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Abstract 
Tissue clearing methods allow every cell in the mouse brain to be imaged without physical 
sectioning. However, the computational tools currently available for cell quantification in cleared 
tissue images have been limited to counting sparse cell populations in stereotypical mice. Here 
we introduce NuMorph, a group of image analysis tools to quantify all nuclei and nuclear 
markers within the mouse cortex after tissue clearing and imaging by a conventional light-sheet 
microscope. We applied NuMorph to investigate two distinct mouse models: a Topoisomerase 1 
(Top1) conditional knockout model with severe neurodegenerative deficits and a Neurofibromin 
1 (Nf1) conditional knockout model with a more subtle brain overgrowth phenotype. In each 
case, we identified differential effects of gene deletion on individual cell-type counts and 
distribution across cortical regions that manifest as alterations of gross brain morphology. These 
results underline the value of 3D whole brain imaging approaches and the tools are widely 
applicable for studying 3D structural deficits of the brain at cellular resolution in animal models 
of neuropsychiatric disorders.  
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Introduction 
The mammalian cortex is composed of a diverse assembly of cell-types organized into complex 
networks, which function together to enable complex behaviors (Harris et al., 2019; Tasic et al., 
2018; Zeisel et al., 2015). Disruption of cortical cytoarchitecture, either by genetic or 
environmental perturbation, can lead to altered brain function and create risk for 
neuropsychiatric disorders (Shin Yim et al., 2017; Stoner et al., 2014). A common approach for 
studying the mechanisms by which genetic variation increases risk for neuropsychiatric 
disorders is through the use of genetically modified animal models in a WT/KO experimental 
design. In order to observe the causal effects of disorder relevant genes on structure-function 
relationships, genetic tools can be applied to activate or silence genes in specific cell-types 
(Tsien et al., 1996) followed by imaging cellular organization through fluorescence microscopy.  
One critical goal in such experiments is to determine if the number of cells of a given type are 
altered by these genetic risk factors throughout different brain structures. However, a common 
limitation in imaging experiments done at cellular resolution is that they are restricted to  
anatomical regions of interest by physical sectioning which prevents the detection of region-
specific effects. This becomes a particular issue for the cortex, one of the largest structures in 
the brain (Wang et al., 2020), where heterogeneity between cortical areas is often unmeasured 
by standard methods. 
 
In order to image the entire brain without physical sectioning, tissue clearing methods render 
biological specimens transparent while preserving their 3 dimensional structure. Cleared tissues 
can then be rapidly imaged using light-sheet microscopy as plane illumination improves 
acquisition rates by 2-3 orders of magnitude compared to point scanning systems while also 
limiting the effects of photobleaching (Richardson and Lichtman, 2015; Ueda et al., 2020). Great 
strides have been made in the development of clearing protocols that are compatible with 
immunolabeling and the design of complementary sophisticated imaging systems (Matsumoto 
et al., 2019; Murray et al., 2015; Park et al., 2018; Susaki et al., 2020). Yet challenges still 
remain in expanding the accessibility of these technologies to research labs for quantitative 
analysis at cellular resolution.  
 
For example, many of the current imaging protocols for whole brain profiling require custom light 
sheet systems to image tissues at cellular resolution (Fei et al., 2019; Matsumoto et al., 2019; 
Pende et al., 2018; Tomer et al., 2014; Voigt et al., 2019). These systems are therefore 
inaccessible to those lacking the expertise or resources required to assemble the necessary 
microscope components. Expanding tissues during the clearing process is a potential 
workaround that can increase the effective spatial resolution allowing for interrogation of 
subcellular structures without the need for custom imaging solutions (Chen et al., 2015; Gao et 
al., 2019; Ku et al., 2016; Murakami et al., 2018). However, expanded tissues can fall outside of 
the working distance of conventional microscope objectives, require prolonged imaging times, 
and significantly larger data storage resources. Therefore, computational tools designed for 
conventional light sheet microscope users are needed to compare cell counts in a WT/KO 
design. 
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With over 100 million cells in a mouse brain and image sizes of tissue cleared brain 
approaching terabytes, advanced image analysis tools are needed to achieve accurate cell 
quantification. Current segmentation methods for tissue cleared brain images apply a threshold 
for nuclear staining intensity and filter objects with a predefined shape, size, and/or density 
(Renier et al., 2016; Matsumoto et al., 2019; Fürth et al., 2018). However, variations in cell size, 
image contrast, and labeling intensity can all lead to inaccurate counts. In addition, whole brain 
images are typically registered to a standard reference, such as the Allen Reference Atlas 
(ARA), to assign cell locations to their corresponding structural annotations. Thus far, image 
registration has been performed mostly on stereotypical mice and has not been designed for 
mouse models with significant changes in gross morphology. With these limitations, the 
computational tools currently available have not been fully adopted for studying cellular 
organization in mouse models.  
 
To address these issues, we developed a group of image analysis tools called NuMorph 
(Nuclear-Based Morphometry) (available here: https://bitbucket.org/steinlabunc/numorph/) for 
end-to-end processing to perform cell-type quantification within the mouse cortex after tissue 
clearing and imaging by a conventional light-sheet microscope. To demonstrate the 
effectiveness of the tool, we first applied and evaluated NuMorph to quantify structural changes 
in a mouse model with large differences in cortical structure, a topoisomerase I (Top1) 
conditional knockout (Top1 cKO) mouse model that exhibits clear reductions in both cortical size 
and specific cell types (Fragola et al., 2020). We then apply NuMorph to investigate a 
neurofibromin I (Nf1) conditional knockout (Nf1 cKO) model, a gene harboring mutations in 
individuals with Neurofibromitosis type I. This disorder often results in cognitive impairment, 
attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD) (Gutmann 
et al., 2017). Our results reveal unique genetically influenced cell-type and structural changes in 
each mouse model, demonstrate the broad applicability of our analysis tools for studying both 
severe and subtle brain structure phenotypes in combination with tissue clearing methods, and 
present an alternative to 2D stereology for cellular quantification that does not rely on 
representative sampling.    

Methods 

Animals 
Top1 conditional knockout mice (Top1fl/fl;Neurod6-Cre, Top1 cKO) were bred by crossing 
Top1fl/fl mice (Mabb et al., 2016) with the Neurod6-Cre mouse line (Jackson Laboratory) 
(Goebbels et al., 2006) as described previously (Fragola et al., 2020). Cre-negative mice 
(Top1fl/fl) were used as controls (WT). Nf1 conditional knockout mice (Nf1fl/fl) were purchased 
from (Jackson Laboratory, Stock No: 017639) (Zhu et al., 2001). Emx1-Cre mice were originally 
generated by Gorski et al. (Gorski et al., 2002) and previously validated and maintained in the 
lab (Xing et al., 2016). Homozygous Nf1 cKO mice (Nf1fl/fl;Emx1-Cre) and heterozygous Nf1 
cKO mice (Nf1fl/+;Emx1-Cre) were generated by breeding Nf1fl/+;Emx1-Cre mice with Nf1fl/fl or 
Nf1fl/+ mice. Cre-negative (Nf1fl/fl, Nf1fl/+, Nf1+/+ ) and Nf1+/+;Emx1-Cre mice were used as 
littermate controls. All animal procedures were approved by the University of North Carolina at 
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Chapel Hill Institutional Animal Care and Use Committee. Mice were maintained on a 12-hr 
dark/light cycle and housed at temperatures of 18-23°C, 40-60% humidity, and ad libitum food 
and water. Genomic DNA extracted from tail or ear samples was utilized for genotyping by PCR. 
Primers for gene amplification are as follows (listed 5’-3’): Top1-F: 
GAGTTTCAGGACAGCCAGGA, Top1-R: GGACCGGGAAAAGTCTAAGC; Cre-F (Neurod6-
Cre): GATGGACATGTTCAGGGATCGCC, Cre-R (Neurod6-Cre): 
CTCCCATCAGTACGTGAGAT, Nf1-F: ACATGGAGGAGTCAGGATAGT, Nf1-R: 
GTTAAGAGCATCTGCTGCTCT, Cre-F (Emx1-Cre): GAACGCACTGATTTCGACCA and Cre-R 
(Emx1-Cre): GATCATCAGCTACACCAGAG. Male P15 Top1 cKO and WT littermate controls 
were used for tissue clearing in the Top1 study. Male P14 Nf1fl/fl;Emx1-Cre, Nf1fl/+;Emx1-Cre and 
Ctrl littermates were used for tissue clearing in the Nf1 study.  

Tissue Clearing & Immunolabeling 
Tissue clearing was performed on 4 WT and 4 Top1 cKO for the Top1 study and 6 Ctrl, 6 
Nf1fl/+;Emx1-Cre, and 6 Nf1fl/fl;Emx1-Cre for the NF1 study according to the iDISCO+ protocol 
(Renier et al., 2016). Genotyped samples were processed concurrently in littermate 
pairs/triplicates. Briefly, mice were fixed via transcardial perfusion using 4% paraformaldehyde 
and whole brain samples were dissected and cut along the midline. As the effects of Top1 
deletion on gross structure were bilateral upon visual inspection, only the left hemisphere was 
used in clearing experiments and analysis. Similarly, effects of Nf1 deletion were found to be 
bilateral based on 2D stereological analysis and therefore only the right hemisphere was used in 
the Nf1 study.  Investigators were blinded to genotype for the Nf1 study during tissue clearing 
and subsequent imaging and analysis. Large differences in overall brain size between Top1 
cKO and WT prevented blinding in this model. Samples were then washed in phosphate-
buffered-saline (PBS), dehydrated in a graded series of methanol (Fisher, A412SK), pretreated 
with 66% dichloromethane (Sigma- Aldrich, 270997)/methanol and 5% H2O2 (Sigma-Aldrich, 
H1009)/methanol, followed by rehydration, permeabilization (20% dimethyl-sulfoxide, Fisher, 
BP2311; 1.6% Triton X100, Sigma-Aldrich, T8787; 23mg/mL Glycine, Sigma-Aldrich G7126), 
and blocking with 6% goat serum (Abcam, ab7481). Samples were then incubated with 
antibodies for Cux1 (Santa Cruz, sc-13024-Rb, 1:200) and Ctip2 (Abcam,  ab18465-Rt, 1:500) 
for 5 days at 37°C in PTwH buffer (PBS; 0.5% Tween-20, Fisher, BP337; 10mg/L Heparin, 
Sigma-Aldrich, H3393) . After 2 days of washing with PTwH, samples were then incubated with 
TO-PRO-3 (Thermo Fisher, T3605, 1:300), goat anti-rat Alexa Fluor 568 (Thermo Fisher, 
A11077, 1:200), and goat anti-rabbit Alexa Fluor 790 (Thermo Fisher, A11369, 1:50) for an 
additional 5 days at 37°C. Samples were then washed for 2 days with PTwH, dehydrated again 
using a graded methanol series, incubated in 66% dichloromethane/methanol for 3 hours, 
followed by a 30 minute incubation in 100% dichloromethane before storing in a dibenzyl ether 
solution (RI = 1.56, Sigma-Aldrich, 108014) at RT. Tissue clearing and antibody labeling 
required 21 days to complete. 

Light-Sheet Imaging 
Imaging of cleared brain samples was performed using the Ultramicroscope II (LaVision Biotec) 
equipped with MVPLAPO 2X/0.5 NA objective (Olympus), sCMOS camera (Andor), and 
ImSpector control software. The zoom body was set to 2.5x magnification (yielding 1.21 
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μm/pixel) and a single light sheet was used with NA = ~0.08 (9 μm thickness/ 4 μm z-step) as 
this allowed for better resolution of cell nuclei compared to using multiple light sheets. Dynamic 
horizontal focusing using the contrast enhanced setting in ImSpector was used to ensure axial 
resolution was maintained along the width of the image using the recommended number of 
steps depending on the laser wavelength. Samples were positioned sagittally with the cortex 
surface facing the single illuminating light-sheet (Figure S1D). This prevented excessive light 
scattering and shadowing from affecting the image quality in the cortical regions. Individual 
channels were acquired for tiled positions in a row-major order using 561nm (Ctip2), 647nm 
(ToPro), or 785nm (Cux1) laser lines. The 785nm channel was imaged first for the entire 
hemisphere. After refocusing the objective, the 561nm/647nm channels were then captured 
sequentially for each stack at a given tile position. Using these settings, mouse hemispheres 
were acquired using 3x3, 4x4, or 4x4 tiling schemes depending on hemisphere size with 5-15% 
overlap. Typical imaging times ranged from 10 to 15 hours for all 3 imaged channels. In the Nf1 
study, tissue autofluorescence was additionally imaged within a single tile using a 488nm laser 
at 0.8x magnification (3.86 x 3.86 x 4μm/voxel; 0.015 light sheet NA, no horizontal focusing) for 
all samples.  

Computing Resources 
All data processing was performed locally on a Linux workstation running CentOS 7. The 
workstation was equipped with an Intel Xeon E5-2690 V4 2.6GHz 14-core processor, 8 x 64GB 
DDR4 2400 LRDIMM memory, 4 x EVGA GeForce GTX 1080 Ti 11GB GPU, and 2 x 4TB 
Samsung EVO 860 external SSDs. Hot swap bays were used to transfer data from the imaging 
computer to the analysis workstation. 

Image Preprocessing 
Image preprocessing consists of all the necessary steps to prepare acquired raw images for 
image registration and cell quantification. All preprocessing steps were performed using custom 
written MATLAB R2020a scripts included in NuMorph and are described below. 

Intensity Adjustments   

Two types of image intensity adjustments were performed on raw images prior to image 
stitching to increase accuracy of subsequent processing. First, uneven illumination along the y 
dimension (perpendicular to the light path) of each 2D image caused by the Gaussian shape of 
the light sheet was corrected using a MATLAB implementation of BaSiC, a tool for retrospective 
shading correction (Peng et al., 2017). We used 10% of all images, excluding tile positions 
around the cerebellum, to estimate a flatfield image for each channel. Each image was then 
divided by the flatfield prior to alignment and stitching to correct for uneven illumination. Second, 
differences in intensity distributions between image tile stacks, primarily as a result of 
photobleaching and light attenuation, were measured in the horizontal and vertical overlapping 
regions of adjacent tiles. To ensure bright features were of equal intensity between each stack, 
we measured the relative difference (𝑡 !"#) in the 95th percentile of pixel intensities in 
overlapping regions from 5% of all images. The measured image intensity 𝐼$%!& at tile location 
(𝑥, 𝑦)was then adjusted according to: 
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 𝐼 !"#(𝑥, 𝑦) 	= 	 (𝐼$%!&(𝑥, 𝑦) − 𝐷) ∗ 𝑡 !"#(𝑥, 𝑦) + 𝐷 

 
where 𝐷is the darkfield intensity (set as a constant value based on the 5th percentile of pixel 
intensities in all measured regions). 

Image Channel Alignment  

As image channels are acquired one at a time, subtle drift in stage and sample positions during 
imaging may result in spatial misalignment between the reference nuclei channel and the 
remaining immunolabeled markers in a multichannel image. We tested two image registration 
approaches to ensure robust alignment across image channels. The first approach estimates 
2D slice translations to align the immunolabeled channel images to the nuclear channel image. 
The axial (z) correspondence between the nuclei channel and every other channel within an 
image stack of an individual tile is first estimated using phase correlation at 20 evenly spaced 
positions within the stack. The correspondence along the axial direction with the highest image 
similarity (based on intensity correlation) determines the relative tile z displacement between 
channels (up to 50 μm in some cases). xy translations are then determined after multimodal 
image registration for each slice in the tile stack using MATLAB’s Image Processing toolbox. 
Outlier translations, defined as x or y translations greater than 3 scaled median absolute 
deviations within a local 10 image window in the stack, were corrected by linearly interpolating 
translations for adjacent images in the stack. In our data, outlier translations often occur in 
image slices without any sample present where the lack of image contents limits registration 
accuracy. 
 
While a rigid 2D registration approach is sufficient for channel alignment when samples are 
securely mounted, sporadic movement of some samples during long imaging sessions can 
result in not only shifting translation but also rotational drift. In these cases, performing 
registration relying solely on translation will result in only part of the target image aligning 
correctly to the nuclei reference at a given z position with the remaining misaligned target 
features appearing in z positions immediately above and/or below (Figure S1B). To correct for 
these displacements, we applied a nonlinear 3D registration approach using the Elastix toolbox 
(Klein et al., 2010) between channels for each individual tile. Full image stacks were loaded and 
downsampled by a factor of 3 for the x/y dimensions to make the volume roughly isotropic and 
reduce computation time. Intensity histogram matching was then performed and a mask was 
identified for the nuclei reference channel using an intensity threshold that limits sampling 
positions in the background. Next, an initial 3D translational registration is performed on the 
entire image stack between the reference and the remaining channels. The stack is then 
subdivided into smaller chunks of 300 images and rigid registration is performed on each chunk 
to account for 3D rotation and achieve a more accurate initial alignment within local regions of 
the full stack. Finally, a nonlinear B-spline registration is performed on each chunk using an 
advanced Mattes mutual information metric to account for xy drift along the z axis and ensure 
precise alignment of image features. B-spline transformation grid points were set to be sparser 
along xy compared to z (800x800x8 voxels) as this setting well balances accurate alignment 
with computational cost while also preventing local warping of background intensities.  
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During image processing, the 2D rigid alignment approach was initially used to align each 
sample. Each tile was then visually inspected to ensure accurate alignment of all channels 
along the stack. For tiles where rigid alignment was inaccurate, the non-rigid alignment method 
was used to correct for misalignment. 

Iterative Image Stitching  
A custom 2D iterative stitching procedure was used to assemble whole brain images at high 
resolution. First, an optimal pairwise z correspondence along the axial direction was determined 
for adjacent tile stacks by exhaustive image matching for the horizontally and vertically 
overlapped candidate regions. Specifically, a sample of 10 evenly spaced images were taken 
within a stack and registered to every z position within a 20 image window in the adjacent stack 
using phase correlation. The displacement in z with the highest count of peak correlations 
among the 10 images was presumed to represent the best z correspondence. The difference in 
correlation between the best and the 2nd best z displacement was used as a weight for the 
strength of the correspondence, with a larger difference representing a stronger 
correspondence. This resulted in 4 matrices: pairwise horizontal and vertical z displacements 
and their corresponding weights. To determine the final z displacement for each tile, we 
implemented a minimum spanning tree (Kruskal, 1956) using displacements and their weights 
as vertices and edges, as previously implemented (Chalfoun et al., 2017).   
 
An intensity threshold to measure the amount of non-background signal was determined by 
uniformly sampling 5% of all images and calculating the median intensity. The starting point for 
iterative stitching going up/down the stack was selected at a position near the middle of stack 
with sufficient non-background signal (set to 1 standard deviation above the darkfield intensity) 
present in all tiles. Translations in xy were calculated using phase correlation and further refined 
using the Scale Invariant Feature Transform (SIFT) algorithm (Lowe, 2004). The top left tile was 
set as the starting point for tile placement for each stitching iteration. This ensures stitched 
images would not be shifted relative to each other along the z axis. Tiles were blended using 
sigmoidal function to maintain high image contrast in overlapping regions. Spurious translations, 
defined as translations greater than 5 pixels in x or y from the previous iteration, in images that 
lacked image content were replaced by translation results from the previous iteration. 

Image Registration to ARA Using Point Correspondence 
Volumetric image registration was performed using Elastix to measure the correspondence 
between the stitched TO-PRO-3 channel in the tissue cleared samples and the Nissl-stained 
Allen Reference Atlas (ARA) (Dong, 2008; Lein et al., 2007). The atlas and corresponding 
volume annotations from Common Coordinate Framework v3 were downloaded using the Allen 
Software Development Kit (SDK) (https://allensdk.readthedocs.io/) at 10 μm/voxel resolution. In 
each registration procedure, the ARA was downsampled to 25 μm/voxel resolution to perform 
registration and the resulting transformation parameters were rescaled and applied to the  
annotation volume at the native 10 μm/voxel resolution.  
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For registration without point guidance, an affine followed by B-spline transformation sequence 
was applied along 3 resolution levels to each sample using advanced mattes mutual information 
(MMI) as the sole metric to estimate spatial correspondence (as done previously in (Renier et 
al., 2016). This registration procedure allowed for direct mapping of ARA annotations to each 
registered sample and was applied to all WT hemispheres in the Top1 study. Adding point 
guidance to WT samples resulted in similar registration accuracy but slightly higher variation in 
structure volumes between samples (Figure S3).  
 
A modified version of the standard registration procedure without points was also used for 
mapping control and Nf1 cKO hemispheres in the Nf1 study as this knockout model exhibited a 
lower degree of morphological variation compared to the Top1 cKO model. However, to further 
improve registration accuracy, we incorporated additional spectra from tissue autofluorescence 
that was mapped to the ARA average MRI template, in addition to the TO-PRO-3/Nissl 
mapping. The downsampled autofluorescence channel in each sample was initially pre-aligned 
to the TO-PRO-3 reference using rigid registration and the standard B-spline registration with 
the ARA Nissl/MRI templates proceeded while maximizing the joint mutual information 
correspondence between the channel pairs. 
 
For points-guided registration in the Top1 cKO model, we first manually placed 200 landmarks 
within both the ARA and our to-be-registered nuclei reference image, using the BigWarp plugin 
in Fiji (Bogovic et al., 2016). The majority of points were located within or around the cortex, as 
this was our region of interest and contained the largest deformations in the Top1 cKO samples 
(Figure S4). The same set of reference point coordinates in the ARA were selected for each 
sample and used as input points in Elastix for affine and B-spline registration along 3 resolution 
levels. Estimates of spatial correspondence for points-guided registration was driven by a hybrid 
metric based on (1) minimizing the point distances between two images and (2) maximizing the 
voxel-wise image similarity between two images which is measured by mattes mutual 
information (MMI). For affine registration, voxel-wise similarity (based on MMI) was ignored and 
only points distance was used to estimate global translation, rotation, and scaling 
transformations. For B-spline registration, we gradually increased the influence of voxel-wise  
similarity in the hybrid metric during the registration sequence from coarse to fine resolution 
(1:0.2, 1:0.4, 1:0.6; MMI:Point Distance weight). The inverse of the final transformation 
parameters was then calculated using a displacement magnitude penalty cost function (Metz et 
al., 2011) and applied to the Allen Mouse Brain Common Coordinate Framework v3 annotation 
volume to assign anatomical labels for each voxel in the native sample space. While a more 
direct approach would be to register the ARA to the sample, we found that registering the 
sample to the ARA and calculating the inverse achieved slightly higher accuracy in Top1 cKO 
brains (data not shown).  
 
To evaluate registration accuracy, 3D masks of the entire isocortex were manually labeled for 
each sample in Imaris (Bitplane) using the 3 acquired channels as markers to delineate cortex 
boundaries. Some cortical subplate structures, such as the claustrum, were included in the final 
mask as these were difficult to distinguish from the isocortex. The DICE similarity score was 
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then calculated between each mask and all cortical structures in the registered annotation 
volume (Figure 2B) as a metric of registration accuracy. 

Cortical Volume, Surface Area, and Thickness Measurements 
Quantitative measurements for the volume, surface area, and thickness of the isocortex and 43 
cortical areas defined in (Harris et al., 2019) or a lower level set of 17 cortical areas (ARA 
structure depth=6) were calculated based on registered annotation volumes. The voxel sums (at 
10 um3/voxel) represent the total volume of each structure. To calculate volumetric 
displacement for each sample relative to the Allen atlas, the spatial Jacobian was measured for 
each set of transformation parameters, which ranges from -1 to 1, and represents voxel-wise 
local compression or expansion. Surface area for the isocortex was calculated based on 
MATLAB’s implementation of Crofton’s formula (Lehmann and Legland, 2012). The fraction of 
layer 1 boundary voxels over all boundary voxels was used to determine the area of only the 
outer cortical surface. This measurement was then further partitioned by the number of layer 1 
boundary voxels for each individual structure. To calculate thickness, the center of mass for 
layer 1 and layer 6b were first calculated for each structure. Thickness was then measured 
based on the euclidean distance between 2 points within layer 1 and layer 6b that were nearest 
to the centers of mass. Average thickness of the full isocortex was weighted by the volume 
contribution of each structure.  

Nuclei Detection 
Imaging data for training the 3D-Unet model was acquired from 3 separate imaging experiments 
of TO-PRO-3 labeled nuclei across 5 different regions from the cortex of 2 WT brains. Images 
were captured at 0.75x0.75x2.5 μm/voxel for training a high resolution model or 1.21x1.21x4 
μm/voxel for training a low resolution model. A binary approximation of the nucleus volume was 
initially pre-traced using the cell detection component of the CUBIC-informatics pipeline 
(Matsumoto et al., 2019). Specifically, the thresholded Hessian determinant after Difference-of-
Gassian filtering was used to create an initial 3D mask of all nuclei in the image. Full images 
were then divided into patches of 224x224x64 voxels and preprocessed using min/max 
normalization. The corresponding 3D mask for each nucleus was reduced to its 2D component 
at the middle z position. Each patch was then manually inspected and corrected for 
segmentation error or incorrect shapes using BrainSuite v17a (Shattuck and Leahy, 2002) by 1 
rater (OK) to reduce person-to-person variability. The corrected 2D nuclei masks were then 
eroded by removing 40% of the outer edge pixels. Each patch was then subdivided into 4 
smaller patches of 112x112x32 voxels, with 1 out of the 4 patches being withheld for the 
validation set. The full dataset (training + validation) contained 16 patches at 224x224x64 
voxels for both the high (14,554 nuclei) and low resolution (53,993 nuclei) models. Nuclei at the 
edge of an image stack were also included in the training. Manually labeled data are available at 
https://braini.renci.org/ using the Download Image service. 
 
A modified 3D-Unet architecture (Çiçek et al., 2016; Isensee et al., 2018) was used to identify 
the positions of cell nuclei in whole cortex images. We built upon and modified a previous Keras 
implementation of 3D-Unet for volumetric segmentation in MRI 
(https://github.com/ellisdg/3DUnetCNN) to detect binary masks of cell nuclei positions. As 
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originally described (Isensee et al., 2018), the 3D-Unet architecture contains a series of context 
modules during the contracting path that encodes abstract representations of the input image, 
followed by a series of localization modules on the upscaling path to localize the features of 
interest (Figure S4A). We similarly used a model with 5 context modules, residual weights, and 
deep supervision in the localization modules. The network was trained using 32 base filters on 
image patches of size 112x112x32 voxels with a batch size of 2. Training presumed over ~300 
epochs using an Adam optimizer with a dropout rate of 0.4 and an initial learning rate 0.002 that 
was reduced by a factor of 2 for every 10 epochs without the loss improving. Additional image 
augmentations were implemented during the training to make the model more generalizable. 
These include random image permutations, image blurring and sharpening, the addition of 
random noise, and intensity variations along x,y,z dimensions in the image patch. Random 
scaling was removed as we found that this decreased model performance.  
 
Nuclei detection accuracy was evaluated using an independent set of 5 images patches of TO-
PRO-3- labeled nuclei where the full 3D volume of each nucleus was fully manually drawn with 
a unique index at 0.75x0.75x2.5 μm/voxel resolution (~3,500 nuclei total). Each patch was 
sampled from a unique region within 1 WT cortex. Evaluation patches were initially delineated 
by 4 raters and further refined by 1 rater to reduce between-rater variability. We compared our 
3D-Unet detection method with those used in 2 previously published pipelines for tissue cleared 
image analysis: ClearMap and CUBIC-informatics (Matsumoto et al., 2019; Renier et al., 2016). 
For ClearMap, we used voxel size and intensity thresholds after watersheding, as described in 
the published implementation. Parameters for cell size and intensity were scaled accordingly to 
achieve the most accurate average cell counting results possible for all the patches tested. 
Similarly, intensity normalization and Difference-of-Gaussian scaling parameters used in 
CUBIC-informatics were adjusted according to image resolution. Filtering by intensity and 
structureness was also performed as described in the previous work (Matsumoto et al., 2019) . 
 
In our evaluation of nuclei detection, precision is the proportion of nuclei correctly predicted out 
of all nuclei predictions in an image patch. Precision is therefore calculated by counting the 
number of cells with multiple predicted centroids in 1 manually labeled nucleus volume as well 
as false positives cells called in the image background divided by the total number of nuclei 
detected and subtracting this number from 1. Recall is the proportion of all nuclei instances that 
were predicted. Recall was therefore calculated by counting the number of manually labeled cell 
volumes that lacked any predicted cell centroids divided by the total number of cells. The 
majority of false negative cases were due to touching nuclei. Nuclei whose centroid were within 
3 voxels of the image border were excluded from the evaluation.  
 
Whole brain TO-PRO-3 images were divided into chunks of 112x112x32 voxels to be fed into 
the trained 3D-Unet model for prediction of cell centroids. An overlap of 16x16x8 voxels was 
used between adjacent chunks to minimize errors from nuclei at chunk edges. Centroid 
positions falling in a region less than half the overlap range (i.e. <8 pixels from xy border or <4 
pixels from z border) were assumed to be counted in the adjacent overlapping chunk and were 
removed. Additionally, a nearest neighbor search using kd-trees (Bentley, 1975) was performed 
to remove duplicate centroids within 1.5 voxels of each other, ensuring centroids in overlapping 
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regions were not counted multiple times. Increasing overlap did not significantly affect the final 
cell counting results (data not shown). Total computation time for detecting all cortical nuclei in 1 
WT brain hemisphere was ~2.5 hours using a single GPU. 

Cell-type Classification  
To classify cell-types, we took a supervised approach by training a linear Support Vector 
Machine (SVM) classifier using MATLAB’s Statistics and Machine Learning Toolbox on a set of 
intensity, shape, and annotation features within a 2D patch surrounding each centroid. First, 
channel intensities were measured at centroid positions for each channel. Cells with intensities 
below the median for both Ctip2 and Cux1 were presumed negative for both markers and 
removed from model training and classification (~25% of cells). In the remaining cells, we took a 
uniform, random sample of 1,000 cells from each brain image dataset and retained 2D patches 
(13x13 pixels) around centroid positions. Manual classification required >1 hour per dataset 
using a custom NuMorph function that allows fast navigation between cell patches. For each 
patch, we recorded several intensity measurements (max, mean, standard deviation, middle 
pixel, middle pixel/edge pixel) and applied Otsu thresholding to capture shape measurements 
(total filled area, inner filled area) in each channel. These were also combined with categorical 
annotations for cortical layer (L1, L23, L4, L5, L6a, L6b) and cortical area (Prefrontal, Lateral, 
Somatomotor, Visual, Medial, Auditory; defined in (Harris et al., 2019). Cells were then manually 
classified into 4 classes: (1) Ctip2-/Cux1-, (2) Ctip2+/Cux1-, (3) Ctip2-/Cux1+, (4) Outlier. The 
outlier class was annotated according to 4 additional subdivisions due to differences in intensity 
features: (1) Ctip2+/Cux1+, (2) Pial surface cell, (3) TO-PRO-3-/Ctip2-/Cux1- (4) Striatal cell 
(only present in Top1 cKO from residual registration error near white matter boundary). The 
SVM model was then trained using all intensity, shape, and annotation features. Model 
accuracy was evaluated using 5-fold cross-validation and applied to the remaining cells for 
classification. Due to differences in labeling intensity between samples, we trained a new model 
for each sample instead of aggregating annotation data. 
 
We compared supervised cell classification with an unsupervised approach based on modeling 
fluorescence intensities at centroids positions as Gaussian mixtures (GM) for Ctip2 and Cux1. 
After Z normalization, high intensity cells (Z > 5 and Z < -5) winsorized and outliers expressing 
both markers near the sample edge were removed. GM model fitting was then performed 
separately on normalized Ctip2 and Cux1 intensities using 2 or 3 components (whichever had 
higher accuracy by visual inspection) for 20 replicates using parameters initialized by k-
means++ (David Arthur, 2007).  Due to spatial variation in gene expression, we stratified GM 
model fitting to 6 general areas defined in (Harris et al., 2019) according to each cell’s structural 
annotation to further improve accuracy. We then calculated posterior probabilities of each cell 
being positive for either marker. Cells with a posterior probability greater than 0.5 of not being 
background were classified as positive. As the vast majority of neurons do not co-express Ctip2 
and Cux1 (Molyneaux et al., 2007), we filtered Ctip2+/Cux1+ cells according to their layer 
annotation. Cells in L1-L4 with P(Cux1) > P(Ctip2) were classified as Cux1+ and cells in L5-L6b 
with P(Ctip2) > P(Cux1) were classified as Ctip2+. The remaining Ctip2+/Cux1+ cells were 
classified as outliers. 
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Quantification, Statistical Analysis, and Visualization 
Final cell-type counts were summed for each annotation in the cortex according to its structure 
tree hierarchy. In our analysis, we chose to compare either 43 cortical areas defined in (Harris 
et al., 2019) or a lower level grouping of 17 regions based on the ARA structure hierarchy. 
Statistics, including mean counts, standard deviation, fold change, raw p values, and false 
discovery rate (FDR) adjusted p values (Benjamini-Hochberg; FDR < 0.05), were calculated in 
MATLAB and exported for plotting using custom R scripts and customized slice visualization. 
Structure volumes were also used to calculate cell density statistics. Unless stated otherwise, 
descriptive statistics in the main text and error bars in figure plots represent mean ± standard 
deviation. 
 
2D slice visualizations were created using a custom MATLAB program based on the 
allenAtlasBrowser in the SHARP-Track tool (Shamash et al., 2018). Structure annotations were 
downsampled along the anterior-posterior axis to reduce memory overhead for smoother 
performance and colored by volume, cell count, or cell density statistics. Additional 
visualizations for point clouds, surface volumes, and flattened isocortex plots were created 
using custom MATLAB scripts and are available in the NuMorph package. Additional animations 
were generated in Imaris (Bitplane) after importing cell centroid position as “spots” objects. 

Spatial Gene Expression Correlation 
Fold change in cell counts between WT and Top1 cKO were correlated with spatial gene 
expression based on in situ hybridization measurements from the Allen Mouse Brain Atlas (Lein 
et al., 2007). Expression grid data from sagittal and coronal sections were downloaded using 
the Allen SDK. Expression energy for each gene was first Z-scored across all brain structures 
and cortical regions were retained for analysis. Duplicate sections for the same gene were 
combined by taking the mean Z score for each structure across sections. We filtered out any 
gene that did not have expression data in all cortical structures and removed genes with Z 
scores less than 1 in all structures as these represent genes with consistently low cortical 
expression or with low congruence between duplicate sections. For the remaining genes, we 
applied a robust sigmoidal transformation as described in (Fulcher and Fornito, 2016) to 
account for the presence of outliers in ISH expression data. As certain cortical regions also have 
greater cell density and therefore greater total ISH energy, we conducted an additional Z score 
normalization across cortical regions to have the same average total gene expression. 
 
To reduce known false positive associations from gene-gene coexpression (Fulcher et al., 
2020), we ran comparisons to ensemble-based random null models generated using the Gene 
Category Enrichment Analysis toolbox 
(https://github.com/benfulcher/GeneCategoryEnrichmentAnalysis). Null distributions were 
generated for GO categories containing between 10 and 200 genes by 10,000 random samples 
to create a Gaussian distribution estimate of each GO null distribution. In total, we used null 
models for 4,186 GO categories based on expression of 10,945 genes across 38 cortical 
structures. Correlations between spatial gene expression and relative cell count differences 
were tested and corrected for multiple-hypothesis testing using a false discovery rate of 0.05. 
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Additional annotations for gene length comparisons were downloaded from Ensembl 
(Cunningham et al., 2019). The Spearman correlation between each gene’s expression and cell 
count or density differences across cortical regions was measured and binned by gene length 
based on the longest isoform for each gene. The mean and standard deviation of all correlation 
coefficients in each bin (<100kb or >100kb) was used to compare correlation coefficients 
between bins (Welch’s t-test). A list of differentially expressed genes in Top1 cKO cortex as 
measured by scRNA-seq was acquired from (Fragola et al., 2020) for additional comparisons. 

Brain Section Preparation and Immunofluorescence Staining 

For histological studies, mice were anesthetized and perfused transcardially with 4% 
paraformaldehyde (PFA) /1XPBS. Brains were dissected and postfixed in 4% PFA for 16 hours. 
Brains were embedded in 4% low-melting point agarose/1XPBS and sectioned using Leica 
VT1200 vibratome.  Sections were stored in 1XPBS at 4°C. 

For immunohistology studies, sections were rinsed in PBS and incubated in blocking solution 
(5% normal serum, 0.3% Triton X-100, 2% DMDO, 0.02% Sodium Azide,1XPBS) at room 
temperature. Primary antibodies were diluted in blocking solution and incubated overnight at 
room temperature. The following antibodies were utilized for immunofluorescence: rabbit anti-
Cux1 (Santa Cruz, sc-13024; 1:500), rat anti-Ctip2 (Abcam, ab18465; 1:1000), rabbit anti-Satb2 
(Abcam, ab51502; 1:1000), goat anti-GFAP (Abcam, ab53554; 1:1000) and rabbit anti-Olig2 
(Millipore, AB9610; 1:2000). Brain sections were rinsed in 0.1% Triton-X 100/1XPBS (PBS/T) 
three times and incubated with secondary antibodies in blocking solution for 3 hours at room 
temperature. Secondary antibodies utilized include donkey anti-rabbit IgG Alexa Fluor 568 
(Thermo Fisher, A10042; 1:1000), goat anti-rat IgG Alexa Fluor 488 (Thermo Fisher, A11006; 
1:1000) and donkey anti-goat IgG Alexa 488 (Thermo Fisher, A11055; 1:1000). Sections were 
then stained with DAPI (1:1000 in PBS/T) and rinsed with PBS/T three times for 20 minutes 
each. Sections were mounted onto Fisherbrand Superfrost/Plus slides with antifading Polyvinyl 
alcohol mounting medium with DABCO (Sigma-Aldrich, 10981). Images were collected with a 
Zeiss LSM 780 laser scanning confocal microscope. 

EdU Labeling and Detection 

To permanently label newly generated cortical neurons, pregnant dams at E16.5 were single-
dosed with 5–ethynyl–2′–deoxyuridine (EdU, Cayman Chem) in 1X PBS at 30mg/kg body 
weight via intraperitoneal injection. Pups were perfused at P14 and sectioned as described 
above. EdU detection was conducted upon the completion of immunofluorescence labeling. 
After washing in PBS for 10 minutes, brains sections were incubated with Alexa 647-conjugated 
Azide (Biotium) at 1.6µM, in solution containing 0.1M Tris-HCl (pH 8.8), 0.43 X PBS, 4 mM 
CuSO4, and 0.1M Ascorbate, for 20 minutes.  Brains sections were washed with PBS/T three 
times at 20 minutes each, stained with DAPI and mounted for confocal imaging.  

Confocal Image Analysis and Quantification 

Confocal images of barrel fields from 2D slices were collected for cortical thickness and cell 
number analysis. Images were acquired from anatomically matched coronal sections along the 
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rostro-caudal axis. The distribution of cortical upper layer (layer 2-4) marker, Cux1, was utilized 
to determine the boundaries separating layer 1, upper layers and lower layers (layer 5-6). The 
thickness of an individual layer was measured along the middle segment of selected regions of 
interests (ROIs). For cell number assessment, images were processed using ImageJ 
(https://imagej.net/ImageJ). Briefly, images were auto-thresholded at default setting with manual 
adjustment to eliminate unfocused signals and binary images were watershedded. Numbers of 
Cux1, Ctip2 and Olig2 expressing cells were automatically determined using the Analyze 
Particles function with a cut off size at 17.5µm2. To determine EdU-labeled cortical neurons, 
EdU and Satb2 co-labeled cells were extracted and cell numbers were automatically determined 
using the Analyze Particles function with a cut off size at 35.0µm2. GFAP expressing cells in the 
cortical plate were counted manually in Photoshop after thresholding using ImageJ. 
Representative images were cropped and adjusted for brightness and contrast in Photoshop for 
presentation. Mice from a minimum of three litters were analyzed for each experiment. 2 to 3 
ROIs were analyzed and results were averaged from each animal. For all experiments, n 
represents the number of animals. One-way ANOVA analyses with post hoc Tukey's tests were 
performed in GraphPad Prism 9.  

Data and Code Availability 
NuMorph source code is available at https://bitbucket.org/steinlabunc/numorph/. Manually 
labeled annotations for 3D-Unet training and raw light-sheet images are available at 
https://braini.renci.org/ through the “Download Image” service. 

Results 

iDISCO+ Reveals Neuronal Cell-type Deficits in the Top1 cKO Cortex 
A previous study demonstrated that deletion of Top1 in postmitotic excitatory neurons within the 
cortex and hippocampus results in massive neurodegeneration in these structures by postnatal 
day 15 (P15) (Fragola et al., 2020). Interestingly, while all cortical layers were affected by Top1 
deletion, the lower cortical layers (Layers 5-6) showed a noticeably greater reduction in 
thickness and cell count compared to the upper cortical layers (Layers 2-4) (Fragola et al., 
2020). These observations however were limited to the somatosensory cortex, which itself is a 
large structure that can be further decomposed into multiple functional regions. To evaluate the 
effects of Top1 deletion on excitatory neuron cell-types throughout all cortical structures, we 
performed iDISCO+ (Renier et al., 2016) to clear and image the Top1 cKO 
(Neurod6Cre/+::Top1fl/fl) mouse. We chose to use iDISCO+ among other tissue clearing 
techniques due to its demonstrated compatibility with antibody labeling, minimal tissue 
expansion or shrinkage, and simplified protocol (Renier et al., 2016). To go beyond qualitative 
evaluation, we proceeded to develop cell detection and image registration tools that could 
accurately quantify the number of upper layer and lower layer neurons in each cortical region in 
Top1 cKO mice (Figure 1A). 
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Figure 1.  Cellular Resolution Analysis of Brain Structure Phenotypes for Tissue Cleared 3D Brain 
Images. 
A. Overview of tissue processing, imaging, and image analysis procedures.
B. 3D rendering of cell nuclei in WT and Top1 cKO samples.
C. Example of TO-PRO-3 (TP3) labeled nuclei within WT cortex captured at sufficient lateral (xy) and
axial (xz) resolution for cell quantification.
D. Optical sagittal sections of TO-PRO-3 nuclear staining and immunolabeling for cell-type specific
markers Ctip2 (lower layer neuron) and Cux1 (upper layer neuron) in WT and Top1 cKO samples.
E. Zoomed in images of boxed cortical areas in D demonstrating channel alignment and showing the
expected localization of upper and lower layer markers.

We processed one brain hemisphere from four wild-type (WT) and four Top1 cKO mice at P15 -  
when the Top1 cKO had displayed large, bilateral deficits in brain structure (Fragola et al., 
2020). We labeled layer-specific cell-types using antibodies for Cux1 (upper layer neuron 
marker) and Ctip2 (lower layer neuron marker) in addition to staining all cell nuclei with TO-
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PRO-3 (TP3) during iDISCO+ processing. After clearing, samples were imaged using the 
Ultramicroscope II - one of the most widely used commercial light-sheet microscopes for 
imaging cleared tissues (Cai et al., 2019; Ertürk et al., 2012; Kirst et al., 2020; Liebmann et al., 
2016; Pan et al., 2016; Renier et al., 2016; Susaki et al., 2015; Tainaka et al., 2014; Ye et al., 
2016). The Top1 cKO hemispheres displayed a noticeable reduction in overall cortical volume 
(Figure 1B).  During light-sheet imaging, there is a well known trade off between optical 
resolution, particularly in the axial (z) dimension, and imaging speed. While the Ultramicroscope 
II features axial sweeping to maintain relatively even z resolution throughout the field of view 
(Dean et al., 2015), the additional mechanical movement of the light-sheet significantly reduces 
the imaging rate. After testing various imaging schemes, we imaged at 1.21x1.21x4 (μm/voxel) 
resolution with a light-sheet thickness of 9 μm. The resulting images provided sufficient 
resolution to visually delineate cell nuclei in the cortex (Figure 1C) while limiting imaging time to 
10-15 hours for all 3 channels in 1 WT hemisphere (~9 hours for Top1 cKO).

Prolonged imaging of cleared tissue samples can induce several artifacts over the course of 
image acquisition. In particular, drift in the sample or aberrant microscope stage movement can 
cause misalignment between image tile positions within and between channels. These issues 
become more pronounced at higher optical resolution where slight variations can prevent 
colocalization of cell nuclei with their respective immunolabeled markers. To ensure correct 
alignment between channels, we applied a series of rigid and non-rigid registration steps using 
the Elastix toolbox (Klein et al., 2010) to map the Cux1 and Ctip2 channels onto the TO-PRO-3 
channel without inducing non-specific local background warping (Figure S1). We also found that 
many of the commonly used programs for performing 3D image stitching (Bria and Iannello, 
2012; Hörl et al., 2019) did not accurately align adjacent tile stacks due to spurious stage 
movement, which has been noted by other groups (Kirst et al., 2020). To ensure accurate image 
reconstruction, we applied a simplified iterative 2D stitching procedure that uses scale-invariant 
feature transforms (Lowe, 2004) to produce continuous images without cell duplication along tile 
edges (Figure S2). Finally, differences in fluorescence intensity caused by light attenuation and 
photo bleaching during the course of imaging can result in uneven brightness between image 
tile positions. To ensure uniform signal across tiles, we measured the differences in image 
contrast in overlapping tile regions to estimate and correct for variations in signal intensity 
among tile stacks (Figure S1D). 

Completion of the preprocessing steps described above resulted in aligned, fully stitched 3 
channel images and datasets <1TB per sample (~400GB for WT and ~180GB for Top1 cKO). 
The Top1 cKO hemispheres displayed clear reductions in thickness throughout the cortex 
(Figure 1D). While all cortical layers showed some amount of degeneration, Layer 5 and Layer 6 
neurons seemed to be more severely depleted (Figure 1E) and we hypothesized that certain 
cortical areas may be differentially impacted as well. 

Point Correspondence Improves Image Registration for Structures with Large 
Morphological Differences 
Because of the significant differences in gross morphology within the Top1 cKO brain, image 
registration was not accurate using only intensity-based mutual information metrics (Figure 2A). 
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To improve registration accuracy of the Top1 cKO brain, we manually selected up to 200 points 
at distinguishable structure landmarks in the Nissl stained ARA and their corresponding 
locations in the TO-PRO-3 nuclei channel for each sample. Point locations were positioned 
primarily around the cortex as this was our region of interest (Figure S3A). Using Euclidean 
point distances as an additional metric during the registration process significantly improved 
cortical annotation when compared to a manually delineated mask (Figure 2A). Increasing the 
number of points resulted in higher DICE similarity coefficient scores in Top1 cKO samples 
(Top1 cKO MMI, mean = 0.526, s.d. = 0.189; Top1 cKO MMI + 200 Pts, mean = 0.890 s.d. = 
0.013) indicating improvements in registration accuracy (Figures 2B and S3B-D). These results 
show that point correspondence can be used to better register mouse models with large 
structural variation. 

Using the spatial deformation fields generated after image registration, we analyzed which 
areas in the Top1 cKO cortex exhibited the largest changes in volume relative to WT. While the 
cortex as a whole showed a large reduction in volume (mean = 80%, s.d. = 3.7%, p < 0.001), 
we observed slightly greater decreases in frontal regions, such as the orbitofrontal (ORB) and 
infralimibic (ILA) areas, as well as certain lateral regions near the temporal association area 
(TEa) (Figures 2B and 2C). This suggests that the neuronal cell-types within these structures 
may be more susceptible to degeneration upon Top1 deletion. 

3D-Unet Accurately Quantifies Cell Nuclei in the Cortex 
3D cell segmentation of tissue cleared images can be difficult due to the density of cells in the 
brain, limits of imaging resolution, and overall data complexity. Here we implemented a deep 
learning model, based on a 3D version of the popular U-Net framework (3D-Unet) (Çiçek et al., 
2016; Isensee et al., 2018), to accurately quantify the total number of cell nuclei marked by TO-
PRO-3 staining within the cortex. We generated two sets of manually labeled nuclei: (1) For 
training, ~67,000 cortical nuclei were manually delineated from 256 training image patches 
(112x112x32 voxels/patch) of cortical nuclei at either high (0.75x0.75x2.5 μm/voxel) or low 
(1.21x1.21x4 μm/voxel) spatial resolutions. To increase manual delineation efficiency, we 
focused only on cell detection by delineating a 2D binary mask at the middle Z position to be 
used as a marker for each cell nucleus. (2) For evaluation, an independent set of ~3,500 
manually delineated nuclei were used where the full 3D extent of the nucleus was labeled in 
order to determine accuracy of predicted centroid placement. Cell marker predictions within 
each 3D patch were then thresholded and analyzed for connected components to calculate final 
cell centroid positions (Figure 2D).   

To evaluate cell detection accuracy, we compared precision and recall rates for detecting nuclei 
in the evaluation dataset using 3D-Unet and two previously published analysis tools for tissue 
cleared images with cell counting components: ClearMap and CUBIC Informatics (CUBIC). In 
our tests, 3D-Unet achieved the highest precision and recall rates in both high and low 
resolution images when the full training datasets were used (Figures 2E and 2F). At low 
resolution, 3D-Unet achieved significantly lower error rates compared to the next best 
performing method (CUBIC) at higher resolution (p = 0.043, CUBIC 0.75/3D-Unet 1.21; p < 
0.001, CUBIC 1.21/3D-Unet 1.21; p < 0.001, ClearMap 1.21/3D-Unet 1.21; McNemar’s test). 
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Using the trained 3D-Unet model, we counted 8.43(± 0.05)x106 cells in the P15 WT cortex 
(Figure 2G), which was similar to previously published results in adult mice (Murakami et al., 
2018). This indicates that, with sufficient training, deep neural networks can compensate for a 
lack of imaging resolution and achieve accurate cell quantification.   

Figure 2. NuMorph Integrates Point Correspondence to Register Difficult Structures and 3D-Unet 
for Accurate Detection of Cortical Nuclei. 
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A. Cortical masks from registered WT and Top1 cKO brain images (Magenta) compared with manual
labelled traces (Green). Mattes mutual information (MMI) was used as the primary registration metric with
additional point correspondence to guide registration in the Top1 cKO case.
B. Voxel-wise differences in cortical volumes between Top1 cKO and WT samples.
C. Percent change in cortical region volumes in Top1 cKO samples compared to WT. Dashed line
indicates average change across the entire cortex. Data represented as mean ± SEM.
D. Description of 3D-Unet approach for detecting cell centroids (CC3D: 3D Connected Component
Analysis).
E-F. Comparison of cell detection precision (E) or recall (F) at the indicated xy resolutions (μm/pixel).
Examples of misclassification instances contributing to false positive errors (E) or false negative errors (F)
are shown above. Data represented as mean ± standard deviation.
G. Cell centroids of WT cortical nuclei predicted by 3D-Unet.

Lower Layer Neurons in the Frontal Cortex Are Preferentially Targeted by Top1 Deletion 
To quantify neuronal cell-types in WT and Top1 cKO cortexes, we developed a supervised 
Support Vector Machine (SVM) model to classify cell-types based on local intensity, shape, and 
annotation features. We found that a supervised approach, after training on 1,000 nuclei in each 
brain sample, achieved more accurate classification compared to an unsupervised mixture 
model approach (Figure S5). After removing outliers and summing across cortical structures, we 
counted 1.74(± 0.07)x106 Ctip2+ and 1.94(± 0.05)x106 Cux1+ in WT compared to 0.30(± 
0.08)x106 Ctip2+ and 0.73(± 0.11)x106 Cux1+ in the Top1 cKO (Figures 3A and 3B). Overall, 
this constitutes an ~83% decrease in Ctip2+ cells and ~62% decrease in Cux1+ cells. When 
compared to previous results in 2D sections from somatosensory cortex (Fragola et al., 2020), 
we saw a similar bias towards lower layer neuron degeneration (Cux1/Ctip2 = 1.97 in 3D SSp; 
2.33 in 2D), however with a larger reduction in total neuron counts. While this can be partially 
attributed to differences in cell quantification methods, the increase in sampling depth from 
volumetric analyses can also uncover larger effects in total cell count compared to serial 2D 
analysis. 

Next, we compared differences in cell counts and density for 43 cortical areas defined by 
functional connectivity in the ARA (Harris et al., 2019) and the complete isocortex to see which 
regions were most affected by Top1 deletion. After correcting for multiple comparisons (FDR < 
0.05), all but one of the 43 structures showed a significant decrease in total TO-PRO-3 cell 
count indicating broad degeneration across all cortical areas in the Top1 cKO model (Figures 
3C and S6E). Among neuronal cell-types, we identified 25 and 41 structures with significant 
decreases in Cux1+ and Ctip2+ cell counts, respectively. While many structures, including 
several areas in somatosensory cortex (SSp-n, SS-m, SSp-bfd), shared significant losses in 
both Cux1+ and Ctip2+ excitatory neurons, the largest reductions were seen in Ctip2+ cells 
localized in frontal areas, such as the prelimbic area (PL) and secondary motor area (MOs) not 
measured in previous work (Fragola et al., 2020). We then calculated cell density by normalizing 
counts to registered structure volumes. Interestingly, the majority of structures show significant 
increases in TO-PRO-3+ cell density (Figure S6E), suggesting that, in addition to cell loss, 
degeneration of neuronal processes is also contributing to differences in cortical structure. 
Structures with the largest increases were again localized in frontal regions, such as the 
prelimbic (PL), infralimbic (ILA), and orbitofrontal (ORB) areas, as well as medial regions, such 
as the anterior cingulate areas (ACA). Decreases in cell number also resulted in greater 
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reductions in cortical surface area compared to cortical thickness (Figure S6B-D). Taken 
together, these results show that, even in cases where genetic perturbation induces strong 
phenotypic effects such as in the Top1 cKO model, NuMorph can reveal more localized 
differences in cell-type number within specific brain regions.  

Figure 3. Top1 Deletion Induces Broad Degeneration of Neuronal Cell-types Particularly in Frontal 
Regions. 
A-B. Point cloud display of Cux1+ (A) or Ctip2+ (B) cells within WT and Top1 cKO cortexes.
C. Coronal slice visualizations displaying percent change in cell count (left hemisphere) and FDR-
adjusted p values (right hemisphere). Colored ARA annotations at corresponding positions displayed for
reference.
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Neurodegeneration is Spatially Correlated with Genes Differentially Expressed in Top1 
cKO 
Previous evidence suggests that lower layer neurons, particularly those in L5, are most 
susceptible to degeneration as a result of reduced expression of long, neuronal genes in the 
Top1 cKO model (Fragola et al., 2020). While the severe structural deficits in Top1 cKO 
precluded us from accurately quantifying L5 neurons in individual cortical regions, we found that 
regions with large L5 volumes in the ARA saw the greatest reductions in total structure volume 
in Top1 cKO (Figure 4A). Furthermore, these regions also saw the largest increases in cell 
density (Figure 4B) suggesting local degeneration of neuronal processes. We then performed 
spatial correlations between regional cell count differences and gene expression using in-situ 
hybridization (ISH) data from Allen Mouse Brain Atlas (AMBA) (Lein et al., 2007). We tested 
whether the degree of Top1 cKO induced structural change among cortical regions was related 
to the expression of long genes (i.e. genes >100kb) within those regions, as Top1 is known to 
be a transcriptional regulator of long genes (King et al., 2013; Mabb et al., 2016). We found that 
in WT, regions with higher densities of Ctip2+ lower layer neurons were significantly associated 
with increased long gene expression (Figure 4C), providing further support that lower layer 
neurons express longer genes. Additionally, regions with larger reductions in cell numbers in 
Top1 cKO were correlated with increased long gene expression (Figure 4D). Interestingly, fold 
change in Ctip2+ count differences saw the lowest positive correlation, likely because significant 
lower layer degeneration had already occurred by P15, minimizing variation between individual 
cortical regions. Gene Ontology analysis using random-null ensembles to overcome gene-
enrichment bias (Fulcher et al., 2020), identified 113 functional annotations associated with 
greater neuronal loss, including several processes involved in axon guidance and extension 
(Figure S6F). We then searched for spatial correlations with individual genes differentially 
expressed in the P7 Top1 cKO cortex as measured by scRNA-seq (Fragola et al., 2020). 
Among the 125 differentially expressed genes in Top1 cKO that also contained ISH signatures 
in the AMBA, 5 were significantly correlated with relative difference in excitatory neuron count 
(Figure 4E). The most signficant gene, S100a10 (also known as p11), is predominantly 
expressed by L5a corticospinal motor neurons in the cortex (Arlotta et al., 2005; Milosevic et al., 
2017). Large reductions in Ctip2+ neurons in the Top1 cKO secondary motor area (MOs) and 
other frontal areas where S100a10 is highly expressed, suggest that changes in S100a10 
expression may increase susceptibility for L5 degeneration in these regions (Figures 4F and 
4G). These results demonstrate how existing spatial gene expression resources can be 
leveraged with cleared tissue analysis to identify the specific genes, cell-types, and biological 
processes contributing to gene-structure associations.  
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Figure 4. Effects of Top1 Deletion Are Associated with Spatial Patterns of Gene Expression. 
A-B. Association between structure volume (A) and cell density (B) differences in Top1 cKO with L5
volume as a fraction of total volume in the ARA. Data points shown for L5 associations. (R: Pearson
correlation coefficient).
C-D. Association between spatial gene expression and WT cell density (C) or negative fold change in cell
count between Top1 cKO and WT (D). Spearman correlation coefficients, binned by gene length, for each
gene’s expression across cortical regions were used for comparisons. Increased correlation indicates
stronger association with cell loss in (D). TP3+ indicates all cells and ExNeun indicates excitatory neurons
(i.e. Ctip2+ or Cux1+). Displaying mean ± SEM.
E. Genes differentially expressed in Top1 cKO excitatory neurons significantly correlated with relative
change in excitatory neuron count across cortical regions (Spearman; FDR < 0.05).
F. ISH expression of S100a10 at P14 in the Allen Developing Mouse Brain Atlas (ADMBA) with the cortex
outlined and a corresponding sagittal section of Top1 cKO. (MOs: secondary motor area).
G. Flattened isocortex displaying percent change in excitatory neuron counts (i.e. Ctip2+ or Cux1+) in
Top1 cKO relative to WT.

Conditional Nf1 Deletion Induces a Brain Overgrowth Phenotype that Shares 
Similarities with Human MRI Results 
While the Top1 cKO model served as a suitable test case for applying NuMorph to study severe 
brain structure deficits, germline loss-of-function mutations in Top1 are highly deleterious and 
are extremely rare in humans (Karczewski et al., 2020). To further validate the utility of 
NuMorph for analyzing more subtle structural phenotypes in a disease-relevant animal model, 
we applied NuMorph to investigate Nf1 knockout models of Neurofibromatosis type I (NF1).  We 
generated two novel Nf1 conditional knockout mouse models with one (Nf1fl/+;Emx1-Cre) or both 
(Nf1fl/fl;Emx1-Cre) copies of the Nf1 gene conditionally deleted in dorsal telencephalic progenitor 
cells by Emx1 promoter-driven Cre-recombination (Gorski et al., 2002). We chose Emx1:Cre 
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mouse line because Cre recombinase activity can be detected as early as E10.5, 1 and 2 days 
earlier than Nestin:Cre (Tronche et al., 1999) and hGFAP-Cre lines (Zhuo et al., 2001), 
respectively. In addition, the expression of Cre recombinase in Emx1:Cre mice is highly 
restricted to the dorsal telencephalic progenitor cells that allows us to  investigate the cortex-
specific effect of Nf1 deletion. We found that bi-allelic Nf1 inactivation resulted in increased 
brain weight and decreased body weight compared to control and mono-allelic inactivation (Fig. 
S7A-C). The increase in brain weight is evident as early as P0, suggesting a possible alteration 
in cortical development at the embryonic stage, a time window which is critical for both cortical 
neurogenesis and gliogenesis. We sought to systematically characterize this brain overgrowth 
phenotype using NuMorph. 

Figure 5. Nf1 Deletion Induces Cortical Thickening Driven by Increased Numbers of  Non-
Excitatory Neuronal Cell-types. 
A. Optical sagittal sections of immunolabeled lower layer (Ctip2+) and upper layer (Cux1+) neurons in
P14 Ctrl, Nf1fl/+;Emx1-Cre, and Nf1fl/fl;Emx1-Cre brain hemispheres. Zoomed in regions of boxed cortical
areas near somatosensory cortex showing expected localization of upper and lower layer neurons.
Average cortical thickness (TH) measurements indicated for full 3D somatosensory volumes.
B. 3D rendering of cell nuclei in Ctrl, Nf1fl/+;Emx1-Cre, and Nf1fl/fl;Emx1-Cre brain hemispheres.
C. Flattened isocortex displaying percent change in cortical thickness in Nf1fl/fl;Emx1-Cre across 17 broad
regions and the full isocortex (Iso) compared to Ctrl. Significant regions are bolded (FDR<0.05) and
starred. Structure name abbreviations provided in Table S1.
D. Total isocortex counts of each cell-type class measured across all Nf1+/+, Nf1fl/+;Emx1-Cre, and
Nf1fl/fl;Emx1-Cre samples.

Ctrl Nf1fl/+

Emx1-Cre
Nf1fl/fl

Emx1-Cre

BA

C

Ctrl

Nf1fl/+;Emx1-Cre

Nf1fl/fl;Emx1-Cre

Cux1
Ctip2
TP3 1mm

L6

L5

L4

L2/3

L1

L6

L5

L4

L2/3

L1

L6

L5

L4

L2/3

L1

D
Cortical Thickness

Nf1fl/fl ;Emx1-Cre vs Ctrl 

0.0e+00

5.0e+06

1.0e+07

1.5e+07
To

ta
l C

el
l C

ou
nt

marker Ctip2+ Cux1+
Ctip2-/Cux1- TP3+

Ctrl
Nf1

fl/+ ;

Emx1
-C

re
Nf1

fl/f
l ;

Emx1
-C

re

1mm

R

LM
D

TH: 1.22 ± 0.08 mm

TH: 1.24 ± 0.05 mm

TH: 1.35 ± 0.09 mm

TP3

FRP

MO

SS

GU

VISC

AUD*

VIS*

ACA

PL ILA

ORB*

AI

RSP

PTLp*
TEa

PERI

ECT

-50 -25 0 +25 +50

Percent Change

Iso

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2020.09.11.293399doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293399
http://creativecommons.org/licenses/by-nd/4.0/


24 

We performed tissue clearing and whole brain imaging of six control, six heterozygous knockout 
(Nf1fl/+;Emx1-Cre), and six homozygous knockout (Nf1fl/fl;Emx1-Cre) brain hemispheres in 
littermate groups using the same Ctip2/Cux1 antibody panel as in the Top1 study. Nf1fl/fl;Emx1-
Cre showed typical localization of Ctip2+ lower layer neurons and Cux1+ upper layer neurons 
(Fig. 5A,B). Using NuMorph we also measured the average cortical thickness of 17 cortical 
regions and detected increased thickness in posterior regions such the visual (VIS), auditory 
(AUD), and posterior parietal association areas (PTLp) with slight cortical thinning in 
orbitofrontal (ORB) areas in the Nf1fl/fl;Emx1-Cre model (Fig. 5C). These differences bear a 
strikingly similar pattern to human MRI findings where patients with neurofibromatosis type 1 
were shown to have thicker occipital and thinner frontal cortices (Barkovich et al., 2018). Much 
of the increase in overall cortical thickness was driven by expansion of cortical layers 5 and 6 
(Fig. S7D). To identify which cell-types were leading to increased cortical thickness in these 
regions, we quantified the number of ToPro3+ nuclei throughout the cortex and found a 
noticeable increase in overall cell count in Nf1fl/fl;Emx1-Cre (25% increase, p = 0.011) that was 
largely attributed to greater numbers of Ctip2-/Cux1- non-excitatory neuron cell-types (50% 
increase, p = 0.001)  (Fig. 5D). No significant differences in global cortical cell count were 
observed in the heterozygous Nf1fl/+;Emx1-Cre model. 

Astrocytes and Oligodendrocytes Drive Increased Cortical Thickness in the Nf1fl/fl;Emx1-
Cre Model 
We further investigated which specific cell-types comprised the Ctip2-/Cux1- class of cells that 
was driving cortical expansion in the Nf1fl/fl;Emx1-Cre model and how these effects varied 
across cortical regions. We found broad increases in the proportion of Ctip2-/Cux1- cells 
throughout the cortex (40/44 structures FDR<0.05) with the greatest increases seen in posterior 
and medial areas such as the Retrosplenial, Auditory, and Visual cortices (Fig. 6A). As 
expected, regions with higher Ctip2-/Cux1- cell numbers showed a significant positive 
correlation with cortical thickness (Fig. S7E). To identify the specific cell-types within the Ctip2-
/Cux1- class, we focused on non-neuronal cell-types differentiated from the Emx1-Cre 
expressing lineage: astrocytes and oligodendrocytes . Based on previously estimated cell type 
proportions within the adult mouse brain (Erö et al., 2018), regions with larger increases in 
Ctip2-/Cux1- cell numbers in the Nf1fl/fl;Emx1-Cre model typically have a higher fraction of glial 
cell-types in the wild-type cortex (Fig. 6B), suggesting that the non-excitatory neuronal cells 
were glia. Furthemore, previous studies have shown inactivation of Nf1 results in aberrant 
proliferation of both astrocytes and oligodendrocytes (Bajenaru et al., 2001; Gutmann et al., 
1999; Hegedus et al., 2007; Wang et al., 2012). To confirm an expansion in glial cell numbers 
was present, we performed immunolabeling of P14 sections taken from the somatosensory 
cortex for Olig2 and GFAP, markers of oligodendrocytes and astrocytes, respectively, where we 
detected increased numbers of both Olig2+ and GFAP+ cells in this region (Fig. 6C-F). 
Combined with our measurements of cortical thickness, these results suggest that increased 
production of glial cell-types may explain the cellular mechanism that leads to increased 
thickness of posterior cortical regions observed in NF1 patients.  
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Figure 6. Nf1 Deletion Increases Production of Astrocytes and Oligodendrocytes Broadly 
Throughout the Cortex. 
A. Differences in relative proportion of non-excitatory neuronal cell-types (i.e. (Ctip2- & Cux1-)/ToPro3+)
across 43 cortical regions and the full isocortex (Iso) after Nf1 deletion. The top 15 regions sorted by
binned p-value and fold change are shown (Nf1fl/fl;Emx1-Cre vs. Ctrl, FDR<0.05). Flattened isocortex
displaying percent change in Nf1fl/fl;Emx1-Cre are shown on the right. Significant regions are bolded and
starred (FDR<0.05).
B. Association between estimated astrocyte and oligodendrocytes proportion across regions in the wild-
type cortex (Erö et al., 2018) and relative change in non-excitatory neuronal cell-types measured in
Nf1fl/fl;Emx1-Cre. (R: Pearson correlation coefficient).
C. Coronal slice visualization displaying percent change in cell count (left hemisphere) and FDR-adjusted
p values (right hemisphere) as measured by 3D analysis.

Nf1 Deletion Results in a Regionally-Specific Imbalance of Upper Layer and Lower 
Layer Neurons 
Finally, we looked at whether the proportion of Ctip2+ and/or Cux1+ excitatory neurons was 
altered across cortical regions following Nf1 deletion. While only a small number of regions were 
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significant for changes in raw cell count for either Ctip2 or Cux1 in Nf1fl/fl;Emx1-Cre compared to 
control, we detected stronger effects when normalizing individual counts by total cell number or 
by volume (Fig. 7A,B and Fig. S7G). In other words, alterations in cell-type distribution become 
more apparent when accounting for the increased rate of gliogenesis in the Nf1fl/fl;Emx1-Cre 
model. Across the entire cortex, we observed a significant reduction in the relative number of 
excitatory neurons following biallelic Nf1 deletion with a slightly greater reduction in the fractional 
proportion of Cux1+ neurons (35% decrease, p = 0.002, 19/44 structures FDR<0.05) compared 
to Ctip2+ neurons (24% decrease, p = 0.007, 30/44 structures FDR<0.05). The organization of 
upper layer barrel fields was also disrupted in the Nf1fl/fl;Emx1-Cre model (Fig. S7H), similar to 
previous work (Lush et al., 2008). In addition, we observed a strong inverse relationship in the 
change in Ctip2/Cux1 ratio where regions with a greater reductions in Cux1+ neurons saw lower 
reductions or increases in the number of Ctip2+ neurons, and vice versa. This negative 
correlation persists when comparing either total cell counts or cell density (Fig. 7C, and Fig. 
S7G). These opposing findings across the cortex show the utility of a whole brain imaging 
approach, because slices within specific regions may not be representative of all the effects. To 
further investigate whether upper layer neurogenesis is disrupted in the Nf1fl/fl;Emx1-Cre model, 
we performed EdU pulse labeling of E16.5 mice and quantified their differentiated progeny within 
P14 brain sections of somatosensory cortex (Fig. 7D). We saw a significant reduction of Satb2+ 
upper layer neurons co-labeled with EdU indicating decreased upper layer neurogenesis at 
E16.5. Considering the increase in gliogenesis seen in the Nf1fl/fl;Emx1-Cre mouse, this data 
suggests that Nf1 deletion may accelerate the brain’s developmental trajectory which can result 
in widely disparate effects on neuronal cell-type composition across cortical regions in the adult 
brain. 

Figure 7. Nf1 Deletion Alters Neuronal Cell-type Proportions in a Region-Specific Manner. 
A-B. Differences in relative proportion of Ctip2+ (A) and Cux1+ (B) cells across 43 cortical regions and the
full isocortex after Nf1 deletion. The top 15 structures sorted by binned p-value and fold change are

FRP

MOp
MOs

SSp-n*

SSp-bfd*
SSp-ll

SSp-m*

SSp-ul

SSp-tr*

SSp-un*

SSs*

GU*

VISC*

AUDd*
AUDp*

AUDpo

AUDv*

*VISal* VISam*

VISl*
VISp*

VISpl

VISpm*
VISli*

VISpor*

ACAd

ACAv

PL ILA*

ORBl

ORBm

ORBvl

AId*

AIp*

AIv

RSPagl*

RSPd*
RSPv

VISrl* VISa*TEa*

PERI*

ECT*

BA
FRP

MOp*
MOs*

SSp-n

SSp-bfd*
SSp-ll*

SSp-m

SSp-ul*

SSp-tr*

SSp-un*
SSs

GU

VISC

AUDd
AUDp

AUDv

ISalAUDpo*V VISam

VISl
VISp*

VISpl

VISpm*VISpor
VISli

ACAd*

ACAv*

PL ILA

ORBl

ORBm

ORBvl

AId

AIp

AIv

RSPagl*

RSPd*
RSPv*

VISrl VISaTEa

PERI*

ECT

VISa
RSPagl
VISrl
SSs

AUDp
AUDpo

GU
VISam
VISpm

AIp
TEa

AUDv
VISC
ECT
PERI

0.0 0.1 0.2 0.3 0.4 0.5
Relative Cell-type Proportion

Ctip2+ Cux1+

-100 -50 0 -50 +100

Percent Change

-100 -50 0 -50 +100

Percent Change

-log10(FDR 
adjusted p)

1.3

4

2.5

C

SSp-un
SSp-ul
VISp

RSPagl
AIv

SSp-tr
SSp-ll
RSPv
VISpm
PERI
MOs
Iso

RSPd
ACAd
ACAv

0.0 0.1 0.2 0.3 0.4 0.5
Relative Cell-type Proportion

0.0129

Ctrl

Nf1
fl/

N

+ ;
f

E
1
fl

m
/fl ;

x
E

1-
m

Cre

x1
-C

re
0

100

200

300

400

Ed
U

+ 
N

eu
ro

ns
 / 

1 
m

m
 C

or
tic

al
 C

ol
um

n

0.9994

0.0219

Ctrl

EdU
EdU
SATB2

fl/+Nf1    ;Emx1-CreD E

-log10(FDR 
adjusted p)

1.3

2.5

fl/flNf1    ;Emx1-Cre

200μm

E16.5

P14

EdU

IHC

2.0

R  = 0.68
p  = 1.2e-06

0

1

2

3

0.5 1.0 1.5
Relative Change in Ctip2+ Cells

R
el

at
iv

e 
C

ha
ng

e 
in

 C
ux

1+
 C

el
ls

Nf1fl/fl ;Emx1-Cre 
vs Ctrl

Iso Iso
Genotype

Nf1fl/fl;Emx1-Cre
Nf1fl/+;Emx1-Cre
Ctrl

Genotype

Nf1fl/fl;Emx1-Cre
Nf1fl/+;Emx1-Cre
Ctrl

Nf1fl/fl ;Emx1-Cre 
vs Ctrl

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2020.09.11.293399doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293399
http://creativecommons.org/licenses/by-nd/4.0/


27 

shown (Nf1fl/fl;Emx1-Cre vs. Ctrl, FDR<0.05). Flattened isocortex displaying percent change in 
Nf1fl/fl;Emx1-Cre are shown on the right. Significant regions are bolded and starred (FDR<0.05). 
C. Association between relative change in Ctip2+ and Cux1+ cell numbers across cortical regions in the
Nf1fl/fl;Emx1-Cre.
D. Representative 2D sections of 1mm cortical columns from P14 somatosensory cortex after EdU
injection at E16.5 showing colocalization with SATB2 (callosal projection neurons) immunolabeling in
upper layers.
E. Quantification of EdU+/SATB2+ cells within 1mm cortical columns in D. (n=3-5 animals, mean ± SEM).

Discussion 
Tissue clearing methods provide a unique opportunity to explore the cellular organization of the 
entire 3 dimensional brain structure. However, the current computational tools for analyzing cell-
types in tissue cleared images have either been applied to sparse cell populations where 
segmentation is less difficult (Renier et al., 2016; Yun et al., 2019) or taken advantage of tissue 
expansion and custom-built light sheet systems to increase spatial resolution (Matsumoto et al., 
2019; Murakami et al., 2018). Here, we present NuMorph, a computational pipeline for 
processing and quantifying nuclei within structures of the adult mouse brain acquired by 
conventional light-sheet fluorescence microscopy. 

In the course of developing NuMorph and an appropriate imaging protocol, a large emphasis 
was placed on outlining a reasonable compromise between cell detection accuracy, imaging 
time, and computational resources. With the imaging parameters used to resolve cortical nuclei 
in this study, WT brain hemispheres required 3-6 hours of imaging per channel, while end-to-
end processing and analysis using NuMorph required ~1 day with a GPU-equipped workstation. 
By training a 3D-Unet model on a diverse set of manually labeled nuclei from multiple imaging 
experiments, we were able to achieve effectively equivalent error rates at this resolution 
compared to 1.6x higher resolution (p = 0.91, 3D-Unet 0.75/3D-Unet 1.21; McNemar’s test) that 
would have otherwise required significantly longer imaging times and expanded data size by 
~4x for a whole hemisphere acquisition. We expect cell detection accuracy using the training 
dataset generated here will remain high for analyzing other brain regions with similar cell 
density, while supplementation with additional training data may be needed for denser 
structures such as the hippocampus. Furthermore, NuMorph provides additional features and 
flexibility such as (1) targeting analyses to specific structures after registration to avoid 
unnecessary computation time, (2) detecting cells directly by nuclear protein marker expression 
without DNA staining, and (3) classifying cell-types by cellular markers using either supervised 
or unsupervised methods. 

Top1 is critical for maintaining genomic stability and regulating the expression of long genes 
important for neuronal function (McKinnon, 2016). Recent evidence suggests that many of these 
same long genes contribute to neuronal diversity and have the greatest expression in the 
forebrain (Sugino et al., 2019). In the developing cortex, scRNA-seq studies found that L5 
neurons had higher long gene expression compared to neurons from other cortical layers (Loo 
et al., 2019). In this study, we found that Top1 deletion preferentially targeted many frontal 
areas with high L5 thickness, larger numbers of Ctip2+ lower layer neurons, and greater long 
gene expression. These effects likely occur much earlier than the time point studied here as 
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previous behavioural assays showed that severe motor deficits are present as early as P7 
(Fragola et al., 2020). Interestingly, inhibition of S100a10 - the gene most correlated with neuron 
loss - was recently shown to have a neuroprotective effect, delaying motor neuron loss in a 
mouse model amyotrophic lateral sclerosis (ALS) (García-Morales et al., 2019). Because Top1 
deletion results in multiple stress factors that negatively impact cell health, additional studies will 
be needed to disambiguate which mechanisms ultimately lead to biased degeneration of certain 
neuronal subtypes across brain regions.  
 
Human MRI studies have detected gross cortical structural differences in individuals with 
neuropsychiatric disorders as compared to neurotypical controls (van Erp et al., 2018). The 
cellular basis underlying these differences cannot be assessed with standard in vivo MRI, due to 
the low resolution and lack of cellular labels. Overall increases in brain size and regional 
variabilities in cortical thickness were previously detected in individuals with neurofibromatosis 
type 1 (Barkovich et al., 2018; Payne et al., 2010). To explain the cellular basis underlying those 
findings, we used an approach complementary to MRI in humans, 3D cellular resolution imaging 
in a mouse model. Our Nf1 knockout model exhibited a broad expansion in glial cell numbers 
that drove cortical thickness increases particularly in posterior regions which reproduced human 
MRI measurements. Numerous studies have reported increased glial cell proliferation following 
Nf1 inactivation in both animal models and human iPSC lines (Gutmann et al., 2017; Hegedus 
et al., 2007; Wang et al., 2012; Zhu et al., 2001). However, this is the first study, to our 
knowledge, that performs a systematic comparison of areal differences upon Nf1 inactivation 
and how these relate to changes in brain structure seen in patients with NF1. We also found 
striking areal differences in upper and lower layer neuron proportions upon Nf1 biallelic deletion 
in cortical neural progenitor cells early in development. This highlights the key advantages of 3D 
whole brain imaging over 2D sectioning as stereological analysis may lead to highly variable 
results based on the anatomical location from which tissue is sampled. Further coupling of 
immediate early gene immunolabeling with cleared tissue analysis could reveal how specific 
structure-function relationships are altered at a cellular level in the Nf1 and similar models 
(Renier et al., 2016, 2017; Ye et al., 2016). 
 
While NuMorph has proven to be effective in analyzing moderately dense tissues such as the 
adult mouse cortex, the development of additional computational tools may be required to 
pursue more challenging experimental designs. For example, structures in the embryonic brain 
are typically of much higher cell density and vary in gross morphology across developmental 
time, making both cell quantification and image registration more difficult. In addition, 
segmentation and mapping of fine structures, such as neuronal processes, can be challenging 
with limited imaging resolution. Technological improvements in the next generation of light-sheet 
systems can ultimately allow for quantitative interrogation of subcellular structures at high 
throughput (Migliori et al., 2018; Voleti et al., 2019). However, computational tools using deep 
neural networks have also proven to be effective in executing diverse segmentation tasks 
(Friedmann et al., 2020; Kirst et al., 2020; Schubert et al., 2019; Stringer et al., 2020) or even 
enhancing image quality (Weigert et al., 2018). Nevertheless, community-based efforts may be 
needed to generate sufficient annotation data for training deep learning models to accurately 
perform these tasks (Borland et al., 2021; Roskams and Popović, 2016). Together we hope 
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these new imaging and computational tools will lead to greater adoption of tissue clearing 
methods for quantitative analyses, rather than qualitative visualizations, of how the entire brain 
structure is changed by genetic or environmental risk factors for neuropsychiatric disorders. 
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