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Abstract

The blood oxygenation level-dependent (BOLD) contrast mechanism allows the noninvasive monitoring of changes in
deoxyhemoglobin content. As such, it is commonly used in functional magnetic resonance imaging (fMRI) to study brain
activity since levels of deoxyhemoglobin are indirectly related to local neuronal activity through neurovascular coupling
mechanisms. However, the BOLD signal is severely affected by physiological processes as well as motion. Due to this,
several noise correction techniques have been developed to correct for the associated confounds. The present study
focuses on cardiac pulsatility fMRI confounds, aiming to refine model-based techniques that utilize the
photoplethysmograph (PPG) signal. Specifically, we propose a new technique based on convolution filtering, termed
cardiac pulsatility model (CPM) and compare its performance with RETROICOR, which is a techniqgue commonly used
to model fMRI fluctuations due to cardiac pulsatility. Further, we investigate whether variations in the amplitude of the
PPG pulses (PPG-Amp) covary with variations in amplitude of pulse-related fMRI fluctuations, as well as with the
systemic low frequency oscillations (SLFOs) component of the fMRI global signal (GS — defined as the mean signal
across all gray matter voxels). Capitalizing on 3T fMRI data from the Human Connectome Project, CPM was found to
explain a significantly larger fraction of the fMRI signal variance compared to RETROICOR, particularly for subjects
with larger heart rate variability during the scan. The amplitude of the fMRI pulse-related fluctuations did not covary
with PPG-Amp; however, PPG-Amp explained significant variance in the GS that was not attributed to variations in
heart rate or breathing patterns. Our results suggest that the proposed approach can model high-frequency fluctuations
due to pulsation as well as low-frequency physiological fluctuations more accurately compared to model-based
techniques commonly employed in fMRI studies.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a powerful neuroimaging modality that provides measurements of
brain activity with great spatial coverage and resolution (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al.,
1990). It has been extensively used in behavioral experiments to study brain function associated to a specific task or
condition but also during resting conditions to examine the intrinsic brain functional architecture (Biswal et al., 1995;
Van Dijk et al., 2010). The majority of fMRI experiments are based on the blood oxygen level dependent (BOLD)
contrast that can detect changes in blood oxygenation, and specifically changes in concentration of deoxygenated
hemoglobin (dHb). The main principle exploited in BOLD fMRI is that neuronal activity triggers changes in local
cerebral blood flow (CBF) which, in turn, affects the concentration of dHb (ladecola, 2017; Kisler et al., 2017). As such,
due to its sensitivity to levels of dHb, the BOLD signal provides an indirect measure of the underlying neuronal activity.
A main challenge, however, when analyzing fMRI data is that the BOLD signal is influenced by physiological-related
fluctuations, as well as fluctuations due to motion which, if not properly accounted for, can severely diminish the ability
to detect neural-induced signals or lead to biased connectivity profiles (Birn, 2012; Chang and Glover, 2009; Glasser et
al., 2018; Power et al., 2015; Xifra-Porxas et al., 2020).

The fMRI confounds induced by physiological processes and motion fall into two categories: (1) purely physiological
blood-borne signals also known as systemic low-frequency oscillations (SLFOs), and (2) acquisition artifacts. Blood-
borne signals are signals driven by changes in the levels of dHb in the sample being imaged which in principle can be
influenced by several physiological factors. Experimentally, it has been shown that variations in heart rate (HR; Shmueli
et al., 2007), levels of carbon dioxide (CO2; Prokopiou et al., 2019; Wise et al., 2004), breathing patterns (Birn et al.,
2006), as well as arterial blood pressure (Whittaker et al., 2019) give rise to low-frequency (~0.1 Hz) fluctuations in
fMRI presumably due to their effects on the levels of dHb (Caballero-Gaudes and Reynolds, 2017; Liu, 2016; Murphy
et al., 2013). On the other hand, acquisition artifacts are caused by any kind of motion that forces the imaged sample to
move in space or perturbs the magnetic field, as these movements have a direct impact on the acquisition process
(Caballero-Gaudes and Reynolds, 2017; Liu, 2016; Murphy et al., 2013). Acquisition artifacts may be related to bulk
head motion and breathing-related chest expansion (Power et al., 2015) but also to cardiac contractions through vessel
expansion in the brain vasculature and its associated tissue movement (Dagli et al., 1999).

To account for the effects of physiological processes and motion, several data-driven techniques have been proposed
(Caballero-Gaudes and Reynolds, 2017). An important class of data-driven techniques involves the decomposition of the
fMRI data into components using either principal or independent component analysis (Behzadi et al., 2007; Pruim et al.,
2015; Salimi-Khorshidi et al., 2014) and the removal of components that are likely due to physiological fluctuations or
acquisition artifacts prior to further analysis. These techniques have been shown to perform fairly well in the context of
whole-brain functional connectivity, particularly for acquisition artifacts (Ciric et al., 2017; Kassinopoulos and Mitsis,
2020a; Parkes et al., 2018; Xifra-Porxas et al., 2020). However, their performance on task-based studies or studies with
limited field of view (e.g. Pattinson et al., 2009) has not been well addressed. Often the global signal (GS), defined as
the mean timeseries across all voxels in the brain (or gray matter (GM)), is regressed out from the data as it is largely
influenced by SLFOs (Birn et al., 2006; Chang and Glover, 2009; Falahpour et al., 2013; Kassinopoulos and Mitsis,
2019; Shmueli et al., 2007). However, this practice is somewhat controversial as there is evidence that GS variations
may also reflect neuronal activity (Liu et al., 2017; Murphy and Fox, 2017; Power et al., 2017). Due to this, several
methods that assess the effect of global signal regression (GSR) on connectivity measures have been proposed (Carbonell
et al., 2014; Falahpour et al., 2018; Nalci et al., 2019b, 2019a), as well as alternative approaches that avoid some of the
limitations of GSR (Aquino et al., 2020; Carbonell et al., 2011; Glasser et al., 2018).

As the effectiveness and reliability of data-driven techniques is not yet fully understood, fMRI studies often employ
model-based techniques that utilize concurrent external recordings (e.g. levels of CO,, continuous arterial blood pressure
etc.) and, thus, are more directly related to specific sources of confounds without the risk of removing signal of interest.
The physiological recordings most commonly acquired are the photoplethysmograph (PPG) and the respiratory bellow
signal due to the availability of the necessary equipment in the majority of MR units and due to that the transducers are
well tolerable for participants. PPG and the respiratory bellow capture cardiac and breathing activity, respectively, and
are commonly used to account for high-frequency fMRI artifacts due to cardiac pulsatility (~1 Hz) and breathing motion
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(~0.3 Hz), e.g. using a technique termed RETROICOR proposed by Glover et al. (2000). In addition, these two signals
are often used with convolution models to account for SLFOs driven by variations in HR (Chang et al., 2009) and
breathing patterns (Birn et al., 2008).

In this study we propose a refinement to the approach followed in RETROICOR for modeling cardiac pulsatility that
makes use of convolution models, inspired by their success in modeling BOLD fluctuations induced by other
physiological processes (Birn et al., 2008; Chang et al., 2009), as well as BOLD responses due to changes in neuronal
activity (Boynton et al., 2012). Specifically, we propose the cardiac pulsatility model (CPM) that describes pulse-related
fluctuations in fMRI as the convolution of a train of pulses located at the time of cardiac contractions and a cardiac
pulsatility waveform (CPW). Using a cross-validation framework, we compare RETROICOR with CPM in terms of
variance explained in the fMRI BOLD signal. We hypothesized that CPM would outperform RETROICOR, particularly
for subjects with high HR variability (HRV). Moreover, we examine whether the variations observed in the amplitude
of the pulses in PPG (PPG-Amp) are also present in fMRI pulse-related fluctuations. Finally, we examine the association
between PPG-Amp and the low-frequency fluctuations present in the GS. Previously, we have presented a framework
for estimating scan-specific physiological response functions (PRFs) that are used to model the effect of HR and
breathing pattern in SLFOs present in the GS (Kassinopoulos and Mitsis, 2019). By doing so, the SLFOs timeseries can
be used as a nuisance regressor in the preprocessing of the fMRI data. Here, we investigate whether there is any benefit
in considering PPG-Amp, in addition to HR and breathing activity, for modeling the effect of SLFOs on the GS. Our
results suggest that CPM explains more variance than RETROICOR, particularly for subjects with high HRV. They also
suggest that the amplitude of the cardiac-related pulses observed in fMRI does not covary with PPG-Amp. Finally, they
demonstrate that PPG-Amp explains variance in the GS that is not captured by fluctuations of cardiac or breathing
activity.
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2. Methodology

Unless stated otherwise, the preprocessing and analysis described below were performed in Matlab (R2018b; Mathworks,
Natick MA).

2.1 Human Connectome Project (HCP) Dataset

We used resting-state fMRI scans from the HCP S1200 release (Glasser et al., 2016; Van Essen et al., 2013). The HCP
dataset includes, among others, T1-weighted (T1w) images and resting-state fMRI data (eyes-open and fixation on a
cross-hair) from healthy young individuals (age range: 22-35 years) acquired on two different days. On each day, two
15-minute scans were collected, one with a left-right phase encoding (PE) direction and one with a right-left PE direction.
fMRI acquisition was performed with a multiband factor of 8, spatial resolution of 2 mm isotropic voxels, and a repetition
time (TR) of 0.72 s (Glasser et al., 2013).

The minimal preprocessing pipeline for the resting-state HCP dataset is described in (Glasser et al., 2013). In brief, the
pipeline included gradient-nonlinearity-induced distortion correction, motion correction, EPI image distortion correction
and non-linear registration to MNI space. The motion parameters are included in the database for further correction of
motion artifacts.

In the present work, we used the minimally-preprocessed data along with T1w images provided in volumetric MNI1152
space. We considered 100 subjects who had good quality PPG and breathing activity (respiratory bellow) recordings in
all four scans, as assessed by visual inspection.

2.2 Preprocessing and analysis of physiological signals

The detection of all peaks in PPG with good time accuracy was important for the techniques examined in this study. The
timings of the peaks in PPG were used to model the high-frequency (~1 Hz) cardiac pulsatility artifacts in fMRI and the
low-frequency (~0.1 Hz) physiological artifacts due to variations in HR reflected on the GS. In addition, the amplitudes
of the PPG peaks were used to model low-frequency artifacts that may be unrelated to HR variations. Therefore, to
facilitate peak detection, the PPG signal was initially band-pass filtered with a 2" order Butterworth filter between 0.3
and 10 Hz. The minimum peak distance specified for peak detection varied between 0.5 and 0.9 s, depending on the
subject’s average HR. For a given set of detected peaks, the HR signal was computed in beats-per-minute (bpm) by
multiplying the inverse of the time differences between pairs of adjacent peaks with 60, and evenly resampled at 10 Hz.
The amplitudes of the peaks, referred to later as photoplethysmographic amplitude (PPG-Amp), were also evenly
resampled at 10 Hz. The resampling of HR and PPG-Amp was done using linear interpolation. Note that several subjects
in HCP demonstrated a constant HR of 48 bpm, which is likely due to erroneous PPG recording. None of these subjects
were considered in our study. Furthermore, several scans considered here illustrated HR traces with outliers at different
timepoints. The values of HR at the timepoints of outliers were corrected using linear interpolation (for more information
see Methods in (Kassinopoulos and Mitsis, 2019)).

The breathing signal was detrended linearly and corrected for outliers using a median filter in a similar manner with
(Kassinopoulos and Mitsis, 2019). Subsequently, the breathing signal was low-pass filtered at 5 Hz with a 2" order
Butterworth filter and z-scored.
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2.3 Preprocessing of fMRI data

fMRI data as well as 16 nuisance regressors were first high-pass filtered at 0.008 Hz. The nuisance regressors consisted
of the 6 motion parameters along with their derivatives and 4 regressors related to breathing motion (i.e. 2" order
RETROICOR using only the regressors related to breathing motion). Subsequently, the nuisance regressors were
removed from the fMRI data. To extract the GS of each scan, we initially performed tissue segmentation on the Tlw
images in the MNI152 space using FLIRT in FSL 5.0.9, which generated probabilistic maps for the gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) compartments (Zhang et al., 2001). Afterwards, the GS was calculated
by estimating the mean timeseries across all voxels with a probability of belonging to GM above 0.25. The choice of the
threshold value was made based on visual inspection while overlaying the probabilistic maps of GM on the T1w images.

2.4 High-frequency cardiac fluctuations
2.41 RETROICOR

RETROICOR stands for RETROspective Image-based CORrection and is a technique proposed by Glover et al. (2000)
for removing high-frequency fluctuations due to cardiac pulsatility and breathing motion. While similar steps are
performed to remove the aforementioned confounds, different mechanisms underly them. In this study we compared the
variance explained in fMRI data using RETROICOR with the variance explained using CPM which is a physiologically
plausible model for pulsatility artifacts. Therefore, if not explicitly stated, by RETROICOR we refer to the steps related
to the cardiac fluctuations.

To obtain the pulse-related RETROICOR regressors we followed the following three steps:
1. The cardiac phase was first defined based on the timings of the PPG peaks using the relation:

t~Ty (£)

AR ool [1]

where T, (t) and T¢(t) indicate the time of the nearest peaks from past and future timepoints, respectively.

2. A basis set of cosines and sines was created as follows:

€0S,, (t) = cos(mep)

[2]

where m is the order of the Fourier basis set. Typically, a 2" order RETROICOR is employed, which corresponds to
four nuisance regressors. It has been suggested that whereas higher orders improve the fit, they carry the risk of
overfitting the data (Harvey et al., 2008). However, as the optimal order may depend on parameters of the fMRI pulse
sequence, such as the duration of scan and TR, one of the goals of this study was to determine the optimal order for
RETROICOR and CPM when applied to the resting-state fMRI data of HCP (see Section 2.6).

sin,, (t) = sin(me)

3. Finally, the nuisance regressors cos,,(t) and sin,,(t) were downsampled to match the fMRI acquisition rate,
yielding the regressors cos,,[n] and sin,,[n]. Note that we use parentheses and brackets to distinguish the original
and low-sampled timeseries, and not for distinguishing continuous and discrete signals.

The resulting nuisance regressors were used in the design matrix of the general linear model (GLM) in order to model
the pulse-related artifacts in each voxel timeseries. Through linear regression in GLM, each nuisance regressor is
assigned with a beta parameter S. In the case that only cardiac-related regressors are included in the design matrix, the
voxel timeseries can be represented as:
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M
Y[n] = Z ,Bcos,m COSiy [Tl] + .Bsin,m Sing, [Tl] + g[n] [3]

m=1
where g[n] corresponds to random Gaussian errors. Section 2.6 describes how the fit of RETROICOR regressors on the
data was assessed and compared with CPM. Note that the beta parameters essentially define the cardiac pulsatility
waveform (CPW) during a cardiac cycle. Specifically, CPW is obtained using the relation:

CPW((p) = %:1 ,Bcos,m COS("K”) + ,Bsin,mSin (m(p) @ E [0:2”] [4]

2.4.2  Cardiac pulsatility model (CPM)

Here, we propose an alternative model for capturing pulse-related artifacts in fMRI, termed cardiac pulsatility model
(CPM). CPM assumes that pulse-related artifacts can be modeled as the output of a causal linear time-invariant (LTI)
system, where the input is a train of pulses corresponding to cardiac contractions. Therefore, to describe these artifacts
we employed the convolution representation:

y(©) = Z x(t—1) CPW (D) = x(t) x CPW (¢) [5]

A

where x(t) is the input of the model reflecting the cardiac contractions and CPW (t) is the cardiac pulsatility waveform
and has the role of the model impulse response. The timepoints of the cardiac contractions were considered to coincide
with the timings of the PPG peaks. Two different inputs were examined: the first, denoted by x.,(t), is based on the
assumption that all pulses had a constant amplitude of one, while in the second, denoted by x4 (t), the amplitudes of the
pulses were equal to the amplitudes of the PPG peaks. Both inputs were defined at a sampling rate of 10 Hz. The pulses
consisted of one sample duration each with a constant (unit value) or varying amplitude, depending on the input (i.e.
Xca(t) or xy4(t)), and all remaining samples were equal to zero. The impulse response CPW (t) was defined as a linear
combination of modified Fourier basis functions of one cycle length as shown below:

M
CPW(t) = 2 Bcos,m Lcos,m (t) + ﬁsin,m Lsin,m(t)
m=1

2mmt
where Lgosm(t) =1 - cos( ) for0<t<T

[6]

=0 elsewhere

. (2mmt
and  Lgpm(t) = sm( ) for0<t<T

=0 elsewhere

The fundamental period T varied on a scan basis and was equal to the average cardiac cycle duration within a scan (i.e.
average time difference across pairs of adjacent PPG peaks). The cosine terms were subtracted from one so that all basis
functions begin and end at zero. This mathematical manipulation ensures the physiological plausibility of the model as
it leads to impulse responses that have zero amplitude at time zero and at times larger that T.

Note that based on the properties of convolution, Eq. 5 can also be expressed as:

M
y(t) = Z Bcos,mLcos,m(t) * x(t) + ﬁsin,m Lsin,m (t) * x(t) [7]
m=1

As in RETROICOR, nuisance regressors were extracted from the CPM and were subsequently downsampled to the fMRI
acquisition timeline and used in the GLM design matrix.
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2.4.3 Time alignment of pulse-related regressors and fMRI data

When the heart contracts, a pulse pressure wave propagates from the heart through the vasculature to the whole body
giving rise to cardiac pulses in the arteries that are captured, among other hemodynamic signals, in the PPG. The vascular
path between heart and finger, where PPG is typically recorded, may differ in terms of travelling distance compared to
the path between heart and arteries in the brain vasculature. As a result, a pulse originating from the heart will typically
reach the finger at a different time compared to an artery in the brain. This time difference should be ideally incorporated
in the analysis when extracting pulse-related regressors. To examine whether a time difference should be used in the
HCP fMRI data that can improve the performance of the examined models, we repeated the analysis with each of the
models considered in this study for lag times varying from -2 s to 2 s in steps of 0.1 s. In practice, to account for a specific
lag time, the PPG signal depending on the lag time examined was shifted towards negative or positive times before
extracting the pulse-related regressors. Section 2.6 describes how RETROICOR and the two variants of CPM (i.e. using
inputs x4 (t) and x4 (t)) were compared as well as how the optimal lag time was determined for each of the models.

2.5 Systemic low-frequency oscillations (SLFOs)

Apart from removing high-frequency cardiac and breathing fluctuations, physiological recordings can also be used to
yield nuisance regressors that account for the effect of SLFOs (Tong et al., 2019). A common approach for removing
SLFOs is to use convolution models where the inputs are the HR and a breathing-related variable (e.g. respiration volume
per time; RVT) and the impulse responses are the so-called cardiac (CRF) and respiration (RRF) response functions
(Birn et al., 2008; Chang et al., 2009). The outputs of these convolution models are subsequently used as nuisance
regressors in the GLM. Falahpour et al. (2013) first demonstrated that the GS of a scan can be used as the model output
for estimating subject-specific PRFs. Specifically, the authors showed that nuisance regressors extracted using subject-
specific PRFs explain significantly more variance in fMRI data compared to regressors extracted with canonical PRFs.
In a recent study, we proposed a new framework for estimating PRFs based on the GS and provided evidence that the
PRFs vary significantly even across scans within a subject (Kassinopoulos and Mitsis, 2019).

Apart from fluctuations in HR and breathing patterns, the GS has been recently shown to be linked, during sleep, to
fluctuations in PPG-Amp (Ozbay et al., 2019, 2018). However, as PPG-Amp is affected by various physiological
processes such as breathing, cardiac activity and arterial blood pressure (Reisner et al., 2008), it is unclear whether
fluctuations of PPG-Amp explain an additional fraction of GS variance compared to HR and breathing pattern variations.

In this study, we used cross-correlation analysis to better understand the relation between the physiological sources (HR,
breathing patterns and PPG-Amp) and the GS during resting conditions. Fluctuations in breathing patterns were
quantified using the respiration volume (RV) measure, which is defined as the standard deviation of the breathing signal
within a sliding window of 6 s (Chang et al., 2009). The GS was upsampled to 10 Hz to match the sampling rate of
physiological variables before proceeding with the cross-correlation analysis.

In addition, we employed the framework proposed in (Kassinopoulos and Mitsis, 2019) to examine whether a convolution
model associated to PPG-Amp variations may explain variance in the GS not attributed to HR and breathing variations.
Specifically, we examined whether considering a PRF associated to PPG-Amp variations, (referred to below as PPG-
Amp response function; PARF) along with the components related to HR and breathing pattern variations can improve
the variance explained on the GS compared to the standard approach of considering only HR and breathing patterns. The
nuisance regressors related to HR, PPG-Amp and RV were defined as follows:

Xur(t) = HR * CRF, (8]
Xp4(t) = PA + PARF, and [9]
Xgy(t) = RV % RRF [10]

where PA is the PPG-Amp. We considered the double gamma function (i.e., the sum of two gamma functions) to
construct the PRF curves. The gamma function is defined as:
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VT __t
rw,s,t)=a(t,8) ts - e o7 [11]

where the parameters T and § indicate the (approximate) time of peak and dispersion of the function, and the parameter
a is a scaling factor which normalizes the peak value of the gamma function to 1. The PRF curves were defined as
follows:

CRF(t) = ﬁl,c ' F(Tl,c' 61,c' t) + ﬁz,c ’ F(Tz,c' 82,c' t),
PARF(t) = Bl,p " F(lep, 61,p, t) + Bzrp ) F(Tzrp, 62'p, t), and [12]

RRF(t) = 1y~ F(Tl,r: 81, t) + Bor F(Tz,rl 82 t)

The procedure for estimating scan-specific PRFs is described in detail in (Kassinopoulos and Mitsis, 2019). In brief, the
parameters of the PRFs for a given scan were first estimated using a genetic algorithm (GA) implemented in Matlab
R2018b’s Global Optimization Toolbox. The parameter vectors T (Tyc, Tac T1p T2psT1T2r) and &
(81,¢c,02,¢c) 01,9, 82, 817> 82-) Were bounded between 0-20 seconds and 0-3 seconds, respectively. A stopping criterion
of 100 generations was set, as it was found to be adequate for convergence. GA searches in the parameter space defined
by the boundaries to estimate the parameters that maximize the objective function (Pearson correlation coefficient).
Specifically: 1. for a set of given parameters, the three PRF curves were constructed. Subsequently, 2. the HR, PPG-
Amp and RV signals (sampled at 10 Hz) were convolved with CRF, PARF and RRF, respectively, to extract the
corresponding nuisance regressors and then downsampled to match the fMRI acquisition rate. 3. The beta parameters
were estimated through linear regression (GLM), whereby the GS is the dependent variable and the three nuisance
regressors are the three explanatory variables. 4. Finally, the Pearson correlation coefficient between the GS and the
model prediction was calculated. The estimated parameter values yielded by the GA were subsequently refined using the
interior-point gradient-based algorithm with a stopping criterion of 100 maximum iterations (implemented in Matlab
R2018 as well).

2.6 Model comparison

In the case of high-frequency physiological fluctuations, the goodness-of-fit for a given model was assessed for each
individual voxel using the Pearson correlation between the output of the model and the voxel timeseries. Subsequently,
the correlation was averaged across all voxels in the brain. In contrast, when examining low-frequency physiological
fluctuations, the goodness-of-fit for a given model was assessed using the GS, specifically the Pearson correlation
between the output of the model and the GS.

To compare the performance across models, a 3-fold cross-validation framework was employed to avoid overfitting as
the models differed in flexibility (number of free parameters). When modeling low-frequency physiological fluctuations,
the GS of each scan was partitioned into three segments of about 5 min each. One segment was used as the validation set
for assessing the performance of the model and the remaining two segments were used as the training dataset. This step
was repeated three times with each of the three segments used exactly once as the validation data. In each fold, scan-
specific PRFs and beta parameters were estimated from the training dataset and, subsequently, used in the validation
dataset to model the SLFOs. The goodness-of-fit was assessed based on the correlation between the GS and estimated
SLFOs in the validation dataset. Finally, the mean correlation across the three folds was calculated. To compare the
standard with the proposed model, the mean correlations of the four scans of each subject were first averaged and,
subsequently, a paired t-test was performed based on the mean correlation values of the 100 subjects for the two models.
The 3-fold cross-validation and model comparison were also performed in a similar manner for the high-frequency
physiological fluctuations.

With regards to high-frequency cardiac pulsatility oscillations, three models were examined, namely RETROICOR, the
CPMca and the CPMya (see Section 2.4). The last two models only differed on whether the input signal was x.,(t) or
xy4(t). Apart from the model type, we also examined the optimal model order of Fourier series and the optimal lag time
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as these two parameters may have significant impact on the performance. Therefore, the model performance was initially
assessed for each of the three model types for model order varying from 1 to 8 and lag time varying from -2 sto 2 s in
steps of 0.1 s. The comparison of the three models was subsequently made using for each model the order and lag time
that yielded the best performance across all subjects. We also repeated the comparison considering the PPG raw signal
as the output target rather than the voxel timeseries. This comparison allowed us to illustrate how well the three models
capture cardiac pulsatility, including the low-frequency variations in the envelope of the pulses, on a timeseries that, in
contrast to the fMRI data examined here, has a high sampling-rate (400 Hz) and thus does not suffer from aliasing. Note
that the comparison of the models with regards to their fit on the PPG was made to give us insight into what features of
the output timeseries these models are able to capture. However, the choice for the more appropriate model in the context
of fMRI was done based on the model fit in the voxel timeseries.

To assess regional variability in the performance of the pulse-related models, statistical maps were generated. For
visualization purposes, maps shown here were overlaid on structural images after being registered to the MNI152 space
(1 mm spatial resolution) using FSL’s FLIRT registration tool (Jenkinson and Smith, 2001), as incorporated in the
MANGO software (Lancaster, Martinez; www.ric.uthscsa.edu/mango).

With respect to the low-frequency noise (Section 2.5), we compared two models for extracting the SLFOs using the GS.
The standard model quantifies the effect of SLFOs in the GS using only the variations in HR and breathing patterns,
whereas the proposed model uses HR, breathing patterns and PPG-Amp. The two models can be expressed as follows:

Standard model: GS = SLFOs + &€ = HR x CRF + RV x RRF + ¢ [13]
Proposed model: GS = SLFOs + ¢ = HR * CRF + RV * RRF + PA « PARF + ¢ [14]

2.7 Cardiac pulsatility waveforms (CPW)

Various MRI techniques have been proposed to measure intracranial CPWSs, such as phase-contrast and magnetic
resonance encephalography, as these waveforms are considered a useful biomarker in certain cerebrovascular diseases
(Bianciardi et al., 2016; Wagshul et al., 2011) and are often studied in order to understand the role of intracranial cardiac
pulsatility in the glymphatic activity (Fultz et al., 2019; Kiviniemi et al., 2016). With this in mind, here we sought to
investigate whether the CPM applied to BOLD fMRI data may provide an alternative technique for measuring
intracranial pulsatility. Specifically, we sought to investigate the consistency of CPWSs across subjects.

To extract CPWSs averaged across subjects, we followed the following steps for the two variants of CPM separately: For
a given scan, we derived the CPW in each voxel based on Eq. 6 using the beta parameters estimated in the GLM. Note
that when reconstructing the CPW, a cardiac cycle duration T of 1 s was used for all subjects, as well as a time-step of
0.025 s. Subsequently, the CPW in each voxel was normalized to a maximum absolute value of one and multiplied by
the correlation coefficient related to the variance explained by CPM in the associated voxel. In this way, CPWSs in regions
that were more prone to pulse-related fluctuations had larger intensity amplitudes. Finally, the CPWs were averaged
across subjects considering only scans from the first session and the same PE direction.
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3. Results

The present study examined three models for capturing fMRI fluctuations related to cardiac pulsatility, namely
RETROICOR, CPMca and CPMya. While the repetition time in the HCP fMRI data (TR=0.72 s) is relatively short
compared to typical fMRI data, it is still not short enough to avoid aliasing of pulse-related fluctuations, making the
visual inspection of the model fit in fMRI data more difficult. Therefore, to better understand some of the differences of
the three models in modeling pulse-related fluctuations, the models were first compared with regards to their ability in
modeling the high-frequency oscillations of the PPG signal, which, due to its relatively high sampling rate (400 Hz), did
not exhibit any aliasing. The comparison of the three pulse-related models in modeling high-frequency PPG oscillations
is presented in Section 3.1, whereas Section 3.2 presents the comparison of the models with regards to the variance
explained in fMRI voxel timeseries. Section 3.2 also examines the relation of pulse-related fMRI fluctuations with the
direction of phase encoding in fMRI acquisition. Finally, Section 3.3 examines the relation of the low-frequency
oscillations in PPG-Amp with the SLFOs observed in GS, which are known to be driven, among others, by variations in
HR and breathing patterns (Birn et al., 2006; Kassinopoulos and Mitsis, 2019; Shmueli et al., 2007).

3.1 High-frequency oscillations in the photoplethysmographic (PPG) signal

All three models examined for pulse-related oscillations were able to model the effect of cardiac pulsatility in the PPG.
When considering a 3-fold cross-validation framework, the three models showed improved performance for higher order
Fourier series, reaching a plateau at about 4™ order. Considering the highest examined (8") order, which demonstrated
the best performance, we observed a maximum cross-correlation averaged across subjects at time lags between -0.1 s
and -0.5 s (Suppl. Fig. 1a). RETROICOR, CPMca and CPMy yielded maximum cross-correlation values of 0.900, 0.901
and 0.934, respectively. CPMya which, in contrast to RETROICOR and CPMca, takes into account variations in PPG-
Amp, yielded significantly better performance compared to the other two models (p<10!), while RETROICOR and
CPMca vyielded similar performance. Fig. 1 shows the goodness-of-fit for the three models when applied to the PPG of
a subject that exhibited pronounced HR variations (the 3-fold cross validation framework was omitted for this figure).
As we can see, all three models explained well the variations in the PPG signal overall, although only CPMya was able
to capture the low-frequency fluctuations of the PPG-Amp. Apart from the absence of low-frequency fluctuations in the
case of RETROICOR and CPMca, we were not able to visually observe any other differences in the output waveforms
of the three models. However, as shown later, in the case of fMRI data, RETROICOR and CPMca exhibited better
performance compared to CPMva. Due to this, we further tested whether scans with larger HRV values, where HRV was
defined as the standard deviation of the HR signal, showed relative improvement in the case of CPMca as compared to
RETROICOR. For this test, an 8" order model was used with the optimal lag time for each model. As can be seen in
Suppl. Fig. 1b, CPMca explained a larger fraction of variance for some scans compared to RETROICOR, while the
opposite was observed for other scans. Even though none of the two models was found to outperform the other one for
all scans, we observed a trend for scans with high HRV to be characterized by higher relative improvement (Suppl. Fig.
1b; r=0.32, p<0.001).
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Fig. 1. Model fit of pulse-related models for PPG of a subject with high heart rate variability (HRV; S159138-R1LR). (a) Trace of HR
during a 30 s time segment with pronounced fluctuations. (b)-(d) PPG model fit for RETROICOR, CPMca and CPMva. All three models
captured the high-frequency (~1 Hz) fluctuations related to cardiac pulsatility. However, only CPMva, which incorporates the low-frequency
(~0.1 Hz) fluctuations in PPG-Amp was able to represent these fluctuations in the PPG.

11


https://doi.org/10.1101/2020.06.01.128306
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.128306; this version posted July 23, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3.2 Effects of cardiac pulsatility in BOLD fMRI

Fig. 2a-c shows the correlation averaged across subjects (as well as across all voxels and scans in each subject) for the
three models when the target output was the fMRI timeseries. As many voxels are not prone to pulse-related fluctuations,
the correlation values averaged across all voxels were relatively low. For all model orders examined, RETROICOR
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Fig. 2. Performance of pulse-related models in fMRI data. (a)-(c) Correlation averaged across subjects for RETROICOR, CPMca and CPMva,
respectively. Colors from blue to yellow indicate performance for higher model orders. For all three models, a unimodal curve was observed with
highest mean correlations for lag times between -0.4 and -0.9 s. The optimal lag time for each model was consistent across model orders. Note
that RETROICOR exhibited slightly different optimal lag time compared to CPMca and CPMva which is likely due to differences in the cosine
terms of the basis sets used in the three models. (d) Mean correlation with respect to model order for optimal lag time of -0.4 s for RETROICOR
and -0.9 s for the two variants of CPM. All models yielded a maximum mean correlation for a 6™ order model. In contrast to PPG (Suppl. Fig.
1a), incorporating the low-frequency fluctuations of PPG-Amp in the input signal was found to decrease the model performance (i.e. CPMca Vs
CPMva). (e) Relative percentage (%) improvement with respect to HRV when comparing the proposed model CPMca with RETROICOR. The
relative percentage improvement for a given scan was defined as 100% - (7cpm,, — TreTrR)/TRETR WHETE TRETR AN TCpN,, ArE the correlation
values obtained for models RETROICOR and CPMca, respectively. The improvement achieved with CPMca compared to RETROICOR was
found to be correlated to the amplitude of HR fluctuations (p<10-!!). Note, however, that for some of the scans with low HRV (<6 bpm),
RETROICOR yielded better goodness-of-fit than CPMca.
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Table 1. Comparison of pulse-related models in terms of variance explained in fMRI data

AIA Model type: Order Lagtime: Mean (csolgg?lation imli)_;/:\lgr?]?;]t:
M1 RETROICOR 2nd 0s 0.082 (0.019) -

M2  RETROICOR 2nd 04s 0.085 (0.019) P(M2>M1) < 1024
M3 RETROICOR 6t -04s 0.097 (0.023) P(M3>M2) < 10-%®
M4 CPMca 6t -09s 0.100 (0.023) P(M4>M3) < 108

exhibited a peak in cross-correlation at lag time of -0.4 s, whereas the two CPM models exhibited a peak at lag time of -
0.9 s (a negative lag time indicates that the PPG signal was shifted backward in time). Therefore, to ease the comparison
between models, Fig. 2d shows the mean correlation for all models along with the associated standard error corresponding
to these optimal lag times. We observe that, in contrast to the analysis that used the PPG as target output, CPMy Yielded
poorer performance compared to RETROICOR and CPMca. Moreover, for all three models, the highest performance
was achieved with a 6" order Fourier series, whereas higher orders yielded slightly lower mean correlation values.

Table 1 summarizes the performance of four specific models in order to illustrate the main steps that can lead to an
improvement in the variance explained in the fMRI data. Model M1 corresponds to the 2™ order RETROICOR that is
commonly employed in fMRI studies without considering any lag time, whereas model M2 considers the optimal lag
time of RETROICOR (-0.4 s). Based on a paired t-test, considering the optimal lag time when extracting the nuisance

RETROICOR CPM,,  CPM, vs RETR

Fig. 3. Correlation maps for pulse-related
models averaged across all subjects (N=100;
only scans with left-right PE directions from
the first sessions were included here). The first
and second columns show the variance explained
using RETROICOR and the proposed model
CPMca, respectively, while the third column
shows t-stat maps indicating the areas with
significant differences in correlation values
between the two models (p<0.01). The
correlation threshold value was chosen so that
only the regions more susceptible to cardiac
pulsatility are visible. Both RETROICOR and
CPMca revealed regions close to the basilar and
vertebral arteries, in the 4" ventricle, in the
superior sagittal sinus, in the lateral sulcus and in
the occipital lobe as being more prone to pulse-
related oscillations. However, based on the t-stat
map, CPMca explained a significantly larger
fraction of variance than RETROICOR in the
occipital cortex, the lateral sulcus and superior
sagittal sinus. With the level of significance set at
p<0.01, no region was found to yield higher
correlation values for RETROICOR than for
CPMgca, while for larger values of p-value, only
the lateral ventricles show small clusters of
regions where RETROICOR outperformed
CPMeca in terms of variance explained. The
statistical maps shown in this figure are available
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regressors led to a significant improvement in the variance explained (p<102*). Moreover, employing a 6" instead of a
2" order Fourier series resulted also in an additional improvement (p<10%). Finally, when the optimal model order and
lag time were considered, further improvement was achieved when modeling cardiac pulsatility using the proposed model
CPMca compared to RETROICOR (p<10®). As hypothesized, when comparing CPMca (6™ order and -0.9 s) to
RETROICOR (6" order and -0.4 s lag time), larger HRV values were associated with a larger relative improvement (Fig.
2e; r=0.63; p<10™).

Fig. 3 shows correlation maps averaged across subjects (only scans with left-right PE direction from the first session
were included) as obtained with RETROICOR and CPMca When considering 6™ order Fourier series and the optimal lag
time for each model (i.e. -0.4 sand -0.9 s for RETROICOR and CPMca, respectively). It also shows t-score maps derived
with paired t-tests, indicating brain regions with significant differences in goodness-of-fit between the two models. As
expected, both RETROICOR and CPMca explained substantial variance in areas with CSF (e.g. areas around the
brainstem, in the 4™ ventricle and the superior sagittal sinus) as well as in lateral sulcus and occipital cortex. At a
significance level of p<0.01, CPMca demonstrated better performance in terms of variance explained, particularly in the
occipital cortex, lateral sulcus and superior sagittal sinus, while none of the regions were associated with a better fit for
RETROICOR. When the significance level was set to higher p values, RETROICOR was found to explain a larger
fraction of variance in small clusters of voxels within the lateral ventricles.

In a recent study, we investigated the role of physiological processes in fMRI connectome-based subject discriminability
(Xifra-Porxas et al., 2020). One of our findings was that the connectome signature driven by cardiac pulsatility differs
between left-right and right-left PE direction (see for example Fig. 5 in Xifra-porxas et al. (2020)). To shed light on this
phenomenon, here we compared the variance explained with CPMca for scans with left-right vs right-left PE direction
including only scans from the first session of each subject. Interestingly, in the third column of Fig. 4, which corresponds
to t-scores of correlations for left-right vs right-left PE direction, we observe antisymmetric patterns with respect to the
anterior-posterior axis (see specifically the first three rows corresponding to axial slices). In other words, if for example
aregion in the left hemisphere was more prone to pulse-related oscillations for left-right PE direction compared to right-
left PE direction, then the contralateral region in the right hemisphere was more prone to these oscillations for right-left
PE direction. Moreover, we observe that the regions that exhibit this PE direction dependence were not necessarily the
regions more susceptible to pulse-related oscillations.

Furthermore, we investigated the regional variability of the CPWSs. As described in Methods (Section 2.4.2), the beta
parameters associated to the CPM nuisance regressors define the temporal waveforms of the impulse responses used in
the CPM, referred to here as CPWSs. Based on the beta parameters estimated with the GLM, we inspected the temporal
evolution of the CPWs both at the individual (subject) and group (averaged across subjects considering only scans with
the same PE direction from the first session) level. For this analysis, a 6" order CPMca with a lag time of -0.9 s was
considered, as the cross-validation analysis presented earlier showed that this choice of parameters yielded the best
performance. At the individual level, we were not able to observe any clear pattern apart from discontinuities in adjacent
slices that were likely due to time acquisition differences across slices. Note that we did not incorporate any slice-timing
correction in our analysis as this is not a trivial task for the multi-band fMRI data examined here (Smith et al., 2013).
However, at the group level (N=100), we were able to see smooth spatiotemporal patterns without discontinuities in
adjacent slices. Videos showing the temporal evolution of CPWs in a mid-sagittal plane for left-right and right-left PE
direction are available on repository https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020Db).
In addition, Suppl. Fig. 2 shows the CPWs at five time points uniformly distributed within a cardiac cycle for the left-
right PE direction. Similar dynamics were observed between the two PE directions. While some regions demonstrated
an increase in the BOLD fMRI signal after the onset of a cardiac contraction (e.g. regions in the posterior cingulate
cortex) other regions exhibited the opposite trend (e.g. third ventricle and regions in the anterior cingulate cortex).
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Fig. 4. The effect of phase encoding (PE) direction on pulse-related
fluctuations. The first and second columns show the variance explained
using CPMca averaged across all subjects for scans with left-right and
right-left PE direction, respectively (N=100; only scans from the first
session were included here). The third column shows t-stat maps
indicating the areas with significant differences between the two PE
directions (p<0.01). The correlation threshold value was chosen arbitrarily
so that only the regions more prone to cardiac pulsatility are presented
(note that the cross-validation framework was omitted here, as we do not
compare models but rather examine the effect of PE direction, hence the
higher correlation values compared to Fig. 3). As can be seen from the
axial slices, the regions with significant differences between the two PE
directions were characterized by antisymmetric patterns with respect to
the anterior-posterior axis. For instance, if a brain area in the left
hemisphere was more susceptible to fluctuations due to cardiac pulsatility
for a left-right PE direction compared to a right-left PE direction, the same
area in the opposite hemisphere was more susceptible to pulsatility effects
for a right-left PE direction. Furthermore, the areas that exhibited the
aforementioned PE direction dependence for pulse-related fluctuations
were not necessarily the areas that were strongly affected by these pulse-
related fluctuations. The statistical maps shown in this figure are available
on:

https://neurovault.org/collections/DHFETQTN/.
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Interestingly, the temporal dynamics shown in the video revealed patterns that may relate to some fluid movement.
Particularly, we observed two spatial layers with opposite temporal responses that peaked at about the middle of the
cardiac cycle along the cerebral aqueduct that connects the 3 with the 4™ ventricle.
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3.3 Systemic low-frequency oscillations and their relation to photoplethysmographic and global signal

Fig. 5 presents the results of the cross-correlation analysis that was used to investigate the relation between physiological
variables (RV, HR and PPG-Amp) and the fMRI GS during resting conditions. Note that the cross-correlation technique
can be used to estimate the impulse response for a single-input single-output system when the input signal is uncorrelated
with the output noise (Lee and Schetzen, 1965; Marmarelis, 2004). However, in the present study, we used cross-
correlation to assess the linear correlation patterns between the timeseries of interest, as well as the presence of a lag time
between them. When examining the effects of SLFOs on the GS (presented later in this section), the estimation of the
PRFs (impulse responses) that link the physiological variables RV, HR and PPG-Amp to the GS was done using the
framework proposed in (Kassinopoulos and Mitsis, 2019), which employs basis expansion techniques and assumes a
multiple-input single-output system.

As can be seen in the diagonal of the diagram, all timeseries exhibited a somewhat monotonic decrease in autocorrelation
for increasing (absolute) lag times with the autocorrelation approximating zero for lag times between 10 and 20 s. This
trend is expected considering the sluggishness of the examined signals. Looking at the non-diagonal plots, we observe
that, despite the low correlation values, all three physiological variables demonstrated interactions between them that
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Fig. 5. Cross-correlation between physiological variables and fMRI global signal (GS) averaged across subjects (n=100). The plot for row x
and column y illustrates the auto-/cross-correlation of the corresponding signals. For instance, in the case of HR and GS, the fact that the maximum
absolute cross-correlation occurs at +1.9 s and the correlation is positive indicate that HR is maximally correlated with the GS when it is shifted
forward in time by 1.9 s. Overall, we observe that all physiological signals share covariance with each other as well as with the GS. Note that the
diagonal plots correspond to autocorrelations. Shaded areas indicate the standard deviation across subjects.
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were consistent across subjects. An increase in breathing activity, as quantified with RV, was accompanied by a
concurrent increase in HR and decrease in PPG-Amp. However, PPG-Amp, apart from this decrease, exhibited also a
positive peak about 13 s after the peak in RV. The cross-correlation between PPG-Amp and HR exhibited a similar
bimodal form, albeit with different dynamics. Specifically, a negative peak was observed at about 2.5 s followed by a
positive peak with a smaller amplitude at a lag time of 10 s.

In addition, GS was found to share covariance with all physiological variables. As expected, the cross-correlation
functions between GS and RV or HR resemble, respectively, the CRF and RRF reported in our recent study
(Kassinopoulos and Mitsis, 2019). As the main trend of the corresponding cross-correlations suggests, an increase in RV
and HR leads to an increase in the GS followed by a negative undershoot. An opposite trend was observed in the cross-
correlation between PPG-Amp and GS. Specifically, the cross-correlation between GS and PPG-Amp exhibited a strong
negative peak at -1 s as well as a positive peak at 8 s.

The strong association observed between PPG-Amp and GS in the cross-correlation analysis (Fig. 5) raised the question
whether considering PPG-Amp variations in addition to RV and HR variations, may provide additional information
related to the effect of SLFOs on the GS. To address this question, we compared the standard approach for modeling
SLFOs (i.e. considering only HR and RV) with the extended model that accounts also PPG-Amp variations, using a 3-
fold cross-validation framework (for more information see Section 2.5). The cross-validation framework was necessary
for this comparison due to the larger number of parameters in the extended model. Our results revealed a significant
improvement in terms of variance explained in the GS when incorporating PPG-Amp variations. Specifically, the
correlation between GS and predicted SLFOs exhibited a statistically significant increase from 0.65 (+0.10) to 0.66
(0.10) when taking into account PPG-Amp variations (p < 107%).

Suppl. Fig. 3a shows the estimated PRFs averaged across all subjects, specifically the cardiac (CRF), PPG-Amp (PARF)
and respiration (RRF) response functions. Note that we do not compare models here, hence the cross-validation was
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Fig. 6. Estimated physiological response functions (PRFs) when considering the 5 s shifted PPG-Amp (PAs). (a) PRFs averaged across all
subjects and scans using weighted averaging with the correlation between GS and the predicted output of the model (i.e. SLFOSs) for each scan as
the weighting coefficient. (b) Correlation between nuisance regressors (i.e. Xz, Xyg and Xp4) and GS, averaged across all scans. The lower-
diagonal elements correspond to correlations, whereas the upper-diagonal elements correspond to partial correlations. The partial correlations
between pairs of the three nuisance regressors did not control for GS variations, as GS is not considered to affect the three associated physiological
variables. Note that we do not compare models here, hence the cross-validation framework was omitted. CRF and RRF exhibited a positive peak
at around 2 s followed by a negative peak at 8 s for CRF and 13-14 s for RRF. PARF was characterized by a negative peak at 4.3 s followed by a
positive peak at 12.5 s. All PRFs demonstrated a slow decay that approximated zero at around 40 s. While the nuisance regressors demonstrated
relatively low correlations between them ranging from 0.03 to 0.17, all of them exhibited high correlation with the GS (>0.39). Similar observations
were made for the partial correlations.
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omitted when estimating the PRFs presented in Suppl. Fig. 3a. To obtain the main trend of PRFs observed across subjects,
the estimated PRFs were averaged across scans using weighted average, where the correlation between GS and the
associated nuisance regressors (Xyg, Xp4 and Xz,,) was used as the weighted coefficient. Both CRF and RRF exhibited
smooth bimodal curves with a positive peak followed by a negative peak and were in agreement in terms of dynamics
with the PRFs reported in Kassinopoulos and Mitsis (2019a). In contrast, PARF demonstrated a sharp negative peak at
0.2 s followed by a slow positive overshoot.

The sharp negative peak in the PARF (Suppl. Fig. 3a) combined with the minimum peak observed at negative lag time
in the cross-correlation between GS and PPG-Amp (Fig. 5) suggest that fluctuations in GS precede fluctuations in PPG-
Amp. Therefore, we also examined the extended SLFOs model with the PPG-Amp timeseries shifted back in time by 5
and 10 s. Below, we refer to the original, 5 s and 10 s shifted variants of PPG-Amp as PAo, PAs and PAuo, respectively.
Using the cross-validation framework, PAs was found to yield the highest mean correlation (0.67+0.09), which was
significantly higher than the mean correlation (0.66) achieved with PA, (p < 10™%). Fig. 6a shows the PRFs averaged
across subjects when using the PPG-Amp shifted back in time by 5 s (PAs). As we can see, PARF exhibited a bimodal
curve with a negative peak at 4.3 s, followed by a positive peak at 12.5 s. Due to the time shift in PPG-Amp, the negative
peak of the PARF was smoother compared to the negative peak observed with the original PPG-Amp timeseries (Suppl.
Fig. 3a). Moreover, the time shift in PPG-Amp did not have any effect on CRF and RRF. Similarly to our previous study
(Kassinopoulos and Mitsis, 2019), we observed variability in the estimated curves across scans for all types of PRFs,
with the CRF being the most consistent (the estimated PRFs from all scans examined here can be found on
https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020b)).

Fig. 6b shows the correlation averaged across all scans between the GS and the nuisance regressors extracted using the
PRFs (Xgy, Xyg and Xp4). As we can see, the mean correlation values between nuisance regressors were relatively low.
However, for specific individual scans, we often observed pairs of nuisance regressors (Xzy VS Xygr, Xgy VS Xp4 and
Xyr VS Xp,) that were highly correlated. Moreover, in Fig. 6b we see that all three nuisance regressors were strongly
correlated with the GS, with Xy, exhibiting the highest mean correlation (0.52) and Xp, the lowest (0.39). While the
mean correlation values between nuisance regressors were low, the cross-correlation analysis suggested strong
interactions between the original physiological variables (Fig. 5). Due to this, we also computed partial correlation values
to quantify the fraction of GS variance explained by each nuisance regressor, when removing the effect of the other two.
Similar observations were made for the resulting partial correlation values (Fig. 6b). Fig. 7 shows the performance of the
extended model for a scan where the nuisance regressors extracted from HR, PPG-Amp and RV were very similar and
also explained a relatively large fraction of the low-frequency GS oscillations.

While the contribution of PPG-Amp variations to the GS was on average lower compared to the contribution of HR and
RV variations, several subjects exhibited a stronger correlation between GS and PPG-Amp as compared to HR or RV.
To shed light on this subject variability, we examined whether the partial correlation between PPG-Amp and GS depends
on the body type and blood properties of the participants. Specifically, among the measures collected from participants
in HCP, we considered the body weight, body mass index, height, systolic and diastolic pressure as well as hematocrit.
In addition, we considered the HRV (i.e. standard deviation of HR) and standard deviation of RV as estimated from the
physiological recordings. We chose these measures due to their strong correlation to hemodynamic properties such as
blood viscosity and total peripheral resistance in the circulatory system. Among the eight tests performed, at a
significance level of 0.05, only HRV and hematocrit were strongly associated to the partial correlation between GS and
PPG-Amp (Fig. 8). Specifically, both exhibited a strong positive correlation to the partial correlation values between GS
and PPG-Amp (p<0.001). Based on this observation, we also examined the relation between hematocrit and HRV.
However, we did not find any significant correlation between them (p=0.67).

Finally, consistent to previous studies, variations in HR and breathing pattern had a strong effect across widespread
regions in the gray matter (Birn et al., 2006; Kassinopoulos and Mitsis, 2019; Shmueli et al., 2007). The same regions
were found to be strongly associated with variations in PPG-Amp as well (Suppl. Fig. 4).
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Fig. 7. Demonstration of the estimated SLFOs in the GS for scan S103818-R2RL. (a), (c) and (e) show, respectively, the traces of HR, PPG-Amp and RV during the scan, whereas (b), (d) and
(f) show the fit of the nuisance regressors extracted from the physiological variables (orange color) on the GS (blue color). (g) Scan-specific PRFs estimated using the framework proposed in
Kassinopoulos and Mitsis (2019a). (h) Model fit of predicted output (i.e. SLFOs) on the fMRI GS. For visualization purposes, the HR in (a) was smoothed using a moving average filter of 3 s. For
this particular scan, all three nuisance regressors obtained from HR, PPG-Amp and RV explained a large fraction of variance in the GS. The corresponding figures for all other scans can be found
on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020b).
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Fig. 8. Scatterplots of the GS variance explained by PPG-Amp across subjects as a function of (a) HRV and (b) hematocrit. The
hematocrit was measured for 87 out of 100 subjects. For subjects that had two measures of hematocrit, we used the mean value. The GS variance
explained by PPG-Amp was calculated as the partial correlation between GS and the nuisance regressor X4, averaged across the four scans of
a subject. Similarly, HRV was averaged across scans for each subject. Interestingly, higher HRV and hematocrit values were associated with a
larger fraction of GS variance explained by PPG-Amp.
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4. Discussion

In this study, we have revisited techniques commonly employed in the fMRI literature for modeling low- and high-
frequency physiological-related fluctuations and proposed refinements and extensions. Furthermore, we sought to answer
whether the low-frequency (~0.1 Hz) oscillations observed in the PPG recordings, referred to here as PPG-Amp, carry
important information in the context of physiological noise modeling.

4.1 High-frequency cardiac fluctuations

With regards to high-frequency oscillations induced by cardiac pulsatility, we considered RETROICOR, which is a
widely used technique proposed by Glover et al. (2000) and implemented in various fMRI preprocessing toolboxes such
as the physiological noise modeling (PNM) toolbox of FSL (Jenkinson et al., 2012) and the PhyslO SPM toolbox (Kasper
etal., 2017). RETROICOR assumes that the pulse-related oscillations are phase-locked to the cardiac cycles. The cardiac
cycles are assumed to start and end at time intervals indicated by adjacent peaks in the PPG recording or adjacent R-
waves in the electrocardiograph (ECG). RETROICOR essentially uses a Fourier series of order M to define a CPW for
each voxel timeseries, which is repeated for each cardiac cycle. Depending on how long the period of a cardiac cycle is,
the CPW is extended or shrunk in time to achieve proper alignment with the cycle.

From a systems theory perspective, RETROICOR assumes that the pulse-related oscillations are described by a non-
causal system as it requires knowledge of future input values (i.e. the timing of the following peak in PPG) to estimate
the output at a specific timepoint. However, as the idea of considering a causal system that depends only on current and
past input values is more physiologically plausible, we examined the feasibility of a convolution model to capture pulse-
related oscillations in fTMRI. Importantly, a noise correction technique that considers a causal system can be directly
implemented in real-time fMRI, such as in fMRI-based neurofeedback applications, addressing some of the limitations
encountered with RETROICOR with respect to the incremental update of the associated regressors (Misaki et al., 2015).
As in RETROICOR, a Fourier series was used to construct a CPW for each voxel. The CPW in the proposed model plays
essentially the role of an impulse response function consistent with the notion of hemodynamic or physiological response
functions that has been adopted in the fMRI literature (Birn et al., 2008; Boynton et al., 2012; Chang et al., 2009). The
input signal is defined as a train of pulses located at the timings of PPG peaks. Two variants of input signals were
considered, one with all pulses having equal amplitude (value of one) and a second one where the amplitudes of the
pulses matched the amplitudes of the PPG peaks. Note that the peaks observed in PPG are slightly delayed with respect
to cardiac contractions due to pulse transit time effects (Allen, 2007). However, this time difference was accounted for
when comparing RETROICOR and CPM by considering the time shift that yielded the best performance for each model.

To compare the performance of the proposed CPM with RETROICOR, we employed a 3-fold cross-validation
framework. In addition, we sought to optimize the model order and determine whether incorporating some time shift in
the PPG recordings can improve the performance in terms of BOLD variance explained in the voxel timeseries. Indeed,
the time shifts of -0.4 s for RETROICOR and -0.9 s for CPM were found to significantly increase the variance explained
in the BOLD fMRI signal (Fig. 2a-c, Table 1). In the case of RETROICOR, the time shift of -0.4 s is likely related to the
fact that we considered the onset of an fMRI volume as the acquisition time for all slices in the volume. In the HCP fMRI
data examined here, the TR which corresponds to the time interval between volumes was 0.72 s. However, as the slices
of an fMRI volume were being acquired at different times during this time interval, we could consider that the effective
time acquisition of a volume (i.e. the time that deviates the least from the acquired times of all slices) was the time
indicated by the analog trigger shifted by half TR forward. If we had accounted for the aforementioned effective time
acquisition, the optimal time shift for RETROICOR would have been close to zero. With respect to the half second
difference in optimal time shift observed between CPM and RETROICOR, it may be related to the fact that the basis
functions used in CPM were slightly altered compared to the basis functions used in RETROICOR (specifically, the
cosines were subtracted from one) so that the CPWs used in the convolution models, by design, started and ended at
zero. Note that the two models showed a similar difference in optimal time shift when used to model the fluctuations in
the PPG timeseries (Suppl. Fig. 1a).

21


https://doi.org/10.1101/2020.06.01.128306
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.128306; this version posted July 23, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Significant improvement in the variance explained was also observed when using higher order Fourier series compared
to the 2" order typically used in the literature (Fig. 2d, Table 1). Specifically, for both RETROICOR and CPM, the 6%
model order yielded the best goodness-of-fit values. Model orders higher than 6 demonstrated a small decreasing trend,
suggesting that higher orders may result in overfitting and, thus, carry the risk of removing some signal of interest. While
our results demonstrated the superiority of the 6™ model order compared to lower orders, we acknowledge that the optimal
order may vary across datasets, and particularly across datasets with different pulse sequence parameters that determine
the degrees of freedom in the data, such as the TR and duration of scan. Furthermore, even though we did not examine
variability of optimal order across brain regions, we speculate that the optimal model order may be higher in regions
prone to pulse-related artifacts, such as regions close to large arteries, ventricles and venous sinuses.

Among the three models examined in this work for pulse-related fMRI fluctuations, the proposed model CPMca exhibited
the best performance (Fig. 2). As hypothesized, CPMca performed better than RETROICOR for subjects with high HRV
(above ~5 bpm), whereas the performance of the two models was similar for subjects with low HRV. Note that
RETROICOR and CPMca differ only in that the former assumes a CPW that is phase-locked to the cardiac cycle whereas
the latter assumes a CPW of constant duration. Therefore, in the case of CPMca, when two adjacent cardiac contractions
occur close to each other compared to the typical time interval, the end of the first CPW overlaps with the beginning of
the following CPW. As a result, the BOLD response, during this overlapping period, is effectively the sum of the
individual waveforms, similar to the wave interference observed in nature with other types of waves. As the duration of
the CPW in CPM is set at the average time interval between cardiac contractions, in the case of a recording with a
constant HR, the CPWs of adjacent cardiac cycles do not overlap and can be in principle identical to the CPWs estimated
with RETROICOR. However, in the case that the HR exhibits pronounced fluctuations, even if the two models derive
the same CPW, their predicted outputs can have substantial differences. Our results confirm that indeed the predicted
outputs are different between the two models, particularly for subjects with high HRV, and that the more physiologically
model CPMca, explains, on average, a larger fraction of variance in fMRI data compared to RETROICOR (Fig. 2).

The rationale for examining CPMvya, which incorporates the low-frequency fluctuations in the PPG-Amp, was to examine
whether the varying amplitude of cardiac pulses observed in the PPG (i.e. PPG-Amp) is also present in the BOLD fMRI
signal. Compared to RETROICOR and CPMca, CPMvya explained significantly less variance in the fMRI timeseries,
suggesting that cardiac pulses measured in the brain with fMRI do not have the same amplitude as the pulses measured
on the finger with PPG. We believe that the differences in amplitude variations observed between fMRI and PPG are not
due to the different recording sites but rather to differences in the physical principles underlying each modality. PPG is
based on near-infrared spectroscopy (NIRS), whereby a biological tissue is illuminated with near-infrared light from a
laser diode and the light detected by a receiver in a nearby site is analyzed to provide information about the compounds
present in the illuminated tissue (Delpy and Cope, 1997; Pellicer and Bravo, 2011; Scheeren et al., 2012). Based on the
Beer-Lambert law, the attenuation of the light that is measured with PPG depends on the concentrations of
oxyhemoglobin (O;Hb) and deoxyhemoglobin (dHb), as well as on their absorption coefficient for the wavelength of the
incident light. Due to that O,Hb and dHb are characterized by different absorption spectra, it is very likely that a single-
wavelength PPG shows different sensitivity to changes in O,Hb compared to dHb. Therefore, the variations observed in
PPG-Amp may be the result of variations in the relative fractions of O,Hb and dHb which may not necessarily be
accompanied by changes in the total hemoglobin (i.e. sum of O;Hb and dHb). On the other hand, while BOLD fMRI is
considered to reflect changes in dHb, it is also very prone to motion artifacts. Therefore, the pulses in fMRI may originate
mainly from arterial expansion and tissue movement due to the propagating blood pressure waves in the arteries rather
than fluctuations in dHb. If this is indeed the case, then we would expect the pulse waveforms to be independent of the
exact composition of blood (in other words, any fluid with similar viscosity to the blood would lead to similar
fluctuations) and, therefore, independent of the relative changes in O2Hb and dHb. Another possible explanation for the
differences in pulse amplitude between PPG and fMRI is that, while the PPG signal is linearly proportional to the levels
of O;Hb and dHb, and subsequently to the total hemoglobin and blood volume, in fMRI the signal likely exhibits a non-
linear relation to blood volume changes (Buxton et al., 1998; Friston et al., 2000). Therefore, variations in PPG-Amp due
to changes in blood volume may be reflected differently in fMRI.
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In a recent study, we demonstrated that cardiac pulsatility induces systematic biases in FC that to some extent depend on
whether the PE direction is left-right or right-left (Xifra-Porxas et al., 2020). Here, we provide evidence that the regional
sensitivity of fMRI data to cardiac pulsatility depends partly on PE direction (Fig. 4), which may explain why biases in
FC due to cardiac pulsatility exhibit the same dependence. Note that dependence on PE direction was also reported for
breathing motion fMRI artifacts by Raj et al. (2001). Based on simulations and experimental data, Raj et al. suggested
that magnetic susceptibility variations, likely caused by lung expansion, induce variations in the static magnetic field
within the brain being imaged (Raj et al., 2001, 2000). As a result, the spatial encoding during fMRI acquisition is
unavoidably affected, leading to a shift of the reconstructed image in the PE direction as well as distortion of voxel
timeseries with artifact waveforms that depend on both the phase of the breathing cycle and the location of each voxel
with respect to the PE direction. In our study, the amplitude of the pulse-related fluctuations varied across voxels,
depending on their location with respect to the PE direction which may suggest that, similar to breathing motion, the
mechanism by which pulsatility-induced vessel expansion gives rise to fluctuations in fMRI is partly through local
variations in the static magnetic field. Note though that, as vessel expansion causes also fluid and tissue movement, spin-
history effects are also thought to be another source of fluctuations (Caballero-Gaudes and Reynolds, 2017; Murphy et
al., 2013).

The proposed model CPMca can be used to remove fMRI fluctuations due to cardiac pulsatility and facilitate the
detection of neural-related activity. However, another potential application of this model is to visualize blood flow
pulsatility in cerebral arteries as well as pulsatility-induced CSF movement. There is accumulating evidence that altered
cardiac pulsatility in the brain is associated with neurodegenerative diseases such as Alzheimer’s disease (Harrison et
al., 2018; Iliff et al., 2013; Mestre et al., 2018; Schley et al., 2006). As such, there is a growing interest in developing
non-invasive techniques for measuring intracranial pulsatility. When we examined the CPWs (i.e. waveforms of the
pulse-related fMRI fluctuations) extracted with CPMca, we were able, at the group level, to observe patterns that
resembled CSF movement to some extent, particularly in areas along the cerebral aqueduct (Suppl. Fig. 2, a video with
the temporal dynamics is available on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis,
2020b)). This finding suggests that CPMca, combined with a suitably designed fMRI pulse sequence, may be a potential
tool for studying the pulsating brain.

4.2 Systemic low-frequency oscillations (SLFOs)

Using cross-correlation analysis, we showed that low-frequency GS fluctuations (~0.1 Hz) were preceded by changes in
physiological variables (RV, HR and PPG-Amp; Fig. 5). In addition, these three variables were, to some degree,
associated to each other. When we considered convolution models to quantify their contributions to the GS, the latter
was found to share unique variance with each of the three variables, with RV being the most influential factor and PPG-
Amp the least influential (Fig. 6b).

The curves of the estimated RRFs and CRFs exhibited significant variability across scans. However, the main trend was
similar to the trend reported in our earlier study (Fig. 6a; Kassinopoulos and Mitsis, 2019). Both CRF and RRF exhibited
a positive peak at around 2 s followed by a negative peak at 8 s for CRF and 13-14 s for RRF. With regards to the shape
of the CRF, as has been suggested in our previous study, the abrupt positive peak may reflect the increase in the blood
flow that accompanies the HR increase, whereas the negative peak a few seconds later may reflect a regulatory feedback
mechanism, potentially mediated by a decrease in stroke volume, that aims to bring the blood flow back to its baseline,
despite the changes in HR. On the other hand, the early positive peak in RRF may indicate that an increase in breathing
activity, either due to increase in breathing rate or breathing volume, leads to an abrupt increase in O;Hb, which results
in an increase in the BOLD signal. However, increased breathing activity leads also to a decline in arterial CO2. As CO,
is a strong vasodilator, its decrease leads to a somewhat delayed vasoconstriction which, in turn, reduces the blood flow
and also the BOLD signal.

Inspired by the earlier studies of Birn et al. (2008) and Chang et al. (2009), here we introduced an impulse response
function, termed photoplethysmographic amplitude response function (PARF), that relates PPG-Amp variations to
changes in GS. To achieve the best fit on the GS, the PPG-Amp was shifted backward by 5 s. A negative time-shift for
RV and HR was not considered when modeling the SLFOs in the GS, as the cardiac and breathing activity are processes
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thought to drive GS fluctuations. On the other hand, the PPG signal collected from the participant’s finger, as with the
BOLD signal, can be seen as a hemodynamic signal whose fluctuations are controlled, among others, by the cardiac and
breathing activity. Therefore, the negative time-shift needed for the PPG signal may suggest that the blood pumped by
the heart to the aorta first arrives at the brain vasculature and then at the finger. Note that even though the cross-correlation
between GS and PPG-Amp analysis yielded a peak at -1 s, when examining the SLFOs model with the PPG-Amp as one
of the three inputs, shifting the PPG-Amp back in time by 1 s led to a small, albeit not significant increase in the GS
variance explained. Due to this, we also examined the SLFOs model with the PPG-Amp shifted backward by longer time
intervals and found that a time-shift of 5 s results in a small, yet significant increase in the variance explained compared
to the original PPG-Amp (p < 107%), and also yields a smoother PARF curve (Fig. 6a vs Suppl. Fig. 3a). The improved
performance observed with the 5 s time-shift may be related to differences in the blood arrival time from the heart to the
brain vs the finger. However, it may also be related to the use of the double gamma function for modeling the PARF.
The double gamma function enforces a PRF curve to start at zero amplitude which, while desirable for the RRF and CRF,
may not be a good choice for the PARF. Therefore, the negative time-shift may improve the goodness-of-fit on the GS
by compensating somehow for the non-ideal choice of basis functions.

The shape of the estimated PARF averaged across all subjects exhibited a somewhat opposite trend compared to CRF
and RRF. Specifically, it exhibited a negative peak at 4.3 s followed by a positive peak at 12.5 s (Fig. 6a). The shape of
PARF cannot be easily interpreted, as PPG-Amp reflects several processes. Consistent with previous studies (Ozbay et
al., 2019, 2018), PPG-Amp was found to exhibit an almost instantaneous drop when HR increased (Fig. 5), which may
be associated to decreased stroke volume. Moreover, PPG-Amp was found in our data to be reduced during inhalation,
a phenomenon well-documented in the literature that has been attributed to changes in intrathoracic pressure resulting
also in a reduced stroke volume (Meredith et al., 2012). In addition, as PPG is sensitive to changes in HbO and dHb, it
also captures slower effects of cardiac and breathing activity related to changes in blood oxygenation and volume. While
PARF may be lacking a clear physiological interpretation, the cross-validation analysis conducted in the present study
revealed that the inclusion of PPG-Amp convolved with PARF in the model of SLFOs improved the goodness-of-fit on
the GS, compared to considering only HR and RV. Specifically, in the cross-validation analysis the mean correlation
increased from 0.65 to 0.67, which was found to be statistically significant (p<107), while when the model was trained
and tested on the same dataset the mean correlation increased from 0.73 to 0.76 (p<10%).

The contribution of PPG-Amp on the GS exhibited variability across subjects, with partial correlation values between
PPG-Amp and GS ranging between 0.15 and 0.57. Subjects with higher HRV were characterized by a stronger
relationship between GS and PPG-Amp (Fig. 8a; p<0.001), supporting the notion that PPG-Amp explains variance on
the GS induced partly by HR changes. Furthermore, we observed that the higher was the hematocrit of a subject, the
larger was the contribution of PPG-Amp on the GS (Fig. 8b; p<0.001). The hematocrit, which is defined as the proportion
of red blood cells in the blood, is considered as one of the factors determining the amplitude of the PPG signal even
though its exact effect is still not very clear (Fine, 2014; Jubran, 2015; Ochoa and Ohara, 1980). The strong relationship
between hematocrit and contribution of PPG-Amp to the GS can be explained as follows: higher levels of hematocrit
lead to a stronger relative effect of HbO and dHb on the PPG signal, compared to other compounds. As a result, the PPG
becomes more sensitive to changes in oxygenation, which in turn leads to an increased variance explained in the GS
using the amplitude of the PPG pulses for subjects with high hematocrit levels. Note that a positive linear relationship
has been previously reported between the amplitude of task-induced BOLD responses and the hematocrit (Gustard et al.,
2003; Levin et al., 2001), which would suggest that the mean or standard deviation of the GS may differ between subjects
with different hematocrit values. However, when we examined the mean and standard deviation in the GS, we did not
find any strong association with hematocrit values (results not shown).

The capability of PPG-Amp to remove SLFOs from fMRI data was first demonstrated by Van Houdt et al. (2010), who
showed that removing these fluctuations facilitates the detection of the epileptogenic zone in patients with epilepsy. Van
Houdt et al. reported a low negative correlation between RVT (a measure of breathing activity similar to RV used here)
and PPG-Amp (-0.08+0.09), even though similar brain regions were influenced by the two variables. While we also
found similarly low values in the cross-correlation analysis, the trends were consistent across subjects (Fig. 5).
Importantly, consistent with Van Houdt et al. (2010), we found that the regions associated to variations in PPG-Amp
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(widespread regions across GM; Suppl. Fig. 4) were similar to the regions associated to variations in HR and RV
(Kassinopoulos and Mitsis, 2019). This may not be surprising, as we expect physiological processes to affect areas close
to the vasculature, and particularly close to draining veins, such as in the occipital cortex, where the concentration of
dHb varies the most. That said, the three variables seem to consist of shared but also unique variance, hence the increased
variance explained when considering all variables in the analysis.

A main difference between the analysis employed here and the analysis in Van Houdt et al. (2010) is that we accounted
for the dynamics for the effects of physiological processes on fMRI data using convolution models and basis expansion
techniques. By doing so, we ensured the plausibility of the estimated PRFs while also keeping the number of free model
parameters low. In contrast, Van Houdt et al. (2010) considered 10 lagged versions of the PPG-Amp in the GLM to
account for the underlying dynamics. This multi-lagged approach reduces degrees of freedom in the data, particularly in
the frequency range where we expect neuronal-related activity (Bright et al., 2017) and, therefore, is prone to removing
signal of interest. On a related note, in an earlier study we found that there was no benefit when allowing variability in
the shape of the PRFs across voxels (Kassinopoulos and Mitsis, 2019). Based on this finding, we chose in the present
study to estimate the PRFs only from the GS which has high signal-to-noise ratio (Kassinopoulos and Mitsis, 2019) and
therefore it is less likely to overfit the data compared to when estimating the PRFs on a voxel-wise manner.

A strong association of PPG-Amp with the GS was shown in recent sleep studies by means of cross-correlation analysis
(Ozbay et al., 2019, 2018). Specifically, Ozbay et al. (2019, 2018) provided evidence that an increase in PPG-Amp is
followed by an increase in the GS with a lag of a few seconds. In the present study, we found that the lagged increase in
the GS followed an increased in PPG-Amp occurs also during resting conditions. In addition, we also found a strong
negative (cross-)correlation between PPG-Amp and GS for lag times between -4 s and 2 s that was not observed during
sleep. While we find the aforementioned difference between the two studies puzzling, this difference may be somehow
explained by the fact that the PPG signal is driven by several physiological processes (e.g. HRV) which in turn exhibit
different trends across stages of sleep and wakefulness (Elsenbruch et al., 1999). As the role of PPG-Amp in fMRI has
been somewhat neglected in the literature, further research is needed to shed light on the mechanisms that may determine
the relation between PPG-Amp and GS as well as how this relation may vary between stages of sleep and wakefulness.

In the present study, we have thoroughly studied the pulsatile component of PPG as well as the variations in its amplitude.
This component, referred to in the NIRS literature as AC component, is commonly used to obtain measurements of HR
and breathing rate (Charlton et al., 2018). However, another important component of the PPG that is not well-investigated
in the fMRI literature is the DC baseline of the PPG signal at frequencies below 0.2 Hz. As a matter of fact, this DC
component is typically removed from MRI pulse oximeters using a high-pass filter to facilitate the visualization of cardiac
pulses (this is also likely the case with the PPG signals in HCP as they are lacking a low-frequency content). Pulse
oximeters considering the full spectrum of the PPG signal that also illuminate at more than one wavelengths can provide
additional physiological variables compared to single-wavelength PPG signals, such as variations in relative changes of
HbO and dHb, as well as oxygen saturation (Delpy and Cope, 1997). Due to these properties, the DC baseline in PPG is
of great importance in clinical cardiovascular monitoring (Jubran, 2015). Note also that the two-wavelength PPG signal
is the fundamental signal exploited in functional NIRS (fNIRS) for the study of brain activity (Tachtsidis and
Scholkmann, 2016).

Although fMRI studies do not typically consider the low-frequency (<0.2 Hz) fluctuations in PPG, its potential in
physiological noise correction has been demonstrated by Tong and Frederick (2010). Specifically, Tong and Frederick
(2010) demonstrated that the low-frequency fluctuations in HbO and dHb, obtained from peripheral NIRS, explained a
significant variance in BOLD fMRI, while in a subsequent study they provided evidence that HbO and dHb explained a
significantly higher variance compared to nuisance regressors related to HR and breathing patterns (Hocke et al., 2016).
As the authors stated, this result may not be surprising as HbO and dHb measured with NIRS are physiological variables
directly related to the BOLD signal. While the levels of HbO and dHb measured from the finger are affected by cardiac
and breathing activity, they are also affected by other processes such as fluctuations in blood pressure and activity of
autonomic nervous system that are non-trivial in terms of measurement, especially in the MR environment. Therefore,
measurements from peripheral NIRS can in principle enable us to account for several factors in addition to HR and
breathing pattern variations. With regards to our results, it is very likely that the unique variance explained by PPG-Amp
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in the GS could also be captured with the low-frequency fluctuations in NIRS. However, in case that only the PPG is
available, the PPG-Amp could be considered in addition to the effects of HR and breathing pattern.

5. Conclusion

We examined noise correction techniques that utilize the PPG signal in order to account for low- and high-frequency
physiological fluctuations in BOLD fMRI. The CPMca model was proposed as a physiologically plausible refinement
of RETROICOR. CPMca employs a convolution framework in a similar manner to the use of hemodynamic response
functions for modeling neural-induced BOLD responses. As initially hypothesized, CPMca performed equally well with
RETROICOR for subjects with relatively stable HR and outperformed the latter for subjects with high variability in HR.
The variations in PPG-Amp (i.e. pulse amplitude observed in the PPG) did not covary with the amplitude in the fMRI
pulse-related fluctuations. However, PPG-Amp was found to explain a significant amount of variance in SLFOs present
in the GS, in addition to variance explained by fluctuations in HR and breathing patterns. Overall, the pulsatile component
of the PPG signal explained a large fraction of variance in fMRI related to both low- and high-frequency physiological
fluctuations.  Scripts for the techniques proposed here are available on git repository
https://github.com/mkassinopoulos/Noise_modeling_based on_PPG.
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Suppl. Fig. 1. Performance of pulse-related models with respect to variance explained in the PPG. (a) Correlation averaged across
subjects for RETROICOR, CPMca and CPMva. CPMva exhibited significantly better performance compared to the other two models as it
accounted for the low-frequency fluctuations of PPG. Note that while RETROICOR and CPMca exhibited similar maximum mean cross-
correlation values, the peak of the latter was broader (~0.5 s) compared to the peak of the former (~0.1 s). (b) Relative percentage (%)
improvement achieved by the proposed model CPMca compared to RETROICOR. The relative percentage improvement for a given scan
was defined as 100% - (7¢cpm,, — TreTR)/TRETR WhETE TRETR AN TCpyy,, are the correlation values obtained for models RETROICOR and
CPMca, respectively. Even though the model that yielded the best goodness-of-fit varied across scans, scans that were characterized by larger
HR variability (p<0.001) tented to show better goodness-of-fit with CPMca than with RETROICOR. The comparison was performed between
these two models as these models exhibited better performance than CPMva when considering the variance explained in the fMRI data (Fig.
3).
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Temporal characteristics of cardiac pulsatility waveforms

t=T

I -0.6
I 0.6
Amplitude (a.u.)

Suppl. Fig. 2. Cardiac pulsatility waveforms (CPWSs) averaged across all subjects (N=100; only scans with left-right PE direction from
the first session were included). Several areas such as the 3 ventricle and the cerebral aqueduct, as well as areas in the anterior and posterior
cingulate cortex exhibited similar CPWs across subjects. A video presenting these waveforms induced by cardiac pulsatility in BOLD fMRI can
be found on https://doi.org/10.6084/m9.figshare.c.4946799 (Kassinopoulos and Mitsis, 2020b). Intriguingly, the CPWs reconstructed with
CPMca revealed different dynamics across regions which may be related to fluid movements.
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Suppl. Fig. 3. Estimated physiological response functions (PRFs) when considering the original, non-shifted PPG-Amp timeseries (PAo).
(a) PRFs averaged across all subjects and scans using weighted averaging, with the correlation between GS and the predicted output of the model
(i.e. SLFOs) for each scan as a weighting coefficient. (b) Correlation between nuisance regressors (Xgy, Xyr and Xp,) and GS, averaged across
all scans. The lower-diagonal elements correspond to correlations, whereas the upper-diagonal elements correspond to partial correlations. The
partial correlations between pairs of the three nuisance regressors did not control for GS variations, as it was assumed that GS did not affect the
three associated physiological variables. Note that we do not compare models here, hence the cross-validation framework was omitted. CRF and
RRF exhibited a positive peak at around 2 s, followed by a negative peak at 8 s for CRF and 13-14 s for RRF. PARF was characterized by a
negative peak at 0.2 s followed by a positive peak at 6.5 s. All PRFs demonstrated a slow decay that approached zero at around 40 s. While the
nuisance regressors yielded relatively low correlation values (between 0.03 and 0.15), all were strongly correlated with the GS (>0.36). Similar

observations were made for the partial correlations.
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Suppl. Fig. 4. Contribution of PPG-Amp variations in fMRI
averaged across all subjects. (1%t column) Correlation maps related
to the original PPG-Amp variable. (2" column) Correlation maps
related to the nuisance regressor Xp, extracted by shifting the PPG-
Amp back in time by 5 s and convolving it with the PARF. The
correlation maps were estimated on fMRI data corrected for head and
breathing motion as well as cardiac pulsatility (6™ order of CPM).
We observe that both the original PPG-Amp variable and its
associated nuisance regressor explained variance in widespread
regions across GM. However, as we can see, in the case of the
nuisance regressor, the correlation values were significantly higher.
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