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Abstract

Cadherins enable intercellular adherens junctions to withstand tensile forces in tissues, e.g. generated
by intracellular actomyosin contraction. Single molecule force spectroscopy experiments in in-vitro
experiments can reveal the cadherin-cadherin extracellular region binding dynamics such as bond
formation and strength. However, characterization of cadherin homophilic and heterophilic binding in
their native conformational and functional state in living cells has rarely been done. Here, we used
Atomic Force Microscopy (AFM) based Single cell force Spectroscopy (SCFS) to measure rupture
forces of homophilic and heterophilic bond formation of N-, OB- and E- cadherins in living fibroblast
and epithelial cells in homo- and hetero-cellular arrangements, i.e. between same type of cells and
between cells of different type. In addition, we used indirect immunofluorescence labelling to study
and correlate the expression of these cadherins in intercellular adherens junctions. We showed that
N/N and E/E cadherin homophilic bindings are stronger than N/OB, E/N and E/OB heterophilic bind-
ings. Disassembly of intracellular actin filaments reduces the cadherin bond rupture forces suggesting
a contribution of actin filaments in cadherin extracellular binding. Inactivation of myosin did not af-
fect the cadherin rupture force in both homo- and hetero-cellular arrangements. Whereas, myosin inac-
tivation particularly strengthened the N/OB heterophilic bond and reinforced the other cadherins ho-

mophilic bonds.
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Introduction

Cell adhesion to neighbouring cells or the extracellular matrix (ECM) environment is a very important
process in regulating crucial biological activities such as embryonic development, tissue assembly and
dynamics, wound healing and cancer metastasis. Generally, cells communicate with other cells
through adherens, gap or mechanosensitive junctions (1). Cadherins from adherens junctions are a
class of calcium dependent cell adhesion molecules (CAMs) which comprise three different domains:
(i) an intracellular or cytoplasmic domain which binds to the actin cytoskeleton through adaptor pro-
teins such as a-catenin, B-catenin and p120 catenin, (ii) a transmembrane domain and (iii) an extracel-
lular domain. The extracellular domain consists of five extracellular cadherin (EC) repeats. A dimer of
EC1-EC5 of one cell interacts with the corresponding cadherin dimer of a neighbouring cell through
homophilic or heterophilic interaction (2, 3).

Several assays have been developed to investigate cell-cell interactions in the last two decades, such as
dual micropipette assay (4), flipping assay (5), FRET (6) and AFM based SCFS (7, 8). Comparing all
assays, the AFM based SCFS assay provides a wide range of forces (10 pN to 10° pN) (9) and a con-
trolled force application (loading rate) on the cell-cell adhesion cadherin bond by retracting the AFM
cantilever at a well-defined velocity (10). In SCFS, cell adhesion force measurements are performed in
near physiological conditions. Being a multifunctional toolbox in nanobiotechnology (11), AFM pro-
vides a functionalized cantilever to pick up a live cell guided by optical microscopy. It allows probing
the rupture force between cadherin molecules present in two cells, by separating the two cells. The
rupture force can be quantified and reveals differences in the specific type of cadherins secreted by
different cell types.

According to the presence or absence of the HAV (His-Ala-Val) cell recognition sequence in the EC1
domain, classical cadherins are classified into type | (E-, N- and others) and type Il cadherins (OB-
and others) (2,3). The most commonly expressed cadherin found in fibroblasts is N-cadherin (cad-2)
(12). Primary rat fibroblasts differentiate into myofibroblasts in vitro using transforming growth fac-

tor- B1 (TGF-B1). TGF- B1 induces the expression of alpha-smooth muscle actin (a-sma), an increased
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expression of OB-cadherins (cad-11) and a decreased expression of N-cadherin (13). This TGF-B1
induced cadherin switch from N-cadherin to OB-cadherin increases the intercellular adhesion strength
between myofibroblasts by strengthening individual OB-cadherin bonds. Single molecule force spec-
troscopy (SMFS) measurements on OB- and N-cadherins showed that the rupture force between OB-
cadherins homophilic interaction is larger than between N-cadherins (14). A biochemical analysis of
N- and OB-cadherins expression in human dermal fibroblast and Dupuytren’s myofibroblast shows
increased OB-cadherin and decreased N-cadherin expression in myofibroblasts compared to dermal
fibroblasts (1). The E (epithelial)-cadherin (cad-1) is the dominant cadherin expressed in most epithe-
lial cell lines like MDCK (Madine-Darby Canine Kidney) cells (15). The more motile, trypsin sensi-
tive subpopulation of MDCK cells shows a low level of N-cadherin expression (16).

Hetero-cellular interactions between different cell types occur in tissue and organ morphogenesis. In-
volvement of specific cadherins in these interactions plays a pivotal role in cancer cell metastasis (17)
whereas heterophilic interactions between cell specific cadherins mediate cancer cell invasion (18).
Direct interactions between fibroblast and epithelial cells may play an important role in the epithelial
to mesenchymal transition (EMT) process (19). Hetero-cellular interactions between normal fibro-
blasts and gastric cancer cells induce E-cadherin loss and increase metastasis in gastric cancer via
EMT (20). The investigation of hetero-cellular interactions between fibroblast and epithelial cells us-
ing biophysical techniques such as SCFS will help to better understand the role of classical cadherin
interactions both in EMT and Mesenchymal to Epithelial cell transition (MET) processes.

Actin filaments associated with myosin are the major contractile component responsible for intracellu-
lar force generation. Generally, these forces are generated by the myosin assembly and motility on the
actin filaments. Myosin light chain is phosphorylated by the myosin light chain kinase (MLCK) and
this activates the myosin cross linking to the actin filaments with actomyosin contractile force genera-
tion. Intracellular forces are then transmitted to the neighbouring cells and to the extracellular envi-
ronment through cadherins and integrins, respectively that are connected to actin filaments. Disassem-

bling actin filament rich stress fibres by treating fibroblasts with Cytochalasin D results in decreased
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cell stiffness (21). Addition of Cytochalasin D reduces the cadherin mediated binding forces between
myofibroblasts, as measured by SCFS, and shows that cadherins are linked structurally and possibly
functionally to the intracellular actin network (14). Inactivating myosin-11 activity by treating fibro-
blasts with ML-7 inhibits the MLCK, which further prevents myosin mediated actomyosin contractili-
ty which results in actin cytoskeleton softening and thus decreased cell stiffness (22).

In the present study, we have studied the expression of N- and OB-cadherins in three types of fibro-
blasts extracted from the same patient with Dupuytren’s disease using fluorescence microscopy: (1)
normal fibroblasts-NFs from normal healthy skin, (2) scar fibroblasts-SFs from cutaneous scar tissue
and (3) Dupuytren’s myofibroblast-DFs from the nodules of the palmar fascial strands. Using AFM-
SCFS, we measured the rupture forces between fibroblasts grown in a confluent monolayer and fibro-
blasts attached to the AFM cantilever (NF-NF, SF-SF and DF-DF). Loading rate dependent rupture
force measurements showed that NF and SF exhibit larger rupture forces than DFs. These results cor-
related with the cadherin types present in the adherens junctions of respective fibroblast types. Hetero-
cellular interaction forces were also measured between fibroblasts grown in monolayers and epithelial
cells attached to the cantilever. Regarding the epithelial cell, we used epithelial cell line called MDCK
cells to study the hetero-cellular interactions between MDCK and fibroblasts mediated by cadherins
expression and binding dynamics. Immunofluorescence studies of MDCK and fibroblast co-cultures
showed the presence of N-cadherins at the fibroblast-MDCK junction and E-cadherin loss in MDCK.
Cytochalasin D treatment decreases the interaction forces in both homo-cellular and hetero-cellular
interactions. In ML-7 treatment, no change in interaction forces observed in homo-cellular and hetero-
cellular interactions except for DF-DF interaction. Contrarily, there is an increase in DF-DF rupture
forces after ML-7 treatment and reveals that OB- and N-cadherin heterophilic bond strengthens the

cell-cell interaction when there is no intracellular contractile force.
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Results

N/OB heterophilic binding is weaker than N- and OB- homophilic binding

Investigation of cell-cell interactions using AFM becomes more possible using a simple cell force
spectroscopic setup. AFM based SCFS setup is explained with the simple schematics shown in Fig
1A. A tipless cantilever, functionalized with concanavalin A (conA), was placed on a cell, which
makes initial adhesion to the substrate and is appropriately round in shape. The cantilever was ap-
proached towards that cell until a certain loading force has been reached. After a dwell time of 5 sec
the cell has adhered sufficiently and stays attached to the cantilever when the cantilever is retracted
from the support as shown in Fig. 1B. The force curve obtained during cell capture is shown in Fig.
1C. After a recovery time of 10 minutes, the cantilever with the attached cell was approached towards
and retracted from another cell attached to the Petri dish. Cell-cell interactions and rupture forces be-
tween cells were probed. Fig. 1D shows a cell-cell (NF-NF) interaction force curve. The force curve
contains approach (red arrows) and retract curve (blue arrows). The cell capturing and cell-cell inter-
action events are visible in the retract curve. In case of cell-cell interactions, two distinct features can
be seen in the retract curve: rupture (continuous line arrows) and tether events (discontinuous line ar-
rows). The adhesion molecules that are well anchored to the intracellular actin filaments interact with
their counterparts on the other cell, and the breakage of the adhesion molecules mechanical bonds can
be seen as a rupture event. This rupture event can be due to a single bond breakage or to multiple bond
breakages. The rupture force was calculated from the height of the rupture event. When adhesion mol-
ecules are not anchored to actin filaments membrane, tethers can be pulled over large distances, which
eventually will also break (tether events). The rupture and tether events observed during cell capture
were due to the interaction and bond breakage of either specific adhesion molecules or other non-

specific interactions, which were not characterized here.

Figure 1. Schematic representation AFM based SCFS experimental setup. (A) This cartoon represents the capturing of
cell by a tipless cantilever in a stepwise manner. 1- The conA functionalized tipless cantilever and a cell with round mor-
phology is chosen with the aid of optical microscopy. 2- The cantilever is approached towards the cell at certain velocity (5
pum/sec) and contact force (3.5 nN). 3- Given the contact time of 5 s, the cell attached cantilever is retracted with the same
velcotiy (5 um/sec). (B) Optical image shows the cell attached cantilever. (C) Force curve recorded during cell pick up was
shown and retract curve (blue arrow) contains rupture (continuous line black arrow) due to unspecific binding and tether
(discontinuous line black arrow) events. 4- After a recovery time of 10 min, the interaction between cell attached to the
cantilever and cell grown as monolayer was conducted. (D) Cell-cell interaction force curve shows rupture events that
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corresponded to the extracellular cadherin-cadherin bond breakage. Here, multiple rupture events were recorded.

Here we determined rupture forces between three types of fibroblasts isolated from primary human
cells using SCFS and assessed the specific cadherins at the interaction site using fluorescence micros-
copy. The cell-cell rupture force was measured using an approach and retraction velocity of 3 pm/sec,
a maximum loading force of 3 nN and the contact time of 2 s. The histogram plot of measured rupture
forces versus the number of rupture events shows the force distribution for each fibroblast type (NF-
NF Fig. 2A, SF-SF Fig. 2B and DF-DF Fig. 2C- red bar). NF-NF interaction showed a larger rupture
force (51.91 pN) compared with SF-SF (45.21 pN) or DF-DF (35.71 pN) (See Table 1 which lists the
corresponding 25, 50 and 75 percentile values). To verify that these rupture forces were due to the
cadherin-cadherin bond breakages, the rupture events were recorded in the presence of EGTA (eth-
ylene glycol tetraacetic acid, a calcium chelating agent) in the SCFS setup, effectively removing all
free calcium from the extracellular space. Addition of EGTA completely inhibited the cadherin medi-
ated cell-cell interaction with reduced numbers of rupture events (Fig. 2A, B and C, blue bar). Under
normal conditions, force curves showed multiple rupture events due to interactions of multiple cadher-
ins (Supplementary Fig. 1A), whereas in the absence of Ca**, i.e. in the presence of EGTA, such rup-
ture events were not seen in force curves (Supplementary Fig. 1B). To understand the cadherin-
cadherin binding strength, we exerted varying force (loading) rates on the bonds by approaching and
retracting the AFM cantilever at different velocities (3, 5, 7.5 and 10 pum/sec), which named “pulling
rate” in force spectroscopy. For all three fibroblast types, the corresponding rupture forces showed a
linear increase depending on the pulling rate applied (Fig. 2D). The median rupture force values for
respective pulling rates for all three fibroblast types were listed in Table 1. NF-NF (Fig. 2D black
square) and SF-SF (Fig. 2D red upper triangle) rupture forces were similar at all velocities except 3
pm/sec. In contrast, DF-DF (Fig. 2D blue lower triangle) attachments showed smaller rupture forces

compared to NF-NF and SF-SF at all velocities.

Figure 2. Fibroblast intercellular cadherin expression and rupture force measurement. Histogram shows the rupture
force (red bar) recorded for (A) NF-NF, (B) SF-SF and (C) DF-DF interactions. Cadherin involvement in the rupture
events (Supplementary Fig. 1A) was controlled by EGTA (blue bar) addition to the cell-cell interaction setup. This leads to
the respective loss of rupture events (Supplementary Fig. 1B). (D) Increasing the approach and retract velocity of the canti-
lever linearly increases the cadherin rupture force for NF-NF (black square), SF-SF (red upper triangle) and DF-DF (blue
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lower triangle). NF and SF displays large rupture forces than DF at all velocities. (E) Dual immunofluorescence data
shows N-cadherin expression (red fluorescence) in all fibroblasts adherens junctions. OB-cadherin expression (green fluo-
rescence) was seen only in DF. The overlay (orange fluorescence) represents the heterophilic binding of N-cadherin and
OB-cadherin which is encountered only in DF. Blue fluorescence indicates the nuclei. Scale bar 20 pm.

In order to assess the presence of specific cadherin types in cell-cell interaction sites, all three fibro-
blast types were immunostained for N- and OB- cadherin. Dual immunostaining for N- (red) and OB-
(green) cadherins showed that NF and SF express exclusively N-cadherin whereas DF express both N-
and OB- cadherin at the interaction site between cells (Fig. 2E). In the overlay (orange), heterophilic
interactions between the N- and OB- cadherins are visible. Single immunostaining for N-cadherin
(red) showed that all three fibroblast types express N-cadherin at the interaction site (Supplementary
Fig. 2A). Similarly, single staining for OB-cadherin (red) in all fibroblasts showed that only DF-DF
express OB-cadherin with absent OB-cadherin expression found at the NF-NF and SF-SF interaction
site (Supplementary Fig. 2B). Controls with no primary antibody for N- (Supplementary Fig. 2C) and
OB-cadherins (Supplementary Fig. 2D) shows no fluorescence that proves no unwanted or unspecific
binding of fluorescently tagged secondary antibodies, thus showing the specificity of the secondary
antibodies for the primary antibodies used here. This further confirms that the red and green fluores-
cence seen in Fig. 2E and Supplementary Fig. 2A&B are due to specific expression of N-cadherin in
all three fibroblast types and OB-cadherin only in DF. This reveals homophilic N-cadherin binding in
NF and SF and heterophilic N-cadherin/OB-cadherin binding in DF. Homophilic N-cadherin intercel-
lular binding exhibited stronger interaction forces than N/OB-cadherin heterophilic binding when im-

munostaining results were compared to cadherin-cadherin bond rupture mechanical measurements.

E-, N- and OB- cadherin at the fibroblast-epithelial hetero-cellular adherens junctions

The significance of studying hetero-cellular interactions may lead to sorting out different cell types by
their expression and assembly of cell specific cadherins at the interaction site. The investigation of
cadherin homophilic and heterophilic interactions may pave the way for a better understanding of cad-
herin mediated intracellular signalling. Heterophilic cadherin rupture forces were measured between

epithelial cells and fibroblasts. A monolayer of fibroblasts was grown in a Petri dish and MDCK epi-
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thelial cells were attached to a tipless cantilever functionalized with conA. Fibroblast-MDCK interac-
tions were studied by approaching a cantilever with attached MDCK cells towards the fibroblast cell
monolayer at 3 pm/sec velocity with 3 nN maximum contact force and 2s contact time. In a similar
fashion, MDCK-MDCK interactions were studied and the resulting median rupture force value was
75.51 pN. Regarding fibroblast-MDCK interaction, the median rupture force values were 55.85 pN for
NF-MDCK, 39.68 pN for SF-MDCK and 46.70 pN for DF-MDCK (See Table 1 which lists the corre-
sponding 25, 50 and 75 percentile values). In order to confirm the cadherin mediated rupture force, the
force curves were recorded in the presence of EGTA. The histogram plot (Fig. 3A, B, C and D)
showed a decrease in rupture events (blue bar) comparative to the rupture events (red bar) obtained
without EGTA. The binding strength of the cadherins present in the membrane of these cell types was
measured by approaching and retracting the cantilever with the attached MDCK cell at different veloc-
ities. All fibroblast-MDCK hetero-cellular interactions and also MDCK-MDCK binding (Fig. 3E)
showed a linear increase in rupture force as a function of loading rate. The median rupture force val-
ues calculated for each pulling velocity for all three types of fibroblasts and MDCK or MDCK-MDCK
interactions are listed in Table 1. Comparing the rupture forces, NF-MDCK (55.85 pN) (Fig. 3E black
filled square), SF-MDCK (39.68 pN) (red filled upper triangle) and DF-MDCK (46.70 pN) (blue filled
lower triangle) showed no significant differences between each other; however MDCK-MDCK inter-

actions (sandal filled circle) showed substantially larger rupture forces (75.51 pN).

Figure 3. Heterocellular fibroblasts-MDCK interactions rupture force measurement and cadherin expression. Rup-
tures forces displayed as histograms recorded with (blue bar) and without EGTA (red bar) for (A) MDCK-MDCK, (B) NF-
MDCK, (C) SF-MDCK and (D) DF-MDCK. (E) The cadherin rupture force shows linear relationship with cantilever ap-
proach and retract velocity for MDCK-MDCK (sandal circle), NF-MDCK (black filled square), SF-MDCK (red filled
upper triangle), DF-MDCK (blue filled lower triangle). (F) Immunofluorescence data shows predominant E-cadherin ex-
pression in MDCK-MDCK adherens junction. Subpopulations of MDCK express N-cadherin but not OB-cadherin. Dual
immunofluorescence data shows N-cadherin (red fluorescence in G, 1) homophilic binding and loss of E-cadherin (H) in
NF-MDCK, SF-MDCK and DF-MDCK. Due to the similar excitation and emission wavelength of fluorescence tags (sec-
ondary antibody), dual immunostaining (G) for N-cadherin (red fluorescence) and E-cadherin (sandal fluorescence) is
difficult to interpret. The E-cadherin loss seen in (H) confirms the N-cadherin homophilic binding in (G). Only faint OB-
cadherin expression (green fluorescence) observed in DF-MDCK (1). Blue fluorescence indicates DAPI-stained nuclei.
Scale bar 20 pm.
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Table 1: The median (bold values) rupture force (pN) values of cadherin mediated homocellular and

heterocellular adherens junctions at each approach and retract velocities.

Approach and 3 5 7.5 10
Retract velocity

(um/sec) 25th Median  75th | 25th  Median 75th |25th  Median 75th | 25th Median  75th
Cell-cell interaction
NF-NF 21.53 5191 27.20 | 2477 7340 40.72|33.18 97.18 61.16|41.63 11739 85.12
SF-SF 21.56 4521 3233 [28.00 7422 53.77 3956 103.28 77.95|49.35 128,51 107.84
DF-DF 17.59 3571 21.08 2157 5823 3123|2892 8354 49.22|36.28 103.05 67.51
MDCK-MDCK 35.83 7551  50.0439.74 9848 5859 (47.88 124.08 82.34|60.41  149.68 111.48
NF- MDCK 20.34 55.85 30.04 (2223 7048 3555(29.08 9144 4863|3593 11128 66.59
SF- MDCK 30.53 39.68 40.66 |29.14 68.19 4856 (31.12 9236 61.87 3445 106.62 74.06
DF- MDCK 20.30 46.70  26.19 |21.84 63.62 32.67 |27.17 8320 42.12|32.78 99.42 53.18

We examined the distribution of different cadherin subtypes in MDCK-MDCK homo-cellular and
fibroblast-MDCK hetero-cellular adherens junctions. MDCK monolayers were immuno-stained for E-
, N- and OB-cadherin (Fig. 3F). We observed E-cadherin in the MDCK cell-cell junctions with a sub-
population of MDCK cells expressing very little N-cadherin. In addition, there was no OB-cadherin
expression in MDCK cells. To verify the cadherin expression in fibroblast-epithelial cell interaction
sites, NF-MDCK, SF-MDCK and DF-MDCK were dual immuno-stained against the different cadher-
in subtypes (E/N, E/OB and N/OB). The secondary antibody with fluorescent tags that was used for
detection of the primary anti-N-cadherin and anti-E-cadherin share almost the same excitation and
emission wavelength. This made it difficult to differentiate between the E- and N-cad heterophilic
interaction in NF-, SF- and DF- MDCK adherens junctions (Fig. 3G). Dual immunostaining for E- and
OB-cadherins showed a reduction of E-cadherin and absence of OB-cadherin expression in co-cultures

with NF-MDCK or SF-MDCK. The loss of E-cadherin was accompanied with faint expression of OB-
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cadherin in DF-MDCK cultures as well (Fig. 3H). In dual immunostaining for N- and OB-cadherins
(Fig. 3I), only N-cadherin expression and no OB-cadherin expression were seen at the NF-MDCK and
SF-MDCK and very little OB-cadherin at the DF-MDCK adherens junctions. The observation from
these cadherin (E/OB and N/OB) subtypes helped to solve the E/N subtype issue and confirms the
presence of N-cadherin in Fig. 3G. Control experiments showed no E-cadherin expression in NF-NF,
SF-SF and DF-DF (Supplementary Fig. 3). In summary, the immunofluorescence data showed that N-
cadherin is the predominant cadherin in the fibroblasts-MDCK adherens junctions. N-cadherin was
exclusively seen in the fibroblasts-MDCK and not between MDCK-MDCK junctions in co-cultures.
Initially, MDCK-MDCK interaction in MDCK cell cultures showed more E-cadherin and very little

N-cadherin expression.

Role of actin assembly in homo- and hetero-cellular adherens junctions

Cytochalasin D disrupts the actin assembly and results in cell softening (21). Here, we used 5 UM cy-
tochalasin D to disassemble actin filaments to investigate the role of actin in both homo-cellular and
hetero-cellular adherens junctions. As the drug was dissolved in DMSO, any effect of DMSO in cell-
cell interaction had to be ruled out in control experiments before. The cityscape plot showed the rup-
ture forces of cadherins bond rupture before and after the addition of cytochalasin D recorded from
homo-cellular (Fig. 4A-D) and hetero-cellular (Fig. 4E-G) systems. The retract curves from control
experiments (defined as no drug and no DMSO) (Supplementary Fig. 4A) or with DMSO (Supple-
mentary Fig. 4B) showed no differences in the rupture patterns whereas with cytochalasin D (Supple-
mentary Fig. 4C) dissimilar rupture events were observed. Treatment with cytochalasin D resulted in a
reduction of the peak rupture force (Fig. 4 blue line) compared to DMSO addition (Fig. 4 red line) or
control (Fig. 4 black line). The respective median rupture force values calculated for each condition
for both homo-cellular and hetero-cellular junctions are listed in Table 2. The plot of median rupture
forces (Supplementary Fig. 5) showed that the cadherin bond rupture force values were decreased in

the presence of cytochalasin D for both homo- and hetero-cellular interactions; whereas, no significant


https://doi.org/10.1101/2020.02.11.943597
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.11.943597; this version posted February 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

differences were observed between control and DMSO rupture force values. This illustrates that the
regulation of cadherin extracellular binding dynamics by intracellular actin filaments through their
interaction with cadherin cytoplasmic domain.

Figure 4. Effect of Cytochalasin D treatment on the rupture force of homocellular and heterocellular adherens
junctions. The cityscape plot summarize the effect of cytochalasin D (5 uM) on homocellular- (A) NF-NF, (B) SF-SF, (C)
DF-DF, (D) MDCK-MDCK and heterocellular- (E) NF-MDCK, (F) SF-MDCK, (G) DF-MDCK adherens junctions. Rup-
ture events were recorded without the drug as control (black line), with DMSO (red line) and with cytochalasin D (blue
line). The corresponding median values were listed in Table 2 and plotted in Supplementary Fig. 5.

Table 2: The median (bold values) rupture force (pN) values of cadherin mediated homocellular and
heterocellular adherens junctions without drug (control), DMSO and cytochalasin D (5 uM).

control DMSO cytochalasinD

Cell-cell interaction | 25th Median 75th 25th Median 75th 25th Median 75th

NF-NF 25.39 61.86 4151 |25.23 60.24 39.15 |[14.92 31.06 18.48
SF-SF 24.29 58.41 36.81 |23.44 48.34 38.03 |10.82 30.47 15.79
DF-DF 28.13 48.41 33.46 |25.93 45.64 48.17 |10.07 25.65 12.43

MDCK-MDCK 28.80 75.61 38.40 |30.04 75.24 53.00 |19.70 43.21 24.16

NF- MDCK 21.49 57.04 30.16 |23.24 64.70 39.18 | 23.14 25.54 27.56
SF- MDCK 25.04 56.77 35.07 |21.82 57.19 27.98 |15.78 14.98 18.77
DF- MDCK 23.69 60.13 3541 |25.29 68.42 40.01 | 20.50 23.36 24.50

Myosin inactivation strengthens the N-/OB-cadherin heterophilic binding

ML-7 inhibits the MLCK activity by inhibition of myosin cross-linking to the actin filaments. As a
consequence, there is reduction in contractile stresses, which leads to a softening of the intracellular
actin cytoskeleton (23). Here we used 5 uM ML-7 to inhibit the myosin activity and determined the

role of myosin in both homo-cellular and hetero-cellular adherens junctions. The cityscape plot
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showed the rupture forces of cadherin bond ruptures before and after the addition of ML-7 recorded
from homo-cellular (Fig. 5A-D) and hetero-cellular (Fig. 5E-G) systems. The retract curves from con-
trol (no drug and no DMSO) (Supplementary Fig. 6A), DMSO (Supplementary Fig. 6B) and with ML-
7 (Supplementary Fig. 6C) showed no difference in the rupture patterns except for DF-DF. No signifi-
cant shift in rupture force peaks was observed in control (Fig. 5 black line), DMSO (Fig. 5 red line)
and ML-7 (Fig. 5 blue line). Only DF-DF showed an increase in the rupture force after treatment with
ML-7 (Fig. 5C blue line). Comparing the retract curves of controls (Supplementary Fig. 7A), DMSO
(Supplementary Fig. 7B) or ML-7 (Supplementary Fig. 7C) treatment of different fibroblast cultures,
DF-DF showed distinctive large rupture events in ML-7 treated force curves. The respective median
rupture force values calculated for each condition for both homo-cellular and hetero-cellular junctions
were listed in Table 3. The median plot (Supplementary Fig. 8A, B, D, E, F, and G) showed no signif-
icant change in the rupture force values for cell-cell interactions in NF-NF or SF-SF cultures in the
presence of ML-7 comparing to that of control and DMSO. In case of DF-DF, the median rupture
force value (Supplementary Fig. 8C) increased significantly after the addition of ML-7. Interestingly,
no significant differences were observed in control and DMSO rupture force values in DF-DF. Possi-
bly, the intracellular myosin inactivation by MLCK inhibition does not affect the cadherin homophilic
binding. In case of DF-DF which express N-cadherin/OB-cadherin heterophilic binding, myosin inac-
tivity seems to strengthen heterophilic cadherin interactions.

Figure 5. Effects of ML-7 treatment on the rupture force of homocellular and heterocellular adherens junctions.
The cityscape plot summarize the effect of ML-7 (5 puM) on homocellular- (A) NF-NF, (B) SF-SF, (C) DF-DF, (D)
MDCK-MDCK and heterocellular- (E) NF-MDCK, (F) SF-MDCK, (G) DF-MDCK adherens junctions. Rupture events
were recorded without the drug as control (black line), with DMSO (red line) and with ML-7 (blue line). The correspond-
ing median values were listed in Table 3 and plotted in Supplementary Fig. 8.
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Table 3: The median (bold values) rupture force (pN) values of cadherin mediated homocellular and
heterocellular adherens junctions without drug (control), DMSO and ML-7 (5 uM).

control DMSO ML-7

Cell-cell interaction | 25th Median 75th | 25th  Median 75th | 25th Median  75th
NF-NF 24.48 58.81 45.80 |19.67 52.04 38.84 | 16.49 48.87 33.25
SF-SF 27.37 66.20 38.17 | 34.66 53.12 41.96 |28.72 48.98 36.52
DF-DF 24.29 53.19 34.65 |23.19 45.49 31.87 | 48.01 99.69 75.06
MDCK-MDCK 24.53 69.71 4341 |27.11 67.22 56.11 | 26.03 69.69 42.50
NF- MDCK 18.58 52.06 2522 |17.71 54.74 23.17 | 17.82 54.41 2291
SF- MDCK 17.42 48.95 16.58 |15.51 53.87 17.37 | 15.05 41.44 16.73
DF- MDCK 11.99 48.35 18.55 |12.98 47.05 18.15 | 15.24 52.32 23.10
Discussion

In this work, we performed AFM-based SCFS on homo- and hetero-cellular arrangements between
different fibroblasts (NF, SF and DF) and MDCK cells. We measured the homophilic and heterophilic
cadherin adhesion rupture forces using AFM-SCFS. Immunofluorescence staining allowed us to visu-
alize the presence of such homophilic and heterophilic pairs of E, N and OB cadherins. Our results
showed that homophilic adhesions were stronger than heterophilic adhesions. In addition, our results
suggest a role of the intracellular actin cytoskeleton in homophilic and heterophilic cadherin bonds
modulating extracellular binding strength. With differing binding capacity and specificity, cadherins
of cellular adherens junction play an important role in intra- and inter-cellular mechano-signalling for
force transmission. So far, AFM and optical tweezers based SMFS explored the binding strength and
kinetics of various cadherin types - both homophilic and heterophilic binding (14, 24, 25, 26). Most of

these studies were carried out with cadherins which were overexpressed or purified and lacking certain
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domains (for example, recombinant constructs lacking the cytoplasmic domain). Here, we used AFM
based SCFS to measure the rupture forces of cadherin-cadherin bonds in or between cells, i.e. the cad-
herins measured were in their native state. This setup allowed us to study the cadherin pair formation
and their bond rupture forces in physiologically relevant homo- and hetero-cellular arrangements. Pre-
viously, using this setup VE-, E- and N- cadherin homophilic pair formation, their binding strength
and kinetics were studied using the homo-cellular arrangements made with HUVEC, L-M (TK-) and
CHO cells, respectively (27, 28). In a similar way, we attached different types of fibroblasts (NF, SF
and DF) to the AFM cantilevers and put them into contact with monolayers of the same type of fibro-
blasts. The measured rupture forces showed that NF-NF and SF-SF exhibit stronger interactions than
DF-DF. Immunofluorescence studies revealed that N/N-cadherin homophilic pairs enforced the inter-
cellular adherens junctions in NF and SF. Whereas in the case of DF, N-/OB-cadherin heterophilic
pairs were seen in the cellular adherens junctions and this contributes to their weaker interaction. NF
and SF were shown to express a-sma, but no large stress fibres. Thus both cell types were considered
as fibroblast phenotype (29). When SF was seeded in a physiological environment such as a decellu-
larized dermal matrix, cells expressed large stress fibres and thus showed a proto-myofibroblast or
myofibroblast phenotype (30). In contrast, DF showed a-sma positive large stress fibres and thus were
considered as myofibroblast phenotype (29). In comparison to earlier reports (1, 14), N-cadherin ex-
pression was seen in the normal fibroblast phenotype (in this study: NF and SF) and OB-cadherin ex-
pression in the myofibroblast phenotype (DF). In contrast to rat fibroblasts, which show a transition in
expression from N- to OB-cadherin triggered by TGF-B1 (14), we found in our study that DF ex-
pressed both N- and OB-cadherins and N/OB heterophilic binding. Fibroblasts extracted from the
palmar region (cords and nodules) of patients with Dupuytren’s disease express stress fibres and thus
exhibiting a myofibroblastic phenotype (29) without any mechanical or biochemical stimulation such
as TGF-B1 (14). Biochemical expression of N-cadherin was observed in Dupuytren’s myofibroblast
and results from a collagen gel contraction study showed that myofibroblasts displayed reduced con-

traction in the presence of N-cadherin blocking peptide (1). Obviously, N-cadherin has an important
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function in myofibroblast intercellular adherens junctions. By immunofluorescence, N-cadherin and
OB-cadherin expression and their homophilic (in NF and SF) and heterophilic (in DF) pair formation
were observed in all three fibroblast phenotypes. In this study, we found that the presence of different
cadherins was strongly correlated with the rupture forces measured by SCFS.

In our study, the E/E-cadherin homophilic interactions in MDCK showed rupture force values closely
related to previous studies (28). This confirms the initial adhesion in MDCK homo-cellular arrange-
ments could be largely dominated by E-cadherin homophilic binding that displays the larger rupture
force. As previously shown, in contrast to primary epithelial cell that do not express the N-cadherin
subtype, MDCK sub-populations such as trypsin sensitive MDCK are characterized by N-cadherin
expression (16) which we could confirm the N-cadherin expression seen in MDCK cultures with our
immunofluorescence analyses.

In tissue and sub-tissue level biology, multicellular interactions are orchestrated through various cell-
cell junction mechanisms which, in turn, coordinate individual cell type actions such as directed cellu-
lar migration and wound contraction. As central component of the adherens junction, the cadherin
transmembrane domain plays a key role in force transmission between the intracellular environment of
different cell types and the intercellular space through cadherin type binding specificity. This phenom-
enon could have implications for biological analytical methods, e.g. for cell sorting. In response to
tissue injury and during wound healing, direct contact between epithelial cells and underlying fibro-
blasts modulate the expression levels of key enzymes such as matrix metalloproteinase-2 and -9,
which are important for the wound healing process (31). Through activation by the cytokine TGF-1
in the ECM or by mechanical injury of epithelial cells, the biochemical expression of a-sma and type |
and 1l collagen was induced in co-cultured fibroblasts (32). These observations brought the
knowledge of investigating the adhesion proteins involved in hetero-cellular interactions such as epi-
thelial cell-fibroblasts interaction. For SCFS hetero-cellular studies, MDCK cells were attached on the
cantilever and brought in contact with fibroblasts grown in monolayers in a Petri dish. This experi-

mental set-up was chosen to measure the rupture forces of the N/N homophilic and E/N, E/OB and
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N/OB heterophilic bonds. Distinct peaks were not observed in the rupture force histograms, but the
observed heterophilic bond results are able to be discussed with previous results. For example, an ear-
lier SCFS study did not show any occurrence of heterophilic interactions between E-cadherin and N-
cadherin (28). Contrarily, a single molecule study shows the existence of such E/N cadherin hetero-
philic interactions. Presumably, shorter contact/dwell times (millisecond) used in the former studies
(33) could be the reason for not recognizing heterophilic interactions as found in our study. In standard
experimental settings, shorter contact times between the cells in the petri dish and on the cantilever
were used to prevent nonspecific binding. Deliberately, we chose a different experimental design with
longer contact time of 2 sec in the SCFS setup which enabled us to follow both homophilic and heter-
ophilic cadherin interactions. Despite of the changed protocol, distinct peaks could not be resolved in
the histograms. This might be due to the possibility that N/N and E/N rupture forces share similar val-
ues. In case of DF-MDCK, no distinct peaks of E/OB and N/OB were seen which could be due to sim-
ilar rupture forces. This leads to the question if single molecule kinetic studies using AFM or optical
tweezers are suitable to measure homophilic and heterophilic cadherin pairs with definite set of con-
tact times.

E-/N-cadherin heterotypic adhesion sites reinforced by local cytoskeletal reorganization were ob-
served between 1AR-2 epithelial cells and RAT-1 fibroblasts using immunofluorescence staining (34).
This mechanically active heterotypic contact between N-cadherin expressing cancer associated fibro-
blasts and an E-cadherin expressing epithelial (A431) cancer cell line (A431) enables fibroblasts to
steer cancer cell invasion (18). Loss of E-cadherin was observed in co-cultures of fibroblast with epi-
thelial cells, whereas normal fibroblasts can induce E-cadherin loss to promote EMT in gastric cancer
(20). In chronic inflammatory conditions, epithelial cell-fibroblast interactions stimulate EMT in hu-
man bronchial epithelial cells from chronic obstructive pulmonary patients (19). Accordingly, we
found reduced E-cadherin and increased N-cadherin in our multi-cell cultures with immunofluores-
cence which might imply the initiation of an EMT process. Furthermore, N/N homophilic adhesion

(NF-MDCK and SF-MDCK) and N/OB heterophilic adhesion (DF-MDCK) were present at the inter-
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action sites between epithelial cells and fibroblasts.

In AFM based SCFS, a varying cantilever pulling rate allowed for characterizing the cadherin binding
strength. Rupture forces generally increase with increasing pulling rate, which leads to increased load-
ing rates (35). In this study, E-cadherin and N-cadherin homophilic and OB-cadherin heterophilic
binding rupture forces showed a linear relationship related to the pulling rate. In the fibroblast homo-
cellular arrangement, N-cadherin homophilic binding was stronger in NF and SF compared to N/OB-
cadherin heterophilic binding in DF. Similarly, in fibroblast-epithelial cell hetero-cellular arrange-
ment, all three fibroblast types interacting with MDCK show similar rupture forces. In general, E-
cadherin homophilic binding in MDCK homo-cellular arrangement displayed the strongest binding
strength which reflects previous findings (14, 27, 28).

Differences in force peak values can be found when results are compared to other studies. Due to the
stochastic process of cadherin, protein binding forces can be distributed differentially. Rupturing of
molecular bonds is always effected by thermal fluctuations, leading to varying rupture forces and thus
cadherin binding events are stochastic (36). Even the VE-, N- and OB-cadherin SMFS and SCFS
measurements showed three different interaction forces, as the three force peaks were present in rup-
ture force histograms (14, 24). However, cadherin pairs (VE-, E- and N-) exhibited single force states
as well which correlates well to results found in earlier SCFS studies (27). Similarly, we observed one
single force peak in the histograms which correspond to a single rupture force of cadherin bond un-
binding.

Cell-cell adhesion is mediated by cadherins in adherens junctions. Cadherins are linked with their cy-
toplasmic domain to the intracellular actin cytoskeleton through adaptor proteins such as a- and -
catenin (37). Disruption of actin filaments by cytochalasin D affected the cadherin extracellular do-
main homophilic and heterophilic binding dynamics in our study. It seems that the inactivation of ac-
tin filaments with cytochalasin D has a direct effect on the cadherin extracellular binding activity by
altering the cadherin cytoplasmic link to the actin filaments (14). However, this phenomenon was

found exclusively for OB-cadherin homophilic binding (14). In our study we could show a similar
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effect for both homophilic (N/N and E/E) and heterophilic (E/N, N/OB and E/OB) adhesion in homo-
and hetero-cellular arrangements.

ML-7 inhibits the activity of MLCK by interacting with the phosphorylation event of myosin light
chain (MLC). Thus the binding of myosin to actin filaments and ATPase driven contractile force gen-
eration are inhibited (38, 39, 40). In the current study, disabling actin-myosin contraction using ML-7
showed no effect on the cadherin extracellular binding dynamics except for N-/OB-cadherin hetero-
philic binding. Myosin inactivation particularly strengthened the N-/OB- cadherin extracellular bind-
ing activity demonstrated by the change of rupture forces. A hypothetical biophysical mechanistic
pathway that could explain the observed N/OB- cadherin reinforcement effect is stated in Fig. 6. Myo-
sin 1l acts as an actin crosslinker (41) whereas myosin VI acts as a mediator protein, which binds cad-
herin to actin filaments (42). Loss of myosin Il selectively inhibits myofibroblast differentiation in
fibroblasts of fibrotic lung when compared to healthy phenotype (43). From our current findings and
previous results from others, we speculate that (Fig. 6): (1) There is no influence of actomyosin con-
traction or inactivated myosin on homophilic or heterophilic cadherin extracellular binding dynamics
(excluding N/OB); (2) myosin is creating tension in actin filament network, which weakens the N/OB-
cadherin heterophilic bond, while inactivation of myosin strengthens this bond; (3) myosin inactiva-
tion enhances the N/OB-cadherin reinforcement by the detachment from the cadherin-actin complex.
(4) As a consequence, actin filaments per se reinforce and stabilize the cadherin extracellular binding.
Draw-backs of the current study include the analysis of biochemical expression levels of all myosin
types (1-6) and respective localization associated with other functional abilities such as anchoring
cadherin-catenin complex to the actin filaments in the cell-cell adhesion sites. Investigations into
downstream intracellular signalling pathways are necessary to study further details on the involvement

of other signalling molecules (adaptor proteins) in cadherin homophilic and heterophilic adhesion.

Figure 6. Acto-myosin contractility influences cadherin extracellular domain binding dynamics. Cartoon representa-
tions depict the effect of actin filaments disruption (A) and myosin inactivation (B) on cadherin homophilic and hetero-
philic adhesion pairs. (A) Actin filaments disassembly resulting of cytochalasin D treatment leads to weakening of homo-
philic and heterophilic cadherin adhesions. (B) Myosin inactivation by inhibiting myosin light chain kinase (MLCK) using
ML-7 treatment leads to N/OB heterophilic adhesion reinforcement whereas dissimilar effects were seen in other cadherin
homophilic and heterophilic adhesions. This pictures the stabilization and reinforcement of cadherin homopbhilic and heter-
ophilic adhesion by actin filaments, with no cross linkers-myosin generating contractile forces and with myosin inactiva-
tion at the cadherin-catenin-actin complex.
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Conclusions

So, in understanding the biophysical dynamics of cell-cell adhesion, the underlying actin/adherens
junctions and its associated proteins have also to be considered. Our findings showed that myosin in-
activation provides mechanical strengthening of N/OB heterophilic adhesion and dissimilar effects on
other homophilic and heterophilic adhesion. Based on our results, further studies are required to inves-
tigate the multifunctional role of myosin types, actin filaments and other associated proteins in cell-
cell adhesion. SCFS can be a suitable experimental setting to examine the role of intracellular proteins
involved in various cellular processes, specifically cel-ECM adhesion and here cell-cell adhesion, if

one can design the experiments accordingly.

Materials and Methods

Cell culture

Cell culture was performed as described previously (29). Fibroblasts were harvested from tissues of
patients undergoing hand surgery (approved by the local Ethics Committee-Arztekammer Bremen,
#336/2012) and isolated as described previously (29). Cells were grown until the passage-9 for fibro-
blasts and 13 for MDCK in DMEM medium and incubated at 37°C in a humidified atmosphere of
95% air and 5% CO,. Cell culture was established for two days before proceeding with further SCFS
measurements. Medium was supplemented with 10% fetal bovine serum (FBS) and 2% penicillin-

streptomycin.

Cantilever functionalization

The silicon-nitride tipless cantilevers (Nanoprobe SPM Tips, NP-OW 9861) were washed with 1 %
SDS (sodium dodecyl sulphate), Helizyme (B. Braun Vet Care GmbH) and distilled water solution
each for overnight. The cantilevers were then treated with plasma (Ar) at high power for 5 min. In

order to functionalize the plasma treated cantilevers with concanavalin A (conA) (C2010, Sigma-
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Aldrich), the cantilevers were placed in a phosphate buffered saline (PBS) solution containing conA (2

mg/ml) for 2 h at room temperature. The conA coated cantilevers were stored in PBS at 4°C (44).

Cell attachment to the cantilever

Prior to cell-cell adhesion measurements, cells that were used for attachment to the cantilever were
released from the culture flask by treatment with trypsin for 2 min and trypsin was neutralized by cen-
trifugation and replenishment with new medium. The trypsinized cells were transferred into the Petri
dish containing firmly attached cell monolayers that are grown for two days. After 5 min incubation at
37°C, the Petri dish was used for the single-cell force spectroscopy-AFM setup. The conA functional-
ized cantilever was then placed over a suitable cell with round morphology which initiated its attach-
ment to the cell monolayer. Then, the conA coated cantilever was approached towards the cell with a
3.5 nN maximum loading force for 5 sec at a velocity 5 um/sec until the cell was captured. The canti-
lever with attached cell was taken few pum away from the cell monolayer and the whole setup was left

undisturbed for 10 min in order to establish firm cell adhesion to the cantilever.

AFM cell adhesion force measurements and data analysis

Single-cell experiments were conducted using a MFP3D AFM (Asylum Research, Santa Barbara, CA,
USA). An optical microscope (Zeiss Axiovert 135, Zeiss, Oberkochen) was combined with the AFM
to be able to control cantilever and sample positioning. All measurements were performed with 15
tipless cantilevers with a nominal spring constant 60 pN/nm. The Petri dishes with the cell monolayer
were fixed to an aluminium holder with vacuum grease and mounted on the AFM stage with two
magnets. The AFM head including the sample was enclosed in a homebuilt polymethacrylate
(PMMA) box in order to inject and maintain 5% CO,. Force maps were recorded on cell monolayer to
obtain cell-cell rupture force. First, the spring constant of the conA coated cantilever was calibrated by
using the thermal tune method on a cleaned and stiff surface (45) and then cell capturing followed by

cell-cell adhesion force curves were recorded. For force curves, we used typically a maximum loading
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force of 3nN with 2 s dwell time at a velocity (approach and retract) of 3 um/sec.

The data analysis package IGOR (wave metrics, Lake Oswego, OR, USA) was used to evaluate the
rupture force from the retract force curve. The retract curve contains two different patterns - jumps and
tethers. Jumps in the retract curve correspond to the rupture of cadherin bonds, whereas plateaus cor-
respond to pulling of membrane tethers. The height of all jumps was multiplied to the cantilever
spring constant in order to obtain the rupture force. By changing the approach and retract velocity (5,
7.5 and 10 pm/sec), we measured the loading rate dependent rupture forces within the cadherin bonds.
Rupture forces calculated from all rupture events were presented in histograms. Each category of ex-
periments was repeated two to four times (n=2 to 4). For each category, 30 to 40 force maps (one

force map contains 24 force curves) were analyzed.

EGTA, Cytochalasin D and ML-7 addition.

For demonstrating Ca®* specific cell-cell interactions, control experiments were performed with 7.5
mM EGTA (Sigma-Aldrich). For drug induced changes on cell-cell adhesion measurements, cyto-
chalasin D (C8273, Sigma-Aldrich) and ML-7 (12764, Sigma-Aldrich) were used at 5 uM working
concentration. Substances were solubilized in DMSO to a stock solution of 200 uM. From this stock
solution, 100 pL were added to cultures to a final concentration of 5 uM. To exclude the nonspecific
effects of DMSO, control experiments with DMSO were performed in parallel and plotted with drug

induced changes in cell-cell adhesion.

Immunofluorescence staining

Regarding immunofluorescence experiment for fibroblast-epithelial cell interaction, co-culturing of
fibroblast and epithelial cells was performed in 1:2 ratio. Two days after seeding, cells were fixed with
3.7% formaldehyde for 15 min and permeabilized with 0.1% Triton X100 for 3 min. Samples were
washed with PBS after each step and blocked with 3 % goat serum and then incubated with primary

antibodies, anti-N-cadherin 1:200 dilution (rabbit polyclonal; sc-7939, Santa Cruz Biotechnology),
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anti-OB-cadherin 1:50 dilution (mouse monoclonal; sc-365867, Santa Cruz Biotechnology) and anti-
E-cadherin 1:50 dilution (goat polyclonal; AF748, R&D systems) at 4°C overnight. After incubation,
samples were washed with PBS containing goat serum. Then samples were blocked with 3 % goat
serum and then incubated with respective secondary antibodies, e.g. cy3 anti-rabbit IgG (711-165-152,
Jackson ImmunoResearch Laboratories, Inc.) at 1:200 dilution, FITC anti-mouse IgM (315-095-020,
Jackson ImmunoResearch Laboratories, Inc.) at 1:100 dilution and Rhodamine/TRITC anti-goat 19G
(305-025-045, Jackson ImmunoResearch Laboratories, Inc.) at 1:100 in a dark environment. For mul-
ticolor staining (dual staining), a sequential (staining one protein after another) incubation of primary
and secondary antibodies was performed. Then samples were washed with PBS and stored with Pro-
Long Diamond Antifade Mountant with DAPI (P36966, ThermoFisher Scientific) at 4°C prior to im-
age acquisition. The cells were visualized with a 100x oil-immersion objective mounted on Nikon

Eclipse Ti Inverted epifluorescence Microscope (Nikon Instruments Inc., Melville, New York).

Statistical analysis

Statistical differences for the median values of rupture force of cadherins present in homo-cellular and
hetero-cellular systems of the AFM measurements were determined by Wilcoxon test, calculated in
IGOR software. * and ** indicate statistically significant differences for p-values < 0.05 and p <

0.005, respectively.
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