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Abstract 

The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in 

deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain 

activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling 

mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this, 

several noise correction techniques have been developed to correct for the associated confounds. The present study 

focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the 

photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed 

cardiac pulsatility model (CPM) and compare its performance with RETROICOR, which is a technique commonly used 

to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the 

PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the 

systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS – defined as the mean signal 

across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to 

explain a significantly larger fraction of the fMRI signal variance compared to RETROICOR, particularly for subjects 

with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary 

with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in 

heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations 

due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based 

techniques commonly employed in fMRI studies.   

  

Keywords: RETROICOR; CPM; fMRI artifacts; noise correction techniques; Cardiac pulsation; SLFOs; Global signal 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.06.01.128306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.128306
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

1. Introduction 

Functional magnetic resonance imaging (fMRI) is a powerful neuroimaging modality that provides measurements of 

brain activity with great spatial coverage and resolution   (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 

1990). It has been extensively used in behavioral experiments to study brain function associated to a specific task or 

condition but also during resting conditions to examine the intrinsic brain functional architecture (Biswal et al., 1995; 

Van Dijk et al., 2010). The majority of fMRI experiments are based on the blood oxygen level dependent (BOLD) 

contrast that can detect changes in blood oxygenation, and specifically changes in concentration of deoxygenated 

hemoglobin (dHb). The main principle exploited in BOLD fMRI is that neuronal activity triggers changes in local 

cerebral blood flow (CBF) which, in turn, affects the concentration of dHb (Iadecola, 2017; Kisler et al., 2017). As such, 

due to its sensitivity to levels of dHb, the BOLD signal provides an indirect measure of the underlying neuronal activity. 

A main challenge, however, when analyzing fMRI data is that the BOLD signal is influenced by physiological-related 

fluctuations, as well as fluctuations due to motion which, if not properly accounted for, can severely diminish the ability 

to detect neural-induced signals or lead to biased connectivity profiles (Birn, 2012; Chang and Glover, 2009; Glasser et 

al., 2018; Power et al., 2015; Xifra-Porxas et al., 2020). 

The fMRI confounds induced by physiological processes and motion fall into two categories: (1) purely physiological 

blood-borne signals also known as systemic low-frequency oscillations (SLFOs), and (2) acquisition artifacts. Blood-

borne signals are signals driven by changes in the levels of dHb in the sample being imaged which in principle can be 

influenced by several physiological factors. Experimentally, it has been shown that variations in heart rate (HR; Shmueli 

et al., 2007), levels of carbon dioxide (CO2; Prokopiou et al., 2019; Wise et al., 2004), breathing patterns (Birn et al., 

2006), as well as arterial blood pressure (Whittaker et al., 2019) give rise to low-frequency (~0.1 Hz) fluctuations in 

fMRI presumably due to their effects on the levels of dHb (Caballero-Gaudes and Reynolds, 2017; Liu, 2016; Murphy 

et al., 2013). On the other hand, acquisition artifacts are caused by any kind of motion that forces the imaged sample to 

move in space or perturbs the magnetic field, as these movements have a direct impact on the acquisition process 

(Caballero-Gaudes and Reynolds, 2017; Liu, 2016; Murphy et al., 2013). Acquisition artifacts may be related to bulk 

head motion and breathing-related chest expansion (Power et al., 2015) but also to cardiac contractions through vessel 

expansion in the brain vasculature and its associated tissue movement (Dagli et al., 1999). 

To account for the effects of physiological processes and motion, several data-driven techniques have been proposed 

(Caballero-Gaudes and Reynolds, 2017). An important class of data-driven techniques involves the decomposition of the 

fMRI data into components using either principal or independent component analysis (Behzadi et al., 2007; Pruim et al., 

2015; Salimi-Khorshidi et al., 2014) and the removal of components that are likely due to physiological fluctuations or 

acquisition artifacts prior to further analysis. These techniques have been shown to perform fairly well in the context of 

whole-brain functional connectivity, particularly for acquisition artifacts (Ciric et al., 2017; Kassinopoulos and Mitsis, 

2020a; Parkes et al., 2018; Xifra-Porxas et al., 2020). However, their performance on task-based studies or studies with 

limited field of view (e.g. Pattinson et al., 2009) has not been well addressed. Often the global signal (GS), defined as 

the mean timeseries across all voxels in the brain (or gray matter (GM)), is regressed out from the data as it is largely 

influenced by SLFOs (Birn et al., 2006; Chang and Glover, 2009; Falahpour et al., 2013; Kassinopoulos and Mitsis, 

2019; Shmueli et al., 2007). However, this practice is somewhat controversial as there is evidence that GS variations 

may also reflect neuronal activity (Liu et al., 2017; Murphy and Fox, 2017; Power et al., 2017). Due to this, several 

methods that assess the effect of global signal regression (GSR) on connectivity measures have been proposed (Carbonell 

et al., 2014; Falahpour et al., 2018; Nalci et al., 2019b, 2019a), as well as alternative approaches that avoid some of the 

limitations of GSR (Aquino et al., 2020; Carbonell et al., 2011; Glasser et al., 2018). 

As the effectiveness and reliability of data-driven techniques is not yet fully understood, fMRI studies often employ 

model-based techniques that utilize concurrent external recordings (e.g. levels of CO2, continuous arterial blood pressure 

etc.) and, thus, are more directly related to specific sources of confounds without the risk of removing signal of interest. 

The physiological recordings most commonly acquired are the photoplethysmograph (PPG) and the respiratory bellow 

signal due to the availability of the necessary equipment in the majority of MR units and due to that the transducers are 

well tolerable for participants. PPG and the respiratory bellow capture cardiac and breathing activity, respectively, and 

are commonly used to account for high-frequency fMRI artifacts due to cardiac pulsatility (~1 Hz) and breathing motion 
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(~0.3 Hz), e.g. using a technique termed RETROICOR proposed by Glover et al. (2000). In addition, these two signals 

are often used with convolution models to account for SLFOs driven by variations in HR (Chang et al., 2009) and 

breathing patterns (Birn et al., 2008). 

In this study we propose a refinement to the approach followed in RETROICOR for modeling cardiac pulsatility that 

makes use of convolution models, inspired by their success in modeling BOLD fluctuations induced by other 

physiological processes (Birn et al., 2008; Chang et al., 2009), as well as BOLD responses due to changes in neuronal  

activity (Boynton et al., 2012). Specifically, we propose the cardiac pulsatility model (CPM) that describes pulse-related 

fluctuations in fMRI as the convolution of a train of pulses located at the time of cardiac contractions and a cardiac 

pulsatility waveform (CPW). Using a cross-validation framework, we compare RETROICOR with CPM in terms of 

variance explained in the fMRI BOLD signal. We hypothesized that CPM would outperform RETROICOR, particularly 

for subjects with high HR variability (HRV). Moreover, we examine whether the variations observed in the amplitude 

of the pulses in PPG (PPG-Amp) are also present in fMRI pulse-related fluctuations. Finally, we examine the association 

between PPG-Amp and the low-frequency fluctuations present in the GS. Previously, we have presented a framework 

for estimating scan-specific physiological response functions (PRFs) that are used to model the effect of HR and 

breathing pattern in SLFOs present in the GS (Kassinopoulos and Mitsis, 2019). By doing so, the SLFOs timeseries can 

be used as a nuisance regressor in the preprocessing of the fMRI data. Here, we investigate whether there is any benefit 

in considering PPG-Amp, in addition to HR and breathing activity, for modeling the effect of SLFOs on the GS. Our 

results suggest that CPM explains more variance than RETROICOR, particularly for subjects with high HRV. They also 

suggest that the amplitude of the cardiac-related pulses observed in fMRI does not covary with PPG-Amp. Finally, they 

demonstrate that PPG-Amp explains variance in the GS that is not captured by fluctuations of cardiac or breathing 

activity. 
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2. Methodology 

Unless stated otherwise, the preprocessing and analysis described below were performed in Matlab (R2018b; Mathworks, 

Natick MA). 

 

2.1 Human Connectome Project (HCP) Dataset 

We used resting-state fMRI scans from the HCP S1200 release (Glasser et al., 2016; Van Essen et al., 2013). The HCP 

dataset includes, among others, T1-weighted (T1w) images and resting-state fMRI data (eyes-open and fixation on a 

cross-hair) from healthy young individuals (age range: 22-35 years) acquired on two different days. On each day, two 

15-minute scans were collected, one with a left-right phase encoding (PE) direction and one with a right-left PE direction. 

fMRI acquisition was performed with a multiband factor of 8, spatial resolution of 2 mm isotropic voxels, and a repetition 

time (TR) of 0.72 s (Glasser et al., 2013). 

The minimal preprocessing pipeline for the resting-state HCP dataset is described in (Glasser et al., 2013). In brief, the 

pipeline included gradient-nonlinearity-induced distortion correction, motion correction, EPI image distortion correction 

and non-linear registration to MNI space. The motion parameters are included in the database for further correction of 

motion artifacts. 

In the present work, we used the minimally-preprocessed data along with T1w images provided in volumetric MNI152 

space. We considered 100 subjects who had good quality PPG and breathing activity (respiratory bellow) recordings in 

all four scans, as assessed by visual inspection. 

 

2.2 Preprocessing and analysis of physiological signals 

The detection of all peaks in PPG with good time accuracy was important for the techniques examined in this study. The 

timings of the peaks in PPG were used to model the high-frequency (~1 Hz) cardiac pulsatility artifacts in fMRI and the 

low-frequency (~0.1 Hz) physiological artifacts due to variations in HR reflected on the GS. In addition, the amplitudes 

of the PPG peaks were used to model low-frequency artifacts that may be unrelated to HR variations. Therefore, to 

facilitate peak detection, the PPG signal was initially band-pass filtered with a 2nd order Butterworth filter between 0.3 

and 10 Hz. The minimum peak distance specified for peak detection varied between 0.5 and 0.9 s, depending on the 

subject’s average HR. For a given set of detected peaks, the HR signal was computed in beats-per-minute (bpm) by 

multiplying the inverse of the time differences between pairs of adjacent peaks with 60, and evenly resampled at 10 Hz. 

The amplitudes of the peaks, referred to later as photoplethysmographic amplitude (PPG-Amp), were also evenly 

resampled at 10 Hz. The resampling of HR and PPG-Amp was done using linear interpolation. Note that several subjects 

in HCP demonstrated a constant HR of 48 bpm, which is likely due to erroneous PPG recording. None of these subjects 

were considered in our study. Furthermore, several scans considered here illustrated HR traces with outliers at different 

timepoints. The values of HR at the timepoints of outliers were corrected using linear interpolation (for more information 

see Methods in (Kassinopoulos and Mitsis, 2019)). 

The breathing signal was detrended linearly and corrected for outliers using a median filter in a similar manner with 

(Kassinopoulos and Mitsis, 2019). Subsequently, the breathing signal was low-pass filtered at 5 Hz with a 2nd order 

Butterworth filter and z-scored. 
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2.3 Preprocessing of fMRI data 

fMRI data as well as 16 nuisance regressors were first high-pass filtered at 0.008 Hz. The nuisance regressors consisted 

of the 6 motion parameters along with their derivatives and 4 regressors related to breathing motion (i.e. 2nd order 

RETROICOR using only the regressors related to breathing motion). Subsequently, the nuisance regressors were 

removed from the fMRI data. To extract the GS of each scan, we initially performed tissue segmentation on the T1w 

images in the MNI152 space using FLIRT in FSL 5.0.9, which generated probabilistic maps for the gray matter (GM), 

white matter (WM) and cerebrospinal fluid (CSF) compartments (Zhang et al., 2001). Afterwards, the GS was calculated 

by estimating the mean timeseries across all voxels with a probability of belonging to GM above 0.25. The choice of the 

threshold value was made based on visual inspection while overlaying the probabilistic maps of GM on the T1w images. 

 

2.4 High-frequency cardiac fluctuations 

2.4.1 RETROICOR 

RETROICOR stands for RETROspective Image-based CORrection and is a technique proposed by Glover et al. (2000) 

for removing high-frequency fluctuations due to cardiac pulsatility and breathing motion. While similar steps are 

performed to remove the aforementioned confounds, different mechanisms underly them. In this study we compared the 

variance explained in fMRI data using RETROICOR with the variance explained using CPM which is a physiologically 

plausible model for pulsatility artifacts. Therefore, if not explicitly stated, by RETROICOR we refer to the steps related 

to the cardiac fluctuations. 

To obtain the pulse-related RETROICOR regressors we followed the following three steps: 

1.  The cardiac phase was first defined based on the timings of the PPG peaks using the relation: 

where 𝑇𝑝(𝑡) and 𝑇𝑓(𝑡) indicate the time of the nearest peaks from past and future timepoints, respectively. 

2. A basis set of cosines and sines was created as follows: 

where 𝑚 is the order of the Fourier basis set. Typically, a 2nd order RETROICOR is employed, which corresponds to 

four nuisance regressors. It has been suggested that whereas higher orders improve the fit, they carry the risk of 

overfitting the data (Harvey et al., 2008). However, as the optimal order may depend on parameters of the fMRI pulse 

sequence, such as the duration of scan and TR, one of the goals of this study was to determine the optimal order for 

RETROICOR and CPM when applied to the resting-state fMRI data of HCP (see Section 2.6). 

3.  Finally, the nuisance regressors cos𝑚(𝑡) and sin𝑚(𝑡) were downsampled to match the fMRI acquisition rate, 

yielding the regressors cos𝑚[𝑛] and sin𝑚[𝑛]. Note that we use parentheses and brackets to distinguish the original 

and low-sampled timeseries, and not for distinguishing continuous and discrete signals. 

The resulting nuisance regressors were used in the design matrix of the general linear model (GLM) in order to model 

the pulse-related artifacts in each voxel timeseries. Through linear regression in GLM, each nuisance regressor is 

assigned with a beta parameter 𝛽. In the case that only cardiac-related regressors are included in the design matrix, the 

voxel timeseries can be represented as: 

 𝜑(𝑡) = 2π
𝑡−𝑇𝑝(𝑡)

𝑇𝑝(𝑡)−𝑇𝑓(𝑡)
 , [1] 

 cos𝑚(𝑡) = cos(𝑚𝜑) 

sin𝑚(𝑡) = sin(𝑚𝜑) 
[2] 
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where 𝜀[𝑛] corresponds to random Gaussian errors. Section 2.6 describes how the fit of RETROICOR regressors on the 

data was assessed and compared with CPM. Note that the beta parameters essentially define the cardiac pulsatility 

waveform (CPW) during a cardiac cycle. Specifically, CPW is obtained using the relation: 

2.4.2 Cardiac pulsatility model (CPM) 

Here, we propose an alternative model for capturing pulse-related artifacts in fMRI, termed cardiac pulsatility model 

(CPM). CPM assumes that pulse-related artifacts can be modeled as the output of a causal linear time-invariant (LTI) 

system, where the input is a train of pulses corresponding to cardiac contractions. Therefore, to describe these artifacts 

we employed the convolution representation: 

where 𝑥(𝑡) is the input of the model reflecting the cardiac contractions and 𝐶𝑃𝑊(𝑡) is the cardiac pulsatility waveform 

and has the role of the model impulse response. The timepoints of the cardiac contractions were considered to coincide 

with the timings of the PPG peaks. Two different inputs were examined: the first, denoted by 𝑥𝐶𝐴(𝑡), is based on the 

assumption that all pulses had a constant amplitude of one, while in the second, denoted by 𝑥𝑉𝐴(𝑡), the amplitudes of the 

pulses were equal to the amplitudes of the PPG peaks. Both inputs were defined at a sampling rate of 10 Hz. The pulses 

consisted of one sample duration each with a constant (unit value) or varying amplitude, depending on the input (i.e. 

𝑥𝐶𝐴(𝑡) or 𝑥𝑉𝐴(𝑡)), and all remaining samples were equal to zero. The impulse response 𝐶𝑃𝑊(𝑡) was defined as a linear 

combination of modified Fourier basis functions of one cycle length as shown below: 

The fundamental period 𝑇 varied on a scan basis and was equal to the average cardiac cycle duration within a scan (i.e. 

average time difference across pairs of adjacent PPG peaks). The cosine terms were subtracted from one so that all basis 

functions begin and end at zero. This mathematical manipulation ensures the physiological plausibility of the model as 

it leads to impulse responses that have zero amplitude at time zero and at times larger that 𝑇. 

 Note that based on the properties of convolution, Eq. 5 can also be expressed as: 

As in RETROICOR, nuisance regressors were extracted from the CPM and were subsequently downsampled to the fMRI 

acquisition timeline and used in the GLM design matrix. 

 

𝑦[𝑛] = ∑ 𝛽𝑐𝑜𝑠,𝑚 cos𝑚[𝑛] + 𝛽𝑠𝑖𝑛,𝑚 s𝑖𝑛𝑚[𝑛]

𝑀

𝑚=1

+ 𝜀[𝑛] [3] 

 𝐶𝑃𝑊(𝜑) = ∑ 𝛽𝑐𝑜𝑠,𝑚 𝑐𝑜𝑠(𝑚𝜑) + 𝛽𝑠𝑖𝑛,𝑚sin⁡(𝑚𝜑)
𝑀
𝑚=1            𝜑 ∈ [0,2𝜋] [4] 

 𝑦(𝑡) =∑𝑥(𝑡 − 𝑖)⁡𝐶𝑃𝑊(𝑖)

𝑖

⁡= 𝑥(𝑡) ∗ 𝐶𝑃𝑊(𝑡) 
[5] 

 

𝐶𝑃𝑊(𝑡) = ∑ 𝛽𝑐𝑜𝑠,𝑚⁡𝐿𝑐𝑜𝑠,𝑚(𝑡) ⁡+ 𝛽𝑠𝑖𝑛,𝑚⁡𝐿𝑠𝑖𝑛,𝑚(𝑡)⁡

𝑀

𝑚=1

 

where⁡⁡⁡⁡𝐿𝑐𝑜𝑠,𝑚(𝑡) = 1 − cos (
2𝑚𝜋𝑡

𝑇
) ⁡⁡⁡⁡⁡for⁡0 ≤ 𝑡 ≤ 𝑇 

= 0⁡⁡⁡⁡⁡⁡⁡⁡elsewhere 

and⁡⁡⁡⁡⁡⁡⁡⁡𝐿𝑠𝑖𝑛,𝑚(𝑡) = sin (
2𝑚𝜋𝑡

𝑇
) ⁡⁡⁡⁡for⁡0 ≤ 𝑡 ≤ 𝑇 

= 0⁡⁡⁡⁡⁡⁡⁡⁡elsewhere 

[6] 

 

𝑦(𝑡) = ∑ 𝛽𝑐𝑜𝑠,𝑚𝐿𝑐𝑜𝑠,𝑚(𝑡) ∗ 𝑥(𝑡) + 𝛽𝑠𝑖𝑛,𝑚⁡𝐿𝑠𝑖𝑛,𝑚(𝑡) ∗ 𝑥(𝑡)

𝑀

𝑚=1

 [7] 
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2.4.3 Time alignment of pulse-related regressors and fMRI data 

When the heart contracts, a pulse pressure wave propagates from the heart through the vasculature to the whole body 

giving rise to cardiac pulses in the arteries that are captured, among other hemodynamic signals, in the PPG. The vascular 

path between heart and finger, where PPG is typically recorded, may differ in terms of travelling distance compared to 

the path between heart and arteries in the brain vasculature. As a result, a pulse originating from the heart will typically 

reach the finger at a different time compared to an artery in the brain. This time difference should be ideally incorporated 

in the analysis when extracting pulse-related regressors. To examine whether a time difference should be used in the 

HCP fMRI data that can improve the performance of the examined models, we repeated the analysis with each of the 

models considered in this study for lag times varying from -2 s to 2 s in steps of 0.1 s. In practice, to account for a specific 

lag time, the PPG signal depending on the lag time examined was shifted towards negative or positive times before 

extracting the pulse-related regressors. Section 2.6 describes how RETROICOR and the two variants of CPM (i.e. using 

inputs 𝑥𝐶𝐴(𝑡) and 𝑥𝑉𝐴(𝑡)) were compared as well as how the optimal lag time was determined for each of the models. 

 

2.5 Systemic low-frequency oscillations (SLFOs) 

Apart from removing high-frequency cardiac and breathing fluctuations, physiological recordings can also be used to 

yield nuisance regressors that account for the effect of SLFOs (Tong et al., 2019). A common approach for removing 

SLFOs is to use convolution models where the inputs are the HR and a breathing-related variable (e.g. respiration volume 

per time; RVT) and the impulse responses are the so-called cardiac (CRF) and respiration (RRF) response functions 

(Birn et al., 2008; Chang et al., 2009). The outputs of these convolution models are subsequently used as nuisance 

regressors in the GLM. Falahpour et al. (2013) first demonstrated that the GS of a scan can be used as the model output 

for estimating subject-specific PRFs. Specifically, the authors showed that nuisance regressors extracted using subject-

specific PRFs explain significantly more variance in fMRI data compared to regressors extracted with canonical PRFs. 

In a recent study, we proposed a new framework for estimating PRFs based on the GS and provided evidence that the 

PRFs vary significantly even across scans within a subject (Kassinopoulos and Mitsis, 2019). 

Apart from fluctuations in HR and breathing patterns, the GS has been recently shown to be linked, during sleep, to 

fluctuations in PPG-Amp (Özbay et al., 2019, 2018). However, as PPG-Amp is affected by various physiological 

processes such as breathing, cardiac activity and arterial blood pressure (Reisner et al., 2008), it is unclear whether 

fluctuations of PPG-Amp explain an additional fraction of GS variance compared to HR and breathing pattern variations. 

In this study, we used cross-correlation analysis to better understand the relation between the physiological sources (HR, 

breathing patterns and PPG-Amp) and the GS during resting conditions. Fluctuations in breathing patterns were 

quantified using the respiration volume (RV) measure, which is defined as the standard deviation of the breathing signal 

within a sliding window of 6 s (Chang et al., 2009). The GS was upsampled to 10 Hz to match the sampling rate of 

physiological variables before proceeding with the cross-correlation analysis. 

In addition, we employed the framework proposed in (Kassinopoulos and Mitsis, 2019) to examine whether a convolution 

model associated to PPG-Amp variations may explain variance in the GS not attributed to HR and breathing variations. 

Specifically, we examined whether considering a PRF associated to PPG-Amp variations, (referred to below as PPG-

Amp response function; PARF) along with the components related to HR and breathing pattern variations can improve 

the variance explained on the GS compared to the standard approach of considering only HR and breathing patterns. The 

nuisance regressors related to HR, PPG-Amp and RV were defined as follows: 

 𝑋𝐻𝑅(𝑡) = 𝐻𝑅 ∗ 𝐶𝑅𝐹, [8] 

 𝑋𝑃𝐴(𝑡) = 𝑃𝐴 ∗ 𝑃𝐴𝑅𝐹, and [9] 

 𝑋𝑅𝑉(𝑡) = 𝑅𝑉 ∗ 𝑅𝑅𝐹 [10] 

where 𝑃𝐴 is the PPG-Amp. We considered the double gamma function (i.e., the sum of two gamma functions) to 

construct the 𝑃𝑅𝐹 curves. The gamma function is defined as: 
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𝛤(𝜏, 𝛿, 𝑡) = 𝑎(𝜏, 𝛿) ∙ ⁡ 𝑡

√𝜏

𝛿 ⁡ ∙ ⁡ 𝑒
−

𝑡

𝛿√𝜏  [11] 

where the parameters 𝜏 and 𝛿 indicate the (approximate) time of peak and dispersion of the function, and the parameter 

𝛼 is a scaling factor which normalizes the peak value of the gamma function to 1. The 𝑃𝑅𝐹 curves were defined as 

follows: 

 𝐶𝑅𝐹(𝑡) = 𝛽1,𝑐 ∙ 𝛤(𝜏1,𝑐 , 𝛿1,𝑐 , 𝑡) + 𝛽2,𝑐 ∙ 𝛤(𝜏2,𝑐 , 𝛿2,𝑐 , 𝑡), 

𝑃𝐴𝑅𝐹(𝑡) = 𝛽1,𝑝 ∙ 𝛤(𝜏1,𝑝, 𝛿1,𝑝, 𝑡) + 𝛽2,𝑝 ∙ 𝛤(𝜏2,𝑝, 𝛿2,𝑝, 𝑡), and 

𝑅𝑅𝐹(𝑡) = 𝛽1,𝑟 ∙ 𝛤(𝜏1,𝑟 , 𝛿1,𝑟 , 𝑡) + 𝛽2,𝑟 ∙ 𝛤(𝜏2,𝑟 , 𝛿2,𝑟 , 𝑡) 

[12] 

The procedure for estimating scan-specific PRFs is described in detail in (Kassinopoulos and Mitsis, 2019). In brief, the 

parameters of the PRFs for a given scan were first estimated using a genetic algorithm (GA) implemented in Matlab 

R2018b’s Global Optimization Toolbox. The parameter vectors 𝝉 (𝜏1,𝑐 , 𝜏2,𝑐 , 𝜏1,𝑝, 𝜏2,𝑝, 𝜏1,𝑟 , 𝜏2,𝑟) and 𝜹 

(𝛿1,𝑐 , 𝛿2,𝑐 , 𝛿1,𝑝, 𝛿2,𝑝, 𝛿1,𝑟 , 𝛿2,𝑟) were bounded between 0-20 seconds and 0-3 seconds, respectively. A stopping criterion 

of 100 generations was set, as it was found to be adequate for convergence. GA searches in the parameter space defined 

by the boundaries to estimate the parameters that maximize the objective function (Pearson correlation coefficient). 

Specifically: 1. for a set of given parameters, the three 𝑃𝑅𝐹 curves were constructed. Subsequently, 2. the HR, PPG-

Amp and RV signals (sampled at 10 Hz) were convolved with 𝐶𝑅𝐹, 𝑃𝐴𝑅𝐹 and 𝑅𝑅𝐹, respectively, to extract the 

corresponding nuisance regressors and then downsampled to match the fMRI acquisition rate. 3. The beta parameters 

were estimated through linear regression (GLM), whereby the GS is the dependent variable and the three nuisance 

regressors are the three explanatory variables. 4. Finally, the Pearson correlation coefficient between the GS and the 

model prediction was calculated. The estimated parameter values yielded by the GA were subsequently refined using the 

interior-point gradient-based algorithm with a stopping criterion of 100 maximum iterations (implemented in Matlab 

R2018 as well). 

 

2.6 Model comparison 

In the case of high-frequency physiological fluctuations, the goodness-of-fit for a given model was assessed for each 

individual voxel using the Pearson correlation between the output of the model and the voxel timeseries. Subsequently, 

the correlation was averaged across all voxels in the brain. In contrast, when examining low-frequency physiological 

fluctuations, the goodness-of-fit for a given model was assessed using the GS, specifically the Pearson correlation 

between the output of the model and the GS. 

To compare the performance across models, a 3-fold cross-validation framework was employed to avoid overfitting as 

the models differed in flexibility (number of free parameters). When modeling low-frequency physiological fluctuations, 

the GS of each scan was partitioned into three segments of about 5 min each. One segment was used as the validation set 

for assessing the performance of the model and the remaining two segments were used as the training dataset. This step 

was repeated three times with each of the three segments used exactly once as the validation data. In each fold, scan-

specific PRFs and beta parameters were estimated from the training dataset and, subsequently, used in the validation 

dataset to model the SLFOs. The goodness-of-fit was assessed based on the correlation between the GS and estimated 

SLFOs in the validation dataset. Finally, the mean correlation across the three folds was calculated. To compare the 

standard with the proposed model, the mean correlations of the four scans of each subject were first averaged and, 

subsequently, a paired t-test was performed based on the mean correlation values of the 100 subjects for the two models. 

The 3-fold cross-validation and model comparison were also performed in a similar manner for the high-frequency 

physiological fluctuations. 

With regards to high-frequency cardiac pulsatility oscillations, three models were examined, namely RETROICOR, the 

CPMCA and the CPMVA (see Section 2.4). The last two models only differed on whether the input signal was 𝑥𝐶𝐴(𝑡) or 

𝑥𝑉𝐴(𝑡). Apart from the model type, we also examined the optimal model order of Fourier series and the optimal lag time 
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as these two parameters may have significant impact on the performance. Therefore, the model performance was initially 

assessed for each of the three model types for model order varying from 1 to 8 and lag time varying from -2 s to 2 s in 

steps of 0.1 s. The comparison of the three models was subsequently made using for each model the order and lag time 

that yielded the best performance across all subjects. We also repeated the comparison considering the PPG raw signal 

as the output target rather than the voxel timeseries. This comparison allowed us to illustrate how well the three models 

capture cardiac pulsatility, including the low-frequency variations in the envelope of the pulses, on a timeseries that, in 

contrast to the fMRI data examined here, has a high sampling-rate (400 Hz) and thus does not suffer from aliasing. Note 

that the comparison of the models with regards to their fit on the PPG was made to give us insight into what features of 

the output timeseries these models are able to capture. However, the choice for the more appropriate model in the context 

of fMRI was done based on the model fit in the voxel timeseries. 

To assess regional variability in the performance of the pulse-related models, statistical maps were generated. For 

visualization purposes, maps shown here were overlaid on structural images after being registered to the MNI152 space 

(1 mm spatial resolution) using FSL’s FLIRT registration tool (Jenkinson and Smith, 2001), as incorporated in the 

MANGO software (Lancaster, Martinez; www.ric.uthscsa.edu/mango). 

With respect to the low-frequency noise (Section 2.5), we compared two models for extracting the SLFOs using the GS. 

The standard model quantifies the effect of SLFOs in the GS using only the variations in HR and breathing patterns, 

whereas the proposed model uses HR, breathing patterns and PPG-Amp. The two models can be expressed as follows: 

 Standard model:  𝐺𝑆 = 𝑆𝐿𝐹𝑂𝑠 + 𝜀 = 𝐻𝑅 ∗ 𝐶𝑅𝐹 + 𝑅𝑉 ∗ 𝑅𝑅𝐹 + 𝜀 [13] 

 Proposed model: 𝐺𝑆 = 𝑆𝐿𝐹𝑂𝑠 + 𝜀 = 𝐻𝑅 ∗ 𝐶𝑅𝐹 + 𝑅𝑉 ∗ 𝑅𝑅𝐹 + 𝑃𝐴 ∗ 𝑃𝐴𝑅𝐹 + 𝜀 [14] 

 

2.7 Cardiac pulsatility waveforms (CPW) 

Various MRI techniques have been proposed to measure intracranial CPWs, such as phase-contrast and magnetic 

resonance encephalography, as these waveforms are considered a useful biomarker in certain cerebrovascular diseases 

(Bianciardi et al., 2016; Wagshul et al., 2011) and are often studied in order to understand the role of intracranial cardiac 

pulsatility in the glymphatic activity (Fultz et al., 2019; Kiviniemi et al., 2016). With this in mind, here we sought to 

investigate whether the CPM applied to BOLD fMRI data may provide an alternative technique for measuring 

intracranial pulsatility. Specifically, we sought to investigate the consistency of CPWs across subjects. 

To extract CPWs averaged across subjects, we followed the following steps for the two variants of CPM separately: For 

a given scan, we derived the CPW in each voxel based on Eq. 6 using the beta parameters estimated in the GLM. Note 

that when reconstructing the CPW, a cardiac cycle duration 𝑇 of 1 s was used for all subjects, as well as a time-step of 

0.025 s. Subsequently, the CPW in each voxel was normalized to a maximum absolute value of one and multiplied by 

the correlation coefficient related to the variance explained by CPM in the associated voxel. In this way, CPWs in regions 

that were more prone to pulse-related fluctuations had larger intensity amplitudes. Finally, the CPWs were averaged 

across subjects considering only scans from the first session and the same PE direction.  
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3. Results 

The present study examined three models for capturing fMRI fluctuations related to cardiac pulsatility, namely 

RETROICOR, CPMCA and CPMVA. While the repetition time in the HCP fMRI data (TR=0.72 s) is relatively short 

compared to typical fMRI data, it is still not short enough to avoid aliasing of pulse-related fluctuations, making the 

visual inspection of the model fit in fMRI data more difficult. Therefore, to better understand some of the differences of 

the three models in modeling pulse-related fluctuations, the models were first compared with regards to their ability in 

modeling the high-frequency oscillations of the PPG signal, which, due to its relatively high sampling rate (400 Hz), did 

not exhibit any aliasing. The comparison of the three pulse-related models in modeling high-frequency PPG oscillations 

is presented in Section 3.1, whereas Section 3.2 presents the comparison of the models with regards to the variance 

explained in fMRI voxel timeseries. Section 3.2 also examines the relation of pulse-related fMRI fluctuations with the 

direction of phase encoding in fMRI acquisition. Finally, Section 3.3 examines the relation of the low-frequency 

oscillations in PPG-Amp with the SLFOs observed in GS, which are known to be driven, among others, by variations in 

HR and breathing patterns (Birn et al., 2006; Kassinopoulos and Mitsis, 2019; Shmueli et al., 2007). 

 

3.1 High-frequency oscillations in the photoplethysmographic (PPG) signal 

All three models examined for pulse-related oscillations were able to model the effect of cardiac pulsatility in the PPG. 

When considering a 3-fold cross-validation framework, the three models showed improved performance for higher order 

Fourier series, reaching a plateau at about 4th order. Considering the highest examined (8th) order, which demonstrated 

the best performance, we observed a maximum cross-correlation averaged across subjects at time lags between -0.1 s 

and -0.5 s (Suppl. Fig. 1a). RETROICOR, CPMCA and CPMVA yielded maximum cross-correlation values of 0.900, 0.901 

and 0.934, respectively.  CPMVA which, in contrast to RETROICOR and CPMCA, takes into account variations in PPG-

Amp, yielded significantly better performance compared to the other two models (p<10-31), while RETROICOR and 

CPMCA yielded similar performance. Fig. 1 shows the goodness-of-fit for the three models when applied to the PPG of 

a subject that exhibited pronounced HR variations (the 3-fold cross validation framework was omitted for this figure). 

As we can see, all three models explained well the variations in the PPG signal overall, although only CPMVA was able 

to capture the low-frequency fluctuations of the PPG-Amp. Apart from the absence of low-frequency fluctuations in the 

case of RETROICOR and CPMCA, we were not able to visually observe any other differences in the output waveforms 

of the three models. However, as shown later, in the case of fMRI data, RETROICOR and CPMCA exhibited better 

performance compared to CPMVA. Due to this, we further tested whether scans with larger HRV values, where HRV was 

defined as the standard deviation of the HR signal, showed relative improvement in the case of CPMCA as compared to 

RETROICOR. For this test, an 8th order model was used with the optimal lag time for each model. As can be seen in 

Suppl. Fig. 1b, CPMCA explained a larger fraction of variance for some scans compared to RETROICOR, while the 

opposite was observed for other scans. Even though none of the two models was found to outperform the other one for 

all scans, we observed a trend for scans with high HRV to be characterized by higher relative improvement (Suppl. Fig. 

1b; r=0.32, p<0.001). 
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Fig. 1. Model fit of pulse-related models for PPG of a subject with high heart rate variability (HRV; S159138-R1LR). (a) Trace of HR 

during a 30 s time segment with pronounced fluctuations. (b)-(d) PPG model fit for RETROICOR, CPMCA and CPMVA. All three models 

captured the high-frequency (~1 Hz) fluctuations related to cardiac pulsatility. However, only CPMVA, which incorporates the low-frequency 

(~0.1 Hz) fluctuations in PPG-Amp was able to represent these fluctuations in the PPG.  
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3.2 Effects of cardiac pulsatility in BOLD fMRI 

Fig. 2a-c shows the correlation averaged across subjects (as well as across all voxels and scans in each subject) for the 

three models when the target output was the fMRI timeseries. As many voxels are not prone to pulse-related fluctuations, 

the correlation values averaged across all voxels were relatively low. For all model orders examined, RETROICOR 

Fig. 2. Performance of pulse-related models in fMRI data. (a)-(c) Correlation averaged across subjects for RETROICOR, CPMCA and CPMVA, 

respectively. Colors from blue to yellow indicate performance for higher model orders. For all three models, a unimodal curve was observed with 

highest mean correlations for lag times between -0.4 and -0.9 s. The optimal lag time for each model was consistent across model orders. Note 

that RETROICOR exhibited slightly different optimal lag time compared to CPMCA and CPMVA which is likely due to differences in the cosine 

terms of the basis sets used in the three models. (d) Mean correlation with respect to model order for optimal lag time of -0.4 s for RETROICOR 

and -0.9 s for the two variants of CPM. All models yielded a maximum mean correlation for a 6th order model. In contrast to PPG (Suppl. Fig. 

1a), incorporating the low-frequency fluctuations of PPG-Amp in the input signal was found to decrease the model performance (i.e.  CPMCA vs 

CPMVA). (e) Relative percentage (%) improvement with respect to HRV when comparing the proposed model CPMCA with RETROICOR. The 

relative percentage improvement for a given scan was defined as 100% ∙ (𝑟𝐶𝑃𝑀𝐶𝐴
− 𝑟𝑅𝐸𝑇𝑅)/𝑟𝑅𝐸𝑇𝑅 where 𝑟𝑅𝐸𝑇𝑅 and 𝑟𝐶𝑃𝑀𝐶𝐴

 are the correlation 

values obtained for models RETROICOR and CPMCA, respectively. The improvement achieved with CPMCA compared to RETROICOR was 

found to be correlated to the amplitude of HR fluctuations (p<10-11). Note, however, that for some of the scans with low HRV (<6 bpm), 

RETROICOR yielded better goodness-of-fit than CPMCA.  
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exhibited a peak in cross-correlation at lag time of -0.4 s, whereas the two CPM models exhibited a peak at lag time of -

0.9 s (a negative lag time indicates that the PPG signal was shifted backward in time). Therefore, to ease the comparison 

between models, Fig. 2d shows the mean correlation for all models along with the associated standard error corresponding 

to these optimal lag times. We observe that, in contrast to the analysis that used the PPG as target output, CPMVA yielded 

poorer performance compared to RETROICOR and CPMCA. Moreover, for all three models, the highest performance 

was achieved with a 6th order Fourier series, whereas higher orders yielded slightly lower mean correlation values. 

Table 1 summarizes the performance of four specific models in order to illustrate the main steps that can lead to an 

improvement in the variance explained in the fMRI data. Model M1 corresponds to the 2nd order RETROICOR that is 

commonly employed in fMRI studies without considering any lag time, whereas model M2 considers the optimal lag 

time of RETROICOR (-0.4 s). Based on a paired t-test, considering the optimal lag time when extracting the nuisance 

Table 1. Comparison of pulse-related models in terms of variance explained in fMRI data 

A/A Model type: Order Lag time: 
Mean correlation 

(SD): 

P-value of 

improvement: 

M1 RETROICOR 2nd 0 s 0.082 (0.019) - 

M2 RETROICOR 2nd -0.4 s 0.085 (0.019) P(M2>M1) < 10-24 

M3 RETROICOR 6th -0.4 s 0.097 (0.023) P(M3>M2) < 10-29 

M4 CPMCA 6th -0.9 s 0.100 (0.023) P(M4>M3) < 10-8 

 

Fig. 3. Correlation maps for pulse-related 

models averaged across all subjects (N=100; 

only scans with left-right PE directions from 

the first sessions were included here). The first 

and second columns show the variance explained 

using RETROICOR and the proposed model 

CPMCA, respectively, while the third column 

shows t-stat maps indicating the areas with 

significant differences in correlation values 

between the two models (p<0.01). The 

correlation threshold value was chosen so that 

only the regions more susceptible to cardiac 

pulsatility are visible. Both RETROICOR and 

CPMCA revealed regions close to the basilar and 

vertebral arteries, in the 4th ventricle, in the 

superior sagittal sinus, in the lateral sulcus and in 

the occipital lobe as being more prone to pulse-

related oscillations. However, based on the t-stat 

map, CPMCA explained a significantly larger 

fraction of variance than RETROICOR in the 

occipital cortex, the lateral sulcus and superior 

sagittal sinus. With the level of significance set at 

p<0.01, no region was found to yield higher 

correlation values for RETROICOR than for 

CPMCA, while for larger values of p-value, only 

the lateral ventricles show small clusters of 

regions where RETROICOR outperformed 

CPMCA in terms of variance explained. The 

statistical maps shown in this figure are available 

on: 

 https://neurovault.org/collections/DHFETQTN/. 
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regressors led to a significant improvement in the variance explained (p<10-24). Moreover, employing a 6th instead of a 

2nd order Fourier series resulted also in an additional improvement (p<10-29). Finally, when the optimal model order and 

lag time were considered, further improvement was achieved when modeling cardiac pulsatility using the proposed model 

CPMCA compared to RETROICOR (p<10-8). As hypothesized, when comparing CPMCA (6th order and -0.9 s) to 

RETROICOR (6th order and -0.4 s lag time), larger HRV values were associated with a larger relative improvement (Fig. 

2e; r=0.63; p<10-11). 

Fig. 3 shows correlation maps averaged across subjects (only scans with left-right PE direction from the first session 

were included) as obtained with RETROICOR and CPMCA when considering 6th order Fourier series and the optimal lag 

time for each model (i.e. -0.4 s and -0.9 s for RETROICOR and CPMCA, respectively). It also shows t-score maps derived 

with paired t-tests, indicating brain regions with significant differences in goodness-of-fit between the two models. As 

expected, both RETROICOR and CPMCA explained substantial variance in areas with CSF (e.g. areas around the 

brainstem, in the 4th ventricle and the superior sagittal sinus) as well as in lateral sulcus and occipital cortex. At a 

significance level of p<0.01, CPMCA demonstrated better performance in terms of variance explained, particularly in the 

occipital cortex, lateral sulcus and superior sagittal sinus, while none of the regions were associated with a better fit for 

RETROICOR. When the significance level was set to higher p values, RETROICOR was found to explain a larger 

fraction of variance in small clusters of voxels within the lateral ventricles. 

In a recent study, we investigated the role of physiological processes in fMRI connectome-based subject discriminability 

(Xifra-Porxas et al., 2020). One of our findings was that the connectome signature driven by cardiac pulsatility differs 

between left-right and right-left PE direction (see for example Fig. 5 in Xifra-porxas et al. (2020)). To shed light on this 

phenomenon, here we compared the variance explained with CPMCA for scans with left-right vs right-left PE direction 

including only scans from the first session of each subject. Interestingly, in the third column of Fig. 4, which corresponds 

to t-scores of correlations for left-right vs right-left PE direction, we observe antisymmetric patterns with respect to the 

anterior-posterior axis (see specifically the first three rows corresponding to axial slices). In other words, if for example 

a region in the left hemisphere was more prone to pulse-related oscillations for left-right PE direction compared to right-

left PE direction, then the contralateral region in the right hemisphere was more prone to these oscillations for right-left 

PE direction. Moreover, we observe that the regions that exhibit this PE direction dependence were not necessarily the 

regions more susceptible to pulse-related oscillations. 

Furthermore, we investigated the regional variability of the CPWs. As described in Methods (Section 2.4.2), the beta 

parameters associated to the CPM nuisance regressors define the temporal waveforms of the impulse responses used in 

the CPM, referred to here as CPWs. Based on the beta parameters estimated with the GLM, we inspected the temporal 

evolution of the CPWs both at the individual (subject) and group (averaged across subjects considering only scans with 

the same PE direction from the first session) level. For this analysis, a 6th order CPMCA with a lag time of -0.9 s was 

considered, as the cross-validation analysis presented earlier showed that this choice of parameters yielded the best 

performance. At the individual level, we were not able to observe any clear pattern apart from discontinuities in adjacent 

slices that were likely due to time acquisition differences across slices. Note that we did not incorporate any slice-timing 

correction in our analysis as this is not a trivial task for the multi-band fMRI data examined here (Smith et al., 2013). 

However, at the group level (N=100), we were able to see smooth spatiotemporal patterns without discontinuities in 

adjacent slices. Videos showing the temporal evolution of CPWs in a mid-sagittal plane for left-right and right-left PE 

direction are available on repository https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020b). 

In addition, Suppl. Fig. 2 shows the CPWs at five time points uniformly distributed within a cardiac cycle for the left-

right PE direction. Similar dynamics were observed between the two PE directions. While some regions demonstrated 

an increase in the BOLD fMRI signal after the onset of a cardiac contraction (e.g. regions in the posterior cingulate 

cortex) other regions exhibited the opposite trend (e.g. third ventricle and regions in the anterior cingulate cortex). 
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Interestingly, the temporal dynamics shown in the video revealed patterns that may relate to some fluid movement. 

Particularly, we observed two spatial layers with opposite temporal responses that peaked at about the middle of the 

cardiac cycle along the cerebral aqueduct that connects the 3rd with the 4th ventricle. 

 

 

  

Fig. 4. The effect of phase encoding (PE) direction on pulse-related 

fluctuations. The first and second columns show the variance explained 

using CPMCA averaged across all subjects for scans with left-right and 

right-left PE direction, respectively (N=100; only scans from the first 

session were included here). The third column shows t-stat maps 

indicating the areas with significant differences between the two PE 

directions (p<0.01). The correlation threshold value was chosen arbitrarily 

so that only the regions more prone to cardiac pulsatility are presented 

(note that the cross-validation framework was omitted here, as we do not 

compare models but rather examine the effect of PE direction, hence the 

higher correlation values compared to Fig. 3). As can be seen from the 

axial slices, the regions with significant differences between the two PE 

directions were characterized by antisymmetric patterns with respect to 

the anterior-posterior axis. For instance, if a brain area in the left 

hemisphere was more susceptible to fluctuations due to cardiac pulsatility 

for a left-right PE direction compared to a right-left PE direction, the same 

area in the opposite hemisphere was more susceptible to pulsatility effects 

for a right-left PE direction. Furthermore, the areas that exhibited the 

aforementioned PE direction dependence for pulse-related fluctuations 

were not necessarily the areas that were strongly affected by these pulse-

related fluctuations. The statistical maps shown in this figure are available 

on: 

 https://neurovault.org/collections/DHFETQTN/. 
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3.3 Systemic low-frequency oscillations and their relation to photoplethysmographic and global signal 

Fig. 5 presents the results of the cross-correlation analysis that was used to investigate the relation between physiological 

variables (RV, HR and PPG-Amp) and the fMRI GS during resting conditions. Note that the cross-correlation technique 

can be used to estimate the impulse response for a single-input single-output system when the input signal is uncorrelated 

with the output noise (Lee and Schetzen, 1965; Marmarelis, 2004). However, in the present study, we used cross-

correlation to assess the linear correlation patterns between the timeseries of interest, as well as the presence of a lag time 

between them. When examining the effects of SLFOs on the GS (presented later in this section), the estimation of the 

PRFs (impulse responses) that link the physiological variables RV, HR and PPG-Amp to the GS was done using the 

framework proposed in (Kassinopoulos and Mitsis, 2019), which employs basis expansion techniques and assumes a 

multiple-input single-output system. 

As can be seen in the diagonal of the diagram, all timeseries exhibited a somewhat monotonic decrease in autocorrelation 

for increasing (absolute) lag times with the autocorrelation approximating zero for lag times between 10 and 20 s. This 

trend is expected considering the sluggishness of the examined signals. Looking at the non-diagonal plots, we observe 

that, despite the low correlation values, all three physiological variables demonstrated interactions between them that 

Fig. 5. Cross-correlation between physiological variables and fMRI global signal (GS) averaged across subjects (n=100). The plot for row x 

and column y illustrates the auto-/cross-correlation of the corresponding signals. For instance, in the case of HR and GS, the fact that the maximum 

absolute cross-correlation occurs at +1.9 s and the correlation is positive indicate that HR is maximally correlated with the GS when it is shifted 

forward in time by 1.9 s. Overall, we observe that all physiological signals share covariance with each other as well as with the GS. Note that the 

diagonal plots correspond to autocorrelations. Shaded areas indicate the standard deviation across subjects. 
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were consistent across subjects. An increase in breathing activity, as quantified with RV, was accompanied by a 

concurrent increase in HR and decrease in PPG-Amp. However, PPG-Amp, apart from this decrease, exhibited also a 

positive peak about 13 s after the peak in RV. The cross-correlation between PPG-Amp and HR exhibited a similar 

bimodal form, albeit with different dynamics. Specifically, a negative peak was observed at about 2.5 s followed by a 

positive peak with a smaller amplitude at a lag time of 10 s. 

In addition, GS was found to share covariance with all physiological variables. As expected, the cross-correlation 

functions between GS and RV or HR resemble, respectively, the CRF and RRF reported in our recent study 

(Kassinopoulos and Mitsis, 2019). As the main trend of the corresponding cross-correlations suggests, an increase in RV 

and HR leads to an increase in the GS followed by a negative undershoot. An opposite trend was observed in the cross-

correlation between PPG-Amp and GS. Specifically, the cross-correlation between GS and PPG-Amp exhibited a strong 

negative peak at -1 s as well as a positive peak at 8 s. 

The strong association observed between PPG-Amp and GS in the cross-correlation analysis (Fig. 5) raised the question 

whether considering PPG-Amp variations in addition to RV and HR variations, may provide additional information 

related to the effect of SLFOs on the GS. To address this question, we compared the standard approach for modeling 

SLFOs (i.e. considering only HR and RV) with the extended model that accounts also PPG-Amp variations, using a 3-

fold cross-validation framework (for more information see Section 2.5). The cross-validation framework was necessary 

for this comparison due to the larger number of parameters in the extended model. Our results revealed a significant 

improvement in terms of variance explained in the GS when incorporating PPG-Amp variations. Specifically, the 

correlation between GS and predicted SLFOs exhibited a statistically significant increase from 0.65 (±0.10) to 0.66 

(±0.10) when taking into account PPG-Amp variations (𝑝 < 10−4). 

Suppl. Fig. 3a shows the estimated PRFs averaged across all subjects, specifically the cardiac (CRF), PPG-Amp (PARF) 

and respiration (RRF) response functions. Note that we do not compare models here, hence the cross-validation was 

Fig. 6. Estimated physiological response functions (PRFs) when considering the 5 s shifted PPG-Amp (PA5). (a) PRFs averaged across all 

subjects and scans using weighted averaging with the correlation between GS and the predicted output of the model (i.e. SLFOs) for each scan as 

the weighting coefficient. (b) Correlation between nuisance regressors (i.e. 𝑋𝑅𝑉, 𝑋𝐻𝑅 and 𝑋𝑃𝐴) and GS, averaged across all scans. The lower-

diagonal elements correspond to correlations, whereas the upper-diagonal elements correspond to partial correlations. The partial correlations 

between pairs of the three nuisance regressors did not control for GS variations, as GS is not considered to affect the three associated physiological 

variables. Note that we do not compare models here, hence the cross-validation framework was omitted. CRF and RRF exhibited a positive peak 

at around 2 s followed by a negative peak at 8 s for CRF and 13-14 s for RRF. PARF was characterized by a negative peak at 4.3 s followed by a 

positive peak at 12.5 s. All PRFs demonstrated a slow decay that approximated zero at around 40 s. While the nuisance regressors demonstrated 

relatively low correlations between them ranging from 0.03 to 0.17, all of them exhibited high correlation with the GS (≥0.39). Similar observations 

were made for the partial correlations. 
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omitted when estimating the PRFs presented in Suppl. Fig. 3a. To obtain the main trend of PRFs observed across subjects, 

the estimated PRFs were averaged across scans using weighted average, where the correlation between GS and the 

associated nuisance regressors (𝑋𝐻𝑅 , 𝑋𝑃𝐴 and 𝑋𝑅𝑉) was used as the weighted coefficient. Both CRF and RRF exhibited 

smooth bimodal curves with a positive peak followed by a negative peak and were in agreement in terms of dynamics 

with the PRFs reported in Kassinopoulos and Mitsis (2019a). In contrast, PARF demonstrated a sharp negative peak at 

0.2 s followed by a slow positive overshoot. 

The sharp negative peak in the PARF (Suppl. Fig. 3a) combined with the minimum peak observed at negative lag time 

in the cross-correlation between GS and PPG-Amp (Fig. 5) suggest that fluctuations in GS precede fluctuations in PPG-

Amp. Therefore, we also examined the extended SLFOs model with the PPG-Amp timeseries shifted back in time by 5 

and 10 s. Below, we refer to the original, 5 s and 10 s shifted variants of PPG-Amp as PA0, PA5 and PA10, respectively. 

Using the cross-validation framework, PA5 was found to yield the highest mean correlation (0.67±0.09), which was 

significantly higher than the mean correlation (0.66) achieved with PA0 (𝑝 < 10−4). Fig. 6a shows the PRFs averaged 

across subjects when using the PPG-Amp shifted back in time by 5 s (PA5). As we can see, PARF exhibited a bimodal 

curve with a negative peak at 4.3 s, followed by a positive peak at 12.5 s. Due to the time shift in PPG-Amp, the negative 

peak of the PARF was smoother compared to the negative peak observed with the original PPG-Amp timeseries (Suppl. 

Fig. 3a). Moreover, the time shift in PPG-Amp did not have any effect on CRF and RRF. Similarly to our previous study 

(Kassinopoulos and Mitsis, 2019), we observed variability in the estimated curves across scans for all types of PRFs, 

with the CRF being the most consistent (the estimated PRFs from all scans examined here can be found on 

https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020b)). 

Fig. 6b shows the correlation averaged across all scans between the GS and the nuisance regressors extracted using the 

PRFs (𝑋𝑅𝑉, 𝑋𝐻𝑅 and 𝑋𝑃𝐴). As we can see, the mean correlation values between nuisance regressors were relatively low. 

However, for specific individual scans, we often observed pairs of nuisance regressors (𝑋𝑅𝑉 vs 𝑋𝐻𝑅, 𝑋𝑅𝑉 vs 𝑋𝑃𝐴 and 

𝑋𝐻𝑅 vs 𝑋𝑃𝐴) that were highly correlated. Moreover, in Fig. 6b we see that all three nuisance regressors were strongly 

correlated with the GS, with 𝑋𝑅𝑉 exhibiting the highest mean correlation (0.52) and 𝑋𝑃𝐴 the lowest (0.39). While the 

mean correlation values between nuisance regressors were low, the cross-correlation analysis suggested strong 

interactions between the original physiological variables (Fig. 5). Due to this, we also computed partial correlation values 

to quantify the fraction of GS variance explained by each nuisance regressor, when removing the effect of the other two. 

Similar observations were made for the resulting partial correlation values (Fig. 6b). Fig. 7 shows the performance of the 

extended model for a scan where the nuisance regressors extracted from HR, PPG-Amp and RV were very similar and 

also explained a relatively large fraction of the low-frequency GS oscillations. 

While the contribution of PPG-Amp variations to the GS was on average lower compared to the contribution of HR and 

RV variations, several subjects exhibited a stronger correlation between GS and PPG-Amp as compared to HR or RV. 

To shed light on this subject variability, we examined whether the partial correlation between PPG-Amp and GS depends 

on the body type and blood properties of the participants. Specifically, among the measures collected from participants 

in HCP, we considered the body weight, body mass index, height, systolic and diastolic pressure as well as hematocrit. 

In addition, we considered the HRV (i.e. standard deviation of HR) and standard deviation of RV as estimated from the 

physiological recordings. We chose these measures due to their strong correlation to hemodynamic properties such as 

blood viscosity and total peripheral resistance in the circulatory system. Among the eight tests performed, at a 

significance level of 0.05, only HRV and hematocrit were strongly associated to the partial correlation between GS and 

PPG-Amp (Fig. 8). Specifically, both exhibited a strong positive correlation to the partial correlation values between GS 

and PPG-Amp (p<0.001). Based on this observation, we also examined the relation between hematocrit and HRV. 

However, we did not find any significant correlation between them (p=0.67). 

Finally, consistent to previous studies, variations in HR and breathing pattern had a strong effect across widespread 

regions in the gray matter (Birn et al., 2006; Kassinopoulos and Mitsis, 2019; Shmueli et al., 2007). The same regions 

were found to be strongly associated with variations in PPG-Amp as well (Suppl. Fig. 4). 
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Fig. 7. Demonstration of the estimated SLFOs in the GS for scan S103818-R2RL. (a), (c) and (e) show, respectively, the traces of HR, PPG-Amp and RV during the scan, whereas (b), (d) and 

(f) show the fit of the nuisance regressors extracted from the physiological variables (orange color) on the GS (blue color). (g) Scan-specific PRFs estimated using the framework proposed in 

Kassinopoulos and Mitsis (2019a). (h) Model fit of predicted output (i.e. SLFOs) on the fMRI GS. For visualization purposes, the HR in (a) was smoothed using a moving average filter of 3 s. For 

this particular scan, all three nuisance regressors obtained from HR, PPG-Amp and RV explained a large fraction of variance in the GS. The corresponding figures for all other scans can be found 

on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020b). 
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Fig. 8. Scatterplots of the GS variance explained by PPG-Amp across subjects as a function of (a) HRV and (b) hematocrit. The 

hematocrit was measured for 87 out of 100 subjects. For subjects that had two measures of hematocrit, we used the mean value. The GS variance 

explained by PPG-Amp was calculated as the partial correlation between GS and the nuisance regressor 𝑋𝑃𝐴, averaged across the four scans of 

a subject. Similarly, HRV was averaged across scans for each subject. Interestingly, higher HRV and hematocrit values were associated with a 

larger fraction of GS variance explained by PPG-Amp. 
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4. Discussion 

In this study, we have revisited techniques commonly employed in the fMRI literature for modeling low- and high-

frequency physiological-related fluctuations and proposed refinements and extensions. Furthermore, we sought to answer 

whether the low-frequency (~0.1 Hz) oscillations observed in the PPG recordings, referred to here as PPG-Amp, carry 

important information in the context of physiological noise modeling. 

4.1 High-frequency cardiac fluctuations 

With regards to high-frequency oscillations induced by cardiac pulsatility, we considered RETROICOR, which is a 

widely used technique proposed by Glover et al. (2000) and implemented in various fMRI preprocessing toolboxes such 

as the physiological noise modeling (PNM) toolbox of FSL (Jenkinson et al., 2012) and the PhysIO SPM toolbox  (Kasper 

et al., 2017). RETROICOR assumes that the pulse-related oscillations are phase-locked to the cardiac cycles. The cardiac 

cycles are assumed to start and end at time intervals indicated by adjacent peaks in the PPG recording or adjacent R-

waves in the electrocardiograph (ECG). RETROICOR essentially uses a Fourier series of order M to define a CPW for 

each voxel timeseries, which is repeated for each cardiac cycle. Depending on how long the period of a cardiac cycle is, 

the CPW is extended or shrunk in time to achieve proper alignment with the cycle. 

From a systems theory perspective, RETROICOR assumes that the pulse-related oscillations are described by a non-

causal system as it requires knowledge of future input values (i.e. the timing of the following peak in PPG) to estimate 

the output at a specific timepoint. However, as the idea of considering a causal system that depends only on current and 

past input values is more physiologically plausible, we examined the feasibility of a convolution model to capture pulse-

related oscillations in fMRI. Importantly, a noise correction technique that considers a causal system can be directly 

implemented in real-time fMRI, such as in fMRI-based neurofeedback applications, addressing some of the limitations 

encountered with RETROICOR with respect to the incremental update of the associated regressors (Misaki et al., 2015). 

As in RETROICOR, a Fourier series was used to construct a CPW for each voxel. The CPW in the proposed model plays 

essentially the role of an impulse response function consistent with the notion of hemodynamic or physiological response 

functions that has been adopted in the fMRI literature (Birn et al., 2008; Boynton et al., 2012; Chang et al., 2009). The 

input signal is defined as a train of pulses located at the timings of PPG peaks. Two variants of input signals were 

considered, one with all pulses having equal amplitude (value of one) and a second one where the amplitudes of the 

pulses matched the amplitudes of the PPG peaks. Note that the peaks observed in PPG are slightly delayed with respect 

to cardiac contractions due to pulse transit time effects (Allen, 2007). However, this time difference was accounted for 

when comparing RETROICOR and CPM by considering the time shift that yielded the best performance for each model. 

To compare the performance of the proposed CPM with RETROICOR, we employed a 3-fold cross-validation 

framework. In addition, we sought to optimize the model order and determine whether incorporating some time shift in 

the PPG recordings can improve the performance in terms of BOLD variance explained in the voxel timeseries. Indeed, 

the time shifts of -0.4 s for RETROICOR and -0.9 s for CPM were found to significantly increase the variance explained 

in the BOLD fMRI signal (Fig. 2a-c, Table 1). In the case of RETROICOR, the time shift of -0.4 s is likely related to the 

fact that we considered the onset of an fMRI volume as the acquisition time for all slices in the volume. In the HCP fMRI 

data examined here, the TR which corresponds to the time interval between volumes was 0.72 s. However, as the slices 

of an fMRI volume were being acquired at different times during this time interval, we could consider that the effective 

time acquisition of a volume (i.e. the time that deviates the least from the acquired times of all slices) was the time 

indicated by the analog trigger shifted by half TR forward. If we had accounted for the aforementioned effective time 

acquisition, the optimal time shift for RETROICOR would have been close to zero. With respect to the half second 

difference in optimal time shift observed between CPM and RETROICOR, it may be related to the fact that the basis 

functions used in CPM were slightly altered compared to the basis functions used in RETROICOR (specifically, the 

cosines were subtracted from one) so that the CPWs used in the convolution models, by design, started and ended at 

zero. Note that the two models showed a similar difference in optimal time shift when used to model the fluctuations in 

the PPG timeseries (Suppl. Fig. 1a).  
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Significant improvement in the variance explained was also observed when using higher order Fourier series compared 

to the 2nd order typically used in the literature (Fig. 2d, Table 1). Specifically, for both RETROICOR and CPM, the 6th 

model order yielded the best goodness-of-fit values. Model orders higher than 6 demonstrated a small decreasing trend, 

suggesting that higher orders may result in overfitting and, thus, carry the risk of removing some signal of interest. While 

our results demonstrated the superiority of the 6th model order compared to lower orders, we acknowledge that the optimal 

order may vary across datasets, and particularly across datasets with different pulse sequence parameters that determine 

the degrees of freedom in the data, such as the TR and duration of scan. Furthermore, even though we did not examine 

variability of optimal order across brain regions, we speculate that the optimal model order may be higher in regions 

prone to pulse-related artifacts, such as regions close to large arteries, ventricles and venous sinuses.  

Among the three models examined in this work for pulse-related fMRI fluctuations, the proposed model CPMCA exhibited 

the best performance (Fig. 2). As hypothesized, CPMCA performed better than RETROICOR for subjects with high HRV 

(above ~5 bpm), whereas the performance of the two models was similar for subjects with low HRV. Note that 

RETROICOR and CPMCA differ only in that the former assumes a CPW that is phase-locked to the cardiac cycle whereas 

the latter assumes a CPW of constant duration. Therefore, in the case of CPMCA, when two adjacent cardiac contractions 

occur close to each other compared to the typical time interval, the end of the first CPW overlaps with the beginning of 

the following CPW. As a result, the BOLD response, during this overlapping period, is effectively the sum of the 

individual waveforms, similar to the wave interference observed in nature with other types of waves. As the duration of 

the CPW in CPM is set at the average time interval between cardiac contractions, in the case of a recording with a 

constant HR, the CPWs of adjacent cardiac cycles do not overlap and can be in principle identical to the CPWs estimated 

with RETROICOR. However, in the case that the HR exhibits pronounced fluctuations, even if the two models derive 

the same CPW, their predicted outputs can have substantial differences. Our results confirm that indeed the predicted 

outputs are different between the two models, particularly for subjects with high HRV, and that the more physiologically 

model CPMCA, explains, on average, a larger fraction of variance in fMRI data compared to RETROICOR (Fig. 2). 

The rationale for examining CPMVA, which incorporates the low-frequency fluctuations in the PPG-Amp, was to examine 

whether the varying amplitude of cardiac pulses observed in the PPG (i.e. PPG-Amp) is also present in the BOLD fMRI 

signal. Compared to RETROICOR and CPMCA, CPMVA explained significantly less variance in the fMRI timeseries, 

suggesting that cardiac pulses measured in the brain with fMRI do not have the same amplitude as the pulses measured 

on the finger with PPG. We believe that the differences in amplitude variations observed between fMRI and PPG are not 

due to the different recording sites but rather to differences in the physical principles underlying each modality. PPG is 

based on near-infrared spectroscopy (NIRS), whereby a biological tissue is illuminated with near-infrared light from a 

laser diode and the light detected by a receiver in a nearby site is analyzed to provide information about the compounds 

present in the illuminated tissue (Delpy and Cope, 1997; Pellicer and Bravo, 2011; Scheeren et al., 2012). Based on the 

Beer-Lambert law, the attenuation of the light that is measured with PPG depends on the concentrations of 

oxyhemoglobin (O2Hb) and deoxyhemoglobin (dHb), as well as on their absorption coefficient for the wavelength of the 

incident light. Due to that O2Hb and dHb are characterized by different absorption spectra, it is very likely that a single-

wavelength PPG shows different sensitivity to changes in O2Hb compared to dHb. Therefore, the variations observed in 

PPG-Amp may be the result of variations in the relative fractions of O2Hb and dHb which may not necessarily be 

accompanied by changes in the total hemoglobin (i.e. sum of O2Hb and dHb). On the other hand, while BOLD fMRI is 

considered to reflect changes in dHb, it is also very prone to motion artifacts. Therefore, the pulses in fMRI may originate 

mainly from arterial expansion and tissue movement due to the propagating blood pressure waves in the arteries rather 

than fluctuations in dHb. If this is indeed the case, then we would expect the pulse waveforms to be independent of the 

exact composition of blood (in other words, any fluid with similar viscosity to the blood would lead to similar 

fluctuations) and, therefore, independent of the relative changes in O2Hb and dHb. Another possible explanation for the 

differences in pulse amplitude between PPG and fMRI is that, while the PPG signal is linearly proportional to the levels 

of O2Hb and dHb, and subsequently to the total hemoglobin and blood volume, in fMRI the signal likely exhibits a non-

linear relation to blood volume changes (Buxton et al., 1998; Friston et al., 2000). Therefore, variations in PPG-Amp due 

to changes in blood volume may be reflected differently in fMRI. 
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In a recent study, we demonstrated that cardiac pulsatility induces systematic biases in FC that to some extent depend on 

whether the PE direction is left-right or right-left (Xifra-Porxas et al., 2020). Here, we provide evidence that the regional 

sensitivity of fMRI data to cardiac pulsatility depends partly on PE direction (Fig. 4), which may explain why biases in 

FC due to cardiac pulsatility exhibit the same dependence. Note that dependence on PE direction was also reported for 

breathing motion fMRI artifacts by Raj et al. (2001). Based on simulations and experimental data, Raj et al. suggested 

that magnetic susceptibility variations, likely caused by lung expansion, induce variations in the static magnetic field 

within the brain being imaged (Raj et al., 2001, 2000). As a result, the spatial encoding during fMRI acquisition is 

unavoidably affected, leading to a shift of the reconstructed image in the PE direction as well as distortion of voxel 

timeseries with artifact waveforms that depend on both the phase of the breathing cycle and the location of each voxel 

with respect to the PE direction. In our study, the amplitude of the pulse-related fluctuations varied across voxels, 

depending on their location with respect to the PE direction which may suggest that, similar to breathing motion, the 

mechanism by which pulsatility-induced vessel expansion gives rise to fluctuations in fMRI is partly through local 

variations in the static magnetic field. Note though that, as vessel expansion causes also fluid and tissue movement, spin-

history effects are also thought to be another source of  fluctuations (Caballero-Gaudes and Reynolds, 2017; Murphy et 

al., 2013). 

The proposed model CPMCA can be used to remove fMRI fluctuations due to cardiac pulsatility and facilitate the 

detection of neural-related activity. However, another potential application of this model is to visualize blood flow 

pulsatility in cerebral arteries as well as pulsatility-induced CSF movement. There is accumulating evidence that altered 

cardiac pulsatility in the brain is associated with neurodegenerative diseases such as Alzheimer’s disease (Harrison et 

al., 2018; Iliff et al., 2013; Mestre et al., 2018; Schley et al., 2006). As such, there is a growing interest in developing 

non-invasive techniques for measuring intracranial pulsatility. When we examined the CPWs (i.e. waveforms of the 

pulse-related fMRI fluctuations) extracted with CPMCA, we were able, at the group level, to observe patterns that 

resembled CSF movement to some extent, particularly in areas along the cerebral aqueduct  (Suppl. Fig. 2, a video with 

the temporal dynamics is available on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 

2020b)). This finding suggests that CPMCA, combined with a suitably designed fMRI pulse sequence, may be a potential 

tool for studying the pulsating brain. 

4.2 Systemic low-frequency oscillations (SLFOs) 

Using cross-correlation analysis, we showed that low-frequency GS fluctuations (~0.1 Hz) were preceded by changes in 

physiological variables (RV, HR and PPG-Amp; Fig. 5). In addition, these three variables were, to some degree, 

associated to each other. When we considered convolution models to quantify their contributions to the GS, the latter 

was found to share unique variance with each of the three variables, with RV being the most influential factor and PPG-

Amp the least influential (Fig. 6b). 

The curves of the estimated RRFs and CRFs exhibited significant variability across scans. However, the main trend was 

similar to the trend reported in our earlier study (Fig. 6a; Kassinopoulos and Mitsis, 2019). Both CRF and RRF exhibited 

a positive peak at around 2 s followed by a negative peak at 8 s for CRF and 13-14 s for RRF. With regards to the shape 

of the CRF, as has been suggested in our previous study, the abrupt positive peak may reflect the increase in the blood 

flow that accompanies the HR increase, whereas the negative peak a few seconds later may reflect a regulatory feedback 

mechanism, potentially mediated by a decrease in stroke volume, that aims to bring the blood flow back to its baseline, 

despite the changes in HR. On the other hand, the early positive peak in RRF may indicate that an increase in breathing 

activity, either due to increase in breathing rate or breathing volume, leads to an abrupt increase in O2Hb, which results 

in an increase in the BOLD signal. However, increased breathing activity leads also to a decline in arterial CO2. As CO2 

is a strong vasodilator, its decrease leads to a somewhat delayed vasoconstriction which, in turn, reduces the blood flow 

and also the BOLD signal. 

Inspired by the earlier studies of Birn et al. (2008) and Chang et al. (2009), here we introduced an impulse response 

function, termed photoplethysmographic amplitude response function (PARF), that relates PPG-Amp variations to 

changes in GS. To achieve the best fit on the GS, the PPG-Amp was shifted backward by 5 s. A negative time-shift for 

RV and HR was not considered when modeling the SLFOs in the GS, as the cardiac and breathing activity are processes 
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thought to drive GS fluctuations. On the other hand, the PPG signal collected from the participant’s finger, as with the 

BOLD signal, can be seen as a hemodynamic signal whose fluctuations are controlled, among others, by the cardiac and 

breathing activity. Therefore, the negative time-shift needed for the PPG signal may suggest that the blood pumped by 

the heart to the aorta first arrives at the brain vasculature and then at the finger. Note that even though the cross-correlation 

between GS and PPG-Amp analysis yielded a peak at -1 s, when examining the SLFOs model with the PPG-Amp as one 

of the three inputs, shifting the PPG-Amp back in time by 1 s led to a small, albeit not significant increase in the GS 

variance explained. Due to this, we also examined the SLFOs model with the PPG-Amp shifted backward by longer time 

intervals and found that a time-shift of 5 s results in a small, yet significant increase in the variance explained compared 

to the original PPG-Amp (𝑝 < 10−4), and also yields a smoother PARF curve (Fig. 6a  vs Suppl. Fig. 3a). The improved 

performance observed with the 5 s time-shift may be related to differences in the blood arrival time from the heart to the 

brain vs the finger. However, it may also be related to the use of the double gamma function for modeling the PARF. 

The double gamma function enforces a PRF curve to start at zero amplitude which, while desirable for the RRF and CRF, 

may not be a good choice for the PARF. Therefore, the negative time-shift may improve the goodness-of-fit on the GS 

by compensating somehow for the non-ideal choice of basis functions. 

The shape of the estimated PARF averaged across all subjects exhibited a somewhat opposite trend compared to CRF 

and RRF. Specifically, it exhibited a negative peak at 4.3 s followed by a positive peak at 12.5 s (Fig. 6a). The shape of 

PARF cannot be easily interpreted, as PPG-Amp reflects several processes. Consistent with previous studies (Özbay et 

al., 2019, 2018), PPG-Amp was found to exhibit an almost instantaneous drop when HR increased (Fig. 5), which may 

be associated to decreased stroke volume. Moreover, PPG-Amp was found in our data to be reduced during inhalation, 

a phenomenon well-documented in the literature that has been attributed to changes in intrathoracic pressure resulting 

also in a reduced stroke volume (Meredith et al., 2012). In addition, as PPG is sensitive to changes in HbO and dHb, it 

also captures slower effects of cardiac and breathing activity related to changes in blood oxygenation and volume. While 

PARF may be lacking a clear physiological interpretation, the cross-validation analysis conducted in the present study 

revealed that the inclusion of PPG-Amp convolved with PARF in the model of SLFOs improved the goodness-of-fit on 

the GS, compared to considering only HR and RV. Specifically, in the cross-validation analysis the mean correlation 

increased from 0.65 to 0.67, which was found to be statistically significant (p<10-7), while when the model was trained 

and tested on the same dataset the mean correlation increased from 0.73 to 0.76 (p<10-26). 

The contribution of PPG-Amp on the GS exhibited variability across subjects, with partial correlation values between 

PPG-Amp and GS ranging between 0.15 and 0.57. Subjects with higher HRV were characterized by a stronger 

relationship between GS and PPG-Amp (Fig. 8a; p<0.001), supporting the notion that PPG-Amp explains variance on 

the GS induced partly by HR changes. Furthermore, we observed that the higher was the hematocrit of a subject, the 

larger was the contribution of PPG-Amp on the GS (Fig. 8b; p<0.001). The hematocrit, which is defined as the proportion 

of red blood cells in the blood, is considered as one of the factors determining the amplitude of the PPG signal even 

though its exact effect is still not very clear (Fine, 2014; Jubran, 2015; Ochoa and Ohara, 1980). The strong relationship 

between hematocrit and contribution of PPG-Amp to the GS can be explained as follows: higher levels of hematocrit 

lead to a stronger relative effect of HbO and dHb on the PPG signal, compared to other compounds. As a result, the PPG 

becomes more sensitive to changes in oxygenation, which in turn leads to an increased variance explained in the GS 

using the amplitude of the PPG pulses for subjects with high hematocrit levels. Note that a positive linear relationship 

has been previously reported between the amplitude of task-induced BOLD responses and the hematocrit (Gustard et al., 

2003; Levin et al., 2001), which would suggest that the mean or standard deviation of the GS may differ between subjects 

with different hematocrit values. However, when we examined the mean and standard deviation in the GS, we did not 

find any strong association with hematocrit values (results not shown). 

The capability of PPG-Amp to remove SLFOs from fMRI data was first demonstrated by Van Houdt et al. (2010), who 

showed that removing these fluctuations facilitates the detection of the epileptogenic zone in patients with epilepsy. Van 

Houdt et al. reported a low negative correlation between RVT (a measure of breathing activity similar to RV used here) 

and PPG-Amp (-0.08±0.09), even though similar brain regions were influenced by the two variables. While we also 

found similarly low values in the cross-correlation analysis, the trends were consistent across subjects (Fig. 5). 

Importantly, consistent with Van Houdt et al. (2010), we found that the regions associated to variations in PPG-Amp 
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(widespread regions across GM; Suppl. Fig. 4) were similar to the regions associated to variations in HR and RV 

(Kassinopoulos and Mitsis, 2019). This may not be surprising, as we expect physiological processes to affect areas close 

to the vasculature, and particularly close to draining veins, such as in the occipital cortex, where the concentration of 

dHb varies the most. That said, the three variables seem to consist of shared but also unique variance, hence the increased 

variance explained when considering all variables in the analysis. 

A main difference between the analysis employed here and the analysis in Van Houdt et al. (2010) is that we accounted 

for the dynamics for the effects of physiological processes on fMRI data using convolution models and basis expansion 

techniques. By doing so, we ensured the plausibility of the estimated PRFs while also keeping the number of free model 

parameters low. In contrast, Van Houdt et al. (2010) considered 10 lagged versions of the PPG-Amp in the GLM to 

account for the underlying dynamics. This multi-lagged approach reduces degrees of freedom in the data, particularly in 

the frequency range where we expect neuronal-related activity (Bright et al., 2017) and, therefore, is prone to removing 

signal of interest. On a related note, in an earlier study we found that there was no benefit when allowing variability in 

the shape of the PRFs across voxels (Kassinopoulos and Mitsis, 2019). Based on this finding, we chose in the present 

study to estimate the PRFs only from the GS which has high signal-to-noise ratio (Kassinopoulos and Mitsis, 2019) and 

therefore it is less likely to overfit the data compared to when estimating the PRFs on a voxel-wise manner. 

A strong association of PPG-Amp with the GS was shown in recent sleep studies by means of cross-correlation analysis 

(Özbay et al., 2019, 2018). Specifically, Özbay et al. (2019, 2018) provided evidence that an increase in PPG-Amp is 

followed by an increase in the GS with a lag of a few seconds. In the present study, we found that the lagged increase in 

the GS followed an increased in PPG-Amp occurs also during resting conditions. In addition, we also found a strong 

negative (cross-)correlation between PPG-Amp and GS for lag times between -4 s and 2 s that was not observed during 

sleep. While we find the aforementioned difference between the two studies puzzling, this difference may be somehow 

explained by the fact that the PPG signal is driven by several physiological processes (e.g. HRV) which in turn exhibit 

different trends across stages of sleep and wakefulness (Elsenbruch et al., 1999). As the role of PPG-Amp in fMRI has 

been somewhat neglected in the literature, further research is needed to shed light on the mechanisms that may determine 

the relation between PPG-Amp and GS as well as how this relation may vary between stages of sleep and wakefulness. 

In the present study, we have thoroughly studied the pulsatile component of PPG as well as the variations in its amplitude. 

This component, referred to in the NIRS literature as AC component, is commonly used to obtain measurements of HR 

and breathing rate (Charlton et al., 2018). However, another important component of the PPG that is not well-investigated 

in the fMRI literature is the DC baseline of the PPG signal at frequencies below 0.2 Hz. As a matter of fact, this DC 

component is typically removed from MRI pulse oximeters using a high-pass filter to facilitate the visualization of cardiac 

pulses (this is also likely the case with the PPG signals in HCP as they are lacking a low-frequency content). Pulse 

oximeters considering the full spectrum of the PPG signal that also illuminate at more than one wavelengths can provide 

additional physiological variables compared to single-wavelength PPG signals, such as variations in relative changes of 

HbO and dHb, as well as oxygen saturation (Delpy and Cope, 1997). Due to these properties, the DC baseline in PPG is 

of great importance in clinical cardiovascular monitoring (Jubran, 2015). Note also that the two-wavelength PPG signal 

is the fundamental signal exploited in functional NIRS (fNIRS) for the study of brain activity (Tachtsidis and 

Scholkmann, 2016). 

Although fMRI studies do not typically consider the low-frequency (<0.2 Hz) fluctuations in PPG, its potential in 

physiological noise correction has been demonstrated by Tong and Frederick (2010). Specifically, Tong and Frederick 

(2010) demonstrated that the low-frequency fluctuations in HbO and dHb, obtained from peripheral NIRS, explained a 

significant variance in BOLD fMRI, while in a subsequent study they provided evidence that HbO and dHb explained a 

significantly higher variance compared to nuisance regressors related to HR and breathing patterns (Hocke et al., 2016). 

As the authors stated, this result may not be surprising as HbO and dHb measured with NIRS are physiological variables 

directly related to the BOLD signal. While the levels of HbO and dHb measured from the finger are affected by cardiac 

and breathing activity, they are also affected by other processes such as fluctuations in blood pressure and activity of 

autonomic nervous system that are non-trivial in terms of measurement, especially in the MR environment. Therefore, 

measurements from peripheral NIRS can in principle enable us to account for several factors in addition to HR and 

breathing pattern variations. With regards to our results, it is very likely that the unique variance explained by PPG-Amp 
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in the GS could also be captured with the low-frequency fluctuations in NIRS. However, in case that only the PPG is 

available, the PPG-Amp could be considered in addition to the effects of HR and breathing pattern. 

 

5. Conclusion 

We examined noise correction techniques that utilize the PPG signal in order to account for low- and high-frequency 

physiological fluctuations in BOLD fMRI. The CPMCA model was proposed as a physiologically plausible refinement 

of RETROICOR. CPMCA employs a convolution framework in a similar manner to the use of hemodynamic response 

functions for modeling neural-induced BOLD responses. As initially hypothesized, CPMCA performed equally well with 

RETROICOR for subjects with relatively stable HR and outperformed the latter for subjects with high variability in HR. 

The variations in PPG-Amp (i.e. pulse amplitude observed in the PPG) did not covary with the amplitude in the fMRI 

pulse-related fluctuations. However, PPG-Amp was found to explain a significant amount of variance in SLFOs present 

in the GS, in addition to variance explained by fluctuations in HR and breathing patterns. Overall, the pulsatile component 

of the PPG signal explained a large fraction of variance in fMRI related to both low- and high-frequency physiological 

fluctuations. Scripts for the techniques proposed here are available on git repository 

https://github.com/mkassinopoulos/Noise_modeling_based_on_PPG. 
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Supplementary Material 

 

  

Suppl. Fig. 1. Performance of pulse-related models with respect to variance explained in the PPG. (a) Correlation averaged across 

subjects for RETROICOR, CPMCA and CPMVA. CPMVA exhibited significantly better performance compared to the other two models as it 

accounted for the low-frequency fluctuations of PPG. Note that while RETROICOR and CPMCA exhibited similar maximum mean cross-

correlation values, the peak of the latter was broader (~0.5 s) compared to the peak of the former (~0.1 s). (b) Relative percentage (%) 

improvement achieved by the proposed model CPMCA compared to RETROICOR. The relative percentage improvement for a given scan 

was defined as 100% ∙ (𝑟𝐶𝑃𝑀𝐶𝐴
− 𝑟𝑅𝐸𝑇𝑅)/𝑟𝑅𝐸𝑇𝑅 where 𝑟𝑅𝐸𝑇𝑅 and 𝑟𝐶𝑃𝑀𝐶𝐴

 are the correlation values obtained for models RETROICOR and 

CPMCA, respectively. Even though the model that yielded the best goodness-of-fit varied across scans, scans that were characterized by larger 

HR variability (p<0.001) tented to show better goodness-of-fit with CPMCA than with RETROICOR. The comparison was performed between 

these two models as these models exhibited better performance than CPMVA when considering the variance explained in the fMRI data (Fig. 

3). 
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Suppl. Fig. 2. Cardiac pulsatility waveforms (CPWs) averaged across all subjects (N=100; only scans with left-right PE direction from 

the first session were included). Several areas such as the 3rd ventricle and the cerebral aqueduct, as well as areas in the anterior and posterior 

cingulate cortex exhibited similar CPWs across subjects. A video presenting these waveforms induced by cardiac pulsatility in BOLD fMRI can 

be found on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020b). Intriguingly, the CPWs reconstructed with 

CPMCA revealed different dynamics across regions which may be related to fluid movements. 
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Suppl. Fig. 3. Estimated physiological response functions (PRFs) when considering the original, non-shifted PPG-Amp timeseries (PA0). 

(a) PRFs averaged across all subjects and scans using weighted averaging, with the correlation between GS and the predicted output of the model 

(i.e. SLFOs) for each scan as a weighting coefficient. (b) Correlation between nuisance regressors (𝑋𝑅𝑉, 𝑋𝐻𝑅 and 𝑋𝑃𝐴) and GS, averaged across 

all scans. The lower-diagonal elements correspond to correlations, whereas the upper-diagonal elements correspond to partial correlations. The 

partial correlations between pairs of the three nuisance regressors did not control for GS variations, as it was assumed that GS did not affect the 

three associated physiological variables. Note that we do not compare models here, hence the cross-validation framework was omitted. CRF and 

RRF exhibited a positive peak at around 2 s, followed by a negative peak at 8 s for CRF and 13-14 s for RRF. PARF was characterized by a 

negative peak at 0.2 s followed by a positive peak at 6.5 s. All PRFs demonstrated a slow decay that approached zero at around 40 s. While the 

nuisance regressors yielded relatively low correlation values (between 0.03 and 0.15), all were strongly correlated with the GS (≥0.36). Similar 

observations were made for the partial correlations. 
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Suppl. Fig. 4. Contribution of PPG-Amp variations in fMRI 

averaged across all subjects. (1st column) Correlation maps related 

to the original PPG-Amp variable. (2nd column) Correlation maps 

related to the nuisance regressor 𝑋𝑃𝐴 extracted by shifting the PPG-

Amp back in time by 5 s and convolving it with the PARF. The 

correlation maps were estimated on fMRI data corrected for head and 

breathing motion as well as cardiac pulsatility (6th order of CPM). 

We observe that both the original PPG-Amp variable and its 

associated nuisance regressor explained variance in widespread 

regions across GM. However, as we can see, in the case of the 

nuisance regressor, the correlation values were significantly higher. 
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