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Abstract  

Background. Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-

1)-associated neurocognitive disorders (HAND) remain prevalent in subjects undergoing therapy. HAND 

significantly affects individuals’ quality of life, as well as adherence to therapy, and, despite the increasing 

understanding of neuropathogenesis, no definitive diagnostic or prognostic marker has been identified. 

Results. We investigated transcriptomic profiles in frontal cortex tissues of Simian immunodeficiency 

virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection. Gene expression was 

compared among SIV-infected animals (n=11), with or without CD8+ lymphocyte depletion, based on 

detectable (n=6) or non-detectable (n=5) presence of the virus in frontal cortex tissues. Significant 

enrichment in activation of monocyte and macrophage cellular pathways was found in animals with 
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detectable brain infection, independently from CD8+ lymphocyte depletion. In addition, transcripts of four 

poly (ADP-ribose) polymerases (PARPs) were up-regulated in the frontal cortex, which was confirmed by 

real-time polymerase chain reaction. 

Conclusions. Our results shed light on involvement of PARPs in SIV infection of the brain and their role 

in SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel 

therapeutic target for HIV-related neuropathology. 

 

Keywords 

SIV, HIV, brain, transcriptomics, PARPs 

 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.05.21.109140doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109140
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

The advent of combination antiretroviral therapy (cART) resulted in a 50% decline in rates of AIDS-related 

deaths, and a 40–50% decrease in the incidence of human immunodeficiency virus (HIV)-associated 

dementia (HAD) (Maschke et al, 2000). Yet an estimated 50% of infected patients exhibit HIV-1 central 

nervous system (CNS) infection (Zhao et al, 2009), with approximately 30% of in people living with HIV 

(PLWH) progressing to some form of HIV-associated neurocognitive disorder (HAND) (Heaton et al, 

2010). Even in HIV-infected individuals on combined anti-retroviral therapy (cART), low-level viral 

replication persists in the central nervous system (CNS) (Spudich, 2016). Residual viremia as a result of 

incompletely suppressive cART (Massanella et al, 2013; Massanella et al, 2012) is associated with low-

level immune activation driving chronic inflammation (Klatt et al, 2013; Massanella et al, 2016). It has 

been shown that both HIV and Simian immunodeficiency virus (SIV) can enter the CNS during early 

stages of infection (Resnick et al, 1988; Strickland et al, 2014), and there is compelling evidence that the 

brain is a putative reservoir for HIV (Marban et al, 2016; Wallet et al, 2019). Persistent CNS infection and 

inflammation may contribute to the development of HAND (Valcour et al, 2012), which remains a major 

cause of morbidity among HIV-infected individuals. As HAND-related cognitive decline is exacerbated by 

age-associated neurodegeneration, the prevalence of HAND is only expected to escalate with cART-

increased life expectancy (Fogel et al, 2015). Moreover, if therapy is interrupted, viral rebound is going to 

occur (Andrade et al, 2020; Palmisano et al, 2007; Saez-Cirion et al, 2013), and because HIV is able to 

replicate in the CNS, brain specific viral variants are found at rebound after interruption of cART (Gianella 

et al, 2016).  

While progress has been made in understanding the pathophysiology of HAND and neurological 

complications of HIV acquired immunodeficiency syndrome (neuroAIDS) under conditions of high viral 

load, the host’s inflammatory responses to low-level chronic systemic infection and how this exacerbates 

neuronal injury and dysfunction in the brain are incompletely understood. Infection of Rhesus macaques 

(Mucaca mulatta) with simian immunodeficiency virus (SIV) in the absence of therapy offers a well-

established animal model for the study of the relationship of HIV infection and neuropathogenesis 

(Lamers et al, 2015; Mallard and Williams, 2018; Strickland et al, 2014), while avoiding the confounding 

factor of cART (Hatziioannou and Evans, 2012; Murray et al, 1992; Williams et al, 2008). Approximately 
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30% of Rhesus macaques infected with the heterogeneous SIVmac251 viral swarm (Strickland et al, 

2011) develop within 2-3 years (Budka, 1991; Wiley et al, 1999) SIV-associated encephalitis (SIVE), the 

pathological hallmark of neuroAIDS, which is diagnosed post mortem by the presence of virus and 

abnormal histopathology features, such as inflammation of brain tissues and formation of multinucleated 

giant cells. When animals are depleted of CD8+ lymphocytes using an anti-CD8+ antibody before virus 

inoculation (Cartwright et al, 2016), the incidence is elevated to >85% in less than six months. Thus, 

CD8+ lymphocyte depletion provides a useful, rapid disease model with increased incidence of brain 

infection and neuropathology (Schmitz et al, 1999; Williams et al, 2005). 

Myeloid cells accumulate in the meninges and choroid plexus during early infection, and in the 

perivascular space and SIVE lesions in infected macaques during late infection (Nowlin et al, 2015). In 

particular, SIVE lesions are composed of CD68+ CD163+ macrophages during early infection, as well as 

SIV-infected macrophages recruited terminally during simian AIDS (SAIDS) (Campbell et al, 2014; Nowlin 

et al, 2015). SIV-induced products of activated macrophages and astrocytes lead to CNS dysfunction and 

disease that might directly damage neurons (Roberts et al, 2003). These observations indicate that 

neuropathogenesis of HIV infection and pathogenesis of HAD and HAND may be linked (Kaul et al, 

2005). It has also suggested that, given the neuroprotective properties of poly(ADP-ribose) polymerases 

(PARPs) inhibitors (Szabo et al, 2006), these inhibitors might be used as neuroprotective against 

NeuroAIDS as well (Rumbaugh et al, 2008). PARPs regulate a vast variety of cellular processes (Bai, 

2015), and in particular, PARP1 and PARP-2 participate in regulating DNA metabolism (Ame et al, 2004), 

including DNA repair activated by DNA strand breaks (Morales et al, 2014). Previous studies 

demonstrated that PARP1 plays a role of in regulating HIV replication and integration (Ha et al, 2001; 

Kameoka et al, 2004).  

Based on the hypothesis that PARPs appears to play an important role in HIV infection, we investigated 

the transcriptome of SIV-infected macaques with and without detectable virus in the brain to investigate 

whether PARPs expression is associated with SIV neuropathogenesis and biological processes 

translatable to HIV brain infection. We focused our analysis on characterizing the transcriptome profiles of 

the frontal cortex, as severity of cognitive impairment has been previously associated with the degree of 

frontal cortex neurodegeneration (Moore et al, 2006; Woods et al, 2009). In what follows, we report, for 
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the first time, significant dysregulation of PARPs expression in SIV-infected brain tissues with detectable 

virus, associated with neurodegenerative processes.  

Methods 

Animal cohorts and sample collection 

Frontal cortex tissue samples were collected from two cohorts of animals intravenously infected with 

SIVmac251 (Strickland et al, 2011), which originally consisted of five CD8+ lymphocyte-depleted (D) and 

six non-CD8-depleted (N = naturally progressing to SAIDS) Rhesus macaques, as previously described 

(Table 1) (Rife et al, 2016). Procedures on the CD8+ lymphocyte-depleted and naturally progressing 

cohort were conducted with the approval of New England Regional Primate Center at Harvard (Lamers et 

al, 2015) and University Tulane University’s Institutional Animal Care and Use Committee (Rife et al, 

2016), respectively. Animals were kept in the same facility under similar conditions to minimize batch 

effects. Additional information on the treatment and handling of macaques in this cohort can be found in 

the study of Strickland et al. (Strickland et al, 2012). Gross pathology of the naturally progressing animals 

can be found in Rife et al. (Rife et al, 2016), and of the CD8+ lymphocyte-depleted ones in Table 1.  All 

tissues collected during necropsy, following SAIDS onset and humane sacrifice, with the exception of 

animals N06, N07, D01, and D02, which were euthanized at 21 days post-infection (DPI) (Rife et al, 

2016) (Table 1), were snap frozen in optimal cutting temperature medium and stored at -80° C. A single 

50-100 mg section of frontal cortex tissue was used for RNA isolation. Viral DNA was extracted from 

frontal cortex tissues and detected by single genome sequencing (SGS) of the SIV envelope gene 

sequence as previously described (Rife et al, 2016; Strickland et al, 2014).  

 

RNA isolation and Next Generation Sequencing (RNA-Seq) 

Total RNA was extracted with Qiagen RNeasy Lipid Tissue Mini Kit (Cat No: 74804) according to 

manufacturer protocol. Quantity and quality of RNA, from post mortem frontal cortex tissue samples, was 

assessed using the Invitrogen Qubit 2.0 and Agilent Tapestation 2200, respectively. Frontal cortex RNA 

sequencing libraries were prepared with Illumina TruSeq Stranded mRNA HT kit and sequenced on the 

2x100 paired-end Illumina NextSeq platform at the University of Florida Interdisciplinary Center for 

Biotechnology Research. 
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RNA-Seq data and pathway analysis 

Paired-end reads were trimmed using trimmomatic (v 0.36) (Bolger et al, 2014), and quality control on the 

original and trimmed reads was performed using FastQC (v 0.11.4) (Brown et al, 2017). Trimmed paired-

end reads were mapped to the Macaca mulatta genome available at Ensembl 

(http://dec2015.archive.ensembl.org/Macaca_mulatta/Info/Index). Sequences were aligned with STAR 

(v2.6.1)  (Dobin et al, 2013).  Reads were submitted to the Sequence Read Archive with the BioProject 

PRJNA624871. We obtained an average of ~30.5 million reads for each sample, with an average of 

55.9% of the reads mapped to the reference genome (Table S1), in line with typical percentage of 

transcriptome mapping (Conesa et al, 2016) (Table S1). Gene expression was quantified using RSEM 

(v1.2.31) (Li and Dewey, 2011). Differential expression analysis was performed using DESeq2 (Love et 

al, 2014), using a fold-change threshold of 0.05 and a significance level P < 0.01 (Table S2). For disease 

association enrichment and pathway analysis we opted for a cut off of (log2 (Log2) Fold-Change (FC)) of 1 

of Log2(FC)-1 and P-value <= 0.05 to detect up- and down-regulated DEGs, respectively, as the FC 

represents genes that experienced 100% increase in expression (Table S3 and S4). These analyses 

were performed using the Ingenuity Pathway Analysis (IPA) software (Quiagen) after importing the list of 

152 up-regulated (cut off Log2(FC)1 and P-value <= 0.05) and five down-regulated DEGs (cut off 

Log2(FC)-1 and P-value <= 0.05) (Table S2). The -log(p-value) of the pathway indicated the significance 

of overlap of the genes observed and the ones in the pathway and is calculated using the Fisher's Exact 

Test (Fisher, 1934). Prediction of activation or de-activation of a certain pathway is based on the z-score, 

using a z-score threshold of 1.3. Calculation of the z-score of a pathway, which assess the match of 

observed and predicted up/downregulation patterns, is based on comparison between the direction of the 

genes observed compared to direction of those same genes in the active state of the pathway (Kramer et 

al, 2014) (Table S3 and S4). 

 

Quantitative PCR (qPCR) 

cDNA from frontal cortex was generated with Invitrogen Superscript IV and random hexamers according 

to manufacturer’s protocols, using aliquots from RNA isolated for RNA sequencing. Comparative qPCR 
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was conducted in triplicate for each sample using Applied Biosystems TaqMan Universal PCR Master Mix 

(ThermoFisher Catalog number: 4304437) and probes (0.25 µM) for PARP9, PARP12, PARP14, and 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Comparative qPCR was conducted with a 10-

minute hold at 95°C, followed by 45 cycles of 95°C for 15 seconds and 60°C for 1 minute on the Applied 

Biosystems 7500 Fast Real-Time PCR System. Each sample’s mean CT value for each qPCR reaction 

was normalized by subtracting the sample’s mean CT for GAPDH to generate ΔCT. A standard deviation 

for the qPCR reaction was normalized with the standard deviation of GAPDH: SADJUSTED = (SPROBE
2 + 

SGAPDH
2)1/2. ΔΔCT was calculated for each sample by subtracting its ΔCT value from the mean ΔCT value 

of the samples without detectable virus in the brain. The fold difference in reference to the group of 

macaques without detectable virus in the brain was calculated with 2 -ΔΔCT and error bars were calculated 

with 2 -ΔΔCT ± SADJUSTED. Statistical significance was tested using a Welch's t-test, the hypothesis that two 

populations have equal means (Welch, 1947). 

 

Results 

Transcriptomic profiles are independent of CD8+ lymphocytes depletion 

SGS of SIV env gp120 detected viral sequences in frontal cortex tissue of eight out of eleven animals: all 

five of the CD8+ lymphocyte-depleted and three of the non-depleted ones (Table 1). Three animals, two 

non-depleted (M06, M07) and one depleted (M12), were sacrificed early, while the others were sacrificed 

at SAIDS onset. As expected, while survival for depleted animals tended to be shorter, with an average of 

81 days post infection (dpi), non-depleted animals’ survival averaged 174 dpi (Table 1). The number of 

positive PCRs in brain tissues at end point dilution varied between seven and 24 in most animals, except 

for two animals, M08 and M09, were only one and two SIV sequences, respectively, were detected, 

suggesting low level of brain infection as previously shown (Rife et al, 2016). Macaques with seven or 

more SIV sequences in the frontal cortex were all diagnosed with SIVE or meningitis at necropsy, with the 

exception of M02 (Table 1). The exception was not surprising, since we have shown in a previous study 

that an important co-factor linked to neuropathogenesis is viral compartmentalization in the brain, i.e. the 

presence of an adapted neurotropic sub-population, which was absent in M02  (Rife et al, 2016). 
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For all animals, RNA-Seq of frontal cortex samples resulted in high coverage (Table S1). Comparison of 

gene expression profiles in the frontal cortex between CD8+ lymphocyte-depleted and non-depleted 

macaques showed perturbance of only one gene – the nerve growth factor (NGF) gene, which resulted 

under-expressed in depleted animals with a fold change of Log2(FC)=3.3 – indicating that animals could 

be grouped, for further comparisons, independently of depletion status. Analysis of transcripts normalized 

expression among macaques corroborated that depletion category was not the dimension distinguishing 

the expression (Figure S1).  

 

Elevated antiviral gene response in macaques with detectable virus in the brain 

The depleted versus non-depleted category analysis revealed that macaques with < 3 sequences were 

clustering with macaques with no detectable sequences in the brain (Figure 1, Table 1). Therefore, in 

order to minimize gene expression noise within the data due to inter-animal variability, macaques’ gene 

expression profiles were separated on the basis of a cut-off of n>3 SIV sequences detected by SGS in 

the brain (Figure 1, Table 1). Based on this cut-off, two non-overlapping groups could be defined: 

macaques with detect (DV) or low/undetectable (NDV) SIV in the brain. Differential expression analysis 

between DV and DNV macaque groups identified 102 up-regulated, and two down-regulated, differentially 

expressed genes (DEGs) in DV macaques with (Table S2). One of the two down-regulated DEGs (Table 

S2), NPAS4 (Log2(FC)-1.2) is a synaptic plasticity-promoting gene (Margineanu et al, 2018) crucial for 

synaptic connections in excitatory and inhibitory neurons and neural circuit plasticity (Ramamoorthi et al, 

2011). Among the 102 up-regulated DEGs (Table S2), EPSTI1 (Log2(FC)2.8) plays a role in ensuring M1 

versus M2 macrophage differentiation (Kim et al, 2018); SLFN13 (Log2(FC)2.3) restricts HIV replication 

(Yang et al, 2018). An important function of microglia is the presentation of foreign antigens to T 

lymphocytes (Schetters et al, 2017). The DV macaque group exhibited over-expression of the MAMU-A 

(Log2(FC)1.9) and MAMU-A3 (Log2(FC)1.7) genes, comprising the major histocompatibility complex 

class IA in Rhesus monkeys (Table S2). These genes are linked to disease progression during SIV 

infection (Zhang et al, 2002) (Table S2). Further corroboration of the presence of virus in the brain was 

given by up-regulation of components of antiviral interferon response, such the type I interferon (IFN)-

stimulated genes (ISGs) ISG15 (Log2(FC)4.2) (Jeon et al, 2010) and ISG20 (Log2(FC)4.7) (Weiss et al, 
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2018), as well as of DDX60 (Log2(FC)3.9), a promotor of RIG1-like receptor-mediated signaling 

(Miyashita et al, 2011) (Table S2). Another iconic pathways hallmark of the innate immune responses are 

the role of pattern recognition of bacteria and viruses (z-score = 3.1) and activation of IRF by cytosolic 

pattern recognition receptors (z-score = 1.9) pathways, pathways that results in the activation of innate 

immune responses after recognition of pathogen-associated molecular patterns (PAMPs), such as 

lipopysaccharide or nucleic acids, by a variety of pattern-recognition receptors (PRRs) (Mogensen, 2009) 

(Table S3).  

 

Orchestration of T cell apoptosis in brain through diverse pathways  

Upon activation by T cell receptor and cytokine-mediated signaling, naive CD4+ T cells differentiate into 

types of T helper (Th) cells (Zhou et al, 2009), such Th1, playing a critical role in coordinating adaptive 

immune responses to various microorganisms interacting with CD8+ NK / CTL cells and macrophages 

(Romagnani, 1999). The inducible T-cell co-stimulator (iCOS) has been implicated in regulation of Th1, 

Th2 and Th17 immunity (Wikenheiser and Stumhofer, 2016) and plays an important role in recruiting 

entry of Th1 cells into inflamed peripheral tissue (Okamoto et al, 2004). In DV macaques several genes 

predicted the activation of the iCOS-iCOSL signaling in T helper cells pathway (z-score = 2), as well as of 

the Th1 pathway (z-score = 2.2) (Table S3). However, activation of T Cell Exhaustion Signaling Pathway 

(z-score = 1.3) was also predicted, which is characterized by loss of T-cell functions, that extendes to 

both CD8 and CD4 T cells (Yi et al, 2010) (Table S3). A lack of sufficient stimulation from secondary 

signals like cytokines - IL-12 and IFNγ are two important cytokines for Th1 differentiation that are not over 

expressed in our animals (Table S2) - may conversely lead to anergy or even apoptosis. Our animals 

exhibited activation of Calcium-induced T lymphocyte apoptosis pathway (z-score = 2), but also of 

Nuclear factor of activated T-cells (NFAT) (activation of NFAT in Regulation of the Immune Response 

pathway, z-score = 2.4) that is as an important mediator of T-Cell apoptosis (Table S3). These two 

pathways seems to be interrelated, as NFATs are calcium-dependent transcription factors, therefore 

activated by stimulation of receptors coupled to calcium-calcineurin signals (Park et al, 2020). 

 

Monocyte and macrophage activation in response to virus in the brain 
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Enrichment in activation of monocyte and macrophage cellular pathways (z-score = 2) was indicated by 

DEGs such as CD74 (Log2(FC)2.6), CD37 (Log2(FC)1.9), CSF1R (Log2(FC)1.2), and MNDA 

(Log2(FC)1.7) (Figure 2, Table S2 and S3). CSF1, in particular, has been associated with a positive 

feedback system wherein HIV infection increases CSF1 expression, followed by increased susceptibility 

of monocytes and macrophages to HIV replication upon exposure to CSF1 (Haine et al, 2006; Rappaport 

and Volsky, 2015). The fcy receptor-mediated phagocytosis in macrophages and monocytes pathway (z-

score = 2) was also predicted to be activated (Figure 2, Table S2 and S3). Fc-mediated phagocytosis has 

been suggested as a successful mechanism for rapid control and clearance of HIV, as well as for 

reservoir eradication (Sips et al, 2016).  Another pathway predicted to be activated lined to 

monocyte/macropahges activation is the TREM1 signaling pathway (z-score = 2.4) (Table S3). TREM1, a 

group of pattern recognition receptors, stimulates monocyte/macrophage-mediated inflammatory 

responses as its activation triggers expression and secretion of chemokines and cytokines  that contribute 

to inflammation (Colonna and Facchetti, 2003). Additional evidence of activation of macrophages was 

given by the activation of the production of nitric oxide (NO) and reactive oxygen species (ROS) in 

macrophages pathway (z-score = 2.8), which allow for production of NO and ROS by activated 

macrophages, central to the control of infections (Forman and Torres, 2002) (Table S3).  

Our results reflect previous transcriptomic studies that showed that the frontal cortex of SIV-infected 

macaques at terminal stage of SIVE was characterized by upregulation of STAT1, protein induced by 

cortical neurons, and ISG15, protein product of infiltrating macrophages (Roberts et al, 2003). 

Macrophage migration inhibitory factor (MIF)-regulation (z-score = 2) was also predicted to be activated 

(Table S3). MIF is a cytokine constitutively expressed by monocytes and macrophages in large amounts 

(Calandra and Roger, 2003) and an integral mediator of the innate immune system  regulating host 

response through TLR4 (Roger et al, 2003), whereas TLRs initiate NF-κB and a number of other signaling 

pathways that broadly induce pro-inflammatory cytokines (Figure 2, Table S2 and S3) (Liu et al, 2017). 

Dysregulation of reactive oxygen species processes was indicated with NCF1 (Log2(FC)3.3), encoding 

for a NADPH oxidase that produces superoxide anions, inflammation, and organ injury through interaction 

with Toll-like receptors such as the DEG TLR4 (Log2(FC)1.49) (Gill et al, 2010) (Table S2 and S3).  
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Inflammation as result of intensification of the innate immune response in presence of virus in the 

brain 

Extending beyond the myeloid-mediated response, innate immunity pathways were identified as 

significantly differentiated, such Toll-like receptor (TLR) signaling pathways (z-score = 2) and interferon 

signaling (z-score = 3.2) (Table S3). The TLR signaling pathway was activated by up-regulation of CD14 

(Log2(FC)1.64)), TLR3 (Log2(FC)1.94), and TLR4 (Log2(FC)1.49)) (Figure 2, Table S2 and S3). Genes 

that were upregulated in the interferon signaling pathways were: IFI35 (Log2(FC)1.0), IFI6 (Log2(FC)2.0), 

IFIT1 (Log2(FC)2.8), IFIT3 (Log2(FC)3.3), IRF9 (Log2(FC)1.8), ISG15 (Log2(FC)4.2), MX1 

(Log2(FC)2.9), OAS1 (Log2(FC)2.5), PSMB8 (Log2(FC)3.3), STAT1, (Log2(FC)1.9) and STAT2 

(Log2(FC)1.4) (Tables S2 and S3). In line to what previously reported during acute SIV infection in the 

brain of rhesus macaques, the interferon signaling pathway was predicated to be activated even in 

absence of high expression of either IFNα or IFNγ genes (Roberts et al, 2004) (Figure 2, Table S3). 

Intensification of innate immune response was also indicated by several DEGs, such C1QB 

(Log2(FC)2.0), C1QC (Log2(FC)2.3), and C3 (Log2(FC)1.5), involved in activation of complement and 

coagulation cascades (z-score = 2). Such complement cascades work to enhance the phagocytosis, 

proteolysis, inflammation, and overall magnitude of immune action (Janeway CA Jr, 2001). Complement 

system cascades have been linked to HIV-induced neurodegeneration in other research studies (Bruder 

et al, 2004; Speth et al, 2001) and to endothelial damage leading to reduced integrity of the blood brain 

barrier (Orsini et al, 2014) (Figure 2, Table S2 and S3). This increased innate immune response led to 

consequent up-regulation of numerous genes within the neuroinflammation signaling pathway (z-score = 

3.6), likely establishing inflammation processes in the frontal cortex of the SIV-infected DV macaques 

(Table S3). Neuroinflammation signaling pathway plays a key role in maintaining the homeostasis of 

CNS, functioning to remove damaging agents, such SIV in this case, and clear injured neural tissues 

(Tohidpour et al, 2017). Excessive cell and tissue damage can ensue recruitment of microglia and 

enhancement of their activities, which exacerbates neuronal damage and ultimately results in chronic 

inflammation with necrosis of glial cells and neurons (Wang et al, 2015). Necroptosis is a regulated 

necrotic cell death pathway that defends against pathogen-mediated infections, morphologically 

characterized by the loss of cell plasma membrane and the swelling of organelles, particularly 
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mitochondria. Compared to apoptosis, necroptosis generates more inflammation. Several death receptors 

promote necroptosis when activated, including tumor necrosis factor receptor TNFR1, Fas, TNFRSF10A 

and TNFRSF10B – with up-regulation of its ligand TNFSF10 (Log2(FC)1.13) – as well as TLRs 

(Feoktistova and Leverkus, 2015; Najafov et al, 2019) (Table S2 and S3). Activation of pathways 

associated with interferon (z-score = 3.2) and death receptor signaling (z-score = 2.2) are likely to be 

associated with neuronal apoptosis, similarly to what reported for infection of neurotropic West Nile virus 

in the brain (Clarke et al, 2014) (Table S3). Finally, neuronal damage was also suggested by up-

regulation of PSMB8 (Log2(FC)3.3) and PSMB9 (Log2(FC)3.0), crucial for proteasome activity and 

regulation of protein turnover in neuronal synapses (Speese et al, 2003). PSMB8 and PSMB9 have been 

previously implicated in research studying SIVE-induced neuronal dysfunction (Gersten et al, 2009b) 

(Table S3). Lastly, NCF1 produces superoxide anions causing increased oxidative stress, which is linked 

to nervous system damage (Starkov et al, 2004; Uzasci et al, 2013), and activation of STAT1 

(Log2(FC)1.9) provides further evidence of response to oxidative stress (Olagnier et al, 2014) (Table S3).  

 

Upregulation of PARPs in the frontal cortex of macaques with detectable SIV in the brain 

Transcripts of four PARPs were up-regulated in the SIV-infected frontal cortex: PARP9 (Log2(FC)1.8), 

PARP10 (Log2(FC)1.9), PARP12 (Log2(FC)1.9), and PARP14 (Log2(FC)2.7) (Figure 3a, Table S2 and 

S3). Over expression of these PARPs was also corroborated by quantitative PCR (Figure 3b). Expression 

of PARP1, a member of the PARPs family that has been the focus of HIV research due to their role in 

viral integration, replication, and transcription (Bueno et al, 2013; Ha et al, 2001; Ha and Snyder, 1999; 

Hassa and Hottiger, 1999; Kameoka et al, 2004; Kameoka et al, 2005; Rom et al, 2015), as well the other 

PARPs, was not significantly over or under regulated (Table S5), as also confirmed by qPCR of mRNA 

transcripts (Figure 3b). PARPs are known to be activated by DNA strand breaks (Ikejima et al, 1990; Ray 

Chaudhuri and Nussenzweig, 2017), such ones occurring in HIV integration, as well as by interferon 

response (Atasheva et al, 2014). While there are mixed reports as to whether (Ha et al, 2001; Kameoka 

et al, 2005) or not such genes are necessary for HIV integration (Ariumi et al, 2005; Baekelandt et al, 

2000), their function as a transcriptional repressor of HIV and inhibitor of cellular translation is known 

(Atasheva et al, 2014; Bueno et al, 2013). Upregulation of PARP9, PARP10, PARP12 and PARP14 and 
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TNFSF10 predicts the activation of the death receptor signaling pathway (z-score = 2.2), associated with 

programmed cell death, and the retinoic acid mediated apoptosis signaling pathway (z-score = 2.2) 

(Figure 2, Table S2 and S3), which functions as an important regulatory signaling molecule for cell 

growth, differentiation and neurodegeneration (Das et al, 2014).  

 

Discussion 

The CNS has gained importance as a potential reservoir during persistent HIV infections and the renewed 

focus of intense efforts on eradication strategies (Hellmuth et al, 2015; Salemi and Rife, 2016; Saylor et 

al, 2016). We have presented evidence of activation of pathways that implicate a significant myeloid 

response to SIV infection in the brain of a well-established model of HIV disease progression, even in 

macaques euthanatized early. We recognize that the present study has some limitations, as it lacks of un-

infected animals as controls, and contrasted groups are mixed, including both naturally progressing and 

CD8+ depleted animals. As our goal is to understand how presence of the virus in the brain plays versus 

its absence during infection, the first limitation is easily overcome as by comparing infected and un-

infected animals would not address our question. As for the second limitation, although it might seem 

counterintuitive that CD8+ depletion has no effect on the transcriptomics profiles of frontal cortex, it is 

important to remind that CD8+ depletion impact the peripheral circulation of CD8+ lymphocytes but not in 

meninges (Ratai et al, 2011), and that depletion alone does not have measurable effects on neuronal 

integrity preserving brain metabolism (Ratai et al, 2011). It is also noticeable that previous studied 

demonstrated that CD8-deplitoin does not alter metabolite levels, does not cause astrogliosis or microglial 

activation as compared to SIV-infected animals (Ratai et al, 2011). This last finding validates that 

neuroinflammation in these macaques is not dependent on depletion, but rather on presence of the virus 

in the brain. These findings confirm the validity of our approach, as that the predicted activated 

neurodegenerative pathways observed in our study are potentially due to the presence of virus and its 

manipulation of the immune system, rather than by absence of CD8+ T cells. The results agree with HIV 

and SIV entry in the CNS during early infection (Resnick et al, 1988; Strickland et al, 2014). Presence of 

virus in frontal cortex was linked to upregulation of gene expression, as well as neuropathology with the 

exception of animal M09 (Rife et al, 2016). It is interesting to note, however, that virus 
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compartmentalization (distinct neurotropic subpopulation) in the brain, which has been linked to 

neuropathogenesis  (Lamers et al, 2015; Mallard and Williams, 2018; Strickland et al, 2014), was also 

absent in this animal (Rife et al, 2016). Therefore, while virus induced dysregulation of gene expression 

seems to play an important role, the emergence of an SIV neurotropic sub-population may be a 

necessary condition for the onset of neuroAIDS, at least in the macaque model. 

Akin to previous studies (Roberts et al, 2004), our findings indicate that frontal cortex of macaques with 

detectable SIV in the brain have significant upregulation of several genes. In particular, our results 

support that SIV in the frontal cortex alters transcriptional pathways associated with innate immune 

response, neuroinflammation, oxidative stress, and cellular death, interferon/STAT1 pathway, and 

monocyte/macrophage migration in line with previous studies (Gersten et al, 2009a; Roberts et al, 2004; 

Roberts et al, 2006; Roberts et al, 2003; Winkler et al, 2012). Over expression of a high number of genes 

may be due to inflammation and activation of several transcription factors, signaling molecules, and 

interferon-associated genes, and by presence of virus in the brain. As also shown previously in macaques 

with acute SIV infection (Roberts et al, 2004), increased interferon, innate immunity pathways, and other 

antiviral responses mediated by macrophages indicated general signs of infection in the brain. For the 

first time and differently to what previously reported (Roberts et al, 2004), however, we found over 

expression of PARPs, which regulate different aspects of cell metabolism (Bai, 2015) during SIV infection. 

PARP9 and PARP14 cross-regulate macrophage activation (Iwata et al, 2016), while PARP10 and 

PARP12 are interferon induced genes (Atasheva et al, 2014), and have shown antiviral activities such 

decreasing replication of avian influenza virus (Yu et al, 2011) and Zika virus (Li et al, 2018), respectively. 

Overall, PARPs’ activity relationship with host and virus is quite complex, and both pro and antiviral 

responses have been reported (Kuny and Sullivan, 2016). PARP1-mediated cascade of progression to 

neurodegeneration and neuroinflammation has been shown in Parkinson’s and Alzheimer’s disease 

(Martire et al, 2015). Yet,  PARP1 resulted neither over or under expressed in animals with SIV infection 

in the frontal cortex, suggesting that its contribution to neuroAIDS may not be significant, despite its 

known role in HIV suppression by regulating HIV infection and integration (Ha et al, 2001; Kameoka et al, 

2004). On the other hand, four of the 18 PARP genes – PARP9, PARP10, PARP12, PARP14 – were 

clearly upregulated, suggesting that inflammation may be a byproduct of PARPs activity. Excessive 
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activation of PARPs may cause cell death (Pieper et al, 1999), followed by release of cellular components 

into the CNS, amplification of the immune response, and eventually neurodegeneration. 

In summary, we found evidence that PARPs dysregulation could provide new, key indicators of SIV brain 

infection and neuropathogenesis. Moreover, since PARP inhibitors  have shown promising 

neuroprotective properties (Rumbaugh et al, 2008), similar inhibitors may be employed against HIV-

related toxicity and inflammation in the brain. Additional statistical studies using a larger number of 

animals and in vitro experiments are needed to determine what is the role of each PARP, and which 

proteins within PARP-mediated pathways may offer promising candidates as HAND novel therapeutic 

targets. Nevertheless, our study provides novel insights that may inform drug screening and development 

efforts aimed at identifying specific antiviral therapies and a new class of potential therapeutic candidates 

for HAND.  

Conclusions  

Our study indicates that PARPs are over-expressed during SIV infection of the brain. PARPs may role in 

SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel 

therapeutic target for HIV-related neuropathology. 
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Figure 1. Multi-Dimensional Scaling (MDS) plot for the normalized expression data of DV and NDV 

SIV-infected macaques. Distance based the matrix of FPKM values quantified using RSEM v1.2.31 for 

all transcripts in all samples of macaques with detectable virus in the brain (n>3 sequences) in red, and 

macaques with low/undetectable virus in the brain (n<3 sequences) in blue. The plot shows good 

separation of the gene expression between the two groups, and non-overlapping. 
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Figure 2. Predicted significant activated or de-activated intracellular molecular pathways from 

frontal cortex with SIV infection. Active or non-active state of pathways were predicted using the IPA 

library of canonical pathways, and significance was based on z-score greater than 1.3. The figure shows 

the number of genes being differentially expressed per pathway. In orange or blue is indicated the 

activation score (z-score).  
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Figure 3. Differential expression of PARPs in the frontal cortex of macaques with detectable virus 

in the brain. (a) FPKMs (Fragments Per Kilobase of transcript per Million mapped reads) of PARP1, 

PARP9, PARP12 and PARP14 transcripts in macaques with detectable virus in the brain (red) and in 

macaques without detectable virus (blue). (b) Quantitative PCR analysis of mRNAs levels of PARP1, 

PARP9, PARP12 and PARP14 expressed in frontal cortex for macaques with detectable virus as relative 

to the averaged mRNA expression of the PARPs found in macaques without detectable virus. Colors 

indicate different macaques, while symbols are indicating the same macaque as shown in panel a. 

Asterisks indicate p < 0.001. 
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Figure S1. Multi-Dimensional Scaling (MDS) plot for the normalized expression data of depleted 

versus non depleted SIV-infected animals. Distance based the matrix of FPKM values quantified using 

RSEM v1.2.31 for all transcripts in all samples of depleted macaques in red, and non-depleted macaques 

in blue. The plot shows that the groups are overlapping. 
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Table 1. Epidemiological information on Macaques, Infection status by SGS. 

Macaques 

ID 
CD8+ 

depletion 

Disease outcome and CNS 

histopathology 

Survival 

(DPI) 

RNA 

SGS 

RNA-seq 

Group 

M09 yes SAIDS/Mild SIVE 140 21 DV 

M10 yes SAIDS/Mild meningitis 56 7 DV 

M11 yes 
SAIDS/Mild SIVE 

minimal meningitis 
56 16 DV 

M12 yes 
Euthanatized early 

minimal meningitis 
22 22 DV 

M02 no SAIDS 204 22 DV 

M03 no SAIDS/SIVE 223 24 DV 

M08 yes SAIDS 131 1 NDV 

M06 no Euthanatized early 22 0 NDV 

M07 no Euthanatized early 22 0 NDV 

M01 no SAIDS 300 2 NDV 

M05 no SAIDS 275 0 NDV 

ID: the ID is formed by a letter that indicates M (macaque) followed by internal identification number; 

SAIDS : simian AIDS; SIVE: SIV associated encephalitis; DPI: date of necropsy in days post infection; 

SGS: number of sequences found in the Frontal cortex tissue obtained by single genome sequencing; 

DV: detectable virus in the brain (n>3 sequences); NDV: low or undetectable virus in the brain (n<3 

sequences). CNS histopathology was assessed on sections of parietal, occipital, frontal and temporal 

cortex, as well as meninges. The pathology grading criteria scores as follows: no significant findings, mild, 

moderate, severe. The severity of SIVE was diagnosed post mortem and graded on the presence of SIV 

virions and multinucleated giant cells in the CNS. 
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List of abbreviations 

cART : combination antiretroviral therapy  

HIV : human immunodeficiency virus type 1 

HAND : human immunodeficiency virus type 1- associated neurocognitive disorders 

SIV : Simian immunodeficiency virus 

CNS : central nervous system 

neuroAIDS : neurological complications of HIV acquired immunodeficiency syndrome 

SIVE : SIV-associated encephalitis  

SAIDS : simian AIDS  

PARPs : poly(ADP-ribose) polymerases 

SGS : single genome sequencing  

RNA : ribonucleic acid 

mRNA : messenger RNA 

qPCR : quantitative polymerase chain reaction 

GAPDH : Glyceraldehyde 3-phosphate dehydrogenase 

DV : detectable SIV in the brain 

NDV : low/undetectable SIV in the brain 

DEGs : differentially expressed genes  

NPAS: Neuronal PAS Domain Protein  

EPSTI : epithelial stromal interaction  

SLFN : Schlafen Family Member  

MAMU-A : major histocompatibility complex, class I, A (Rhesus monkey) 

IFN : interferon 

ISGs : type I interferon-stimulated genes 

DDX : DExD/H-Box Helicase  

RIG1 : retinoic acid-inducible gene I 

PSMB : Proteasome 20S Subunit Beta 

NCF : Neutrophil Cytosolic Factor 
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STAT : Signal Transducer And Activator Of Transcription 

CSF1 : Colony Stimulating Factor 1  

CSF1R : Colony Stimulating Factor 1 receptor 

MNDA : myeloid cell nuclear differentiation antigen 

MIF : Macrophage migration inhibitory factor 

IFI : Interferon Induced Protein 

IRF : Interferon Regulatory Factor 

MX1 : MX Dynamin Like GTPase 1 

OAS1 : 2'-5'-Oligoadenylate Synthetase 1 

TLR : toll-like receptor 

NADPH : Reduced nicotinamide adenine dinucleotide phosphate 

C1Q : complement component 1q 

C3: complement component 3 

TNFSF10 : TNF Superfamily Member 10 

Th : T helper cell 
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Interferon signaling

Role of pattern recognition of bacteria and viruses

Activation of IRF by cytosolic pattern recognition receptors

Neuroinflammation signaling pathway

Dendritic cell maturation

T-cell exhaustion signaling pathway

Complement system

Role of RIG1-like receptors in antiviral innate immunity

TREM1 signaling

Production of nitric oxide and reactive oxygen species in macrophages

Th1 pathway

Retinoic acid mediated apoptoris signaling

MIF-mediated glucocorticoid regulation

Toll-like receptor signaling

MIF regulation of innate immunity

Death receptor signaling 

Phospholipases

Antioxidant action of vitamin C

Calcium-induced T lymphocyte apoptosis

Tec kinase signaling

iCOS-iCOSL signaling in T helper cells

Role of NFAT in regulation of immune response

Fcγ receptor-mediated phagocytosis in macrophages and monocytes

PKC-θ signaling in T lymphocytes 

NF-kB signaling

Colorectal cancer metastatis signaling

PI3K signaling in B lymphocytes

z-score
-2.4         0                          5.2   

-log(pvalue)
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