

application, the data session of the user is stored in a PostgreSQL database [52]

connected to the Django framework to process all the operations in transparently

(Figure 2.8).345

The included BN structure learning algorithms are categorized into the fol-

lowing six groups: (a) Statistical based (from Scikit-learn [48], only for con-

tinuous variables): Pearson correlation, mutual information, linear regression,

graphical lasso, and GENIE3 [53]; (b) Constraint based: PC, grow shrink, iamb,

fast.iamb, and inter.iamb; (c) Score and search: hill climbing, hill climbing with350

tabu search, Chow-Liu tree, Hiton parents and children, sparsebn [38], and

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

FGES-Merge [31]; (d) Hybrid: MMHC and MMPC; (e) Tree structure: naive

Bayes, tree augmented naive Bayes; (f) Multi-dimensional Bayesian network

classifier. All the algorithms where we have not specified a reference here, were

implemented in bnlearn.355

Only some structure learning algorithms are suitable for large-scale networks,

such as the Chow–Liu algorithm, GENIE3, sparsebn, MMHC, and FGES-Merge.

However, for massive networks only the FGES-Merge can learn a network in a

reasonable time without constraining the structure, because it is coded to run in

parallel in multiple computing instances. BayeSuites includes MPI [54], which360

allows this type of parallelism using the mpi4py Python package [55]. However,

owing to the computational limitations of our production server, we cannot

provide more than one computing node. Nevertheless, developers who install

their own NeuroSuites instance can make use of this parallelization capability

by deploying multiple computing nodes to run their desired Docker containers.365

BN parameter learning and inference engine (Figure 2.6) have also been

designed to be scalable for massive BNs and are explained in detail in Sections

3.4 and 3.4.4, respectively.

Performance analysis

For this performance analysis, it is important to note that BayeSuite’s goal370

is to be a scalable framework for massive BNs. This means our target is not

to implement several learning or inference algorithms to surpass the state-of-

the-art algorithms but to have a solid basis of scalable methods to be able, for

the first time ever, to manage massive BNs in a user friendly interactive web

environment.375

3.1.1. Structure learning performance analysis

Structure learning is usually the most computationally costly process when

learning BNs. Comparison with other BN tools in terms of speed is not always

a meaningful measure since most BN tools use the same algorithms under the

hood, just with different implementations. Indeed, some frameworks such as380

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: Performance time comparisons of the main BN structure algorithms. All methods

were run in BayeSuites. The network learned is the Network 1 (1000 nodes) from the DREAM5

challenge dataset [57]. FGES-Merge is the method specifically designed and implemented by

us for massive BNs. GENIE3 is also a method designed for large-scale networks whose original

implementation was included in BayeSuites. For the other methods, their original implemen-

tations were coded in bnlearn and so were included in BayeSuites. The last category named

”Other BNs”, refers to all the remaining BN methods (i.e., PC algorithm, grow shrink,hill

climbing, IAMB-related algorithms, MMHC), which ran for more than 26 hours and did not

finish.

shinyBN or even BayeSuites reuse the same implementations of bnlearn for

some of their algorithms. For this reason, we compare our specific algorithm for

massive BNs, which was implemented by us, named FGES-Merge [31], with the

most common structure learning algorithms implemented in bnlearn. Moreover,

we include the GENIE3 algorithm in the comparisons since it is specifically385

created for large scale problems such as gene regulatory networks (GRNs). The

network learned in this test is the Network 1 (1000 nodes) from the DREAM5

challenge dataset [56]. We ran the test on this medium network to be able to

compare our algorithm with others. Running the same test with a larger network

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

with 20,000 nodes would not be possible since other algorithms would run for390

a very long time without finishing. This test shows not only that FGES-Merge

improves the speed in comparison to other algorithms (except for the Chow-Liu

algorithm, which is expected since it limits the graph structure to be a tree)

but also that algorithms can run for a long time in BayeSuites without any

network/memory problems thanks to its scalable architecture with asynchronous395

tasks (see Figure 2.7). It is important also to acknowledge that FGES-Merge

is implemented with parallelization capabilities and therefore is executed in 3

computer nodes, while the other algorithms do not support this parallelization,

so they are run on one computer node. Every computing node ran on Ubuntu

16.04, Intel i7-7700K CPU 4 cores at 4.2 GHz, and 64GB RAM. In terms of400

structure recovery benchmarks, it was proven that FGES-Merge outperforms

existing BNs methods for the largest GRN of the DREAM5 challenge dataset,

corresponding to the Saccharomyces cerevisiae network (5,667 nodes) (see [31]

for a detailed comparison).

3.1.2. Inference performance analysis405

As reviewed in Section 2.1, inference performance is critical, even for medium

size networks. BayeSuites has implemented exact inference for Gaussian BNs

(see Section 3.4.4), which makes it possible to resolve inference questions in <

5s for small networks (approximately < 300 nodes and edges). The interesting

point here is the scalability nature of this algorithm, which makes it possible410

to run inference for massive networks in less than 30-40 seconds, even in the

network in the example of Section 3.4.3, that has 20,787 nodes and 22,639 edges.

It is also critical to note that the resulting multivariate joint distribution and

the original joint distribution are cached in the backend. This means that this

40-50 s process is done only when evidence or a group of evidence is fixed. Once415

this is done, any query operation with these parameters are nearly instantaneous

(< 2 s).

Again, here, it is not possible to make meaningful comparisons with other

BN frameworks because they do not include exact inference for Gaussian BNs,

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

except in the case of Hugin. However, Hugin does not support deploying mas-420

sive networks, so it is complicated to run these tests, although we assume that

performance should be similar to ours if massive networks were supported. To

just get a grasp of the times for running inference for other algorithms applica-

ble to Gaussian BNs, we can see in [57] how typical sampling algorithms such

as Gibbs sampling takes more than 8 minutes to run inference in the ANDES425

network (223 nodes and 338 edges). However, also in [57] we can see how new

algorithms are clearly outperforming these older sampling algorithms, such as

new importance sampling algorithms that can run inference in 8 s for the same

ANDES networks. All these sampling experiments were run in SMILE (the

computational engine of BayesFusion). Another promising research line is vari-430

ational inference, which shows a good performance time of around 9 s for a

randomly created network of 500 nodes and 1000 edges [58]. In summary, all

these advances perform well for medium size networks, even for other param-

eters different than Gaussian distributions, but for now they cannot reach the

performance of exact Gaussian BNs in terms of accuracy and speed.435

3.1.3. Visualization performance analysis

Performance times to load small networks is similar to other BN frameworks

(i.e. < 2 s for networks of approximately < 500 nodes. For massive BNs this

time is increased (about 10-15s for networks of approximately 20,000 nodes and

20,000 edges). However, performance comparisons with other BN frameworks440

for massive BNs is not possible since they do not even support the visualiza-

tion of these networks. Hence, when trying to load massive networks, any kind

of computational problem can arise, but mainly graphic problems strike since

these frameworks do not use GPUs. Moreover, even if they supported massive

networks visualization, they are not prepared to properly manage them with445

multiple layouts and filtering tools. These BayeSuites functionalities are dis-

cussed in detail in Section 3.4.1. To advance, running one of the proper layout

algorithms for massive BNs takes less than a minute (or even less since some are

iterative algorithms that can be stopped at any moment) to provide a clear and

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

coherent graph visualization. They run without needing computational power450

on the user’s computer since most of these layout algorithms are executed in

the backend.

Comparison of two BNs superposed in the same window is another unique

functionality of BayeSuites (Section 3.4.3), which is highly optimized since actu-

ally only one graph is maintained in memory, but edges are specific to either one455

or both BNs. The performance speed, therefore, is instantaneous when chang-

ing between the two BNs once they have been loaded. But again, performance

speed comparisons with other BN frameworks is not possible since they do not

provide this kind of BN comparison.

3.1.4. Server performance analysis460

Finally, server performance is also an important metric in the case of web

architectures. As a performance example, we can see an uptime of 99.8 % for

the last month thanks to the extensive use of monitoring tools for the server

deployment. Downtimes were only caused by necessary updates, which are fast

and nearly automated. Moreover, periodic backups ran during non-excessive465

use hours such as nighttimes to improve the performance of the server during

working hours.

3.2. Extensibility

NeuroSuites follows an extensible architecture where each module has inter-

nal submodules, allowing the modules to extend in any manner.470

This extensibility enables highly easy integration of new learning algorithms

or new graph functionalities for BNs and other modules. For example, to include

a new structure learning algorithm, the only requirements are taking the dataset

as a Pandas data frame [59] and outputting a NetworkX graph object. The

changes in the frontend would be minimal, only adding a new button to run475

the new learning algorithm. The entire workflow is automated, and the learning

algorithm would be directly queued to the system when a request is sent.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

As the backend core is written in Python, the easiest method to extend it is

by coding a Python extension. Because we aimed to support maximal scientific

communities, we also included bindings to the R programming language for the480

BN learning algorithms and other statistical packages. The binding was easily

achieved via the wrappers provided using the Rpy2 package [60] (Figure 2.9).

To demonstrate the extensibility of the models, we also included support for

BNs-based clustering models. Thus, in the backend side, a subclass of the BN

model was created with the necessary extensions, and for the frontend side, the485

same Javascript core for BNs was recycled and the necessary extensions were

included (see Section 3.4.4).

3.3. Interoperability

To provide an interoperable ecosystem, we designed a well-defined workflow

consisting of first uploading the raw dataset and then selecting the desired tools490

to analyse it. Therefore, different sections can be found on NeuroSuites, where

each refers to a tool or a specific set of processing tools. The focus of this study

is on the BNs section; however, users can also use other tools already integrated

in NeuroSuites. Some of these tools, such as the statistical analysis Section

(Figure 2.10), can provide significant preliminary analysis for improved better495

understanding of the data to then create better BN models.

As a use case regarding interoperability, there exists an API client that

can connect a data source; it is the latest live version of the NeuroMorpho.org

database. This type of direct connection to a data source is convenient when the

data from a specific neuroscience field are required to be connected. This allows500

the users to easily access the data without the need to first download the data

on their computer and then upload them to the NeuroSuites server. Thanks

to the extensibility properties of NeuroSuites, it would be straightforward to

implement numerous data source connectors to any database, e.g., the Allen

Cell Types Database [61] and the DisGeNET database for genes-human disease505

associations [62].

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Upload data set section

(b) Select variables to create the BN

Figure 4: Steps to upload a data set and select its desired variables.

3.4. Ease of use and interpretability

Here, we review the capabilities of BayeSuites by presenting a complete

real use case: learning and interpreting the GRN of the full human genome

using brain data extracted from microarrays, provided by the Allen Brain Atlas510

[63]. The dataset consists of 20,708 protein-coding genes as predictor features

with 3500 samples; therefore, each element in the dataset corresponds to a

measurement of a gene expression level.

In step 1, the desired dataset (Figure 4a) is uploaded. In our deployed

production server, we accept CSV and Apache Parquet gzip formats. Note that515

the BNs can also be created by different software, e.g., BayesiaLab or bnlearn,

and then be imported in a BIF/CSV/Apache Parquet format to BayeSuites to

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

visualize and interpret the model. However, for this example, we present the

entire workflow to create and interpret a new model.

In step 2, we move to the BNs section under ”Machine Learning” and select520

the desired variables to learn the model (Figure 4b). For this example, we select

some continuous variables that correspond to the expression level of some genes.

It is also possible to discretize the selected variables with different methods or

select the class variables for a supervised classification model; however, this is

not the case in our example.525

Following the selection of the desired variables, the BN structure graph is

learned by selecting a structure learning algorithm, as described in the field

below (Figure 5a). For this example, we use FGES-Merge because it is specif-

ically designed for genomic data, being memory and computationally efficient

and having the ability to readjust the final structure to follow the topology of530

the GRN [64].

Once the algorithm is completed, the obtained graph is displayed in the

visualizer, and we can immediately manipulate it. Nevertheless, to provide a

complete example, we also present how to learn the model parameters for each

node. For this, we select the maximum likelihood estimation (MLE) of a Gaus-535

sian distribution (Figure 5b), which provide the learned Gaussian distribution

for each node and the weights corresponding to the relationships with its par-

ents. Mathematically, the CPD of a node, Y , given its parents Pa(Y) is

p (Y |Pa(Y)) = N
(
β0 + βTPa(Y);σ2

Y

)
. (2)

To estimate the parameters, β0, β, and σ2
Y , for each node, the Gaussian

MLE learns a multilinear regression between Y and Pa(Y). The regression540

coefficients provide estimations of β0 and β, and the mean of the regression

residuals sum of the squares yields the σ2
Y estimate.

Having learned the node parameters, we can utilize the inference engine by

asking some queries to the BN and obtain the predicted results when some node

values are fixed, as explained in detail in Section 3.4.4.545

There are several visualization and interpretability options, which are catego-

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) BN structure learning algorithm selection

(b) BN parameter learning algorithm selection

Figure 5: Steps to learn a BN.

rized into four groups: layouts, general viewing options, highlighting nodes/edges,

and parameter visualization and inference.

3.4.1. Layouts

A predefined layout is displayed in the visualizer when the BN is loaded for550

the first time, but depending on the problem, a different one might be needed to

be set. Choosing the appropriate layout should be the first step to understand

the graph structure of a BN. The layouts (Figure 6a, right corner) can be tree-

based layouts (Dot [65], Sugiyama [66]), force-directed layouts (Fruchterman-

Reingold [67, 68], ForceAtlas2 [69, 70]), circular, grid, and image layouts. The555

last one is a novel method developed by us to create a layout by detecting the

edges from any image. It is particularly useful for creating user-defined layouts

or complex layouts that cannot be implemented by other algorithms. Layouts

are computed in the backend side for efficiency, although we also provide a

frontend (client version) implementation for the ForceAtlas2 algorithm [71].560

For small or medium BNs, tree layouts are recommended, whereas force-

directed layouts are recommended for large BNs, because with this type of

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Lower bar options

(b) Upper bar options

(c) Lower bar options when groups are created and inference is conducted

Figure 6: BN visualization options.

layout cluster formation occurs. In this example, we select the ForceAtlas2

algorithm because it can clearly yield the topology properties of GRNs (locally

dense but globally sparse) (Figure 7a). Note that the extensibility nature of a565

project affect the convenience for the developers to add new layout algorithms

or modify the existing ones to meet their own needs.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.4.2. General viewing options

For general viewing options, we can easily navigate through the graph, allow-

ing to zoom any region of interest. The lower bar of the visualizer has buttons570

to show/hide the labels for each node, arrows, drag and drop nodes, full screen,

and reloading the graph (Figure 6a, left side).

Multiple relevant scale options are also implemented (Figure 6a, right side),

such as node sizes dependent on the number of nodes in their Markov blanket

or edge thickness dependent on their weights, irrespective of their reference.575

For instance, the edge weights can correspond to a score that refers to their

importance in the network, such as the BIC score [72]. It is a penalized likelihood

of the dataset calculated with the BIC difference of adding that edge versus not

adding it. A filtering option to remove the edges below or above a certain weight

threshold is also included (Figure 6b, bottom left).580

3.4.3. Highlighting nodes/edges

Subsequent to selecting the appropriate layout and configuring the general

viewing options, the next step is highlighting the relevant nodes or edges. We

provide tools for highlighting the nodes isolated in the Markov blanket of a given

node or its parents or children (Figure 6a, centre).585

When dealing with massive networks, one of the most important features is

the creation of groups. The groups can be created by three ways: manually,

automatically, or uploading a list of already defined groups of nodes. A node or a

set of nodes manually can be selected by searching for them by their name in the

search fields with auto-completion (Figure 6b, middle left, ”Find one node”).590

Once we have selected the desired nodes to highlight, we can opt to create

a group with them, and our node selection is saved to be used subsequently

(Figure 6b, upper middle, ”Select multiple nodes”). A name and colour can

also be assigned to each created custom group.

To generate groups automatically, we can run some algorithms designed for595

community detection, such as the Louvain algorithm [73], which optimizes a

modularity score for each community. In this case, the modularity evaluates

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Nodes coloured by the Louvain algorithm for

communities detection

(b) Metadata groups information uploaded

Figure 7: BN structure of the full human brain genome, where independent nodes are not

shown. (a) ForceAtlas2 layout is applied. (b) Same network as in (a) but now only a subset of

the nodes associated with the schizophrenia disease and the edges between them are selected.

the density of edges inside a community compared to that of the edges outside

it. To select groups already created externally, we can upload the metadata

JSON file, so that each node has some associated tags.600

Finally, we can select a specific group (Figure 6c, upper left), and each node

is displayed according to the colour of its category (Figure 7a). Moreover, we

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

can select a specific category within a group (Figure 6c, centre), and only the

nodes with that category are shown (Figure 7b).

When selecting a group of nodes, the arcs between these nodes are also605

selected to provide a clear view of the group. A user can also opt to highlight

the neighbours of the nodes for that group, even if they do not belong to that

group (Figure 6a, centre). Finally, to realize a clear understanding of where

a group is within the global network, a user can enable an almost transparent

view of all the other nodes that are not in the selected group.610

Additionally, individual important nodes can also be selected by fixing a

threshold for their minimum number of neighbours. An automatic approach

has also been included to highlight the important nodes using the betweenness

centrality algorithm (Figure 10a) implementation in NetworkX. It can detect

the importance of a node is according to the number of shortest paths (for615

every pair of nodes) that pass through the node.

Comparisons of two different BNs are also possible by displaying both struc-

tures in the same graph and colouring the edges depending on which network

they belong to. To achieve this, we must first upload a BN or learn it from a

dataset, and then repeat this with the second BN. However, a visual comparison620

is not sufficient when the networks are large. Hence, we include a summary ta-

ble displaying some structural measures, such as the accuracy, precision, recall,

F-Score, and Matthews correlation coefficient, which use the confusion matrix

of the edge differences of the second BN with respect to the first BN.

3.4.4. Parameter visualization and inference625

The next step is to visualize the node parameters and make some queries to

the BN, to demonstrate how the inference engine works. BayeSuites supports

visualization for both discrete and continuous nodes. In the case of discrete

nodes, the marginal CPD table is provided, whereas in the continuous case, an

interactive plot of its marginal Gaussian PDF is displayed (Figure 8a).630

Because our example has only continuous Gaussian nodes, we describe the

continuous exact inference engine. This involves converting the network pa-

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

rameters into a multivariate Gaussian distribution, N (µ; Σ); therefore, the

marginalization operation for a query variable, p(Q = q), is trivial, because

we only need to extract its mean and variance from the multivariate Gaussian635

distribution. For the conditioning probability density of a query variable given a

set of evidence variables, p(Q = q|E), we also utilize the multivariate Gaussian

distribution, following the equations described in [3].

Performing the inference operations in this manner allows a highly rapid

inference engine because the most time consuming operation is conditioning640

over a large set of evidence variables in E, which is O(l3), being l is the number

of evidence variables E to condition on. This complexity is directly a result of

the formulas for conditioning, as it is needed to invert a matrix of size l × l.

From the user perspective, this entire process is transparent, which is a key

factor for the ease of use and interpretability of BNs. The inference process is as645

follows: to set the evidence nodes, E, the user either clicks on the desired node

and fixes the exact value (Figure 8a) or selects a group of nodes. The last option

only allows fixing a shared value of the evidence for the whole group, because

the standard deviation of each member of the group varies from its mean value.

Setting different values at each node would be inefficient because the group can650

be large and the nodes can have different scales.

To view how the parameters of the query nodes, p(Q = q|E), change, the

user clicks on a specific node and both the original and new distributions are

shown in the same plot, allowing a better comparison of how the parameters

changed (Figure 8b). Note that when no evidences are selected, only the orig-655

inal marginal distribution, p(Q = q), is displayed on clicking or searching a

desired node in the search bar. As both the original and updated distributions

are cached in the backend, the estimated time for presenting the marginal dis-

tribution of a specific node is highly optimized having a constant complexity,

which in real time is equivalent to only a couple of seconds.660

To provide useful insights about the inference effects, we display multiple

sorted lists of the query nodes, demonstrating how much their distribution

changes according to the KL divergence value, mean variation, and standard

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Selection of one random node associated with schizophrenia disease, following

inclusion of the metadata information about the gene-disease association

(b) Evidence node set (KIF17) (top) and one of its children (bottom), correspond-

ing to gene KCNIP3 associated with malignant neoplasm of a breast

Figure 8: Inference workflow in BNs. The network corresponds to the full human brain

genome from the Allen Institute for Brain Science. (a) In this case, we select the node on

top, corresponding to gene KIF17, fix its value to make it an evidence node, E = e, and only

show its children to have a clear view of their relations. (b) The plot includes its original

marginal Gaussian PDF in blue, p(Q), as it is before setting any evidence, and the new one in

black, p(Q|E), which corresponds to its PDF after setting the evidence of gene KIF17. The

exact parameters are also displayed. Therefore, the inference process demonstrates how fixing

a low value for the gene associated with schizophrenia (KIF17) also results in a value near

zero for the gene associated to the malignant breast neoplasm (KCNIP3), which indicates a

relationship between these two genes.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 9: Inference effect in the query nodes. We can now infer the extent the evidence

of a node (or group of nodes) affects the PDF of other nodes or group of nodes, p(Q|E),

by examining the Kullback–Leibler (KL) divergence between the original and the posterior

distributions or their mean or standard deviation variation. The left column in each drop-

down box corresponds to the genes id, and the right column presents the score values. Note

that in this example, the standard deviation values seem to be zero, because they are rounded

to two decimals. Further, the effect of fixing the evidence of only one node in a network of

more than 20,000 nodes can be minimal for the standard deviation of the other nodes.

deviation variation (Figure 9). When the case groups are created, a list of the

multivariate KL divergence values for each group is also be displayed.665

In addition, to support another functionality for understanding the graph,

we implemented the D-separation criterion following the reachable algorithm

described in [3], which can automatically check for conditional independences.

Two random variables X and Y are conditionally independent given a random

variable Z, if for any assignment of values X = x, Y = y, Z = z, knowing670

the value of X does not affect the probability of Y when the value of Z is

already known, i.e., P (Y |X,Z) = P (Y |Z). Thus, the D-separation algorithm

can be particularly useful when we are running inference and want to determine

whether some nodes are conditionally independent when some evidence nodes

are given.675

We have implemented further extensions to support BN-based probabilistic

clustering models. The utilized dataset for this use case is also from the Allen

Brain Atlas, specifically the one in the Cell Types Database: RNA-Seq Data,

which contains single-cell gene expression levels across the human cortex. There-

fore, the genes correspond to a set of continuous attributes X = {X1, ..., Xn}680

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Network edges for four clusters, each one with a different colour

(b) Selection of a group with the 20 most relevant nodes according to the metadata

uploaded file

Figure 10: BN-based probabilistic clustering model of 2000 nodes of the human brain genome.

(a) The upper part of the image also presents the cluster weights. Node sizes are adjusted to

highlight the most important nodes with the betweenness centrality algorithm. Nodes colours

are according to external metadata to organize them in three groups given their importance.

(b) The plot displays the parameters of gene X6857. Each of the four clusters (different

colours), presents a Gaussian distribution. In this example, we can easily notice that the most

probable cluster assignation for this gene is cluster 1 (in grey), p(X6857|C = c1).

for the cell measurements (i.e., the dataset instances).

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

In model-based clustering [74], it is assumed that the data follow a joint

probability distribution, P (X), which can be expressed as a finite mixture of K

components. This implies that each mixture component, P (X|C = c), refers to

the CPD of X variables given a cluster, c, where the hidden cluster, c, has its685

own probability distribution, P (C = c). Thus,

P (X) =
K∑
c=1

P (C = c)P (X|C = c). (3)

Learning the parameters for this mixture model requires a more advanced

technique than MLE, because the cluster variable is hidden. Therefore, we

learn the parameters (mixture weights P (C = c) and the CPD parameters, i.e.,

P (X|C = c)) with the expectation maximization algorithm [75] because it can690

handle incomplete data.

In genomics it is typically assumed that P (X|C = c) follows a multivariate

Gaussian distribution, N (µ,Σ). Hence, the parameters are the mixture weight

vector, π, and the multivariate Gaussian distribution parameters, i.e., the mean

vector µ, and the covariance matrix, Σ.695

Numerous genes require a high-dimensional model, which can lead to major

computational problems, in terms of both memory and time. For instance, we

would have to work with Σ, which is an n × n matrix, where n is the number

of X variables (genes in this case). To reduce the computational complexity

and improve the interpretability, we can factorize this expression to encode the700

conditional independences between the X variables in a cluster. This allows dif-

ferent graphical models for different clusters, because the relationships between

the X variables are conditioned on each cluster as

P (X|C = c) =
n∏

i=1

P (Xi|Pa(Xi), C = c) (4)

To represent this, we display each graph corresponding to P (X|C = c) in

the same BN, colouring the edges with different colours for each cluster (Figure705

10a). Selection tools are also implemented to show/hide the different cluster

edges and filter them (Figure 10b).

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Finally, we express the joint probability distribution of X (Equation 3) fac-

torized according to Equation 4. We call this BN-based probabilistic clustering

[76],710

P (X) =
K∑
c=1

P (C = c)
n∏

i=1

P (Xi|Pa(Xi), C = c) (5)

Therefore, inference can be performed on each graph corresponding to a

cluster without affecting the other cluster CPDs. For instance, we can fix the

evidence for the distribution of a gene, as Xi = e, given a cluster C = c, where

e is a scalar value, and then query another gene to determine how its CPD for

that cluster has changed, P (Xj |C = c,Xi = e).715

The obtained BN can be exported as an SVG image or as a CSV file contain-

ing the graph information about the arcs between the nodes. This exported file

can be loaded subsequently in another session to continue working. Finally, it is

important to acknowledge that the user data in a session remains in our servers

for 48 h since the last modification of the data. This limit is imposed by our720

hardware limitations. To overcome this limitation, a user can always create new

sessions, and the data will be stored again for 48 h. Users are also encouraged

to deploy their own server instance to modify the framework according to their

needs.

4. Discussion725

Here, we review future directions for BayeSuites by first introducing new

use cases for which we believe this tool could be of great interest, and then,

we also indicate potential extensions and new functionalities that would make

BayeSuites even more complete.

We believe that the ease of use will be helpful in initiating collaborations730

between experts of multiple disciplines. This will be extremely important for

the adoption of these models by experts of other disciplines who are not used

to programming or software engineering, such as some neuroscientists or physi-

cians.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

A useful use case could be the use of a private server instance in closed local735

networks environments, such as hospitals, clinical laboratories, or companies.

A workflow could be easily designed to have a clear pipeline to process the

data with machine learning techniques. New data sources connections could

be implemented to automatically plug into the data acquisition machines. In

addition, some type of specific pre-processing for the data could be implemented740

in NeuroSuites (e.g., for genomic data it could be the removal of irrelevant

genes and the inclusion of domain knowledge about the most important genes).

Further, the experts could analyse the data with the BayeSuites framework. The

web characteristics of the frameworks would make the tool available in a web

browser for each employee in the local network without the need of installing745

the software on their computer.

Finally, we also believe this simplicity could be a great aid for educational

purposes when teaching BNs allowing the theorical properties to be shown in a

dynamic environment.

The framework aims to be a complete product; however, this is an extremely750

large research field, and at the time of writing this paper it does not include all

the existing state-of-the-art functionalities. Its extensibility properties can make

it possible to include numerous extensions and implement new functionalities.

A useful implementation to be included would be some inference algorithms

for discrete BNs. We have provided the support to learn and visualize discrete755

parameters in BNs. However, we have not included yet any inference algorithm

for them owing to the development time constraints and the difficulty to visualize

the changes in the parameters when there are many parameters per node and

numerous nodes. Moreover, massive datasets in various neuroscience fields, such

as genomics and electrophysiology, comprise only continuous features.760

Another interesting extension would be the inclusion of dynamic BNs [77].

The steps to implement this would be similar to the ones described in the

last section to include BN-based clustering models. However, there would be

an increased complexity to visualize the network for each timeframe and for

performing new types of inferences (e.g., filtering, smoothing, etc.).765

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Finally, we want to highlight that NeuroSuites also offers different tools

for other neuroscience domains, such as morphological reconstructions and mi-

croscopy data visualization. However, although this framework is designed fo-

cusing on the neuroscience field, many other tools can also be used in other

research fields. Developers can modify the platform to target a different re-770

search field. However, it is also important to note that no modifications are

needed if the user wants to upload his own dataset and learn a probabilistic

graphical model and interpret it, despite the neuroscience background theme of

the website. For instance, the use case that we followed here needs a specific

BN structure learning algorithm designed for genomics (FGES-Merge) along775

with all the visualization tools for understanding its massive network. However,

for other domains, where datasets are relatively smaller, other algorithms could

also be applied.

5. Conclusion

In this paper, we have presented BayeSuites, which aims not only to get the780

best from the proprietary and open source worlds but also to extend it. The

result is an open source web framework for learning, visualizing, and interpreting

BNs, with the peculiarity of being the first web framework that is scalable

and able to manage massive BNs of tens of thousands of nodes and edges.

This ability is required to overcome the main obstacles for managing massive785

BNs, and accurate and fast methods for structure learning, visualization and

inference were developed. This development was done by providing a friendly

and interactive user experience.

To test our tool, we extensively compared BayeSuites with the major BN

tools currently available; we divided the necessary BNs functionalities into four790

categories: scalability, extensibility, interoperability and ease of use. We con-

clude that, presently, BayeSuites is the only tool that fully incorporates all these

functionalities for massive BNs.

Finally, we showcased the utility of BayeSuites by providing two real use

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

cases of the entire process of learning, visualizing and interpreting BNs from795

genomic data obtained from the Allen Institute for Brain Science.

6. Data availability

Our production server on https://neurosuites.com/morpho/ml bayesian networks

can be freely accessed, where all the futures updates will be live. We also pro-

vide access to the NeuroSuites source code repository in800

https://gitlab.com/mmichiels/neurosuite. The BNs used in the examples for

showcasing BayeSuites can be found in https://gitlab.com/mmichiels/fges parallel

production/tree/master/BNs results paper

7. Author contributions

Mario Michiels designed the software architecture, developed the software805

and wrote the manuscript. Pedro Larrañaga and Concha Bielza conceived the

project, oversaw the development process, contributing with new ideas and cor-

rections, and reviewed the manuscript. All authors gave final approval for pub-

lication and agree to be held accountable for the work performed therein.

8. Competing interests810

We declare we have no competing interests.

9. Funding

This project has received funding from the European Union’s Horizon 2020

Framework Programme for Research and Innovation under Specific Grant Agree-

ment No. 785907 (HBP SGA2) and from the Spanish Ministry of Economy and815

Competitiveness through the TIN2016-79684-P project.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://neurosuites.com/morpho/ml_bayesian_networks
https://gitlab.com/mmichiels/neurosuite
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

10. Acknowledgments

The authors would like to thank Sergio Paniego for his help in the develop-

ment of the BayeSuites visualization tool, Nikolas Bernaola for his assistance in

programming the continuous inference engine for BNs, and Fernando Rodriguez-820

Sanchez for his research in BN-based probabilistic clustering models and his help

in reviewing that section in this paper.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems : Networks

of Plausible Inference, Morgan Kaufmann, 1988. doi:10.1016/825

c2009-0-27609-4.

[2] J. Chen, R. Zhang, X. Dong, L. Lin, Y. Zhu, J. He, D. C. Christiani,

Y. Wei, F. Chen, ShinyBN: an online application for interactive Bayesian

network inference and visualization, BMC Bioinformatics 20 (1) (2019) 1–5.

doi:10.1186/s12859-019-3309-0.830

[3] D. Koller, N. Friedman, Probabilistic Graphical Models - Principles and

Techniques, MIT press, 2009.

[4] C. Bielza, P. Larrañaga, Bayesian networks in neuroscience: A survey, Fron-

tiers in Computational Neuroscience 8 (2014) 131. doi:10.3389/fncom.

2014.00131.835

[5] C. Lacave, M. Luque, F. J. Diez, Explanation of Bayesian networks and

influence diagrams in Elvira, IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 37 (4) (2007) 952–965.

[6] C. Yuan, H. Lim, T. C. Lu, Most relevant explanation in bayesian networks,

Journal of Artificial Intelligence Research 42 (2011) 309–352. doi:10.840

1613/jair.3301.

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

http://dx.doi.org/10.1016/c2009-0-27609-4
http://dx.doi.org/10.1016/c2009-0-27609-4
http://dx.doi.org/10.1016/c2009-0-27609-4
http://dx.doi.org/10.1186/s12859-019-3309-0
http://dx.doi.org/10.3389/fncom.2014.00131
http://dx.doi.org/10.3389/fncom.2014.00131
http://dx.doi.org/10.3389/fncom.2014.00131
http://dx.doi.org/10.1613/jair.3301
http://dx.doi.org/10.1613/jair.3301
http://dx.doi.org/10.1613/jair.3301
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

[7] S. Luengo-Sanchez, P. Larranaga, C. Bielza, A Directional-Linear Bayesian

Network and Its Application for Clustering and Simulation of Neural So-

mas, IEEE Access 7 (2019) 69907–69921. doi:10.1109/ACCESS.2019.

2918494.845

[8] J. Zapata-Rivera, Visualization of Bayesian belief networks, . . . of IEEE

Visualization’99, . . . (1999) 6–9.

URL http://www.researchgate.net/publication/2945574_

Visualization_of_Bayesian_Belief_Networks/file/

79e4150b3cfc3b3cea.pdf850

[9] J. R. Koiter, Visualizing inference in Bayesian networks, Man-machine

interaction group Master of.

URL http://www.kbs.twi.tudelft.nl/Publications/MSc/

2006-JRKoiter-Msc.html

[10] M. Cossalter, O. Mengshoel, T. Selker, Visualizing and understanding855

large-scale Bayesian networks, AAAI Workshop - Technical Report WS-

11-17 (2011) 12–21.

[11] P. K. Sundarararajan, O. J. Mengshoel, T. Selker, Multi-focus and multi-

window techniques for interactive network exploration, Visualization and

Data Analysis 2013 8654 (2013) 86540O. doi:10.1117/12.2005659.860

[12] S. Conrady, L. Jouffe, Introduction to Bayesian Networks & BayesiaLab,

Bayesia SAS, USA.

[13] A. L. Madsen, F. Jensen, U. B. Kjærulff, M. Lang, The Hugin Tool for

probabilistic graphical models, International Journal on Artificial Intelli-

gence Tools 14 (3) (2005) 507–543. doi:10.1142/S0218213005002235.865

[14] M. J. Druzdzel, SMILE: Structural Modeling, Inference, and Learning

Engine and GeNIe: A development environment for graphical decision-

theoretic models, in: AAAI/IAAI, 1999, pp. 902–903.

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

http://dx.doi.org/10.1109/ACCESS.2019.2918494
http://dx.doi.org/10.1109/ACCESS.2019.2918494
http://dx.doi.org/10.1109/ACCESS.2019.2918494
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.researchgate.net/publication/2945574_Visualization_of_Bayesian_Belief_Networks/file/79e4150b3cfc3b3cea.pdf
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://www.kbs.twi.tudelft.nl/Publications/MSc/2006-JRKoiter-Msc.html
http://dx.doi.org/10.1117/12.2005659
http://dx.doi.org/10.1142/S0218213005002235
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

[15] A. Ankan, A. Panda, pgmpy: Probabilistic Graphical Models using Python,

in: Proceedings of the 14th Python in Science Conference, 2015, pp. 6–11.870

doi:10.25080/majora-7b98e3ed-001.

[16] F. G. Cozman, Javabayes-bayesian networks in java.

URL https://www.cs.cmu.edu/\simjavabayes/Home/

[17] A. Hartemink, Others, Banjo: Bayesian network inference with java objects

(2005).875

[18] G. Corani, M. Zaffalon, JNCC2: The Java implementation of naive credal

classifier 2, Journal of Machine Learning Research 9 (Dec) (2008) 2695–

2698.

[19] W. H. Hsu, R. Joehannes, J. A. Thornton, B. B. Perry, L. M. Haverkamp,

N. D. Gettings, H. Guo, Bayesian network tools in Java (BNJ) v2. 0, Kansas880

State University Laboratory for Knowledge Discovery in Databases.

[20] C. M. Kadie, D. Hovel, E. Horvitz, MSBNx: A component-centric toolkit

for modeling and inference with Bayesian networks, Microsoft Research,

Richmond, WA, Technical Report MSR-TR-2001-67 28.

[21] K. Murphy, The bayes net toolbox for matlab, Computing science and885

statistics 33 (2) (2001) 1024–1034.

[22] D. M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks is

NP-hard, Tech. rep., MSR-TR-94-17, Microsoft Research, Advanced Tech-

nology Division, Microsoft Corporation, Redmond, WA (1994).

[23] R. Robinson, Counting labeled acyclic digraphs, in: Academic Press (Ed.),890

New Directions in the Theory of Graphs (Proc. Third Ann Arbor Conf.,

Univ. Michigan, Ann Arbor, Mich., 1971), 1973, pp. 239–273.

[24] C. K. Chow, C. N. Liu, Approximating Discrete Probability Distributions

with Dependence Trees, IEEE Transactions on Information Theory 14 (3)

(1968) 462–467. doi:10.1109/TIT.1968.1054142.895

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

http://dx.doi.org/10.25080/majora-7b98e3ed-001
https://www.cs.cmu.edu/$\sim $javabayes/Home/
https://www.cs.cmu.edu/$\sim $javabayes/Home/
http://dx.doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

[25] G. Rebane, J. Pearl, The Recovery of Causal Poly-trees from Statistical

Data, in: Proceedings of the Third Conference on Uncertainty in Artificial

Intelligence, UAI’87, AUAI Press, Arlington, Virginia, United States, 1987,

pp. 222–228.

[26] P. Spirtes, C. N. Glymour, R. Scheines, D. Heckerman, C. Meek, G. Cooper,900

T. Richardson, Causation, prediction, and search, MIT press, 2000.

[27] I. Tsamardinos, L. E. Brown, C. F. Aliferis, The max-min hill-climbing

Bayesian network structure learning algorithm, Machine Learning 65 (1)

(2006) 31–78. doi:10.1007/s10994-006-6889-7.

[28] T. J. T. Koski, J. Noble, A review of Bayesian networks and structure905

learning, Mathematica Applicanda 40 (1).

[29] A. L. Madsen, F. Jensen, A. Salmerón, H. Langseth, T. D. Nielsen, A

parallel algorithm for Bayesian network structure learning from large data

sets, Knowledge-Based Systems 117 (2017) 46–55.

[30] F. Liu, S.-W. Zhang, W.-F. Guo, Z.-G. Wei, L. Chen, Inference of gene910

regulatory network based on local bayesian networks, PLoS computational

biology 12 (8) (2016) e1005024.

[31] N. Bernaola, M. Michiels, P. Larrañaga, C. Bielza, Learning massive inter-

pretable gene regulatory networks of the human brain by merging Bayesian

Networks, bioRxivdoi:10.1101/2020.02.05.935007.915

URL https://www.biorxiv.org/content/early/2020/02/05/2020.02.

05.935007

[32] A. Jacomy, G. Plique, Sigmajs.

URL http://sigmajs.org/

[33] Graphistry, PyGraphistry: A library to extract, transform, and visually920

explore big graphs.

URL https://github.com/graphistry/pygraphistry

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

http://dx.doi.org/10.1007/s10994-006-6889-7
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
http://dx.doi.org/10.1101/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
https://www.biorxiv.org/content/early/2020/02/05/2020.02.05.935007
http://sigmajs.org/
http://sigmajs.org/
https://github.com/graphistry/pygraphistry
https://github.com/graphistry/pygraphistry
https://github.com/graphistry/pygraphistry
https://github.com/graphistry/pygraphistry
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

[34] A. Kashcha, VivaGraphJS: Graph drawing library for JavaScript.

URL https://github.com/anvaka/VivaGraphJS

[35] G. F. Cooper, The computational complexity of probabilistic inference us-925

ing Bayesian belief networks, Artificial intelligence 42 (2-3) (1990) 393–405.

[36] P. Dagum, M. Luby, Approximating probabilistic inference in Bayesian

belief networks is NP-hard, Artificial intelligence 60 (1) (1993) 141–153.

[37] Netica, Netica application for belief networks and influence diagrams:

user’s guide (1996).930

[38] B. Aragam, J. Gu, Q. Zhou, Learning large-scale Bayesian Networks with

the sparsebn package, Journal of Statistical Software 91 (11) (2019) 1–38.

doi:10.18637/jss.v091.i11.

[39] M. Benjumeda, C. Bielza, P. Larrañaga, Learning tractable Bayesian net-

works in the space of elimination orders, Artificial Intelligence 274 (2019)935

66–90. doi:10.1016/j.artint.2018.11.007.

[40] S. Højsgaard, Graphical independence networks with the gRain package for

R, Journal of Statistical Software 46 (10) (2012) 1–26.

[41] M. Scutari, Learning Bayesian networks with the bnlearn R Package, Jour-

nal of Statistical Software 35 (3) (2010) 1–22. doi:10.18637/jss.v035.940

i03.

[42] D. Merkel, Docker: Lightweight Linux containers for consistent develop-

ment and deployment, Linux Journal 2014 (239) (2014) 2. doi:10.1097/

01.NND.0000320699.47006.a3.

[43] I. Sysoev, nginx (2004).945

URL https://nginx.org/

[44] Unbit, uWSGI.

URL https://uwsgi-docs.readthedocs.io/en/latest/

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://github.com/anvaka/VivaGraphJS
https://github.com/anvaka/VivaGraphJS
http://dx.doi.org/10.18637/jss.v091.i11
http://dx.doi.org/10.1016/j.artint.2018.11.007
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.1097/01.NND.0000320699.47006.a3
http://dx.doi.org/10.1097/01.NND.0000320699.47006.a3
http://dx.doi.org/10.1097/01.NND.0000320699.47006.a3
https://nginx.org/
https://nginx.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

[45] Django Software Foundation, The Web framework for perfectionists with

deadlines — Django (2013).950

URL https://www.djangoproject.com/

[46] S. Van Der Walt, S. C. Colbert, G. Varoquaux, The NumPy array: A

structure for efficient numerical computation, Computing in Science and

Engineering 13 (2) (2011) 22–30. doi:10.1109/MCSE.2011.37.

[47] E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for955

Python.

URL http://www.scipy.org/

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn:960

Machine Learning in Python, Journal of Machine Learning Research 12

(2011) 2825–2830.

[49] RabbitMQ, RabbitMQ.

URL https://www.rabbitmq.com/

[50] Celery, Celery: Distributed task queue.965

URL http://www.celeryproject.org/

[51] D. Vohra, Apache Parquet, in: Practical Hadoop Ecosystem, Springer,

2016, pp. 325–335. doi:10.1007/978-1-4842-2199-0_8.

[52] PostgreSQL, PostgreSQL: The world’s most advanced open source

database.970

URL https://www.postgresql.org/

[53] A. Irrthum, L. Wehenkel, P. Geurts, Others, Inferring regulatory networks

from expression data using tree-based methods, PloS one 5 (9) (2010)

e12776.

43

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://dx.doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://dx.doi.org/10.1007/978-1-4842-2199-0_8
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

[54] D. W. Walker, J. J. Dongarra, MPI: A standard message passing interface,975

Supercomputer 12 (1) (1996) 56–68.

[55] L. Dalcin, mpi4py: Python bindings for MPI.

URL https://github.com/mpi4py/mpi4py

[56] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Ca-

macho, K. R. Allison, M. Kellis, J. J. Collins, A. Aderhold, G. Stolovitzky,980

R. Bonneau, Y. Chen, F. Cordero, M. Crane, F. Dondelinger, M. Drton,

R. Esposito, R. Foygel, A. De La Fuente, J. Gertheiss, P. Geurts, A. Green-

field, M. Grzegorczyk, A. C. Haury, B. Holmes, T. Hothorn, D. Hus-

meier, V. A. Huynh-Thu, A. Irrthum, G. Karlebach, S. Lèbre, V. De Leo,

A. Madar, S. Mani, F. Mordelet, H. Ostrer, Z. Ouyang, R. Pandya, T. Petri,985

A. Pinna, C. S. Poultney, S. Rezny, H. J. Ruskin, Y. Saeys, R. Shamir,

A. Ŝırbu, M. Song, N. Soranzo, A. Statnikov, N. Vega, P. Vera-Licona,

J. P. Vert, A. Visconti, H. Wang, L. Wehenkel, L. Windhager, Y. Zhang,

R. Zimmer, Wisdom of crowds for robust gene network inference, Nature

Methods 9 (8) (2012) 796–804. doi:10.1038/nmeth.2016.990

[57] C. Yuan, M. J. Druzdzel, Importance sampling algorithms for Bayesian

networks: Principles and performance, Mathematical and Computer Mod-

elling 43 (9-10) (2006) 1189–1207. doi:10.1016/j.mcm.2005.05.020.

[58] F. C. Francisco J. Rodŕıguez Lera, Camino Fernández, V. Matellán, Social

Navigation Restrictions for Interactive Robots Using Augmented Reality,995

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) 9422 (2015)

347–356. doi:10.1007/978-3-319-24598-0.

[59] W. McKinney, Data Structures for Statistical Computing in Python, in:

S. van der Walt, J. Millman (Eds.), Proceedings of the 9th Python in1000

Science Conference, 2010, pp. 51–56.

[60] L. Gautier, rpy2.

URL https://rpy2.bitbucket.io/

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://github.com/mpi4py/mpi4py
https://github.com/mpi4py/mpi4py
http://dx.doi.org/10.1038/nmeth.2016
http://dx.doi.org/10.1016/j.mcm.2005.05.020
http://dx.doi.org/10.1007/978-3-319-24598-0
https://rpy2.bitbucket.io/
https://rpy2.bitbucket.io/
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

[61] S. M. Sunkin, L. Ng, C. Lau, T. Dolbeare, T. L. Gilbert, C. L. Thompson,

M. Hawrylycz, C. Dang, Allen Brain Atlas: an integrated spatio-temporal1005

portal for exploring the central nervous system, Nucleic Acids Research

41 (D1) (2012) D996—-D1008. doi:10.1093/nar/gks1042.

[62] J. Piñero, À. Bravo, N. Queralt-Rosinach, A. Gutiérrez-Sacristán, J. Deu-

Pons, E. Centeno, J. Garćıa-Garćıa, F. Sanz, L. I. Furlong, DisGeNET:

A comprehensive platform integrating information on human disease-1010

associated genes and variants, Nucleic Acids Research 45 (D1) (2016) D833–

D839. doi:10.1093/nar/gkw943.

[63] M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-Bongaarts, E. H. Shen, L. Ng,

J. A. Miller, L. N. Van De Lagemaat, K. A. Smith, A. Ebbert, Z. L. Riley,

Others, An anatomically comprehensive atlas of the adult human brain1015

transcriptome, Nature 489 (7416) (2012) 391.

[64] A. Nair, M. Chetty, P. P. Wangikar, Improving gene regulatory network

inference using network topology information, Molecular BioSystems 11 (9)

(2015) 2449–2463. doi:10.1039/c5mb00122f.

[65] E. Koutsofios, S. North, Drawing Graphs with Dot, Tech. rep., 910904-1020

59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ (1991).

[66] K. Sugiyama, S. Tagawa, M. Toda, Methods for Visual Understanding of

Hierarchical System Structures, IEEE Transactions on Systems, Man and

Cybernetics 11 (2) (1981) 109–125. doi:10.1109/TSMC.1981.4308636.

[67] T. M. Fruchterman, E. M. Reingold, Graph drawing by force-directed1025

placement, Software: Practice and Experience 21 (11) (1991) 1129–1164.

doi:10.1002/spe.4380211102.

[68] G. Csardi, T. Nepusz, The igraph software package for complex network

research, InterJournal Complex Sy (2006) 1695.

[69] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a con-1030

tinuous graph layout algorithm for handy network visualization designed

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

http://dx.doi.org/10.1093/nar/gks1042
http://dx.doi.org/10.1093/nar/gkw943
http://dx.doi.org/10.1039/c5mb00122f
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1002/spe.4380211102
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

for the Gephi software, PLoS ONE 9 (6) (2014) e98679. doi:10.1371/

journal.pone.0098679.

[70] B. Chippada, ForceAtlas2 for Python.

URL https://github.com/bhargavchippada/forceatlas21035

[71] G. Plique, ForceAtlas2 sigmajs plugin (2017).

URL https://github.com/jacomyal/sigma.js/tree/master/plugins/

sigma.layout.forceAtlas2

[72] G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics

6 (2) (1978) 461–464. doi:10.1214/aos/1176344136.1040

[73] V. D. Blondel, J. L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding

of communities in large networks, Journal of Statistical Mechanics: Theory

and Experiment 2008 (10) (2008) P10008. doi:10.1088/1742-5468/2008/

10/P10008.

[74] C. Fraley, A. E. Raftery, Model-based clustering, discriminant analysis,1045

and density estimation, Journal of the American Statistical Association

97 (458) (2002) 611–631.

[75] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from

incomplete data via the EM algorithm, Journal of the Royal Statistical

Society: Series B (Methodological) 39 (1) (1977) 1–22.1050

[76] D. T. Pham, G. A. Ruz, Unsupervised training of Bayesian networks for

data clustering, Proceedings of the Royal Society A: Mathematical, Physi-

cal and Engineering Sciences 465 (2109) (2009) 2927–2948.

[77] K. Murphy, Dynamic Bayesian Networks: Representation, Inference and

Learning, Ph.D. thesis, University of California (2002).1055

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1371/journal.pone.0098679
https://github.com/bhargavchippada/forceatlas2
https://github.com/bhargavchippada/forceatlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Problems with state-of-the-art of software in massive BN interpretability
	Scalability
	Extensibility
	Interoperability
	Ease of use and interpretability

	BayeSuites
	Scalability
	Structure learning performance analysis
	Inference performance analysis
	Visualization performance analysis
	Server performance analysis

	Extensibility
	Interoperability
	Ease of use and interpretability
	Layouts
	General viewing options
	Highlighting nodes/edges
	Parameter visualization and inference

	Discussion
	Conclusion
	Data availability
	Author contributions
	Competing interests
	Funding
	Acknowledgments

