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ABSTRACT

Cellular metabolism, a key regulator of immune responses, is difficult to study with current
technologies in individual cells Here, we present Compass, an algorithm to characterize the
metabolic state of cells based on single-cell RNA-Seq and flux balance analysis. We applied
Compass to associate metabolic states with functional variability (pathogenic potential) amongst
Th17 cells and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to
known differences between Th17 and Treg cells, as well as novel targets in amino-acid pathways,
which we tested through targeted metabolic assays. Compass further predicted a particular
glycolytic reaction (phosphoglycerate mutase — PGAM) that promotes an anti-inflammatory
Th17 phenotype, contrary to the common understanding of glycolysis as pro-inflammatory. We
demonstrate that PGAM inhibition leads non-pathogenic Th17 cells to adopt a pro-inflammatory
transcriptome and induce autoimmunity in vivo. Compass is broadly applicable for characterizing
metabolic states of cells and relating metabolic heterogeneity to other cellular phenotypes.

INTRODUCTION

Cellular metabolism is both a mediator and a regulator of cellular functions. Metabolic activities
are key in normal cellular processes such as activation, expansion and differentiation, but also
play an important role in the pathogenesis of multiple disease conditions including
autoimmunity, cancer, cardiovascular disease, neurodegeneration, and aging. Recently, the
study of metabolism in immune cells (immunometabolism) has gained particular attention as a
major regulator of almost all aspects of immune responses including anti-viral immunity,
autoimmunity, and cancer [1]-[9].

Due to the scale and complexity of the metabolic network, a metabolic perturbation may create
cascading effects and eventually alter a seemingly distant part of the network, while cross-cutting
traditional pathway definitions. Therefore, computational tools are needed to contextualize
observations on specific reactions or enzymes into a systems-level understanding of metabolism
and its dysregulation in disease. One successful framework has been Flux Balance Analysis (FBA),
which translates curated knowledge on the network’s topology and stoichiometry into
mathematical objects and uses them to make in silico predictions on metabolic fluxes [10]-[13].
FBA methods have proven particularly useful when contextualized with functional genomics
data, including gene expression [14].

While such metabolic models aim to represent the behavior of individual cells, their
contextualization has generally relied on information collected from bulk population data.
However, the advent of single-cell RNA-Seq (scRNA-Seq) has highlighted the substantial extent
of cell-to-cell diversity that is often missed by bulk profiles [15], [16], and can be especially
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prominent in immune cells and associated with their functional diversity [8], [17]-[28]. One of
the earliest examples has been the diversity among T helper 17 (Th17) cells [29]. On the one
hand, IL-17 producing Th17 cells can be potent inducers of tissue inflammation in autoimmune
disorders [30], [31] but on the other hand, these cells are critical in host defense against
pathogens [32], [33] and can promote mucosal homeostasis and barrier functions [34]—[36]. Th17
cells with distinct effector functions can be found in patients and animal models and can also be
generated in vitro with different combinations of differentiation cytokines, as we have previously
demonstrated [34]. We have previously shown that such functional diversity can be captured by
studying transcriptional diversity at the single cell level with scRNA-Seq, and enabled the
discovery of novel regulators that are otherwise difficult to detect in bulk RNA-Seq analysis [29],
[37].

We hypothesized that a similar spectrum of diversity may exist at the immunometabolic level
and relate to cell function. However, most cellular assays, including metabolic assays, are
normally done in a targeted manner and difficult to undertake at single-cell level. Furthermore,
low cell numbers frequently prohibit direct metabolic assays, for example, in the study of
immune cells that are present at tissue sites. In contrast, scRNA-Seq, is broadly accessible and
rapidly collected across the human body [38], and should allow, in principle, to contextualize
metabolic models to the single cell level. A computational method is thus required to
systematically address the unique challenges of scRNA-Seq, such as data sparsity, and to
capitalize on its opportunities, for example by treating cell populations as natural perturbation
systems with a rapidly increasing scale [39].

Here, we present Compass, an FBA algorithm to characterize and interpret the metabolic
heterogeneity among cells, which uses available knowledge of the metabolic network in
conjunction with RNA expression of metabolic enzymes. Compass uses single cell transcriptomic
profiles to characterize cellular metabolic states at single-cell resolution and with network-wide
comprehensiveness. It allows detection of metabolic targets across the entire metabolic network,
agnostically of pre-defined metabolic pathway boundaries, and including ancillary pathways that
are normally less studied, yet could play an important role in the determining cell function [40].
We applied Compass to Th17 cells, uncovering substantial immunometabolic diversity associated
with their inflammatory effector functions. In addition to the expected glycolytic shift, we found
diversity in amino acid metabolism, and highlighted a unique and surprising role for the glycolytic
reaction catalyzed by phosphoglycerate mutase (PGAM) in promoting an anti-inflammatory
phenotype in Th17 cells. Compass is a broadly applicable tool for studying metabolic diversity at
the single cell level, and its relationship to the functional diversity between cells.
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RESULTS

Compass — an algorithm for comprehensive characterization of single-cell metabolism

We reasoned that even though the mRNA expression of individual enzymes does not necessarily
provide an accurate proxy for their metabolic activity, a global analysis the entire metabolic
network (as enabled by RNA-Seq) in the context of a large sample set (as offered by single cell
genomics) coupled with strict criteria for hypotheses testing, would provide an effective
framework for predicting cellular metabolic status of the cell. This led us to develop the Compass
algorithm, which integrates scRNA-Seq profiles with prior knowledge of the metabolic network
to infer a metabolic state of the cell (Figure 1A).

The metabolic network is encoded in a Genome-Scale Metabolic Model (GSMM) that includes
reaction stoichiometry, biochemical constraints such as reaction irreversibility and nutrient
availability, and gene-enzyme-reaction associations. Here, we use Recon2, which comprises of
7,440 reactions and 2,626 unique metabolites [41]. To explore the metabolic capabilities of each
cell, Compass solves a series of constraint-based optimization problems (formalized as linear
programs) that produce a set of numeric scores, one per reaction (Methods). Intuitively, the
score of each reaction in each cell reflects how well adjusted is the cell’s overall transcriptome to
maintaining high flux through that reaction. Henceforth, we refer to the scores as quantifying the
“potential activity” of a metabolic reaction (or “activity” in short when it is clear from the context
that Compass predictions are discussed).

Compass belongs to the family of Flux Balance Analysis (FBA) algorithms that model metabolic
fluxes, namely the rate by which chemical reactions convert substrates to products and apply
constrained optimization methods to find flux distributions that satisfy desired properties (a flux
distribution is an assignment of flux value to every reaction in the network) [10]-[13]. In the first
step, Compass is agnostic to any measurement of gene expression levels and computes, for every
metabolic reaction r, the maximal flux vfpt it can carry without imposing any constraints on top
of those imposed by stoichiometry and mass balance. Next, Compass relies on the assumption
that mRNA expression of an enzyme coding gene should preferably correlate with the flux
through the metabolic reaction(s) it catalyzes. It thus assigns every reaction in every cell a penalty
inversely proportional to the mRNA expression associated with its enzyme(s) in that cell.
Compass then finds a flux distribution which minimizes the overall penalty incurred in any given
cell i (summing over all reactions), while maintaining a flux of at least w - vfpt(here w = 0.95)in
r. The Compass score of reaction rin cell i is the negative of that minimal penalty (so that lower
scores correspond to lower potential metabolic activity).
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Using genome-scale metabolic network allows the entire metabolic transcriptome to impact the
computed score for any particular reaction, rather than just the mRNA coding for the enzymes
that catalyze it. We reasoned that this helps reduce the effect of instances where mRNA
expression does not correlate well with metabolic activity, for example due to post-
transcriptional or post-translational modifications. This also mitigates the effects of data sparsity,
which is characteristic of scRNA-Seq data. The low transcript signal in scRNA-Seq, which results
in the extreme case in false-negative gene detections, magnifies the repercussions of sampling
bias and transcription stochasticity, and leads to an overestimation of the variance of lowly
expressed genes, which in turn leads in turn to false-positive calling of differentially expressed
genes [15]. Compass further mitigates data sparsity effects with an information-sharing
approach, similar to other scRNA-Seq algorithms [42]-[50]. Instead of treating each cell in
isolation, the score vector for each cell is determined by a combined objective that balances the
effects in the cell in question with those in its k-nearest neighbors (based on similarity of their
RNA profiles; here, using k = 10; Figure 1B; Methods).

The output of Compass is a quantitative profile for the metabolic state of every cell, which is then
subject to downstream analyses (Figure 1C). These include finding metabolic reactions that are
differentially active between cell types or that correlate with continuous properties of cell state
(e.g., expression of a certain group of cytokines). It can also provide unsupervised insights into
cellular diversity by projecting cells into a low-dimensional space of metabolic activity (e.g., for
visual exploration). The statistical power afforded by the large number of individual cells in a
typical scRNA-Seq study adds robustness and allows these downstream analyses to gain
biological insight despite the high dimension of the metabolic space in which Compass embeds
cells. Finally, because Compass does not rely on a predetermined set of metabolic pathways (or
gene sets) such as Reactome [51] or KEGG [52], it allows unsupervised derivation of cell-specific
metabolic pathways in a data driven way.

Th17 cell metabolic diversity reflects a balance between glycolysis and fatty acid oxidation,
which is associated with pathogenicity

To demonstrate Compass, we applied it to scRNA-Seq data from Th17 cells, differentiated in vitro
from naive CD4+ T into two extreme functional states [34], [53] (Figure 2A). Differentiation with
IL-1B+IL-6+IL-23 creates Th17 cells that upon adoptive transfer into recipient mice induce severe
neuroinflammation in the form of experimental autoimmune encephalomyelitis (EAE). We refer
to these cells as pathogenic Th17 (Th17p). However, when naive CD4+ T cells are cultured with
TGF-B1+IL-6, the resulting Th17 induce only mild-to-none EAE when adoptively transferred to
recipient mice. We refer to these cells as non-pathogenic Thl7 (Th17n). We performed a
Compass analysis of a dataset we generated in a previous study that included 139 Th17p and 151
Th17n cells sorted for IL-17A/GFP+ and profiled using Fluidigm C1 and SMART-Seq2 [29], [37].


https://doi.org/10.1101/2020.01.23.912717
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.23.912717; this version posted March 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6/27

We first computed a Compass score for each metabolic reaction in each cell (Methods). We then
aggregated reactions that were highly correlated across the entire dataset (Spearman rho > 0.98)
into meta-reactions (median of two reactions per meta-reaction; Supplementary Figure 1) for
downstream analysis.

To investigate the main determinants of Th17 cell-to-cell metabolic heterogeneity, we first
analyzed the Compass output as a high dimensional representation of the cells which parallels
the one produced by scRNA-Seq, but with features corresponding to metabolic meta-reaction
rather than transcripts. We performed principal component analysis (PCA) on the meta-reaction
matrix, while restricting it to 784 meta-reactions (out of 1,911) associated with core metabolism
(Methods) that span conserved and well-studied pathways for generation of ATP and synthesis
of key biomolecules.

The first two principal components (PCs) of the core metabolism subspace were associated both
with overall metabolic activity and T effector functions (Figure 2B, Supplementary Figure 2A,B,
Supplementary Table 1). PC1 correlated with the cell’s total metabolic activity, defined as the
expression ratio of genes coding metabolic enzymes out of the total protein coding genes
(Pearson rho = 0.36, p < 4*10%°), as well as a transcriptional signature of late stages of Th17
differentiation over time [54] (Supplementary Figure 2C, Pearson rho = 0.18, p < 0.003)
(Methods). PC2 and PC3 represented a choice between ATP generation through aerobic
glycolysis versus fatty acid oxidation, which is a prominent finding in immunometabolism while
comparing activated Th17 to Tregs, or Teff vs. Tmem cells [3]. Accordingly, they were correlated
with multiple Th17 pathogenicity markers, as well as a signature of Th17 pathogenicity consisting
of cytokines, chemokines and transcription factors that are associated with each phenotypic
group [29], [34] (Supplementary Figure 2D,E). PC2 and PC3 were also noticeably associated with
nitrogen metabolism, and were enriched in urea cycle targets whose power to modulate Th17
pathogenicity is demonstrated below and in an accompanying manuscript (Wang et al., biorxiv
preprint).

Compass predicts metabolic regulators of Th17 cell pathogenicity

To directly search for metabolic targets that are associated with the pathogenic capacity of
individual Th17 cells, we searched for biochemical reactions with differential predicted activity
between the Th17p and Th17n conditions according to Wilcoxon’s rank sum p value and Cohen’s
d effect size statistics) and defined pro-pathogenic and pro-regulatory reactions as ones that
were significantly different in the Th17p or Thl17n direction, respectively (Figure 2C;
Supplementary Figure 2F; Methods; Supplementary Table 2). We next discuss several key
predictions, which we follow up on in the rest of the manuscript as well as in the accompanying
manuscript (Wang et al., biorxiv preprint).
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Metabolic reactions in both primary and ancillary pathways were associated with Th17 cell
pathogenicity (1,213 or 3,362 reactions out of 6,563 reactions, Benjamini-Hochberg (BH)
adjusted Wilcoxon p < 0.001 or 0.1, respectively). Many of these reactions are also significantly
correlated with the expression of signature genes for Th17 functional activity, which code
cytokines and transcription factors [34] (Figure 2D; Supplementary Figure 2G; Supplementary
Table 3), but not metabolic enzymes. Notably, many classically defined metabolic pathways
partially overlapped both with reactions predicted to be pro-pathogenic and reactions predicted
to be pro-regulatory (Figure 2E), highlighting the value in examining single reactions within a
global network rather than conducting a pathway-level analysis. A similar result is obtained at
the gene expression level — many metabolic pathways included both genes that were
upregulated and genes that were downregulated in Th17p compared to Th17n (Supplementary
Figure 2H, Supplementary Table 4).

Compass highlighted distinctions in central carbon and fatty acid metabolism between the Th17p
and Th17n states, which mirror those found between Th17 and Foxp3* T regulatory (Treg) cells.
In central carbon metabolism, Compass predicted that glycolytic reactions, ending with the
conversion of pyruvate to lactate are generally more active in the pro-inflammatory Th17p than
in the Th17n state (Figure 2C and 3A). This parallels previous results showing that Th17 cells
upregulate glycolysis even in the presence of oxygen (hence “aerobic glycolysis”), and that
interference with this process promotes a Treg fate [55]-[57]. Compass also predicted an
increased activity in Th17p through two segments of the TCA cycle, but not the cycle as a whole
(Figures 2C and 3A). A similar breakdown of the TCA cycle in relation with pro-inflammatory
function has been shown in macrophages where M1 polarization divided the TCA cycle at the
same two points: at isocitrate dehydrogenase (IDH) [58], and at succinate dehydrogenase (SDH)
[59], which supported their inflammatory functions [60], [61].

In fatty acid metabolism, Compass predicted that cytosolic acetyl-CoA carboxylase (ACC1), the
committed step towards fatty acid synthesis, is upregulated in Th17p, whereas the first two steps
of long-chain fatty acid oxidation (long chain fatty acyl-CoA synthetase and carnitine O-
palmitoyltransferase (CPT)) were predicted to be significantly higher in Th17n. These predictions
mirror a known metabolic difference between the Th17 and Treg lineages, where Th17 cells rely
more on de novo fatty acid synthesis [62], whereas Tregs scavenge them from their environment
and catabolize them and produce ATP through beta-oxidation [56]. We note, however, that
recent evidence suggests that CPT may be upregulated in Treg over Th17, but is not functionally
indispensable for Treg cells to obtain their effector phenotypes [63].

Among ancillary metabolic pathways, Compass highlighted multiple reactions of amino-acid
metabolism that are differentially active between Th1l7p and Th17n cells (Figure 2C,
Supplementary Table 2). It was previously shown that amino acids are important for Th17 cell
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differentiation [64], and Compass adds further granularity to these findings. In particular, it
predicted that serine biosynthesis from 3-phosphoglycerate, as well as three downstream serine
fates — sphingosines, choline, and S-adenosyl-methionine (SAM) — were higher in Th17p. On
the other hand, parts of urea cycle and arginine metabolism are significantly associated with both
pro-Th17p and pro-Th17n states, (Figure 2C), suggesting that alternative fluxing within this sub-
system may be associated with diverging Th17 cell function. We pursue these predictions and
study this subsystem in detail in a companion manuscript (Wang et al., biorxiv preprint). In the
following sections we validate the other predictions discussed thus far and build on them to find
novel metabolic regulators of Th17 functional states.

Pathogenic Th17 cells maintain higher aerobic glycolysis and TCA activity, whereas Non-

pathogenic Th17 cells oxidize fatty acids to produce ATP

We validated the Compass prediction that pathogenic and non-pathogenic Th17 functional states
differ in their central carbon metabolism (Figure 3a), using Seahorse assays and liquid-
chromatography mass spectrometry (LC/MS) based metabolomics.

First, we compared glycolysis and mitochondrial function of Th17p and Th17n cells. A Seahorse
assay (which involves culturing cells with glucose-rich media) confirmed that Th17p cells caused
significantly higher extracellular acidification (ECAR) than Th17n, indicating accumulation of lactic
acid due to aerobic glycolysis (Figure 3B, top). Th17p cells also generated significantly more ATP
in a mitochondria dependent fashion (Figure 3B, bottom), consistent with the predicted higher
entrance of pyruvate into the TCA cycle despite the diversion of some pyruvate towards the
lactate fate.

Next, we directly measured metabolites within the glycolysis pathway and TCA cycle using LC/MS
based metabolomics. When pulsed with fresh media containing glucose (and rested for 15
minutes), there is a substantial increase in glycolytic metabolites in Th17p but less so in Th17n
cells (Figure 3C, top). Conversely, steady state (pre-pulsing) Th17p and Th17n cells show no
apparent difference in glycolytic metabolites, likely due to alternative nutrients or shunting of
the glycolytic metabolites into alternative fates. Indeed, after 3 hours with glucose pulsing, the
increased level of such metabolites in Th17p return to steady state (Supplementary Figure 3).

Interestingly, Compass predicted that two parts of the TCA cycle, but not the cycle as a whole,
were upregulated in Th17p: the conversion of citrate to isocitrate and of alpha-ketoglutarate to
succinate (mirroring previous findings in macrophages, see above and [58], [59]). LC/MS
Metabolomics analysis of cells at steady state revealed that TCA metabolites were generally more
abundant in Th17p than in Th17n, apart from succinate (Figure 3C, middle). Therefore, both
Compass and the metabolomics data point to succinate as a potential metabolic control point.
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To test whether not only absolute metabolite levels, but also the relative allocation of carbon
into its possible fates differ between Th17p and Th17n cells, we performed a carbon tracing assay
with 13C-glucose. We augmented fresh media with 13C-labeled glucose and computed the ratio
of the 13C isotope out of the total carbon for each metabolite. Consistent with our predictions,
Th17p had significantly higher relative abundance of 13C-labeled glycolytic metabolites than
Th17n (Figure 3D). Furthermore, Th17p preferentially incorporated glucose-derived carbon into
serine (which branches from glycolysis; Supplementary Figure 3B) and its downstream product
choline (Figure 3D), consistent with shunting of glycolytic metabolites into alternative fates by
Th17p cells. This also conforms to the Compass prediction of elevated serine synthesis in Th17p
(Figure 2C). Th17p cells also had significantly lower relative abundance of 13C-labeled TCA
metabolites (Figure 3D), suggesting that the higher level of TCA intermediates observed in Th17p
at steady state (Figure 3C) might not be supported from glucose, but rather from other sources,
such as catabolism of amino acids. Taken together, our results suggest that Th17p cells have a
higher overall activity through the TCA cycle at steady-state, but quickly switch to aerobic
glycolysis when glucose is readily forged from the environment, as observed in the Seahorse, the
fresh-media pulsing metabolome assay, and the carbon tracing assay.

We next validated that Th17n cells prefer beta oxidation as predicted by Compass. Metabolomics
analysis shows that Th17n cells were enriched in acyl-carnitine metabolites (Figure 3C, bottom),
indicative of active lipid transport through the mitochondrial membrane. This could be a result
of either increased lipid biosynthesis or increased catabolism (via beta-oxidation), since acyl-
carnitines are intermediates of both processes. However, acyl-carnitines are noticeably more
abundant in Th17n, and short- to medium-length acyl groups are particularly more abundant in
the steady state and three hours post glucose pulsing (Supplementary Figure 3A). This supports
the hypothesis that under glucose-poor conditions, Th17n cells, more than Th17p, break fatty
acids to produce energy (a process which involves the progressive degradation of long-chain fatty
acids into shorter acyl-CoA chains, two carbon atoms at a time). Indeed, when etomoxir was used
to block acyl-carnitine transportation across mitochondrial membranes, oxygen consumption
rate decreased in Th17n but not Th1l7p cells, as measured by Seahorse assay (Figure 3E).
Although etomoxir has off-target effects [63], [65], overall our data supports the hypothesis that
Th17n cells ultimately divert fatty acid breakdown products into the electron transport chain to
generate ATP, which utilizes oxygen as an electron acceptor.

PDK4-deficient Th17p cells adopt a hon-pathogenic-like central carbon program, but retain a

pathogenic-like amino acid phenotype

Pyruvate dehydrogenase (PDH) is a critical metabolic juncture through which glycolysis-derived
pyruvate enters the TCA cycle (Supplementary Figure 3B). Previous studies have shown that the
PDH inhibiting kinase 1 (PDK1) is expressed at higher levels in Th17 cells compared to Th1l or
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FoxP3* Tregs. Consistently, inhibition of PDK1 suppressed Th17 cells but increased the abundance
of Tregs [57], whereas PDH activation by PDH phosphatase catalytic subunit 2 (PDP2) had the
opposite effects [66]. Compass’s prediction (Figure 2D) of increased glycolytic activity, along with
these previous studies, prompted us to ask whether PDH has a parallel role in regulating Th17p
vs. Th17n states mirroring the reports for Th17 vs. Treg cells [57]. Among PDH inhibitors, PDK4 is
of particular interest in immunometabolism, because it plays a role in the cellular starvation
response [67], [68].

To determine whether increased glycolysis, regulated by PDH enzymes, in Thl7p cells is
important for their global metabolic phenotype, we used PDK4”- mice for perturbation. Despite
the low expression of PDK4 mRNA in Th17 cells (Supplementary Figure 3C), Th17 cells
differentiated from naive T cells from PDK47- mice had reduced conversion of pyruvate to lactate
as measured by ECAR in Th17p but not Th17n conditions (Figure 3F). This suggests that PDK4-
deficiency increases the alternative pyruvate fate, namely entrance into the TCA only in Th17p
cells. It also suggests that Th17n cells control pyruvate entrance to the TCA cycle by other means
than PDKA4.

To further determine the global transcriptional and metabolic changes induced by PDK4
perturbation, we profiled 146 WT and 132 PDK4” Th17p cells and 236 WT and 307 PDK4”- Th17n
cells by scRNA-seq using SMART-Seq2. Consistent with the size of the effects on lactate secretion
(Figure 3F), we observed a considerably larger effect of PDK4-deficiency on the transcriptome of
Th17p cells (Figure 3G, Supplementary Table 5). The genes differentially expressed in Th17p cells
were primarily enriched in central-carbon metabolism (Supplementary Figure 3D and
Supplementary Table 6). LC/MS metabolomics showed that PDK4-deficient Th17p cells had
notably higher levels of acyl-carnitine, indicating elevated fatty acid transport across
mitochondrial membranes (Supplementary Figure 3E), similar to WT Th17n cells. Nevertheless,
the metabolic phenotype of PDK4-deficient Th17p did not fully shift towards that of Th17n cells.
PDK4-deficient Th17p cells retained the WT Th17p metabolome in pathways other than central
carbon metabolism, for instance in amino-acid pathways (Supplementary Figure 3F).
Furthermore, we did not observe significant differences in the expression of key cytokines or
transcription factors that are associated with the effector function of these cells.

Seeing that PDK4-deficiency had partially shifted Th17p central carbon metabolism towards the
Th17n state in vitro, we next tested the pertaining effects in vivo. To this end, we studied the
impact of PDK4- deficiency on the development of EAE, an autoimmune disease induced by
pathogenic Th17 cells. Consistent with previous studies that glycolysis promotes inflammation
[57], [69]-[71], mice with global knockout of PDK4 developed less severe disease as determined
by the clinical disease scores (Figure 3H) with decrease in Th17 cells and increase in the
infiltration of Foxp3* Tregs in the CNS of the mice undergoing EAE (Figure 31). We therefore
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conclude that PDK4-deficient Th17p cells resemble Th17n in their central carbon metabolic state,
but not in other metabolic pathways. These results prompted us to interrogate metabolic
differences outside of central carbon pathways, which are presented in the companion
manuscript (Wang et al., biorxiv preprint).

The glycolytic enzyme phosphoglycerate mutase (PGAM) suppresses Th17 cell pathogenicity

Thus far, our analysis relied on an inter-population comparison between the extreme states of
Th17n and Th17p cells. However, we have previously shown that there is also considerable
continuous variation in the transcriptomes of Th17n cells, which spans into pathogenic-like states
[29]. To explore the relationship between metabolic heterogeneity and pathogenic potential
within the Th17n subset, we next performed an intra-population analysis of Th17n cells. This also
demonstrates that Compass can be applied to scRNA-Seq data in cases where the states of
interest (e.g., Th17n vs. Th17p) are either unknown or cannot be experimentally partitioned into
discrete types. To perform an intra-population Compass analysis of single Th17n cells, we
correlated the Compass scores associated with each reaction with the pathogenicity gene
signature scores of the respective cells (Methods).

While the resulting correlations of individual reactions with the pathogenicity score were largely
consistent with the results of the inter-population analysis (Th17p vs. Th17n) (Figure 4A,
Supplementary Tables 7-8), the intra-population analysis predicted that some glycolytic
reactions may be negatively, rather than positively (as in the inter-population analysis),
associated with Th17 pathogenicity. The most notable of these reactions was the one catalyzed
by the enzyme phosphoglycerate mutase (PGAM), which was negatively associated with
pathogenicity in the intra-population analysis of Th17n cells (Figure 4A), but positively associated
with Th17p cells in the inter-population analysis (Figure 2B,C). This prediction was unexpected
because increased glycolysis is generally known to support pro-inflammatory phenotypes in T
cells (see also Discussion) [55]—[57], [69], [72]-[78].

To functionally validate the glycolytic targets associated with Th17 cell pathogenicity by the intra-
population analysis, we used chemical inhibitors against enzymes driving the top two glycolytic
reactions that were most positively correlated (regulated by pyruvate kinase muscle isozyme
[PKM], and glucose-6-phosphate dehydrogenase [G6PD]) and top two that were most negatively
correlated (phosphoglycerate mutase [PGAM], and glucokinase [GK]) with the pathogenicity
score (Figure 4B). The inhibitors were shikonin (inhibits PKM2), dehydroepiandrosterone (DHEA,
inhibits G6PD), epigallocatechin-3-gallate (EGCG, inhibits PGAM1), and 2,3-dihydroxypropyl-
dichloroacetate (DCA, inhibits GK) (Methods).

We first analyzed the effects of inhibitors on Th17n and Th17p cell differentiation and function
using flow cytometry (Figure 4C). Due to the possibly deleterious effects of blocking these central


https://doi.org/10.1101/2020.01.23.912717
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.23.912717; this version posted March 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12 /27

reactions on cell viability, we used the highest dose of each inhibitor that did not affect cell
viability (compared to solvent alone). We further used flow cytometry to restrict the analysis to
cells that had undergone one division (d1) so as to exclude arrested cells or cells that have been
blocked from activation and expansion. In addition, since two different solvents (DMSO and
methanol) were needed for different inhibitors, every treatment group was matched with an
appropriate vehicle control. We found that IL-17 expression conformed to the prediction made
by Compass. It was significantly upregulated by chemical inhibition of the two enzymes (PGAM
or GK) predicted to suppress pathogenicity, and downregulated by chemical inhibition of the two
enzymes (G6PD or PKM) predicted to promote pathogenicity (Figure 4C). This was further
confirmed when profiling a larger set of cytokines secreted by Th17 cells: inhibition of PKM or
G6PD curtailed all cytokine production suggesting that these enzymes are important for overall
T effector functions. In contrast, cells with PGAM or GK inhibition, at the optimal concentration,
mostly retained their cytokine profile with a few exceptions (Supplementary Figure 4).

To analyze the impact of perturbing glycolytic enzymes on the transcriptome, we used bulk RNA-
Seq to profile Th17n and Th17p cells grown in the presence of either the predicted pro-regulatory
inhibitor DHEA (inhibiting G6PD) or the predicted pro-inflammatory inhibitor EGCG (inhibiting
PGAM) (Figure 4D-F). The first principal component (PC1), which is the main axis of variation in
the data, represented as expected, the pathogenicity phenotype. In both Th17n and Th17p cells,
EGCG shifted cell profiles towards a more pathogenic state on PC1, whereas DHEA shifted them
to a less pathogenic state (Figure 4D). The difference between the two vehicle controls was
inconsequential compared to cell type and interventions.

To better interpret the drug-induced transcriptional changes, we examined individual genes
whose expression is associated with either Th17n or Th17p effector function as wells as global
transcriptomic shifts (Figure 4E,F and Supplementary Table 9). A comparison of DHEA to vehicle
control identified a large number of effector genes that are modulated (Figure 4E, right). These
include a significant decrease in IL23R and TBX21 transcripts in both Th17p and Th17n, two genes
critical for Th17 cell pathogenicity, and in IL9 and IL1RN, two genes highly expressed in non-
pathogenic Th17 cells (Lee et al. 2012). Conversely, EGCG clearly strengthened the pathogenic
transcriptional program in Th17n, globally upregulating pro-inflammatory genes (e.g., IL22, IL7R,
and CASP1) and (to a more limited extent) downregulating pro-regulatory ones (e.g., IKZF3)
(Figure 4E, left and 4F). The global shift towards the pro-inflammatory Th17 program was
observed both in metabolic and non-metabolic transcripts, supporting the hypothesis that PGAM
inhibition by EGCG effected a network-wide metabolic shift that mediated emergence of a pro-
inflammatory Th17 program (Figure 4F).

To verify that the effect of EGCG was mediated by a specific inhibition of PGAM (rather than an
off-target effect) we conducted a carbon tracing assay in which the cell's medium was
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supplemented with 13C-glucose (Methods). PGAM inhibition with EGCG led to a sharp decrease
(from 51% 13C ratio to 7% in Th17n and from 55% to 33% in Th17p) in 13C contents of 2PG
(PGAM'’s product) but not 3PG (PGAM’s substrate) or any other glycolytic metabolite that we
were able to measure (Figure 4G). Interestingly, 13C ratio of PEP (one step downstream of 2PG)
was not changed as well. This suggests that the effect of the inhibitor is restricted (at least within
glycolysis) to the PGAM reaction that lies directly downstream of 3PG.

As the serine biosynthesis pathway is more active in Th17p than in Th17n (Figure 2C) and lies
directly downstream of 3PG (Figure 4B), we asked whether inhibiting serine biosynthesis can
rescue the effect of PGAM inhibition. To this end, we treated Th17n cells with inhibitors to PGAM
and PHGDH (phosphoglycerate dehydrogenase), alone or in combination. We found that further
inhibiting PHDGH rescued the upregulation of Thbet and IFNg induced by EGCG but not its impact
on IL-10 suppression (Figure 4H).

Taken together, an intra-population Compass analysis predicted that within the Th17n
compartment, the glycolytic PGAM reaction inhibits, rather than promotes, pathogenicity. This
prediction relied on heterogeneity within the Th17n population, yielding results that are contrary
to those from inter-population comparisons of Th17 to Treg or Th17p to Th17n. EGCG specifically
inhibited this reaction, and promoted a transcriptional state indicative of a more pro-
inflammatory potential, as evidenced by a global shift in the transcriptome toward a Th17p-like
profile. RNA-Seq further supported the hypothesis that EGCG mediates its effects by altering the
cellular metabolic profile.

PGAM inhibition exacerbates, whereas G6PD inhibition ameliorates, Th17-mediated
neuroinflammation in vivo

To test the functional relevance of the transcriptome shifts induced by EGCG and DHEA in vivo,
we used the adoptive T cell transfer system, so that the effect of inhibitors is limited to T cells
rather than all cells in the host. We generated Th17n and Th17p cells from naive CD4+ T cells
isolated from 2D2 TCR-transgenic mice, with specificity for MOG 35-55, and transferred them
into wildtype mice to induce EAE.

Consistent with Compass prediction, Th17p cells treated with DHEA reduced the severity of
disease at peak of EAE in the recipients (Figure 5A). By the time the mice were sacrificed,
however, the number of lesions in CNS was not significantly different (Figure 5B), and surviving
mice showed no significant alterations in antigen-specific cytokine secretion in response to MOG,
except for increased IL-2 in the DHEA treated group (Supplementary Figure 5A). More
interestingly, and in agreement with Compass predictions, EGCG-treated Th17n cells induced
EAE, albeit in mild form, whereas solvent treated cells failed to produce any consequential
neuroinflammation (Figure 5C). Recipients of EGCG-treated Th17n cells had a significantly higher
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EAE incidence rate (10/12) compared with the control group (0/12, Fisher’s exact p = 1.1¥104).
Consistent with the clinical disease, histological analyses revealed an increased number of CNS
lesions in in both the meninges and the parenchyma of mice that were injected with EGCG-
treated Th17 cells (Figure 5D). While there was only a small difference in antigen-specific T cell
proliferation (Figure 5E), there was a significant increase in secretion of IL-17, IL-17F, IL-22 and
IL-6 (Figure 5F and Supplementary Figure 5B) in response to antigen in cells isolated from
draining lymph node of mice transferred with EGCG-treated Th17n cells. As EGCG treated non-
pathogenic Th17n cells induced only mild EAE, we asked whether EGCG will further enhance
encephalitogenicity of Th17 cells if IL-23 is included in the differentiation cultures, which
stabilizes the Th17 phenotype [79]-[82]. IL-23- treatment indeed enhanced EAE disease severity,
but still Th17n cells treated with IL-23+EGCG induced significantly more severe EAE than their IL-
23+solvent-treated counterparts (Figure 5G). Histopathology across all experiments revealed
that EGCG treatment of Th17n cells promoted, whereas DHEA treatment Th17p cells restricted,
optic neuritis/perineuritis in host mice (Figure 5H). Interestingly, mice transferred with EGCG-
treated Th17 cells (Th17n or Th17n with IL-23) were the only experimental group to produce
Wallerian degeneration in proximal spinal nerve roots (Figure 5I, J).

In conclusion, Compass correctly predicted metabolic targets including glycolytic pathways
whose deletion affected Th17 function. Importantly, it was able to pinpoint a glycolytic reaction
that suppresses Th1l7 pathogenicity, which runs contrary to the current understanding that
aerobic glycolysis as a whole is associated with a pro-inflammatory phenotype in Th17 cells.

Discussion

We presented Compass — a flux balance analysis (FBA) algorithm for the study of metabolic
heterogeneity among cells based on single-cell transcriptome profiles and validated a number of
predictions by metabolome and functional analyses. Compass successfully predicted metabolic
targets in both central and ancillary pathways based on its network approach. These results
support the power of transcriptomic-based FBA to make valid predictions in a mammalian
system.

Glycolysis is a central regulator of T cell function. Compass predicted an association between
aerobic glycolysis and Th17 pathogenicity, which accords with multiple previous results tying
elevated glycolysis with T cell inflammatory functions. However, a Compass-based data-driven
analysis based on scRNAseq unexpectedly revealed that not all glycolytic reactions promote the
pro-inflammatory phenotype in Th1l7 cells. This result was obtained via an intra-population
analysis of individual cells. It serves as a further example to the power of studying single-cell
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heterogeneity within seemingly homogenous populations (here, Th17n), which allowed us to
identify a novel regulator that would have otherwise been missed at a population level (here, a
comparison of Th17p and Th17n). The computational prediction and the data corroborating it
also demonstrate that despite the common assumption that glycolysis promotes pro-
inflammatory functions in Th17 cells and other immune compartments [2], [3], [83]-[87], the role
of glycolysis in induction of pro-inflammatory phenotypes may more nuanced [88], [89].

Static FBA algorithms assume that the system under consideration operates in chemical steady
state [90]. Even under this assumption, there remains an infinite number of feasible flux
distributions that satisfy the preset biochemical constraints. Therefore, most studies assume that
the system (here, a cell) aims to optimize some metabolic function, usually production of biomass
or ATP [91]. However, whereas such objectives may successfully predict phenotypes of a
unicellular organism [92], they are ill-suited for studying mammalian cells [93]. To overcome this
challenge, rather than optimizing a single metabolic objective function, Compass optimizes a set
of objective functions, each estimating the degree to which a cell’s transcriptome supports
carrying the maximal theoretical flux through a given reaction. The result is a high dimensional
representation of the cell’s metabolic potential (one number per reaction). A biological signal
(e.g., differences in reaction potential) can be detected in this high-dimension owing to the
statistical power afforded by the large number of cells in a typical scRNA-Seq dataset.
Nonetheless, there is no inherent limitation preventing one from applying Compass to study bulk
(i.e., non-single-cell) transcriptomic data.

The database of metabolic reactions we used pertains to human cells, and as such our study does
not address differences between human and mouse metabolism. In addition, the database
provides a global view of the metabolic capabilities of a human cell, accrued from various sources
and in diverse cell types. Not all reactions may be functional in a studied cell type, or under
particular physiological conditions. This concern can be addressed to some extent by procedures
for deriving organ-specific metabolic models [94]. Moreover, the metabolic state of a cell
depends on the nutrients available in its environment, which are often poorly characterized.
Here, our computations assume an environment rich with nutrients, which accords with the
studied in vitro growth media. Modifying this to better represent physiological conditions should
increase the algorithm’s predictive capabilities, especially for cells derived in vivo, where nutrient
scarcity may be a limiting factor, and nutrient availability may vary between tissues.

One of the outstanding challenges in the field of single cell genomics is translating the vast data
sets presented in cell atlases into an actionable knowledge resource, i.e. using observed cell
states to deduce molecular mechanisms and targets [16]. Compass was designed with this
challenge in mind, and addresses it in the metabolic cellular subsystem, which can be tractably
modeled in silico. In light of the wide appreciation of cellular metabolism as a critical regulator of
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physiological processes in health and disease, we expect Compass to be useful in predicting cell
metabolic states, as well as actionable metabolic targets, in diverse physiological and pathologic
contexts.

Code and data availability

We are working on making an open-source and free for academic use implementation available
on Github, and will update this preprint when it is available. In the meantime, code is available
upon request. A GEO deposition of RNA-Seq data is underway as well.
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Figure Legends

Figure 1 - Algorithm overview

(A) Computation of Compass scores matrix. Compass leverages prior knowledge on metabolic
topology and stoichiometry (encoded in a GSMM, see main text) to analyze single-cell RNA-Seq
expression. Briefly, it computes a reaction-penalties matrix, where the penalty of a given reaction
is inversely proportional to the expression its respective enzyme-coding genes. The reaction-
penalties matrix is the input to a set of flux-balance linear programs that produce a score for
every reaction in every cell, namely the Compass score matrix. (B) To compute the reaction
penalties matrix, Compass allows soft information sharing between a cell and its k-nearest
neighbors to mitigate technical noise in single-cell library preparation. (C) Downstream analysis
of the score matrix. Rows are hierarchically clustered into meta-reactions (agnostically of
canonical pathway definitions). The scores are then amenable to common genomics procedures
including differential expression of meta-reactions, detecting meta-reactions correlating with a
phenotype of interest, dimensionality reduction, and data-driven network analysis (the latter
pursued in the accompanying manuscript (Wang et al., biorxiv preprint) ).

Figure 2 - Compass-based exploration of metabolic heterogeneity within the Thi7
compartment

(A) The experimental system. Naive CD4+ T cells are collected and differentiated into Th17p or
Th17n cells, which are IL-17+ T cells that cause severe or mild-to-none CNS autoimmunity upon
adoptive transfer. Th17nu cells are Th17n cells which were not sorted by IL-17 and exhibit higher
variability [29]. (B) PCA of the Compass scores matrix (restricted to core metabolism, see main
text), with select top loadings shown. (C) Dots represent a single biochemical reactions, Cohen’s
d and Wilcoxon rank sum p values computed as described in the main text for a comparison of
Th17p vs. Th1l7n. This computation is done over meta-reactions, and every meta-reaction is
expanded into its constituent single reactions (Methods), each shown as a separate dot. Only
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core reactions (Methods) are shown. Reactions are partitioned by Recon2 pathways; bottom-
right panel groups together all Recon2 subsystems associated with amino-acid metabolism. (D)
Spearman correlation of Compass scores of single reactions with the expression of pro-
pathogenic (magenta) or pro-regulatory Th17n (green) genes [29], none of which is metabolic
and therefore none of them directly serves as a Compass input. Only significant correlations (BH-
adjusted p < 0.1) are shown in color and non-significant correlation coefficients are greyed out.
The rows represent 489 meta-reactions that belong to core pathways (defined as Recon2
subsystems that have at least 3 core reactions), and significantly correlated (or anti-correlated)
with at least one of the genes. Key reactions (rows) in pathways discussed in the manuscript are
highlighted according to the meta-reaction to which they belong. (E) Dots represent single
biochemical reactions, Cohen’s d and Wilcoxon rank sum p values computed as described in panel
C. Only core reactions are shown. Reactions are partitioned by Recon2 pathways. Reactions are
colored by the sign of their Cohen d’s statistic, and are opaque or transparent according to
statistical significance.

Figure 3 - Differential usage of glycolysis and fatty acid oxidation by pathogenic an non-

pathogenic Th17 cells

(A) A diagram of central carbon metabolism, overlaid with Compass prediction for differential
potential activity between Th17p and Th17n. Differentially active reactions (BH-adjusted
Wilcoxon p < 0.1) are colored in magenta (pro-Th17p) or green (pro-Th17n), non-significantly
different reactions are colored in grey. (B) Th17n, Th17p and Treg cells were differentiated as
described (Methods) and replated with Seahorse media at 68h for Seahorse assay. Extracellular
acidification rate (ECAR) and oxygen consumption rate (OCR) are reported in response to
mitostress test. (C) Th17p and Th17n cells were differentiated and harvested at 68h (left columns)
or replated in fresh media with no TCR stimulation or cytokine for 15 minutes (right columns) and
subject to LC/MS based metabolomics. (D) Cells were harvested as in C and pulsed with 13C-
tagged glucose for 15 minutes. Shown is the ratio of 13C-tagged carbon out of the total carbon
content associated with the metabolite (Methods). (E) Th17n and Th17p cells were measured for
their oxygen consumption rate in the presence of control or 40uM etomoxir. (F) Th17nand Th17p
cells from either WT or PDK4-deficient mice were differentiated as described (Methods) and
replated with Seahorse media at 68h for Seahorse assay. Extracellular acidification rate (ECAR) is
reported in response to mitostress test. (G) Number of differentially expressed (DE) genes
between PDK4-deficient and WT cells as a function of the significance threshold. (H-1) WT and
PDK4-/- mice were immunized with MOG35-55 to induce EAE. (H) EAE clinical score was followed
for 21 days. (I) Cells were harvested from CNS at day 15 post immunization for intracellular
cytokine or transcription factor analysis.
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Figure 4 - An unexpected role for PGAM in mediating TGFb-induced Th17 pathogenicity

(A) Intra-population analysis in two biological replicates (the Th17n and Th17nu cell populations,
see Figure 2a). Dots are single metabolic reactions, and axes denote their correlation with the
pathogenic signature in the Th17nu and Th17n groups. Colors denote whether the reaction was
decided as pro-inflammatory, pro-regulatory, or non-significantly (NS) associated with either
state by the inter-population analysis. PGAM, GK, PKM, and G6PD are reactions discussed in the
manuscript (see Figure 4b). SPT = serine-pyruvate transaminase (EC 2.6.1.51). Rev = reverse
(backwards) direction. (Methods). (B) Schematics of central carbon metabolism, the highlighted
magenta and green reactions are the two predicted to be most correlated and anti-correlated
with the computational pathogenicity score within the Th17n compartment, respectively.
Reported inhibitors of these reactions are denoted. (C) Effects of inhibiting candidate genes on
Th17 cytokines as measured by flow cytometry are shown. Naive T cells were differentiated
under pathogenic (Th17p) and non-pathogenic (Th17n) Th17 cell conditions (Methods) in the
presence of control solvent or inhibitors. Cells were pre-labeled with division dye and protein
expression is reported for cells that have gone through one division (d1) to exclude arrested cells.
(D) PCA of bulk RNA-Seq of d1 Th17 cells as in B. (E) Differential gene expression due to EGCG
and DHEA treatment. Red and blue dots represent genes associated with the pro-pathogenic and
pro-regulatory Th17 transcriptional programs, respectively (red genes are ones belonging either
to the list of pro-pathogenic Th17 markers (Figure 2d and Methods) or to the Th17 pro-
inflammatory covariation module defined by [29]; blue genes are similarly defined). Highly
differential genes associated with surface receptors, cytokine activity, or that are otherwise of
interest are labelled by name. (F) Histograms of the logFC per gene in differential expression of
EGCG- vs. DMSO-treated cells. A separate histogram is shown for Th17p-associated (magenta),
Th17n-associated (green), and non-significantly associated (grey) genes. Genes were partitioned
into these three groups by differential expression in bulk RNA-Seq (same libraries as shown in
panel D) between DMSO-treated Th17p and Th17n cells with significance threshold of BH-
adjusted p < 0.05 and log2 fold-change > 1.5 in absolute value. (G) ratio of 13C-tagged carbon to
total carbon in Th17 cells cultured for 15 minutes in the presence of 13C-glucose. Three
metabolites are shown: PGAM’s substrate (3-phosphoglycerate), product (2-phosphoglycerate),
and the next downstream metabolite along the glycolytic pathway (phosphoenolpyruvate). (H)
Th1l7n cells were differentiated in the presence of solvent alone, EGCG, PHDGH inhibitor
(PKUMDL-WQ-2101, Methods), or the combination. Cells were harvested at 96h for flow
cytometric analysis.
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Figure 5 - EGCG exacerbates and DHEA ameliorates Th17-induced EAE in vivo

2D2 TCR-transgenic Th17 cells were adoptively transferred after differentiation in vitro in the
presence of an inhibitor or vehicle as indicated. (A, C, G) Clinical outcome of EAE; (B, D)
Histological score based on cell infiltrates in meninges and parenchyma of CNS; (E, F) Draining
lymph node (cervical) from respective mice were isolated and pulsed with increasing dose of
MOGsss5 peptide for 3 days and (E) subjected to thymidine incorporation assay; or (F)
measurement of cytokine secretion by Legendplex and flow cytometry. Concentrations were
normalized through division by the respective response to no antigen control (H-I) Independent
pathological report of CNS isolated from mice with EAE at end point (d35 for EGCG experiments;
d28 for DHEA experiment); Optic nerves were not found in the histologic section from one animal
in the EGCG+IL-23 group. (J) Representative histology of spinal cord and spinal nerve roots. There
is greater meningeal inflammation and Wallerian degeneration (digestion chambers, arrows) in
posterior spinal nerve roots in EGCG vs. Control mice. PC, posterior column; PH, posterior horn.
Individual mouse numbers are indicated. The smaller panel shows VK 39875 mouse section at
higher magnification. All are H. & E., 40X objective. Three similar experiments were performed.

Supplementary Figure Legends

Supplementary Figure 1

Cumulative distribution function (CDF) of number of reactions per meta-reaction.

Supplementary Figure 2

(A-E) PCA of Compass space restricted to core meta-reactions, see main text. (A) PC1 scores
plotted against PC2 and PC3 scores. (B) Enrichment of metabolic pathways in the positive or
negative directions of top principal components. Enrichment is computed with GSEA [95] over
single reactions (rather than genes, as in the common applications). Colors are -log10(BH-
adjusted p), truncated at 4, with p being the GSEA p value. Pathways correspond to Recon2
subsystems. (C) PC1 scores plotted against computational signatures of cellular metabolic activity
and Th17 differentiation time course (Methods). (D) Spearman correlation of top PCs with known
pro-pathogenic (magenta) and pro-regulatory (green) marker genes, none of which is metabolic.
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Only significant correlations (BH-adjusted p < 0.1) are shown in color. (E) Spearman correlation
of computational transcriptome signatures with the top principal components. Only significant
correlations (BH-adjusted p < 0.1) are shown in color and non-significant correlation coefficients
are greyed out. See Methods for signature computation. (F) Same analysis as shown in Figure 2c,
but showing all reactions (and not just ones belonging to certain pathways, as in the main figure).
(G) We computed a pro-pathogenic score for each reaction by taking the ratio of pro-pathogenic
and pro-regulatory markers with which it correlates and anti-correlates, respectively (BH-
adjusted p < 0.1 for a Spearman correlation) out of the 23 marker genes (listed in Figure 2d and
Methods). Similarly, we computed pro-regulatory reaction scores. Only core reactions are
shown. (H) Same analysis as shown in Figure 2E, only at the gene expression level (and not
reaction level based on Compass scores). Genes are grouped by KEGG pathways (and may be
annotated as belonging to more than one pathway).

Supplementary Figure 3

(A) Parallel of main figures 3c showing also 3h after fresh media pulse. (B) The glycolysis pathway,
as shown in main figure 4a, highlighting PDH and associated reactions. (C) PDK4 transcript
expression in the experiment described in main Figure 4c. (D) Dots are transcriptomic
computational signatures (Methods), axes correspond to the fold-change in the signature’s value
in comparisons of PDK4-deficient cells vs. WT cells in Th17p (x-axis) and Th17n (y-axis). (E) Th17
cells from PDK4-/- and WT mice were subject to LC/MS metabolomics as in main Figure 3c, having
been replated for 15 minutes. (F) metabolites associated with amino-acid metabolic pathways in
the assay described in main Figure 3c.

Supplementary Figure 4

(A) Same data as shown in Figure 4a, highlighting the reactions with significant adjusted Fisher p
value in the intra-population analysis; every reaction is assigned a combined Fisher p-value of the
two p-values measuring the significance of the correlation with the two axes (Methods). Search
space was limited to core reactions. (B-C) Hypergeometric enrichment of the targets identified
by the inter-population analysis (reactions with differential potential activity between Th17p and
Th17n, decided by a BH-adjusted p cutoff) in targets identified by the intra-population analysis
(reactions identified by a BH-adjusted Fisher p cutoff) while varying the cutoffs. (D) Supernatant
from Th17 cell cultures performed for main Figure 4c are harvested for cytokine analysis using
Legendplex.
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Supplementary Figure 5

Cytokine secretion after three days of culture with increasing dose of MOGss.s5 peptide from cells
isolated from draining lymph node (cervical) of mice transferred with (A) methanol or DHEA
treated Th17p cells as in Figure 5A or (B) DMSO or EGCG as in Figure 5C. Concentrations were
normalized through division by the respective response to no antigen control.
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