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Abstract. Metabolic pathway inference from genomic sequence infor-
mation is an integral scientific problem with wide ranging applications in
the life sciences. As sequencing throughput increases, scalable and per-
formative methods for pathway prediction at different levels of genome
complexity and completion become compulsory. In this paper, we present
reMap (relabeling metabolic pathway data with groups) a simple, and
yet, generic framework, that performs relabeling examples to a different
set of labels, characterized as groups. A pathway group is comprised of a
subset of statistically correlated pathways that can be further distributed
between multiple pathway groups. This has important implications for
pathway prediction, where a learning algorithm can revisit a pathway
multiple times across groups to improve sensitivity. The relabeling pro-
cess in reMap is achieved through an alternating feedback process. In the
first feed-forward phase, a minimal subset of pathway groups is picked to
label each example. In the second feed-backward phase, reMap’s inter-
nal parameters are updated to increase the accuracy of mapping exam-
ples to pathway groups. The resulting pathway group dataset is then be
used to train a multi-label learning algorithm. reMap’s effectiveness was
evaluated on metabolic pathway prediction where resulting performance
metrics equaled or exceeded other prediction methods on organismal
genomes with improved predictive performance.
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2 Basher et al.

1 Introduction

Biological systems operate on the basis of information flow between genomic
DNA, RNA and proteins. Proteins catalyze most reactions producing metabo-
lites. Reaction sequences are called pathways when they contribute to a co-
herent set of interactions driving metabolic flux within or between cells. Infer-
ring metabolic pathways from genomic sequence information is a fundamental
problem in studying biological systems with far-reaching implications for our
capacity to perceive, evaluate and engineer cells at the individual, population,
and community levels of biological organization [4,8]. Over the past decade, the
rise of next generation sequencing platforms has created a veritable tidal wave
of organismal and multi-organismal genomes that must be assembled and an-
notated at scale without intensive manual curation. In response to this need,
gene-centric and pathway-centric methods have been developed to reconstruct
metabolic pathways from genomic sequence information at different levels of
complexity and completion. The most common methods are gene-centric and
involve mapping predicted protein coding sequences onto known pathways us-
ing a reference database (e.g. the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [6]. Alternative pathway-centric methods including PathoLogic [7] and
MinPath [20] predict the presence of a given metabolic pathway based on heuris-
tic or rule-based algorithms. While gene-centric methods are effective at produc-
ing parts list, they are unable to infer pathway presence or absence given a set
of predicted protein coding sequences. Conversely, while pathway-centric meth-
ods infer pathway presence or absence given a set of predicted protein coding
sequences, the development of reliable and flexible rule sets is both difficult and
time consuming [19].

Machine learning methods aim to improve on heuristic or rule-based path-
way inference through features engineering and algorithmic solutions to over-
come noise and class imbalance. Basher and colleagues developed mlLGPR [11],
a multi-label classification method that uses logistic regression and feature vec-
tors inspired by the work of Dale and colleagues [3] to predict metabolic pathways
from genomic sequence information at different levels of complexity and comple-
tion [11]. Recently, triUMPF ( [12, 13]) was proposed to reconstruct metabolic
pathways from organismal and mutli-organismal genomes. This method uses
meta-level interactions among pathways and enzymes within a network to im-
prove the accuracy of pathway predictions in terms of communities represented
by a cluster of nodes (pathways and enzymes). Despite triUMPF’s predictive
gains, its sensitivity scores on pathway datasets left extensive room for improve-
ment. Here, we present reMap that relabels each example with a new label set
called “pathway group” or “group” forming a pathway group dataset which then
can be employed by a suitable pathway prediction algorithm (e.g. leADS [14])
to improve prediction results.

A subset of pathways in multiple organisms may be statistically correlated
and this subset constitutes a group. Thus, the presence of a pathway entails
the presence of a set of other correlated pathways. reMap performs an iterative
procedure to group statistically related pathways into a set of “pathway groups”
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Pathway grouping for predictive performance 3

Fig. 1: Traditional vs proposed group-based pathway prediction methods. In the
traditional method (a) pathways (i.e., y1−7) are predicted for Escherichia coli
K-12 MG1655, denoted by x, without considering any grouping of pathways.
In contrast, the group-based pathway prediction method (b) uses a two step
process. First, it predicts a set of positive groups (i.e., B2), then the pathways
within these groups are predicted (depicted as a cloud glyph and true pathways
are green colored). The description of symbols is provided in subfigure (c).

using a correlation model (CTM, SOAP, and SPREAT see Appx. Section B).
reMap then annotates organismal genomes with relevant groups. Pathways in
these groups are correlated and allowed to be inter-mixed across groups with
different proportions, resulting in an overlapping subset of groups over a subset
of pathways (i.e., non-disjoint). This has important implications for pathway
prediction, where a learning algorithm can revisit a pathway multiple times
across groups to improve sensitivity. Unlike mlLGPR [11] and triUMPF (Fig.
1a), group based pathway prediction requires two consecutive parts. First, a set
of pathway groups are inferred. In the second, pathways in these groups are
predicted (Fig. 1b).

reMap’s pathway grouping performance was compared with other methods
including MinPath, PathoLogic, and mlLGPR on a set of Tier 1 (T1) path-
way genome databases (PGDBs), low complexity microbial communities includ-
ing symbiont genomes encoding distributed metabolic pathways for amino acid
biosynthesis [15], genomes used in the Critical Assessment of Metagenome Inter-
pretation (CAMI) initiative [16], and whole-genome shotgun sequences from the
Hawaii Ocean Time Series (HOTS) [17] following the genomic information hier-
archy benchmarks initially developed for mlLGPR enabling more robust com-
parison between pathway prediction methods [11].

2 Method

In this section, we provide a general description of the reMap method, presented
in Fig. 2. reMap is trained in two phases using an alternating feedback process:
i)- feed-forward in Figs 2(b-d), consisting of three components: 1)- constructing
pathway group, 2)- building group centroid, 3)- mapping examples to groups;
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4 Basher et al.

Fig. 2: A workflow diagram for reMAP. The relabeling process in reMap is
achieved through an alternating feedback process. The feed-forward phase is
composed of three components: (b) pathway group construction to build cor-
related pathway groups from pathway data (a), (c) building group centroid to
estimate centroids of groups, and (d) mapping examples to groups. The feed-
backward phase (f) optimizes reMap’s parameters to increase accuracy of map-
ping examples to groups. The process is repeated τ (∈ Z>1) times. If the current
iteration q (∈ Z>1) reaches the desired number of rounds τ , the training is ter-
minated (e) and the pathway group dataset is produced (g) which can be used
as inputs to a pathway inference algorithm (e.g. leADS [14]) to predict a set of
pathways from a newly sequenced genome (h).

and ii)- feed-backward to update reMap’s parameters in Fig. 2(f). After training
is accomplished, a pathway group dataset is produced that can be used to predict
metabolic pathways from a newly sequenced genome in Figs 2(g-h). Below, we
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Pathway grouping for predictive performance 5

discuss these two phases while the analytical expressions of reMap are explained
in Appx. Section A.

2.1 Feed-Forward Phase

During this stage, each example in a given pathway data (Appx. Def. 1) is
annotated with a subset of pathway groups in three consecutive steps:
Constructing Pathway Group. In this step, pathways are partitioned into
non-disjoint b (∈ Z≥1) groups using any correlation models defined in Appx.
Section B. These models are equipped to provide us with a group correlation
matrix and a pathway distribution over groups, denoted by Φ ∈ Rb×t, where
t corresponds to the total number of distinct pathways. Each entry Φi,j corre-
sponds to the probability of assigning a pathway j to the group i. For each group
in Φ, we retain the top k (∈ Z≥1) pathways based on the probability scores. The
trimmed Φ serves as an input to constructing centroids in the next step.

Modeling pathway distribution and group correlation in this way are mo-
tivated by two key intuitions. First, organisms encoding similar pathways may
share similar groups resulting in shared statistical properties for those organisms.
Second, frequently occurring pathways in multiple organisms imply a similar rel-
ative contribution to a group.
Building Group Centroid. Having obtained a set of groups, reMap deter-
mined the relative contribution of each pathway to its associated group’s centroid
in the Euclidean space. Estimating centroids requires representing pathways and
groups as vectors of real numbers. For this, we apply pathway2vec [10] to obtain
pathway features. Then, the centroid of a group, say s, is computed as:

cs =
α

ns

∑
j∈Bs,j=+1

Pj

||Pj ||
(2.1)

where Bs ∈ {−1,+1}t is the group s obtained from the trimmed Φs after trans-
forming it to {−1,+1}t. cs corresponds the centroid of the group s, P ∈ Rt×m is
a pathway representation matrix obtained from pathway2vec, ns is the number
of pathways (|{Bs,j = +1, ∀j ∈ t}|) in group s, ||.|| is the length of a feature
vector, and α (∈ R>0) is a hyper-parameter determined by empirical analysis
(16 in this work). The proposed Eq. 2.1 is based on the intuition that pathways
associated with a group are semantically “close enough” to the center of the
corresponding group, and the overlapping pathways among groups exhibit simi-
lar semantics with their associated groups. In addition to determining centroids,
reMap also estimates a maximum number of expected groups to be annotated
for a given example, indexed by i, using the cosine similarity metric [9]:

D̂i =

({
I
(

c>s c̃
(i)
s

||cs|| · ||c̃(i)s ||
≥ υ

)
: 1 ≤ s ≤ b

}

c̃(i)s =
α

ns

∑
j∈(Yi,j=+1∧Bs,j=+1)

Pj

||Pj ||

(2.2)
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where I(.) is an indicator function that results in either +1 or −1 depending
on a user-defined threshold υ (∈ R>0). Yi ∈ {−1,+1}t corresponds to path-
ways either present or absent for the ith example, indicated by +1 and −1,

respectively. c̃
(i)
s represents the centroid of the group s calculated based on path-

ways that are associated with the group s and are present in ith example. ñs
is the number of pathways (|{Yi,j = +1 ∧ Bs,j = +1,∀j ∈ t}|) in group s.

D̂i ∈ {+1,−1}b is a pre-optimized set of groups labelled for the ith example
that will be used in the mapping step.
Mapping Pathways to Pathway Groups. This step maps an example to

pathway groups, resulting in an optimized pathway group dataset D̂opt (∈
{+1,−1}n×b). Formally, let us denote a set of groups that are picked to la-

bel an example by B(i)P ⊆ arg{D̂i,j = +1 : ∀j} while the remaining unpicked

groups is denoted by B(i)U , where D̂i is obtained using Eq. 2.2. Both sets of

groups are stored in L(i) = {B(i)P ∪ B
(i)
U }. Then, reMap performs mapping in an

iterative way, mirroring sequential learning and prediction strategy [18], where
for each ith example, a group Bj at round q is either: i)-added to L(i), indi-

cated by L(i)
q = L(i)

q−1 ⊕ {Bj : 1 < j ≤ |B(i)U |}; or ii)- removed from the set

of selected groups, represented by L(i)
q = L(i)

q−1 	 {Bj : 1 < j ≤ |B(i)P |}. More
specifically, at each iteration q, reMap estimates the probability of an example,
given the selected groups that are obtained from the previous round q−1, using
the threshold closeness (TC) metric [2] as:

p
(
x(i)|H(i)

q−1,L
(i)
q−1, D̂i,j = +1

)
=
p̄
H

(i)
q−1

(
D̂i,j |L(i)

q−1,x
(i)
)
G+ ζ

Z
(2.3)

where x(i) ∈ Rr and r is the total number of enzymes, G = 1 − p̄
H

(i)
q−1

(D̂i,j |L(i)
q−1,x

(i)) and D̂i,j = +1 if the group Bj is tagged with the ith example.

H
(i)
q−1 represents the history of prediction probability storing all p(D̂i,j |L(i)

q−1,x
(i))

before the current iteration q while p̄
H

(i)
q−1

(D̂i,j |L(i)
q−1,x

(i)) is the average proba-

bility of classifying x(i) to the group Bj over values in H
(i)
q−1. The term ζ (∈ R>0)

is a smoothness constant and Z is a normalization constant. Note that TC is a
class conditional probability density function that encourages correct class prob-
ability to be close to the true unknown decision boundary. Hence, this step will
ensure the correct latent group to be assigned to the ith example. The parameter

p(D̂i,j |L(i)
q−1,x

(i)) can be estimated using Appx. Eq. A.4. Afterwards, L(i) will
be updated either by adding or removing groups from a previous iteration. More
details about this step is provided in Appx. Section A.1.

2.2 Feed-Backward Phase

During this phase, reMap updates its internal parameters by enforcing four con-
straints: i)- similarity between groups and associated pathways; ii)- weights of
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Pathway grouping for predictive performance 7

pathways, in a group, should be close to each other; iii)- examples sharing similar
pathways should share similar representations; and iv)- all reMap’s parameters
should not be too large or too small. These four constraints are important to
allow smooth updates and mapping operations. More details are provided in
Appx. Section A.2.

2.3 Closing the loop

The two phases are repeated for all examples in a given pathway data, until a
predefined number of rounds τ (∈ Z>1) is reached. At the end, a pathway group
dataset is produced which consists of n examples with the assigned groups, i.e.,

D̂opt. After training is accomplished, a pathway group dataset is produced that
can be used to predict metabolic pathways from a newly sequenced genome using
an ML prediction method such as leADS [14].

3 Experiments

We evaluated reMap’s performance on diverse pathway datasets traversing the
genomic information hierarchy [11]: i)- T1 golden consisting of EcoCyc, Hu-
manCyc, AraCyc, YeastCyc, LeishCyc, and TrypanoCyc; ii)- BioCyc (v20.5
T2 & 3) [1]; iii)- Symbionts genomes of Moranella (GenBank NC-015735) and
Tremblaya (GenBank NC-015736) encoding distributed metabolic pathways for
9 amino acid biosynthesis [15]; iv)- Critical Assessment of Metagenome Inter-
pretation (CAMI) dataset composed of 40 genomes [16]; and v)- whole genome
shotgun sequences from the Hawaii Ocean Time Series (HOTS) at 25m, 75m,
110m (sunlit) and 500m (dark) ocean depth intervals [17]. Information about
these datasets is presented in Appx. Section C.1.

Two experiments were conducted: i)- assessing the history probability and ii)-
metabolic pathway prediction. The goal of the former test is to analyze the accu-
mulated probability stored in H during the mapping process in the feed-forward
phase for golden T1 datasets. We expect that few groups containing statistically
related pathways will be annotated for T1 golden data. The metabolic path-
way prediction test is followed to verify the quality of pathway groups for T1
golden, symbionts, CAMI, and HOTS data. For comparative analysis, reMap’s
performance on T1 golden datasets was compared to four pathway prediction
methods: i)- MinPath version 1.2 [20], an integer programming based algorithm;
ii)- PathoLogic version 21 [7], a symbolic approach that uses a set of manually
curated rules to predict pathways; iii)- mlLGPR [11], a supervised multi-label
classification and rich feature information algorithm, and iv)- triUMPF [12,13],
a non-negative matrix factorization and community detection based algorithm.
Four metrics were used to report the performance of all pathway predictors for
golden T1 and CAMI data: average precision, average recall, average F1 score
(F1), and Hamming loss as described in [11]. In addition, reMap’s performance
was compared to PathoLogic, mlLGPR, and triUMPF on mealybug symbionts
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(a) During 10 successive rounds (b) After 10 successive rounds

(c) Seven pathway groups that contain at least one amino acid biosynthesis pathways
in these groups for Escherichia coli K-12 MG1655

Fig. 3: Fig. 3a illustrates the history probability H during annotation of T1
golden data over 10 successive rounds while Fig. 3b shows the results after 10th
round. Darker colors indicate higher probabilities of assigning groups to the cor-
responding data. Fig. 3c shows six pathway groups and their correlations for
Escherichia coli K-12 MG1655. Numbers at top boxes correspond to group in-
dices. Edge thickness reflects the degree of associations between groups. Boldface
text represent amino acid biosynthesis pathways.

and HOTS multi-organismal datasets. To construct pathway groups, we em-
ployed the correlated model SOAP using b = 200 groups.

reMap was written in Python v3 and is available under the GNU license at
https://github.com/hallamlab/reMap. Unless otherwise specified all tests were
conducted on a Linux server using 10 cores of Intel Xeon CPU E5-2650. For full
experimental settings and additional tests, see Appx. Sections C and D.

3.1 Accumulated History Probability Analysis

Fig. 3a shows H during the annotation process for the T1 golden data over 10
iterations. In the beginning, reMap attempts to select the maximum number
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Pathway grouping for predictive performance 9

Table 1: Average F1 score of each comparing algorithm on 6 golden T1 data.
Bold text suggests the best performance in each column.

Methods
Average F1 Score

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc

PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266
reMap+SOAP 0.8336 0.8285 0.4764 0.4914 0.4144 0.7305

of groups that may exist for each example. However, with progressive updates
and calibration of parameters, reMap rectifies groups assignments where it picks
fewer relevant groups for each example. As an example, after the 10th round,
Escherichia coli K-12 MG1655 was tagged with only 33 groups (Fig. 3b) and
18 of these groups contain amino acid biosynthesis pathways. Fig. 3c shows 7
of these 18 pathway groups (Appx. Table 5). Pathways in these 7 groups are
statistically related (Appx. Table 6), and are observed to be distributed across
groups reflected by the thickness of edges in Fig. 3c. For example, L-alanine
biosynthesis II pathway is present in groups indexed by 16 and 152. Similarly, for
the pathway L-glutamate biosynthesis III which is represented in groups indexed
by 13 and 140. This mixture of pathway representation over groups increases
the chance of a pathway inference algorithm (e.g. leADS [14]) to revisit a true
positive pathway multiple times across groups which may result in improved
predictions as reported in the next section. This experiment shows that reMap
is able to capture statistically relevant pathways and map related groups to each
example with a high degree of correlation.

3.2 Metabolic Pathway Prediction

T1 Golden data. Table 1 shows that reMap+SOAP achieved competitive per-
formance against the other methods in terms of average F1 score with opti-
mal performance on EcoCyc (0.8336). However, it under-performed on AraCyc,
YeastCyc, and LeishCyc, yielding average F1 scores of 0.4764, 0.4914, and 0.4144,
respectively. Since reMap+SOAP was trained using BioCyc containing less than
1460 trainable pathways, pathways outside the training set will be neglected.
Symbionts data. The goal of this test is to evaluate reMap+SOAP performance
on distributed metabolic pathways that emerge as a result of interactions be-
tween two or more organisms. We used the reduced genomes of Moranella and
Tremblaya [15] as an established model for benchmarking. The two symbiont
genomes in combination encode 9 intact amino acids biosynthesis pathways. All
four pathway predictors were used to predict pathways on individual symbiont
genomes and a composite genome consisting of both. While reMap+SOAP, tri-
UMPF and PathoLogic predicted 6 of the expected amino acid biosynthesis
pathways on the composite genome, mlLGPR was able to predict 8 pathways
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10 Basher et al.

Fig. 4: Comparative study of predicted pathways for the composite genome be-
tween PathoLogic, mlLGPR, triUMPF, and reMap+SOAP. Black circles indi-
cate predicted pathways by the associated models while grey circles indicate
pathways that were not recovered by models. The size of circles corresponds the
pathway coverage information.

(Fig. 4). We excluded phenylalanine biosynthesis (L-phenylalanine biosynthe-
sis I ) pathway from analysis because the associated genes were reported to be
missing after initial gene prediction. Four predictors identified false positives for
individual symbiont genomes in Moranella and Tremblaya although the pathway
coverage information for both genomes was reduced in relation to the composite
genome (Appx. Fig. 9).

CAMI and HOTS data. For CAMI low complexity data [16], reMap+SOAP
exceeded mlLGPR and triUMPF, achieving an average F1 score of 0.6125 in
compare to 0.4866 for mlLGPR and 0.5864 for triUMPF (Table 2). For HOTS
data [17], triUMPF, mlLGPR, and PathoLogic predicted a total of 58, 62, and
54 pathways, respectively, while reMap+SOAP inferred 67 pathways (see Appx.
Section D.3) from a subset of 180 selected water column pathways [5]. None of the
algorithms were able to predict pathways for photosynthesis light reaction and
pyruvate fermentation to (S)-acetoin despite the abundance of these pathways in
the water column. Absence of specific EC numbers associated with each pathway
likely contributed to their absence using rule-based or ML prediction algorithms.
Results from this experiment indicates that the proposed pathway group based
approach, in particular reMap+SOAP increases pathway prediction performance
relative to other methods used in isolation.
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Table 2: Predictive performance of mlLGPR, triUMPF, and reMap+SOAP on
CAMI low complexity data. For each performance metric, ‘↓’ indicates the
smaller score is better while ‘↑’ indicates the higher score is better.

Metric mlLGPR triUMPF reMap+SOAP

Hamming Loss (↓) 0.0975 0.0436 0.0407
Average Precision Score (↑) 0.3570 0.7027 0.7419
Average Recall Score (↑) 0.7827 0.5101 0.5283
Average F1 Score (↑) 0.4866 0.5864 0.6125

4 Conclusion

In this paper, we demonstrated that iteratively mapping examples to groups e.g.
relabeling, using reMap increased pathway prediction performance. The reMAP
method is based on the intuition that organisms sharing a similar set of metabolic
pathways may exhibit similar higher-level structures or groups. The relabeling
process in reMap is achieved through an alternating feedback process. In the
first feed-forward phase, a minimal subset of pathway groups is picked to label
each example. In the second feed-backward phase, reMap’s internal parameters
are updated to increase the accuracy of mapping examples to pathway groups.
After training reMap, a pathway group dataset is produced that can be used to
predict metabolic pathways for a newly sequenced genome.

We evaluated reMap’s performance for the pathway prediction task using a
corpus of experimental datasets and compared results to other prediction meth-
ods including PathoLogic, MinPath, mlLGPR, and triUMPF. Overall, reMap
showed promising results in boosting prediction performance over ML-based al-
gorithms, such as mlLGPR and triUMPF. During benchmarking, we realized
that reMap brings more frequent and sometimes irrelevant pathways, resulting
in a significant performance loss on some T1 golden data, such as AraCyc. A pos-
sible treatment would be adding constraints in the form of associations among
enzymes and pathways as applied in triUMPF. However, this may lead to sen-
sitivity loss [14]. Another approach is to combine both graph-based and group-
based strategies to predict pathways. Future development efforts will explore
this dual approach to improve pathway prediction performance with emphasis
on multi-organismal genomes encoding distributed metabolic processes.
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Appendix

The appendix is divided into four parts: i)- the reMap framework (Section A),
ii)- descriptions about correlated models (Section B), iii)- experimental settings
(Section C), and iv)- empirical analysis (parameter sensitivity, history probabil-
ity analysis, and metabolic pathway prediction) (Section D).

A The reMap Method

In this section, we provide important notations and definitions that will be used
throughout the paper followed by a formal description of the research problem.
All vectors are assumed to be column vectors and are represented by boldface
lowercase letters (e.g., x) while matrices are encoded by boldface uppercase
letters (e.g., X). The Xi matrix indicates the i-th row of X and Xi,j denotes the
cell entry (i, j) of X. A subscript character to a vector, xi, denotes an i-th cell of
x. Occasional superscript, X(i), suggests an index to a example or current epoch
during the learning period. The sets are characterized by calligraphic letters
(e.g., E) while we use the notation |.| to denote the cardinality of a given set.
With these notations, we introduce the problem examined in this paper, starting
with a multi-label pathway dataset definition.

Definition 1. Multi-label Pathway Dataset [11]. A general form of pathway
dataset is characterized by S = {(x(i),y(i)) : 1 < i 6 n} consisting of n examples,
where x(i) is a vector indicating the abundance information corresponding the
enzymatic reactions. An enzymatic reaction, in turn, is denoted by e, which is
an element of a set of enzymatic reactions E = {e1, e2, ..., er}, having r possible
reactions, hence, the vector size x(i) is r. The abundance of an enzymatic reaction

for an example i, say e
(i)
l , is defined as a

(i)
l (∈ R≥0). The class labels y(i) =

[y
(i)
1 , ..., y

(i)
t ] ⊆ {−1,+1}t is a pathway label vector of size t that represents the

total number of pathways, which themselves are derived from a set of universal
metabolic pathway Y. The entry +1 (or −1) indicates presence (or absence) of a
pathway corresponding the example i. The matrix form of x and y are symbolized
as X and Y, respectively.

Both E and Y are extracted from reliable knowledge-bases (e.g. KEGG [6]
and MetaCyc [26]). In this paper, we adopt MetaCyc. Moving on, we define the
term pathway group set.

Definition 2. Pathway Group Set. Denote B = {B1,B2, ...,Bb} a set with
b pathway groups, where each group Bc ∈ {−1,+1}t is presumed to contain a
subset of correlated pathways, i.e., Yc ⊆ Y, and t is the number of pathways in
Def. 1. The presence or absence of a pathway in a group c is indicated by +1 or
−1, respectively. The matrix representation of B is B ∈ {−1,+1}b×t.

Pathway groups are also assumed to be correlated, i.e, non-disjoint, and can
be modeled by a Gaussian covariance matrix, denoted by Σ ∈ Rb×b. Each entry
si,j in Σ characterizes the i-th group association with j-th group, where a larger
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Fig. 5: An example of feature vectors for groups. The subfigure in the left rep-
resents the feature vector for six pathways corresponding to two examples. The
right subfigure indicates two groups, B1 and B2, and their features for the same
two examples. The first example, D1, suggests that only B1 is present because
the corresponding pathways y3 and y4 are present, while the pathway group fea-
ture vector for the second example, D2, suggests that both groups are present.

score indicates both groups are highly correlated. As a result of correlation, we
define the following two terminologies: pathway group feature vector and pathway
group’s neighbor.

Definition 3. Group-Example Feature Vector. The pathway group feature

vector for the ithe example is indicated by d(i) ∈ {−1,+1}b, where d
(i)
j = +1,

iff the group j is observed for the example i and dj = −1 otherwise. The matrix
form in represented as D ∈ {−1,+1}n×b.

An example of feature vectors for groups is illustrated in Fig. 5, where 2-
dimensional feature vectors for groups encode presence or absence of two groups
B1 and B2, given a set of 6 pathways and pathway-group association information,
depicted as a cloud glyph.

Definition 4. Pathway Groups Neighbors. A group Bc ∈ B is said to be a
neighbor to another pathway group Bj ∈ B s.t. c 6= j, if there exits an intersected
pathway l in both groups, i.e., Bc,l ∧Bj,l = +1.

With the above definitions, we formulate the problem in this work.

Problem 1. Given a set of groups B and a multi-label pathway dataset S, the
goal is to learn an optimum relabeling function hg : X → {+1,−1}b, such
that leveraging groups to X incurs a high predictive score for the downstream
pathway prediction task.
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Inputs :
1 P: pathway features matrix (P ∈ Rt×m)
2 B: a set of b pathway groups (B = {B1, ...,Bb})
3 α: a hyper-parameter for pathway groups’ centroids construction

(α ∈ R>0)

Outputs:
4 C: the centroids of groups (C ∈ Rb×m)

Process :
5 C: 0 (∈ Rb×m);
6 for s← 1 to b do
7 ns ←

∑
j I(Bs,j = +1);

8 cs ← apply Eq. A.1;
9 Cs,: = cs;

10 Return C

Algorithm 1: GroupCentroid(P, B, α)

Fig. 1 illustrates the benefit of incorporating groups for multi-label path-
way classification (right panel). Here, a dataset consists of two groups, each
consists of a set of 4 correlated pathways. To determine positive pathways (y2,
y3, and y4) given Xi, we first predict the relevant group, indicated by +, then
classify pathways within that pathway group. In contrast, the traditional multi-
label classification approaches (left figure), mostly based on binary relevance
technique, proceeds on predicting multiple pathway labels for Xi. Hence, the
proposed method will reduce computational complexity for pathway prediction.

Mapping a multi-label pathway dataset S to groups will result in another
dataset, i.e., Sgroup.

Definition 5. Multi-label Pathway Group Dataset. A group dataset is rep-
resented by Sgroup = {(x(i),d(i)) : 1 < i 6 n} consisting of n examples.

d(i) = [d
(i)
1 , ..., d

(i)
t ] ∈ {−1,+1}b is a pathway group label vector of size b. Each

element of d(i) indicates the presence/absence of the associated pathway group
that is inherited from the set B in Def. 2.

Now, we outline the reMap method (depicted in Fig. 2), which alternates
between the following two phases: i)- feed-forward in Figs 2(b-d), consisting of
three components: 1)- constructing pathway group, 2)- building group centroid,
3)- mapping examples to groups; and ii)- feed-backward to update reMap’s pa-
rameters in Fig. 2(f). After training is accomplished, a pathway group dataset is
produced that can used to predict metabolic pathways from a newly sequenced
genome in Figs 2(g-h).

A.1 Feed-Forward Phase

During this phase, a minimal subset of groups is picked to annotate each example
in a given pathway data (Def. 1) in three consecutive steps:
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Inputs :
1 n: number of examples (n ∈ N>2)
2 X: input space training set (X ∈ Rn×r)
3 Y: pathway space training set (Y ∈ Zn×t≥0 )

4 P: pathway features matrix (P ∈ Rt×m)
5 B: a set of b groups (B = {B1, ...,Bb})
6 C: the centroids of groups (C ∈ Rb×m)
7 v: a cutoff hyper-parameter (v ∈ R≥0)

Outputs:
8 D̂: the expected maximum number of groups (D̂ ∈ Zn×b≥0 )

Process :
9 // an empty matrix that will contain maximum

10 // number of groups for each example

11 D̂← 0;
12 // n is the number of examples

13 for i← 1 to n do
14 // b is the number of groups

15 for k ← 1 to b do
16 for j ← 1 to Yi,: do
17 if j ∈ Yi,j ∧Bk,j then

18 D̂i,k ← [apply Eq A.2];

19 Return D̂

Algorithm 2: MaxGroups(n, X, Y, P,B, C, v)

Constructing Pathway Group. In this step, pathways in S are partitioned
into non-disjoint b groups using any correlated models in Section B. These models
are equipped to provide us with a group covariance matrix denoted by Σ ∈ Rb×b
that is transformed to a correlation matrix ρ = C−1ΣC−1 where C =

√
diag(Σ),

and a pathway distribution over groups denoted by Φ ∈ Rb×t. Each entry Φi,j
corresponds to the probability of assigning a pathway j to the group i. For each
group in Φ, we retain the top k (∈ Z≥1) pathways based on the probability
scores. The trimmed Φ′ ∈ Rb×k(⊆ Φ) serves as an input to constructing cen-
troids in the next step. Modeling pathway distribution and group correlation in
this way are motivated by two key intuitions. First, organisms encoding simi-
lar pathways may share similar groups, thus, encouraging to have near-identical
statistical properties for those organisms. Second, frequently occurring pathways
in multiple organisms imply a similar relative contribution to a group.

Building Group Centroid. Having obtained a set of groups, reMap computes
centroids for each group to capture the relative contribution of each pathway
to its associated group’s centroid in the Euclidean space. Estimating centroids
requires representing pathways and groups as vectors of real numbers. For this,
we apply pathway2vec [10] to obtain pathway features. Then, the centroid of a
group, say s, is computed according to:

cs =
α

ns

∑
j∈Bs,j=+1

Pj

||Pj ||
(A.1)
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where Bs ∈ {−1,+1}t is the group s obtained from the trimmed Φs after
transforming it to {−1,+1}t. cs corresponds the centroid of the group s, P ∈
Rt×m is a pathway representation matrix obtained from pathway2vec, ns is the
number of pathways (|{Bs,j = +1, ∀j ∈ t}|) in group s, ||.|| is the length of a
feature vector, and α (∈ R>0) is a hyper-parameter determined by empirical
analysis (16 in this work). The proposed Eq. A.1 is based on the intuition that
pathways associated with a group are semantically “close enough” to the center
of the corresponding group, and the overlapping pathways among groups exhibit
similar semantics with their associated groups. This procedure is described in
Algorithm 1. In addition to the centroid computation, reMap also estimates
a maximum number of expected groups to be annotated for a given example,
indexed by i, using cosine similarity metric [9]:

D̂i =

({
I
(

c>s c̃
(i)
s

||cs|| · ||c̃(i)s ||
≥ υ

)
: 1 ≤ s ≤ b

}

c̃(i)s =
α

ns

∑
j∈(Yi,j=+1∧Bs,j=+1)

Pj

||Pj ||

(A.2)

where I(.) is an indicator function that results in either +1 or −1 depending
on a user-defined threshold υ (∈ R>0). Yi ∈ {−1,+1}t corresponds to path-
ways either present or absent for the ith example, indicated by +1 and −1,

respectively. c̃
(i)
s represents the centroid of the group s calculated based on path-

ways that are associated with the group s and are present in ith example. ñs
is the number of pathways (|{Yi,j = +1 ∧ Bs,j = +1,∀j ∈ t}|) in group s.

D̂i ∈ {+1,−1}b is a pre-optimized set of groups tagged for the ith example that
will be used in the mapping step. Algorithm 2 describes the pseudocode for Eq.
A.2.
Mapping Pathways to Pathway Groups. The goal of this step is to map an
example to pathway groups, resulting in an optimized pathway group dataset

D̂opt ∈ {+1,−1}n×b. Formally, let us denote a set of groups that are picked to

tag an example by B(i)P ⊆ arg{D̂i,j = +1 : ∀j} while the remaining unpicked

groups is denoted by B(i)U , where D̂i is obtained using Eq. 2.2. Both sets of

groups are stored in L(i) = {B(i)P ∪ B
(i)
U }. Then, reMap performs mapping in an

iterative way, mirroring sequential learning and prediction strategy [18], where
for each ith example, a group Bj at round q is either: i)-added to L(i), indicated

by L(i)
q = L(i)

q−1 ⊕ {Bj : 1 < j ≤ |B(i)U |}; or ii)- removed from the set of selected

groups, represented by L(i)
q = L(i)

q−1 	 {Bj : 1 < j ≤ |B(i)P |}. More specifically,
at each iteration q, reMap estimates the probability of an example, given the
selected groups that are obtained from the previous round q−1, using threshold
closeness (TC) metric [2] as:

p
(
x(i)|H(i)

q−1,L
(i)
q−1, D̂i,j = +1

)
=
p̄
H

(i)
q−1

(
D̂i,j |L(i)

q−1,x
(i)
)
G+ ζ

Z
(A.3)
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where x(i) ∈ Rr and r is the total number of enzymes,G = 1−p̄
H

(i)
q−1

(D̂i,j |L(i)
q−1,x

(i))

and D̂i,j = +1 if the group Bj is tagged with the ith example. H
(i)
q−1 repre-

sents the history of prediction probability storing all p(D̂i,j |L(i)
q−1,x

(i)) before

the current iteration q while p̄
H

(i)
q−1

(D̂i,j |L(i)
q−1,x

(i)) is the average probability of

classifying x(i) to the group Bj over values in H
(i)
q−1. The term ζ (∈ R>0) is a

smoothness constant and Z is a normalization constant. Note that TC is a class
conditional probability density function that encourages correct class probabil-
ity to be close to the true unknown decision boundary. Hence, this step will
ensure the correct latent group to be assigned to the ith example. To estimate

p(D̂i,j |L(i)
q−1,x

(i)), we jointly compute the probability of groups and pathways

that are associated with D̂i,j at round q − 1 as:

p(D̂i,j |L(i)
q−1,x

(i)) ∝H(i)
q−1

( ∑
e∈L(i)

q−1

zj,e

( ∑
s∈Bj,s=+1

p(D̂i,j |ls = +1, Θg
j )p(y(i)s |x(i), Θp

s )

))

zj,e =
ρj,e −min(ρ)

max(ρ)−min(ρ)

p(D̂i,j |ls = +1, Θg
j ) =

1

1 + e−Θ
g,T
j

∣∣c̃(i)j −Ps

∣∣
p(y(i)s |x(i), Θp

s ) =
1

1 + e−Θ
p,T
s x(i)

(A.4)

where y
(i)
s = +1 if the pathway index s is found to be present in both group

j and in example x(i) and 0 otherwise, and ls = 1 if the pathway index s is
associated with group j and 0 otherwise. zj,e is a normalized correlation between

groups j and e, respectively, obtained from ρ and c̄
(i)
j is presented in Eq A.2.

Θg
j ∈ Rm and Θp

s ∈ Rr denote parameters for the group j and the pathway s
model’s, respectively, and are learned during the feed-backward stage.

To reduce computational latency, instead of applying the above procedure
to all groups for each example at every round, we randomly sub-sample groups
of size γ (∈ Z>1). Also, the estimate is still in the probability realm, therefore,
we utilize a cut-off decision threshold (β) to retrieve a subset of groups having
less overlapping pathways. Afterwards, L(i) will be updated either by adding or
removing groups from a previous iteration. Algorithm 3 presents the pseudocode
for relabeling multi-label dataset with groups.
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Inputs :
1 n: number of examples (n ∈ N>2)
2 X: input space training set (X ∈ Rn×r)
3 Y: pathway space training set (Y ∈ Zn×t≥0 )

4 D̂: the expected maximum number of groups (D̂ ∈ Zn×b≥0 )

5 B: a set of b groups (B = {B1, ...,Bb})
6 P: pathway features matrix (P ∈ Rt×m)

7 Θg: groups’ parameters (Θg ∈ Rb×m)
8 Θp: pathways’ parameters (Θp ∈ Rt×r)
9 C: the centroids of groups (C ∈ Rb×m)

10 z: normalized groups’s correlation (z ∈ Rb×b)
11 α: a hyper-parameter for groups’ centroids construction (α ∈ R>0)
12 d: a subexample size hyper-parameter (d ∈ N>1)
13 ε: a smoothness constant (ε ∈ R>0)
14 v: a cutoff hyper-parameter for the maximum number of groups (v ∈ R≥0)
15 ζ: a decision threshold for selecting groups (ζ ∈ R≥0)
16 τ : number of rounds (τ ∈ N>1)

Outputs:

17 D̂opt: an optimum multi-label group set (D̂opt ∈ Zn×b≥0 )

Process :
18 // an empty matrix that will contain maximum

19 // number of groups for each example

20 D̂opt ← 0;
21 for i← 1 to n do
22 // an initial set of groups for an example i

23 L(i) = arg{D̂i,j = +1 : ∀j};
24 // sub example d groups from |L(i)| groups
25 bsub ← randomly select d groups from |L(i)|;
26 H(i) = 0(∈ Rτ×b) ;
27 for q ← 1 to τ do
28 for j ← 1 to bsub do

29 if j ∈ L(i) then
30 continue;

31 tmp1 = 0;

32 for e← 1 to |L(i)| do
33 tmp2 = 0;
34 for k ← 1 to |Bj | do
35 pj = 1

1+e
−Θg,T

j

∣∣c̃(i)
j

−Pk

∣∣ ;
36 pk = 1

1+e
−Θp,T

k
x(i) ;

37 tmp2 = tmp2 + pjpk;

38 tmp1 = tmp1 + zj,e× tmp2;

39 H
(i)
q,j = zj,e× tmp1;

40 if q − 1 > 0 then

41 H
(i)
q,j = H

(i)
q−1,j ×H

(i)
q,j ;

42 A = Avg(H(i));
43 G = 1 - A;

44 Q(i) = A.G+ε
Z

;
45 for j ← 1 to bsub do

46 if Q
(i)
j ≥ ζ then

47 L(i) = L(i) ⊕ j;
48 else

49 L(i) = L(i) 	 j;

50 // the transform function is a simple operation to translate

groups

51 // from L(i) groups into +1, -1 indicating presence/absence of

groups

52 D̂opt
i ← transform(L(i));

53 Return D̂opt

Algorithm 3: Relabel2Group(n, X, Y, D̂, B, P, Θg, Θp, C, z, α, d,
ε, v, ζ, τ)
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A.2 Feed-Backward Phase

Here, we set up the learning framework for computing reMap’s group and path-
way parameters, jointly denoted as Θ = {Θg, Θp}. From Eq. A.3, three learning
components can be identified: i)- a hyper-plane in the group space to absorb
group correlation, ii)- a hyper-plane in the pathway space to encode seman-
tic information about pathways, and iii)- a joint learning between groups and
pathways to exploit pathway-group relationship. Let us define three empiri-
cal loss functions, corresponding the three components: εg : {0, 1}b → R≥0,
εp : {0, 1}t → R≥0, and εgp : {0, 1}b → R≥0 of margin dhg(x), yhp(x), and
dhgp(y), respectively, where h(.) are decision functions. The last two loss func-
tions are based on the logistic loss while the first loss is a sum of the two other
losses. Now, to compute Θ, we maximize the posterior probability of Eq. A.4:

Θ̂ = argmax
Θ

q=τ∏
q=1

i=n∏
i=1

H
(i)
q−1

j=b∏
j=1

p(D̂i,j |L(i)
q−1,x

(i))

×
( ∑
s∈Bj,s=+1

p(D̂i,j |ls = +1, Θg
j )p(y(i)s |x(i), Θp

s )

)) (A.5)

Estimation of parameters in Eq. A.5 is intractable due to the chain of proba-

bilities H
(i)
q−1 and the two marginalizations over Lq−1 and s. Hence, we propose

the following two diagnoses: i)- conditional independence assumptions where the
previous history values are independent given the most recent estimates and ii)-
collapse the marginalization over Lq−1 by choosing only the maximum correla-
tion z, irrelevant to which groups were considered. These simplified treatments
provide an efficient way to optimize the parameters, where we adopt the “one-
vs-all” scheme learning for each group and pathway [52].

In addition, we apply four constraints to retrieve a good set of parameters:
i)- similarity between groups and associated pathways; ii)- weights of pathways,
in a group, should be close to each other; iii)- examples sharing similar pathways
should share similar representations; and iv)- all reMap’s parameters should not
be too large or too small. These four constraints are important to allow smooth
updates and mapping operations. Using these four constraints, the obtained

pathway group dataset (D̂opt), and the pathway data (Y), our objective function
is formulated according to:

min
Θg,W,U,S

−
∑
q∈τ

∑
i∈n

∑
j∈b

∑
k∈Bj,k=+1

vi log
(
p(D̂i,j |lk = +1, Θg

j )
)

+
∑
q∈τ

∑
i∈n

||y(i) − D̂iW||22 +
∑
j∈b

C(Θg
j )

min
Θp,W,S

−
∑
q∈τ

∑
i∈n

∑
k∈t

vi log
(
p(y

(i)
k |x

(i), Θp
k )
)

+
∑
q∈τ

∑
i∈n

||y(i) − D̂iW||22 +
∑
k∈t

C(Θp
k )

(A.6)
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where,

v(i) =p(x(i)|H(i)
q−1,L

(i)
q−1, D̂i,j = +1)

− log
(
p(D̂i,j |lk = +1, Θg

j )
)

= log
(

1 + e−d
(i)
j Θ

gᵀ
j |c̃

(i)
j −Pk|

)
4
= εgp(d

(i)
j hgp

j (l
(i)
k ), Θg

j )

− log p(y
(i)
k |x

(i), Θp
k ) = log

(
1 + e−y

(i)
k
Θ

pᵀ
k

x(i)
)

4
= εp(y

(i)
k hp

k (x(i)), Θp
k )

lg(d
(i)
j hg

j (x(i)), Θg
j )
4
= εgp(d

(i)
j hgp

j (l
(i)
k ), Θg

j )

+
∑

k∈Bj,k=+1

εp(y
(i)
k hp

k (x(i)), Θp
k )

(A.7)

C(Θg
j ) =

∑
k∈Bj,k=+1

||UᵀΘp
k −Θ

g
j ||

2
2︸ ︷︷ ︸

pathways within a group

+
λ1

2

∑
q,l∈n

Sq,l||d̂(q) − d̂(l)||22︸ ︷︷ ︸
correlated groups

+ λ2||Θg
j ||2,1 + λ3||U||2,1 +

1

2
κ||S1− 1||22

(A.8)

C(Θp
k ) =

∑
q∈Bj,q=+1

||Θp
q −Θp

k ||
2
2︸ ︷︷ ︸

pathways closeness

+
λ4

2

∑
q,l∈n

Sq,l||y(q) − y(l)||22︸ ︷︷ ︸
correlated pathways

+
1

2

∑
q,l∈n

Sq,l||Θpᵀ
k x(q) −Θpᵀ

k x(l)||22︸ ︷︷ ︸
correlated examples of a pathway

+ λ5||Θp
k ||2,1 +

1

2
κ||S1− 1||22

(A.9)

where ||.||22 represents the squared L2 norm, ||.||22,1 is the sum of the Euclidean

norms of columns of a matrix, v(i) is the weight of a example x(i) to emphasize
selection of informative examples, and λ[1,2,3,4,5] ∈ R are hyper-parameters con-
trolling the relative contributions of the associated constraint terms. Let us ex-
plain all the terms involved in Eqs A.7-A.9. The function ||UᵀΘp

k −Θ
g
j ||22 reflects

the first constraint, where it enforces similarities between pathways, associated
to a group j, and the pathway group j itself. U ∈ Rr×m is the linear trans-
formation matrix from r onto m dimensional space. For the second constraint,
the term ||Θp

q −Θp
k ||22 considers the similarities among pathways, grouped under

a specific pathway group. To adopt the third constraint, we used four terms:

||y(i) − D̂iW||22, ||d̂(q) − d̂(l)||22, ||y(q) − y(l)||22, and ||Θpᵀ
k x(q) −Θpᵀ

k x(l)||22.

The term ||y(i) − D̂iW||22 maintains the integrity of both pathway group
and pathway vectors on example i, thus, encouraging groups to have similar
contents as pathways, and W ∈ Rb×t captures the correlation between groups
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and pathways. Both ||d̂(q)− d̂(l)||22 and ||y(q)−y(l)||22 describes the resemblances

between the two pathway group vectors, d̂(q) and d̂(l), and the two pathway
vectors, y(q) and y(l), suggesting the similarity between input instances x(q)

and x(k). The similarity scores of the aforementioned instances are captured by
Sq,k ∈ Rn×n≥0 , where a high score, indicates both examples have near identical
pathways and, hence, should have similar groups, and vice-versa hold as well.

The formula ||Θpᵀ
k x(q) −Θpᵀ

k x(l)||22 addresses the neighborhood relationship
in the example feature space between x(q) and x(k), as characterized by Sq,l
score [50]. As discussed before, if two instances are close to each other then they
may possess relevant labels, which leads to relabeling a dataset with a proper
subset of groups, hence, mitigating from the negative influences of imperfectly
labeling groups. The terms ||Θg

j ||2,1, ||Θp
j ||2,1, and ||U||2,1, constitute the fourth

constraint that aim to shrink weights and perform feature selection. Finally,
κ||S1− 1||22 enforces equality constraint such that ∀q,∑k∈n Sq,l = 1, where κ is
a Lagrange multiplier, and 1 denotes a column vector with all of it’s elements
are equal to 1.

Taken together, the trainable parameters of reMap are: 1)- group-projection
weight matrix W, 2)- pathway-projection weight matrix U, 3)- group-specific
weight matrix Θg, 4)- pathway-specific weight matrix Θp, 5)- example-similarity

specific weight matrix S, and 6)- group-specific updating matrix D̂. The last
parameter is a binary matrix indicating the presence/absence of groups in the
training dataset, which is gradually updated based on the gradient score strategy.

Unfortunately, the objective function in Eq. A.6 involves L2,1-norm that is
non-smooth and difficult to be solved, instead we perform iterative gradient de-
scent method for reMap which alternatively optimizes over one of six classes
of variables (W,U, Θg, Θp,S, and D̂) at a time while the others are held con-
stant. The partial derivative of each term in Eq. A.6 is a positive semi-definitive,
hence, the whole term is jointly convex, which leads to the following independent
optimization problems for all pathways and groups classifiers according to the
multi-label 1-vs-All approach [52].

– Update W. The gradient of Eq. A.6 w.r.t. W has the following formula:

∇W =
2

nb

(
D̂ᵀD̂W − D̂ᵀy

)
+ λ3KWW (A.10)

where KW =




1
2||W1||2

. . .
1

2||Wb||2

– Update U. The gradient of Eq. A.6 w.r.t. U becomes:

∇U =
1

b

∑
j∈b

2∑
k I(Bj,k = +1)

∑
k∈Bj,k=+1

(
Θp
kΘ

pᵀ
k U−Θp

kΘ
gᵀ
j

)
+ λ3KUU

(A.11)
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where KU =




1
2||U1||2

. . .
1

2||Ur||2

– Update Θg. The partial derivative for each pathway group, say Θg
j , is:

∇Θg
j =

1

n

∑
i∈n

vi

(
1∑

k I(Bj,k = +1)

∑
k∈Bj,k=+1

−D̂i,j |c̃(i)j −Pk|

1 + eD̂i,jΘ
gᵀ
j |c̃

(i)
j −Pk|

)

+
1∑

k I(Bj,k = +1)

∑
k∈Bj,k=+1

(
− 2Û

ᵀ
Θp
k + 2Θg

j

)
+ λ2

Θg
j

2||Θg
j ||2

(A.12)

where Û obtained from Eq. A.11.
– Update Θp. The partial derivative w.r.t one pathway k of Θp with the new

Û and Θ̂g updates has the following form:

∇Θp
k =

1

n

i=n∑
i=1

vi

(
−y(i)

k x(i)

1 + ey
(i)
k
Θ

pᵀ
k

x(i)

)
+ 2ÛÛ

ᵀ
Θp
k −

2

b

∑
j∈b

ÛΘ̂g
j

+
1

b

∑
j∈b

2∑
k I(Bj,k = +1)

∑
q∈Bj,q=+1

(
Θp
k −Θ

p
q

)
+ XᵀLXΘp

k + λ5
Θp
k

2||Θp
k ||2

(A.13)

where L , M − S is the graph Laplacian matrix and M is a diagonal
matrix with Mj,j =

∑
k=1 Sj,k. Note that 1

2

∑
q,l∈n Sq,l||Θpᵀ

k (x(q)−x(l))||22 =

tr
(
Θpᵀ
k XᵀLXΘp

k

)
. Following the work of [44], it is important for practical

purpose to normalize the graph Laplacian, to account for the fact that some
examples are more similar than others [48]: L̄ , M−1/2LM−1/2 = I −
M−1/2SM−1/2. Adhering to this property, we consider the following formula:
1
2

∑
q,l∈n Sq,l||Θpᵀ

k

(
x(q)√
Mq,q

− x(l)√
Ml,l

)
||22 = tr

(
Θpᵀ
k XᵀL̄XΘp

k

)
.

– Update S. Given the updated values of Û and Θ̂p, we obtain the equivalent
objective function of Eq. A.6 with the terms only related to S as:

min
0≤Sq,j≤1

λ1tr(D̂ᵀLD̂) + λ4tr(YᵀLY) + tr(Θ̂pXᵀLXΘ̂pᵀ) + κ||S1− 1||22 (A.14)

For the inequality constraint, during iterative updates we force values of S
to be within the range of [0, 1]. Then, the gradient update can be written as:

∇S =λ1D̂D̂ᵀ + λ4YYᵀ + XΘ̂pᵀΘ̂pXᵀ + 2κ(S− 1) (A.15)

As we have mentioned, the similarity matrix S captures reliable and dis-
criminative locality information in the projected example feature space, and
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this information is utilized to optimize correlations in the predicted pathway
space, which ensures example-pathway space consistency. Consequently, a
set of groups can be inferred with high fidelity, for each example, if features
with labels correlation information is disseminated to features with groups
correlations, thus, alleviating the effects of imperfectly detecting negative
groups.

– Update D̂. We iteratively update groups, where a set of groups are added or
removed at each round. In particular, a positive subset of groups is selected

B(i)P ⊆ arg{D̂i,j = +1 : ∀j}, for each example x(i), and the remaining groups
are considered to be negative to that example. While it is relatively easy
to compile a set of positive groups for an example, however, groups not
belonging to that example are too diverse to be considered as negative.

Thus, it is better to consider the remaining groups as unassigned B(i)U . We

use the gradient score strategy, where the values of D̂ is updated based on
the gradient score according to:

∇D̂ =
1

n

∑
i∈n

vi
∑
j∈b

(
1∑

k I(Bj,k = +1)

∑
k∈Bj,k=+1

−Θgᵀ
j |c̃

(i)
j −Pk|

1 + eD̂i,jΘ
gᵀ
j |c̃

(i)
j −Pk|

)

+ λ1L
ᵀD̂ +

2

nb

(
D̂WWᵀ − λ3yW

ᵀ
) (A.16)

After getting the gradient score, we assign groups to examples based on:

D̂i,j =


+1 if ∇D̂i,j ≥ 1

0 if 0 < ∇D̂i,j < 1

−1 if ∇D̂i,j ≤ 1

(A.17)

where D̂i,j = +1 (resp. −1 and 0) means the group is selected to be positive
(resp. negative and unknown) given a training example i. Having acquired
a new selected set of groups for each instance, we update L(i) accordingly.

The pseudocode for this phase in presented in Algorithm 4

A.3 Closing the loop

The two phases are repeated for all examples in a given pathway data, until a
predefined number of rounds τ (∈ Z>1) is reached. At the end, a pathway group
dataset is produced which consists of n examples with the assigned groups, i.e.,

D̂opt. This data can be used as inputs to a pathway predictor to perform pathway
prediction for a newly sequenced genome.
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Inputs :
1 n: number of examples (n ∈ N>2)
2 X: input space training set (X ∈ Rn×r)
3 Y: pathway space training set (Y ∈ Zn×t≥0 )

4 D̂: pathway group space training set (D̂ ∈ Zn×b≥0 )

5 P: pathway features matrix (P ∈ Rt×m)

6 C: the centroids of groups (C ∈ Rb×m)

7 z: normalized groups’s correlation (z ∈ Rb×b)
8 d: a subexample size hyper-parameter (d ∈ N>1)
9 ξ: number of epochs (ξ ∈ N)

10 // for brevity, the collection of all hyperparamters

11 // is represented as λ
12 λ: a set of all hyperparameters, including cut-off thresholds
13 γ: learning rate (lr ∈ R>0)

Outputs:
14 Θg: groups’ parameters (Θg ∈ Rb×m)
15 Θp: pathways’ parameters (Θp ∈ Rt×r)
16 W: group-projection parameters (W ∈ Rb×t)
17 U: pathway-projection parameters (W ∈ Rr×m)
18 S: instance-similarity specific parameters (S ∈ Rn×n)

Process :
19 // groups’ parameters (Θg ∈ Rb×m)
20 Θg ← 0;
21 // pathways’ parameters (Θp ∈ Rt×r)
22 Θp ← 0;
23 for q ← 1 to ξ do

24 D̂q ← Relabel2Group(n, X, Y, D̂q−1, B, P, Θ̂g,q−1, Θ̂p,q−1, C,
z, λ);

25 // update W’s parameters using Eq. A.10

26 Wq ←Wq−1 − γ∇Wq;
27 // update U’s parameters using Eq. A.11

28 Uq ← Uq−1 − γ∇Uq;
29 // update Θg’s parameters using Eq. A.12

30 Θg,q ← Θg,q−1 − γ∇Θg,q;
31 // update Θp’s parameters using Eq. A.13

32 Θp,q ← Θp,q−1 − γ∇Θp,q;
33 // update S’s parameters using Eq. A.15

34 Sq ← Sq−1 − γ∇Sq;

35 // update D̂ using gradient score strategy

36 D̂q ← apply Eq. A.17;

37 Return Θg, Θp, W, U, S

Algorithm 4: Backward(n, X, Y, D̂, P, C, z, d, ξ, λ, γ)

B Correlated Models

We present three correlated pathway models that can be applied during pathway
group construction step in the feed-forward phase of reMap: i)-CTM (correlated
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Fig. 6: Graphical model representation of the correlated concept models. The
boxes are “plates” representing replicates. The outer plate represents instances,
while the inner plate represents the repeated choice of features within an ex-
ample. The logistic normal distribution, used to model the latent concept pro-
portions of an example, captures correlations among concepts that are impossi-
ble to capture using a single Dirichlet. The observed data for each example xi
are a set of annotated features yi and a set of hypothetical features Mi. The
hidden variables are: per-example concept proportions ηi, per-example concept
selection parameters Λi, per-example hypothetical feature distributions Ωi, per-
feature concept assignment zi,j , per-concept distribution over features Φa, and
per-feature indicator parameter di,j .

topic model) [23], ii)- SOAP (sparse correlated pathway group) and iii)- SPREAT
(distributed sparse correlated pathway group). These models incorporate path-
way abundance information to encode each example as a mixture distribution of
groups, and each pathway group, in turn, is a mixture of pathways with differ-
ent mixing proportions. The pathway abundance information can be obtained
by mapping enzyme –with abundances– onto the reference pathway database
(e.g. MetaCyc). Before we discuss these three models, first let us provide some
background information and notations. We note that each mathematical symbol
is only related in the context of this section.

Definition 6. Pathway Collection. Let P = {y(i) : 1 < i 6 n} be a collection

of n examples, where each example y(i) = (y
(i)
1 , y

(i)
1 , . . . , y

(i)
t ) is a vector encoding

the unnormalized abundance information of pathways and t is the pathway size.
Let Y = {h1, h2, . . . , ht} be a set of all known metabolic pathways obtained from
a trusted source (e.g., MetaCyc [28]), and Yi ⊆ Y corresponds to a subset of
true pathways associated with the example i.

Recovering latent distributions of P mirrors the concept modeling paradigm,
which aims to reconstruct the thematic structure, called “topics”, from a corpus
[25].
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Definition 7. Concept Modeling. Given a collection of n examples, a concept
distribution for i-th example is a multinomial distribution vector, denoted by
η(i) of size b concepts, i.e., {p(Φa|η(i))}a=ba=1, where Φj in a multinomial feature
distribution over the concept j, i.e., {p(yk|Φj)}k=tk=1. The overall goal of concept
modeling is to recover the b salient concepts of each example.

In this paper, the term concept is referred to as “pathway group” or “group”.
For brevity purposes, the following terms: concept, topic, or pathway group, are
used interchangeably. Also, features correspond to pathways.

The classical studies in concept modeling attempt to discover concepts from
a collection of examples that are composed of features, as in the case of latent
Dirichlet allocation (LDA) [25]. However, this approach neglects dependencies
among concepts. We take advantage of the inherent thematic structure of exam-
ples and model the concept dependencies to extract the concept distributions of
examples.

Definition 8. Concept Correlation. Given P, the pairwise concept-correlation
is defined by a Gaussian covariance matrix, denoted by Σ. Each entry si,j in Σ
characterizes the i-th pathway group association with the pathway group j, where
a larger score indicates both concepts are highly correlated.

However, there exist situations where a set of pathways may not be included
in P because P has high noise. An alternative way to incorporate missing path-
ways is to store these pathway in a separate list while keeping the original path-
way collection intact for further investigation. Lets us denote M ∈ Zn×t≥0 a matrix
holding a set of missing pathways where each entry is an integer value indicating
the abundance of a pathway in an example. Here, this matrix is referred to as a
“background” or “supplementary” matrix, analogous to studies in [32,53]. With
these definitions, we describe the correlated models.

B.1 Correlated Topic Model

The correlated topic model (CTM) is a probabilistic graphical model that ex-
tends the generative story of LDA [25] to incorporate correlation among con-
cepts. Fig. 6a shows the Bayesian graphical model for CTM using plate nota-
tion. Like latent Dirichlet allocation [25], the CTM is comprised of a hierarchical
Bayesian mixture model, where features (words as described in the original pa-
per) are mixed to constitute concepts. And, the concepts are assumed to be
correlated to each other by a Gaussian covariance matrix.

Formally, let n be the total number of a collection, where each example i
consists of features, i.e., y(i). Then, the generative process for CTM is described
as follows. First, we draw a multinomial feature distribution Φa from a Dirich-
let prior α > R>0 for each concept a ∈ {1, . . . , b}. Then, for each example i,
a Gaussian random variable is drawn η(i) ∼ N (µ,Σ), where µ is a b dimen-
sional mean and Σ ∈ Rb×b is the covariance matrix. The random variable η(i)

is projected onto the probability simplex to obtain the concept distributions
θ(i) = softmax(η(i)), corresponding the logistic-normal distribution, from which
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a concept indicator z
(i)
j ∈ {1, . . . , b} is sampled. Finally, each observed feature

j ∈ {1, . . . , ti} is drawn from the associated feature distribution, indicated by

it’s concept assignment, i.e., y
(i)
j ∼ Φ

z
(i)
j

. This generative process is outlined in

Algorithm 5, which can be observed that the process is identical to LDA ex-
cept the concept distributions is sampled from the logistic normal rather than a
Dirichlet prior.

1. For each concept a ∈ {1, . . . , b}:
(a) example a distribution over features Φa ∼ Dir(.|α);

2. For each example i ∈ {1, . . . , n}:
(a) Draw the example concept weight η(i) ∼ N (.|µ,Σ);
(b) Draw concept proportions θ(i) = softmax(η(i));
(c) For each feature j ∈ {1, . . . , t(i)}:

i. example a concept assignment z
(i)
j ∼ Mult(.|θ(i));

ii. example a feature y
(i)
j ∼ Mult(.|Φ

z
(i)
j

);

Algorithm 5: The generative process for CTM given a collection

B.2 Correlated Pathway-Group Model

Correlated pathway group models are extension to CTM (Figs 6b and c): i)-
SOAP and ii)- SPREAT. Both models incorporate dual sparseness and supple-
mentary pathways in modeling group proportions. These important properties
are not adopted in CTM. Let us discuss these two models.

Analogous to CTM, given n number of examples and a matrix encoding
the missing features M, the generative process for SOAP and SPREAT can be
described as follows. First, we draw a multinomial feature distribution Φa from
asymmetric Dirichlet prior α ∈ R>0 for each concept a ∈ {1, ..., b}, where b
is assumed to be known and fixed in advance. The symmetric assumption is
appropriate, in such a scenario, because our prior knowledge, associated with
these features, is inaccessible. For each example i, a concept proportion is drawn
θ(i) = softmax(η(i)), where η(i) is a Gaussian random variable with mean and
covariance are denoted by µ and Σ, respectability.

To sample a concept, it is reasonable to expect that each example is usually
explained with a handful set of a mixed proportion of concepts. Besides, a con-
cept should cover a few focused features, instead of absorbing all features. Thus,
we borrow the idea from [21,22,30,36,43] to enforce dual sparsity to retain those
relevant focused concepts and features by: i)- introducing an auxiliary Bernoulli
variable Λ(i) of size b to determine whether a concept is selected for an example
i or ignored, and ii)- applying a cutoff threshold to retain top k � t features for
each concept. Instead of sampling each entry in Λ(i) directly from a Bernoulli
coin toss, we assume that each entry is sampled from a Beta distribution β(i),
parameterized by two hyperparameters γ ∈ R>0 and κ ∈ R>0. Applying this
dual sparsity, we aim to enhance the interpretability of the learned concepts
while reducing the negative correlation among concepts on Σ.
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Next, a concept indicator z
(i)
j ∈ {1, ..., b} is drawn according to the example-

specific mixture proportion Λ(i) � θ(i), where � represents the Hadamard prod-

uct. Now each feature y
(i)
j in example i is generated from a weighted distribution

Ω
(i)

z
(i)
j

� Φ
z
(i)
j

, as indicated by it’s concept assignment, using a smoothing prior

$ ∈ R>0. The parameter Ω(i) ∈ Rt, derived from Mi, represents a normalized
supplementary feature of size t, which is assumed to be drawn from a symmet-
ric Dirichlet prior ξ ∈ R>0. For SPREAT, this parameter encodes distribution,

where each element of Ω
(i)
j corresponds to the example’s probability of using

feature yj ∈ Mi. Here, the background feature is assumed to be drawn from
a sparse binary vector prior ι ∈ R>0 that is included for completeness because
each example’s feature Mi is already observed.

1. For each concept a ∈ {1, ..., b}:
(a) example a distribution over features Φa ∼ Dir(.|α);

2. For each example i ∈ {1, ..., n}:
(a) Draw the example concept weight η(i) ∼ N (.|µ,Σ);
(b) Draw concept proportions θ(i) = softmax(η(i));
(c) Draw beta distribution β(i) ∼ Beta(.|γ, κ);
(d) Draw a sparsity indicator vector Λ(i) ∼ Bernoulli(.|β(i));
if SPREAT:

i. example a vector Mi ∼ Prior(.|ι);
ii. example background distribution Ω(i)|Mi ∼ Dir(.|ξ);

else:
i. Draw background feature proportions Ω(i) ∼ Dir(.|ξ);

(e) For each feature j ∈ {1, . . . , t(i)}:
i. example a concept assignment z

(i)
j ∼ Mult(.|Λ(i) � θ(i));

ii. example a feature y
(i)
j ∼ Mult(.|(1−Ω(i)

z
(i)
j

)� Φ
z
(i)
j

);

Algorithm 6: The generative process for SOAP and SPREAT

Representing SOAP and SPREAT as layer-wise mixing components supports
the hierarchical modularity of metabolic pathway generation, where the compo-
nents of one level (e.g., features) permit to contribute to other structures with
different degrees of granularity. The generative process of SOAP and SPREAT
models is summarized in Algorithm 6. Note that by setting all entries in Ω, Λ,
and $ to 1, SOAP and SPREAT are reduced to CTM (“collapse2ctm” or c2m),
which is an additional benefit to the these models.

B.3 Evidence Lower Bound (ELBO) for SPREAT

Here, we discuss the inference for the SPREAT model. Similar expression is
straightforward to derive for SOAP. Given P, the goal of inference is to com-
pute the posterior distribution of the per-example concept proportions η(i), the
per-example concept selection parameters Λ(i) and the associated beta distribu-
tions β(i), the per-example background feature distributions Ω(i), the per-feature

concept assignment z
(i)
j , and the per-concept distribution over features Φa.
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Table 3: Correspondence between variational and original parameters.
Original parameter Φ µ Σ Λ Ω z

Variational parameter φ ν ζ2 λ ω ς

Looking at the topology of the Bayesian network, we can specify the complete-
data likelihood, i.e., the joint distribution of all observed and latent variables
given the hyperparameters and sparse supplementary feature matrix following
the model’s independence assumptions:

p(z, y, η, Φ, Λ, β,Ω|M, γ, κ, α, ι, ξ, β) =

[
b∏

a=1

p(Φa|α)

][
n∏
i=1

p(η|µ,Σ)p(Λ(i)|βi)p(βi|γ, κ)

× p(Ω(i)|M(i), ξ)

[ ti∏
j=1

p(y
(i)
j |z

(i)
j , Ω

(i)
j , Λ(i), Φ,$)

× p(z(i)j |η)

]]
(B.1)

By denoting all parameters as Θ and variables as V while omitting hyper-
parameters, we obtain the following posterior expression:

p(Θ,V|Y,M) =
p(Y,M, Θ,V)

p(Y,M)
(B.2)

Unfortunately, the exact posterior distribution of the latent variables is com-
putationally intractable. The numerator is easy to compute for any configuration
of the hidden variables and parameters. The problem is the denominator, which
is the marginal probability of the data:

p(Y,M) =

∫
Θ

∫
V

p(Y,M, Θ,V) (B.3)

Computing the marginal requires a complicated integral over n examples of
|Θ| parameters and another integral over the |V|n configurations multiplied by
the size of each variable in V. As such, we appeal to the variational inference
algorithm [25]. The main intuition behind variational methods is to first posit a
family of distributions over the hidden parameters and variables that are indexed
by a set of free parameters, and then fitting the parameters to find the member
of the family that is closest to the true posterior of interest in Eq. B.2. The close-
ness is commonly measured using Kullback–Leibler (KL) divergence [35]. The
resulting variational distribution is simpler than the true posterior so that the
solution can be approximated. However, directly minimizing the KL divergence
is infeasible due to the same reason that the posterior is difficult to compute, but,
we can optimize an objective function that is equal to the negative KL divergence
up to a constant. This is known as the evidence lower bound (ELBO), a lower
bound on the logarithm of the marginal probability in Eq. B.3, i.e., log p(Y,M).
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This ELBO can be defined using Jensen’s inequality on a variational distribution
over the hidden variables q(Θ,V) as:

log p(Y,M) = log

∫
Θ

∫
V

p(Y,M, Θ,V)

= log

∫
Θ

∫
V

p(Y,M, Θ, V )
q(Θ,V)

q(Θ,V)

= log(Eq[
p(Y,M, Θ,V)

q(Θ,V)
])

≥ Eq[log p(Y,M, Θ,V)] + H(q)

4
= L(q)

(B.4)

The ELBO contains two terms. The first term, Eq[log p(Y,M, Θ,V)], cap-
tures how well q(Θ,V) describes a distribution of the model. The second term
is the entropy of the variational distribution, Eq[− log q(Θ,V)], which protects
the variational distribution from “overfitting” [24]. Both of these terms depend
on q(Θ,V), the variational distribution of the hidden variables.

The simplest variational family of distributions is the mean-field family where
each hidden variable/parameter is fully-factorized and governed by its own pa-
rameter. This allows us to tractably optimize the parameters to find a local
minimum of the KL divergence. For SPREAT, the mean-field variational distri-
bution is expressed as:

q(η, Λ, z, d, β, Φ,Ω) =

b∏
a=1

q(Φa|φa)

[
n∏
i=1

q(η(i)|ν, ζ2)q(Λ(i)|λ(i))q(Ω(i)|ω(i))

j=ti∏
j=1

q(z
(i)
j |ς

(i)
j )

] (B.5)

where φ, ν, ζ2, λ, ω and ς are variational free parameters. Table 3 shows the
correspondence between variational and the original parameters.

Taking together, the first term in Eq. B.4, Eq[log p(Y,M, Θ, V )], can be
decomposed into:

Eq[log p(Y,M, Θ, V )] =

a=b∑
a=1

Eq[log p(Φa|α)] +

i=n∑
i=1

(
Eq[log p(η|µ,Σ)]

+ Eq[log p(Λ(i)|βi)] + Eq[log p(βi|γ, κ)]

+ Eq[log p(Ω(i)|M(i), ξ)]

+

j=ti∑
j=1

(
Eq[log p(y

(i)
j |z

(i)
j , Ω

(i)
j , Λ(i), Φ,$)] + Eq[p(z(i)j |η)]

))
(B.6)
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The second term H(q) in Eq. B.4 can be expressed as:

H(q) =−
a=b∑
a=1

Eq[log q(Φa|φa)]−
i=n∑
i=1

(
Eq[log q(η(i)|ν, ζ2)] + Eq[log q(Λ(i)|λ(i))]

+ Eq[log q(Ω(i)|ω(i))] +

j=ti∑
j=1

Eq[log q(z
(i)
j |ς

(i)
j )]

) (B.7)

Variational Lower Bound. Given Eq. B.6, we derive expressions for each
term:

1. For the concept distribution over features, which are Dirichlet-distributed,

Eq[log p(Φa|α)] = Eq[log Dir(Φa|α)]

= Eq
[

log

(
Γ (
∑j=t
j=1 αj)∏j=t

j=1 Γ (αj)

j=t∏
j=1

Φ
αj−1

a,j

)]

= Eq
[

log

(
Γ (
∑j=t
j=1 αj)∏j=t

j=1 Γ (αj)

)
+

j=t∑
j=1

logΦ
αj−1

a,j

]

= logΓ
( j=t∑
j=1

αj
)
−

j=t∑
j=1

logΓ (αj) +

j=t∑
j=1

(αj − 1)Eq[logΦa,j ]

(B.8)

2. For the concepts probabilities for each example, which are Gaussian dis-
tributed,

Eq[log p(η|µ,Σ)] = Eq
[

log
(
N (η|µ,Σ)

)]
= Eq

[(1

2
log |Σ−1| − b

2
log 2π − 1

2
(η − µ)>Σ−1(η − µ)

)]
=

1

2
log |Σ−1| − b

2
log 2π

− 1

2

(
tr(diag(ζ2)Σ−1) + (ν − µ)>Σ−1(ν − µ)

)
(B.9)

3. For the focused concept distributions for each example, which are Bernoulli
distributed,

Eq[log p(Λ(i)|β(i))] = Eq
[

log Bernoulli(Λ(i)|β(i))
]

= Eq
[

log

( a=b∏
a=1

β(i),Λ
(i)
a

a (1− βa)(i),1−Λ
(i)
a

)]

=

a=b∑
a=1

(
λ(i)
a log β(i)

a + (1− λ(i)
a ) log(1− β(i)

a )
) (B.10)

4. For selecting a set of focused concepts for each example, which are beta
distributed,

Eq[log p(β(i)|γ, κ))] = Eq
[

log Beta(β(i)|γ, κ)
]

=

a=b∑
a=1

(
(γ − 1) log(β(i)

a ) + (κ− 1) log(1− β(i)
a )− log(B(γ, κ)

)
(B.11)
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5. For the hypothetical feature distributions for each example, which are Dirich-
let distributed,

Eq[log p(Ωi|M(i), ξ)] = Eq
[

log

(
Γ (
∑j=t
j=1 ξj + M

(i)
j )∏j=t

j=1 Γ (ξj + M
(i)
j )

j=t∏
j=1

Ω
(i),ξj+M

(i)
j −1

j

)]

= logΓ
( j=t∑
j=1

ξj + M
(i)
j

)
−

j=t∑
j=1

logΓ (ξj + M
(i)
j )

+

j=t∑
j=1

(ξj + M
(i)
j − 1)Eq[logΩ

(i)
j ]

(B.12)

6. For the feature assignments from both concept-feature and hypothetical fea-
ture distributions,

Eq[log p(y
(i)
j |z

(i)
j , Ω

(i)
j , Λ(i), Φ,$)] = Eq

[
log

( c=t∏
c=1

a=b∏
a=1

$Φ
I(a=z(i)a,j∧Λ

(i)
a ,c=y

(i)
j ),(1−Ω(i)

c )

a,c

)]

= log$ +

c=t∑
c=1

a=b∑
a=1

(
y
(i)
j,cς

(i)
a,jλ

(i)
a Eq[(1−Ω(i)

c )]Eq[logΦa,j ]

)
(B.13)

7. For the concept assignments over features, the expectation of the log prob-
ability of the latent concepts is given by:

Eq[log p(z
(i)
j |η)] = Eq

[
log

(
exp(η>(diag(z

(i)
j ))∑k=b

k=1 exp(ηk)

)]

= Eq
[
η>(diag(z

(i)
j ))

]
− Eq

[
log
( k=b∑
k=1

exp(ηk)
)]

=

a=b∑
a=1

νaς
(i)
a,j − Eq

[
log
( k=b∑
k=1

exp(ηk)
)]

(B.14)

The second term is hard to compute, hence, we use the solution suggested by

[23] in order to obtain the tightest lower bound on−Eq
[

log
(∑k=b

k=1 exp(ηk)
)]

using a first-order Taylor expansion. Because the function − log is convex,
a first-order Taylor expansion about the point %, a variational parameter,
produces the following inequality:

−Eq
[

log

( k=b∑
k=1

exp(ηk)

)]
≥ − log %−

(∑k=b
k=1 Eq[exp(ηk)]

)
− %

%

= 1− log %−
( k=b∑
k=1

Eq[exp(ηk)]

)
%−1

(B.15)

Plugging back the results into Eq. B.14, we obtain:

Eq[log p(z
(i)
j |η)] ≈ 1− log %+

a=b∑
a=1

νaς
(i)
a,j −

( k=b∑
k=1

Eq[exp(ηk)]
)
%−1 (B.16)
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Now, for the entropy H(q) in Eq. B.7, we decompose their expectations as:

1. For the concept-feature distributions, which are Dirichlet distributed,

Eq[log q(Φa|φa)] = Eq[log Dir(Φa|φa)]

= Eq
[

log

(
Γ (
∑j=t
j=1 φa,j)∏j=t

j=1 Γ (φa,j)

j=t∏
j=1

Φ
φa,j−1

a,j

)]

= logΓ
( j=t∑
j=1

φa,j
)
−

j=t∑
j=1

logΓ (φa,j) +

j=t∑
j=1

(φa,j − 1)Eq[logΦa,j ]

(B.17)

2. For the concept distributions, which are Gaussian distributed,

Eq[log q(η(i)|ν, ζ2)] =Eq
[

log

a=b∏
a=1

N (η(i)a |νa, ζ2a)

]

=−
a=b∑
a=1

1

2

(
log ζ2a + log(2π) + 1

) (B.18)

3. For the concept choice parameter, which are Bernoulli distributed,

Eq[log q(Λ(i)|λ(i))] = Eq[log

a=b∏
a=1

Bernoulli(Λ(i)
a |λ(i)

a )]

=

a=b∑
a=1

(
λ(i)
a log λ(i)

a + (1− λ(i)
a ) log(1− λ(i)

a )

) (B.19)

4. For the supplementary feature distributions over examples, which are Dirich-
let distributed,

Eq[log q(Ω(i)|ω(i))] = Eq[log Dir(Ω(i)|ω(i))]

= Eq
[

log

(
Γ (
∑j=t
j=1 ω

(i)
j )∏j=t

j=1 Γ (ω
(i)
j )

j=t∏
j=1

Ω
(i),ω

(i)
j −1

j

)]

= logΓ
( j=t∑
j=1

ω
(i)
j

)
−

j=t∑
j=1

logΓ (ω
(i)
j ) +

j=t∑
j=1

(ω
(i)
j − 1)Eq[logΩ

(i)
j ]

(B.20)

5. For the feature assignments over examples, which are multinomially dis-
tributed,

Eq[log q(z
(i)
j |ς

(i)
j )] = Eq

[
log

a=b∏
a=1

(ς
(i)
a,j)

z
(i)
a,j

]
=

a=b∑
a=1

ς
(i)
a,j log ς

(i)
a,j (B.21)

where the exceptions of all the above equations can be derived using:
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Eq[logΦa,j ] =
(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
)

Eq[logΩ
(i)
j ] =

(
Ψ(ω

(i)
j )− Ψ(

k=t∑
k=1

ω
(i)
k )
)

Eq[(1−Ω(i)
c )] =

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

Eq[exp(ηk)] = exp(νa +
1

2
ζ2a)

B(γ, κ) =
Γ (γ)Γ (κ)

Γ (γ + κ)

Not that Γ denotes the Gamma function while Ψ is the logarithmic derivative
of the Gamma function.

Merging All the Expectations of the ELBO Terms Now, by joining all
the terms, the full ELBO can be defined as:

L(q) = L1(q) + L2(q) (B.22)

where,

L1(q) =

a=b∑
a=1

(
logΓ

( j=t∑
j=1

αj
)
−

j=t∑
j=1

logΓ (αj) +

j=t∑
j=1

(αj − 1)
(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
))

+

i=n∑
i=1

(
1

2
log |Σ−1| − b

2
log 2π − 1

2

(
tr(diag(ζ2)Σ−1) + (ν − µ)>Σ−1(ν − µ)

))

+

i=n∑
i=1

a=b∑
a=1

(
λ(i)
a log(β(i)

a ) + (1− λ(i)
a ) log(1− β(i)

a )

)

+

i=n∑
i=1

a=b∑
a=1

(
(γ − 1) log(β(i)

a ) + (κ− 1) log(1− β(i)
a )− log(B(γ, κ)

)

+

i=n∑
i=1

(
logΓ

( j=t∑
j=1

ξj + M
(i)
j

)
−

j=t∑
j=1

logΓ (ξj + M
(i)
j ) +

j=t∑
j=1

(ξj + M
(i)
j − 1)

(
Ψ(ω

(i)
j )− Ψ(

k=t∑
k=1

ω
(i)
k )
))

+

i=n∑
i=1

j=ti∑
j=1

(
log$ +

c=t∑
c=1

a=b∑
a=1

(
y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
)))

+

i=n∑
i=1

j=ti∑
j=1

(
1− log %+

a=b∑
a=1

νaς
(i)
a,j −

( k=b∑
k=1

exp(νk +
1

2
ζ2k)
)
%−1

)
(B.23)
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L2(q) =−
a=b∑
a=1

(
logΓ

( j=t∑
j=1

φa,j
)
−

j=t∑
j=1

logΓ (φa,j) +

j=t∑
j=1

(φa,j − 1)
(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
))

+

i=n∑
i=1

a=b∑
a=1

(
1

2

(
log ζ2a + log(2π) + 1

))

−
i=n∑
i=1

a=b∑
a=1

(
λ(i)
a log λ(i)

a + (1− λ(i)
a ) log(1− λ(i)

a )

)

−
i=n∑
i=1

(
logΓ

( j=t∑
j=1

ω
(i)
j

)
−

j=t∑
j=1

logΓ (ω
(i)
j ) +

j=t∑
j=1

(ω
(i)
j − 1)

(
Ψ(ω

(i)
j )− Ψ(

k=t∑
k=1

ω
(i)
k )
))

−
i=n∑
i=1

j=ti∑
j=1

a=b∑
a=1

ς
(i)
a,j log ς

(i)
a,j

(B.24)

B.4 Optimizing the ELBO Terms

In this section, we maximize the bound in Eq. B.22 with respect to each vari-
ational parameters using coordinate ascent updates. Using this approach, each
variational parameter is optimized individually while holding the remaining vari-
ables fixed. Practically, a more convenient way is to apply the mini-batch gra-
dient approach that alternates between subsampling a batch of examples and
updating each variational parameter, after being scaled by a learning rate [31].
This structure of learning assists us to approximate the posterior with massive
examples, making the complete problem computationally scalable.

1. Optimizing w.r.t. ς. Gathering only the terms in the bound that contain
ς, we obtain:

L(q)[ς] =

i=n∑
i=1

j=ti∑
j=1

c=t∑
c=1

a=b∑
a=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
)

+

i=n∑
i=1

j=ti∑
j=1

a=b∑
a=1

νaς
(i)
a,j −

i=n∑
i=1

j=ti∑
j=1

a=b∑
a=1

ς
(i)
a,j log ς

(i)
a,j

(B.25)

Taking derivatives w.r.t. ς
(i)
a,j , we obtain:

∂L(q)[ς]

∂ς
(i)
a,j

=

c=t∑
c=1

y
(i)
j,cλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
)

+ νa − log ς
(i)
a,j − 1

(B.26)

The analytical expression of the variational concept assignment q(ς) for each
feature yj and concept a is not amenable due to the non-conjugacy of logistic-
normal with latent variables. Instead, we approximate the solution according
to:
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ς
(i)
a,j ∝ exp

(
c=t∑
c=1

y
(i)
j,cλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
)

+ νa − 1

)
(B.27)

where Ψ(.) is the digamma function. Observe how the variational parameter

ω
(i)
∗ serves as the smoothing term in selecting concepts for each feature,

either from Mi or from P, when ω
(i)
c > 0. However, if ω

(i)
c = 0, then ς

(i)
a,j is

updated based on φa,j .
2. Optimizing w.r.t. ν. Collecting only the terms in the bound that contain
ν gives,

L(q)[ν] =

i=n∑
i=1

(
− 1

2
(ν − µ)>Σ−1(ν − µ) +

j=ti∑
j=1

a=b∑
a=1

νaς
(i)
a,j

−
j=ti∑
j=1

( k=b∑
k=1

exp(νk +
1

2
ζ2k)
)
%−1

) (B.28)

Taking derivatives w.r.t. νa for each concept a, we obtain:

∂L(q)[ν]
∂νa

=−Σ−1(ν − µ) +

j=ti∑
j=1

ς
(i)
a,j −

(
exp(νa +

1

2
ζ2a)
)
ti%
−1

(B.29)

where % is another variational parameter, as in CTM [23]. However, the
above equation in hard to optimize, instead, we use a conjugate gradient
algorithm.

3. Optimizing w.r.t. ζ2. By symmetry, we gather all the terms that has ζ2

from Eq. B.22:

L(q)[ζ2] =− 1

2

i=n∑
i=1

tr
(

diag(ζ2)Σ−1
)
−
i=n∑
i=1

j=ti∑
j=1

( k=b∑
k=1

exp
(
νk +

1

2
ζ2k

))
%−1

+
1

2

i=n∑
i=1

a=b∑
a=1

log ζ2a

(B.30)

Taking derivatives w.r.t. ζ2a for each concept a, we obtain:

∂L(q)[ζ2]
∂ζ2a

=− 1

2

(
Σ−1
a,a + ti%

−1 exp
(
νa +

1

2
ζ2a

)
− 1

ζ2a

)
(B.31)

Again, there is no analytical solution to the above formula. Instead, we use
the Newton’s method for each coordinate such that ζa ∈ R>0.

4. Optimizing w.r.t. %. Extracting the terms involving % in the bound gives,

L(q)[%] =−
i=n∑
i=1

j=ti∑
j=1

log %−
i=n∑
i=1

j=ti∑
j=1

( k=b∑
k=1

exp(νk +
1

2
ζ2k)
)
%−1

(B.32)
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Taking derivatives w.r.t. %, we obtain:

∂L(q)[%]
∂%

= −tin%−1 + tin
( k=b∑
k=1

exp(νk +
1

2
ζ2k)
)
%−2 (B.33)

Equating the above formula to zero to obtain a maximum, we get:

% =

k=b∑
k=1

exp(νk +
1

2
ζ2k) (B.34)

5. Optimizing w.r.t. ω. Isolating only the terms in the bound that contain
variational background feature distributions q(ω), we obtain:

L(q)[ω] =

i=n∑
i=1

j=t∑
j=1

Ψ(ω
(i)
j )(ξj + M

(i)
j − ω

(i)
j )−

i=n∑
i=1

j=t∑
j=1

Ψ(

k=t∑
k=1

ω
(i)
k )(ξj + M

(i)
j − ω

(i)
j )

+

i=n∑
i=1

j=ti∑
j=1

c=t∑
c=1

a=b∑
a=1

(
y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
))

+

i=n∑
i=1

j=t∑
j=1

logΓ (ω
(i)
j )−

i=n∑
i=1

logΓ
( j=t∑
j=1

ω
(i)
j

)
(B.35)

Taking derivatives w.r.t. ω
(i)
c gives

∂L(q)[ω]

∂ω
(i)
c

=
(
Ψ ′(ω(i)

c )− Ψ ′(
k=t∑
k=1

ω
(i)
k )
)

(ξc + M(i)
c − ω(i)

c )

−
(

1− ω(i)
c −

∑k=t
k=1(1− ω(i)

k )

(
∑k=t
k=1(1− ω(i)

k ))2

) j=ti∑
j=1

a=b∑
a=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
)

(B.36)

Setting it’s derivatives to zero does not lead to a closed-form solution, in-

stead, we approximate ω
(i)
c for each example i according to:

ω(i)
c ∝ξc + M(i)

c −
(

1− ω(i)
c −

∑k=t
k=1(1− ω(i)

k )

(
∑k=t
k=1(1− ω(i)

k ))2

) j=ti∑
j=1

a=b∑
a=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

×
(
Ψ(φa,j)− Ψ(

k=t∑
k=1

φa,k)
) (B.37)

6. Optimizing w.r.t. λ. Collecting the terms that contain λ, we obtain:

L(q)[λ] =

i=n∑
i=1

a=b∑
a=1

λ(i)
a (log(β(i)

a )− log λ(i)
a )

+

i=n∑
i=1

a=b∑
a=1

(1− λ(i)
a )
(

log(1− β(i)
a )− log(1− λ(i)

a )
) (B.38)
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Taking derivatives w.r.t. λ
(i)
a , we obtain:

∂L(q)[λ]

∂λ
(i)
a

= log(1− λ(i)
a )− log λ(i)

a + log(β(i)
a )− log(1− β(i)

a ) (B.39)

Equating the above formula to zero to obtain a maximum, we get the canon-
ical parameterisation of the Bernoulli distribution:

θ = log

(
λ
(i)
a

1− λ(i)
a

)
= log(β(i)

a )− log(1− β(i)
a ) (B.40)

Therefore, we get the following updates:

λ(i)
a =

1

1 + exp−θ
(B.41)

7. Optimizing w.r.t. φ. Finally, the optimal solution of the variational con-
cept feature distribution q(Φa|φa) for each concept a is obtained by isolating
terms involved in the bound Eq. B.4:

L(q)[φ] =

a=b∑
a=1

c=t∑
c=1

Ψ(φa,c)

(
αc − φa,c +

i=n∑
i=1

j=ti∑
j=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

)

−
a=b∑
a=1

c=t∑
j=1

Ψ(

k=t∑
k=1

φa,k)

(
αc − φa,c +

i=n∑
i=1

j=ti∑
j=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

)

−
a=b∑
a=1

logΓ
( j=t∑
j=1

φa,j
)

+

a=b∑
a=1

j=t∑
j=1

logΓ (φa,j)

(B.42)

After taking derivatives w.r.t. φa,c, we obtain:

∂L(q)[φ]
∂φa,c

=Ψ ′(φa,c)

(
αc − φa,c +

i=n∑
i=1

j=ti∑
j=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

)

− Ψ ′(
k=t∑
k=1

φa,k)

(
αc − φa,c +

i=n∑
i=1

j=ti∑
j=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

)
(B.43)

Equating the above formula to zero to obtain a maximum, we get:

φa,c =αc +

i=n∑
i=1

j=ti∑
j=1

y
(i)
j,cς

(i)
a,jλ

(i)
a

1− ω(i)
c∑k=t

k=1(1− ω(i)
k )

(B.44)

The variational inference algorithm samples a mini-batch from a collection,
and use it to compute the local latent parameters in Eqs B.27, B.29, B.31, B.34,
B.37, and B.41 until the evidence lower bound in Eq. B.4 converges. Then, the
global variational parameter φ is updated using the posteriors (β, Λ, η, z, Ω)
collected from the previous step in Eq. B.44, after being scaled according to
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the learning rate τ = (s + l)−g, where s is the current step, l ≥ 0 is the delay
factor, and g ∈ (0.5, 1] is the forgetting rate. The variational inference process
for SPREAT is summerized in Algorithm 7.

1 Initialize φ, ν, ζ2, λ, ω, ς, γ, κ, ξ, α, $, ι, s = 0, l ≥ 0, g ∈ (0.5, 1]

2 repeat
3 s = s+ 1;
4 example a minibatch randomly B ⊂ P;
5 for i ∈ B do
6 repeat
7 Update ς(i) with Eq. B.27;

8 Update ν(i) with Eq. B.29 using conjugate gradient algorithm;

9 Update ζ2,(i) with Eq. B.31 using Newton’s method;

10 Update %(i) with Eq. B.34;

11 Update ω(i) with Eq. B.37;

12 Update λ(i) with Eq. B.41;

13 until local variational parameters converge;

14 Compute optimal values µ = ν
|B| , Σ = diag( ζ

2

|B| ) + µµ>;

15 Compute global optimal values φ with Eq. B.44;
16 Update the current estimate of the global variational paramters,

x = (1− τ)x+ τx, where x ∈ {φ, µ,Σ};
17 Update the learning rate τ = (s+ l)−g;

18 until global convergence criterion is satisfied ;

Algorithm 7: Stochastic variational inference for SPREAT

B.5 Posterior Predictive Distribution for SPREAT

The posterior predictive distribution is a useful and practical method to evaluate
model’s fitness and to compare models without requiring to compute bounds of
those models. This metric estimates the distribution of an unobserved value (ỹ)
given the observed values (Yobs) and parameters (Θ and V) that are trained on
a held-out training set [31]. The predictive distribution for SPREAT is:

p(ỹ|Yobs, M̃,Mobs) =

∫
p(ỹ|Θ, M̃)p(Θ|Yobs,Mobs)dΘ

≈
a=b∑
a=1

(
η(i)a ×

j=t∑
j=1

(
Φa,j × ỹ

(i)
j

))
q(Θ,V)

(B.45)

where q(Θ,V) corresponds to Eq. B.5 and trained on Yobs and Mobs.

C Experimental Setup

In this section, we describe the experimental settings and outline the materials
used to evaluate the performance of reMap. The reMap and correlated models
were written in Python v3 and depend on third party libraries (e.g. Numpy [49]).
Unless otherwise specified all tests were conducted on a Linux server using 10
cores of Intel Xeon CPU E5-2650.
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Fig. 7: Pathway frequency (averaged on all examples) in BioCyc (v20.5 T2 &3)
and CAMI data, and their background pathways, indicated by M.

C.1 Description of Datasets

We used 11 simulated, organismal, and multi-organismal datasets to evaluate
reMap’s grouping performance: i)- BioCyc v20.5 T2 & 3 [1], ii)- 6 T1 golden data
that are composed of six databases (EcoCyc (v21), HumanCyc (v19.5), AraCyc
(v18.5), YeastCyc (v19.5), LeishCyc (v19.5), and TrypanoCyc (v18.5)), iii)- Sym-
biont genomes describing distributed metabolic pathways between Moranella
(GenBank NC-015735) and Tremblaya (GenBank NC-015736) [15], iv)- Criti-
cal Assessment of Metagenome Interpretation (CAMI) initiative low complexity
dataset [16], consisting of 40 genomes and is obtained from edwards.sdsu.edu/research/cami-
challenge-datasets/; v)- whole genome shotgun sequences from HOTS at 25m,
75m, 110m (sunlit) and 500m (dark) ocean depth intervals [17], and vi)- Synset-
2, a noisy corrupted training set [11]. The detailed characteristics of the datasets
are summarized in Table 4. For each dataset S, we use |S| and L(S) to represent
the number of instances and pathway labels, respectively. In addition, we also
present some characteristics of the multi-label datasets, which are denoted as:
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Table 4: Characteristics of the experimental datasets. The notations |S|, L(S),
LCard(S), LDen(S), DL(S), and PDL(S) represent number of instances, number
of pathway labels, pathway labels cardinality, pathway labels density, distinct
pathway labels, and proportion of distinct pathway labels for S, respectively.
The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar
meanings as before but for the enzymatic reactions E in S. PLR(S) represents
a ratio of L(S) to R(S). The last column denotes the domain of S.
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1. Label cardinality (LCard(S) = 1
n

∑i=n
i=1

∑j=t
j=1 I[Yi,j 6= −1]), where I is an

indicator function. It denotes the average number of pathways in S.

2. Label density (LDen(S) = LCard(S)
L(S) ). This is simply obtained through nor-

malizing LCard(S) by the number of total pathways in S.
3. Distinct pathway labels (DL(S)). This notation indicates the number of dis-

tinct pathways in S.

4. Proportion of distinct pathway labels (PDL(S) = DL(S)
|S| ). It represents the

normalized version of DL(S), and is obtained by dividing DL(.) with the
number of instances in S.

The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar
meanings as before but for the enzymatic reactions E in S. Finally, PLR(S)
represents a ratio of L(S) to R(S). The preprocessed experimental datasets can
be obtained from https://zenodo.org/record/3971534#.YX9dpWDMK3A.

C.2 Parameter Settings

We applied the following default configurations:
1. reMap’s parameters. The parameters for the reMap model are configured
as: the learning rate is η = 0.0001, the batch size is 30, the number of epochs is
τ = 10, the group centroid hyperparameter is α = 16, the cutoff threshold for
cosine similarity is v = 0.2, the cutoff decision threshold for groups is β = 0.3,
the number of groups is b = 200, and the subsampled group size is γ = 50. For
regularized hyperparameters λ1:5 and κ, we performed 10-fold cross-validation
on a sample of BioCyc data (v20.5 T2 &3) and found the settings λ1:5 = 0.01
and κ = 0.01 to be the optimum.
2. Correlated models parameters. The parameters for the three correlated
models are configured as: the pathway distribution over concepts Φ are initialized
using gamma distribution (with shape and scale parameters are fixed to 100 and
1/100, respectively), the forgetting rate is g = 0.9, the delay rate is l = 1,
the batch size is 100, the number of epochs is 3, the number of concepts is
b = 200, top k pathways is 100 (only for SOAP and SPREAT), the Dirichlet
hyperparameters α and ξ are 0.0001, and the beta hyperparameters γ and κ
are 2 and 3, respectively. The supplementary pathways M for BioCyc, CAMI,
and golden T1 datasets are obtained using mlLGPR [11] trained on Synset-2.
A schematic view of pathway frequency across datasets for BioCyc T2 & 3 and
CAMI, along with their augmented pathways is depicted in Fig. 7.
3. pathway2vec’s parameters. The parameters for the pathway2vec frame-
work [10] are configured as: “crt” as the embedding method, the number of
memorized domain is 3, the explore and the in-out hyperparameters are 0.55
and 0.84, respectively, the number of sampled path-instances is 100, the walk
length is 100, the embedding dimension size is m = 128, the neighborhood size
is 5, the size of negative examples is 5, and the used configuration of MetaCyc
is “uec”, indicating trimmed links among ECs.

Both reMap and correlated models are trained using BioCyc (v20.5 T2 &3)
collection. After obtaining groups Sgroup, we train leADS [14] using built-in
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Fig. 8: Log predictive distribution on CAMI data.

“factorization” option that enables training pathway groups and pathways, si-
multaneously, for 10 epochs using “nPSP” as the acquisition function and “pref-
voting” as the prediction strategy with cutoff threshold 0.5. For all the remaining
hyperparameters in pathway2vec, correlated models, leADS, and mlLGPR [11],
they are fixed to their default values.

D Experimental Results

Two tests were performed to benchmark the performance of reMap including
parameter sensitivity for correlated models and metabolic pathway prediction.

D.1 Sensitivity Analysis of Correlated Models

A fundamental challenge for the reMap pipeline is to acquire a good distribu-
tion of groups and pathways from correlated models for the purpose of relabeling.
Following the common practice, here we examined various hyperparameters as-
sociated with correlated models. First, we compared the sensitivity of SOAP
and SPREAT against CTM by incorporating the background pathways M while
varying the number of groups according to b ∈ {50, 100, 150, 200, 300}. Next,
we examined the “c2m” option for SOAP and SPREAT to show that these two
models exhibit similar performances as CTM. Finally, we conducted sparsity
analysis of group distribution by varying the cutoff threshold value according to
k ∈ {50, 100, 150, 200, 300, 500}. For the comparative analysis, we applied CAMI
as a test data to report the log predictive distribution (Section B.5), where a
lower score entails higher generalization capability for the associated models.

While the log predictive scores for SOAP and SPREAT in Fig. 8a appears
to be flat across group size, the CTM model projects a more realistic view
where it’s performances are seen to be gaining by including more groups. For the
former models, this phenomena is expected due to the effects of supplementary
pathways. That is, both models are encouraged to learn more pathways from
M because the average pathway size for an example in M is ≈ 500 whereas
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Table 5: 22 amino acid biosynthesis pathways and 28 pathway variants.
Amino Acid MetaCyc Pathway ID MetaCyc Pathway Name

Glycine GLYSYN-PWY glycine biosynthesis I

Alanine
ALANINE-VALINESYN-PWY L-alanine biosynthesis I
ALANINE-SYN2-PWY L-alanine biosynthesis II
PWY0-1021 L-alanine biosynthesis III

Arginine ARGSYN-PWY L-arginine biosynthesis I (via L-ornithine)

Asparagine
ASPARAGINE-BIOSYNTHESIS L-asparagine biosynthesis I
ASPARAGINESYN-PWY L-asparagine biosynthesis II

Aspartate ASPARTATESYN-PWY L-aspartate biosynthesis

Chorismate
PWY-6163 chorismate biosynthesis from 3-dehydroquinate
ARO-PWY chorismate biosynthesis I

Cysteine
CYSTSYN-PWY L-cysteine biosynthesis I
PWY-7870 L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)

Glutamate
GLUTSYN-PWY L-glutamate biosynthesis I
GLUTSYNIII-PWY L-glutamate biosynthesis III

Glutamine GLNSYN-PWY L-glutamine biosynthesis I

Histidine HISTSYN-PWY L-histidine biosynthesis

Isoleucine ILEUSYN-PWY L-isoleucine biosynthesis I (from threonine)

Leucine LEUSYN-PWY L-leucine biosynthesis

Lysine DAPLYSINESYN-PWY L-lysine biosynthesis I

Methionine HOMOSER-METSYN-PWY L-methionine biosynthesis I

Phenylalanine PHESYN L-phenylalanine biosynthesis I

Proline PROSYN-PWY L-proline biosynthesis I

Selenocysteine PWY0-901 L-selenocysteine biosynthesis I (bacteria)

Serine SERSYN-PWY L-serine biosynthesis

Threonine HOMOSER-THRESYN-PWY L-threonine biosynthesis

Tryptophan TRPSYN-PWY L-tryptophan biosynthesis

Tyrosine TYRSYN L-tyrosine biosynthesis I

Valine VALSYN-PWY L-valine biosynthesis

in BioCyc v20.5 T2 & 3 is ≈ 195. By excluding M (“c2m”), we observe that
the log predictive distribution of SOAP and SPREAT are similar with that of
CTM, as shown in Fig. 8b, which supports our previous discussion. From Figs
8a and 8b, it is evident that b = 200 represents the optimum group size with
the average number of distinct pathways is ≈ 15. By fixing b = 200, we search
for an optimum k value. As illustrated in Fig. 8c, both SOAP and SPREAT
deteriorate their performances (< −0.6) when k > 100. Taken together, we
suggest the settings b ∈ Z[150,300] and k ∈ Z[50,100] to recover good pathway
group and pathway distributions.

D.2 Accumulated History Probability Analysis

Table 5 shows 22 amino acid biosynthesis pathways with their 28 variants. Ta-
ble 6 represents the selected 7 pathway groups that contain these amino acid
pathways in their top 5 pathways for Escherichia coli K-12 MG1655 organism.

D.3 Metabolic Pathway Prediction

Here, groups obtained from all correlated modules are used for the pathway
prediction task. For this, we trained leADS using the configuration discussed
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Table 6: 7 pathway groups containing 22 amino acids and their top 5 pathways
for Escherichia coli K-12 MG1655.

Group Index MetaCyc Pathway ID MetaCyc Pathway Name

13

GLUTSYNIII-PWY L-glutamate biosynthesis III
PWY-5484 glycolysis II (from fructose 6-phosphate)
PWY-7187 pyrimidine deoxyribonucleotides ¡i¿de novo¡/i¿ biosynthesis II
PWY-7197 pyrimidine deoxyribonucleotide phosphorylation
PWY-7181 pyrimidine deoxyribonucleosides degradation

16

PROSYN-PWY L-proline biosynthesis I
ALANINE-SYN2-PWY L-alanine biosynthesis II
PWY0-1021 L-alanine biosynthesis III
PWY0-1319 CDP-diacylglycerol biosynthesis II
PWY-5667 CDP-diacylglycerol biosynthesis I

22

PWY0-541 cyclopropane fatty acid (CFA) biosynthesis
PWY-7206 pyrimidine deoxyribonucleotides dephosphorylation
HOMOSER-THRESYN-PWY L-threonine biosynthesis
PWY0-1585 formate to nitrite electron transfer
PWY0-1352 nitrate reduction VIII (dissimilatory)

24

SERSYN-PWY L-serine biosynthesis
XYLCAT-PWY xylose degradation I
LYXMET-PWY L-lyxose degradation
PWY0-901 L-selenocysteine biosynthesis I (bacteria)
PWY-4121 glutathionylspermidine biosynthesis

127

CYSTSYN-PWY L-cysteine biosynthesis I
PYRIDNUCSAL-PWY NAD salvage pathway I
GALACTCAT-PWY D-galactonate degradation
TRYPDEG-PWY L-tryptophan degradation II (via pyruvate)
GALACTARDEG-PWY D-galactarate degradation I

140

PWY0-541 cyclopropane fatty acid (CFA) biosynthesis
GLUTSYNIII-PWY L-glutamate biosynthesis III
LEUSYN-PWY L-leucine biosynthesis
TYRSYN L-tyrosine biosynthesis I
PWY0-1280 ethylene glycol degradation

152

PLPSAL-PWY pyridoxal 5’-phosphate salvage I
COBALSYN-PWY adenosylcobalamin salvage from cobinamide I
ALANINE-SYN2-PWY L-alanine biosynthesis II
PWY0-521 fructoselysine and psicoselysine degradation
GLUTSYN-PWY L-glutamate biosynthesis I

in Section C.2. The results are reported on golden T1 and CAMI data using
four evaluation metrics: Hamming loss, average precision, average recall, and
average F1 score. We also studied reMap’s performance on Symbiont and HOTS
data. For comparative analysis, four pathway prediction algorithms are used:
i)- MinPath v1.2 [20], ii)- PathoLogic v21 [7], iii)- mlLGPR (elastic net with
enzymatic reaction and pathway evidence features) [11], and iv)- triUMPF [13].

Table 7 shows that reMap+SOAP outperforms triUMPF on five T1 golden
data (excluding LeishCyc) with regard to average recall and average F1 scores
where numbers in boldface represent the best performance score in each col-
umn while the underlined text indicates the best performance among correlated
models. For the remaining correlated models, their sensitivity scores are higher
than triUMPF with the exception to EcoCyc and AraCyc. Similar results are
observed for Symbiont, CAMI, and HOTS (Figs 10, 11, 12, and 13) data. In
summary, this experiment demonstrates that pathway group based approach, in
particular reMap+SOAP, improves pathway predictions.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2020.08.21.260109doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.260109
http://creativecommons.org/licenses/by/4.0/


Pathway grouping for predictive performance 47

Table 7: Predictive performance of each comparing algorithm on 6 benchmark
datasets. For each performance metric, ‘↓’ indicates the smaller score is bet-
ter while ‘↑’ indicates the higher score is better. Bold text suggests the best
performance in each column.

Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc

PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776

reMap+SOAP 0.0392 0.0400 0.1714 0.0934 0.0772 0.0479
reMap+SPREATE 0.0519 0.0827 0.1489 0.0748 0.0629 0.0503
reMap+CTM 0.0558 0.0835 0.1425 0.0804 0.0622 0.0503
reMap+SOAP+c2m 0.0590 0.0780 0.1457 0.0772 0.0614 0.0534
reMap+SPREATE+c2m 0.0542 0.0796 0.1520 0.0772 0.0598 0.0558

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc

PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561

reMap+SOAP 0.8611 0.7871 0.6215 0.4851 0.2805 0.5985
reMap+SPREATE 0.9400 0.6750 0.8350 0.6000 0.3200 0.6200
reMap+CTM 0.9150 0.6700 0.8750 0.5650 0.3250 0.6200
reMap+SOAP+c2m 0.8950 0.7050 0.8550 0.5850 0.3300 0.6000
reMap+SPREATE+c2m 0.9250 0.6950 0.8150 0.5850 0.3400 0.5850

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc

PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229

reMap+SOAP 0.8078 0.8746 0.3863 0.4978 0.7931 0.9371
reMap+SPREATE 0.6124 0.4839 0.3275 0.5240 0.7356 0.7086
reMap+CTM 0.5961 0.4803 0.3431 0.4934 0.7471 0.7086
reMap+SOAP+c2m 0.5831 0.5054 0.3353 0.5109 0.7586 0.6857
reMap+SPREATE+c2m 0.6026 0.4982 0.3196 0.5109 0.7816 0.6686

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc

PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266

reMap+SOAP 0.8336 0.8285 0.4764 0.4914 0.4144 0.7305
reMap+SPREATE 0.7416 0.5637 0.4704 0.5594 0.4460 0.6613
reMap+CTM 0.7219 0.5595 0.4930 0.5268 0.4530 0.6613
reMap+SOAP+c2m 0.7061 0.5887 0.4817 0.5455 0.4599 0.6400
reMap+SPREATE+c2m 0.7298 0.5804 0.4592 0.5455 0.4739 0.6240
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(a) Moranella

(b) Tremblaya

(c) Composite genomes

Fig. 9: Comparative study of predicted pathways for symbiont data between
PathoLogic, mlLGPR, triUMPF, and reMap+SOAP. Black circles indicate pre-
dicted pathways by the associated models while grey circles indicate pathways
that were not recovered by models. The size of circles corresponds the pathway
coverage information.
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Fig. 10: Comparative study of predicted pathways for HOTS 25m dataset be-
tween PathoLogic, mlLGPR, triUMPF, and reMap+SOAP. Black circles indi-
cate predicted pathways by the associated models while grey circles indicate
pathways that were not recovered by models. The size of circles corresponds the
pathway abundance information.
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Fig. 11: Comparative study of predicted pathways for HOTS 75m dataset be-
tween PathoLogic, mlLGPR, triUMPF, and reMap+SOAP. Black circles indi-
cate predicted pathways by the associated models while grey circles indicate
pathways that were not recovered by models. The size of circles corresponds the
pathway abundance information.
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Fig. 12: Comparative study of predicted pathways for HOTS 110m dataset be-
tween PathoLogic, mlLGPR, triUMPF, and reMap+SOAP. Black circles indi-
cate predicted pathways by the associated models while grey circles indicate
pathways that were not recovered by models. The size of circles corresponds the
pathway abundance information.
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Fig. 13: Comparative study of predicted pathways for HOTS 500m dataset be-
tween PathoLogic, mlLGPR, triUMPF, and reMap+SOAP. Black circles indi-
cate predicted pathways by the associated models while grey circles indicate
pathways that were not recovered by models. The size of circles corresponds the
pathway abundance information.
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