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Abstract 

Subsequent memory paradigms allow to identify neural correlates of successful encoding 

by separating brain responses as a function of memory performance during later retrieval. In 

functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of 

medial temporal lobe, prefrontal and parietal cortical structures in young, healthy participants. 

This categorical approach is, however, limited by insufficient memory performance in elderly 

and particularly memory-impaired individuals. A parametric modulation of encoding-related 

activations with memory confidence could overcome this limitation. Here, we applied cross-

validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual 

subsequent memory paradigm in young (18-35 years) and elderly (51-80 years) adults. Nested 

cvBMS revealed that parametric models, especially with non-linear transformations of 

memory confidence ratings, outperformed categorical models in explaining the fMRI signal 

variance during encoding. We thereby provide a framework for improving the modeling of 

encoding-related activations and for applying subsequent memory paradigms to memory-

impaired individuals. 
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1. Introduction 

 

The subsequent memory paradigm, the comparison of encoding-related brain responses to 

stimuli as a function of their later remembering or forgetting, is a widely used approach in 

neuroimaging research of human explicit and particularly, episodic, memory. The neural 

signatures that differentiate subsequently remembered from subsequently forgotten stimuli are 

commonly referred to as the DM effect (difference [due to later] memory; Paller et al., 1987). 

First employed in human event-related potential studies (Paller et al., 1987), the DM approach 

has been established as a key paradigm in event-related functional magnetic resonance 

imaging (fMRI) since the publication of two landmark studies over two decades ago (Brewer, 

1998; Wagner et al., 1998). Subsequently remembered stimuli elicit increased brain responses 

in the hippocampus and adjacent medial temporal lobe (MTL) structures as well as in 

prefrontal and occipito-parietal brain structures when compared to subsequently forgotten 

items, and these findings have been robustly replicated in numerous studies (for a meta-

analysis, see Kim, 2011). Over the past two decades, variations of the subsequent memory 

paradigm have been adapted to a variety of questions in cognitive memory research, like the 

common and distinct processes of implicit and explicit memory (Schott et al., 2006; Turk-

Browne et al., 2006), the dissociation of encoding processes related to later recollection and 

familiarity (Davachi et al., 2003; Henson et al., 1999), or the influence of different study tasks 

on neural correlates of encoding (Fletcher et al., 2003; Otten and Rugg, 2001). While most of 

those studies have been conducted in young, healthy adults, the DM paradigm has also been 

successfully applied to elderly adults (Düzel et al., 2011; for a review, see Maillet and Rajah, 

2014) or to clinical populations, such as patients with temporal lobe epilepsy (Richardson et 

al., 2003; Towgood et al., 2015) or schizophrenia (Bodnar et al., 2012; Zierhut et al., 2010). 

Episodic memory performance declines during normal aging, and memory deficits are a 

prominent symptom of Alzheimer’s disease (AD) (Buckner, 2004; Cansino, 2009; Rubin et 

al., 1998). Those observations at the behavioral level are mirrored by structural imaging 

findings showing age-related volume loss in the MTL (Raz et al., 2007) and pronounced MTL 

involvement in AD (Duara et al., 2008; Jack et al., 1998; Visser et al., 2002). To allow for 

early intervention, it is desirable to identify individuals developing AD at early clinical risk 

stages like subjective cognitive decline (SCD) or mild cognitive impairment (MCI) (Jessen et 

al., 2020). The DM paradigm might provide a useful tool in dissociating AD-related 

pathological changes from effects of normal aging, as previous studies suggest that age-

related changes in encoding-related brain activity differ between individuals with rather 
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preserved memory function (“successful aging”) and subjects with relevant age-related 

memory decline (Düzel et al., 2011; Maillet and Rajah, 2014). However, when applying the 

subsequent memory paradigm to memory-impaired subjects, a limitation arises from the fact 

that elderly subjects and particularly those with memory dysfunction often remember an 

insufficient number of stimuli to allow for a meaningful comparison of later remembered and 

later forgotten items, whereas young healthy participants might conversely achieve ceiling 

performance in easier memory tasks, rendering it equally difficult to infer on subsequent 

memory effects. 

In a typical fMRI study of memory encoding, the DM effect is experimentally evoked by 

presenting a subject with novel information (encoding) and assessing encoding success in a 

subsequent memory test (retrieval), which can be based on either recall (free or cued) or 

recognition. In recognition paradigms, previously presented (old) and previously unseen 

stimuli (new) are shown in random order, and subjects are asked whether they have seen an 

item during encoding or not. Some recognition memory tests do not merely rely on binary 

responses, but instead require subjects to provide a recognition confidence rating on a Likert 

scale (Likert, 1932) by, for example, judging items on a five-point scale from “definitely old” 

via “probably old”, “uncertain”, and “probably new” to “definitely new”. This approach has 

been used to infer on neural correlates of recognition, that is, familiarity (differentiation of 

old/new without reporting additional details from the encoding episode) and recollection 

(recognition memory accompanied by remembering of contextual details of the encoding 

episode) (Düzel et al., 2011; Schoemaker et al., 2014). When assuming that most elderly and 

even memory-impaired individuals exhibit at least some variability in responding on such a 

scale (e.g., from “definitely new” to “uncertain”), one could model the subsequent memory 

effect parametrically. While initially employed to assess fMRI-based DM effects prior to the 

availability of event-related fMRI (Fernández et al., 1998; Tendolkar et al., 1999), the 

parametric analysis of DM effects has also been applied to event-related designs, for example, 

in the comparison of true and false memory formation (Kim and Cabeza, 2007), in reward 

memory paradigms (Richter et al., 2017), and also in the investigation of age-related 

alterations of encoding processes (Dennis et al., 2008). 

To date, the use of parametric approaches in analyzing subsequent memory fMRI data 

has not undergone an objective validation. A parametric analysis would be based on the 

assumption that the BOLD signal in memory-related brain regions varies quantitatively rather 

than qualitatively with the strength of the encoding signal. It may therefore potentially be 

suboptimal when considering multi-process models of explicit memory, such as the dual-
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process signal detection model of recollection and familiarity (Yonelinas, 1994; Yonelinas et 

al., 2010). On the other hand, parametric models could outperform categorical models due to 

their lower complexity. Furthermore, when using confidence scales that allow for uncertain 

responses or guesses, parametric models might also be employed in memory-impaired 

subjects whose behavioral performance does not allow for meaningful categorical modeling 

of the DM effect. 

Here, we used an objective model selection approach to explore the applicability of 

parametric compared to categorical models of the fMRI subsequent memory effect, using a 

visual memory encoding task with a five-point confidence rating during a recognition 

memory test that has previously been employed to assess neural correlates of successful aging 

(Düzel et al., 2011, Fig. 1). Subject-wise general linear models (GLMs; Friston et al., 1994) of 

individual fMRI datasets were treated as generative models of neural information processing, 

and the selection between the different GLMs was afforded by voxel-wise cross-validated 

Bayesian model selection (cvBMS; Soch et al., 2016). We hypothesized that models including 

a differentiation of subsequently remembered and subsequently forgotten items would 

outperform models that did not account for memory performance and that among these 

models, parametric models would be superior to categorical models of successful encoding. 
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2. Methods 

 

2.1. Participants 

The study cohort consisted of a total of 245 neurologically and psychiatrically healthy 

adults, including 92 young (40 male, 52 female, age range 18-35, mean age 24.21 ± 4.078 

years) and 153 elderly (60 male, 93 female, age range 51-80, mean age 64.01 ± 6.782 years) 

participants. The study was approved by the Ethics Committee of the Otto von Guericke 

University Magdeburg, Faculty of Medicine, and written informed consent was obtained from 

all participants in accordance with the Declaration of Helsinki(World Medical Association, 

2013). 

 

2.2. Experimental paradigm 

During the fMRI experiment, participants performed a visual memory encoding paradigm 

with an indoor/outdoor judgment as the incidental encoding task (see Figure 1A). Compared 

to earlier publications of this paradigm (Assmann et al., 2020; Barman et al., 2014; Düzel et 

al., 2011; Schott et al., 2014), the trial timings had been adapted as part of the DELCODE 

protocol (Bainbridge et al., 2019; Düzel et al., 2019). Subjects viewed a series of photographs 

showing either an indoor or an outdoor scene, which were either novel to the participant at the 

time of presentation (44 indoor and 44 outdoor scenes) or were repetitions of two pre-

familiarized “master” images (i.e. one indoor and one outdoor scene shown to the participants 

before the start of the actual experiment; see Figure 1B). Irrespective of novelty, subjects 

were requested to categorize images as “indoor” or “outdoor” via button press. Each picture 

was presented for 2.5 s, followed by a variable delay between 0.70 s and 2.65 s (see Figure 

1C), with stimulus intervals and order optimized for an efficient estimation of the trial-

specific BOLD responses (Düzel et al., 2011; Hinrichs et al., 2000). 

Approximately 70 minutes (70.21 ± 3.89min) after the start of the fMRI session, subjects 

performed a recognition memory test outside the scanner, in which they were presented with 

photographs that had either been shown during the fMRI experiment or were novel to the 

participant at the time of presentation. Among the 134 pictures presented to each subject 

during retrieval, 88 were previously seen “target” images (44 indoor and 44 outdoor scenes), 

44 were previously unseen “distractor” images (22 indoor and 22 outdoor scenes), and 2 were 

the previously seen pre-familiarized “master” images (1 indoor and 1 outdoor scene). 

Subjects were requested to provide a recognition memory confidence rating using a five-

point Likert scale with the following levels: 
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(1) I am sure that this picture is new (definitely new). 

(2) I think that this picture is new (probably new). 

(3) I cannot decide if the picture is new or old (unsure). 

(4) I think I have seen this picture before (probably old). 

(5) I am sure that I have seen this picture before (definitely old). 

The responses during this retrieval session were provided verbally by the participant and 

recorded via button press by an experimenter. These data were used to model the DM effect 

(see Section 3). 

 

 

Figure 1. Experimental design and stimulus timing during encoding. (A) Exemplary 
sequence of trials, each trial consisting of either a previously unseen novel image or a pre-
familiarized master image and showing either an indoor or an outdoor scene. Each stimulus 
was shown for 2.5 s and followed by a variable inter-stimulus-interval (ISI) between 0.7 and 
2.65 s. (B) Number of trials in the four experimental conditions. There were equally many 
indoor and outdoor scences and twice as many novel images as repetitions of the two 
previously familiarized master images. (C) Distribution of ISIs in the encoding session. ISIs 
were pseudo-exponentially distributed with shorter intervals occurring more often than longer 
ones. 
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2.3. fMRI data acquisition 

Structural and functional MRI data were acquired on two Siemens 3T MR tomographs, 

(Siemens Verio; 60 young, 83 elderly; Siemens Skyra: 32 young, 70 elderly), following the 

exact same protocol used in the DELCODE study (Düzel et al., 2019; Jessen et al., 2018).1 

For structural MRI (sMRI), a T1-weighted MPRAGE image (TR = 2.5 s, TE = 4.37 ms, 

flip-α = 7°; 192 slices, 256 x 256 in-plane resolution, voxel size = 1 x 1 x 1 mm) was acquired 

for later co-registration. Phase and magnitude fieldmap images were acquired to improve 

spatial artifact correction (unwarping, see below). 

For functional MRI (fMRI), 206 T2*-weighted echo-planar images (TR = 2.58 s, TE = 30 

ms, flip-α = 80°; 47 slices, 64 x 64 in-plane resolution, voxel size = 3.5 x 3.5 x 3.5 mm) were 

acquired in interleaved-ascending slice order (1, 3, …, 47, 2, 4, …, 46). The total scanning 

time during the task-based fMRI session was approximately 530 s. The complete study 

protocol also included a resting-state fMRI (rs-fMRI) session comprising 180 scans and using 

the same scanning parameters as in task-based fMRI (Teipel et al., 2018) as well as additional 

structural imaging (FLAIR, FLASH, susceptibility-weighted imaging; see e.g. (Betts et al., 

2019), which are not subject of the analyses reported here. 

 

2.4. fMRI data preprocessing 

Data preprocessing and analysis were performed using Statistical Parametric Mapping 

(SPM12; Wellcome Trust Center for Neuroimaging, University College London, London, 

UK). First, functional scans (EPIs) were corrected for acquisition time delay (slice timing), 

followed by a correction for head motion (realignment) and magnetic field inhomogeneities 

(unwarping), using voxel-displacement maps (VDMs) derived from the fieldmaps. Then, the 

MPRAGE image was spatially co-registered to the mean unwarped image and segmented into 

six tissue types, using the unified segmentation and normalization algorithm implemented in 

SPM12. The resulting forward deformation parameters were used to normalize unwarped 

EPIs into a standard stereotactic reference frame (Montreal Neurological Institute, MNI) 

using a target voxel size of 3x3x3 mm. Finally, normalized images were spatially smoothed 

using an isotropic Gaussian kernel with full width at half maximum (FWHM) of 6 mm 

 

2.5. Bayesian model selection 

After preprocessing, fMRI data were analyzed using a set of first-level GLMs that 

                                                 
1 In future studies, the data from the young participants of the present study will serve as baseline data to 

investigate effects of aging and neurodegeneration. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.27.220871doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.220871
http://creativecommons.org/licenses/by-nc/4.0/


9 
 
 

 

provided the model space for the following model selection procedure (see Section 3). Model 

inference was performed via cvBMS (Soch et al., 2016) implemented in the SPM toolbox for 

model assessment, comparison and selection (MACS; Soch and Allefeld, 2018). Model 

inference either addressed individual GLMs, applied to voxel-wise cross-validated log model 

evidences (cvLME), or families of GLMs, applied to voxel-wise log family evidences (LFE) 

calculated from cvLMEs. 

At the second level, cvBMS uses random-effects Bayesian model selection (RFX BMS), 

a hierarchical Bayesian population proportion model, the results of which characterize how 

prevalent each model (or model family) is in the population investigated. A proportion 

resulting from cvBMS (e.g. the likeliest frequency, LF) – can be interpreted as (i) the 

frequency of the population “using” a particular model or as (ii) the probability that a 

particular model is the generating model of the data of a given single subject. Consequently, 

the model with the maximum LF outperforms all other models in terms of relative frequency 

and may be regarded as the selected model in a cvBMS analysis. For each analysis reported in 

the results section, we show LF-based selected-model maps (SMM) scaled between 0 and 1, 

which display the most prevalent model in each voxel (Soch et al., 2016). 

 

2.6. Replication in independent cohort 

The paradigm employed in the present study had previously been used in another cohort 

of 117 young subjects (Assmann et al., 2020; see Supplementary Online Material, Table S1 

and Figure S1). In the present study, we used those previously acquired datasets as an 

independent cohort for replication of the results obtained from the young subjects. All core 

findings could be replicated in that cohort, despite a small difference in trial timings. Results 

from the model selection analyses performed in the replication cohort are displayed in 

Supplementary Figures S3-S8, which are designed analogously to Figures 3-8 in the main 

manuscript. 

 

Figure 2 (see next page). Model space for GLM-based fMRI analyses. (A) 8 models 
without memory effects varying model features of no interest, namely modeled event duration 
(top), consideration of stimulus novelty (middle) and consideration of stimulus type (bottom). 
(B) 11 models varying by the way how memory effects are modeled. Each box represents a 
single first-level GLM; box coloring corresponds to colors used in Panels C and D; the box 
with red outline represents the model referred to as “baseline GLM” in Section 3. (C) 
Predicted signal change as a function of subsequent memory responses in the baseline GLM 
(red), the theoretical parametric GLMs (green) and the two-regressor categorical GLMs 
(blue). (D) Probabilities used as parametric modulators by empirical parametric GLMs. Error 
bars depict standard deviation (SD) across subjects; colors used in the plots correspond to box 
coloring in Panels A and B.  
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3. Analysis 
 

Preprocessed fMRI data were analyzed using first-level voxel-wise GLMs that were then 

submitted to cvBMS. In total, the model space consisted of 19 models (see Figure 2), varying 

in their modeled event duration, categorization of trials and modeling of the subsequent 

memory effect. 

 

3.1. The baseline model and variations of no interest 

In a first set of analyses, we specified and estimated a standard model, which was then 

modified along three dimensions to constitute a model space. This baseline model (also 

denoted as GLM_TD_0x1) included two onset regressors, one for novel images at the time of 

presentation (novelty regressor) and one for the two pre-familiarized images (master 

regressor). Both regressors were created as stimulus functions with an event duration f 2.5 s, 

convolved with the canonical hemodynamic response function, as implemented in SPM. 

Additionally, the model included the six rigid-body movement regressors obtained from 

realignment and a constant regressor representing the implicit baseline. 

The baseline GLM was varied along three modeling dimensions of no interest (see Figure 

2A) that served for control and validation purposes (see Section 4.1): 

• Stimulus-related brain responses can be either modeled according to the actual trial 

duration (TD) of 2.5 s (family GLMs_TD including the baseline GLM) or trials can be 

modeled as point events (PE) with a duration of 0 s, i.e. as delta functions (family 

GLMs_PE), resulting in narrower trial-specific BOLD responses in the HRF-convolved 

regressors. 

• Novel and master images can be either separated into two regressors (family GLMs_0 

including the baseline GLM) or events can be collapsed across these two conditions, 

yielding one single regressor (family GLMs_00). 

• Indoor and outdoor scenes can be either collected into one regressor (family GLMs_x1 

including the baseline GLM) or events can be grouped into indoor and outdoor stimuli, 

yielding two regressors per condition (family GLMs x2). 

Applying these three variations to the baseline GLM results in a model space of 23 = 8 

models (Figure 2A), which allows to infer on the optimal duration (0 s vs. 2.5 s), the novelty 

effect (novelty/master separated vs. collapsed) and the indoor/outdoor effect (indoor/outdoor 

separated vs. collapsed) by appropriate comparison of the model families (see Figure 3). 

 

3.2. Categorical memory models: two, three or five regressors 

Although the baseline GLM allows inferring on a novelty effect by contrasting novel 

images with master images, it does not assume a subsequent memory effect in any form, 

because memory performance was not taken into account. As the focus of our study was to 
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optimize the fMRI modeling of the DM effect, we focused all our subsequent analyses on 

models that included at least one subsequent memory regressor. We first compared the 

following GLMs (see Figure 2B):2 

• Following the classic subsequent memory approach, stimuli can be grouped into two 

categories, later remembered and later forgotten (GLMs_2), whereby definitely old and 

probably old responses are always considered remembered and definitely new and 

probably new responses are always categorized as forgotten. Neutral items with unsure 

responses can be either considered forgotten (GLM_2nf) or remembered (GLM_2nr) or 

randomly distributed between them (GLM_2ns), resulting in a model family with three 

models. 

• Another option is to group novel images into three categories: remembered (responses 4-

5), forgotten (responses 1-2), and neutral (response 3), yielding a model with three 

novelty regressors (GLM_3). 

• When all five response types are considered, this leads to a model with five novelty 

regressors (GLM_5), which allows to model neural correlates of recognition, familiarity or 

recollection by applying the appropriate contrast vectors (see Düzel et al., 2011, Fig. 1A). 

A limitation of this model (as well as of the model using three regressors) was that not all 

subjects made use of all five response options during retrieval, such that this model could 

not be estimated for all subjects and results in ineffective data usage. 

 

3.3. Parametric memory models: theoretical or empirical modulators 

Instead of assuming categorical effects of memory performance, models can also account 

for a possible parametric effect, such that the observed activity follows the levels (or a 

function of the levels) of a parametric variable (here: memory rating). This is implemented by 

collecting all novel images into one onset regressor and adding a parametric modulator (PM) 

describing the assumed modulation of the trial-specific HRF by successful encoding as 

assessed with subsequent memory performance (Figure 2B). In other words, these models add 

a trial-wise parametric regressor to the baseline GLM, which can be either theoretically 

informed (see Figure 2C) or empirically inferred (see Figure 2D). 

In the theoretical parametric models, a mathematical function of the subsequent memory 

report (x; responses 1-5) is applied to each item seen during the encoding session, yielding the 

parametric values modulating activity in the corresponding trials. Here, we implemented three 

plausible transformations: 

• GLM_1l: a linear-parametric model; PM = (x-3)/2; 

• GLM_1a: an arcsine-transformed parametric modulator; PM = arcsin[(x-3)/2] * (2/π); 
                                                 
2 Note that, from here on, the first number after “GLM” in a model name corresponds to the number of 

regressors used to describe the subsequent memory effect (see Figure 2B), i.e. GLM_0* = no memory regressor; 
GLM_1* = one memory regressor; GLM_2* = two memory regressors; etc. 
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• GLM_1s: a sine-transformed parametric modulator; PM = sin[(x-3)/2 * (π /2)]. 

All these transformations of x � {1, 2, 3, 4, 5} ensure that –1 ≤ PM ≤ +1, but they differ 

in their relative weighting of high confidence hits (5) and misses (1). In the linear-parametric 

model, the PM is proportional to x. The arcsine model puts a higher weight on definitely 

remembered (5) or forgotten (1) items compared with probably remembered (4) or forgotten 

(2) items, while the reverse is true for the sine model (see Figure 2C). 

Alternatively, one can take a more data-driven approach and derive parametric 

modulators empirically from the behavioral data obtained in the retrieval session. To this end, 

all stimuli presented during retrieval, either old (i.e. previously seen during encoding) or new, 

are considered along with their corresponding memory reports (x; responses 1-5) to calculate 

probabilities which can be used as parametric modulators, e.g.: 

• GLM_1ip: the inverse probability of subjects giving memory report x, given that an item 

was old, projected into the same range as above; PM = 2 Pr(x|old) – 1; 

• GLM_1cp: the conditional probability that at item was old, given memory report x, 

projected into the same range as above; PM = 2 Pr(old|x) – 1; 

• GLM_1lr: in this model, logistic regression was used to predict whether a stimulus was 

old, given a subject’s memory report x, and the estimated posterior probability function 

was used as the parametric modulator, i.e. PM = 2 pest(old|x) – 1. 

The resulting probabilities of all three models were normalized to the range –1 ≤ PM ≤ 

+1 to ensure comparability with the theoretical parametric memory models. While the 

theoretical parametric GLMs are based on assumptions regarding the mapping of subsequent 

memory response to predicted BOLD signals (see Figure 2C), the empirical parametric GLMs 

incorporate subject-wise information, namely the individual subjects’ behavioral data from 

the retrieval phase (see Figure 2D), which may improve model quality.  

For all parametric GLMs, orthogonalization of parametric regressors was disabled in 

SPM, in order not to influence the estimates of the novelty onset regressor (Mumford et al., 

2015). 
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4. Results 

 

For each GLM, a cross-validated log model evidence (cvLME) map was calculated, and 

these maps were submitted to group-level cross-validated Bayesian model selection (cvBMS) 

analyses (see Section 2.5). Each analysis represents a specific modeling question, and each 

modeling question was separately addressed in young subjects (age ≤ 35, N = 92) and in 

elderly subjects (age ≥ 50, N = 153). 

 

4.1. Effects of event duration, novelty and stimulus type 

As a preliminary analysis step, we only considered the eight models without a subsequent 

memory effect, i.e. variations of the “baseline model” (see Section 3.1, Figure 2A). This 

allowed us to compare (i) point-event models vs. stimulus-duration models, to choose the 

optimal event duration, (ii) models that did or did not distinguish between novel and master 

images, to infer on the importance of the novelty effect in our models, and (iii) models that 

did or did not separate indoor and outdoor scenes, to assess the importance of considering this 

stimulus feature in an optimal model. Importantly, all of these analyses addressed model 

space dimensions of no interest. This means they served as sanity checks for logfile analysis 

and statistical modeling as well as validation of the memory paradigm (Düzel et al., 2011) and 

the cvBMS methodology (Soch et al., 2016). 

First, we found that in both young and elderly participants, GLMs using an event duration 

of 2.5 s were preferred throughout the grey matter whereas white matter voxels are better 

described by GLMs using point events (see Figure 3A). Presumably, this was an indirect 

result of the absence of task-related signal in white matter, such that simpler models (i.e., the 

GLMs assuming fewer processes) were selected automatically. Notably, the superiority of the 

trial duration models in grey matter was observed despite the fact that, due to the short inter-

stimulus-intervals (see Section 2.2 and Figure 1C), regressors were more strongly correlated 

with each other when using a longer event duration. 

Second, we observed that GLMs distinguishing between novel and master images 

outperformed GLMs not doing so throughout large portions of the occipital, parietal, and 

temporal lobes, extending into the bilateral parahippocampal cortex and hippocampus as well 

as the dorsolateral and rostral prefrontal cortex (see Figure 3B), brain structures that are 

typically considered to constitute the human memory network (Jeong et al., 2015). 

Third, cvBMS revealed that GLMs distinguishing between indoor and outdoor images 

outperformed GLMs not doing so in medial and lateral parts of the visual cortex (see Figure 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.27.220871doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.220871
http://creativecommons.org/licenses/by-nc/4.0/


3C). Given the limited extent of clusters in the visual cortex favoring a separation of indoor 

and outdoor scenes and the aim of our study to optimize the modeling of the subsequent 

memory effect rather than perceptual processes, we decided not to include this additional 

modeling dimension. 

Guided by the results of our preliminary analyses, we performed all memory-related 

model comparisons with GLMs using the actual trial length as event duration and separating 

images into novel and master, but not indoor and outdoor images. 

 

 

Figure 3. Effects of event duration, novelty and stimulus type. (A) Selected-model maps 
in favor of GLMs with stimulus length as event duration over point events. (B) Selected-
model maps in favor of GLMs including a novelty effect. (C) Selected-model maps in favor 
of GLMs assuming an indoor/outdoor effect. Voxels displayed show the respective model 
preferences in young subjects (red) or elderly subjects (blue) or both groups (magenta). 
Selected-model maps display model frequencies and color intensities range from 0 to 1. 

 

4.2. Effects of subsequent memory and number of regressors 

To address the effects of modeling subsequent memory on model quality, we calculated 

the log family evidence for all GLMs assuming any type of memory effect (categorical or 

parametric) and contrasted them against the log model evidence of the baseline GLM 

(assuming no memory effect). This analysis, i.e. identifying voxels in which models 
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considering later memory collectively outperform the no-memory model, yielded 

considerably different results in young versus elderly subjects (see Figure 5): In young 

subjects, including a subsequent memory modulation led to an improved model fit in a set of 

brain regions that largely overlapped with those showing a superiority of the model family 

accounting for novelty (see Figure 3B and Section 4.1), including the dorsolateral prefrontal 

cortex (dlPFC), posterior cingulate cortex (PCC), precuneus (PreCun), lateral partietal 

cortices, portions of the ventral visual stream, and also the MTL (parahippocampal cortex and 

hippocampus). In elderly subjects, we observed qualitatively similar effects, but in a smaller 

number of voxels, and not in the dlPFC and parahippocampal cortex (see Figure 4A). 

 

 

Figure 4. Effects of subsequent memory and number of regressors. (A) Selected-model 
maps in favor of GLMs modeling memory using one or two regressors, as obtained from 
young subjects (red), elderly subjects (blue) or both (magenta). (B) Significant linear contrasts 
of the number of regressors used to describe memory (X) on the log Bayes factor comparing 
models with X regressors against the baseline GLM, obtained in the global maxima of the 
respective conjunction contrasts, i.e. right middle occipital gyrus (MOG) in young subjects 
(red) and left MOG in elderly subjects (blue). 

 

Among the GLMs modeling subsequent memory, we additionally tested for the influence 

of the number of regressors used to model the subsequent memory effect, which increases 

from the parametric memory models (1 parametric modulator per model; see Section 3.3) to 
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the categorical memory models (2, 3 or 5 regressors; see Section 3.2). To this end, we 

calculated the LFE for each of these model families and subtracted the LME of the baseline 

GLM to compute log Bayes factors (LBF) maps in favor of memory models against a no-

memory model. These LBF maps were then subjected to a one-way ANOVA model with the 

within-subject factor number of regressors, which has 4 levels (1, 2, 3, 5). There was a main 

effect of number of regressors throughout the whole brain (p < 0.05, FWE-corrected; data not 

shown). When performing a conjunction analysis between (i) a contrast of GLMs_1 and 

GLMs_2 against baseline and (ii) a t-contrast linearly decreasing with number of regressors, 

we identified a parietal region that exhibited model quality gradients (see Figure 4B). These 

showed that only GLMs with one or two memory regressors outperformed the no-memory 

model whereas GLMs with three or five regressors were not significantly different from the 

null model or performed even worse, especially in the elderly subjects (Figure 4B). 

 

4.3. Parametric versus categorical subsequent memory models 

The analyses described above indicate that parametric GLMs with one parametric 

modulator describing subsequent memory (GLMs_1) and categorical GLMs using two 

regressors for remembered vs. forgotten items (GLMs_2) perform best in regions previously 

implicated in successful memory formation (Kim, 2011). Treating these GLMs as model 

families, i.e. calculating log family evidences, and comparing the two families via group-level 

cvBMS, we observed a preference for parametric GLMs throughout the memory network (see 

Figure 5A), in regions largely overlapping with those that also showed a novelty effect (see 

Figure 3B and Section 4.1) and a memory effect (see Figure 4A and Section 4.2). The 

preference for parametric models could be observed in both age groups. 

Within the family of parametric memory models, we additionally compared theoretical 

GLMs (GLMs 1th) to empirical GLMs (GLMs 1emp). Comparing these two sub-families via 

group-level cvBMS, we observed an almost whole-brain preference for the empirical GLMs 

(see Figure 5B). 
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Figure 5. Parametric vs. categorical models of the subsequent memory effect. (A) 
Selected-model maps in favor of parametric GLMs against categorical GLMs. (B) Selected-
model maps in favor of empirical parametric GLMs against theoretical parametric GLMs. 
Voxels displayed show the respective model preferences in young subjects (red) or elderly 
subjects (blue) or both groups (magenta). 

 

4.4. Winning models within model families 

The group-level results presented so far all refer to model families, i.e. sets of models 

whose collective quality was quantified via log family evidences calculated from log model 

evidences. This way, we have identified the three best performing families of GLMs: two-

regressor categorical GLMs (GLMs_2), theoretical parametric GLMs (GLMs_1th), and 

empirical parametric GLMs (GLMs_1emp). The final step of our model selection procedure 

was to test how models compared within these families, which was addressed by subjecting 

the respective cvLME maps to group-level cvBMS. 

Within the GLMs_2 family, the GLM categorizing neutral items with don’t know 

responses (3) as forgotten (GLM_2nf) performed best in the majority of voxels (Figure 6A) 

when compared with the GLM categorizing those items as remembered (GLM_2nr) or 

randomly distributing them among remembered and forgotten items (GLM_2ns). 

Within the GLMs_1th family, the GLM with the arcsine-transformed memory report as 

parametric modulator (GLM_1a) performed best in most voxels (Figure 6B) when compared 

with a sine (GLM_1s) or a linear (GLM_1l) transformation. 

Within the GLMs_1empfamily, the GLM with the inverse probability p(x|old) as 

parametric modulator (GLM_1ip) performed best in most voxels (Figure 6C) when compared 

with the conditional probability p(old|x) (GLM_1cp) or logistic regression (GLM_1lr). 
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Figure 6. Winning models within model families. (A) Selected-model maps in favor of 
the GLM treating neutral images as forgotten items within the two-regressor categorical 
GLMs. (B) Selected-model maps favoring the GLM using an arcsine-transformed parametric 
modulator among the theoretical parametric GLMs. (C) Selected-model maps in favor of the 
GLM using an inverse probability parametric modulator within the empirical parametric 
GLMs. Voxels displayed show the respective model preferences in young subjects (red) or 
elderly subjects (blue) or both groups (magenta). 

 

Overall, within-family differences were smaller than between-family differences, as 

indicated by lower likeliest frequencies (LFs) on the selected-model maps (cf. Figure 6 vs. 

Figure 3), reflecting more subtle modeling modifications within versus between families and 

age-related activation differences being larger in between-family comparisons. 

 

Figure 7 (see next page). Model (family) comparisons (summary). (A) and (B) Selected-
model maps (young subjects) in favor of GLMs assuming a novelty effect (red; see Figure 
3B), a memory effect (blue; see Figure 4A), parametric vs. categorical memory effects (green; 
see Figure 5A) or an arcsine-shaped subsequent memory effect vs. other theoretical models 
(magenta; see Figure 6B). In most voxels with preference for parametric GLMs, there was 
also a preference for the arcsine model. (C) and (D) The corresponding selected-model maps 
from elderly subjects. (E) Proportion of voxels in which a model or family was selected 
(young subjects). “X within Y” is to be read as “probability that X was the selected family 
among voxels in which Y was the selected family”. (F) Same proportions as in E, obtained 
from elderly subjects. 
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4.5. Novelty and memory parameter estimates 

The aforementioned analyses provide information about the models that best explain the 

BOLD signal in memory-related brain regions. They do, however, thus far not provide any 

information about the directionality, strength, or significance of the actual DM effect in the 

respective brain structures. To assess how the results of our model selection relate to group-

level GLM results, we conducted second-level significance tests across the parameter 

estimates of the novelty and memory regressors from the three models identified as selected 

models in the three families that were performing best (see Figure 6). Replicating previous 

results (Kim, 2011; Maillet and Rajah, 2014), we observed memory-related activation 

differences in a temporo-parieto-occipital network and portions of the dlPFC (see Figure 8).3 

 

4.6. Replication in an independent cohort 

Using the data from an independent replication cohort of young, healthy subjects 

(Assmann et al., 2020; Barman et al., 2014; Schott et al., 2014), we performed the analyses as 

described above. Performing these analyses using LME images from the additional cohort, we 

were largely able to replicate our results, sometimes with remarkable overlap between original 

and replication cohort (see Supplementary Figure S3), and sometimes with even stronger 

evidence for the most often selected model (see Supplementary Figure S6). Results from the 

replication cohort are displayed in Supplementary Figures S3-S8. 

 

Figure 8 (see next page). Exemplary statistical parametric maps. On the second level, a 
one-sample t-test was run across parameter estimates obtained from young subjects (red) and 
elderly subjects (blue) for (A) the novelty contrast (novelty vs. master images) and (B) the 
memory regressor of the theoretical-parametric GLM using the arcsine-transformed PM, (C) 
the memory regressor of the empirical-parametric GLM using the inverse probability PM and 
(D) the memory contrast resulting from a two-regressor categorical GLM categorizing neutral 
responses as forgotten. In SPM, statistical inference was corrected for multiple comparisons 
(FWE, p < 0.05, k = 10), resulting in critical F-values for thresholding of SPMs (young: F > 
27.56; elderly: F > 25.93). Color maps are scaled from the critical F-value to the maximum F-
value in each map, in units of the natural logarithm (see color bars). 

 

                                                 
3 Please note that the analyses of the DM effect were limited to F-contrasts in order to verify the overall 

applicability of the winning models. Detailed analyses of the subsequent memory effects, with a particular focus 
on age-related differences, are beyond the scope of the current study and will be reported elsewhere. 
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5. Discussion 

We have applied cross-validated Bayesian model selection (Soch et al., 2016), a novel 

method for principled comparison between GLMs for fMRI data, to a previously described 

version of the subsequent memory paradigm (Düzel et al., 2011) in two large samples of 

young and elderly adults. By using the cvBMS approach, we have identified several ways to 

improve the modeling of subsequent memory effects in fMRI. 

 

5.1. Optimal statistical modeling of subsequent memory effects 

A key finding from our model selection was the preference of parametric over categorical 

GLMs of the fMRI subsequent memory effect (see Figures4B, 5A and7). At the model family 

level, GLMs with one memory regressor, a parametric modulator, outperformed GLMs with 

two, three or five memory regressors categorizing the events of interest. A core property of 

the cvLME approach is that it balances model accuracy and model complexity. With respect 

to our present analyses, this means that the categorical models allow for fitting more diverse 

activation patterns across memory reports, thereby achieving a higher accuracy when fitting 

the data. On the downside, their ability to generalize is rather limited, particularly when there 

is a low number of events in a given response category. In such cases, categorical models may 

fit tiny, but spurious irregularities between memory reports, indicating that they are not only 

more complex than necessary, but also prone to overfitting the data. On the other hand, 

parametric models are more parsimonious requiring only a single memory regressor, and thus 

are less likely to overfit the data. 

The low complexity of the parametric models relies on the assumption that the measured 

response is parametric in nature, a pattern that is often observed when stimulus intensity or a 

similar property is varied across more than two levels (Bogler et al., 2013; Soch et al., 2016, 

Fig. 3B; Soch et al., 2020, Fig. 8C). The question whether this assumption is met in the case 

of successful episodic memory encoding touches an intense debate in the memory research 

community that has been ongoing for decades. Several researchers have argued for a 

qualitative distinction of recollection and familiarity that is mirrored by a hierarchical 

architecture of the MTL memory system, with the hippocampus subserving context-rich, 

recollection-based memory, whereas rote, familiarity-based recognition memory relies on the 

perirhinal and parahippocampal cortices (Vargha-Khadem et al., 2001; Yonelinas et al., 

2010). The alternative view emphasizes common processes in episodic and semantic memory 

and the high overlap between recollection and high-confidence familiarity, with activity of the 
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MTL showing a quantitative rather than qualitative relationship with memory strength (Squire 

et al., 2007; Wixted and Squire, 2011).  

The preference for parametric models observed in our cvBMS analysis seems, at first 

sight, to be more in line with the second view. It must, on the other hand, also be noted that, 

within the family of parametric memory models, non-linear transformations of subsequent 

memory performed better at describing the measured hemodynamic signals during memory 

encoding than a simple linear parametric modulation of the novelty regressor with memory 

confidence ratings. At the level of single models, the ones using the arcsine-transformed PM 

(theoretical) and the inverse probability PM (empirical) were favored by cvBMS. Both 

models put a high weight on stimuli recognized with high confidence (response “5”) relative 

to low-confidence recognition (response “4”). In the case of the inverse probability GLM, the 

group average (see Figure 2B, left) even suggests that the entire DM effect might by driven by 

a difference between high-confidence hits and all other conditions, which would essentially 

correspond to the recollection estimate proposed in the original publication of the paradigm 

used here (Düzel et al., 2011). In a supplementary analysis directly comparing the arcsine-

transformed PM against the inverse probability PM, we found that model quality differences 

were rather unspecific within the human memory network, but that there were systematic age 

differences in cortical midline structures, with young subjects preferring the arcsine-

transformed GLM and elderly subjects favoring the inverse probability GLM (see Figure S2). 

It must be emphasized that, even though the group average of the inverse probability PM 

is suggestive of a bias towards encoding predicting high-confidence memory, the very 

definition of this PM based on individual behavioral data allows for very different weighting 

of the response options at the level of single subjects. It can therefore also be employed in 

individuals with poor memory and largely absent recollection. On the downside, PMs with 

substantially different weighting might be difficult to compare at the group level. In this case, 

the model using the arcsine-transformed PM may be preferable. 

 

5.2. Model preferences and age-related differences in the human memory network 

Beyond the preference of a specific model of the DM effect, an overarching trend in our 

model selection results relates to the repeated observation of a distributed memory network in 

model preferences (see Figure 7A): When comparing regions with a novelty effect, regions 

with a subsequent memory effect and regions preferring parametric over categorical GLMs, 

there was a pronounced convergence of model preferences in multiple brain regions 

previously implicated in successful memory encoding (Kim, 2011), such as lateral and medial 
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parietal cortices (e.g., PreCun), inferior temporal areas extending into the MTL with the 

hippocampus and parahippocampal cortex, as well as the dlPFC. 

While there was overall convergence of brain regions exhibiting the same model 

preferences for novelty and subsequent memory across the entire study sample, this 

convergence was less pronounced in the elderly participants. On the one hand, there were 

almost no age differences in model preference regarding novelty (see Figure 3B), i.e. in both 

young and elderly participants, the model accounting for stimulus novelty significantly 

outperformed the model using a single regressor for all images. On the other hand, a 

considerable difference between age groups emerged with respect to subsequent memory 

effects (see Figure 4A). Here, the elderly participants showed a preference for models 

accounting for the DM effect in substantially fewer voxels and brain regions compared to the 

young group. Most likely because subsequent memory effects are generally weaker in elderly 

subjects, memory models also perform weaker when compared against the baseline GLM 

assuming no memory effect (see Figure 4B). In extreme cases, this can even mean that very 

complex models, such as the five-category GLM in the present study, may perform 

significantly worse than the memory null model, because the latter is prone to overfitting 

neural responses, which in turn decreases its generalizability. 

We cannot exclude that even less complex categorical models may be inferior to a simple 

novelty-based model assuming no memory effect in participants with very poor memory, such 

as patients with early or pre-clinical Alzheimer’s disease. However, ongoing data analyses 

suggest that the DM effect may exhibit more extensive and robust differences between young 

and elderly individuals when compared to the novelty effect (J.S., A.R., J.K. and B.S., 

unpublished observations). In such situations, we suggest that the use of a relatively simple 

parametric model may provide a reasonable tradeoff between model complexity and utility. 

 

5.3. Limitations 

One limitation of the present approach is that any parametric model assumes an at least 

monotonic relationship between memory confidence and brain activation patterns. Evidently, 

such a relationship is plausible for any model assuming increasing memory strength as a 

function of increasing MTL engagement (Wixted and Squire, 2011), but it can also be 

applicable to hierarchical models of memory performance when considering, for example, 

that recollection is highly correlated with high memory confidence and accompanied by an 

additional familiarity signal (Yonelinas et al., 2010).However, caution is necessary as 

confidence and recognition accuracy may not necessarily be correlated under all 
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circumstances (Busey et al., 2000). Furthermore, the assumption of a monotonic relationship 

will likely be violated when applying single-process models that also include implicit memory 

processes like priming (Berry et al., 2012).For example, previous studies have demonstrated 

encoding-related activations predicting explicit memory, but de-activations predicting priming 

in the fusiform gyrus (Schott et al., 2006), and a possibly reverse pattern in the right temporo-

parietal junction (Schott et al., 2006; Uncapher and Wagner, 2009; Wimber et al., 2010). 

 

5.4. Conclusions 

Our results suggest that a systematic model selection approach favors parametric over 

categorical models in first-level GLM-based analysis of the fMRI subsequent memory effect. 

While it would be, in our view, premature to draw a conclusion with respect to hierarchical 

versus single-process models of explicit memory function in the human memory network 

based on these results, our results do provide a strong rationale for the use of parametric 

models in studies focusing on between-group differences, particularly in elderly humans and 

individuals with impaired memory performance. 
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