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Abstract- There are many monitoring environments, such as railway control, in which lapses of 9 

attention can have tragic consequences. Problematically, sustained monitoring for rare targets is 10 

difficult, with more misses and longer reaction times over time. What changes in the brain underpin 11 

these “vigilance decrements”? We designed a multiple-object monitoring (MOM) paradigm to 12 

examine how the neural representation of information varied with target frequency and time 13 

performing the task. Behavioural performance decreased over time for the rare target (monitoring) 14 

condition, but not for a frequent target (active) condition. This was mirrored in the neural results: 15 

there was weaker coding of critical information during monitoring versus active conditions. We 16 

developed new analyses that can predict behavioural errors from the neural data more than a 17 

second before they occurred. This paves the way for pre-empting behavioural errors due to lapses in 18 

attention and provides new insight into the neural correlates of vigilance decrements. 19 

Introduction 20 

When people monitor displays for rare targets, they are slower to respond and more likely to miss 21 

those targets relative to frequent target conditions (Wolfe et al., 2005; Warm et al., 2008; Rich et al., 22 

2008). This effect is more pronounced as the time doing the task increases, which is often called a 23 

‘vigilance decrement’. Theoretical accounts of vigilance decrements fall into two main categories. 24 

‘Cognitive depletion’ theories suggest performance drops as cognitive resources are ‘used up’ by the 25 

difficulty of sustaining attention under vigilance conditions (Helton et al., 2008; Helton et al., 2011; 26 

Warm et al., 2008). In contrast, ‘mind wandering’ theories suggest that the boredom of the task 27 
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tends to result in insufficient involvement of cognitive resources, which in turn leads to performance 28 

decrements (Manly et al., 1999; Smallwood et al., 2006; Young et al., 2002). Either way, there are 29 

many real-life situations where such a decrease in performance over time can lead to tragic 30 

consequences, such as the Paddington railway disaster (UK, 1999), in which a slow response time to 31 

a stop signal resulted in a train moving another 600 meters past the signal into the path of an 32 

oncoming train. With the move towards automated and semi-automated systems in many high-risk 33 

domains (e.g., power-generation and trains), humans now commonly need to monitor systems for 34 

infrequent computer failures or errors. These modern environments challenge our attentional 35 

systems and make it urgent to understand the way in which monitoring conditions change the way 36 

important information about the task is encoded in the human brain.  37 

 38 

To date, most vigilance and rare target studies have used simple displays with static stimuli. 39 

Traditional vigilance tasks, inspired by radar operators in WWII (Mackworth, 1948), require 40 

participants to respond to infrequent visual events on otherwise blank screens (Temple et al., 2000).  41 

Contemporary vigilance tasks, like the Sustained Attention to Response Task (SART), require 42 

participants to respond frequently to a rapid stream of static displays and occasionally withhold a 43 

response (Rosvold et al., 1956; Rosenberg et al., 2013). However, modern environments (e.g., rail 44 

and air traffic control) have additional challenges not encapsulated by these measures. This includes 45 

multiple moving objects, potentially appearing at different times, and moving simultaneously in 46 

different directions. When an object moves in the space, its neural representation has to be 47 

continuously updated so we can perceive the object as having the same identity. Tracking moving 48 

objects also requires considerable neural computation: in addition to spatial remapping, for 49 

example, we need to predict direction, speed, and the distance of the object to a particular 50 

destination. These features cannot be studied using static stimuli; they require objects that shift 51 

across space over time. In addition, operators have complex displays requiring selection of some 52 
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items while ignoring others. We therefore need new approaches to study vigilance decrements in 53 

situations that more closely resemble the real-life environments in which humans are now 54 

operating. Developing these methods will provide a new perspective on fundamental questions of 55 

how the brain implements sustained attention in moving displays, and the way in which monitoring 56 

compared with active task involvement changes the encoding of task information. These new 57 

methods may also provide avenues to optimise performance in high-risk monitoring environments. 58 

 59 

The brain regions involved in maintaining attention over time has been studied using functional 60 

Magnetic Resonance Imaging (fMRI), which measures changes in cerebral blood flow (Adler et al., 61 

2001; Benedict et al., 2002; Coull et al., 1996; Gilbert et al., 2006; Johannsen et al., 1997; Ortunoe t 62 

al., 2002; Perin et al., 2010; Scnell et al., 2007; Sturm et al., 1999; Tana et al., 2010; Thakral et al., 63 

2009; Wingen et al., 2008). These studies compared brain activation in task vs. resting baseline or 64 

sensorimotor control (which involved no action) conditions and used univariate analyses to identify 65 

regions with higher activation under task conditions. This has the limitation that there are many 66 

features that differ between the contrasted (subtracted) conditions, not just the matter of sustained 67 

attention. Specifically, this comparison cannot distinguish whether the activation during sustained 68 

attention is caused by the differences in the task, stimuli, responses or a combination of these 69 

factors. As it is challenging to get sufficient data from monitoring (vigilance) tasks in the scanner, 70 

many previous studies used tasks with relatively frequent targets, in which vigilance decrements 71 

usually do not occur. However, despite these challenges, Langner et al. (2013) reviewed vigilance 72 

neuroimaging studies and identified a network of right-lateralized brain regions including 73 

dorsomedial, mid- and ventrolateral prefrontal cortex, anterior insula, parietal and a few subcortical 74 

areas that they argue form the core network subserving vigilant attention in humans. The areas 75 

identified by Langner et al. (2013) show considerable overlap with a network previously identified as 76 

being recruited by many cognitively challenging tasks, the ‘multiple demand’ (MD) regions, which 77 
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include the right inferior frontal gyrus, anterior insula and intra parietal sulcus (Duncan & Owen, 78 

2000; Duncan, 2010; Fedorenko et al., 2013; Woolgar et al., 2011; Woolgar et al., 2015a; Woolgar et 79 

al., 2015b).  80 

 81 

Other fMRI studies of vigilance have focused on the default mode network, composed of discrete 82 

areas in the lateral and medial parietal, medial prefrontal, and medial and lateral temporal cortices 83 

such as posterior cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC), which is 84 

thought to be active during ‘resting state’ and less active during tasks (Greicius et al., 2003; Greicius 85 

et al., 2009; Raichle et al., 2015). Eichele et al., (2008) suggested that lapses in attention can be 86 

predicted by decrease of deactivation of this default mode network. In contrast, Weissman et al. 87 

(2006) identified deactivation in the anterior cingulate and right prefrontal regions in pre-stimulus 88 

time windows when targets were missed. More recently, Sadaghiani et al. (2015) showed that the 89 

functional connectivity between sensory and ‘vigilance-related’ (Cingulo-Opercular) brain areas 90 

decreased prior to behavioural misses in an auditory task while the connectivity increased between 91 

the same sensory area and the default-mode network. These suggest that modulation of 92 

interactions between sensory and vigilance-related brain areas might be responsible for behavioural 93 

misses in monitoring tasks. 94 

 95 

Detecting changes in brain activation that correlate with lapses of attention can be particularly 96 

challenging with fMRI, given that it has poor temporal resolution. Electroencephalography (EEG), 97 

which records electrical activity at the scalp, has much better temporal resolution, and has been the 98 

other major approach for examining changes in brain activity during sustained attention tasks. 99 

Frequency band analyses have shown that low-frequency alpha (8 to 10.9 Hz) oscillations predict 100 

task workload and performance during monitoring of simulated air traffic (static) displays with rare 101 

targets, while frontal theta band (4 to 7.9 Hz) activity predicts task workload only in later stages of 102 
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the experiment (Kamzanova et al., 2014). Other studies find that increases in occipital alpha 103 

oscillations can predict upcoming error responses (Mazaheri et al., 2009) and misses (O'Connell et 104 

al., 2009) in go/no-go visual tasks with target frequencies of 11% and 9%, respectively. These 105 

changes in signal power that correlate with the task workload or behavioural outcome of trials are 106 

useful, but provide relatively coarse-level information about what changes in the brain during 107 

vigilance decrements. 108 

 109 

Understanding the neural basis of decreases in performance over time under vigilance conditions is 110 

not just theoretically important, it also has potential real-world applications. In particular, if we 111 

could identify a reliable neural signature of attentional lapses, then we could potentially intervene 112 

prior to any overt error. For example, with the development of autonomous vehicles, being able to 113 

detect when a driver is not engaged, combined with information about a potential threat, could 114 

allow emergency braking procedures to be initiated. Previous studies have used physiological 115 

measures such as pupil size (Yoss, et al., 1970), body temperature (Molina et al., 2019), skin 116 

conductance, blood pressure, etc. (Lohani et al., 2019) to indicate the level of human arousal or 117 

alertness, but these lack the fine-grained information necessary to distinguish transient dips from 118 

problematic levels of inattention in which task-related information is lost. In particular, we lack 119 

detail on how information processing changes in the brain during vigilance decrements. This 120 

knowledge is crucial to develop a greater theoretical and practical understanding of how humans 121 

sustain vigilance.  122 

 123 

In this study, we developed a new task, multiple object monitoring (MOM), which includes key 124 

features of real-life situations confronting human operators in high-risk environments. These 125 

features include moving objects, varying levels of target frequency, and a requirement to detect and 126 

avoid collisions. We recorded neural data using the highly-sensitive method of 127 
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magnetoencephalography (Baillet, 2017) and used multivariate pattern analyses (MVPA) to detect 128 

changes in information encoded in the brain. We used these new approaches to better understand 129 

the way in which changes between active and monitoring tasks affects neural processing, including 130 

functional connectivity. We then examined the potential for using these neural measures to predict 131 

forthcoming behavioural misses based on brain activity.  132 

 133 

Methods 134 

Participants: 135 

We tested twenty-one right-handed participants (10 male, 11 female, mean age = 23.4 years (SD = 136 

4.7 years), all Macquarie University students) with normal or corrected to normal vision. The Human 137 

Research Ethics Committee of Macquarie University approved the experimental protocols and the 138 

participants gave informed consent before participating in the experiment. We reimbursed each 139 

participant AU$40 for their time completing the MEG experiment, which lasted for about 2 hours 140 

including setup.  141 

 142 

 143 

Apparatus: 144 

We recorded neural activity using a whole-head MEG system (KIT, Kanazawa, Japan) with 160 coaxial 145 

first-order gradiometers, at a sampling rate of 1000 Hz. We projected the visual stimuli onto a mirror 146 

at a distance of 113 cm above participants’ heads while they were in the MEG. An InFocus IN5108 147 

LCD back projection system (InFocus, Portland, Oregon, USA), located outside the magnetically 148 

shielded room, presented the dynamically moving stimuli, controlled by a desktop computer 149 

(Windows 10; Core i5 CPU; 16 GB RAM; NVIDIA GeForce GTX 1060 6GB Graphics Card) using 150 
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MATLAB with Psychtoolbox 3.0 extension (Brainard, 1997; Kleiner et al., 2007). We set the refresh 151 

rate of the projector at 60 Hz and used parallel port triggers and a photodiode to mark the beginning 152 

(dot appearing on the screen) and end (dot disappearing off the screen) of each trial. We recorded 153 

participant’s head shape using a pen digitizer (Polhemus Fastrack, Colchester, VT) and placed five 154 

marker coils on the head which allowed the location of the head in the MEG helmet to be monitored 155 

during the recording- we checked head location at the beginning, half way through and the end of 156 

recording. We used a fibre optic response pad (fORP, Current Designs, Philadelphia, PA, USA) to 157 

collect responses and an EyeLink 1000 MEG-compatible remote eye-tracking system (SR Research, 158 

1000 Hz monocular sampling rate) to record eye position. We focused the eye-tracker on the right 159 

eye of the participant and calibrated the eye-tracker immediately before the start of MEG data 160 

recording.  161 

 162 

Task and Stimuli: 163 

Task summary: The task was to avoid collisions of relevant moving dots with the central object by 164 

pressing the space bar if the dot passed a deflection point in a visible predicted trajectory without 165 

changing direction to avoid the central object (see Figure 1A; a demo can be found here 166 

https://osf.io/c6hy9/). A text cue at the start of each block indicated which colour of dot was 167 

relevant for that block. The participant only needed to respond to targets in this colour; dots in the 168 

other colour formed distractors. Pressing the button deflected the dot in one of two possible 169 

directions (counterbalanced) to avoid collision.  170 

 171 

Stimuli: The stimuli were moving dots in one of two colours that followed visible trajectories and 172 

covered a visual area of 3.8 × 5 degrees of visual angle (dva; Figure 1A). We presented the stimuli in 173 

blocks of 110 s duration, with at least one dot moving on the screen at all times during the 110s 174 

block. The trajectories directed the moving dots from two corners of the screen (top left and bottom 175 
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right) straight towards a centrally presented static “object” (a white dot of 0.25 dva) and then 176 

deflected away (either towards the top right or bottom left of the screen; in pathways orthogonal to 177 

their direction of approach) from the static object at a set distance (the deflection point).  178 

 179 

Target dots deviated from the visible trajectory at the deflection point and continued moving 180 

towards the central object. The participant had to push the space bar to prevent a ‘collision’. If the 181 

response was made before the dot reached the centre of the object, the dot deflected, and this was 182 

counted as a ‘hit’. If the response came after this point, the dot continued straight, and this was 183 

counted as a ‘miss’, even if they pressed the button before the dot totally passed through central 184 

object.  185 

 186 
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 187 

The time from dot onset in the periphery to the point of deflection was 1226±10 (Mean ± SD) 188 

milliseconds. Target (and distractor event) dots took 410±10 (Mean ± SD) milliseconds to cross from 189 

the deflection point to the collision point. In total, each dot moved across the display for 2005±12 190 

(Mean ± SD) milliseconds before starting to fade away after either deflection or travel through the 191 

object. The time delay between the onsets of different dots (ISI) was 1660±890 (Mean ± SD) 192 

 

Figure 1. The Multiple Object Monitoring (MOM) task and types of information decoded. (A) At the start of a block, 
the relevant colour is cued (here, green; distractors in red). Over the on-task period (~30 mins per task condition), 
multiple dots entered from either direction, each moving along a visible individual trajectory towards the middle 
object. Only attended dots that failed to deflect along the trajectories at the deflection point required a response 
(Target: bottom right display). Participants did not need to press the button for the unattended dot (Distractor: top 
right display) and the dots that kept moving on the trajectories (Event: middle right panel). Each dot took ~1226 
ms from appearance to deflection. (B) Direction of approach information (left display: left vs. right as indicated by 
dashed and solid lines, respectively) and distance information (right display). Note the blue dashed lines and 
orange arrows were not present in the actual display. A demo of the task can be found here 
[https://osf.io/c6hy9/]. 
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milliseconds. There were 1920 dots presented in the whole experiment (~56 mins). Each 110 second 193 

block contained 64 dots, 32 (50%) in red and 32 (50%) in green, while the central static object and 194 

trajectories were presented in white on a black background. 195 

 196 

Conditions: There were two target frequency conditions. In ‘Monitoring’ blocks, target dots were 197 

~6.2% of cued-colour dots (2 out of 32 dots). In ‘Active’ blocks, target dots were 50% of cued-colour 198 

dots (16 out of 32 dots). The same proportion of dots in the non-cued colour failed to deflect; these 199 

were distractors (see Figure 1A, top right panel). Participants completed two practice blocks of the 200 

Active condition and then completed 30 blocks in the main experiment (15 Active followed by 15 201 

Monitoring or vice versa, counterbalanced across participants). 202 

 203 

The time between the appearance of target dots varied unpredictably, with distractors and 204 

correctly-deflecting dots (events) intervening. In Monitoring blocks, there was an average time 205 

between targets of 57.88 (±36.03 SD) seconds. In Active blocks, there was an average time between 206 

targets of 7.20 (±6.36 SD) seconds.  207 

 208 

Feedback: On target trials, if the participant pressed the space bar in time, this ‘hit’ was indicated by 209 

a specific tone and deflection of the target dot. There were three types of potential false alarm, all 210 

indicated by an error tone and no change in the trajectory of the dot. These were if the participant 211 

responded: (1) too early, while the dot was still on the trajectory; (2) when the dot was not a target 212 

and had been deflected automatically (‘event’ in Figure 1A, middle right); or (3) when the dot was in 213 

the non-cued colour (‘distractor’ in Figure 1A, top right) in any situation. Participants had only one 214 

chance to respond per dot; any additional responses resulted in ‘error’ tones. As multiple dots could 215 
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be on the screen, we always associated the button press to the dot which was closest to the central 216 

object. 217 

 218 

Pre-processing: 219 

MEG data were filtered online using band-pass filters in the range of 0.03 to 200 Hz and notch-220 

filtered at 50 Hz. We did not perform eye-blink artefact removal because it has been shown that 221 

blink artefacts are successfully ignored by multivariate classifiers as long as they are not 222 

systematically different between decoded conditions (Grootswagers et al., 2017). We then imported 223 

the data into Matlab and epoched them from -100 to 3000 ms relative to the trial onset time. Finally, 224 

we down-sampled the data to 200 Hz for the decoding of our two key measures: direction of 225 

approach and distance to object (see below). 226 

 227 

Multivariate pattern analyses (MVPA): 228 

We measured the information contained in the multivariate (multi-sensor) patterns of MEG data by 229 

training a linear discriminant analysis (LDA) classifier using a set of training trials from two categories 230 

(e.g., for the direction of approach measure, this was dots approaching from left vs. right, see 231 

below).  We then tested to see whether the classifier could predict the category of an independent 232 

(left-out) set of testing data from the same participant. We used a 10-fold cross-validation approach, 233 

splitting the data into training and testing subsets. Specifically, we trained the LDA classifier on 90% 234 

of the trials and tested it on the left-out 10% of the trials. This procedure was repeated 10 times 235 

each time leaving out a different 10% subset of the data for testing (i.e., 10-fold cross validation). 236 

  237 

We decoded two major task features from the neural data: (1) the direction of approach (left vs. 238 

right); and (2) the distance of each moving dot from the centrally fixed object (distance to object), 239 
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which correspond to visual (retinal) information changing over time. Our interest was in the effect of 240 

selective attention (attended vs. unattended) and Target Frequency conditions (Active vs. 241 

Monitoring) on the neural representation of this information, and how the representation of 242 

information changed on trials when participants missed the target.  243 

 244 

We decoded left vs. right directions of approach (as indicated by yellow arrows in Figure 1B) every 5 245 

ms starting from 100 ms before the appearance of the dot on the screen to 3000 ms later. Please 246 

note that as each moving dot is considered a trial, trial time windows (epochs) overlapped for 62.2% 247 

of trials. In Monitoring blocks, 1.2% of target trials overlapped (two targets were on the screen 248 

simultaneously but lagged relative to one another). In Active blocks, 17.1% of target trials 249 

overlapped. 250 

 251 

For the decoding of distance to object, we split the trials into the time windows corresponding to 15 252 

equally spaced distances of the moving dot relative to the central object (as indicated by blue lines in 253 

Figure 1B), with distance 1 being closest to the object, and 15 being furthest away (the dot having 254 

just appeared on the screen). Next, we collapsed (concatenated) the MEG signals from identical 255 

distances (splits) across both sides of the screen (left and right), so that every distance included data 256 

from dots approaching from both left and right side of the screen. This concatenation ensures that 257 

distance information decoding is not affected by the direction of approach. Finally, we trained and 258 

tested a classifier to distinguish between the MEG signals (a vector comprising data from all MEG 259 

sensors, concatenated over all time points in the relevant time window), pertaining to each pair of 260 

distances (e.g., 1 vs. 2) using a leave-one-out cross-validation procedure. We obtained classification 261 

accuracy for all possible pairs of distances (105 combinations of 15 distances). To obtain a single 262 

decoding value per distance, we averaged the 14 classification values that corresponded to that 263 

distance against other 14 distances. For example, the final decoding accuracy for distance 15 was an 264 
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average of 15 vs. 14, 15 vs. 13, 15 vs. 12 and so on until 15 vs. 1. We repeated this procedure for our 265 

main Target Frequency conditions (Active vs. Monitoring), Attention conditions (attended vs. 266 

unattended) and Time on Task (first and last five blocks of each task condition, which are called early 267 

and late blocks here, respectively). This was done separately for correct and miss trials and for each 268 

participant separately. 269 

 270 

Informational connectivity analysis: 271 

To evaluate possible modulations of brain connectivity between the attentional networks of the 272 

frontal brain and the occipital visual areas, we used a simplified version of our recently developed 273 

RSA-based connectivity analysis (Goddard et al., 2016; Karimi-Rouzbahani, 2018; Karimi-Rouzbahani 274 

et al., 2019). Specifically, we evaluated the informational connectivity, which measures the similarity 275 

of distance information between areas, across our main Target Frequency conditions (Active vs. 276 

Monitoring), Attention conditions (attended vs. unattended) and Time on Task (first and last five 277 

blocks of each task condition, which are called early and late blocks here, respectively). This was 278 

separately done for correct and miss trials, using representational dissimilarity matrices (RDM; 279 

Kriegeskorte et al., 2008). To construct the RDMs, we decoded all possible combinations of distances 280 

from each other yielding a 15 by 15 cross-condition classification matrix, for each condition 281 

separately. We obtained these matrices from peri-occipital and peri-frontal areas to see how the 282 

manipulation of Attention, Target Frequency and Time on Task modulated the correlation of 283 

information (RDMs) between those areas on correct and miss trials. We quantified connectivity using 284 

Spearman’s rank correlation of the matrices obtained from those areas, only including the lower 285 

triangle of the RDMs (105 decoding values). To avoid bias when comparing the connectivity on 286 

correct vs. miss trials, the number of trials were equalized by subsampling the correct trials to the 287 

number of miss trials and repeating the subsampling 100 times before finally averaging them for 288 

comparison with miss trials. 289 
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Error data analysis: 290 

Next, we asked what information was coded in the brain when participants missed targets. To study 291 

information coding in the brain on miss trials, where the participants failed to press the button when 292 

targets failed to automatically deflect, we used our recently-developed method of error data 293 

analysis (Woolgar et al., 2019). Essentially, this analysis asks whether the brain represents the 294 

information similarly on correct and miss trials. For that purpose, we trained a classifier using the 295 

neural data from a proportion of correct trials (i.e., when the target dot was detected and manually 296 

deflected punctually) and tested on both the left-out portion of the correct trials (i.e., cross-297 

validation) and on the miss trials. If decoding accuracy is equal between the correct and miss trials, 298 

we can conclude that information coding is maintained on miss trials as it is on correct trials. 299 

However, if decoding accuracy is lower on miss trials than on correct trials, we can infer that 300 

information coding differs on miss trials, consistent with the change in behaviour.  Since correct and 301 

miss trials were visually different after the deflection point, we only used data from before the 302 

deflection point.  303 

 304 

For these error data analyses, the number of folds for cross-validation were determined based on 305 

the proportion of miss to correct trials (number of folds = number of miss trials/number of correct 306 

trials). This allowed us to test the trained classifiers with equal numbers of miss and correct trials to 307 

avoid bias in the comparison. 308 

 309 

Predicting behavioural performance from neural data: 310 

We developed a new method to predict, based on the most task-relevant information in the neural 311 

signal, whether or not a participant would press the button for a target dot in time to deflect it on a 312 

particular trial. This method includes three steps, with the third step being slightly different for the 313 
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left-out testing participant vs. the other 20 participants. First, for every participant, we trained 105 314 

classifiers using ~80% of correct trials to discriminate the 15 distances. Second, we tested those 315 

classifiers using half of the left-out portion (~10%) of the correct trials, which we called validation 316 

trials, by simultaneously accumulating (i.e., including in averaging) the accuracies of the classifiers at 317 

each distance and further distances as the validation dot approached the central object. The 318 

validation set allowed us to determine a decision threshold for predicting the outcome of each 319 

testing trial: whether it was a correct or miss trial. Third, we performed a second-level classification 320 

on testing trials which were the other half (~10%) of the left-out portion of the correct trials and the 321 

miss trials, using each dot’s accumulated accuracy calculated as in the previous step. Accordingly, if 322 

the testing dot’s accumulated accuracy was higher than the decision threshold, it was predicted as 323 

correct, otherwise miss. For all participants, except for the left-out testing one, the decision 324 

threshold was chosen from a range of multiples (0.1 to 4 in steps of 0.1) of the standard deviation 325 

below the accumulated accuracy obtained for the validation set on the second step. For determining 326 

the optimal threshold for the testing participant, however, instead of a range of multiples, we used 327 

the average of the best performing multiples (i.e., the one which predicted the behavioural outcome 328 

of the trial more accurately) obtained from the other 20 participants. This avoided circularity in the 329 

analysis.  330 

 331 

To give more detail on the second and third steps, when the validation/testing dots were at distance 332 

#15, we averaged the accuracies of the 14 classifiers trained to classify dots at distance #15 from all 333 

other distances. Accordingly, when the dot reached distance #14, we also included and averaged 334 

accuracies from classifiers which were trained to classify distance #14 from all other distances 335 

leading to 27 classifier accuracies. Therefore, by the time the dot reached distance #1, we had 105 336 

classifier accuracies to average and predict the behavioural outcome of the trial. Every classifier’s 337 

accuracies were either 1 or 0 corresponding to correct or incorrect classification of dot’s distance, 338 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.06.29.178970doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178970
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

respectively. Note that accumulation of classifiers’ accuracies, as compared to using classifier 339 

accuracy on every distance independently, provides a more robust and smoother classification 340 

measure for deciding on the label of the trials. The validation set, which was different from the 341 

testing set, allowed us to set the decision threshold based on the validation data within each subject 342 

and from the 20 participants and finally test our prediction classifiers on a separate testing set from 343 

the 21st individual participant, iteratively. The optimal threshold was 1.54 (± 0.2) times the SD below 344 

the decoding accuracy on the validation set across participants. 345 

 346 

Eye-tracking data analysis: 347 

To see if we could use a less complicated physiological measure to obtain information about the 348 

processing of visual information, and to check that the decoding we observed was not just due to 349 

eye movements, we repeated the above decoding analyses using the eye-tracking data. Specifically, 350 

instead of the MEG sensor data, we decoded the information about the direction of approach and 351 

distance to object using x-y coordinates of the right eye fixation provided by the eye-tracker. All 352 

other aspects of the analysis were identical to the ‘error data analysis’ section. If we observe a 353 

similar decoding of information using the eye-tracking data, it would mean that we could use eye-354 

tracking, which is a less expensive and more feasible approach for prediction of errors, instead of 355 

MEG. If the prediction from the MEG decoding was stronger than that of the eye tracking, it would 356 

mean that there was information in the neural signal over and above any artefact associated with 357 

eye movement.  358 

 359 

Statistical analyses: 360 

To determine the evidence for the null and the alternative hypotheses, we used Bayes analyses as 361 

implemented by Krekelberg (https://klabhub.github.io/bayesFactor/) based on Rouder et al. (2012). 362 
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We used standard rules for interpreting levels of evidence (Lee and Wagenmakers, 2014; Dienes, 363 

2014): Bayes factors of >10 and <1/10 were interpreted as strong evidence for the alternative and 364 

null hypotheses, respectively, and >3 and <1/3 were interpreted as moderate evidence for the 365 

alternative and null hypotheses, respectively. We interpreted the Bayes factors which fell between 3 366 

and 1/3 as reflecting insufficient evidence either way. 367 

 368 

Specifically, for the behavioural data, we asked whether there was a difference between Active and 369 

Monitoring conditions in terms of miss rates and reaction times. Accordingly, we calculated the 370 

Bayes factor as the probability of the data under alternative (i.e., difference) relative to the null (i.e., 371 

no difference) hypothesis in each block separately. In the decoding, we repeated the same 372 

procedure to evaluate the evidence for the alternative hypothesis of a difference between decoding 373 

accuracies across conditions (e.g. Active vs. Monitoring and Attended vs. Unattended) vs. the null 374 

hypothesis of no difference between them, at every time point/distance. To evaluate evidence for 375 

the alternative of above-chance decoding accuracy vs. the null hypothesis of no difference from 376 

chance, we calculated the Bayes factor between the distribution of actual accuracies obtained and a 377 

set of 1000 random accuracies obtained by randomising the class labels across the same pair of 378 

conditions (null distribution) at every time point/distance.  379 

 380 

To evaluate the evidence for the alternative of main effects of different factors (Attention, Target 381 

Frequency and Time on Task) in decoding, we used Bayes factor ANOVA (Rouder et al., 2012). This 382 

analysis evaluates the evidence for the null and alternative hypothesis as the ratio of the Bayes 383 

factor for the full model ANOVA (i.e., including all three factors of Target Frequency, Attention and 384 

the Time on Task) relative to the restricted model (i.e., including the two other factors while 385 

excluding the factor being evaluated). For example, for evaluating the main effect of Time on Task, 386 
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the restricted model included Attention and Target Frequency factors but excluded the factor of 387 

Time on Task.  388 

 389 

The priors for all Bayes factor analyses were determined based on Jeffrey-Zellner-Siow priors 390 

(Jeffreys, 1961; Zellner and Siow, 1980) which are from the Cauchy distribution based on the effect 391 

size that is initially calculated in the algorithm using a t-test (Rouder et al., 2012). The priors are 392 

data-driven and have been shown to be invariant with respect to linear transformations of 393 

measurement units (Rouder et al., 2012), which reduces the chance of being biased towards the null 394 

or alternative hypotheses. 395 

 396 

Results 397 

Behavioural data: The MOM task evokes a reliable vigilance decrement  398 

In the first 110 second experimental block of trials (i.e., excluding the two practice blocks), 399 

participants missed 29% of targets in the Active condition and 40% of targets in the Monitoring 400 

condition. However, the number of targets in any single block is necessarily very low for monitoring 401 

conditions (for a single block, there are 16 targets for Active but only 2 targets for Monitoring). The 402 

pattern does become more robust over blocks, and Figure 2A shows the miss rates changed over 403 

time in different directions for the Active vs. Monitoring conditions. For Active blocks, miss rates 404 

decreased over the first five blocks and then plateaued at ~17%. For Monitoring, however, miss 405 

rates increased throughout the experiment: by the final block, these miss rates were up to 76% (but 406 

again, the low number of targets in Monitoring mean that we should use caution in interpreting the 407 

results of any single block alone). There was evidence that miss rates were higher in the Monitoring 408 

than Active conditions from the 4th block onwards (BF > 3; Figure 2A). Participants’ reaction times 409 

(RTs) on correct trials also showed evidence of vigilance decrements, increasing over time under 410 
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Monitoring but decreasing under Active task conditions (Figure 2B). There was evidence that 411 

reaction times were slower for Monitoring compared with Active from the sixth block onwards (BF > 412 

3, except for Block #11). The characteristic pattern of increasing miss rates and slower RTs over time 413 

in the Monitoring relative to the Active condition validates the MOM task as effectively evoking 414 

vigilance decrements.  415 

 416 

Neural data: Decoding different aspects of task-related information  417 

With so much going on in the display at one time, we first needed to verify that we can successfully 418 

decode the major aspects of the moving stimuli, relative to chance. The full data figures and details 419 

are presented in Supplementary Materials: We were able to decode both direction of approach and 420 

distance to object relative to chance from MEG signals (see Supplementary Figure 1). Thus, we can 421 

turn to our main question about how these representations were affected by the Target Frequency, 422 

Attention and Time on Task. 423 

Figure 2. Behavioural performance on the MOM task. The percentage of miss trials (A), and correct reaction times 
(B), as a function of block. Thick lines show the average across participants (shading 95% confidence intervals) for 
Active (blue) and Monitoring (red) conditions. Each block lasted for 110 seconds and had either 16 (Active) or 2 
(Monitoring) targets out of 32 cued-colour and 32 non-cued colour dots. Bayes Factors are shown in the bottom 
section of each graph: Filled circles show moderate/strong evidence for either hypothesis and empty circles 
indicate insufficient evidence when evaluating the contrast between Active and Monitoring conditions. 
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 424 

The neural correlates of the vigilance decrement 425 

As the behavioural results showed (Figure 2), the difference between Active and Monitoring 426 

conditions increased over time, showing the greatest difference during the final blocks of the 427 

experiment. To explore the neural correlates of these vigilance decrements, we evaluated 428 

information processing in the brain during the first five and last five blocks of each task (called early 429 

and late blocks, respectively) and the interactions between the Target Frequency, Attention and the 430 

Time on Task using a 3-way Bayes factor ANOVA as explained in Methods. 431 

 432 

Effects of Target Frequency on direction of approach information 433 

Direction of approach information is a very clear visual signal (‘from the left’ vs ‘from the right’) and 434 

therefore is unlikely to be strongly modulated by other factors, except perhaps whether the dot was 435 

in the cued colour (Attended) or the distractor colour (could be ignored: Unattended).  There was 436 

strong evidence for a main effect of Attention (Figure 3A; BF > 10, Bayes factor ANOVA, cyan dots) 437 

starting from 265ms and lasting until dots faded. This is consistent with maintenance of information 438 

about the attended dots and attenuation of the information about unattended dots (Supplementary 439 

Figure 1A). The large difference in coding attributable to attention remained for as long as the dots 440 

were visible. 441 

 442 

In contrast, there was no sustained main effect of Target Frequency on the same direction of 443 

approach coding (0.1 < BF < 0.3; Bayes factor ANOVA, Figure 3A, pink dots). For the majority of the 444 

epoch there was moderate evidence for the null hypothesis (BF < 1/3). The sporadic time points with 445 

a main effect of Target Frequency, observed a few times before the deflection (3 < BF < 10), likely 446 

reflect noise in the data as there is no clustering. Recall that we only focus on timepoints prior to 447 
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deflection, as after this point there are visual differences between Active and Monitoring, with more 448 

dots deflecting in the Monitoring condition. 449 

 450 

There was also no sustained main effect of the Time on Task on information about the direction of 451 

approach (0.1 < BF < 0.3; Bayes factor ANOVA, green dots; Figure 3A). There were no sustained 2-452 

way or 3-way interactions between Attention, Target Frequency and Time on Task (BF < 1; Bayes 453 

 

 

Figure 3. Impact of different conditions and their interactions on information processing on correct trials (all trials except those 
in which a target was missed or there was a false alarm). (A) Decoding of direction of approach information (less task-relevant). 
The horizontal dashed line refers to theoretical chance-level decoding (50%). Upper graph: Attended dot; Lower graph: 
Unattended (‘distractor’) dot. (B) Decoding of distance to object information (most task-relevant) and their Bayesian evidence 
for main effects and interactions. Thick lines show the average across participants (shading 95% confidence intervals). Vertical 
dashed lines indicate critical times in the trial. Bayes Factors are shown in the bottom section of each graph: Filled circles show 
moderate/strong evidence for either hypothesis and empty circles indicate insufficient evidence. Main effects and interactions 
of conditions calculated using Bayes factor ANOVA analysis. Cyan, pink, green and red dots indicate the main effects of 
Attention, Target frequency, Time on Task and the interaction between Target frequency and Time on Task, respectively. The 
results of Bayes factor analysis (i.e. the main effects of the three conditions and their interactions) are from the same 3-way 
ANOVA analysis and therefore identical for attended and unattended panels. Early = data from the first 5 blocks (~10 minutes). 
Late = data from the last 5 blocks (~10 minutes). 
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factor ANOVA). Note that the number of trials used in the training and testing of the classifiers were 454 

equalized across the 8 conditions and equalled the minimum available number of trials across those 455 

conditions shown in Figure 3. Therefore, the observed effects cannot be attributed to a difference in 456 

the number of trials across conditions. 457 

 458 

Effects of Target Frequency on critical distance to object information 459 

The same analysis for the representation of the task-relevant distance to object information showed 460 

strong evidence for a main effect of Attention (BF > 10; Bayes factor ANOVA) at all 15 distances, 461 

moderate or strong evidence for a main effect of Time on Task (BF > 3; Bayes factor ANOVA) at eight 462 

of the earlier distances, and an interaction between Time on Task and Target Frequency at two of 463 

these distances (Figure 3B). There was more decoding for attended than unattended dots (compare 464 

top and bottom panels of Figure 3B). The main effect of Time on Task reflected decreased decoding 465 

in later blocks (compare dashed lines to solid lines in Figure 3B). Finally, the interaction between 466 

Target Frequency and Time on Task can be seen when comparing the solid to the dashed lines in 467 

blue and red colours, separately, and suggests a bigger decline in decoding in Monitoring compared 468 

to Active conditions. Note that as there was moderate evidence for no interaction between 469 

Attention and Target Frequency or between Attention and Time on Task (0.1 < BF < 0.3, 2-way Bayes 470 

factor ANOVA) or simultaneously between the three factors (BF < 0.1, 3-way Bayes factor ANOVA), 471 

we do not show those statistical results in the figure. 472 

 473 

Together, these results suggest that while vigilance conditions had little or no impact on coding of 474 

the direction of approach, they did impact the critically task-relevant information about the distance 475 

of the dot from the object. Coding of this information declined as the time on the task increased and 476 

this effect was more pronounced when the target events happened infrequently. 477 
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 478 

Is brain connectivity modulated by Attention, Target Frequency and the Time on Task? 479 

Using graph-theory-based univariate connectivity analysis, it has been recently shown that the 480 

connectivity between relevant sensory areas and “vigilance-related” cognitive areas changes prior to 481 

lapses in attention (behavioural misses; Sadaghiani et al., 2015). Therefore, we asked whether 482 

vigilance decrements across the time course of our task corresponded to changes in multi-variate 483 

connectivity, which tracks information transfer, between frontal attentional networks and sensory 484 

visual areas. Specifically, we asked whether there were changes in information exchange between 485 

these conditions. We used a simplified version of our method of RSA-based informational 486 

connectivity to evaluate the (Spearman’s rank) correlation between distance information RDMs 487 

across the peri-frontal and peri-occipital electrodes (see Methods; Goddard et al., 2016; Figure 4A).  488 

 489 

Results showed strong evidence (Bayes factor ANOVA, BF = 6.3e21) for higher informational 490 

connectivity for Attended compared to Unattended trials, and moderate evidence for higher 491 

connectivity in Active compared to Monitoring conditions (Bayes factor ANOVA, BF = 3.4; Figure 4B). 492 

There was insufficient evidence to determine whether there was a main effect of Time on Task 493 

(Bayes factor ANOVA, BF = 0.83). There was moderate evidence for no 2-way and 3-way interactions 494 

between the three factors (Bayes factor ANOVA, 2-way Time on Task-Target Frequency: BF = 0.17; 495 

Time on Task-Attention: BF = 0.16; Target Frequency-Attention: BF = 0.15; their 3-way interactions 496 

BF = 0.12). These results suggest that Monitoring conditions and trials in which the dots are in the 497 

distractor (unattended) colour, in which the attentional load is low, result in less informational 498 

connectivity between occipital and frontal brain areas compared to Active conditions and attended 499 

trials, respectively. This is consistent with a previous study (Alnaes et al., 2015), which suggested 500 

that large-scale functional brain connectivity depends on the attentional load, and might underpin or 501 

accompany the decrease in information decoding across the brain in these conditions (Figure 3B). 502 
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 503 

We also compared the connectivity for the correct vs. miss trials (Figure 4C). This analysis was 504 

performed only for attended condition as there are no miss trials for unattended condition, by 505 

definition. There was strong evidence for less (almost half) connectivity on miss compared to correct 506 

trials (Bayes factor ANOVA, BF = 3e63). There was insufficient evidence to determine the effects of 507 

the Time on Task or Target Frequency (Bayes factor ANOVA, BF = 0.33 and BF = 0.35, respectively) 508 

and moderate evidence for a lack of 2-way and 3-way interactions between the three factors (Bayes 509 

 

Figure 4. Relationship between informational connectivity and Attention, Target Frequency, Time on Task and the behavioural 
outcome of the trial (i.e., correct vs. miss). (A) Calculation of connectivity using Spearman’s rank correlation between RDMs 
obtained from the peri-frontal and peri-occipital sensors as indicated by colored boxes, respectively. RDMs include decoding 
accuracies obtained from testing the 105 classifiers trained to discriminate different distance to object categories. (B) 
Connectivity values for the eight different conditions of the task and the results of three-way Bayes factor ANOVA with factors 
Time on Task (early, late), Attention (attended, unattended) and Target Frequency (active, monitoring), using only correct 
trials. (C) Connectivity values for the Active and Monitoring, Early and Late blocks of each task for correct and miss trials 
(attended condition only) and the result of Bayes factor ANOVA with factors Target Frequency (Active, Monitoring), Time on 
Task (early, late) and behavioural outcome (correct, miss) as inputs. Number of trials are equalized across conditions in B and C 
separately. Bars show the average across participants (error bars 95% confidence intervals). Bold fonts indicate moderate or 
strong evidence for either the effect or the null hypothesis. 
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factor ANOVA, Behaviour-Target Frequency: BF = 0.17; Behaviour-Time on Task: BF = 0.18; Target 510 

Frequency-Time on Task: BF = 0.16; their 3-way interactions BF = 0.11). Weaker connectivity 511 

between occipital and frontal areas could have led to the behavioural misses observed in this study 512 

(Figure 1) as was previously reported in an auditory monitoring task using univariate graph-theoretic 513 

connectivity analyses (Sadaghiani et al., 2015), although, of course, these are correlational data and 514 

so we cannot make any strong causal inferences. These results cannot be explained by the number 515 

of trials as they are equalized across the 8 conditions in each of the analyses separately. 516 

 517 

Can we use the neural data to predict behavioural errors before they occur? 518 

Is neural information processing different on miss trials? 519 

The results presented in Figure 3, which used only correct trials, showed changes due to target 520 

frequency to the representation of task-relevant information when the task was performed 521 

successfully. We next move on to our second question, which is whether these neural 522 

representations change when overt behaviour is affected, and therefore, whether we can use the 523 

neural activity as measured by MEG to predict behavioural errors before they occur. We used our 524 

method of error data analysis (Woolgar et al., 2019) to examine whether the patterns of information 525 

coding on miss trials differed from correct trials (see Methods). For these analyses we used only 526 

attended dots, as unattended dots do not have behavioural responses, and we matched the total 527 

number of trials in our implementation of correct and miss classification.  528 

 529 

First, we evaluated the processing of the less relevant information - the direction of approach 530 

measure (Figure 5A). The results for correct trials provided information dynamics very similar to the 531 

attended condition in Figure 3A, except for higher overall decoding, which is explained by the 532 
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inclusion of the data from the whole experiment (15 blocks) rather than just the five early and late 533 

blocks (note the number of trials is still matched to miss trials).  534 

 535 

 

 

Figure 5. Decoding of information on correct vs. miss trials. (A) Decoding of direction of approach information (less task-
relevant). (B) Decoding of distance to object information (most task-relevant). The horizontal dashed lines refer to chance-level 
decoding. Top panels: Decoding using correct trials; Bottom panels: Decoding using miss trials. In both top and bottom panels, 
the classifiers were trained on correct trials and tested on (left out) correct and all miss trials, respectively. Thick lines show the 
average across participants (shading 95% confidence intervals). Vertical dashed lines indicate critical events in the trial. Bayes 
Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either hypothesis and 
empty circles indicate insufficient evidence. They show the results of Bayes factor analysis when evaluating the difference of 
the decoding values from chance for Active (blue) and Monitoring (red) conditions separately, the comparison of the two 
conditions (green) and the comparison of correct and miss trials (black). Note that for the comparison of correct and miss trials, 
Active and Monitoring conditions were averaged separately. 
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Active and Monitoring conditions did not show any time windows of sustained difference (BF < 0.3). 536 

However, when the classifiers were tested on miss trials, from onset to deflection, the pattern of 537 

information dynamics were different, even though we had matched the number of trials. 538 

Specifically, while the level of information was comparable to correct trials with spurious instances 539 

(but no sustained time windows) of difference (BF > 3 as indicated by black dots) before 500 ms, 540 

decoding traces were much noisier for miss trials with more variation across trials and between 541 

nearby time points (Figure 5A). Note that after the deflection, the visual signal is different for correct 542 

and miss trials, so the difference between their decoding curves (BF > 3) is not meaningful. These 543 

results suggest a noisier processing of direction of approach information for the missed dots 544 

compared to correctly deflected dots.  545 

 546 

We then repeated the same procedure on the processing of the most task-relevant distance to 547 

object information on correct vs. miss trials (Figure 5B). Although on correct trials, the distance 548 

information for both Active and Monitoring conditions was well above chance (77%; BF > 10), for 549 

miss trials, the corresponding distance information was only just above chance (55%; BF > 10 for all 550 

distances except one). The direct comparison revealed that distance information dropped 551 

considerably on miss trials compared to correct trials (Figure 5; Black dots; BF > 10 across all 552 

distances; Active and Monitoring results were averaged for correct and miss trials separately before 553 

Bayes analyses). This is consistent with less representation of the crucial information about the 554 

distance from the object preceding a behavioural miss. 555 

 556 

Can we predict behavioural errors using neuroimaging? 557 

Finally, we asked whether we could use this information to predict the behavioural outcome of each 558 

trial. To do so, we developed a new method that classified trials based on their behavioural 559 

outcomes (correct vs. miss) by asking how well a set of classifiers, pre-trained on correct trials, 560 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.06.29.178970doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178970
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

would classify the distance of the dot from the target (see Methods; Figure 6A). To achieve this, we 561 

used a second-level classifier which labelled a trial as correct or miss based on the average 562 

accumulated accuracies obtained for that dot at every distance from the first-level decoding 563 

classifiers which were trained on correct trials (Figure 6A and 6B; see Methods). If the accumulated 564 

accuracy for the given dot at the given distance was less than the average accuracy obtained from 565 

testing on the validation set minus a specific threshold (based on standard deviation), the testing dot 566 

(trial) was labelled as correct, otherwise miss. As Figure 6B shows, there was strong evidence (BF > 567 

10) that decoding accuracy of distances was higher for correct than miss trials with the inclusion of 568 

more classifier accuracies as the dot approached from the corner of the screen towards the centre 569 

with a multiple of around 1.5 as threshold (Figure 6C). This clear separation of accumulated 570 

accuracies for correct vs. miss trials allowed us to predict with above-chance accuracy the 571 

behavioural outcome of the ongoing trial (Figure 6D). To find the optimal threshold for each 572 

participant, we evaluated the thresholds used for all other participants except for a single testing 573 

participant for whom we used the average of the best thresholds that led to highest prediction 574 

accuracy for other participants. This was ~1.5 standard deviation below the average accuracy on the 575 

other participants’ validation (correct trial) sets (Figure 6C).  576 

 577 

The prediction accuracy of behavioural outcome was above chance level (68% vs. 50%; BF > 10) even 578 

when the dot had only been on the screen for 80ms, which corresponds to our furthest distance #15 579 

(1200ms prior to deflection point; Figure 6D). The accuracy increased to 85% as the dot approached 580 

the centre of the screen, with ~80% accuracy with still 800 ms to go before required response. 581 

Importantly, the prediction algorithm showed generalisable results across participants; the threshold 582 

for decision obtained from the other participants could predict the accuracy of an independent 583 

participant’s behaviour using only their neural data. 584 

 585 
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  586 

       

 

Figure 6. Prediction of behavioural outcome (correct vs. miss) trial-by-trial using decoding of distance to object information. (A) 
Sample classifiers’ accuracies (correct or incorrect classification of current distance as indicated by colors) for a miss (left panel; 
average accuracy ~= 43% when the dot reached the deflection point) and a correct trial (right panel; average accuracy ~=67% at 
the deflection point). The classifiers were trained on the data from correct trials and tested on the data from correct and miss 
trials. For the miss trials, around half the classifiers classified the dot’s distance incorrectly by the time it reached the deflection 
point. (B) Accumulation of classifiers’ accuracies over decreasing dot distances/time to deflection. This shows stronger 
information coding of the crucial distance to object information on the correct trials over miss trials. A variable threshold used in 
(C) is shown as a blue dashed line. (C) Prediction of behavioural outcome as a function of threshold and distance using a second-
level behavioural outcome classification. Results show highest prediction accuracies on the participant set at around the 
threshold of 1.5 (see Methods), increasing at closer distances. (D) Accuracy of predicting behavioural outcome for the left-out 
participant using the threshold obtained from all the other participants as function of distance/time from the deflection point. 
Results showed successful (~=70%) prediction of behavioural outcome of the trial as early as 80 ms after stimulus appearance. 
Thick lines and shading refer to average and one standard deviation around the mean across participants, respectively. Bayes 
Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either hypothesis and 
empty circles indicate insufficient evidence (black dots under B and D). 
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Please note that the results presented so far were from correct and miss trials and we excluded 587 

early, late and wrong-colour false alarms to be more specific about the error type. However, the 588 

false alarm results (collapsed across all three types of false alarms) were very similar (Supplementary 589 

Figure 2) to those of the missed trials (Figure 5): noisy information about the direction of approach 590 

and at-chance information about the distance to object. This may suggest that both miss and false 591 

alarm trials are caused by a similar impaired processing of information, or at least captured similarly 592 

by our decoding methods. The average number of miss trials was 58.17 (±21.63 SD) and false alarm 593 

trials was 65.94 (±21.13 SD; out of 1920 trials). 594 

 595 

Can we decode direction and distance information from eye-tracking data? 596 

To see whether we could decode information about the dot motion using only the eye-tracking data, 597 

we repeated the same error data analysis as above, but this time using the 2-dimensional signals 598 

(i.e., corresponding to the x-y coordinates of the gaze location) provided by the eye-tracker (Görgen 599 

et al., 2018). The decoding of direction of approach from correct trials showed above-chance 600 

information (Supplementary Figure 3A) starting from 455 and 460 ms post-stimulus onset for the 601 

Active and Monitoring conditions (BF > 10), respectively. The information on miss trials was noisier 602 

but showed a similar pattern. The correct and miss trials only showed moderate evidence (3 < BF < 603 

10) for difference in the span from 310 ms to 490 ms. This suggests that participants moved their 604 

eyes differently for the dots approaching from opposite directions, which is not unexpected (and 605 

observed in the eye-tracking fixation points data). Although the dynamics of this decoding over time 606 

is different to the neural decoding, in line with visually evoked information decoding studies 607 

(VanRullen, 2007; Karimi-Rouzbahani et al., 2017), the eye-movement data do hold enough 608 

information to decode the direction of approach.  609 

 610 
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In contrast, for the crucial distance to object measure, although the eye-tracking data showed 611 

above-chance values at a few distances (BF > 10; Supplementary Figure 3B), most were very close to 612 

chance and much lower than those obtained from the neural data (cf. Figure 5B; BF > 10 for the 613 

difference between decoding of neural vs eyetracking data for correct trials; indicated by black dots 614 

in Supplementary Figure 3A). Only for the decoding for miss vs. correct trials was there any evidence 615 

(moderate) for similarity between neural and eyetracking data (0.1 < BF < 0.3; black dots; 616 

Supplementary Figure 3B). Note that distance to object data collapses across identical distances from 617 

the left and right sides of the screen, which avoids the potential confound of eye-movements data 618 

driving the classifier for this crucial distance measure. 619 

 620 

Discussion 621 

This study developed new methods to gain insights into how attention, the frequency of target 622 

events, and the time doing a task affect the representation of task information in the brain. Our new 623 

multiple object monitoring (MOM) task evoked reliable vigilance decrements in both accuracy and 624 

reaction time in a situation that more closely resembles real-life modern tasks than classic vigilance 625 

tasks. By using the sensitive analysis method of MVPA, we were able to test information coding 626 

across task conditions to evaluate the neural correlates of vigilance decrements. We also developed 627 

a novel informational brain connectivity method, which allowed evaluation of the correlation 628 

between information coding across peri-occipital and peri-frontal areas in different task conditions, 629 

to investigate the brain connectivity under different levels of attention, target frequency and the 630 

time on the task. Finally, we utilised our recent error data analysis to predict forthcoming 631 

behavioural misses with high accuracy. In the following sections, we explain each of the four 632 

contributions in detail and compare them with relevant literature. 633 

 634 
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First, the MOM task includes key features of real-world monitoring situations that are not usually 635 

part of other vigilance tasks (e.g., Mackworth, 1948; Temple, 2000; Rosvold et al., 1956; Rosenberg 636 

et al., 2013), and the results show clear evidence of vigilance decrements. Behavioural performance, 637 

measure with both reaction time and accuracy, deteriorated over time in monitoring (infrequent 638 

target) relative to active (frequent target) conditions. These vigilance decrements demonstrate that 639 

the MOM task can be used to explore vigilance in situations more closely resembling modern 640 

environments, namely involving moving stimuli and selection of relevant from irrelevant 641 

information, giving a useful tool for future research. 642 

 643 

Second, the high sensitivity of MVPA to extract information from neural signals allowed us to 644 

investigate the temporal variations in processing as the experiment progressed. The manipulation of 645 

attention showed a strong overall effect with enhanced representation of both the less important 646 

direction of approach and the most task-relevant distance to object information for cued dots, 647 

regardless of how frequent the targets were (Figure 3). The improved representation of information 648 

under attention extends previous findings from us and others (Woolgar et al., 2015b; Goddard et al., 649 

2019; Nastase et al., 2017) to moving displays, in which the participants monitor multiple objects 650 

simultaneously. 651 

 652 

The manipulation of target frequency showed that when participants only had to respond 653 

infrequently, modelling real-life monitoring situations, the neural coding of crucial information about 654 

the task dropped, correlating with the decrease in behavioural performance (i.e., vigilance effects in 655 

both accuracy and RT; Figure 2). This suggests that when people monitor for rare targets, they 656 

process or encode the relevant information less effectively as the time passes relative to conditions 657 

in which they are actively engaged in completing the task. Several previous studies have examined 658 

the neural correlates of vigilance decrements using univariate analyses (for a review see Langner et 659 
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al. (2013)). However, univariate analyses fail to capture widespread but subtle differences of 660 

patterns between conditions across distant brain networks. One recent study utilized the sensitivity 661 

of MVPA to extract task-relevant and task-irrelevant information under sustained attention (Megan 662 

et al., 2015). In this case, however, the aspects of information were similar in identity (i.e. high-level 663 

visual categories of face and scenes) and switched their attentional role (i.e. attended vs. 664 

unattended) across the experiment, which makes it difficult to see whether (if at all) vigilance 665 

decrements would differentially affect encoding of different aspects of information depending on 666 

their relevance to the task. To address this issue, here we not only switched the task-relevance of 667 

information across the experiment to replicate the attentional effect of that study (i.e. cued/un-cued 668 

dots), but we also studied two aspects of the dot motion information that varied in importance for 669 

carrying out the task (i.e., direction of approach and distance to object) with unchanging roles across 670 

the experiment. While switching between dot colours showed the effect of attention, with greater 671 

representation of the cued dots over uncued dots, the relevance of the direction of approach and 672 

the distance to object did not vary. The less relevant direction information was unaffected by target 673 

frequency, whereas the coding of the critical task-relevant distance information correlated with the 674 

decrease in behavioural performance over time. This is relevant to theories of vigilance, by 675 

demonstrating that the task-relevance of information might be a major factor in whether vigilance 676 

decrements occur. 677 

 678 

It is important to note that previous studies have tried other physiological/behavioural measures to 679 

determine participants’ vigilance or alertness, such as pupil size (Yoss et al., 1970), response time 680 

variability (Rosenberg et al., 2013), blood pressure and thermal energy (Lohani et al., 2019) or even 681 

body temperature (Molina et al., 2019). We used highly-sensitive analysis of neuroimaging data so 682 

that we could address two questions that could not be answered using these more general vigilance 683 

measures. Our approach allowed us to test for changes in the way information is processed in the 684 
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brain, particularly testing for differences in the impact of monitoring on the relevance of the 685 

information, rather than whether the participants were vigilant and alert in general. Moreover, we 686 

could also investigate how relevant and less relevant information was affected by the target 687 

frequency and time on the task, which could explain the behavioural vigilance decrement observed 688 

in many previous studies (e.g., Dehais et al., 2019; Wolfe et al., 2005; Wolfe et al., 2007; Kamzanova 689 

et al., 2014; Ishibashi et al., 2012). We tested our methods also on the eye-tracking data and found 690 

that the critical task-relevant information change under monitoring conditions could not be 691 

replicated based on eye-movements, demonstrating the benefit of the neural approach. 692 

 693 

Third, our information-based brain connectivity method showed weaker connectivity between the 694 

peri-frontal attentional network and the peri-occipital visual areas of the brain in the unattended 695 

and monitoring conditions (Figure 4), where participants encountered fewer targets relative to the 696 

other conditions. We also observed less connectivity between the same areas on miss vs. correct 697 

trials, which might explain the behavioural outcome of the trials. Most previous neuroimaging 698 

studies have used univariate brain connectivity analyses, which are prone to missing existing 699 

functional connectivity across areas when encountering low-amplitude activity on individual sensors 700 

(Anzellotti & Coutanche, 2018; Basti et al., 2020). The method we used here evaluated the 701 

correlation between representational dissimilarity matrices, which has provided high-dimensional 702 

information about distance to object, obtained from multiple sensors across the brain areas. This 703 

makes the analysis more sensitive to capturing subtle connectivity and also aligns with a major 704 

recent shift in literature from univariate to multivariate informational connectivity analyses 705 

(Goddard et al., 2016; Goddard et al., 2019; Karimi-Rouzbahani et al., 2019; Karimi-Rouzbahani, 706 

2017; Anzellotti & Coutanche, 2018; Basti et al., 2020). 707 

 708 
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Fourth, building upon our recently-developed method of error analysis (Woolgar et al., 2019), we 709 

were able to predict forthcoming behavioural misses before the response was given. This method 710 

only used correct trials for training, which makes its implementation plausible for real-world 711 

situations since we usually have plenty of correct trials and only few miss trials (i.e., cases when the 712 

railway controller diverts the trains correctly vs. misses and a collision happens). In our study, the 713 

method showed a large decline in the crucial task-relevant (i.e., distance to object) information 714 

decoding on miss vs. correct trials but less decline in the less task-relevant information (i.e., direction 715 

of approach). A complementary analysis allowed the prediction of behaviourally missed trials as 716 

soon as the stimulus appeared on the screen (after ~80 ms), which was ~1200 ms before the time of 717 

response. This method was generalisable across participants, with the decision threshold for trial 718 

classification other participants’ data successful in predicting errors for a left-out participant. A 719 

number of previous studies have shown that behavioural performance could be correlated with 720 

aspects of brain activity even before the stimulus onset (Eichele et al., 2008; Weissman et al., 2006; 721 

Sadaghiani et al., 2015). This can be crucial for many high-risk environments, including semi-722 

autonomous car driving and railway control. Those studies have explained the behavioural errors by 723 

implicit measures such as less deactivation of the default-mode network, reduced stimulus-evoked 724 

sensory activity (Weissman et al., 2006; Eichele et al., 2008) and even the connectivity between 725 

sensory and vigilance-related/default-mode brain areas (Sadaghiani et al., 2015). It would be 726 

informative, however, if they could show how (if at all) the processing of task-relevant information is 727 

disrupted in the brain and how this might lead to behavioural errors. To serve an applied purpose, it 728 

would be ideal if there was a procedure to use those neural signatures to predict behavioural 729 

outcomes. Only two previous studies have approached this goal. Sadaghiani et al. (2015) and Dehais 730 

et al. (2019) reported maximum prediction accuracies of 63% and 72% (with adjusted chance levels 731 

of 55% and 59%, respectively), far lower than what we have obtained here (up to 85% with a chance 732 

level of 50%), suggesting our method accesses more relevant neural signatures of vigilance 733 

decrements, or is more sensitive in discriminating these. The successful prediction of an error from 734 
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neural data more than a second in advance of the impending response provides a promising avenue 735 

for detecting lapses of attention before any consequences occur. 736 

 737 

Current explanations for vigilance effects generally fall into two categories: mind-wandering and 738 

cognitive overload. In the first, the low cognitive demands of monitoring tasks result in mind-739 

wandering and then, when a response is required, there are insufficient resources dedicated to the 740 

task (e.g., malleable attention theory (Manly et al., 1999; Smallwood et al., 2006; Young et al., 741 

2002)). In the second, the demands of sustaining attention depletes cognitive resources over time 742 

leading to insufficient resources and increased errors in later stages of the task (e.g., Helton et al., 743 

2008; Helton et al., 2011; Warm et al., 2008). There are several previous observations of decreased 744 

functional connectivity during mind wandering (Chou et al., 2017; Kucyi et al., 2018; van Son et al., 745 

2019), which our informational connectivity results broadly replicate. For example, Chou et al. 746 

(2017) reported a decrease in functional connectivity between visual and sensorimotor and in turn 747 

to frontal brain areas in later stages of a resting-state mind-wandering fMRI study in which 748 

participants were instructed to draw their mind to specific but broad sets of thoughts. In another 749 

study, using EEG-fMRI, von Son et al.  (2019) found reduced functional connectivity between the 750 

dorsolateral PFC, dorsal anterior cingulate cortex (ACC), and posterior parietal regions, namely the 751 

“executive control network”, when participants counted and reported their number of inhales and 752 

episodes of mind wandering. Our finding of a decrease in higher order cognitive (peri-frontal) and 753 

sensory (peri-occipital) areas in later (compared with early) stages of the experiment is broadly 754 

consistent with these findings, but we are unable to distinguish whether this is due to mind 755 

wandering or the depletion of cognitive resources, as in our task either is a plausible explanation for 756 

the effect. 757 

 758 
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The overall goal of this study was to understand how neural information processing of dynamic 759 

displays were affected by attention and target frequency, and whether reliable changes in behaviour 760 

over time could be predicted on the basis of neural patterns. We observed that the neural 761 

representation of critically relevant information in the brain decreases over time, especially when 762 

targets are infrequent. This neural representation was particularly poor on trials where participants 763 

missed the target. We used this observation to predict behavioural outcome of individual trials, and 764 

showed that we could accurately predict behavioural outcome more than a second before action 765 

was needed. These results provide new insights about how vigilance decrements impact information 766 

coding in the brain and propose an avenue for predicting behavioural errors using novel 767 

neuroimaging analysis techniques. 768 
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Supplementary Material 963 

Supplementary figure 1 shows the same decoding results as presented in Figure 3 but 964 

evaluated against chance-level decoding (50%). 965 

Our first analysis was to verify that our analyses could decode the important aspects of the display, 966 

relative to chance, given the overlapping moving stimuli. Here, we give the detailed results of this 967 

analysis. 968 

 969 

We started with the information about the direction of approach (top left or bottom right of screen) 970 

which is a strong visual signal but not critical to the task decision. From 95 ms post-stimulus onset 971 

onwards, this visual information could be decoded from the MEG signal for all combinations of the 972 

factors: Attended and Unattended dots, both Target Frequency conditions (Active, Monitoring), and 973 

both our Time on Task durations (Early - first 5 blocks; Late - last 5 blocks; all BF > 10, different from 974 

chance).  975 

 976 

All conditions were decodable above chance until at least 385 ms post-stimulus onset (BF > 3; 977 

Supplementary Figure 1A), which was when the dots came closer to the centre, losing their visual 978 

difference. There was a rapid increase in information about the direction of approach between 50 979 

ms to 150 ms post-stimulus onset, consistent with an initial forward sweep of visual information 980 

processing (VanRullen, 2007; Karimi-Rouzbahani et al., 2017; Karimi-Rouzbahani et al., 2019). For 981 

attended dots only (but regardless of the Target Frequency or Time on Task), the information then 982 

increased again before the deflection time, and remained different from chance until 1915 ms post-983 

stimulus onset, which is just before the dot faded (Supplementary Figure 1A). The second rise of 984 

decoding, which was more pronounced for the attended dots, could reflect the increasing relevance 985 

to the task as the dot approached the crucial deflection point, but it could also be due to higher 986 

visual acuity in foveal compared to peripheral areas of the visual field. The decoding peak observed 987 
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after the deflection point for the attended dots, was most probably caused by the large visual 988 

difference between the deflection trajectories for the dots approaching from the left vs. right side of 989 

the screen (see the deflection trajectories in Figure 1A).  990 

 991 

The most task-relevant feature of the motion is the distance between the moving dot and the 992 

central object, with the deflection point of the trajectories being the key decision point. We 993 

therefore tested for decoding of distance information (distance to object, see Methods). There was a 994 

brief increase in decoding of distance to object for attended dots across the other factors (Target 995 

Frequency and Time on Task) between the 15th and 10th distances and for the unattended dots 996 

across the other factors between 15th and the 12th distances. This corresponds to the first 400 ms for 997 

the attended dots and the first 240 ms for the unattended dots after the onset (Supplementary 998 

Figure 1B). Distance decoding then dropped somewhat before ascending again as the dot 999 

approached the deflection point. The second rise of decoding, which was more pronounced for the 1000 

attended dots, could reflect the increasing relevance to the task as the dot approached the crucial 1001 

deflection point, but it could also be due to higher visual acuity in foveal compared to peripheral 1002 

areas of the visual field. There was strong evidence that decoding of distance information for all 1003 

conditions was greater than chance (50%, BF > 10) across all 15 distance levels (Supplementary 1004 

Figure 1B). 1005 
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 1006 

 1007 

 1008 

 1009 

 1010 

  

Supplementary Figure 1. Impact of different conditions in the direction of approach (A) and distance to object (B) information 
coding and their Bayesian evidence for difference from chance. (A) Decoding of direction of approach information (less task-
relevant). The horizontal dashed line refers to chance-level decoding. Upper graph: Attended colour dot; Lower graph: 
Unattended (‘distractor’) colour dot. (B) Decoding of distance to object information (most task-relevant). Thick lines show the 
average across participants (shading 95% confidence intervals). Vertical dashed lines indicate critical times in the trial.  Bayes 
Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either hypothesis and 
empty circles indicate insufficient evidence. They show the results of Bayes factor analysis when evaluating the difference of the 
decoding values from chance as explained in Methods. Early = data from the first 5 blocks (~10 minutes). Late = data from the 
last 5 blocks (~10 minutes). 
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Supplementary figure 2 shows the data for false alarm trials. 1011 

 1012 

 1013 

 1014 

 1015 

 

Supplementary Figure 2. Decoding of information on correct vs. false alarm trials. (A) Decoding of direction of approach 
information (less task-relevant). (B) Decoding of distance to object information (most task-relevant). The horizontal dashed lines 
refer to chance-level decoding. Top row: Decoding using correct trials; Bottom row: Decoding using false alarm trials. In both top 
and bottom rows, the classifiers were trained on correct trials and tested on correct and false alarm trials, respectively. Thick 
lines show the average across participants (shading 95% confidence intervals). Vertical dashed lines indicate critical events in the 
trial. Bayes Factors are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for either 
hypothesis and empty circles indicate insufficient evidence. They show the results of Bayes factor analysis when evaluating the 
difference of the decoding values from chance for Active (blue) and Monitoring (red) conditions separately, the comparison of 
the two conditions (green) and the comparison of correct and miss trials (black). Note that for the comparison of correct and 
miss trials, Active and Monitoring conditions were averaged separately. 
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Supplementary Figure 3 shows the analysis of eyetracking data using the same 1016 

decoding methods as for the neural data. 1017 

 1018 

 

Supplementary Figure 3. Decoding of information about the dot motion using the eye-tracking data. (A) Decoding of direction of 
approach information (less task-relevant). (B) Decoding of distance to object information (most task-relevant). The horizontal 
dashed lines refer to chance-level decoding. Top panels: Decoding using correct trials; Bottom panels: Decoding using miss trials. 
In both top and bottom panels, the classifiers were trained on correct trials and tested on (left out) correct and all miss trials, 
respectively. Thick lines show the average across participants (shading 95% confidence intervals). Vertical dashed lines indicate 
critical events in the trial. Bayes Factors are shown in the bottom section of each graph: Filled circles show moderate/strong 
evidence for either hypothesis and empty circles indicate insufficient evidence. They show the results of Bayes factor analysis 
when evaluating the difference of the decoding values from chance for Active (blue) and Monitoring (red) conditions separately, 
the comparison of the two conditions (green) and the comparison of correct and miss trials (black). Note that for the comparison 
of correct and miss trials, Active and Monitoring conditions were averaged separately. 
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