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Abstract

Subsequent memory paradigms allow to identify neural correlates of successful encoding
by separating brain responses as a function of memory performance during later retrieval. In
functional magnetic resonance imaging (fMRI), the paradigm typicaly elicits activations of
medial temporal |obe, prefrontal and parietal cortical structures in young, healthy participants.
This categorical approach is, however, limited by insufficient memory performance in elderly
and particularly memory-impaired individuals. A parametric modulation of encoding-related
activations with memory confidence could overcome this limitation. Here, we applied cross-
validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual
subsequent memory paradigm in young (18-35 years) and elderly (51-80 years) adults. Nested
cvBMS revedled that parametric models, especialy with non-linear transformations of
memory confidence ratings, outperformed categorical models in explaining the fMRI signal
variance during encoding. We thereby provide a framework for improving the modeling of
encoding-related activations and for applying subsequent memory paradigms to memory-

impaired individuals.
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1. Introduction

The subsequent memory paradigm, the comparison of encoding-related brain responses to
stimuli as a function of their later remembering or forgetting, is a widely used approach in
neuroimaging research of human explicit and particularly, episodic, memory. The neural
signatures that differentiate subsequently remembered from subsequently forgotten stimuli are
commonly referred to as the DM effect (difference [due to later] memory; Paller et al., 1987).
First employed in human event-related potential studies (Paller et al., 1987), the DM approach
has been established as a key paradigm in event-related functional magnetic resonance
imaging (fMRI) since the publication of two landmark studies over two decades ago (Brewer,
1998; Wagner et a., 1998). Subsequently remembered stimuli elicit increased brain responses
in the hippocampus and adjacent medial temporal lobe (MTL) structures as well as in
prefrontal and occipito-parietal brain structures when compared to subsequently forgotten
items, and these findings have been robustly replicated in numerous studies (for a meta-
analysis, see Kim, 2011). Over the past two decades, variations of the subsequent memory
paradigm have been adapted to a variety of questions in cognitive memory research, like the
common and distinct processes of implicit and explicit memory (Schott et al., 2006; Turk-
Browne et al., 2006), the dissociation of encoding processes related to later recollection and
familiarity (Davachi et al., 2003; Henson et al., 1999), or the influence of different study tasks
on neura correlates of encoding (Fletcher et al., 2003; Otten and Rugg, 2001). While most of
those studies have been conducted in young, healthy adults, the DM paradigm has also been
successfully applied to elderly adults (Diizel et al., 2011; for a review, see Maillet and Rajah,
2014) or to clinical populations, such as patients with temporal lobe epilepsy (Richardson et
al., 2003; Towgood et al., 2015) or schizophrenia (Bodnar et al., 2012; Zierhut et a., 2010).

Episodic memory performance declines during normal aging, and memory deficits are a
prominent symptom of Alzheimer’s disease (AD) (Buckner, 2004; Cansino, 2009; Rubin et
al., 1998). Those observations at the behavioral level are mirrored by structural imaging
findings showing age-related volume lossin the MTL (Raz et al., 2007) and pronounced MTL
involvement in AD (Duara et al., 2008; Jack et a., 1998; Visser et al., 2002). To allow for
early intervention, it is desirable to identify individuals developing AD at early clinical risk
stages like subjective cognitive decline (SCD) or mild cognitive impairment (MCI) (Jessen et
al., 2020). The DM paradigm might provide a useful tool in dissociating AD-related
pathological changes from effects of norma aging, as previous studies suggest that age-
related changes in encoding-related brain activity differ between individuals with rather
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preserved memory function (“successful aging”’) and subjects with relevant age-related
memory decline (DUzel et al., 2011; Maillet and Rajah, 2014). However, when applying the
subsequent memory paradigm to memory-impaired subjects, a limitation arises from the fact
that elderly subjects and particularly those with memory dysfunction often remember an
insufficient number of stimuli to allow for a meaningful comparison of later remembered and
later forgotten items, whereas young healthy participants might conversely achieve ceiling
performance in easier memory tasks, rendering it equally difficult to infer on subsequent
memory effects.

In atypical fMRI study of memory encoding, the DM effect is experimentally evoked by
presenting a subject with novel information (encoding) and assessing encoding success in a
subsequent memory test (retrieval), which can be based on either recall (free or cued) or
recognition. In recognition paradigms, previously presented (old) and previously unseen
stimuli (new) are shown in random order, and subjects are asked whether they have seen an
item during encoding or not. Some recognition memory tests do not merely rely on binary
responses, but instead require subjects to provide a recognition confidence rating on a Likert
scale (Likert, 1932) by, for example, judging items on a five-point scale from “definitely old”
via “probably old”, “uncertain”, and “probably new” to “definitely new”. This approach has
been used to infer on neural correlates of recognition, that is, familiarity (differentiation of
old/new without reporting additional details from the encoding episode) and recollection
(recognition memory accompanied by remembering of contextual details of the encoding
episode) (Duzel et a., 2011; Schoemaker et al., 2014). When assuming that most elderly and
even memory-impaired individuals exhibit at least some variability in responding on such a
scale (e.g., from “definitely new” to “uncertain”), one could model the subsequent memory
effect parametrically. While initially employed to assess fMRI-based DM effects prior to the
availability of event-related fMRI (Fernandez et al., 1998; Tendolkar et al., 1999), the
parametric analysis of DM effects has also been applied to event-related designs, for example,
in the comparison of true and false memory formation (Kim and Cabeza, 2007), in reward
memory paradigms (Richter et al., 2017), and aso in the investigation of age-related
alterations of encoding processes (Dennis et al., 2008).

To date, the use of parametric approaches in analyzing subsequent memory fMRI data
has not undergone an objective validation. A parametric analysis would be based on the
assumption that the BOLD signal in memory-related brain regions varies quantitatively rather
than qualitatively with the strength of the encoding signal. It may therefore potentialy be

suboptimal when considering multi-process models of explicit memory, such as the dual-
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process signal detection model of recollection and familiarity (Y onelinas, 1994; Yonelinas et
al., 2010). On the other hand, parametric models could outperform categorical models due to
their lower complexity. Furthermore, when using confidence scales that alow for uncertain
responses or guesses, parametric models might also be employed in memory-impaired
subjects whose behavioral performance does not allow for meaningful categorical modeling
of the DM effect.

Here, we used an objective model selection approach to explore the applicability of
parametric compared to categorical models of the fMRI subsequent memory effect, using a
visual memory encoding task with a five-point confidence rating during a recognition
memory test that has previously been employed to assess neural correlates of successful aging
(Duzel et al., 2011, Fig. 1). Subject-wise general linear models (GLMs; Friston et al., 1994) of
individual fMRI datasets were treated as generative models of neural information processing,
and the selection between the different GLMs was afforded by voxel-wise cross-validated
Bayesian model selection (cvBMS; Soch et al., 2016). We hypothesized that models including
a differentiation of subsequently remembered and subsequently forgotten items would
outperform models that did not account for memory performance and that among these

models, parametric models would be superior to categorical models of successful encoding.
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2. Methods

21. Participants

The study cohort consisted of a total of 245 neurologically and psychiatrically healthy
adults, including 92 young (40 male, 52 female, age range 18-35, mean age 24.21 + 4.078
years) and 153 elderly (60 male, 93 female, age range 51-80, mean age 64.01 + 6.782 years)
participants. The study was approved by the Ethics Committee of the Otto von Guericke
University Magdeburg, Faculty of Medicine, and written informed consent was obtained from
all participants in accordance with the Declaration of Helsinki(World Medical Association,
2013).

2.2. Experimental paradigm

During the fMRI experiment, participants performed avisua memory encoding paradigm
with an indoor/outdoor judgment as the incidental encoding task (see Figure 1A). Compared
to earlier publications of this paradigm (Assmann et a., 2020; Barman et al., 2014; Diuzel et
al., 2011; Schott et al., 2014), the trial timings had been adapted as part of the DELCODE
protocol (Bainbridge et al., 2019; Dizel et al., 2019). Subjects viewed a series of photographs
showing either an indoor or an outdoor scene, which were either novel to the participant at the
time of presentation (44 indoor and 44 outdoor scenes) or were repetitions of two pre-
familiarized “master” images (i.e. one indoor and one outdoor scene shown to the participants
before the start of the actual experiment; see Figure 1B). Irrespective of novelty, subjects
were requested to categorize images as “indoor” or “outdoor” via button press. Each picture
was presented for 2.5 s, followed by a variable delay between 0.70 s and 2.65 s (see Figure
1C), with stimulus intervals and order optimized for an efficient estimation of the trial-
specific BOLD responses (Dtizel et al., 2011; Hinrichs et a., 2000).

Approximately 70 minutes (70.21 + 3.89min) after the start of the fMRI session, subjects
performed a recognition memory test outside the scanner, in which they were presented with
photographs that had either been shown during the fMRI experiment or were novel to the
participant at the time of presentation. Among the 134 pictures presented to each subject
during retrieval, 88 were previously seen “target” images (44 indoor and 44 outdoor scenes),
44 were previously unseen “distractor” images (22 indoor and 22 outdoor scenes), and 2 were
the previously seen pre-familiarized “master” images (1 indoor and 1 outdoor scene).

Subjects were regquested to provide a recognition memory confidence rating using a five-
point Likert scale with the following levels:
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(1) I am sure that this picture is new (definitely new).
(2) | think that this picture is new (probably new).
(3) | cannot decide if the pictureis new or old (unsure).
(4) 1 think | have seen this picture before (probably old).
(5) I am sure that | have seen this picture before (definitely old).
The responses during this retrieval session were provided verbally by the participant and
recorded via button press by an experimenter. These data were used to model the DM effect
(see Section 3).

novelimage B indoor | outdoor
(indoor)

novel 44 44

fixation delay

master 22 22

masterimage
(indoor)

fixation delay
novelimage
(outdoor)

fixation delay

C .
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Figure 1. Experimental design and stimulus timing during encoding. (A) Exemplary
sequence of trials, each trial consisting of either a previously unseen novel image or a pre-
familiarized master image and showing either an indoor or an outdoor scene. Each stimulus
was shown for 2.5 s and followed by a variable inter-stimulus-interval (1SI) between 0.7 and
2.65 s. (B) Number of trials in the four experimental conditions. There were equally many
indoor and outdoor scences and twice as many novel images as repetitions of the two
previously familiarized master images. (C) Distribution of ISIs in the encoding session. 1SIs
were pseudo-exponentially distributed with shorter intervals occurring more often than longer
ones.
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2.3. fMRI data acquisition

Structural and functional MRI data were acquired on two Siemens 3T MR tomographs,
(Siemens Verio; 60 young, 83 elderly; Siemens Skyra: 32 young, 70 elderly), following the
exact same protocol used in the DELCODE study (Diizel et al., 2019; Jessen et a., 2018).

For structural MRI (sSMRI), a T1-weighted MPRAGE image (TR =25 s, TE = 4.37 ms,
flip-a. = 7°; 192 slices, 256 x 256 in-plane resolution, voxel size= 1 x 1 x 1 mm) was acquired
for later co-registration. Phase and magnitude fieldmap images were acquired to improve
spatial artifact correction (unwar ping, see below).

For functional MRI (fMRI), 206 T2*-weighted echo-planar images (TR =2.58 s, TE = 30
ms, flip-a = 80°; 47 slices, 64 x 64 in-plane resolution, voxel size = 3.5 x 3.5 x 3.5 mm) were
acquired in interleaved-ascending slice order (1, 3, ..., 47, 2, 4, ..., 46). The total scanning
time during the task-based fMRI session was approximately 530 s. The complete study
protocol also included aresting-state fMRI (rs-fMRI) session comprising 180 scans and using
the same scanning parameters as in task-based fMRI (Teipel et al., 2018) as well as additional
structural imaging (FLAIR, FLASH, susceptibility-weighted imaging; see e.g. (Betts et al.,
2019), which are not subject of the analyses reported here.

24. fMRI data preprocessing

Data preprocessing and analysis were performed using Statistical Parametric Mapping
(SPM12; Wellcome Trust Center for Neuroimaging, University College London, London,
UK). First, functional scans (EPIs) were corrected for acquisition time delay (slice timing),
followed by a correction for head motion (realignment) and magnetic field inhomogeneities
(unwarping), using voxel-displacement maps (VDMs) derived from the fieldmaps. Then, the
MPRAGE image was spatially co-registered to the mean unwarped image and segmented into
six tissue types, using the unified segmentation and normalization algorithm implemented in
SPM12. The resulting forward deformation parameters were used to normalize unwarped
EPIs into a standard stereotactic reference frame (Montreal Neurological Institute, MNI)
using a target voxel size of 3x3x3 mm. Finally, normalized images were spatially smoothed

using an isotropic Gaussian kernel with full width at half maximum (FWHM) of 6 mm

25. Bayesian mode selection
After preprocessing, fMRI data were analyzed using a set of first-level GLMs that

! In future studies, the data from the young participants of the present study will serve as baseline data to
investigate effects of aging and neurodegeneration.
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provided the model space for the following model selection procedure (see Section 3). Model
inference was performed via cvBMS (Soch et a., 2016) implemented in the SPM toolbox for
model assessment, comparison and selection (MACS; Soch and Allefeld, 2018). Model
inference either addressed individual GLMs, applied to voxel-wise cross-validated log model
evidences (cvLME), or families of GLMs, applied to voxel-wise log family evidences (LFE)
calculated from cvLMEs.

At the second level, cvBM S uses random-effects Bayesian model selection (RFX BMYS),
a hierarchical Bayesian population proportion model, the results of which characterize how
prevalent each model (or model family) is in the population investigated. A proportion
resulting from cvBMS (e.g. the likeliest frequency, LF) — can be interpreted as (i) the
frequency of the population “using” a particular model or as (ii) the probability that a
particular model is the generating model of the data of a given single subject. Consequently,
the model with the maximum LF outperforms all other models in terms of relative frequency
and may be regarded as the selected model in acvBM S analysis. For each analysis reported in
the results section, we show LF-based selected-model maps (SMM) scaled between 0 and 1,
which display the most prevalent model in each voxel (Soch et a., 2016).

2.6. Replication in independent cohort

The paradigm employed in the present study had previously been used in another cohort
of 117 young subjects (Assmann et a., 2020; see Supplementary Online Material, Table S1
and Figure S1). In the present study, we used those previously acquired datasets as an
independent cohort for replication of the results obtained from the young subjects. All core
findings could be replicated in that cohort, despite a small difference in trial timings. Results
from the model selection analyses performed in the replication cohort are displayed in
Supplementary Figures S3-S8, which are designed analogously to Figures 3-8 in the main

manuscript.

Figure 2 (see next page). Model space for GLM-based fMRI analyses. (A) 8 models
without memory effects varying model features of no interest, namely modeled event duration
(top), consideration of stimulus novelty (middle) and consideration of stimulus type (bottom).
(B) 11 models varying by the way how memory effects are modeled. Each box represents a
single first-level GLM; box coloring corresponds to colors used in Panels C and D; the box
with red outline represents the model referred to as “baseline GLM” in Section 3. (C)
Predicted signal change as a function of subsequent memory responses in the baseline GLM
(red), the theoretical parametric GLMs (green) and the two-regressor categorical GLMs
(blue). (D) Probabilities used as parametric modulators by empirical parametric GLMs. Error
bars depict standard deviation (SD) across subjects; colors used in the plots correspond to box
coloring in Panels A and B.
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3. Analysis

Preprocessed fMRI data were analyzed using first-level voxel-wise GLMs that were then
submitted to cvBMS. In total, the model space consisted of 19 models (see Figure 2), varying
in their modeled event duration, categorization of trials and modeling of the subsequent
memory effect.

3.1. Thebasdine mode and variations of no interest
In afirst set of analyses, we specified and estimated a standard model, which was then

modified along three dimensions to constitute a model space. This baseline model (also

denoted as GLM_TD_0x1) included two onset regressors, one for novel images at the time of
presentation (novelty regressor) and one for the two pre-familiarized images (master

regressor). Both regressors were created as stimulus functions with an event duration f 2.5 s,

convolved with the canonical hemodynamic response function, as implemented in SPM.

Additionally, the model included the six rigid-body movement regressors obtained from

realignment and a constant regressor representing the implicit baseline.

The baseline GLM was varied along three modeling dimensions of no interest (see Figure
2A) that served for control and validation purposes (see Section 4.1):

e Stimulus-related brain responses can be either modeled according to the actua trial
duration (TD) of 2.5 s (family GLMs_TD including the baseline GLM) or trials can be
modeled as point events (PE) with a duration of O s, i.e. as delta functions (family
GLMs_PE), resulting in narrower trial-specific BOLD responses in the HRF-convolved
regressors.

e Novel and master images can be either separated into two regressors (family GLMs 0
including the baseline GLM) or events can be collapsed across these two conditions,
yielding one single regressor (family GLMs_00).

e |Indoor and outdoor scenes can be either collected into one regressor (family GLMs x1
including the baseline GLM) or events can be grouped into indoor and outdoor stimuli,
yielding two regressors per condition (family GLMs x2).

Applying these three variations to the baseline GLM results in a model space of 2° = 8
models (Figure 2A), which allows to infer on the optimal duration (0 svs. 2.5 s), the novelty
effect (novelty/master separated vs. collapsed) and the indoor/outdoor effect (indoor/outdoor
separated vs. collapsed) by appropriate comparison of the model families (see Figure 3).

3.2. Categorical memory models: two, threeor fiveregressors
Although the baseline GLM allows inferring on a novelty effect by contrasting novel
images with master images, it does not assume a subsequent memory effect in any form,
because memory performance was not taken into account. As the focus of our study was to
11
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optimize the fMRI modeling of the DM effect, we focused all our subsequent analyses on

models that included at least one subsequent memory regressor. We first compared the

following GLMs (see Figure 2B):?

e Following the classic subsequent memory approach, stimuli can be grouped into two
categories, later remembered and later forgotten (GLMs_2), whereby definitely old and
probably old responses are aways considered remembered and definitely new and
probably new responses are always categorized as forgotten. Neutral items with unsure
responses can be either considered forgotten (GLM_2nf) or remembered (GLM_2nr) or
randomly distributed between them (GLM_2ns), resulting in a model family with three
models.

e Another option is to group novel images into three categories: remembered (responses 4-
5), forgotten (responses 1-2), and neutral (response 3), yielding a model with three
novelty regressors (GLM_3).

e When al five response types are considered, this leads to a model with five novelty
regressors (GLM_5), which allows to model neural correlates of recognition, familiarity or
recollection by applying the appropriate contrast vectors (see Duzel et al., 2011, Fig. 1A).
A limitation of this model (as well as of the model using three regressors) was that not all
subjects made use of al five response options during retrieval, such that this model could
not be estimated for all subjects and results in ineffective data usage.

3.3. Parametric memory models: theoretical or empirical modulators

Instead of assuming categorical effects of memory performance, models can also account
for a possible parametric effect, such that the observed activity follows the levels (or a
function of the levels) of a parametric variable (here: memory rating). Thisis implemented by
collecting all novel images into one onset regressor and adding a parametric modulator (PM)
describing the assumed modulation of the trial-specific HRF by successful encoding as
assessed with subsequent memory performance (Figure 2B). In other words, these models add
a trial-wise parametric regressor to the baseline GLM, which can be either theoretically
informed (see Figure 2C) or empirically inferred (see Figure 2D).

In the theoretical parametric models, a mathematical function of the subsequent memory
report (x; responses 1-5) is applied to each item seen during the encoding session, yielding the
parametric values modulating activity in the corresponding trials. Here, we implemented three
plausible transformations:

e GLM_1I: alinear-parametric model; PM = (x-3)/2;
e GLM_la: an arcsine-transformed parametric modulator; PM = arcsin[(x-3)/2] * (2/n);

2 Note that, from here on, the first number after “GLM” in a model name corresponds to the number of
regressors used to describe the subsequent memory effect (see Figure 2B), i.e. GLM_0* = no memory regressor;
GLM_1* = one memory regressor; GLM_2* = two memory regressors, etc.

12
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e GLM_1s: asine-transformed parametric modulator; PM = sin[(x-3)/2 * (n /2)].

All these transformations of x 1 {1, 2, 3, 4, 5} ensure that =1 < PM < +1, but they differ
in their relative weighting of high confidence hits (5) and misses (1). In the linear-parametric
model, the PM is proportiona to x. The arcsine model puts a higher weight on definitely
remembered (5) or forgotten (1) items compared with probably remembered (4) or forgotten
(2) items, while the reverse is true for the sine model (see Figure 2C).

Alternatively, one can take a more data-driven approach and derive parametric
modulators empirically from the behavioral data obtained in the retrieval session. To this end,
all stimuli presented during retrieval, either old (i.e. previously seen during encoding) or new,
are considered along with their corresponding memory reports (x; responses 1-5) to calculate
probabilities which can be used as parametric modulators, e.g.:

e GLM_1ip: the inverse probability of subjects giving memory report x, given that an item
was old, projected into the same range as above; PM = 2 Pr(x|old) — 1;

e GLM_I1cp: the conditiona probability that at item was old, given memory report X,
projected into the same range as above; PM = 2 Pr(old|x) — 1,

e GLM_1Ir: in this model, logistic regression was used to predict whether a stimulus was
old, given a subject’s memory report x, and the estimated posterior probability function
was used as the parametric modulator, i.e. PM = 2 peg(0ld|x) — 1.

The resulting probabilities of all three models were normalized to the range -1 < PM <
+1 to ensure comparability with the theoretical parametric memory models. While the
theoretical parametric GLMs are based on assumptions regarding the mapping of subsequent
memory response to predicted BOLD signals (see Figure 2C), the empirical parametric GLMs
incorporate subject-wise information, namely the individual subjects’ behavioral data from
the retrieval phase (see Figure 2D), which may improve model quality.

For al parametric GLMs, orthogonalization of parametric regressors was disabled in
SPM, in order not to influence the estimates of the novelty onset regressor (Mumford et al.,
2015).
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4. Results

For each GLM, a cross-validated log model evidence (cvLME) map was calculated, and
these maps were submitted to group-level cross-validated Bayesian model selection (cvBMYS)
analyses (see Section 2.5). Each analysis represents a specific modeling question, and each
modeling question was separately addressed in young subjects (age < 35, N = 92) and in
elderly subjects (age> 50, N = 153).

4.1. Effects of event duration, novelty and stimulustype

As apreliminary analysis step, we only considered the eight models without a subsequent
memory effect, i.e. variations of the “baseline model” (see Section 3.1, Figure 2A). This
allowed us to compare (i) point-event models vs. stimulus-duration models, to choose the
optimal event duration, (ii) models that did or did not distinguish between novel and master
images, to infer on the importance of the novelty effect in our models, and (iii) models that
did or did not separate indoor and outdoor scenes, to assess the importance of considering this
stimulus feature in an optimal model. Importantly, all of these analyses addressed model
space dimensions of no interest. This means they served as sanity checks for logfile analysis
and statistical modeling as well as validation of the memory paradigm (Duzel et a., 2011) and
the cvBMS methodology (Soch et al., 2016).

First, we found that in both young and elderly participants, GLMs using an event duration
of 2.5 s were preferred throughout the grey matter whereas white matter voxels are better
described by GLMs using point events (see Figure 3A). Presumably, this was an indirect
result of the absence of task-related signal in white matter, such that simpler models (i.e., the
GLMs assuming fewer processes) were selected automatically. Notably, the superiority of the
trial duration models in grey matter was observed despite the fact that, due to the short inter-
stimulus-intervals (see Section 2.2 and Figure 1C), regressors were more strongly correlated
with each other when using a longer event duration.

Second, we observed that GLMs distinguishing between novel and master images
outperformed GLMs not doing so throughout large portions of the occipital, parietal, and
temporal lobes, extending into the bilateral parahippocampal cortex and hippocampus as well
as the dorsolateral and rostral prefrontal cortex (see Figure 3B), brain structures that are
typically considered to constitute the human memory network (Jeong et al., 2015).

Third, cvBMS revealed that GLMs distinguishing between indoor and outdoor images

outperformed GLMs not doing so in medial and lateral parts of the visual cortex (see Figure
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3C). Given the limited extent of clusters in the visual cortex favoring a separation of indoor
and outdoor scenes and the aim of our study to optimize the modeling of the subsequent
memory effect rather than perceptua processes, we decided not to include this additional
modeling dimension.

Guided by the results of our preliminary anayses, we performed al memory-related
model comparisons with GLMs using the actual trial length as event duration and separating

images into novel and master, but not indoor and outdoor images.

Model family comparisons in m young subjects and m elderly subjects with m overlap.

Analysis 3: GLMs separating indoor and outdoor scenes vs. GLMs not separating.

Figure 3. Effects of event duration, novelty and stimulus type. (A) Selected-model maps
in favor of GLMs with stimulus length as event duration over point events. (B) Selected-
model maps in favor of GLMs including a novelty effect. (C) Selected-model maps in favor
of GLMs assuming an indoor/outdoor effect. Voxels displayed show the respective model
preferences in young subjects (red) or elderly subjects (blue) or both groups (magenta).
Selected-model maps display model frequencies and color intensities range from 0 to 1.

4.2. Effectsof subsequent memory and number of regressors

To address the effects of modeling subsequent memory on model quality, we calculated
the log family evidence for all GLMs assuming any type of memory effect (categorical or
parametric) and contrasted them against the log model evidence of the baseline GLM

(assuming no memory effect). This analysis, i.e. identifying voxels in which models
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considering later memory collectively outperform the no-memory model, vyielded
considerably different results in young versus elderly subjects (see Figure 5): In young
subjects, including a subsequent memory modulation led to an improved model fit in a set of
brain regions that largely overlapped with those showing a superiority of the model family
accounting for novelty (see Figure 3B and Section 4.1), including the dorsolateral prefrontal
cortex (dIPFC), posterior cingulate cortex (PCC), precuneus (PreCun), lateral partietal
cortices, portions of the ventral visual stream, and also the MTL (parahippocampal cortex and
hippocampus). In elderly subjects, we observed qualitatively similar effects, but in a smaller

number of voxels, and not in the dIPFC and parahippocampal cortex (see Figure 4A).

Model family comparisons in m young subjects and m elderly subjects with m overlap.

Analysis 4a: GLMs assuming memory effect vs. GLMs without memory effect.
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Analysis 4b: GLMs with 1 vs. 2 vs. 3 vs. 5 regressors describing memory effect.

Figure 4. Effects of subsequent memory and number of regressors. (A) Selected-model
maps in favor of GLMs modeling memory using one or two regressors, as obtained from
young subjects (red), elderly subjects (blue) or both (magenta). (B) Significant linear contrasts
of the number of regressors used to describe memory (X) on the log Bayes factor comparing
models with X regressors against the baseline GLM, obtained in the global maxima of the
respective conjunction contrasts, i.e. right middle occipital gyrus (MOG) in young subjects
(red) and left MOG in elderly subjects (blue).

Among the GLMs modeling subsequent memory, we additionally tested for the influence
of the number of regressors used to model the subsequent memory effect, which increases

from the parametric memory models (1 parametric modulator per model; see Section 3.3) to
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the categorical memory models (2, 3 or 5 regressors; see Section 3.2). To this end, we
calculated the LFE for each of these model families and subtracted the LME of the baseline
GLM to compute log Bayes factors (LBF) maps in favor of memory models against a no-
memory model. These LBF maps were then subjected to a one-way ANOV A model with the
within-subject factor number of regressors, which has 4 levels (1, 2, 3, 5). There was amain
effect of number of regressors throughout the whole brain (p < 0.05, FWE-corrected; data not
shown). When performing a conjunction analysis between (i) a contrast of GLMs 1 and
GLMs 2 against baseline and (ii) a t-contrast linearly decreasing with number of regressors,
we identified a parietal region that exhibited model quality gradients (see Figure 4B). These
showed that only GLMs with one or two memory regressors outperformed the no-memory
model whereas GLMs with three or five regressors were not significantly different from the

null model or performed even worse, especially in the elderly subjects (Figure 4B).

4.3. Parametric versus categorical subsequent memory models

The analyses described above indicate that parametric GLMs with one parametric
modulator describing subsequent memory (GLMs 1) and categorical GLMs using two
regressors for remembered vs. forgotten items (GLMs_2) perform best in regions previously
implicated in successful memory formation (Kim, 2011). Treating these GLMs as model
families, i.e. calculating log family evidences, and comparing the two families via group-level
cvBMS, we observed a preference for parametric GLMs throughout the memory network (see
Figure 5A), in regions largely overlapping with those that also showed a novelty effect (see
Figure 3B and Section 4.1) and a memory effect (see Figure 4A and Section 4.2). The
preference for parametric models could be observed in both age groups.

Within the family of parametric memory models, we additionally compared theoretical
GLMs (GLMs 1th) to empirical GLMs (GLMs 1lemp). Comparing these two sub-families via
group-level cvBM S, we observed an ailmost whole-brain preference for the empirical GLMs

(see Figure 5B).
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Model family comparisons in m young subjects and m elderly subjects with = overlap.

Analysis 6: empirical parametric GLMs vs. theoretical parametric GLMs.

Figure 5. Parametric vs. categorical models of the subsequent memory effect. (A)
Selected-model maps in favor of parametric GLMs against categorical GLMs. (B) Selected-
model maps in favor of empirical parametric GLMs against theoretical parametric GLMs.
Voxels displayed show the respective model preferences in young subjects (red) or elderly
subjects (blue) or both groups (magenta).

4.4. Winning modelswithin model families

The group-level results presented so far al refer to model families, i.e. sets of models
whose collective quality was quantified via log family evidences calculated from log model
evidences. This way, we have identified the three best performing families of GLMs:. two-
regressor categorical GLMs (GLMs 2), theoretical parametric GLMs (GLMs_1th), and
empirical parametric GLMs (GLMs_1emp). The final step of our model selection procedure
was to test how models compared within these families, which was addressed by subjecting
the respective cvL ME maps to group-level cvBMS.

Within the GLMs 2 family, the GLM categorizing neutral items with don’t know
responses (3) as forgotten (GLM_2nf) performed best in the majority of voxels (Figure 6A)
when compared with the GLM categorizing those items as remembered (GLM_2nr) or
randomly distributing them among remembered and forgotten items (GLM_2ns).

Within the GLMs_1th family, the GLM with the arcsine-transformed memory report as
parametric modulator (GLM_1a) performed best in most voxels (Figure 6B) when compared
with asine (GLM_1s) or alinear (GLM_1l) transformation.

Within the GLMs_lempfamily, the GLM with the inverse probability p(xjold) as
parametric modulator (GLM_1ip) performed best in most voxels (Figure 6C) when compared
with the conditional probability p(old|x) (GLM_1cp) or logistic regression (GLM_1Ir).


https://doi.org/10.1101/2020.07.27.220871
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.220871; this version posted July 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Model family comparisons in m young subjects and = elderly subjects with = overlap.

Analysis 9: GLM “inverse probability“ vs. “conditional probability” vs. “logistic regression®.

Figure 6. Winning models within model families. (A) Selected-model maps in favor of
the GLM treating neutral images as forgotten items within the two-regressor categorical
GLMs. (B) Selected-model maps favoring the GLM using an arcsine-transformed parametric
modulator among the theoretical parametric GLMs. (C) Selected-model maps in favor of the
GLM using an inverse probability parametric modulator within the empirical parametric
GLMs. Voxels displayed show the respective model preferences in young subjects (red) or
elderly subjects (blue) or both groups (magenta).

Overall, within-family differences were smaller than between-family differences, as
indicated by lower likeliest frequencies (LFs) on the selected-model maps (cf. Figure 6 vs.
Figure 3), reflecting more subtle modeling modifications within versus between families and
age-related activation differences being larger in between-family comparisons.

Figure 7 (see next page). Model (family) comparisons (summary). (A) and (B) Selected-
model maps (young subjects) in favor of GLMs assuming a novelty effect (red; see Figure
3B), amemory effect (blue; see Figure 4A), parametric vs. categorical memory effects (green;
see Figure 5A) or an arcsine-shaped subsequent memory effect vs. other theoretical models
(magenta; see Figure 6B). In most voxels with preference for parametric GLMs, there was
also a preference for the arcsine model. (C) and (D) The corresponding selected-model maps
from elderly subjects. (E) Proportion of voxels in which a model or family was selected
(young subjects). “X within Y” is to be read as “probability that X was the selected family
among voxels in which Y was the selected family”. (F) Same proportions as in E, obtained
from elderly subjects.
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Model and family comparisonsin young subjects.

Voxels with m novelty effect, m memory effect, m preference for parametric vs. categorical GLMs.

Voxels with preference for m parametric GLMs, m arcsin memory regressor and o overlap.

Model and family comparisonsin elderly subjects.

Voxels with m novelty effect, m memory effect, m preference for parametric vs. categorical GLMs.

Voxels with preference for m parametric GLMs, m arcsin memory regressor and o overlap.
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45. Novelty and memory parameter estimates

The aforementioned analyses provide information about the models that best explain the
BOLD signal in memory-related brain regions. They do, however, thus far not provide any
information about the directionality, strength, or significance of the actual DM effect in the
respective brain structures. To assess how the results of our model selection relate to group-
level GLM results, we conducted second-level significance tests across the parameter
estimates of the novelty and memory regressors from the three models identified as selected
models in the three families that were performing best (see Figure 6). Replicating previous
results (Kim, 2011; Maillet and Rajah, 2014), we observed memory-related activation

differences in a temporo-parieto-occipital network and portions of the dIPFC (see Figure 8).2

4.6. Replication in an independent cohort

Using the data from an independent replication cohort of young, healthy subjects
(Assmann et a., 2020; Barman et al., 2014; Schott et al., 2014), we performed the analyses as
described above. Performing these analyses using LM E images from the additional cohort, we
were largely able to replicate our results, sometimes with remarkable overlap between original
and replication cohort (see Supplementary Figure S3), and sometimes with even stronger
evidence for the most often selected model (see Supplementary Figure S6). Results from the
replication cohort are displayed in Supplementary Figures S3-S8.

Figure 8 (see next page). Exemplary statistical parametric maps. On the second level, a
one-sample t-test was run across parameter estimates obtained from young subjects (red) and
elderly subjects (blue) for (A) the novelty contrast (novelty vs. master images) and (B) the
memory regressor of the theoretical-parametric GLM using the arcsine-transformed PM, (C)
the memory regressor of the empirical-parametric GLM using the inverse probability PM and
(D) the memory contrast resulting from a two-regressor categorical GLM categorizing neutral
responses as forgotten. In SPM, statistical inference was corrected for multiple comparisons
(FWE, p < 0.05, k = 10), resulting in critical F-values for thresholding of SPMs (young: F >
27.56; elderly: F> 25.93). Color maps are scaled from the critical F-value to the maximum F-
value in each map, in units of the natural logarithm (see color bars).

% Please note that the analyses of the DM effect were limited to F-contrasts in order to verify the overall
applicability of the winning models. Detailed analyses of the subsequent memory effects, with a particular focus
on age-related differences, are beyond the scope of the current study and will be reported elsewhere.

21


https://doi.org/10.1101/2020.07.27.220871
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.220871; this version posted July 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Statistical parametric maps from = young subjects and = elderly subjects with = overlap.
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5. Discussion

We have applied cross-validated Bayesian model selection (Soch et al., 2016), a novel
method for principled comparison between GLMs for fMRI data, to a previously described
version of the subsequent memory paradigm (Duzel et al., 2011) in two large samples of
young and elderly adults. By using the cvBMS approach, we have identified several ways to
improve the modeling of subsequent memory effectsin fMRI.

5.1. Optimal statistical modeling of subsequent memory effects

A key finding from our model selection was the preference of parametric over categorical
GLMs of the fMRI subsequent memory effect (see Figures4B, 5A and7). At the model family
level, GLMs with one memory regressor, a parametric modulator, outperformed GLMs with
two, three or five memory regressors categorizing the events of interest. A core property of
the cvLME approach is that it balances model accuracy and model complexity. With respect
to our present analyses, this means that the categorical models allow for fitting more diverse
activation patterns across memory reports, thereby achieving a higher accuracy when fitting
the data. On the downside, their ability to generalize is rather limited, particularly when there
is alow number of eventsin a given response category. In such cases, categorical models may
fit tiny, but spurious irregularities between memory reports, indicating that they are not only
more complex than necessary, but also prone to overfitting the data. On the other hand,
parametric models are more parsimonious requiring only a single memory regressor, and thus
are less likely to overfit the data.

The low complexity of the parametric models relies on the assumption that the measured
response is parametric in nature, a pattern that is often observed when stimulus intensity or a
similar property is varied across more than two levels (Bogler et al., 2013; Soch et al., 2016,
Fig. 3B; Soch et al., 2020, Fig. 8C). The question whether this assumption is met in the case
of successful episodic memory encoding touches an intense debate in the memory research
community that has been ongoing for decades. Several researchers have argued for a
qualitative distinction of recollection and familiarity that is mirrored by a hierarchical
architecture of the MTL memory system, with the hippocampus subserving context-rich,
recollection-based memory, whereas rote, familiarity-based recognition memory relies on the
perirhinal and parahippocampal cortices (Vargha-Khadem et a., 2001; Yonelinas et al.,
2010). The alternative view emphasi zes common processes in episodic and semantic memory

and the high overlap between recollection and high-confidence familiarity, with activity of the
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MTL showing a quantitative rather than qualitative relationship with memory strength (Squire
et a., 2007; Wixted and Squire, 2011).

The preference for parametric models observed in our cvBMS analysis seems, at first
sight, to be more in line with the second view. It must, on the other hand, also be noted that,
within the family of parametric memory models, non-linear transformations of subsequent
memory performed better at describing the measured hemodynamic signals during memory
encoding than a simple linear parametric modulation of the novelty regressor with memory
confidence ratings. At the level of single models, the ones using the arcsine-transformed PM
(theoretical) and the inverse probability PM (empirical) were favored by cvBMS. Both
models put a high weight on stimuli recognized with high confidence (response “5”) relative
to low-confidence recognition (response “4”). In the case of the inverse probability GLM, the
group average (see Figure 2B, left) even suggests that the entire DM effect might by driven by
a difference between high-confidence hits and all other conditions, which would essentially
correspond to the recollection estimate proposed in the original publication of the paradigm
used here (Dlzel et al., 2011). In a supplementary analysis directly comparing the arcsine-
transformed PM against the inverse probability PM, we found that model quality differences
were rather unspecific within the human memory network, but that there were systematic age
differences in cortica midline structures, with young subjects preferring the arcsine-
transformed GLM and elderly subjects favoring the inverse probability GLM (see Figure S2).

It must be emphasized that, even though the group average of the inverse probability PM
is suggestive of a bias towards encoding predicting high-confidence memory, the very
definition of this PM based on individual behavioral data allows for very different weighting
of the response options at the level of single subjects. It can therefore also be employed in
individuals with poor memory and largely absent recollection. On the downside, PMs with
substantially different weighting might be difficult to compare at the group level. In this case,
the model using the arcsine-transformed PM may be preferable.

5.2. Modd preferences and age-related differencesin the human memory network
Beyond the preference of a specific model of the DM effect, an overarching trend in our
model selection results relates to the repeated observation of a distributed memory network in
model preferences (see Figure 7A): When comparing regions with a novelty effect, regions
with a subsegquent memory effect and regions preferring parametric over categorical GLMs,
there was a pronounced convergence of model preferences in multiple brain regions

previously implicated in successful memory encoding (Kim, 2011), such as lateral and medial
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parietal cortices (e.g., PreCun), inferior temporal areas extending into the MTL with the
hippocampus and parahippocampal cortex, as well as the dIPFC.

While there was overall convergence of brain regions exhibiting the same model
preferences for novelty and subsequent memory across the entire study sample, this
convergence was less pronounced in the elderly participants. On the one hand, there were
almost no age differences in model preference regarding novelty (see Figure 3B), i.e. in both
young and elderly participants, the model accounting for stimulus novelty significantly
outperformed the model using a single regressor for all images. On the other hand, a
considerable difference between age groups emerged with respect to subsequent memory
effects (see Figure 4A). Here, the elderly participants showed a preference for models
accounting for the DM effect in substantially fewer voxels and brain regions compared to the
young group. Most likely because subsequent memory effects are generally weaker in elderly
subjects, memory models also perform weaker when compared against the baseline GLM
assuming no memory effect (see Figure 4B). In extreme cases, this can even mean that very
complex models, such as the five-category GLM in the present study, may perform
significantly worse than the memory null model, because the latter is prone to overfitting
neural responses, which in turn decreases its generalizability.

We cannot exclude that even less complex categorical models may be inferior to asimple
novelty-based model assuming no memory effect in participants with very poor memory, such
as patients with early or pre-clinical Alzheimer’'s disease. However, ongoing data analyses
suggest that the DM effect may exhibit more extensive and robust differences between young
and elderly individuals when compared to the novelty effect (J.S., A.R., JK. and B.S,,
unpublished observations). In such situations, we suggest that the use of a relatively simple

parametric model may provide a reasonable tradeoff between model complexity and utility.

5.3. Limitations

One limitation of the present approach is that any parametric model assumes an at least
monotonic relationship between memory confidence and brain activation patterns. Evidently,
such a relationship is plausible for any model assuming increasing memory strength as a
function of increasing MTL engagement (Wixted and Squire, 2011), but it can also be
applicable to hierarchical models of memory performance when considering, for example,
that recollection is highly correlated with high memory confidence and accompanied by an
additional familiarity signal (Yonelinas et al., 2010).However, caution iS necessary as

confidence and recognition accuracy may not necessarily be correlated under al
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circumstances (Busey et al., 2000). Furthermore, the assumption of a monotonic relationship
will likely be violated when applying single-process models that also include implicit memory
processes like priming (Berry et al., 2012).For example, previous studies have demonstrated
encoding-related activations predicting explicit memory, but de-activations predicting priming
in the fusiform gyrus (Schott et al., 2006), and a possibly reverse pattern in the right temporo-
parietal junction (Schott et al., 2006; Uncapher and Wagner, 2009; Wimber et al., 2010).

54. Conclusions

Our results suggest that a systematic model selection approach favors parametric over
categorical models in first-level GLM-based analysis of the fMRI subsequent memory effect.
While it would be, in our view, premature to draw a conclusion with respect to hierarchical
versus single-process models of explicit memory function in the human memory network
based on these results, our results do provide a strong rationale for the use of parametric
models in studies focusing on between-group differences, particularly in elderly humans and

individuals with impaired memory performance.
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