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Abstract

Social interaction between microbes can be described at many levels of details: from the
biochemistry of cell-cell interactions to the ecological dynamics of populations. Choosing an
appropriate level to model microbial communities without losing generality remains a challenge.
Here we show that modeling cross-feeding interactions at an intermediate level between genome-
scale metabolic models of individual species and consumer-resource models of ecosystems is
suitable to experimental data. We applied our modeling framework to three published examples of
multi-strain Escherichia coli communities with increasing complexity: uni-, bi-, and multi-
directional cross-feeding of either substitutable metabolic byproducts or essential nutrients. The
intermediate-scale model accurately fit empirical data and quantified metabolic exchange rates that
are hard to measure experimentally, even for a complex community of 14 amino acid auxotrophies.
By studying the conditions of species coexistence, the ecological outcomes of cross-feeding
interactions, and each community’s robustness to perturbations, we extracted new quantitative
insights from these three published experimental datasets. Our analysis provides a foundation to
quantify cross-feeding interactions from experimental data, and highlights the importance of

metabolic exchanges in the dynamics and stability of microbial communities.
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Author summary

The behavior of microbial communities such as the human microbiome is hard to predict by its
species composition alone. Our efforts to engineer microbiomes—for example to improve human
health—would benefit from mathematical models that accurately describe how microbes exchange
metabolites with each other and how their environment shapes these exchanges. But what is an
appropriate level of details for those models? We propose an intermediate level to model metabolic
exchanges between microbes. We show that these models can accurately describe population
dynamics in three laboratory communities and predicts their stability in response to perturbations
such as changes in the nutrients available in the medium that they grow on. Our work suggests that
a highly detailed metabolic network model is unnecessary for extracting ecological insights from
experimental data and improves mathematical models so that one day we may be able to predict

the behavior of real-world communities such as the human microbiome.
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Introduction

Most microorganisms that affect the environments we live in' and that impact our health? do not
live in isolation: they live in complex communities where they interact with other strains and
species. The past decade has seen a surge of scientific interest in microbial communities, such as
the human microbiome, but most studies remain limited to cataloguing community composition®.
Our mechanistic understanding of how biochemical processes occurring inside individual
microbial cells command interaction between cells, and lead to the emergent properties of multi-
species communities remains limited*.

Microorganisms consume, transform and secrete many kinds of chemicals, including
nutrients, metabolic wastes, extracellular enzymes, antibiotics and cell-cell signaling molecules
such as quorum sensing autoinducers®®. The chemicals produced by one microbe can impact the
behaviors of others by promoting or inhibiting their growth’, creating multi-directional feedbacks
that can benefit or harm the partners involved'%!!.

If a community is well-characterized and given sufficient data on population dynamics, it
should be possible to parameterize the processes involved in microbe-microbe interactions by
fitting mathematical models'2. Any model can potentially yield insights'?, but the complexity of
most models so far has been either too high for parameterization'#, or too low to shed light on
cellular mechanisms!>. Microbial processes may be modelled across a range of details: At the low
end of the spectrum we have population dynamic models such as generalized Lotka-Volterra
(gLV)!'® and Consumer-Resource (C-R) models'’, which treat each organism as a ‘black-box’. For
example, C-R models assume a linear or Monod dependence of microbial growth on resource
uptake kinetics. At the high end of the spectrum, we have detailed single-cell models such as

dynamic flux balance analysis ({FBA)'® and agent-based models'® that have too many parameters
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to be parameterizable by experimental data. For example, the linear equations for fluxes obtained
from quasi-steady-state assumption of dFBA are underdetermined. What is an appropriate level of
detail to model and constrain microbial processes using data, to produce accurate predictions as
well as new mechanistic insights?

Here we propose a generalizable framework that couples classical ecological models of
population and resource dynamics with coarse-grained intra-species metabolic networks. We show
that modeling communities at this intermediate scale can accurately quantify metabolic processes
from population dynamics data acquired in the laboratory. We demonstrate the approach on three
evolved/engineered communities of Escherichia coli (E. coli) strains with increasing levels of
complexity: (1) unilateral acetate-mediated cross-feeding?®, (2) bilateral amino-acid-mediated
cross-feeding between leucine and lysine auxotrophies?!, and (3) multilateral amino-acid-mediated
cross-feeding between 14 distinct amino acid autotrophies??. The parameterized models report
inferred leakage fractions of metabolic byproducts that are difficult to measure directly by
experiments, reveal how resource supply and partitioning alter the coexistence and ecological
relationships between cross-feeders, and predict the limits of community robustness against

external perturbations.

Results

Modeling microbial metabolic processes at an intermediate level. Inspired by the classical

MacArthur’s CR models?® and many follow-ups!7-24-2¢

, we propose to integrate CR models with a
coarse-grained yet mechanistic description of cell metabolism. Metabolic reactions can be broadly

classified as catabolic and anabolic, where catabolic reactions break down complex substrates from

culture media into smaller metabolic intermediates that can be used to build up biomass
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90  components by anabolic reactions. A minimal representation of cell metabolism is a three-layer

91  network composed of growth substrates at the top, building block metabolites in the middle, and

92  biomass at the bottom (Fig. 1). The growth substrates can be either substitutable (e.g., glucose and

93  acetate) or non-substitutable (e.g., glucose and ammonium); however, in our model we consider

94  only the non-substitutable building blocks for cell growth. In fact, substitutable metabolites can be

95  mathematically lumped into complementary functional groups that together make a non-

96  substitutable group when coarse-graining metabolic network. Despite its simplicity, this model is

97  flexible enough to describe the transformation of resources into other resources, non-consumable

98  chemicals and biomass, regardless of the specific reactions involved.

99 Based on these assumptions, we developed a dynamic modeling framework that contains
100  eight kinds of biochemical reactions describing resource uptake, transformation, secretion,
101  utilization, and degradation (Fig. 1, Supplementary Texts 1.1). Briefly, substrates available in the
102 growth media can be imported into cells. A certain fraction of the imported substrates is then
103 broken down into building block metabolites, which can be released back to the surrounding
104  environment, used by cells for biomass production, consumed by other non-growth processes, and
105  degraded. Secretable metabolites, when released, can be imported by cells in a way similar to
106  externally supplied substrates, except that their uptake may be inhibited by other substitutable
107  substrates that are assumed to be preferentially used (e.g., catabolite repression). The dynamics of
108  population size change is affected by two elements: population growth and cell death, where the
109  former may depend on both building blocks and substrates. Here the substrate dependency lumps
110 the growth effects from metabolites that are not explicitly modeled, which can substantially reduce

111  model size by defining and choosing model variables for only metabolites known to mediate
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112 interpopulation interactions. To model the effects of toxic compounds?’ we allow the growth rate
113 of any cell population can be inhibited by accumulation of toxic metabolites in the environment.

114 The eight types of reactions can be translated to differential equations. We assumed quasi-
115  steady-state for intracellular substrates and metabolites, as metabolic reactions typically occur at
116  faster time scales compared to ecological dynamics. The time-scale separation thus simplifies our
117 model by excluding intracellular variables, leaving only three types of variables that describe the
118  population density of active cells (N, | =1,2,,---,n.), the extracellular concentrations of
119  substrates ([S;], i = 1,2, -+, ny), and the concentrations of metabolic byproducts excreted by cells

120 ([M;], j = 1,2,---,ny,). Assuming a chemostat environment with dilution rate D (which reduces

121  to a batch culture when D = 0), the differential equations associated with the three state variables

122 are given below (Supplementary Equations (9)-(11))

d[S;] upt,
e D(So; — [Si]) — ZI PESN (1)
dN row eat
dtl _ Nl(]g _ d h D) (2)
d[M, .
[dt]] =D(Mo; — [M]) + Z(J““"M TN, )

123 where Sy; and M, ; are the feed medium concentrations of substrate S; and metabolite M;

124 respectively. J,; UPLS and ];‘}’t’Mrepresent uptake fluxes of substrates and metabolites respectively,

row
g and ]death

125 ] lls-ak Mare metabolite secretion fluxes, and 7 stand for per-capita growth and death

126 rates respectively. We used Monod kinetics for resource uptake (J; ; “PESand Iy “PEM. Supplementary
leak,M

127 Equation (16) and (17)), derived mathematical expressions for metabolite leakage (J; ; ;

128  Supplementary Equation (18) and (19)) and biomass production (J lg "% Supplementary Equation
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129 (20)) using the Liebig’s Law of the Minimum?® (growth rate is proportional to the flux of the
130  scarcest resource), and modelled cell death using first-order kinetics with constant specific
131 mortality rate (J#°%*"; Supplementary Equation (23)). The functional forms of these kinetic laws
132 and other details of model derivation are described in Supplementary Texts 1.1.

133

134  Example 1: unilateral acetate-mediated cross-feeding. We first applied our modeling
135  framework to a well-documented unilateral acetate-mediated cross-feeding polymorphism evolved
136  from a single ancestral lineage of E. coli in laboratory conditions? (Supplementary Texts 1.2.1).
137  The community contains two polymorphic subpopulations (E. coli subspecies) whose metabolism
138  differs in their quantitative ability to uptake and efflux carbon sources: a glucose specialist strain
139  (CV103) which has a faster glucose uptake rate but cannot grow on acetate, and an acetate
140  specialist strain (CV101) which can grow on acetate but has a lower glucose uptake rate. CV103
141  secretes acetate—a major by-product of its aerobic metabolism—and this way creates a new
142 ecological niche for CV101. For simplicity, we assumed that glucose and acetate are fully
143 substitutable resources since E. coli cells can grow on either carbon source with similar yields
144  (Supplementary Texts 1.2.2). Compared to its complete form (Supplementary Fig. 1), the
145  simplified model diverts all glucose flux to acetate that acts as the only growth limiting factor (Fig.
146  2A). Using parameters estimated by manual fitting (Materials and methods, Supplementary Table
147 1), we show that the model accurately reproduced the observed changes in growth and acetate
148  concentration in both monoculture and coculture experiments over time (Fig. 2B-E). Particularly,
149  Fig. 2D shows that acetate is toxic to both strains and CV101 is more susceptible. Although Fig.
150  2E shows coexistence of CV101 and CV103 within 40 generations, our model predicts that CV103

151  would be eventually excluded from the community in the long run (Supplementary Fig. 2).
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152 The simplified model has 11 parameters, including 8 free parameters, 2 parameters fixed
153  at literature values, and 1 biological constant (Supplementary Table 1). To assess parameter
154  uncertainty, we sampled posterior distribution of all free parameters using Markov-Chain-Monte-
155 Carlo (MCMC) algorithm (Material and methods), finding that their medians coincide well with
156  the default values obtained by manual fitting and used in the simulations (Supplementary Fig. 3,
157  Supplementary Table 1). Compared to other free parameters, C; 4 (half maximum inhibitory
158  concentration of glucose for acetate uptake by CV101) and I3, (half maximum inhibitory
159  concentration of acetate for CV103 growth) have much wider distributions, suggesting the dataset
160  (Fig. 2B-E) used to constrain the model is relatively insensitive to changes in their values. We did

161  not find strong correlations among parameters, except for the maximum glucose uptake rate of

162 CV101 and CV103 (V; 4 and V3 4 respectively), which has a Pearson correlation coefficient (PCC)

163 99.6%. Particularly, the distribution of the acetate leakage fraction has a median 36.7% with
164  interquartile range from 29.8% to 44.6%, which is consistent with the manually optimized value
165  33.0%. This value suggests that both cell types have nearly equal carbon flux values between
166  acetate secretion and glucose uptake, a quantitative relationship that has been observed in a
167  different E. coli strain®®. The high efflux of acetate may be a consequence of adaptive co-evolution
168  and accumulation of degenerative mutations?’.

169 Our model indicated that the competition outcome depends on the acetate level in the feed
170 medium (Fig. 2E): CV103 dominates the community without acetate supplementation while
171 CV101 dominates when 1 mM acetate was supplemented. Fig. 2F outlines the region in the
172 nutritional space when CV101 grows faster than (gray shading) and equal to (shading boundary)
173 CV103. The region has a bell shape with the maximum at 0.81 mM glucose and is almost

174  symmetric around 1 mM acetate. The dose-dependent growth effects can be explained by the
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175  conflicting role of acetate which is both a source of carbon and a toxic waste. Acetate at low
176  concentration serves as nutrient for CV101 and increases its growth rate. However, too much
177  acetate is toxic and has stronger inhibitory effects on the growth of CV101 compared to CV103
178  (Fig. 2D). The growth advantage of CV101 conferred by an intermediate level of acetate can be
179  negated at high glucose level (> 0.81 mM) due to strong carbon catabolite repression resulting in
180  reduced assimilation of acetate by CV101.

181

182  Coexistence of CV101 and CV103. Coexistence of CV101 and CV103 requires that the growth
183  rate of both strains is equal to the dilution rate. The nutritional space has two solutions (Fig. 2F,
184  gray circles) that satisfy the criteria at dilution rate of 0.2 h! (the value used in the experiment??).
185  We then constructed a phase diagram (Fig. 2G) that spans a wide range of acetate leakage fraction
186  and the feed medium glucose concentration via simulations. Since acetate is not supplemented,
187  increasing glucose supplementation induces higher release of acetate to the environment. The
188  entire phase space is divided into five distinct regions with four outcomes, including population
189  collapse, extinction of CV103 (CV101 wins), extinction of CV101 (CV103 wins) and stable
190  coexistence. In general, CV103 wins when the supplementation level of glucose is either very low
191  (acetate level is too low to compensate for the growth disadvantage of CV101 due to slower
192  glucose uptake) or very high (acetate level is too high to be toxic and strongly inhibits CV101).
193  Stable coexistence can be maintained within a narrow range of acetate leakage fraction. We show
194  that the coexistence region is robust to changes in the two most uncertain parameters determined
195 by MCMC (Supplementary Fig. 4). Note that the narrow coexistence regime does not necessarily
196  conflict with the observed transient coexistence in Fig. 2E because the theoretical phase diagram

197  was constructed at steady state when time goes to infinity.

10
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198 Using Chesson’s coexistence theory®®, the boundaries of the coexistence region can be
199  interpreted as the conditions when the fitness (growth rate) difference between CV101 and CV103
200 is exactly balanced by the stabilizing effects of their niche differences (differential use of carbon
201  sources; in general, it is a collective name for all mechanisms that lower interspecific competition
202  relative to intraspecific competition). When acetate is not leaked (i.e., the acetate leakage fraction
203 s 0), there is no niche difference (the only available carbon source is glucose) and the fitness
204  difference is determined by the basal growth advantage of CV103 due to faster glucose uptake rate.
205 Increasing leakage fraction of acetate leads to higher niche difference since acetate accumulation
206  in the culture allows CV 101 to utilize acetate as alternative carbon source and effectively reduces
207  inter-population competition with CV103 for glucose. Meanwhile, increased acetate leakage also
208  causes CV101 to grow faster, first reducing the fitness difference between the two strains to 0 (by
209  overcoming its basal growth disadvantage) and increasing the difference afterwards. As the acetate
210 leakage fraction increases, the lines of niche and fitness difference can possibly have two
211  intersection points (Supplementary Fig. 5), between which CV101 and CV103 coexist stably
212 because their fitness difference is smaller than their niche difference.

213

214 Example 2: bilateral amino-acid-mediated cross-feeding. The second community is
215  characterized by a synthetic cross-feeding mutualism between lysine and leucine auxotrophies of
216  E. coli*' (Supplementary Texts 1.3.1). The two mutants differ only by single gene deletions in the
217  lysine (AlysA) and leucine (AleuA) biosynthesis pathways. Neither mutant can grow in
218  monoculture, but their coculture can survive by exporting essential amino acids that are needed by
219  their partners to the extracellular environment and developing a bidirectional, obligate relationship.

220  For simplicity, we assumed (1) leucine or lysine does not limit growth of the strain that synthesizes

11
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221 it de novo (i.e., its producing strain); (2) environment leucine or lysine is not assimilated by its
222 producing auxotrophic strain (Supplementary Texts 1.3.2). Using MCMC algorithm to estimate
223  parameter values of the model that does not take these assumptions (Supplementary Fig. 6), we
224 justified the second assumption by showing that the amino acid uptake rates by their producing
225  strains are 1-2 orders of magnitude lower than the rates by their non-producing strains
226  (Supplementary Fig. 7), suggesting that the majority of amino acids in the environment are
227  assimilated by their auxotrophies. However, it is important to note that the assumption is specific
228  to nutrient auxotrophies and may not be generalized to non-auxotrophic, wild-type cells. For
229  example, wild-type E. coli cells that are able to synthesize all amino acids de novo still grow faster
230  when supplemented with additional amino acids. Using parameters obtained through manual
231 fitting (Materials and methods, Supplementary Table 2), we show that the simplified model (Fig.
232 3A) remains effective for quantitatively reproducing the growth and nutrient dynamics in both
233 monoculture and coculture conditions (Fig. 3B,C).

234 The simplified model has 15 parameters, including 9 free parameters, 4 parameters fixed
235  at literature values, and 2 biological constants (Supplementary Table 2). MCMC simulations
236  confirmed that the posterior median of the free parameters and their values obtained from manual
237  fitting are close to each other (Supplementary Fig. 8, Supplementary Table 2), except that we
238  underestimated the mortality rate constant of the leucine auxotroph (17,;). Relative to other free
239  parameters, the distributions of K, (half-maximal concentration for glucose uptake), nax
240  (mortality rate constant of the lysine auxotroph), and 7,; are much wider and span orders of
241  magnitudes, suggesting that they are loosely constrained by experimental data. In addition, strong
242  negative correlations between the maximum uptake rate and yield of the two amino acids (PCC =

243 -86.9% and -65.5% for leucine and lysine respectively) were found. Finally, the engineered

12
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244  interaction between the lysine and leucine auxotrophies is much weaker with only 0.66%
245  (interquartile range [0.52%, 0.85%]) leucine and 1.13% (interquartile range [0.91%, 1.41%])
246  lysine released back to the environment (their corresponding values obtained through manual
247  fitting are 0.32% and 1.39% respectively), compared to the evolved acetate-mediated cross-
248  feeding interaction (~30% acetate leakage) we studied in Example 1.

249

250  Coexistence of the lysine and leucine auxotrophies. We sought to explore when the two
251  auxotrophic strains coexist in chemostat. Fig. 3D shows the phase diagram at different
252  combinations of the lysine and leucine leakage fraction via simulations. We did not see competitive
253  exclusion, which is expected because the interdependence between the two strains is mutually
254  obligate. It is important to note from Fig. 3D that the minimum leakage fraction of leucine (5.50%)
255  and lysine (9.50%) required by coexistence at dilution rate 0.1 h'! are far larger than the actual
256  secreted percentages that we fit from experimental data (posterior median 0.66% and 1.13% for
257  leucine and lysine leakage respectively), suggesting that the two engineered strains may not be
258  able to coexist in such condition (but they may coexist at lower dilution rate). Interestingly, the
259  bottom left boundary of the coexistence region describes a negative interaction between the
260  minimum of the two leakage fractions, suggesting that decreasing leakage of one amino acid must
261  be compensated by increasing leakage of the other in order to satisfy the minimum requirement of
262  coexistence.

263 Coexistence is possible in the majority of the phase space, suggesting that the community
264  isinsensitive to the changes in the leakage rates. A striking feature of the diagram is that, increasing
265  the fraction of lysine leakage fraction may trigger a discontinuous, abrupt switch from a steady

266  state dominated by the leucine auxotroph (regime R1) to a steady state dominated by the lysine

13


https://doi.org/10.1101/2020.02.19.956383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.956383; this version posted June 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

267  auxotroph (regime R2). Such abrupt, discontinuous regime shifts are a common feature of
268  microbial communities limited by several essential nutrients’!. What accompanies with the
269  compositional shift is the qualitative change in the nutrient utilization strategies adopted by the
270  two strains (Fig. 3E). Before the switch, growth of the lysine auxotroph is limited by shared
271  glucose while that of the leucine auxotroph is limited by leucine secreted by the lysine auxotroph.
272 When the lysine leakage fraction increases over the threshold of the shift, the lysine auxotroph is
273 limited by lysine secreted by the leucine auxotroph while the leucine auxotroph is limited by shared
274  glucose. Our results indicate that the cellular metabolic strategies that are needed to maintain stable
275  coexistence of the two amino acid auxotrophies vary in a discontinuous manner with continuous
276  changes in amino acid leakage fractions.

277

278  Supplementation of cross-fed metabolites can reverse the sign of microbial social interactions.
279  Cross-feeding interactions within a microbial community may be described as social interactions
280  with costs and benefits to the members involved?>3*. Those costs and benefits can be altered by
281  environmental perturbations that supply or remove the cross-fed metabolites from the environment.
282  Using the bilateral amino-acid-mediated cross-feeding model, we investigated how the
283  supplementation of amino acids affected ecological relationships between cross-feeders at the
284  steady state (Material and methods).

285 The phase space that spans a wide range of the leucine and lysine concentrations in the
286  feed medium suggest four possible ecological relationships, including competition, amensalism,
287  mutualism and parasitism (Fig. 4A). Mutualism was maintained over a broad range of supplied
288  amino acid concentrations, even though amino acid supplementation releases the dependence of

289  one auxotroph on the other and is hence detrimental to the mutualistic relationship. In the

14
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290  mutualism regime, glucose is in excess and both amino acid auxotrophies are limited by the
291  essential amino acids they cannot produce (Fig. 4B, left column). Further addition of amino acids
292  leads to compositional dominance of one auxotrophic strain, but not necessarily competitive
293  exclusion. Supplementation of leucine destabilizes the community by excluding the lysine
294  auxotroph (Fig. 4B, middle column), whereas adding lysine only reduced the relative abundance
295  of the leucine auxotroph, rather than leading to the loss of its entire population (Fig. 4B, right
296  column). These results suggest that adding cross-fed nutrients can induce competition between
297  community members that previously interacted mutualistically, and shift positive interactions to
298  negative interactions.

299 Why supplementation of lysine and leucine cause such asymmetrical long-term effects on
300 the community’s composition and stability? We found that the outcome may be dependent on
301  whether one or both auxotrophies is limited by glucose. When glucose limits both auxotrophies
302  (Fig. 4B, middle column), competitive exclusion occurs and the leucine auxotroph wins because
303 it has the same glucose uptake kinetics as the lysine auxotroph but lower mortality rate
304  (Supplementary Table 2). When only the lysine auxotroph is limited by glucose (Fig. 4B, right
305  column), the leucine auxotroph can sustain its population by growing on leucine released by its
306  competitor. Whether coexistence of the two auxotrophies remains stable with increased level of
307  amino acids supplementation can also be understood from the conditions when the net growth rate
308  (growth rate minus mortality rate) of both populations equal to the dilution rate in the nutritional
309  space (Fig. 4C). Coexistence requires that the steady state leucine must be equal to 5.25 x 10~*
310 mM, suggesting that supplementing too much leucine would devastate the ability of the system to

311  self-regulate and reach that level at steady state. By contrast, a solution with high lysine
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312 concentration is always feasible, which explains why coexistence can be maintained at very high
313 level of lysine supplementation.

314

315 Example 3: multilateral cross-feeding between 14 amino acid auxotrophies. To further
316  demonstrate the utility of our modeling framework, we studied cross-feeding interactions within
317  communities of more than two members. We modeled a community of 14 amino acid auxotrophies
318 engineered from E. coli by genetic knockout?? (Fig. 5A). The 14-auxotroph model was directly
319  extended from the 2-auxotroph model developed above by considering each auxotroph can
320  potentially release all other 13 amino acids to the shared environment (Supplementary Texts 1.4.1).
321  Although all feeding possibilities are known, the consumer feeding preferences are not. By fitting
322 experimental data on the population compositions we aimed to infer the unknown feeding
323  pattern—what amino acids and how much they are released by each auxotrophic strain to feed
324  each other.

325 The model has 269 parameters, including 219 free parameters, 36 parameters fixed at
326  literature values, and 14 biological constants. Parameter values were obtained through both
327  automatic (amino acid leakage fractions) and manual (the rest) data fitting (Material and methods,
328  Supplementary Table 3). We show that the fit gave an excellent match to the observed population
329  density fold changes in pairwise cocultures (Fig. 5B, PCC = 94%), except for cross-feeding pairs
330  whose fold change values are less than 1. The observed reduction in population density may be
331  caused by cell death in the absence of nutrients but it is difficult to know because the measurement
332 of optical density at low inoculation amount (107 cells/mL) is highly noisy. For simplicity, we
333  assumed no cell death and set mortality rates to zero in the simulation, which explains why the

334  simulated population density fold changes are always non-decreasing. To compare our model with
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335  higher-level models that do not include explicit nutrients, we adopted a Lotka-Volterra (LV) type

336  model used in the literature?>*3, which guarantees that cross-feeding is obligate for growth
dx; X1 X1 + X 4)
- G <x1 + b) (1 Tk )
dx, Xy X1 + X,
e - G (xz T b) (1 Tk ) %)

337  x; and x; are cell densities of any two amino acid auxotrophies, C; , and C, ; are their cooperative
338  coefficients, b is a constant that tunes the saturation concentration of x; and x,, and k is another
339  constant that represents carrying capacity. We show that the LV-type model can at best achieve a
340  PCC of 33%, using parameters optimized by MCMC algorithm (i.e., parameters from the MCMC
341  sample with the highest PCC). Although this LV-type model has a smaller number of parameters
342  than ours (198 vs. 269), the number of free parameters between the two models is of similar size
343 and comparable (198 vs. 205; note that 14 mortality rates in our model were set to zero).

344 Fig. 5C reports the estimated leakage fractions of 14 amino acids by their amino acid
345  auxotrophies in a matrix form. Although the 14 auxotrophies were derived from the same parent
346  strain, they showed very different profiles of amino acid leakage: some auxotrophies such as the
347  methionine auxotroph AM (36.41% total carbon loss) are highly cooperative whereas others such
348  as the tryptophan auxotroph AW (1.37% total carbon loss) have very low cooperativity. These
349  differences may be attributed to how metabolic network structure was disrupted to generate the
350  auxotrophies and the concomitant changes in metabolic fluxes. One such example is the strong
351  release (13.32%) of threonine by the methionine auxotroph. Since methionine and threonine
352 biosynthesis pathways branch off from the same precursor homoserine, block of one pathway may
353  lead to increased fluxes of another pathway and leakage of corresponding amino acids. However,

354  the leakage fraction of methionine by the threonine auxotroph is very low (0.1%), suggesting that
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355 network topology is not the only factor that affects leakage flux. Since methionine is the most
356  expensive amino acid to produce in terms of ATP consumption?, its biosynthesis and leakage rates
357  may be tightly regulated and only loosely depend on the level of its precursors.

358

359 The 14-member community converges to a stable coexisting subset at steady state. Besides
360 the pairwise coculture data (Fig. 5B), our model also reproduced the population dynamics of
361  serially diluted cocultures of all 14 auxotrophies and four selected 13-auxotroph combinations (Fig.
362  6A). The fit is reasonably good at the log scale, except for the methionine-auxotroph-absent
363  community which seems to undergo non-ecological processes that rescue the threonine auxotroph
364  (AT) from the brink of extinction between day 2 and day 3. Quantitatively, the PCCs between
365  observed and predicted values on the log scale are 88.71% (all 14 auxotrophies), 75.30% (lysine-
366  auxotroph-absent), 78.34% (arginine-auxotroph-absent), 52.93% (threonine-auxotroph-absent),
367  and 8.90% (methionine-auxotroph-absent).

368 As shown in Fig. 6A, most amino acid auxotrophies were diluted away very quickly but
369  some, such as the isoleucine auxotroph (Al), exhibited transient recovery dynamics after the initial
370  decay. To understand the transient dynamics, we used the same model to infer the concentration
371  dynamics of glucose and all amino acids, which are hidden states (not yet observed) that are
372 relatively costly and inaccurate to measure in experiments. Supplementary Fig. 9 shows that the
373  population density of the isoleucine auxotroph had an initial drop because the isoleucine pool had
374  not been accumulated to a critical size that allows the actual growth to compensate for its mortality
375 and system dilution. As the pool size increases, its net growth rate (growth minus mortality)
376  surpasses the dilution rate and recovers its population density, which eventually levels off when

377  the positive and negative effects are balanced.

18


https://doi.org/10.1101/2020.02.19.956383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.956383; this version posted June 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

378 By simulating the 14-auxotroph community model to steady state, we further predicted that
379  the initial 14-strain mixture converges to a stable coexisting subset that contains 4 amino acid
380  auxotrophies that are deficient in biosynthesis of isoleucine (Al), lysine (AK), methionine (AM),
381  and threonine (AT) (Fig. 6B). The predicted coexistence state was successfully validated by two
382  independent observations over 50-day serial dilution??, a much longer period of time than the
383  duration of the training dataset (7-day serial dilution; Fig. 6A). The resource-consumer
384  relationships of the 4-member community are shown in a bipartite network (Fig. 7A), where 3
385  amino acid secretion fluxes were identified as essential (solid arrows) as their deletions resulted in
386  community member loss (Supplementary Fig. 10). These essential fluxes suggest that the primary
387  feeders for AK, AM, AT are AT, AL, AM respectively; however, none of AK, AM, AT dominates
388  the feeding of Al and their contributions to the isoleucine pool in the environment are substitutable.
389

390  Mutualistic cross-feeding network is prone to collapse after external perturbations. Using the
391  model developed above, we computationally tested how external perturbations, including nutrient
392 downshift, the addition of antibiotics, and invasion of cheating phenotypes (the same auxotrophic
393  dependence but no amino acid leakage) affect the stability of coexistence among the 4 auxotrophic
394  strains that would otherwise be stable (Material and methods). The 4-member community was able
395  to cope with these disturbances to a certain extent and remained integrated. Beyond the thresholds,
396  all three perturbation types resulted in community collapse as a result of domino effect (Fig. 7B-
397 D), implying that tightly coupled cooperative communities are fragile and prone to collapse. Since
398 antibiotics inhibit growth of individual strains (targeting consumer nodes in the bipartite network)
399  while cheaters are amino acid sinks (targeting resource nodes in the bipartite network), we

400  identified that AT and methionine as the weakest consumer node (Fig. 7C) and resource node (Fig.
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401  7D) in the bipartite network respectively. Our results suggest that AT->K (secretion of lysine by
402  the threonine auxotroph) and M—>AM (uptake of methionine by the methionine auxotroph)—the
403  outgoing links from the two weakest nodes that are also essential to maintain community
404  integrity—are the weakest metabolic fluxes that may set the resistance level of the community to
405  external perturbations’.

406

407  Discussion

408 Predicting population dynamics of a microbial community from interactions between its
409 members is difficult because interaction happens across multiple scales of biological
410  organization®®. Here we propose a mechanistic ecology model based on a coarse-grained
411  representation of cell metabolism that accurately describes the population dynamics of three
412  laboratory communities with well-defined metabolic exchanges. Previous studies have used
413  genome-scale models and metabolic flux analysis, but these studies require flux measurements by
414  isotope tracing and metabolomics to fit the adjustable flux parameters. Some success was also

37-41 such as the

415 achieved by fitting the time series data with coarser-grained ecological models
416 gLV equations; however, in gLV-type models, interspecific interactions are phenomenologically
417  defined based on density dependency, which gives little mechanistic understanding of the
418  underlying mechanism'. By contrast, our model has explicit formulations of context dependency
419 by representing the chemical flows within and between microbes and thus can explain the
420  metabolic part of microbe-microbe interactions.

421 When we have limited prior knowledge and data on a given community it becomes critical

422  to choose the right level of details. However, by applying our approach to well-defined laboratory

423 systems, we show that a highly detailed metabolic network is not necessary for developing useful
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424  ecological models. In single-bacteria studies, coarse-grained metabolic models have been
425  employed to understand the design principles of metabolic networks and their regulation*?, as well

1 applications.

426  asto predict metabolic flux distributions useful for synthetic biology** and industria
427  Compared to genome-scale models, using coarse-grained models linking ecology and metabolism
428  is simple and has recently become popular?®*4¢, Depending on the research question, a coarse-
429  grained metabolic network can be created at any level of granularity from a single reaction to the
430  complete whole genome-scale reconstruction. The choice of granularity and how to derive a
431  simpler model from the more complex one are usually empirical but can be facilitated by more
432  systematic approaches to reduce dimensionality.

433 Our model could extract new insights from those previously published empirical data on
434  well-defined laboratory systems. The analysis shows that unidirectional cross-feeding is
435  equivalent to a commensalism and bidirectional cross-feeding is equivalent to a mutualism. As
436  shown by our study (Fig. 2-4) and previous work?’-*?, the actual relationship between cross-feeders,
437  however, can be diverse in simple environments (e.g., glucose minimal medium) with constant
438  resource supply due to a combination of positive effects of cross-feeding with negative effects of
439  competition and toxicity of cross-fed metabolites, suggesting that the exact outcome cannot be
440  precisely delineated by the cross-feeding type alone. For example, we predicted that, without
441  supplementation of amino acids, coexistence of the leucine and lysine auxtrophies can only be
442  achieved when one strain is limited in growth by glucose while the other strain is limited by the
443  amino acid it is auxotrophic for (Fig. 3E). Although it is theoretically possible that growth of the
444  two auxotrophies is simultaneously limited by the amino acids they are auxotrophic for (i.e., the
445  lysine auxotroph limited by lysine and the leucine auxotroph limited by leucine), this interaction

446  pattern does not occur in the phase diagram because glucose will always be sufficiently depleted
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447  to a level that becomes growth limiting to at least one strain. The control of resource pool
448  availability via population dynamics has been demonstrated to be a key mechanism for microbial
449  community to optimize the metabolic strategy of its members to yield resistance to invasions and
450  to achieve maximum biomass*.

451 Mechanistic models including explicit nutrients and other realistic features, such as the
452  models presented in this study, can help identify knowledge gaps*’. For example, recent
453  experiments have demonstrated that the coexistence of two carbon source specialists in the
454  unilateral cross-feeding example is mutualistic in the sense that the consortium is fitter than the
455  individuals*®. The syntropy can be explained by a null expectation from theoretical ecology
456  models®: the glucose specialist provides acetate in an exchange for a service provided by the
457  acetate specialist which scavenges the acetate down to a level at which growth inhibition is
458  insignificant. Although the mechanism of resource-service exchange has been considered in our
459  model, the coexistence regime in the phase diagram (Fig. 2G) is competitive, rather than
460  mutualistic. Since mutualism occurs when the reciprocal benefits associated with cross-feeding
461  outweigh competitive costs®’, our model may predict either or both of lower benefits and higher
462  costs than needed to achieve mutualistic coexistence. Overall, the cost-benefit nature of the cross-
463  feeding interaction between polymorphic E. coli strains is more complex than thought and warrants
464  further research.

465 Our modeling framework explains well the three published experiments but has noteworthy
466  limitations. For example, we assume that the leakage flux is proportional to the conversion rate
467  from substrate to metabolite (proportionality assumption), rather than proportional to the internal
468  metabolite concentration. When does this assumption remain valid and how does it break down?

469 By leveraging our previous experiences in modeling E. coli growth and resource allocation**-*!,
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470  we developed a coarse-grained single-strain model that explicitly assumes a linear dependency of
471  leakage rate on metabolite concentration (Supplementary Texts 1.5). We found that the
472  proportionality assumption remains valid for an internal metabolite when its concentration was
473  perturbed at the upstream, rather than the downstream of the metabolite (Supplementary Fig. 11).
474  This makes sense because the proportionality assumption couples metabolite leakage with
475  upstream biosynthesis but does not take feedback regulation from downstream reactions and
476  metabolites into accounts. When a perturbation is imposed from the downstream side, the
477  proportionality assumption can lead to undesired behavior such as high leakage flux at low
478  metabolite concentration. Although the assumption remains valid in the context of the current
479  study where resource availability is the only varying external condition, it may prevent us from
480  generalizing our modeling framework to different types of perturbations. Future studies may
481  correct this limitation by incorporating metabolite concentration and associated reaction kinetics.

482 So far, the current framework has been applied to well-characterized communities with
483  known chemicals and associated interactions which provided a ground through to assess our model.
484  Can the same approach be applied to infer community structure of complex microbiomes (e.g.,
485  human gut microbiome) where most of the metabolic exchanges involved in microbe-microbe
486 interactions are still unknown? Our model has the potential if some technical challenges can be
487  solved. First, direct modeling of a real-world microbiome with hundreds of species would be
488  hurdled by too many unknown model parameters. One way to solve this problem is to simply
489  ignore the rare species*®. Another—arguably better—approach might be by grouping species
490  composition into functional guilds using unsupervised methods that infer those groups from the
491  data alone™, or to use prior knowledge from genomics or taxonomy to create such functional

492  groups. Second, inferring chemical mediators within a community of interacting populations is a
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493  nontrivial task. It can be facilitated by prior knowledge such as searching the literature or
494  leveraging systems biology tools such as community-level metabolic network reconstruction’.
495  Finally, our model is nonlinear, so that an efficient and robust nonlinear regression approach for
496  parameter estimation is essential. For a model with similar size to the 14-auxotroph community
497  we analyzed here, non-linear optimization algorithms may fail to converge to a realistic set of
498  parameters and manual parameter selection is often the only feasible approach. Although we
499  primarily chose the manual method to calibrate our models in this proof-of-concept study, manual
500 fitting is a subjective and time-consuming process, requires an expert operator with prior
501  knowledge to choose physically and biologically realistic values, and perhaps more importantly,
502  isunable to infer correlations among parameters. These downsides of manual parameter fitting has,
503  at least for now, precluded it from being applied to large-scale microbial communities. On the
504  positive side, the process of trial-and-error was greatly improved by the speed at which the
505 intermediate-scale model runs simulations on a regular desktop computer. Beyond these technical
506 issues, the model itself can be extended in multiple ways such as incorporating mechanisms of
507  resource allocation*®. Despite any present limitations, we anticipate that network inference using
508 mechanism-explicit models can open new avenues for microbiome research towards more
509  quantitative, mechanistic, and predictive science.

510

511 Materials and methods

512 Cross-feeding models. The modeling framework presented in this study was developed by
513  integrating a classical ecology model for population and nutrient dynamics with a coarse-grained
514 description of cell metabolism. Custom MATLAB R2018a (The MathWorks, Inc., Natick, MA,

515  USA) codes were developed to perform computational simulations and analyses of all three cross-
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516  feeding communities. Please refer to Supplementary Texts for a detailed description of the general
517  modeling framework and its applications to each cross-feeding community.

518

519  Parameter estimation. Our goal was to manually parameterize cross-feeding models directly
520  from experimental data, which are typically cell density and metabolite concentrations in the
521  culture. The manual process of parameter estimation began with initial values of parameters
522  selected to be either equal to their previously reported values or assumed to be of the same order
523  of magnitude based on the literature data. This was followed by the iterative evaluation of model
524  outputs and refinement until sufficient concordance between the model predictions and the
525  experimental data is achieved.

526 The only exception of parameters that were fit automatically are the amino acid leakage
527  fractions of the 14 amino acid auxotrophies. Under a few assumptions, our model can be simplified
528  and exactly solved for steady state population density in pairwise cocultures (Supplementary Texts
529  1.4.2). The values of these parameters were then estimated by minimizing the least square error
530  between observed and calculated fold changes of population density across all pairwise batch
531  cocultures. Once obtained, these values were fixed in the process of manually fitting the other
532  parameters of the model.

533

534  Parameter sensitivity analysis. To estimate parameter uncertainty and identify their potential
535  correlations, we used an adaptive MCMC (Markov-Chain-Monte-Carlo) method for sampling the
536  posterior distribution of parameters under constraints of experimental data. We obtained the
537  MATLAB code for this method from https://github.com/mjlaine/mecmcstat. Briefly, this method

538  constructs a sequence of random samples in the parameter space by the Metropolis-Hastings
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539  algorithm: at each iteration, the algorithm randomly picks a candidate of the next sample (i.e.,
540  parameter set) based on the current sample value. The candidate is accepted with a probability
541  determined by the ratio of the likelihood of the new sample to that of the current sample and the
542  likelihood is given by a negative exponential function where the exponent is the prediction error
543 of our model using a given parameter set. Please refer to the original publication® for details of
544  the method.

545 We ran MCMC simulations for both 2-membebr communities with unilateral and bilateral
546  cross-feeding relationships. The posterior distribution of each parameter was estimated from
547 100,000 MCMC samples after a burn-in period of 10,000 samples. We assumed a Gaussian prior
548  with standard deviation 0.01. We used symmetric mean absolute percentage error as the cost

549  function that is minimized by the Metropolis-Hastings algorithm:

. . 1 [Yobs,i—Ysim,,il |Yobs,i—Ysim,,il
550 Unilateral cross-feeding: (0.1 YicFi 2 S N ieFi o2 o
g Ngata i€Fig.2B,C [Yobs,il HYsim,il L€Flg.2D.E [Yobs,il t1Ysim,il
. . 1 |Yobs,i=Ysim,il
551 Bilateral cross-feeding: ——Y;cpig3p ¢ el
Ndata " Yobs,il t|Ysim,il

552 where y,s; is the observed datum i, Yg;y, ; 1s its simulated value, and Ny, is the total number of
553  data points. Note that the data from different experiments have unequal weights in the unilateral
554  cross-feeding example.

555

556  Simulation of batch, continuous, and serially diluted culture. Deterministic trajectories and
557  their steady states in batch and chemostat conditions were simulated by solving the differential
558  equations from the beginning to the end. Simulations of serial dilution transfer were slightly
559  different in the aspect that the equations were only integrated within each day. The initial condition

560 at the beginning of a day was obtained by dividing all population densities and nutrient
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561  concentrations at the end of the previous day by the dilution factor and resetting the feed medium
562  nutrient concentrations to their initial values at day 0.

563

564  Classification of interspecific ecological relationship. We simulated chemostat cocultures of the
565 lysine and leucine auxotrophies at increasing levels of amino acid supplementation in the feed
566  medium, and computed the net effect (+,0,-) of one population on the other by comparing to
567  monoculture simulation. The pairwise ecological relationship between the two populations can
568  then be determined by the signs of their reciprocal impacts: (+,+): mutualism; (-,-): competition;
569  (+,0) and (0,+): commensalism; (-,0) and (0,-): amensalism; (+,-) or (-,+): parasitism; (0,0): no
570 effect.

571

572 Network perturbation. External perturbations were exerted upon the steady state of the 4-
573  auxotroph community. Nutrient downshift was simulated by decreasing the feed medium
574  concentration of glucose at the beginning of simulations. The effects of an antibiotic that inhibit
575  growth of the amino acid auxotroph i was simulated by multiplying the growth rate of the
576  auxotroph by an inhibitory term, i.c., ]lg row ]lg "% /(1 + [A]/K;), where [A] is the antibiotic
577  concentration and K; is the inhibition constant. We assumed antibiotic concentration remains
578  constant and chose K; = 1 uM. The cheaters of each amino acid auxotroph were simulated by
579  turning off all amino acid leakages of the auxotroph. They were mixed with the resident
580 community in varying ratios at the beginning of simulations. For all three perturbation types, the
581  feed medium glucose concentration is 0.2 wt.% in the unperturbed condition and serial dilution
582  was run to steady state at 60 days.

583
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715  Figure 1 | Schematic diagram illustrating our model and its potential applications in
716  microbial ecology research. A distinguishing feature of our microbial community model is that
717  each community member harbors a coarse-grained metabolic network. Briefly, the metabolic
718  network transforms growth substrates (S) to non-substitutable building block metabolites (M1, M2)
719  and then to biomass whose production rate is set by the supply flux of the most limiting resource
720  among all substrates and metabolites. The intracellularly synthesized metabolites can be secreted
721  tothe environment and then utilized by the community as public goods. For simplicity, the network
722 isvisually illustrated using one substrate and two metabolites but it can be extended to any number
723 of nutrients. Enabled by the simplified metabolic network, different community members can
724 interact through a variety of mechanisms, including exploitative competitions for shared substrates,
725  cooperative exchanges of nutritional metabolites, and direct inhibition by secreting toxic
726  compounds. Using training data from batch, chemostat or serial dilution cultures, our model can
727  be parameterized to infer microbial processes underlying the data and then used to explore
728  ecological questions and generate testable predictions. Pointed arrows denote the material flow

729  and blunt-end arrows represent growth inhibition.
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Figure 2 | Unilateral acetate-mediated cross-feeding between evolved E. coli isolates. (A)

Schematic diagram of the model. The glucose specialist (CV103) and acetate specialist (CV101)

are two E. coli mutants with different metabolic strategies®’: the glucose specialist has improved

glucose uptake kinetics while the acetate specialist is able to use acetate as an additional carbon

source. At high concentration, acetate inhibits growth of both strains and its uptake by the acetate

specialist strain is weakly repressed by glucose. Since glucose and acetate are substitutable, all

glucose is converted to acetate which serves as the sole limiting factor for cell growth. (B-E)

Manual model calibration. Circles: experimental data; lines: simulations. (B,C) 0.1% glucose-
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739  limited batch monoculture without supplementing acetate?. (D) 0.0125% glucose-limited batch
740  monoculture supplemented with different concentrations of acetate>®. (E) 0.00625% glucose-
741  limited chemostat (dilution rate: D=0.2 h') coculture with (1 mM) and without acetate
742 supplementation?’. The time for one generation is defined as log(2)/D. (F) Growth rate ratio of
743  CV101 to CV103 in the nutritional space. The gray shading indicates when CV101 grows faster
744  than CV103 and the gray circles mark when their growth rates are both equal to the dilution rate

745 0.2 h'l. (G) The simulated steady-state phase diagram.
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Figure 3 | Bilateral cross-feeding between engineered E. coli amino acid auxotrophies. (A)
Schematic diagram of the model. The E. coli lysine auxotroph (AK) and leucine auxotroph (AL)
compete for glucose while additionally acquiring essential amino acids from each other. Growth
of each auxotroph is determined by the more limiting resource between glucose and the amino
acid it needs to grow. (B,C) Manual model calibration. Circles: data; lines: simulation. (B) 2 g/L
glucose-limited batch monoculture supplemented with 10 mg/L amino acids?!. (C) 2 g/L glucose-
limited batch coculture without amino acid supplementation®!. (D) The simulated steady-state

phase diagram. The feed medium glucose concentration is 10 mM. (E) The metabolic strategies
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755  adopted by AK and AL in the coexistence regime. All chemostat simulations were run at dilution

756  rate of 0.1 h'.
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Figure 4 | Impacts of amino acid supplementation on ecological relationships between two
amino acid cross-feeders. (A) The simulated steady-state phase diagram for different levels of
amino acid supplementation. (B) Representative system dynamic trajectories of specific phases in
(A). AGR: the difference between growth rate when set by amino acid as the sole limiting factor
and when set by glucose as the sole limiting factor (the minimum of the two determines the actual
growth rate). A positive or negative value of AGR indicates that cell growth is limited by glucose
or amino acid respectively. (C) The isosurface of equal net growth rate (growth rate minus
mortality rate) between the lysine and leucine auxotrophies. The dashed lines (blue and green)
indicate when their net growth rates are equal to 0.1 h'!' (the dilution rate used throughout the
figure). Abbreviations: glucose (G); lysine (K); leucine (L); lysine auxotroph (AK); leucine

auxotroph (AL).
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771  Figure 5 | Modeling a consortium of 14 amino acid auxotrophies. (A) Schematic diagram of
772 the model. Each labeled empty circle represents one amino acid auxotroph and each filled circle
773  with the same color corresponds to the amino acid that it is auxotrophic for. Gray arrows indicate
774  production and release of amino acids to the environment and black arrows indicate the uptake of
775  amino acids by their auxotrophies. (B) Scatter plot (upper panel) and Pearson correlation (bottom
776  panel) between observed?? and predicted cell density fold changes across all pairwise batch
777  coculture of 14 E. coli amino acid auxotrophies. Orange circles: our model with manually curated
778  parameters; Blue circles: a Lotka-Volterra-type model with parameters adopted from Mee et al.??;
779  Green circles: the same Lotka-Volterra-type model with parameters optimized by Markov-Chain-
780  Monte-Carlo (MCMC) algorithm. (C) Predicted amino acid leakage profiles (converted to
781  percentage of carbon loss) for the 14 amino acid auxotrophies. Each value in the matrix describes

782  the fraction of carbon loss due to release of the amino acid in the row by the auxotroph in the
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783  column. Abbreviations: cysteine auxotroph (AC), phenylalanine auxotroph (AF), glycine
784  auxotroph (AG), histidine auxotroph (AH), isoleucine auxotroph (Al), lysine auxotroph (AK),
785  leucine auxotroph (AL), methionine auxotroph (AM), proline auxotroph (AP), arginine auxotroph
786  (AR), serine auxotroph (AS), threonine auxotroph (AT), tryptophan auxotroph (AW), and tyrosine

787  auxotroph (AY).
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789  Figure 6 | Prediction of the long-term steady state of the community of 14 amino acid
790  auxotrophies. (A) Parameters other than the amino acid leakage fractions (obtained from fitting
791  pairwise coculture data in Fig. 5) were manually optimized from the observed population density
792  during a 7-day 100-fold serial dilution of one 14-auxotroph and four 13-auxotroph communities.
793  Filled circles: experiments®?; Lines: simulation. (B) Simulation of the trained 14-member model
794  over 50 daily passages of the community into fresh medium. The observed long-term stable

795  coexistence of a four-auxotroph subset (Al, AK, AM, AT) was correctly predicted. The two
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796  replicates of experimental observations were adopted from Mee et al.??. See Fig. 5 legend for

797  abbreviations of the names of amino acid auxotrophies.
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800  Figure 7 | Collapse of mutualistic cross-feeding network following external perturbations. (A)
801  Bipartite interaction network of the subset of amino acid auxotrophies that stably coexist over
802  long-term serial dilution (see also Fig. 6B). The network contains resource nodes (I, K, M, T for
803  isoleucine, lysine, methionine, and threonine respectively) and consumer nodes (Al, AK, AM, AT
804  are their corresponding auxotrophies). Each directed link indicates the presence of a resource-
805  consumer relationship whose corresponding parameter value is not zero. An directed link is

806  essential if its removal leads to loss of community members. (B-D) External perturbations,
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807  including decreasing nutrient concentration (B), increasing antibiotic concentration (C), and

808 introducing noncooperative cheaters (D), result in an abrupt collapse of the community when the

809  perturbation level exceeds a certain threshold.
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