
Fluid and crystallised intelligence are associated with distinct 

regionalisation patterns of cortical morphology 

 

 

C E Palmer1, W Zhao2, R Loughnan2, J Zou4, C C Fan1,3, W K Thompson4, A M Dale5,6,7 

& T L Jernigan1 

 

1. Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA 

2. Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 

3. Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9444 Medical Center Dr, 

La Jolla, CA 92037, USA 

4. Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA  

5. Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA 

6. Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, 

USA 

7. Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA 

 

 

*Corresponding author: Dr. Clare E Palmer (cepalmer@ucsd.edu) 

 

 

CLASSIFICATION 

• MAJOR: Biological sciences 

• MINOR: Psychological and cognitive sciences 

 

 

KEYWORDS: cognition, intelligence, development, adolescence, cortical morphology, 

regionalisation, neuroimaging 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2020. ; https://doi.org/10.1101/2020.02.13.948596doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948596
http://creativecommons.org/licenses/by-nc/4.0/


ABSTRACT 

Cognitive performance in children is predictive of academic and social outcomes; therefore, 

understanding neurobiological mechanisms underlying individual differences in cognition during 

development may be important for improving quality of life.  Some theories of intelligence argue 

that a single latent, psychological construct with a specific neural substrate underlies many 

cognitive processes.  Here we show that a distributed configuration of cortical surface area and 

apparent thickness, when controlling for global imaging measures, is associated with cognitive 

performance in a large sample (N=10,145) of nine and ten year old children from the Adolescent 

Brain and Cognitive DevelopmentSM (ABCD) study.  Measures of fluid and crystallised intelligence 

were associated with strikingly distinct regionalisation patterns of cortical areal expansion and 

apparent thickness.  The minimal overlap in these associations has important implications for 

competing theories about developing intellectual functions.  Importantly, not controlling for 

sociodemographic factors increased the similarity between these regionalisation patterns altering 

the inferences that would be made.  This highlights the importance of understanding the shared 

variance between sociodemographic factors, cognition and brain structure particularly with a 

population-based sample such as with ABCD. 

 

SIGNIFICANCE STATEMENT 

A lack of statistical power in studies with small sample sizes has hindered research exploring 

associations between cognitive performance and cortical regionalisation patterns (when 

controlling for global imaging measures).  Using the unprecedented ABCD study® sample, this paper 

demonstrates that individual variability in the regionalisation of the cortex relates to cognitive 

function and, importantly, distinct patterns of cortical morphology predict individual differences 

across different domains of cognitive performance.  This heterogeneity highlights that the biology 

underlying “intelligence” is multifaceted.  Moreover, we demonstrate that the sociodemographic 

diversity within ABCD impacts the association between cortical morphology and cognition similarly 

across cognitive domains highlighting the importance of understanding how these confounding 

factors can modify our conclusions regarding the association between brain structure and 

cognition. 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2020. ; https://doi.org/10.1101/2020.02.13.948596doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948596
http://creativecommons.org/licenses/by-nc/4.0/


INTRODUCTION 

Intelligence is commonly defined using two broad components: fluid and crystallised(1, 2). Fluid 

intelligence refers to the ability to solve problems, reason, act quickly and adapt to novel 

situations(1, 3); whereas, crystallised intelligence encompasses task-specific knowledge that 

accrues throughout the lifespan. Although these factors are seemingly dissociable, they share 

common variance in hierarchical models of cognition.  Indeed, the presence of a positive manifold 

in correlations of cognitive task performance is one of the most robust findings within psychology: 

individuals who perform well on a given cognitive task will tend to perform well on many other 

cognitive tasks(4, 5). The latent factor explaining this shared variance, termed ‘g’, is predictive of 

social and academic outcomes(6–8), and is highly heritable(7, 9–11). Previous studies have 

suggested that ‘g’ has unique structural and functional neural correlates(12–14); however, these 

correlates vary greatly across studies, likely due to limited statistical power to identify replicable 

associations, differences in assessments used to estimate intelligence and differences in 

neuroimaging processing protocols(15). However, the notion that the shared variance among test 

scores represents a causal psychological construct affecting general intelligence is heavily 

debated(16, 17). An alternative theory argues that the positive manifold develops through mutually 

beneficial interactions of independent cognitive processes during development(17, 18). In line with 

the latter theory, individual differences in cognitive performance would be associated with 

heterogeneous, distributed neural correlates. 

Many studies have measured regional associations between brain structure and cognition; 

however, these do not always partition out the variance associated with modality-specific global 

brain measures.  Regional differences in cortical morphology relative to total cortical surface area 

(CSA) or mean cortical thickness (CTH) appear to be important for predicting behaviour (19–23).  

However, previous studies have been underpowered to detect significant effects of relative cortical 

configuration across the whole cortex particularly when using univariate statistical methods with 

stringent control for multiple comparisons (23).  Indeed, we know that during embryonic 

development, regionalisation of areal expansion and apparent cortical thickness occurs via the 

graded expression of transcription factors across the cortical plate (24, 25).  Individual variability 

in this patterning could therefore result in subtle changes to the whole configuration of the cortex 

that may impact cognition. 

In the current study, we used a multivariate analysis to test the association between the 

regionalisation of cortical surface area (CSA) and apparent cortical thickness (CTH), relative to 

global structural measures, in a large sample (n=10,145) of 9 and 10 year old children from the 

Adolescent Brain and Cognitive DevelopmentSM (ABCD) Study. This large-scale study of 11,880 nine 

and ten year old children, uses neuroimaging, genetics and a multi-dimensional battery of 

behavioural assessments to investigate the role of various biological, environmental, and 

behavioural factors in brain, cognitive, and social/emotional development.  Given the biology of 

cortical development and growing evidence that models encompassing distributed brain-behaviour 

across the brain better predict behavior (26–28), we used a multivariate approach to assess the 

significance of the aggregated effect of the brain on behavior across all cortical vertices.  We 

subsequently aimed to examine the degree to which the distributed cortical patterns associating 

with cognitive performance, namely the fluid and crystallised composite scores from the NIH 

Toolbox®, exhibited effects of a common underlying architecture or distinct patterns of cortical 

regionalization. 
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Importantly, the ABCD Study® sample was recruited to resemble the population of the United States 

as closely as possible, therefore, the participants are from diverse racial, ethnic and socioeconomic 

backgrounds. There are large confounding associations between these sociodemographic variables, 

brain structure and cognitive performance that complicate the interpretation of results. We have 

therefore performed our analyses with and without controlling for these important 

sociodemographic variables in order to highlight the implications of this for the interpretation of 

our findings. This is an important aspect of analysing individual differences in large population-

based samples such as the ABCD Study®. 

RESULTS 

Behavioural data 

Figure 1A displays pairwise Pearson correlation coefficients describing the phenotypic relationship 

between all of the cognitive tasks and the composite scores measured at baseline in the ABCD 

study.  As expected, performance across all tasks was positively correlated.  Reading recognition 

and picture vocabulary performance were most highly correlated with each other (out of the single 

task measures; r=0.54).  These scores were averaged to produce the crystallised composite score, 

therefore show a high correlation with this measure (r=0.85-0.89).  The Toolbox measures used to 

produce the fluid composite score (flanker, dimensional card sorting, pattern processing speed, 

picture sequence and list working memory) were less correlated with each other (r=0.19-0.42), 

therefore showed slightly lower correlations with the fluid composite measure compared to the 

tasks contributing to the crystallised composite score (r=0.62-0.7).  The total composite score 

(mean of fluid and crystallised) was more highly correlated with the fluid measure (r=0.91) 

compared to the crystallised measure (r=0.79). 

Figure 1B shows the same correlation matrix after pre-residualising all of the cognitive measures 

for the covariates of no interest (age, sex, race/ethnicity, household income and parental education) 

in order to show the phenotypic correlations after controlling for these confounding factors.  Most 

of the correlation coefficients decreased in this analysis; however, the overall pattern of these 

relationships remained consistent. 

Determining the association between the regionalisation of cortical morphology and 

cognition 

We used a multivariate statistical omnibus test (MOSTest)(28) to measure the association between 

the regionalisation of CSA and CTH and individual differences in cognitive performance on the fluid 

and crystallised composite scores from the NIH Toolbox.  This multivariate approach aggregates 

effects across the entire cortex and therefore is better able to detect associations that are 

distributed compared to a standard univariate neuroimaging omnibus test that assumes effects are 

sparse and localised.  The MOSTest also takes into account the covariance across the brain.  This 

statistical procedure implements a permutation test with 10,000 permutations to determine 

statistical significance.  For all associations the observed multivariate statistic fell beyond the null 

distribution of permuted statistics (p<0.0001; Table 1).  To calculate a more precise p-value for the 

associations we extrapolated beyond the null distribution (see Supplementary Methods).  All 

associations were also significant when using more widely used univariate omnibus statistic (Min-
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P; p<0.0005), but were smaller in magnitude than when using the MOSTest.  This suggests that the 

distributed signal across the cortex may be important for predicting cognitive performance.  The 

regionalisation of CTH showed greater associations with cognitive performance than CSA.  All of 

these analyses controlled for all sociodemographic factors (race/ethnicity, household income and 

parental education) as well as age, sex and scanner ID.  In addition, we measured all associations 

using two alternative multivariate statistics, Stouffer and Fisher, to determine method invariance of 

these brain-behavior associations.  All of these methods converged (supplementary figure 1). 

 

 Permuted P-values Extrapolated P-values 

 

Min-P MOST Min-P MOST 

CSA ~ fluid score + covariates 5.00E-04 1.00E-04 1.29E-04 2.93E-10 

CSA ~ crystallised score + covariates 1.00E-04 1.00E-04 9.34E-06 1.53E-07 

CTH ~ fluid composite score + covariates 1.00E-04 1.00E-04 3.96E-05 5.59E-19 

CTH ~ crystallised score + covariates 2.00E-04 1.00E-04 4.13E-08 8.71E-18 

Table 1. Cortical morphology was significantly associated with both fluid and crystallised composite 

scores. Permuted p-values demonstrate statistical significance based on the rank of the observed statistic in 

the distribution of permuted statistics.  For all associations both the observed univariate (min-P) and 

multivariate (MOST) test statistics were in the extreme of the respective null distributions, therefore we 

rejected the null hypothesis that the observed statistics came from the empirical null distribution.  

Extrapolated p-values provide an estimate of the likelihood of the observed statistics beyond the range that 

can be directly estimated from the permutations.  The magnitude of effects were larger using the multivariate 

test statistic and for associations between cognitive performance and CTH (controlling for mean CTH). 

Distinct patterns of association between the regionalisation of CSA and the fluid and 

crystallised composite scores 

After establishing significant associations between cortical morphology and cognitive performance, 

we aimed to measure the similarity across the estimated effect size maps for these associations.  

Interestingly, on visualising the estimated effect size maps of the associations between the 

regionalisation of CSA (controlling for total CSA) and the fluid and crystallised composite scores, we 

saw a unique structural pattern of association for each composite score (Fig 2A&B).  Figure 2C 

shows the difference between the beta coefficients for the fluid (F) and crystallised (C) surface 

maps.  To quantify the magnitude of these vertex-wise differences relative to the original 

associations, we calculated a ratio of the variance (root mean squared) of the beta coefficient 

differences divided by the variance (root mean squared) of the average beta coefficients across the 

F and C estimated effect size maps (RMS ratio for F – C = 1.21). 

In order to determine the unique pattern of association between the relative configuration of CSA 

and the fluid and crystallised composite scores, we generated a vertex-wise association map 

between the regionalisation of CSA and the fluid composite score controlling for the crystallised 

composite score (FC; figure 2E), and the crystallised composite score controlling for the fluid 

composite score (CF; figure 2H).  The pattern of associations was almost identical to that obtained 

when the respective composite score was not included as a covariate in the model.  Indeed, the 

surface map of the vertex-wise differences between the associations for each composite score and 
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that composite score controlling for the other were very small in magnitude compared to the 

original F - C effect size maps (figure 2F,I; RMS ratio for C – CF = 0.27; RMS ratio for F – FC = 0.38). 

Moreover, the vertex-wise correlation between the estimated beta coefficients for F vs FC was high 

(r=0.92) as was the correlation between the beta coefficients for C vs CF (r=0.95).  In contrast, the 

vertex-wise correlation between the beta coefficients for F vs C was much lower (r=0.30).  This 

further implies that there was minimal shared variance between the associations for the fluid and 

crystallised scores and the regionalisation of CSA.  The minimal overlap in the cortical configuration 

associated with these measures supports that the configurations of relative CSA associated with 

these measures were relatively distinct. 

Distinct patterns of association between the regionalisation of CTH and the fluid and 

crystallised composite scores 

Estimated effect size maps showing the vertex-wise associations between the relative configuration 

of CTH and the fluid and crystallised composite scores are shown in figure 3A&B.  The structural 

pattern of association between these composite scores and CTH were more similar than with CSA.  

However, there were still key regions with distinct differences in relative CTH associations between 

the fluid and crystallised composite scores.  Figure 3C shows the difference between the beta 

coefficients for the F and C surface maps, which were relatively large compared to the original 

estimated effect sizes (RMS ratio for F – C = 0.92).  In order to determine the unique pattern of 

association between the regionalisation of CTH and F and C, we generated a vertex-wise map of the 

association between the regionalisation of CTH and FC (figure 3E) and CTH and CF (figure 3H).  As 

with CSA, the pattern of associations was almost identical to when the respective intelligence 

measure was not included in the model.  Indeed, the estimated effect size map of the vertex-wise 

differences between the associations for each composite score and each composite score 

controlling for the other were very small in magnitude (figure 3F,I; RMS ratio for C – CF = 0.31; RMS 

ratio for F – FC = 0.30).  The vertex-wise correlations between the map of associations for each 

composite score and that composite score controlling for the other were high (F vs FC: r=0.94; C vs 

CF: r=0.95); whereas the vertex-wise correlation between the maps of association for the fluid and 

crystallised composite scores was much lower (F vs C: r=0.40).  As with CSA, the minimal overlap in 

the cortical configurations associated with these measures supports that the configurations of CTH 

associated with these measures were relatively distinct. 

Distinct patterns of association for the regionalisation of CTH and CSA across cognitive 

tasks 

Visualising the effect size maps between each cortical measure and each cognitive task revealed 

relatively distinct patterns of association across the cognitive tasks (figure 4).  This was further 

supported by the low vertex-wise correlations across these associations (figure 5).  The estimated 

beta coefficients for the regionalisation of CTH and cognition were more correlated across tasks 

than for the regionalisation of CSA and cognition.  Effect size maps were more similar for tasks 

using similar underlying cognitive processes and the composite measures appeared to reflect 

mixtures of the patterns of association for each of the tasks that were averaged to produce the 

composite scores.  Estimated effect size maps for each cortical measure and each cognitive task and 

composite score without controlling for the sociodemographic variables of race/ethnicity, 
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household income and parental education were more highly correlated (figure 5C&D).  This shows 

that variance in the sociodemographic factors is shared with the cognitive and structural measures. 

Association maps when not controlling for sociodemographic variables 

We computed the estimated effect size maps for the F and C composites scores associated with the 

regionalisation of CSA (figure 6A&B) and CTH (figure 6D&E) without controlling for the 

sociodemographic variables.  For both morphology measures, the vertex-wise correlation between 

the F and C maps increased (CSA: r=0.69; CTH: r=0.89).  However, the F-C difference maps were 

remarkably similar to when the sociodemographic variables were controlled for as shown by a 

vertex-wise correlation between the F-C difference maps with and without controlling for 

sociodemographic factors (CSA: r=0.96; CTH: r=0.94).  This strongly suggests that these 

confounding variables in aggregate index common shared variance between cortical morphology 

and cognition across domains that is not specific to a particular task performance.  Estimated effect 

size maps for the association between the regionalisation of CSA and CTH and cognitive 

performance across tasks without controlling for sociodemographic factors can be found in 

supplementary figure 3. 

Partitioning the variance between brain structure and cognition 

In order to quantify the variance in each cognitive phenotype predicted by the vertex-wise imaging 

data for the regionalisation of CSA and CTH, we calculated a polyvertex score (PVS). Much like a 

polygenic risk score, the PVS represents a linear weighted sum of the vertex-wise associations, 

which are projected from a training set to an independent hold-out set within a cross validation 

framework.  A comparison of the subject-wise PVS with cognitive performance, therefore provides 

a conservative, lower-bound estimate of the unique variance in behavior predicted by the 

regionalisation of cortical morphology independent of the global brain measures.  The 

regionalisation of CSA explained a similar proportion of the total variability in cognition compared 

to the regionalisation of CTH (for fluid scores: total CSA = ~2.59%R2; CSA PVS = ~1.27%R2; CTH 

PVS =~1.88%R2; for crystallised scores: total CSA predicted ~7.15%R2; CSA PVS predicted 

~2.39%R2; CTH PVS = ~3.85%R2; figure 7).  Mean CTH was not predictive of cognitive 

performance.  Total CSA predicted more variance in crystallised scores than fluid scores.  Across 

imaging measures the sociodemographic variables accounted for ~70-90% of the variation in fluid 

and crystallised scores predicted by brain structure.  Without controlling for brain structure, the 

sociodemographic factors collectively predicted more variance in crystallised (~23%R2) compared 

to fluid scores (~10%R2).  CTH measures (mean CTH and CTH PVS) explained ~22% of the 

association between the sociodemographic variables and the crystallised score and ~27% for the 

fluid score, whilst CSA (total CSA and CSA PVS) explained ~37% of the association between the 

sociodemographic variables and the crystallised score and ~44% for the fluid score. This shows 

that the relationship between brain structure and cognition was strongly related to the 

sociodemographic factors. 

DISCUSSION 

In this study, we have shown that the regionalisation of cortical morphology, independent of global 

brain measures, was significantly associated with individual differences in cognitive performance in 
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a large sample of 9 and 10 year old children (N=10,145). Moreover, we showed that individual 

differences in estimates of fluid and crystallised intelligence were associated with distinct maps of 

relative cortical areal expansion and apparent thickness. This suggests that regional cortical 

architecture is related differently to these two types of cognitive function. The relatively distinct 

association maps for the single tasks used to generate these composite measures provides evidence 

in support of mutualism or sampling models of intelligence, which argue that no single, latent 

neural construct is required to account for the strong positive manifold underlying “g”. 

Furthermore, we have shown that the sociodemographic diversity within ABCD impacts the 

association between cortical morphology and cognition similarly across cognitive domains. Since 

the treatment of sociodemographic variables in these models led to substantial differences in the 

magnitude of effects of interest, users of ABCD data should select covariates carefully and discuss 

any sociodemographic factors potentially related to both explanatory variables and outcomes. 

Relative cortical configuration is important for cognition 

Global brain measures have been previously associated with cognition; however, there are many 

examples where there are differences in global brain measures, such as brain size between men and 

women, which do not correspond with differences in cognition.  When measuring regional 

associations with behaviour it is therefore essential to control for these global measures in order to 

uncover specific relationships between regionalisation and behaviour.  Indeed, a number of studies 

have highlighted associations between regional differences in cortical morphology and cognition; 

however, they have lacked the power to measure associations based on the entire configuration of 

cortical morphology.  Importantly, the regionalisation of CSA and CTH has been associated with 

distinct, continuous gradients of genetic influences across the cortex (29–31) that coincide with the 

gene expression patterns that dictate specialisation of the neocortex during embryonic 

development (24, 25).  Individual differences in this molecular signalling could therefore lead to 

subtle alterations in this cortical configuration, which could lead to variability in behaviour.  Here 

we have used a multivariate statistical approach to measure the significance of distributed effects, 

which reflect the graded and distributed nature of the biology of regionalisation. 

We have shown that performance across multiple cognitive tasks was associated with the 

regionalisation of cortical morphology across the whole cortex.  For both morphology measures, 

there was a clear pattern of positive and negative associations with cognitive performance, which 

suggests that, at this developmental stage, relative differences in the size and thickness of cortical 

regions mirror individual difference variability in cognition.  Indeed, the regionalisation of CSA 

predicted additional unique variance in cognition not explained by total CSA.  By partitioning the 

variance in this way, we can determine the relative importance of these components of CSA for 

cognition.  This appeared to differ depending on the cognitive task, with more crystallised measures 

having a greater association with total CSA compared to the regionalisation of CSA.  Comparatively 

the proportion of variance in behaviour explained by regional CTH was relatively similar for fluid 

and crystallised measures.  Mean CTH did not predict cognitive performance across any measures; 

however this may be due to the developmental stage of this sample. 

Distinct associations between cortical morphology and different cognitive modalities 

The estimated effect size maps between the regionalisation of CSA and the crystallised composite 

score (comprised of reading and vocabulary measures) showed that greater areal expansion in 
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regions previously associated with language functions, such as the left temporal and middle frontal 

regions(32–34), was associated with higher crystallised scores; whereas, greater areal expansion in 

a different set of regions, previously implicated in cognitive control mechanisms required for the 

fluid tasks, such as the anterior cingulate and insula cortices(19, 20, 35–37), was associated with 

higher fluid scores. The patterns of apparent CTH associated with these measures were slightly less 

distinct, however to some degree appeared to mirror these associations with areal expansion.  

Interestingly, the areas most strongly associated with the total composite score were a combination 

of those most strongly associated with either fluid or crystallised intelligence. The maps of 

association between both the regionalisation of CSA and CTH and the total composite score 

represent a mixture of the fluid and crystallised associations. Indeed, the same can be seen for the 

fluid and crystallised composite score maps, which appear to represent a mixture of the association 

maps for each of the individual tasks that contributed to those scores. This is reflected within the 

correlation matrix of the vertex-wise associations (figure 5A&B). This observation has important 

implications for theories of intelligence. 

Theories of intelligence: sampling, mutualism or ‘g’? 

Factor analyses of cognitive measures frequently reveal a higher order general latent factor ‘g’ that 

can explain (statistically) individual differences in cognitive performance.  However, this 

observation alone does not necessarily reveal anything about the origins or development of ‘g’. 

Here we clearly do not observe a single, causal neuroanatomical substrate that may represent ‘g’ 

(i.e., influence performance on all cognitive tasks). Brain size is frequently associated with “general 

cognitive ability” and thought to represent ‘g’. Indeed total CSA was modestly associated with 

cognitive performance in the current study; however, before controlling for demographic factors, 

total CSA only predicted ~7% of the variability in crystallised scores and ~2% in fluid scores. Due 

to the unprecendented statistical power in this study, we can infer that total CSA is unlikely, across 

other studies, to account for any more individual variability in cognitive scores in children of this 

age. Indeed, this effect is much smaller than the shared variance across cognitive measures that has 

been attributed to ‘g’ (~21%) in a similar sample from the ABCD study(38). Moreover, the relative 

importance of this measure for predicting individual variability in cognition differed as a function of 

the type of intelligence measured, which is inconsistent with this being a global effect. These results 

do not rule out that a single or global neural phenotype underlying intelligence could be 

represented within a different neural modality, such as functional connectivity or latency of 

neuronal signalling; however, there is a lack of supporting evidence for a dominant neural ‘g’ 

phenotype in the current study. There are alternative models of intelligence that attempt to explain 

how the positive manifold (the positive correlation across cognitive tasks) can be generated from 

multiple, independent psychological constructs, which fit more in line with the results shown here. 

The sampling model posits that because cognitive tasks do not measure a single cognitive process, 

but instead require multiple processes, the overlap in the processes required across similar tasks 

produces a positive correlation between them(39, 40). An alternative mutualism model simulates 

the positive manifold via mutually beneficial interactions between initially uncorrelated systems 

that support cognitive behaviours(17, 18). For example, having good short-term memory may aid 

the development of cognitive strategies, which can in turn lead to better short-term memory(41). In 

this model, each initially independent system has a biological constraint, or resource, which limits 

the potential growth of that system. These resources may be determined by either genetics or the 
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environment, or both, and confer individual differences in how these systems develop and interact 

over time. The weighted sum of these resources, in simulations using the mutualism model, is a 

good predictor of cognitive performance and correlates highly with the ‘g’ that emerges from 

mutualism. This is an important distinction from the more conventional ‘g’ model as here individual 

differences in mature cognitive performance emerge from different combinations of these 

resources. For example, the same IQ score could arise from high memory resources in one 

individual, but high processing speed in another individual. 

In the current study, the configuration of cortical morphology associated with the total composite 

score (our proxy for ‘g’) appeared to be a mixture (weighted sum) of structural associations with 

the other cognitive tasks. In turn, each of these tasks clearly does not represent a single cognitive 

process, but requires a different combination of many cognitive processes. Here we suggest that 

relative differences in cortical morphology may reflect to some degree the scaffolding, or resources, 

contributing to the performance of these processing systems, and different mixtures of these 

configurations may map to different levels of performance on each cognitive task. 

Understanding individual variability in cognition related to both brain structure and 

sociodemographic factors 

Before controlling for sociodemographic variables, the proportion of variance in the composite 

measures of cognitive performance shared with the brain phenotypes was ~9% for the crystallised 

scores and ~4% for the fluid scores. Overall, these phenotypes and the partially confounded 

sociodemographic variables together accounted statistically for ~32% of the variance in 

crystallised scores and ~20% of the variance in fluid scores. These results suggest that many 

factors that relate to individual differences in cognitive test scores remain unaccounted for in these 

statistical models. However, the results are sufficiently powerful to constrain future hypotheses by 

restricting the range of plausible causal effects of well-measured variables, such as total CSA. 

The cortical arealisation phenotype and regionalisation of apparent CTH both accounted for 

additional unique variance in cognition independent of global measures. Even after pre-

residualising for sociodemographic factors that could index cultural, environmental and other 

experiential effects on cognitive test scores, as well as global brain measures, the associations 

between the cortical regionalisation phenotypes and cognitive test scores were statistically robust; 

but only explained ~0.1% of the residual variation. Here we have used a very conservative, out-of-

sample effect size; we are therefore providing the lower bound for the estimated effect size 

between regionalisation and cognition, which is not influenced by any confounding measures. 

These effects may be very small, but that is perhaps not surprising given the number of factors that 

can influence cognition and is common-place among samples of this size where effect sizes are not 

inflated by sampling variability or publication bias. Our results show that the sociodemographic 

variables accounted for a substantial proportion of the shared variance between the brain 

phenotypes and composite measures of cognitive function. This may result from many small effects 

of factors indexed by these variables, such as nutrition, limited access to healthcare and education, 

untreated prenatal complications, high levels of stress or exposure to environmental toxins. 

It is possible that the dissociable, specific variance across cognitive domains associated with 

cortical regionalisation, after controlling for sociodemographic factors, is mediated by genetic 

variability in cortical arealisation. Indeed, the regionalisation of the cortex is moderately 
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heritable(42–44) and during early embryonic development, gradients of morphogens dictate the 

expression of transcription factors across the dorsal proliferative zone, which determines the 

eventual spatial location and functional specialisation of cortical projection neurons(24, 25). Such 

biases in arealisation may influence developing cognitive functions in an individual in ways that 

advantage some functional domains relative to others, which creates important diversity within our 

population. The brain-behaviour associations in the current study most likely reflect both 

genetically mediated differences in cortical architecture and both independent and correlated 

interactions with the environment and other developing brain systems. Indeed, within our 

education system, particular individuals may be selectively advantaged and thus may be 

disproportionately exposed to environments that can enhance the positive interactions between 

developing systems, multiplying a specific genetic effect. This gene-environment correlation can 

inflate heritability estimates and increase individual variability in estimates of general 

intelligence(45–48). 

Given our current findings, we hypothesise that it is unlikely that there is a single cortical 

configuration underlying general intelligence; however, there may be a dominant phenotype, or 

configuration of resources (shown here as the mean association pattern), that may offer an 

advantage in our society and be selected for by our education system. Subsequent analyses are 

required to directly test this hypothesis by quantifying the heterogeneity in cortical architecture 

across this sample and determining if there are different clusters of individuals within the sample 

with different cortical configurations that are associated with the same cognitive performance. This 

will provide increased support for mutualism models of intelligence in which variability in the 

configuration (weighting) of resources across individuals can result in similar levels of general 

intelligence. This may also explain why the mean association maps explain a very small proportion 

of variability in behaviour. 

Conclusions 

The graded and distributed nature of the neurobiology underlying the regionalisation of the cortex 

supports the importance of studying the whole configuration of cortical morphology associated 

with behaviour using multivariate statistics and continuous pattern comparison methods. Using the 

unprecedented ABCD dataset, we now have the power to discover novel brain-behaviour 

associations and understand individual variability in behaviour among a diverse sample of 

participants. With future releases of the ABCD data we will track how the regionalisation of CSA and 

CTH and cognitive performance change over time within an individual to further understand these 

relationships. 
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Materials & Methods 

Sample 

The ABCD study is a longitudinal study across 21 data acquisition sites enrolling 11,880 children 

starting at 9 and 10 years old.  This paper analysed the baseline sample from release 2.0.1 (NDAR 

DOI: 10.15154/1504041).  The ABCD Study used school-based recruitment strategies to create a 

population-based, demographically diverse sample, however it is not necessarily representative of 

the U.S. national population (49, 50).  Due to the inclusion of a wide range of individuals across 

different races, ethnicities and socioeconomic backgrounds, it is important to carefully consider 

how to control for these potentially confounding factors and the implications of this on our effects 

of interest.  Sex and age were used as covariates in all analyses.  Only subjects who had complete 

data across all of the measures analysed were included in the neuroimaging analyses creating a 

final sample of 10,145 subjects.  Full sample details can be found in the Supplementary Material.  

Supplementary Table 1 displays the names of each variable used in these analyses from data 

release 2.0.1.  Supplementary Table 2 shows the demographic characteristics of the sample as a 

function of cognitive performance. 

Neurocognitive assessment 

The ABCD Study neurocognitive assessment at baseline consisted of the NIH Toolbox Cognition 

Battery® (NIHTBX), the WISC-V matrix reasoning task, the Little Man Task (LMT) and the Rey 

Auditory Verbal Learning task (RAVLT).  All of the tasks were administered using an iPad with 

support or scoring from a research assistant where needed.  The NIHTBX is a widely used battery of 

cognitive tests that measures a range of different cognitive domain.  It includes an the Toolbox Oral 

Reading RecognitionTask® (TORRT), Toolbox Picture Vocabulary Task® (TPVT), the Toolbox 

Pattern Comparison Processing Speed Test® (TPCPST), Toolbox List Sorting Working Memory 

Test® (TLSWMT), Toolbox Picture Sequence Memory Test® (TPSMT), Toolbox Flanker Task® (TFT) 

and Toolbox Dimensional Change Card Sort Task® (TDCCS). Details of each task can be found in the 

supplementary materials.  In the current study, the uncorrected scores for each task were used for 

statistical analyses.  Composite scores of crystallised intelligence (mean of TPVT and TORRT), fluid 

intelligence (mean of TPCPST, TLSWMT, TPSMT, TFT and TDCCS) and total score (mean of all tasks) 

were also analysed.  These measures are highly correlated with ‘gold standard’ measures of 

intelligence in adults(52) and children(53). 

MRI acquisition & Image pre-processing 

The ABCD MRI data were collected across 21 research sites using Siemens Prisma, GE 750 and 

Philips 3T scanners.  Scanning protocols were harmonised across sites.  Scanner ID was included in 

all analyses to control for any differences in image acquisition across sites and scanners.  Full 

details of all the imaging acquisition protocols used in ABCD are outlined by Casey et al (59).  Pre-

processing of all MRI data for ABCD was conducted using in-house software at the Center for 

Multimodal Imaging and Genetics (CMIG) at University of California San Diego (UCSD) as outlined in 

Hagler et al (60).  Cortical surfaces were constructed from T1-weighted structural images for each 

subject and segmented to calculate measures of apparent cortical thickness and surface area using 

FreeSurfer v5.3.0(61–65).  Cortical maps were smoothed using a Gaussian kernel of 20 mm full-
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width half maximum (FWHM) and mapped into standardised spherical atlas space.  Vertex-wise 

data for all subjects for each morphometric measurement were concatenated into matrices in 

MATLAB R2017a and entered into general linear models for statistical analysis using custom 

written code.  More details can be found in the Supplementary Materials.   

Statistical Analysis 

Vertex-wise effect size maps 

All behavioural variables were standardised (z-scored) prior to analysis as was the vertex-wise 

brain data.  We applied a general linear model (GLM) univariately at each vertex (n=1284) 

associating a given behaviour from a set of covariates (age, sex, scanner ID, race/ethnicity, 

household income and parental education) and the vertex-wise morphology data. Mass univariate 

standardised beta surface maps were created showing the vertex-wise associations for each 

analysis.  Vertexwise effect size maps were calculated for all of the thirteen cognitive measures 

predicted by relative CSA (controlling for total CSA) and relative CTH (controlling for mean CTH) 

separately resulting in N=26 independent vertex-wise analyses.  Models determining the 

association between CSA and behaviour included total CSA (sum of CSA across vertices) as an 

additional predictor and models analysing CTH included the mean CTH across vertices.  These 

analyses were repeated with and without including race/ethnicity, income and parental education 

covariates. 

Determining the significance of the effect size maps using an omnibus test 

In order to determine whether there was a significant association between vertex-wise cortical 

morphology (controlling for global measures) and cognitive task performance, we employed a 

permutation test using a univariate statistic (min-p) and three multivariate statistics (MOSTest, 

Stouffer and Fisher).  Using the least-squares estimates ��  from each GLM at each vertex, we 

computed the � � 1 vector of Wald statistics � � �	, … , 	��� across the whole cortex and 

accompanying p-values: 
 �  2���������|	|�.  Using these values we calculated 4 different test 

statistics for the permutation test outlined in Table 2. 

 

Univariate Tippett (Min-P) min �
� 

Multivariate MOSTest 	�����	 

Multivariate Fisher �2 � ln �
� 

Multivariate Stouffer �|	| /√� 

Table 2. Univariate and multivariate test statistics measured. 

The univariate statistic, min-P was defined as the most significant (smallest) p-value across the 

cortex.  This is commonly used neuroimaging omnibus test, but does not take into account the 

distributed nature of many brain-behavior associations.  The multivariate omnibus test 

(MOSTest)(28) is a more pertinent omnibus test as it determines the significance of the whole 

pattern of effects across the cortex taking into account the covariance structure across vertices.  

"   ��	


�  was calculated as the estimated squared Mahalanobis norm of �.  The Fisher and Stouffer 
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methods are additional alternative multivariate methods for aggregating effects across the cortex, 

but do not take into account the covariance across vertices.  These are likely less optimal statistics, 

but do not rely on the regularisation of a high dimensional matrix, therefore were included to show 

convergence of results across multiple methods. 

To correctly estimate the null distribution from permutations, subject labels were shuffled 

according to exchangeability blocks (EBs) defined based on the family structure within ABCD (66).  

This permutation procedure was used to determine the distribution of each test statistic under the 

global null hypothesis H0. We rejected H0 if the observed test statistic was greater than the value of 

the permuted test statistic at the critical threshold corresponding to an alpha level of 0.0038 (0.05 

corrected for the 13 cognitive tests analysed).   

Comparison across associations maps 

To determine the shared variance between the effect size maps for the fluid (F) and crystallised (C) 

composite scores for each imaging phenotype, additional maps were created controlling for the 

other composite measure by including that measure as an additional covariate within the design 

matrix.  This produced a vertexwise standardised beta effect size surface map for F independent of 

the association between cortical morphology and C (FC) and C independent of F (CF).  Surface maps 

of the difference between the vertexwise beta coefficients as well as vertexwise Pearson correlation 

coefficients were calculated for the following contrasts: F – C, F – FC and C – CF.  The magnitude of 

effects across the cortex for each map was calculated using the following formula: �  #��$$$$ .  In order 

to determine the relative size of the effects across the difference maps compared to the individual 

maps we calculated an RMS ratio using the following formula: %&'�
��/���	����	�

�
�, with %&'�
��  

representing the RMS of the difference map and RMS1 and RMS2 as the RMS for each individual 

map used to produce the difference. 

Quantifying the magnitude of the association between brain structure and cognition using a 

polyvertex score (PVS) 

The PVS was calculated for the fluid and crystallised composite scores to quantify the behavioural 

variance explained by the vertex-wise cortical morphology.  All behavioural and imaging data were 

pre-residualised using the covariates of no interest prior to calculation of the PVS.  We completed 

this step multiple times including different covariates in order to determine the change in R2 when 

particular demographic variables were and were not controlled for. 

For the imaging data, we included the global CSA and CTH measures specific to each modality in the 

pre-residualisation as covariates. This allowed us to determine the unique association between 

relative cortical morphology and cognition and compare this to the predictive power of brain 

structure without controlling for global measures. The method used here is the univariate PVS 

method outlined in detail by Zhao and colleagues(26).  The association between the imaging 

phenotype and behaviour across the whole sample was calculated as the squared correlation (R2) 

between the observed behaviour and the predicted behaviour (the PVS).  In order to explore the 

proportion of shared variability in cognitive performance explained by brain structure and the 

demographic variables, we generated several linear models with differing predictors.  These 

models were generated separately for each imaging modality (when these were included) and with 
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either the fluid or crystallised scores as the dependent variable.  Each model was trained on 90% of 

the sample and tested in a 10% hold out set within a 10-fold cross validation framework to produce 

a robust, out-of-sample R2.  The models are outlined in figure 7.   
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FIGURES 

 

 

Figure 1. Phenotypic correlations between all of the cognitive measures at baseline in ABCD. A) Pearson correlation coefficients 

for all cognitive tasks. B) Correlations after controlling for covariates of no interest (age, sex, race/ethnicity, household income, parental 

education, scanner).  Cognitive performance was pre-residualised for all covariates and then correlated using a Pearson correlation.  

Darker colours indicate a higher correlation coefficient.  The composite scores are highlighted in bold. The other cognitive measures are 

single tasks.  Correlation coefficients among the single task measures decreased after controlling for the covariates of no interest 

demonstrating that these additional measures explained a proportion of the variance in cognitive performance among these tasks. 
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Figure 2. Distinct estimated effect size maps of association between the regionalisation of CSA and fluid and crystallised 

composite scores.  All maps display the vertex-wise mass univariate standardised beta coefficients unthresholded for each association.  

A+D) The association between relative CSA and the fluid composite score and (B+G) the crystallised composite score. C)  The difference 

in standardised beta coefficients between A+B.  E) The association between relative CSA and the fluid composite score controlling for the 

crystallised composite score.  F) The difference in standardised beta coefficients between D+E.  H) The association between relative CSA 
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and the crystallised composite score controlling for the fluid composite score.  I) The difference in standardised beta coefficients between 

G+H.  The estimated effect size maps showing the association between the regionalisation of CSA and the fluid and crystallised composite 

scores have distinct patterns.  These behavioural measures show very little overlapping variance with the regionalisation of CSA. 
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Figure 3. Distinct estimated effect size maps of association between the regionalisation of CTH and fluid and crystallised 

composite scores. All maps display the vertexwise mass univariate standardised beta coefficients unthresholded for each assocition.  

A+D) The association between relative CTH and the fluid composite score and (B+G) the crystallised composite score. C)  The difference 

in standardised beta coefficients between A+B.  E) The association between relative CTH and the fluid composite score controlling for the 

crystallised composite score.  F)  The difference in standardised beta coefficients between D+E.  H)  The association between relative CTH 

and the crystallised composite score controlling for fluid composite score.  I) The difference in standardised beta coefficients between 
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G+H.  The estimated effect size maps showing the association between the regionalisation of CTH and the fluid and crystallised composite 

scores have distinct patterns.  These behavioural measures show very little overlapping variance with the regionalisation of CTH. 
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Figure 4.  Estimated effect size maps showing the mass univariate standardised beta coefficients for the association between each cognitive task and (A) the regionalisation of CSA and (B) the 

regionalisation of CTH. Performance on all of the cognitive tasks and the composite scores showed significant associations with the regionalisation of cortical morphology across the whole cortical surface 

according to the MOSTest as determined in Palmer et al (2019). 
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Figure 5. Similarity of regionalisation association patterns across cognitive tasks is modulated by demographic factors. 

Pairwise vertex-wise correlations between the estimated beta coefficients across all cognitive tasks predicted by A) the 

regionalisation of CSA and B) the regionalisation of CTH controlling for the demographic variables of race/ethnicity, household 

income and parental education. C&D) Pairwise vertex-wise correlations for all of the cognitive tasks and C) the regionalisation of 

CSA and D) the regionalisation of CTH not controlling for the specified demographic variables. The correlation amongst associations 

was much larger when these demographic variables were not included in the GLMs used to produce the estimated effect size maps. 
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Figure 6. Similar estimated effect size maps for the association between the regionalisation of cortical morphology and the 

fluid and crystallised composite scores when not controlling for demographic factors. All maps display the vertex-wise mass 

univariate standardised beta coefficients unthresholded for each association.  The top part of the figure shows the association 

between the regionalisation of CSA and the fluid composite score (A) and the crystallised composite score (B). C) The difference in 

standardised beta coefficients between A+B.  The bottom part of the figure shows the association between the regionalisation of 

CTH and the fluid composite score (D) and the crystallised composite score (E). F) The difference in standardised beta coefficients 

between D+E. The demographic variables of race/ethnicity, household income and parental education were not included in the 

mass univariate GLMs to produce these estimated effect size maps. The exclusion of these confounding factors increased the 

magnitude of the estimated beta coefficients and the similarity between the maps for the fluid and crystallised composite scores. 

However, the difference maps (C+F) closely reflect the pattern of differences seen in figure 2C and figure 3C respectively. 
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Figure 7. Controlling for sociodemographic factors reduces the variance in cognitive performance predicted by cortical 

morphology. These bar charts show the percentage R2 in the crystallised (left column) and fluid (right column) composite scores 

predicted by several models including sociodemographic and brain measures. Model 1 shows the total variance in behaviour 

explained by the full model including the covariates of no interest (age, sex and scanner), the sociodemographic variables (parental 

education, household income and race/ethnicity) and either the regionalisation of CTH and mean CTH (A; pink) or the 

regionalisation of CSA and total CSA (B; blue). Model 2 shows the unique variance in behaviour explained by the sociodemographic 

factors after pre-residualising both the dependent (DV) and independent (IV) variables for the covariates of no interest. 

Additionally, pre-residualising for the imaging phenotypes (model 3) lead to a reduction in this R2. Conversely, model 4 shows the 

unique variance in behaviour explained by the structural measures (global below the dotted line; and regionalisation above the 

dotted line) after pre-residualising for the covariates of no interest only. Additionally pre-residualising for the sociodemographic 

factors (model 5) lead to a large decrease in the variance explained by these structural measures, again showing the shared variance 

between these measures. Controlling for the sociodemographic factors of race/ethnicity, household income and parental education 

reduced the variance explained in the composite scores by ~4-5 fold for CSA and ~4-8 fold for CTH. 
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