

1 A generic white pupae sex selection phenotype for insect pest control

2

3 Ward CM^{1,12}, Aumann RA^{2,12}, Whitehead MA³, Nikolouli K⁴, Leveque G^{5,6}, Gouvi G^{4,7}, Fung
4 E⁸, Reiling SJ⁵, Djambazian H⁵, Hughes MA³, Whiteford S³, Caceres-Barrios C⁴, Nguyen
5 TNM^{1,11}, Choo A¹, Crisp P^{1,8}, Sim S⁹, Geib S⁹, Marec F¹⁰, Häcker I², Ragoussis J⁵, Darby AC³,
6 Bourtzis K^{4,*}, Baxter SW^{11,*}, Schetelig MF^{2,*}

7

8 ¹ School of Biological Sciences, University of Adelaide, Australia, 5005

9 ² Justus-Liebig-University Gießen, Institute for Insect Biotechnology, Department of Insect
10 Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Gießen, Germany

11 ³ Centre for Genomic Research, Institute of Integrative Biology, The Biosciences Building, Crown Street,
12 Liverpool, L69 7ZB, United Kingdom

13 ⁴ Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and
14 Agriculture, Seibersdorf, A-1400 Vienna, Austria

15 ⁵ McGill University Genome Centre, McGill University, Montreal, Quebec, Canada

16 ⁶ Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, Quebec, Canada

17 ⁷ Department of Environmental Engineering, University of Patras, 2 Seferi str., 30100 Agrinio, Greece

18 ⁸ South Australian Research and Development Institute, Waite Road, Urrbrae, South Australia 5064

19 ⁹ USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo,
20 Hawaii, 96720, USA

21 ¹⁰ Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České
22 Budějovice, Czech Republic

23 ¹¹ Bio21 Molecular Science and Biotechnology Institute, School of BioSciences, University of
24 Melbourne, Australia, 3010

25

26 ¹² Authors contributed equally to the study

27 * Corresponding authors:

28 k.bourtzis@iaea.org

29 simon.baxter@unimelb.edu.au

30 marc.schetelig@agrar.uni-giessen.de

31

32 Author Contributions

33 RA, CMW, CC, PC, SS, SG, IH, JR, ACD, KB, SWB, MFS designed research; CMW, RA,
34 MAW, KN, GG, EF, SR, MAH, CC, TNMN, AC, SS, SG, ACD, KB, SWB, MFS performed
35 research; RA, CMW, HD, GL, FM, JR, KB, SWB, MFS contributed new reagents/analytic tools;
36 CMW, RA, MAW, KN, GL, GG, HD, SW, TNMN, AC, SS, SG, IH, JR, ACD, KB, SWB, MFS
37 analyzed data; RA, CMW, KN, GL, GG, SR, SW, AC, SS, SG, IH, JR, ACD, KB, SWB, MFS
38 wrote the paper.

39 **Abstract**

40 Mass releases of sterilized male insects, in the frame of sterile insect technique programs,
41 have helped suppress insect pest populations since the 1950s. In the major horticultural pests
42 *Bactrocera dorsalis*, *Ceratitis capitata*, and *Zeugodacus cucurbitae*, a key phenotype white
43 pupae (wp) has been used for decades to selectively remove females before releases, yet the
44 gene responsible remained unknown. Here we use classical and modern genetic approaches
45 to identify and functionally characterize causal *wp*⁻ mutations in these distantly related fruit fly
46 species. We find that the wp phenotype is produced by parallel mutations in a single,
47 conserved gene. CRISPR/Cas9-mediated knockout of the *wp* gene leads to the rapid
48 generation of novel white pupae strains in *C. capitata* and *B. tryoni*. The conserved phenotype
49 and independent nature of the *wp*⁻ mutations suggest that this technique can provide a generic
50 approach to produce sexing strains in other major medical and agricultural insect pests.

51 Main

52 Tephritid species, including the Mediterranean fruit fly (medfly) *Ceratitis capitata*, the oriental
53 fruit fly *Bactrocera dorsalis*, the melon fly *Zeugodacus cucurbitae* and the Queensland fruit fly
54 *Bactrocera tryoni*, are major agricultural pests worldwide¹. The sterile insect technique (SIT)
55 is a species-specific and environment-friendly approach to control their populations, which has
56 been successfully applied as a component of area-wide integrated pest management
57 programs²⁻⁴. The efficacy and cost-effectiveness of these large-scale operational SIT
58 applications has been significantly enhanced by the development and use of genetic sexing
59 strains (GSS) for medfly, *B. dorsalis* and *Z. cucurbitae*^{5, 6}.

60 A GSS requires two principal components: a selectable marker, which could be phenotypic
61 or conditionally lethal, and the linkage of the wild type allele of this marker to the male sex,
62 ideally as close as possible to the male determining region. In a GSS, males are heterozygous
63 and phenotypically wild type, whilst females are homozygous for the mutant allele thus
64 facilitating sex separation⁶⁻⁸. Pupal color was one of the first phenotypic traits exploited as a
65 selectable marker for the construction of GSS. In all three species, brown is the typical pupae
66 color. However, naturally occurring color mutants such as white pupae (*wp*)⁹ and dark pupae
67 (*dp*)¹⁰ have occurred in the field or laboratory stocks. The *wp* locus was successfully used as
68 a selectable marker to develop GSS for *C. capitata*, *B. dorsalis* and *Z. cucurbitae*^{6, 11, 12},
69 however, its genetic basis has never been resolved.

70 Biochemical studies provided evidence that the white pupae phenotype in medfly is due to
71 a defect in the mechanism responsible for the transfer of catecholamines from the hemolymph
72 to the puparial cuticle¹³. In addition, classical genetic studies showed that the *wp* phenotype
73 is due to a recessive mutation in an autosomal gene located on chromosome 5 of the medfly
74 genome^{9, 14}. The development of translocation lines combined with deletion and transposition
75 mapping and advanced cytogenetic studies allowed the localization of the gene responsible
76 for the *wp* phenotype on the right arm of chromosome 5, at position 59B of the trichogen
77 polytene chromosome map¹⁵. In the same series of experiments, the *wp* locus was shown to
78 be tightly linked to a *temperature-sensitive lethal (tsl)* gene (position 59B-61C), which is the
79 second selectable marker of the VIENNA 7 and VIENNA 8 GSS currently used in all medfly
80 SIT operational programs worldwide^{7, 15}.

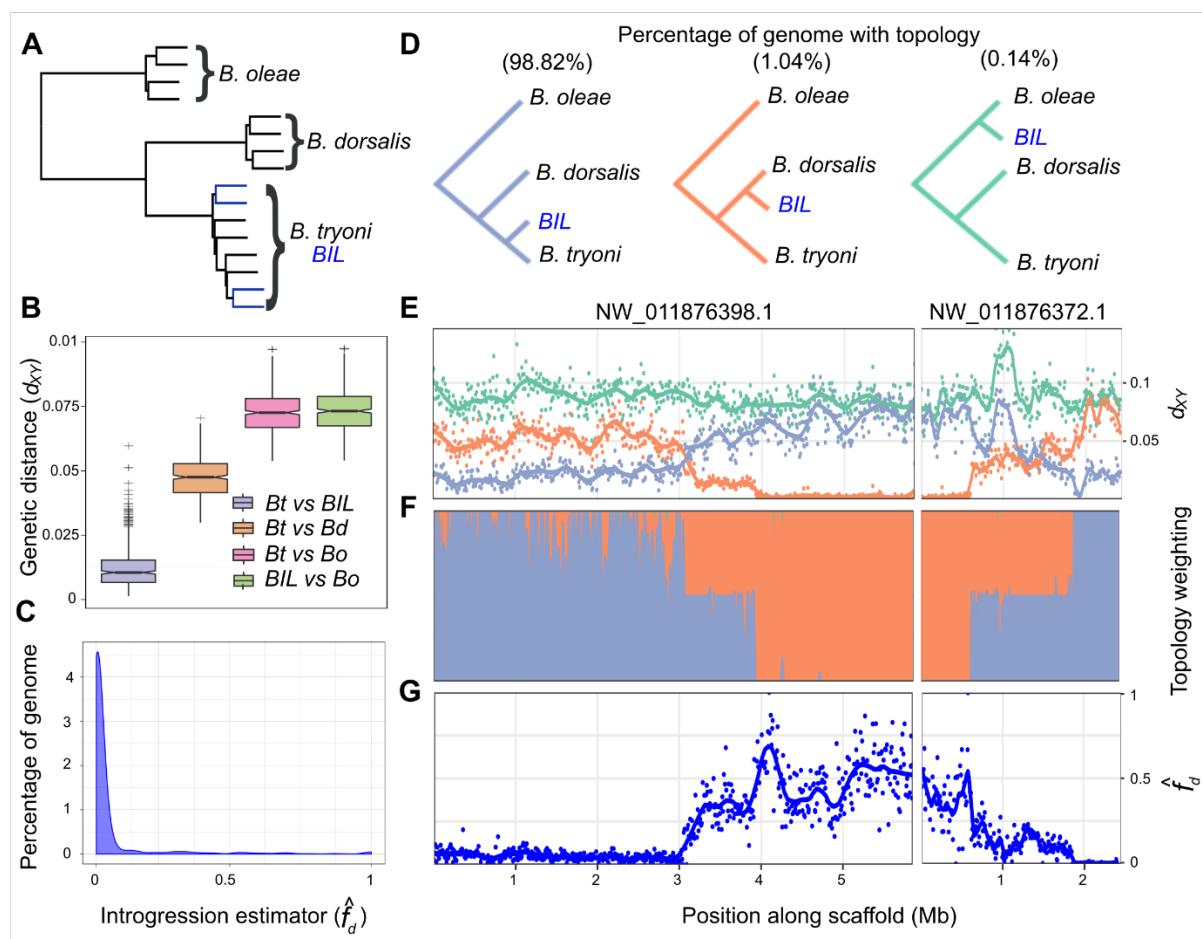
81 The genetic stability of a GSS is a major challenge, mainly due to recombination
82 phenomena taking place between the selectable marker and the translocation breakpoint. To
83 address this risk, a chromosomal inversion called D53 was induced and integrated into the
84 medfly VIENNA 8 GSS (VIENNA 8^{D53+})^{6, 8}. Cytogenetic analysis indicated that the D53
85 inversion spans a large region of chromosome 5 (50B-59C on trichogen polytene chromosome
86 map) with the *wp* locus being inside the inversion, close to its right breakpoint⁶.

87 Extensive genetic and cytogenetic studies facilitated the development of a physical map of
88 the medfly genome^{8, 16}. The annotated gene set provided opportunities for the identification of
89 genes or loci-associated mutant phenotypes, such as the *wp* and *tsl*, used for the construction
90 of GSS^{16, 17}. Salivary gland polytene chromosome maps developed for *C. capitata*, *B. dorsalis*,
91 *Z. cucurbitae*, and *B. tryoni* show that their homologous chromosomes exhibit similar banding
92 patterns. In addition, *in situ* hybridization analysis of several genes confirmed that there is
93 extensive shared synteny, including the right arm of chromosome 5 where the *C. capitata* *wp*
94 gene is localized⁸. Interestingly, two recent studies identified SNPs associated with the *wp*
95 phenotype in *C. capitata* and *Z. cucurbitae* that were also on chromosome 5^{18, 19}.

96 In the present study, we employed different strategies involving genetics, cytogenetics,
97 genomics, transcriptomics, gene editing and bioinformatics to identify independent natural
98 mutations in a novel gene responsible for pupal coloration in three tephritid species of major
99 agricultural importance, *C. capitata*, *B. dorsalis*, and *Z. cucurbitae*. We then functionally
100 characterized causal mutations within this gene in *C. capitata* and *B. tryoni* resulting in
101 development of new white pupae strains. Due to its conserved nature²⁰ and widespread
102 occurrence in many insect species of agricultural and medical importance, we also discuss
103 the potential use of this gene as a generic selectable marker for the construction of GSS for
104 SIT applications.

105 **Results**

106 **Resolving the *B. dorsalis* *wp* locus with interspecific introgression.**


107 The *B. dorsalis* white pupae phenotype was introgressed into *B. tryoni* to generate a strain
108 referred to as the *Bactrocera* *Introgressed Line* (*BIL*, Supplementary Fig. 1). To determine the
109 proportion of *B. dorsalis* genome introgressed into *BIL*, whole genome sequence data from
110 male and female *B. dorsalis*, *B. tryoni*, and *BIL* individuals were analyzed. Paired end Illumina
111 short read data from single *B. oleae* males (SRR826808) and females (SRR826807) were
112 used as an outgroup. Single copy orthologs across the genome (n = 1,846) were used to
113 reconstruct the species topology revealing species-specific monophyly (Fig. 1A) consistent
114 with previously published phylogenies^{21, 22}. Reconstruction also showed monophyly between
115 *B. tryoni* and *BIL* across 99.2% of gene trees suggesting the majority of loci originally
116 introgressed from *B. dorsalis* have been removed during backcrosses.

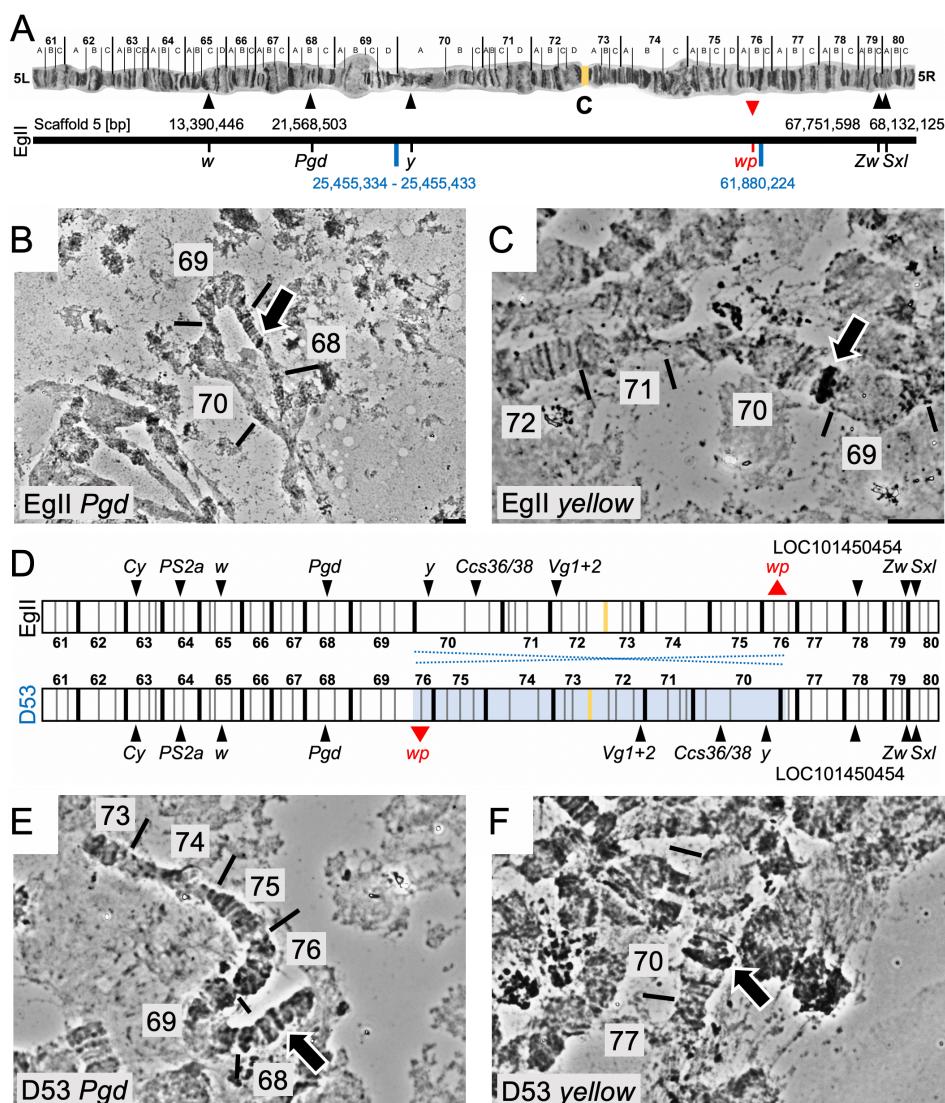
117 Genomes were partitioned into 100 kb windows and pairwise absolute genetic distance
118 (d_{XY}) calculated between each species and *BIL* to estimate admixture. *B. dorsalis* was found
119 to be highly similar to a small proportion of the *BIL* genome (Fig. 1B; purple), as indicated by
120 d_{XY} values approaching the median value of *B. dorsalis* vs *B. tryoni* (Fig. 1B; orange).

121 Two formal tests for introgression were also carried out, the f estimator \hat{f}_d (Fig. 1C) and
122 topology weighting (Fig. 1D). Three distinct local evolutionary histories (Fig. 1D) were tested
123 using d_{XY} and topology weighting across the *B. dorsalis* *wp* Quantitative Trait Locus (QTL) i)
124 *BIL* is closest to *B. tryoni* (Fig. 1D; purple, expected across most of the genome), ii) *BIL* is
125 closest to *B. dorsalis* (Fig. 1D; orange, expected at the *wp* locus), and iii) *BIL* is closest to *B.*
126 *oleae* (Fig. 1D; green, a negative control). Across the nuclear genome the species topology
127 was supported in 98.82% of windows. Both \hat{f}_d and topology weighting confirmed a lack of
128 widespread introgression from *B. dorsalis* into *BIL* with few (n = 42) discordant outlier windows.
129 Genomic windows discordant across all three tests were considered candidate regions for the
130 *wp* mutation. Four scaffolds accounting for 1.18% of the *B. dorsalis* genome met these criteria
131 and only two, NW_011876372.1 and NW_011876398.1, showed homozygous introgression
132 consistent with a recessive white pupae phenotype (Supplementary Fig. 2).

133 To resolve breakpoints within the *B. dorsalis* *wp* QTL, a 10 kb windowed analysis across
134 NW_011876398.1 and NW_011876372.1 was performed using d_{XY} (Fig. 1E), topology
135 weighting (Fig. 1F) and \hat{f}_d (Fig. 1G). The maximum range of the introgressed locus was 4.49
136 Mb (NW_011876398.1 was 2.9-5.94 Mb and NW_011876372.1 was 0-1.55 Mb) (Fig. 1E-G).
137 The *wp* QTL was further reduced to a 2.71 Mb region containing 113 annotated protein coding
138 genes through analyzing nucleotide diversity (π) among eight pooled *BIL* genomes (3.8 Mb
139 on NW_011876398.1 to 0.73 Mb on scaffold NW_011876372.1, Supplementary Fig. 2).

140

141


142 **Fig. 1. Characterization of total introgression from *B. dorsalis* into the *Bactrocera Introgressed***
143 **Line and identification of the white pupae locus.** (A) Species tree constructed from 1,846 single
144 copy ortholog gene trees for four haplotypes of *B. oleae*, *B. dorsalis*, *B. tryoni* and *BIL*. Branches
145 corresponding to *BIL* individuals are shown in blue. All nodes were well supported with posterior
146 probabilities >0.97 . (B) Nei's absolute genetic distance (d_{XY}) calculated for tiled 100 kb windows across
147 the genome between *B. tryoni* vs *BIL* (*Bt* vs *BIL*); *B. tryoni* vs *B. dorsalis* (*Bt* vs *Bd*); *B. tryoni* vs *B. oleae*
148 (*Bt* vs *Bo*) and *BIL* vs *B. oleae* (*BIL* vs *Bo*). (C) The introgression estimator (\hat{f}_d) calculated across tiled
149 100 kb windows to identify regions of disproportionately shared alleles between *BIL* and *B. dorsalis*, \hat{f}_d
150 (*Bt*, *BIL*, *Bd*; *Bo*). (D) The three evolutionary hypothesis/topologies of interest to identify introgressed
151 regions and their representation across the genome: species (purple, 98.82%), introgression (orange,
152 1.04%) and a negative control tree (green, 0.14%). (E) Nei's absolute genetic distance (d_{XY}) calculated
153 for tiled 10 kb windows across the candidate *wp* locus colors follow the legend in (D). (F) Topology
154 weighting for each topology shown in (D) calculated for 1 kb tiled local trees across the candidate *wp*
155 locus. (G) The introgression estimator (\hat{f}_d) calculated across tiled 10 kb windows, \hat{f}_d (*Bt*, *BIL*, *Bd*; *Bo*).
156

157 **Resolving the *C. capitata* D53 inversion breakpoints and *wp* locus with genome**
158 **sequencing and *in situ* hybridization.**

159 Previous cytogenetic studies determined the localization of the gene responsible for the white
160 pupae phenotype on the right arm of chromosome 5, at position 59B of the trichogen polytene
161 chromosome map¹⁵. The equivalent of position 59B is position 76B of the salivary gland
162 polytene chromosome map, inside but close to the right breakpoint of the D53 inversion (69C-

163 76B on the salivary gland polytene chromosome map). Long read sequencing data were
164 generated of the wild type strain Egypt II (EgII), the inversion line D53 and the genetic sexing
165 strain VIENNA 8 (without the inversion; VIENNA 8^{D53-/-}) (Supplementary Table 1) to enable a
166 comparison of the genomes and locate the breakpoints of the D53 inversion, to subsequently
167 narrow down the target region, and to identify *wp* candidate genes.

168 Chromosome 5-specific markers¹⁶ were used to identify the EgII_Ccap3.2.1 scaffold_5 as
169 complete chromosome 5. Candidate D53 breakpoints in EgII scaffold_5 were identified using
170 the alignment of three genome datasets EgII, VIENNA 8^{D53-/-}, and D53 (see material and
171 methods). The position of the D53 inversion breakpoints was located between 25,455,334 -
172 25,455,433 within a scaffold gap (left breakpoint), and at 61,880,224 bp in a scaffolded contig
173 (right breakpoint) on EgII chromosome 5 (Ccap3.2.1; accession GCA_902851445). The
174 region containing the causal *wp* gene was known to be just next to the right breakpoint.
175 Cytogenetic analysis and *in situ* hybridization using the wild type EgII strain and the D53
176 inversion line confirmed the overall structure of the inversion, covering the area of 69C-76B
177 on the salivary gland polytene chromosomes (Fig. 2), as well as the relative position of
178 markers residing inside and outside the breakpoints (Fig. 2 and Supplementary Fig. 3). PCRs
179 using two primer pairs flanking the predicted breakpoints (Supplementary Fig. 4) and
180 subsequent sequencing confirmed the exact sequence of the breakpoints. Using a primer
181 combination specific for the chromosome 5 wild type status confirmed in the WT in EgII flies
182 and VIENNA 7^{D53-/-} GSS males, which are heterozygous for the inversion. Correspondingly,
183 these amplicons were not present in D53 males and females or in VIENNA 7^{D53-/-} GSS
184 females (all homozygous for the inversion) (Supplementary Fig. 4). Positive signals for the
185 inversion were detected in D53 and VIENNA 7^{D53+} GSS males and females, but not in WT flies
186 using an inversion-specific primer pair (Supplementary Fig. 4).

187

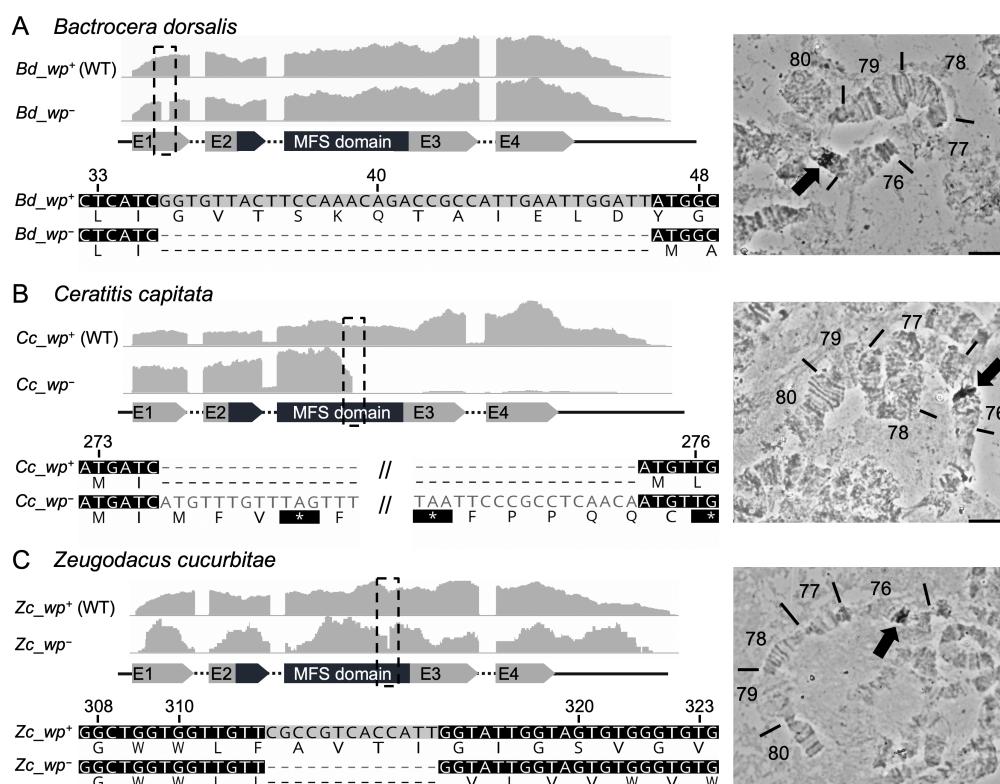
Fig. 2. Genomic positioning of the D53 inversion on chromosome 5 of *C. capitata*. (A) Chromosome scale assembly of *C. capitata* EgII chromosome 5. Shown are the positions of *in situ* mapped genes *white* (*w*), 6-phosphogluconate dehydrogenase (*Pgd*), glucose-6-phosphate 1-dehydrogenase (*Zw*) and sex *lethal* (*Sxl*), the position of the D53 inversion breakpoints (blue), and the relative position of *white pupae* (*wp*) on the polytene chromosome map of chromosome 5²³ and the PacBio-Hi-C EgII scaffold_5, representing the complete chromosome 5 (genome Ccap3.2.1, accession GCA_902851445). The position of the *yellow* gene (*y*, LOC101455502) was confirmed on chromosome 5 70A by *in situ* hybridization, despite its sequence not been included in the scaffold assembly. (D) Schematic illustration of chromosome 5 without (EgII, WT) and with (D53) D53 inversion. The inverted part of chromosome 5 is shown in light blue. Two probes, one inside (*y*, 70A) and one outside (*Pgd*, 68B) of the left inversion breakpoint were used to verify the D53 inversion breakpoints by *in situ* hybridization. WT EgII is shown in (B) and (C), D53 in (E) and (F).

200

201 Genome and transcriptome sequencing lead to a single candidate *wp* gene in *B.*
202 *dorsalis*, *C. capitata*, and *Z. cucurbitae*.

203 Orthologs within the QTL of *B. dorsalis*, *C. capitata* and scaffolds previously identified to
 204 segregate with the *wp*⁺ phenotype in *Z. cucurbitae* (NW_011863770.1 and NW_011863674.1)

¹⁸ were investigated for high effect mutations under the assumption that a null mutation in a


206 conserved gene results in the *wp*⁻ phenotype. A single ortholog containing fixed indels absent
207 from wild type strains was identified in each species. White pupae *B. dorsalis* and *B/L* strains
208 showed a 37 bp frame-shift deletion in the first coding exon of LOC105232189 introducing a
209 premature stop codon 210 bp from the transcription start site (Fig. 3A). Presence of the
210 deletion was confirmed *in silico* using whole genome resequencing from the *wp* and wildtype
211 mapped to the reference, and by *de novo* assembly of Illumina RNAseq data transcripts (Fig.
212 3A).

213 In *C. capitata*, *wp* individuals D53 Nanopore read alignment on EgII showed an
214 independent approximate 8,150 bp insertion into the third exon of LOC101451947 disrupting
215 proper gene transcription 822 bp from the transcription start site (Fig. 3B). The insertion
216 sequence is flanked by identical repeats, suggesting that it may originate from a transposable
217 element insertion. The *C. capitata* mutation was confirmed *in silico*, as in *B. dorsalis*, using
218 whole genome sequencing and RNAseq data (Fig. 3B).

219 Transcriptome data from the white pupae-based genetic sexing strain of *Z. cucurbitae*
220 revealed a 13 bp deletion in the third exon of LOC105216239 on scaffold NW_011863770.1
221 introducing a premature stop codon (Fig. 3C).

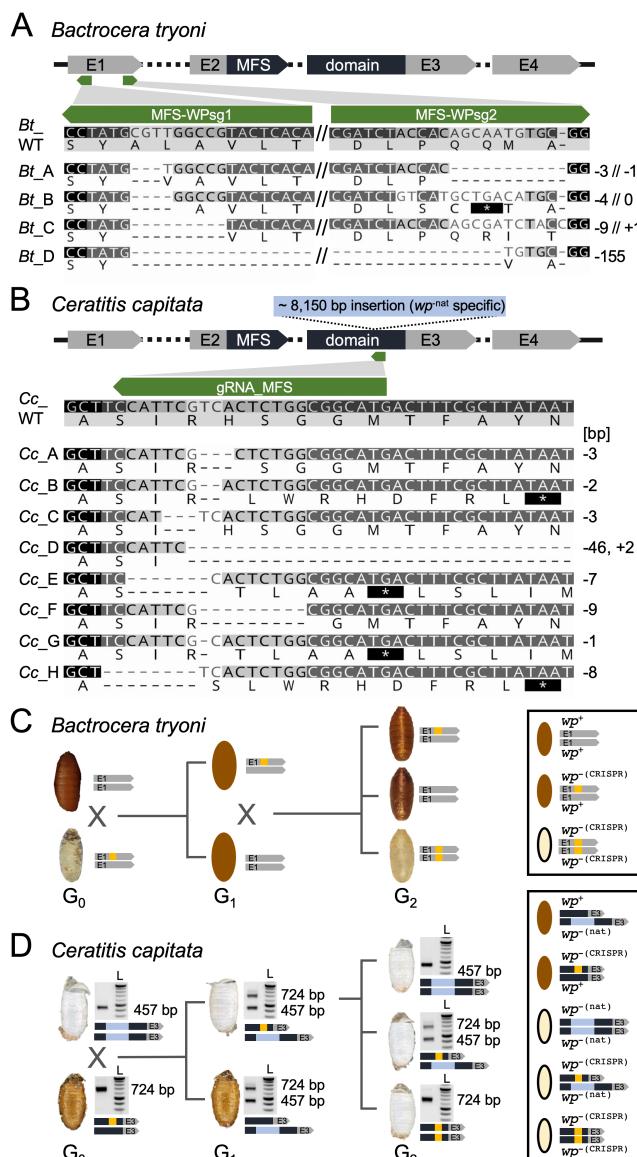
222 The candidate *white pupae* gene in all three species had a reciprocal best BLAST hit to the
223 putative metabolite transport protein CG14439 in *Drosophila melanogaster* and contains a
224 Major Facilitator-like superfamily domain (MFS_1, pfam07690), suggesting a general function
225 as a metabolite transport protein. *In situ* hybridization on polytene chromosomes of *B. dorsalis*,
226 *C. capitata* and *Z. cucurbitae* was used to confirm the presence of the *wp* locus in the same
227 syntenic position on the right arm of chromosome 5 (Fig. 3). Therefore, all three species show
228 a mutation in the same positional orthologous gene likely to be responsible for the phenotype
229 in all three genera.

230

231

232 **Fig. 3. Identification of the *wp* mutation in the transcriptomes of *B. dorsalis*, *C. capitata* and *Z. cucurbitae*.** The grey graphs show expression profiles from the candidate *wp* loci in WT (*wp⁺*) and 233 mutant (*wp⁻*) flies at the immobile pupae stages of (A) *B. dorsalis*, (B) *C. capitata* and (C) *Z. cucurbitae*. 234 The gene structure (not drawn to scale) is indicated below as exons (arrows labelled E1-E4) and 235 introns (dashed lines). The positions of independent *wp* mutations (*Bd*: 37 bp deletion, *Cc*: approximate 8,150 236 bp insertion, *Zc*: 13 bp deletion) are marked with black boxes in the expression profiles and are 237 shown in detail below the gene models based on *de novo* assembly of RNAseq data from WT and white 238 phenotype individuals. *In situ* hybridization on polytene chromosomes (right) confirmed the presence 239 of the *wp* locus on the right arm of chromosome 5 in all three species (arrows in micrographs). 240

241


242 **CRISPR/Cas9 knockout of a Major Facilitator Superfamily gene in *B. tryoni* and *C. capitata* causes the white pupae phenotype.**

243 An analogous *B. dorsalis* *wp⁻* mutation was developed in *B. tryoni* by functional knockouts of 244 the putative *Bt_wp* using the CRISPR/Cas9 system. A total of 591 embryos from the Ourimbah 245 laboratory strain were injected using two guides with recognition sites in the first coding exon 246 of this gene (Fig. 4A). Injected embryos surviving to adulthood ($n = 19$, 3.2%) developed with 247 either wild type brown ($n = 12$) or somatically mosaic white-brown puparia ($n = 7$, 248 Supplementary Fig. 5). Surviving G_0 adults were individually backcrossed into the Ourimbah 249 strain, resulting in potentially *wp⁺-(CRISPR)* heterozygous brown pupae (Fig. 4C). Five 250 independent G_0 crosses were fertile (three mosaic white-brown and two brown pupae 251 phenotypes), G_1 offspring were sibling mated and visual inspection of G_2 progeny revealed 252 that three families contained white pupae individuals. Four distinct frameshift mutations were 253 observed in screened G_2 progeny (Fig. 4A) suggesting functional KO of putative *Bt_wp* is 254

255 sufficient to produce the white pupae phenotype in *B. tryoni*. Capillary sequencing of cloned
256 *Bt_MFS* amplicons revealed deletions ranging from a total of 4 bp to 155 bp, summed across
257 the two guide recognition sites, introducing premature stop codons.

258 In *C. capitata*, CRISPR/Cas9 gene editing was used to knockout the orthologous gene and
259 putative *Cc_wp*, LOC101451947, to confirm that it causes a *wp*⁻ phenotype. A mix of
260 recombinant Cas9 protein and the gRNA_MFS, targeting the third exon and thereby the MFS
261 domain of the presumed *Cc_wp* CDS (Fig. 4B), was injected into 588 EgII WT embryos of
262 which 96 developed to larvae and 67 pupated. All injected G₀ pupae showed brown pupal
263 color. In total, 29 G₀ males and 34 females survived to adulthood (9.3%) and were
264 backcrossed individually or in groups (see material and methods) to a strain carrying the
265 naturally occurring white pupae mutation (*wp*^{-(nat)}; strain #1402_22m1B)²⁴ (Fig. 4D). As *white*
266 *pupae* is known to be monogenic and recessive in *C. capitata*, this complementation assay
267 was used to reveal whether the targeted gene is responsible for the naturally occurring white
268 pupae phenotype or if the mutation is located in a different gene. G₁ offspring would only show
269 white pupae phenotypes if *Cc_wp* was indeed the *white pupae* gene, knocked-out by the
270 CRISPR approach, and complemented by the natural mutation through the backcross (*wp*⁻
271 ^(nat)_{-(CRISPR)}). In the case that the *Cc_wp* is not the gene carrying the natural *wp*⁻ mutation, a
272 brown phenotype would be observed for all offspring. Here, five out of 13 crosses, namely M1,
273 M3, F2, F3, and F4, produced white pupae phenotype offspring. The crosses generated 221,
274 159, 70, 40, and 52 G₁ pupae, of which 10, 30, 16, 1, and 1 pupa respectively, were white.
275 Fifty-seven flies emerged from white pupae were analyzed via non-lethal genotyping, and all
276 of them showed mutation events within the target region. Overall, eight different mutation
277 events were seen, including deletions ranging from 1-9 bp and a 46 bp deletion combined with
278 a 2 bp insertion (Fig. 4B). Five mutation events (B, D, E, G, H) caused frameshifts and
279 premature stop codons. The remaining three (A, C, F), however, produced deletions of only
280 one to three amino acids. To make *wp*^{-(CRISPR)} mutations homozygous, mutants were either
281 inbred (mutation C) (Fig. 4D) or outcrossed to WT EgII (mutation A-H), both in groups
282 according to their genotype. This demonstrated that *Cc_wp* is the gene carrying the *wp*^{-(nat)},
283 and that even the loss of a single amino acid without a frameshift at this position can cause
284 the white pupae phenotype. Offspring from outcrosses of mutation A, D, and H, as well as
285 offspring of the inbreeding (mutation C), were genotyped via PCR, and *wp*^{+(CRISPR)} and *wp*⁻
286 ^(CRISPR)_{-(CRISPR)} positive flies were inbred to establish pure new *white pupae* lines.

287

288

289 **Fig. 4. CRISPR/Cas9-based generation of homozygous *wp*^(CRISPR) lines in *B. tryoni* and *C. capitata*.** A schematic structure of the *wp* CDS exons (E1, E2, E3, E4) including the MFS domain in *B. tryoni* (A) and *C. capitata* (B) are shown. Positions of gRNAs targeting the first and third exon in *B. tryoni* and *C. capitata*, respectively, are indicated by green arrows. Nucleotide and amino acid sequences of mutant *wp* alleles identified in G₁ individuals are compared to the WT reference sequence in *B. tryoni* (A) and *C. capitata* (B). Deletions are shown as dashes, alterations on protein level leading to premature stop codons are depicted as asterisks highlighted in black. Numbers on the right side represent InDel sizes (bp = base pairs). Crossing schemes to generate homozygous *wp*^(CRISPR) lines in *B. tryoni* (C) and *C. capitata* (D) show different strategies to generate *wp* strains. Bright field images of empty puparia are depicted for both species. Genotype schematics and corresponding PCR analysis (for *C. capitata*) validating the presence CRISPR-induced (orange) and natural (blue, for *C. capitata*) *wp* mutations are shown next to the images of the puparia. (C) Injected G₀ *B. tryoni* were backcrossed to the Ourimbah laboratory strain resulting in uniformly brown G₁ offspring (depicted as illustration because no images were acquired during G₁). G₁ inbreeding led to G₂ individuals homozygous for the white pupae phenotype. (D) Injected WT G₀ flies were crossed to flies homozygous for the naturally occurring *wp*⁻ allele (*wp*^(nat)). *wp*^(nat) (457 bp amplicon) and *wp*^(CRISPR) or WT (724 bp amplicon) alleles were identified by multiplex PCR (left lane; L = NEB 2log ladder). White pupae phenotypes in G₁ indicated positive CRISPR events. G₂ flies with a white pupae phenotype that were homozygous for *wp*^(CRISPR) allele were used to establish lines.

308 **Discussion**

309 *White pupae (wp)* was first identified in *C. capitata* as a spontaneous mutation and was
310 subsequently adopted as a phenotypic marker of fundamental importance for the construction
311 of GSS for SIT^{6, 9}. Full penetrance expressivity and recessive inheritance rendered *wp* the
312 marker of choice for GSS construction in two additional tephritid species, *B. dorsalis* and *Z. cucurbitae*^{11, 12}, allowing automated sex sorting based on pupal color. This was only possible
313 because spontaneous *wp* mutations occur at relatively high rates either in the field or in mass
314 rearing facilities and can easily be detected^{6, 9}. Despite the easy detection and establishment
315 of *wp* mutants in these three species, similar mutations have not been detected in other closely
316 or distantly related species such as *B. tryoni*, *B. oleae*, or *Anastrepha ludens*, despite large
317 screens being conducted. In addition to being a visible GSS marker used to separate males
318 and females, the *wp* phenotype is also important for detecting and removing recombinants in
319 cases where sex separation is based on a conditional lethal gene such as the *ts*/*l* gene in the
320 medfly VIENNA 7 or VIENNA 8 GSS^{6, 7}. However, it took more than 20 years from the
321 discovery and establishment of the *wp* mutants to the large-scale operational use of the medfly
322 VIENNA 8 GSS for SIT applications^{6, 9} and the genetic nature of the *wp* mutation remained
323 unknown. The discovery of the underlying *wp* mutations and the availability of CRISPR/Cas
324 genome editing would allow the fast recreation of such phenotypes and sexing strains in other
325 insect pests. Isolation of the *wp* gene would also facilitate future efforts towards the
326 identification of the closely linked *ts*/*l* gene.

328 Using an integrated approach consisting of genetics, cytogenetics, genomics,
329 transcriptomics and bioinformatics, we identified the white pupae (*wp*) genetic locus in three
330 major tephritid agricultural pest species, *B. dorsalis*, *C. capitata*, and *Z. cucurbitae*.

331 Our study clearly shows the power of employing different strategies for gene discovery, one
332 of which was species hybridization. In *Drosophila*, hybridization of different species has played
333 a catalytic role in the deep understanding of species boundaries and the speciation processes,
334 including the evolution of mating behavior and gene regulation²⁵⁻²⁹. In our study, we took
335 advantage of two closely related species, *B. dorsalis* and *B. tryoni*, which can produce fertile
336 hybrids and be backcrossed for consecutive generations. This allowed the introgression of the
337 *wp* mutant locus of *B. dorsalis* into *B. tryoni*, resulting in the identification of the introgressed
338 region, including the causal *wp* mutation via whole-genome resequencing and advanced
339 bioinformatic analysis.

340 In *C. capitata*, we exploited two essential pieces of evidence originating from previous
341 genetic and cytogenetic studies: the localization of *wp* to region 59B and 76B on chromosome
342 5 in the trichogen cells and salivary gland polytene chromosome map, respectively^{15, 30}, and
343 its position close to the right breakpoint of the large inversion D53⁶. This data prompted us to
344 undertake a comparative genomic approach to identify the exact position of the right

345 breakpoint of the D53 inversion, which would bring us in the vicinity of the *wp* gene. Coupled
346 with comparative transcriptomic analysis, this strategy ensured that the analysis indeed
347 tracked the specific *wp* locus on the right arm of chromosome 5, instead of any mutation in
348 another, random locus which may participate in the pigmentation pathway and therefore result
349 in the same phenotype. Functional characterization via CRISPR/Cas9-mediated knockout
350 resulted in the establishment of new white pupae strains in *C. capitata* and *B. tryoni* and
351 confirmed that this gene is responsible for the pupal coloration in these tephritid species.
352 Interestingly, the *wp* phenotype is based on three independent and very different natural
353 mutations of this gene, a rather large and transposon-like insertion in *C. capitata*, but only
354 small deletions in the two other tephritids, *B. dorsalis* and *Z. cucurbitae*. In medfly, however,
355 CRISPR-induced in-frame deletions of one or three amino acids in the MFS domain were
356 sufficient to induce the *wp* phenotype, underlining the importance of this domain for correct
357 pupal coloration.

358 It is worth noting, that in the first stages of this study, we employed two additional
359 approaches, which did not allow us to successfully narrow down the *wp* genomic region to the
360 desired level. The first was based on Illumina sequencing of libraries produced from laser
361 micro-dissected (Y;5) mitotic chromosomes that carry the wild type allele of the *wp* gene
362 through a translocation from the fifth chromosome to the Y. This dataset from the medfly
363 VIENNA 7 GSS was comparatively analyzed to wild type (Egypt II) Y and X chromosomes,
364 and the complete genomes of Egypt II, VIENNA 7^{D53-} GSS, and a D53 inversion line in an
365 attempt to identify the chromosomal breakpoints of the translocation and/or inversion, which
366 are close to the *wp* locus (Supplementary Table 2). However, this effort was not successful
367 due to the short Illumina reads and the lack of a high-quality reference genome. The second
368 approach was based on individual scale whole-genome resequencing/genotyping, and
369 identifying fixed loci associated with pupal color phenotypes, which complemented the QTL
370 analysis¹⁹. Seven loci associated with SNPs and larger deletions linked to the white pupae
371 phenotype were analyzed based on their respective mutations and literature searches for their
372 potential involvement in pigmentation pathways. However, we could not identify a clear link to
373 the pupal coloration as shown by *in silico*, molecular, and *in situ* hybridization analysis
374 (Supplementary Fig. 6 and 7, Supplementary Table 3).

375 The *wp* gene is a member of a major facilitator superfamily (MFS). Orthologs of *white* pupae
376 are present in 146 of 148 insect species aggregated in OrthoDB v9²⁰ present in all orders and
377 single copy in 133 species. Furthermore, *wp* is included in the benchmarking universal single
378 copy ortholog (BUSCO) gene set for insecta and according to OrthoDB v10³¹ has a below
379 average evolutionary rate (0.87, OrthoDB group 42284at50557) suggesting an important and
380 evolutionarily conserved function (Supplementary Fig. 8). Its ortholog in *Bombyx mori*, *muck*,
381 was shown to participate in the pigmentation at the larval stage³² whereas in *D. melanogaster*

382 peak expression is during the prepupal stage after the larva has committed to pupation³³,
383 which is the stage where pupal cuticle sclerotization and melanization occurs. It is known that
384 the insect cuticle consists of chitin, proteins, lipids and catecholamines, which act as cross-
385 linking agents thus contributing to polymerization and the formation of the integument³⁴.
386 Interestingly, the sclerotization and melanization pathways are connected and this explains
387 the different mechanical properties observed in different medfly pupal color strains with the
388 “dark” color cuticles to be harder than the “brown” ones and the latter harder than the “white”
389 color ones³⁵. The fact that the white pupae mutants are unable to transfer catecholamines
390 from the haemolymph to the cuticle is perhaps an explanation for the lack of the brown
391 pigmentation¹³.

392 The discovery of the long-sought *wp* gene in this study and the recent discovery of the
393 *Maleness-on-the-Y* (*MoY*) gene, which determines the male sex in several tephritids³⁶, opens
394 the way for the development of a ‘generic approach’ for the construction of GSS for other
395 species. Using CRISPR/Cas-based genome editing approaches, we can: (a) induce mutations
396 in the *wp* orthologues of SIT target species and establish lines with *wp* phenotype and (b) link
397 the rescue alleles as closely as possible to the *MoY* region. Given that the *wp* gene is present
398 in diverse insect species including agricultural insect pests and mosquito disease vectors, this
399 approach would allow more rapid development of GSS in SIT target species. In principle, these
400 GSS will have higher fertility compared to the semi-sterile translocation lines⁶. In addition,
401 these new generation GSS will be more stable since the rescue allele will be tightly linked to
402 the male determining region thus eliminating recombination which can jeopardize the genetic
403 integrity of any GSS. The concept of the ‘generic approach’ can also be applied in species
404 which lack a typical Y chromosome such as *Aedes aegypti* and *Aedes albopictus*. In these
405 species, the rescue allele should be transferred close to the male determining gene (*Nix*) and
406 the M locus^{37, 38}. It is hence important for this ‘generic approach’ to identify regions close
407 enough to the male determining loci to ensure the genetic stability of the GSS and to allow the
408 proper expression of the rescue alleles. In the present study, we have already shown that
409 CRISPR/Cas9-induced mutations resulting in the white pupae phenotype can be developed
410 in SIT target species and the resulting strains provide already new opportunities for GSS
411 based on visible markers.

412

413 Methods

414 All sequence libraries prepared during this study are publicly available on NCBI within the ENA
415 BioProject PRJEB36344/ERP119522 (accession numbers ERS4426857 - ERS4426873,
416 ERS4426994 - ERS4427029, ERS4519515, ERS4547590 - ERS4547593; see
417 Supplementary Table 1) and the BioProject PRJNA629430 (SRA accessions SRR11649127
418 - SRR11649132; see Supplementary Fig. 6).

419

420 **Insect rearing.** *C. capitata*, *B. dorsalis* and *Z. cucurbitae* fly strains were maintained at
421 25±1°C, 48% RH and 14/10 h light/dark cycle. They were fed with a mixture of sugar and yeast
422 extract (3v:1v) and water. Larvae were reared on a gel diet, containing carrot powder (120 g/l),
423 agar (3 g/l), yeast extract (42 g/l), benzoic acid (4 g/l), HCl (25%, 5.75 ml/l) and ethyl-4-
424 hydroxybenzoate (2.86 g/l). Flies were anesthetized with N₂ or CO₂ for screening, sexing, and
425 the setup of crosses. To slow down the development during the non-lethal genotyping process
426 (*C. capitata*), adult flies were kept at 19°C, 60% RH, and 24 h light for this period (1-4 d).

427 *B. tryoni* flies were obtained from New South Wales Department of Primary Industries
428 (NSW DPI), Ourimbah, Australia and reared at 25 ± 2°C, 65 ± 10% RH and 14/10 h light/dark
429 cycle. Flies were fed with sugar, Brewer's yeast and water and larvae were reared on a gel
430 diet, containing Brewer's yeast (204 g/l), sugar (121 g/l), methyl p-hydroxy benzoate (2 g/l),
431 citric acid (23 g/l), wheat germ oil (2 g/l), sodium benzoate (2 g/l) and agar (10 g/l).

432

433 **Introgression and bioinformatic identification of a natural wp mutation from *B. dorsalis***
434 **in *B. tryoni*.** Interspecific crosses between *B. tryoni* and *white pupae B. dorsalis* were carried
435 out between male *B. tryoni* (*wp*⁺⁺) and female *B. dorsalis* (*wp*⁻). The G₁ *wp*⁺⁻ hybrids
436 developed with brown puparia and were mass crossed. G₂ *wp*⁺⁻ females were backcrossed
437 into *B. tryoni* *wp*⁺⁺ males and backcrossing was then repeated for five additional times to
438 produce the *white pupae Bactrocera Introgressed Line (BIL*, Supplementary Fig. 1).

439 Genome sequencing using Illumina NovaSeq (2 x 150 bp, Deakin University) was
440 performed on a single male and female from the *B. dorsalis* *wp* strain, *B. tryoni*, and the *BIL*
441 (~ 26X) and two pools of five *BIL* individuals (~32X). Quality control of each sequenced library
442 was carried out using FastQC v0.11.6
443 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and aggregated using
444 ngsReports³⁹ v1.3. Adapter trimming was carried out using Trimmomatic v0.38
445 (<https://academic.oup.com/bioinformatics/article/30/15/2114/2390096>) and paired reads were
446 mapped to the *B. dorsalis* reference genome (GCF_000789215.1) using NextGenMap⁴⁰
447 v0.5.5 under default settings. Mapped data were sorted and indexed using SAMtools, and
448 deduplication was carried out using Picard MarkDuplicates v2.2.4

449 (https://github.com/broadinstitute/picard). Genotypes were called on single and pooled
450 libraries separately with ploidy set to two and ten respectively using Freebayes⁴¹ v1.0.2. Each
451 strain was set as a different population in Freebayes. Genotypes with less than five genotype
452 depth were set to missing and sites with greater than 20% missing genotypes or indels filtered
453 out using BCFtools⁴² v1.9. Conversion to the genomic data structure (GDS) format was carried
454 out using SeqArray⁴³ v1.26.2 and imported into the R package geaR v0.1
455 (https://github.com/CMWbio/geaR) for population genetic analysis.

456 Single copy orthologs were identified in the *B. dorsalis* reference annotated proteins (NCBI
457 *Bactrocera dorsalis* Annotation Release 100) with BUSCO^{44, 45} v3 using the dipteran gene
458 set⁴⁴. Nucleotide alignments of each complete single copy ortholog were extracted from the
459 called genotype set using geaR v0.1 and gene trees built using RAxML⁴⁶ v8.2.10 with a
460 GTR+G model. Gene trees were then imported into Astral III v5.1.1⁴⁷ for species tree
461 estimation. Genome scans of absolute genetic divergence (d_{XY}), nucleotide diversity (π), and
462 the f estimator \hat{f}_d were carried out using geaR v0.1. Two levels of analysis were carried out:
463 i) genome wide scans of non-overlapping 100 kb windows and ii) locus scans of 10 kb tiled
464 windows. Local phylogenies were built for nucleotide alignments of non-overlapping 1 kb
465 windows using RAxML v8.2.10 with a GTR+G model and topology weighting was calculated
466 using TWISST⁴⁸.

467 Introgressed regions (i.e. candidate *wp* loci) were identified by extracting windows in the
468 genome wide scan with topology weighting and f_d greater than 0.75 and visually inspecting
469 the 'locus scan' data set for d_{XY} , f_d and topology weighting patterns indicative of introgression.
470 Nucleotide alignments of all genes within candidate *B. dorsalis* introgressed regions were
471 extracted from the GDS using geaR and visually inspected for fixed mutations in *B. dorsalis*
472 *wp*, BIL individuals and the two BIL pools. Candidate genes were then searched by tBLASTn
473 against the *D. melanogaster* annotated protein set to identify putative functions and functional
474 domains were annotated using HMMer⁴⁹. Mapped read depth was calculated around
475 candidate regions using SAMtools⁵⁰ depth v1.9 and each sample's read depth was normalized
476 to the sample maximum to inspect putative deletions. Called genotypes were confirmed by *de*
477 *novo* genome assembly of the *B. dorsalis* *wp* genome using MaSuRCA⁵¹ v3.3 under default
478 settings. The *de novo* scaffold containing LOC105232189 was identified using the BLASTn
479 algorithm. *In silico* exon-intron boundaries were then manually annotated in Geneious⁵² v11.
480

481 **Identification, characterization and molecular analysis of the D53 inversion and *wp*
482 locus in *C. capitata*.**

483 *Characteristics of C. capitata strains used for this study*

484 Egypt II (EgII) is a wild type laboratory strain. D53 is a homozygous strain with an irradiation-
485 induced inversion covering the area 69C-76B on the salivary gland polytene chromosome map

486 (50B-59C on the trichogen cells polytene chromosome map). VIENNA 7 and VIENNA 8 are
487 two GSS in which two (Y;5) translocations, on the region 58B and 52B of the trichogen cells
488 polytene chromosome map respectively, have resulted to the linkage of the wild type allele of
489 the *wp* and *tsl* genes to the male determining region of the Y chromosome. Thus, VIENNA 7
490 and VIENNA 8 males are heterozygous in the *wp* and *tsl* loci but phenotypically wild type while
491 VIENNA 7 and VIENNA 8 females are homozygous for the mutant alleles and phenotypically
492 white pupae and they die when exposed at elevated temperatures. The VIENNA 7 and
493 VIENNA 8 GSS can be constructed with and without the D53 inversion (VIENNA 7/8 ^{D53+} or ^{D53-}
494). When the GSS have the inversion, females are homozygous (^{D53+|+}) for D53 while males are
495 heterozygous (^{D53+|-}^{6, 8, 16}).

496

497 *Whole genome sequencing of C. capitata strains*

498 High-molecular-weight (HMW) DNA was extracted from *C. capitata* lines (males and females
499 of the wild type EgII strain, the VIENNA 7 ^{D53-|} and VIENNA 8 ^{D53-|} GSS and the inversion line
500 D53) and sequenced. Freshly emerged, virgin and unfed males and females were collected
501 from all strains. For 10X Genomics linked read and Nanopore sequencing, the HMW was
502 prepared as follows: twenty individuals of each sex and strain were pooled, ground in liquid
503 nitrogen, and HMW DNA was extracted using the QIAGEN Genomic tip 100/G kit (Qiagen,
504 Germany). For PacBio Sequel an EgII line was created with single pair crossing and
505 subsequent sibling-mating for six generations. In all generations adult and larval diet contained
506 100 µg/ml tetracycline. HMW DNA from G₆ individuals was prepared as follows: five males
507 from this EgII line were pooled and ground in liquid nitrogen, and HMW DNA was extracted
508 using the phenol/chloroform Phase Lock Gel™ tubes (QuantaBio)⁵³. DNA for Illumina
509 applications was extracted from individual flies (Supplementary Table 1).

510 PacBio *de novo* sequencing: samples were purified with AMPure beads (Beckman Coulter,
511 UK) (0.6 volumes) and QC checked for concentration, size, integrity and purity using Qubit
512 (Qiagen, UK), Fragment Analyser (Agilent Technologies) and Nanodrop (Thermo Fisher)
513 machines. The samples were then processed without shearing using the PacBio Express kit
514 1 for library construction and an input of 4 µg DNA following the manufacturer's protocol. The
515 final library was size-selected using the Sage Blue Pippin (Sage Sciences) 0.75% cassette U1
516 marker in the range of 25-80 kb. The final library size and concentrations were obtained on
517 the Fragment Analyser before being sequenced using the Sequel 1 2.1 chemistry with V4
518 primers at a loading on plate concentration of 6 pM and 10 h movie times.

519 For Nanopore sequencing, the ligation sequencing kits SQK-LSK109 or SQK-RAD004
520 were used as recommended by the manufacturer (Oxford Nanopore Technologies, Oxford,
521 United Kingdom). Starting material for the ligation library preparation were 1 - 1.5 µg HMW
522 gDNA for the ligation libraries and 400 ng for the rapid libraries. The prepared libraries were

523 loaded onto FLO-PRO002 (R9.4) flow cells. Data collection was carried out using a
524 PromethION Beta with live high accuracy base calling for up to 72 h and with mux scan
525 intervals of 1.5 h. Each sample was sequenced at least twice. Data generated were 7.7 Gb
526 for EgII male, 31.09 Gb for D53 male, 26.72 Gb for VIENNA 7^{D53-l-} male, and 24.83 Gb for
527 VIENNA 8^{D53-l-} male. Run metrics are shown in Supplementary Table 5.

528 The PacBio data were assembled using CANU⁵⁴ with two parameter settings: the first to
529 avoid haplotype collapsing (genomeSize=500m corOutCoverage=200 "batOptions=-dg 3 -db
530 3 -dr 1 -ca 500 -cp 50") and the second to merge haplotypes together (genomeSize=500m
531 corOutCoverage=200 correctedErrorRate=0.15). The genome completeness was assessed
532 with BUSCO^{44, 45} v3 using the dipteran gene set⁴⁴. The two assemblies were found to be
533 "duplicated" due to alternative haplotypes. To improve the contiguity and reduce duplication
534 haploMerger2 was used⁵⁵. The new assembly was then retested with BUSCO v3 and used
535 scaffolding. Phase GenomicsTM Hi-C libraries were made by Phase genomics from males
536 (n=2) of the same family used for PacBio sequencing. Initial scaffolding was completed by
537 Phase Genomics, but edited using the Salsa⁵⁶ and 3D-DNA
538 (<https://github.com/theaidenlab/3d-dna>) software. The resulting scaffolds were allocated a
539 chromosome number using chromosome specific marker described previously¹⁶. Specific
540 attention was made to the assembly and scaffolding of chromosome 5. Two contig
541 misassemblies were detected by the Hi-C data and fitted manually. The new assembly
542 (EgII_Ccap3.2.1) was then validated using the Hi-C data. Genes were called using the
543 Funannotate software making use of the Illumina RNAseq data generated by this project;
544 mRNA mapping to the genome is described below.

545

546 *D53 breakpoint analysis in C. capitata*

547 To identify possible breakpoint positions, the Nanopore D53 fly assembly contig_531 was
548 mapped onto the EgII_scaffold_5 (from the EgII_CCAP3.2_CANU_Hi-C_scaffolds.fasta
549 assembly) using MashMap v2.0 (<https://github.com/marbl/MashMap>). This helped to visualize
550 the local alignment boundaries (Supplementary Fig. 9). MashMap parameters were set to
551 kmer size = 16; window size = 100; segment length = 500; alphabet = DNA; percentage identity
552 threshold = 95%; filter mode = one-to-one.

553 Subsequent to this, and to help confirm the exact location of the identified breakpoints,
554 minimap2 (v2.17, <https://github.com/lh3/minimap2>) was used to align D53 as well as VIENNA
555 8^{D53-l-} and VIENNA 7^{D53-l-} Nanopore reads onto the EgII scaffold_5 reference (Supplementary
556 Fig. 9). Minimap2 parameters for Nanopore reads were: minimap2 -x map-ont -A 1 -a --MD -
557 L -t 40. Samtools (v1.9, <https://github.com/samtools/samtools>) was used to convert the
558 alignment.sam to .bam and prepare the alignment file to be viewed in the Integrative Genomics
559 Viewer (IGV, <http://software.broadinstitute.org/software/igv/>). The expectation was to see a

560 leftmost breakpoint in D53 read set alignments but not in VIENNA 8^{D53-|} and VIENNA 7^{D53-|}
561 when compared to the EgII reference (Supplementary Fig. 9). Due to an assembly gap in the
562 EgII scaffold_5 sequence, the exact location of the leftmost inversion breakpoint was not
563 conclusive using this approach.

564 A complementary approach was then used to facilitate detection of the leftmost inversion
565 breakpoint in the D53 inversion line. Minimap2 was again used, but here D53 contig_531 was
566 used as reference for the mapping of EgII male PacBio reads as well as VIENNA 8^{D53-|} male
567 and VIENNA 7 D53-| male Nanopore reads (Supplementary Fig. 10). Minimap2 parameters
568 for PacBio reads were: minimap2 -x map-pb -A 1 -a --MD -L -t 40. Minimap2 parameters for
569 Nanopore reads were: minimap2 -x map-ont -A 1 -a --MD -L -t 40. Samtools (v1.9,
570 <https://github.com/samtools/samtools>) was used to convert the alignment .sam to .bam and
571 prepare the alignment file to be viewed in the Integrative Genomics Viewer (IGV,
572 <http://software.broadinstitute.org/software/igv/>). The expectation was to see a common
573 breakpoint for all three of the above read set alignments when compared to the D53 genome
574 in the area of the inversion. Position ~3,055,294 was identified in the D53 contig_531 as the
575 most likely leftmost breakpoint.

576 To determine the rightmost breakpoint, D53 male and VIENNA 8^{D53-|} and VIENNA 7^{D53-|}
577 male nanopore reads were aligned on the EgII_scaffold_5 sequence. The expectation was to
578 see a breakpoint in D53 read set alignments but not in VIENNA 7^{D53-|} and VIENNA 8^{D53-|}. This
579 is the case here, since read alignments coming from both sides of the inversion are truncated
580 at one position (Supplementary Fig. 9). Findings from genome version EgII_Ccap3.2 were
581 extrapolated to the manually revised genome version EgII_Ccap3.2.1.

582 Predicted D53 inversion breakpoints were verified via PCRs in EgII, D53, and VIENNA 7^{D53+|}
583 GSS male and female flies, using PhusionFlash Polymerase in a 10 µl reaction volume [98°C,
584 10 s; 30 cycles of (98°C, 1 s; 56°C, 5 s; 72°C, 35 s); 72°C, 1 min] (Supplementary Fig. 4). The
585 primer pair for the right breakpoint was designed based on EgII sequence information, primers
586 for the left breakpoint were designed based on D53 sequence information. The wild type status
587 of chromosome 5 (EgII male and female, VIENNA 7^{D53+|} male) was amplified using primer
588 pairs P_1794 and P_1798 (1,950 bp) and P_1795 and P_1777 (690 bp) (Supplementary Table
589 4). Chromosome 5 with the inversion (D53 male and female, VIENNA 7^{D53+|} male and VIENNA
590 7^{D53+|} female) was verified using primer pairs P_1777 and P_1798 (1,188 bp) and P_1794
591 and P_1795 (1,152 bp) and amplicon sequencing (Macrogen Europe, Amsterdam).

592

593 *RNA extraction for transcriptomic analysis of C. capitata, B. dorsalis and Z. cucurbitae*
594 Samples of *C. capitata*, *B. dorsalis* and *Z. cucurbitae* species were collected for RNA
595 extraction (Supplementary Table 1) at 3rd instar larval and pre-pupal stages. Total RNA was
596 extracted by homogenizing three larvae of *C. capitata* and *B. dorsalis* and a single larvae of

597 *Z. cucurbitae* in liquid nitrogen, and then using the RNeasy Mini kit (Qiagen). Three replicates
598 per strain and time point were performed. mRNA was isolated using the NEBNext polyA
599 selection and the Ultra II directional RNA library preparation protocols from NEB and
600 sequenced on the Illumina NovaSeq 6000 using dual indexes as 150 bp paired end reads
601 (library insert 500 bp). Individual libraries were sequenced to provide >1 million paired end
602 reads per sample. Each replicate was then assembled separately using Trinity⁵⁷. The
603 assembled transcripts from Trinity were mapped to the Ccap3.2 genome using minimap⁵⁸
604 (parameters -ax splice:hg -uf). The Illumina reads were mapped with STAR⁵⁹. IGV⁶⁰ v 2.6 was
605 used to view all data at a genomic and gene level. Given that the white pupae GSS^{12, 61} was
606 used to collect samples for RNA extraction from single larvae of *Z. cucurbitae*, larval sex was
607 confirmed by a maleness-specific PCR on the *MoY* gene of *Z. cucurbitae*³⁶ using cDNA
608 synthesized with the OneStep RT-PCR Kit (Qiagen) and the primer pair ZcMoY1F and
609 ZcMoY1R (Supplementary Table 4) amplifying a 214 bp fragment. Conditions for a 25 µl PCR
610 reaction using the 1× *Taq* PCR Master Mix kit (Qiagen) were: [95°C, 5 min; 30 cycles of (95°C,
611 1 min; 51°C, 1 min; 72°C, 1 min); 72°C, 10 min]. Presence of a PCR product indicated a male
612 sample. Each, male and female sample was a pool of three individuals. Three replicates per
613 strain and time point were collected.

614

615 **Functional and cytogenetic verification of medfly D53 inversion and tephritid *wp* genes.**
616 Polytene chromosomes for *in situ* hybridization were prepared from third-instar larvae salivary
617 glands as described previously⁶². In brief, the glands were dissected in 45% acetic acid and
618 placed on a coverslip in a drop of 3:2:1 solution (3 parts glacial acetic acid: 2 parts water: 1-
619 part lactic acid) until been transparent (approximately 5 min). The coverslip was picked up with
620 a clean slide. After squashing, the quality of the preparation was checked by phase contrast
621 microscope. Satisfactory preparations were left to flatten overnight at -20°C and dipped into
622 liquid nitrogen until the babbling stopped. The coverslip was immediately removed with razor
623 blade and the slides were dehydrated in absolute ethanol, air dried and kept at room
624 temperature.

625 Probes were prepared by PCR. Single adult flies were used to extract DNA with the Extract
626 me kit (Blirt SA), following the manufacturer's protocol. NanoDrop spectrometer was used to
627 assess the quantity and quality of the extracted DNA which was then stored at -20°C until
628 used. Primers (P1790/1791, P1821/1822, Pgd_probe_F/R, vg1_probe_F/R, Sxl_probe_F/R,
629 y_probe_F/R, zw_probe_F/R, P1633/1634, Zc_F/R, Bd_F/R, P1395/1396, P1415/1416;
630 Supplementary Table 4) were designed for each targeted gene using Primer 3 and/or
631 Geneious Prime programs. PCR was performed in a 25 µl reaction volume using 12.5 µl PCR
632 Master mix 2x Kit (Thermo Fisher Scientific), 60-80 ng DNA, and the following PCR settings
633 [94°C, 5 min; 35 cycles of (94°C, 45 s; 56°C, 30 s; 72°C, 90 s); 72°C, 1 min].

634 The labelling of the probes was carried out according to the instruction manual of the Dig
635 DNA labelling kit (Roche). *In situ* hybridization was performed as described previously⁶³. In
636 brief, before hybridization, stored chromosome preparations were hydrated by placing them
637 for 2 min at each of the following ethanol solutions: 70%, 50% and 30%. Then they were
638 placed in 2× SSC at room temperature for 2 min. The stabilization of the chromosomes was
639 done by placing them in 2× SSC at 65°C for 30 min, denaturing in 0.07 M NaOH 2 min, washing
640 in 2× SSC for 30 sec, dehydrating (2 min in 30%, 50%, 70% and 95% ethanol), and air drying.
641 Hybridization was performed on the same day by adding 15 μ l of denatured probe (boiled for
642 10 min and ice-chilled). Slides were covered with a siliconized coverslip, sealed with rubber
643 cement, and incubated at 45°C overnight in a humid box. At the end of incubation, the
644 coverslip was floated off in 2x SSC and the slide washed in 2x SSC for 3 x 20 min at 53°C.

645 After 5 min wash in Buffer 1 (100 mM tris-HCl pH 7.5/ 1.5 M NaCl), the preparations were
646 in Blocking solution (Blocking reagent 0.5% in Buffer 1) for 30 min, and then washed for 1 min
647 in Buffer 1. The antibody mix was added to each slide and a coverslip was added. Then the
648 slides were incubated in a humid box for 45 min at room temperature, following 2× 15 min
649 washes in Buffer 1, and a 2 min wash in detection buffer (100 mM Tris-HCl pH 9.5/ 100 mM
650 NaCl). The color was developed with 1 ml of NBT/BCIP solution during a 40 min incubation in
651 the dark at room temperature. The removal of the NBT/BCIP solution was done by rinsing in
652 water twice. Hybridization sites were identified using 40x or 100x oil objectives (phase or bright
653 field) and a Leica DM 2000 LED microscope, with reference to the salivary gland chromosome
654 maps⁶⁴. Well-spread nuclei or isolated chromosomes were photographed using a digital
655 camera (Leica DMC 5400) and the LAS X software. All *in situ* hybridizations were performed
656 at least in duplicates and at least 10 nuclei were analyzed per sample.

657
658 **Gene editing and generation of homozygous *wp*⁻ strains in *B. tryoni* and *C. capitata*.** For
659 CRISPR/Cas9 gene editing in *B. tryoni*, purified Cas9 protein (Alt-R S.p. Cas9 Nuclease V3,
660 #1081058, 10 μ g/ μ l) and guide RNAs (customized Alt-R[®] CRISPR/Cas9 crRNA, 2 nmol and
661 Alt-R CRISPR/Cas9 tracrRNA, #1072532, 5nmol) were obtained from Integrated DNA
662 Technologies (IDT) and stored at -20°C. The guide RNAs were individually resuspended to a
663 100 μ M stock solution with nuclease-free duplex buffer and stored at -20°C before use. The
664 two customized 20 bp crRNA sequences (Bt_MFS-1 and Bt_MFS-2) (Supplementary Table
665 4) were designed using CRISPOR⁶⁵. Injection mixes for microinjection of *B. tryoni* embryos
666 comprise of 300 ng/ μ l Cas9 protein, 59 ng/ μ l of each individual crRNA, 222 ng/ μ l tracrRNA
667 and 1x injection buffer (0.1 mM sodium phosphate buffer pH 6.8, 5 mM KCl) in a final volume
668 of 10 μ l. The guide RNA complex containing the two crRNAs and tracrRNA was initially
669 prepared by heating the mix at 95°C for 5 min before cooling to room temperature. The Cas9
670 enzyme along with the rest of the injection mix components were then added to the guide RNA

671 complex and incubated at room temperature for 5 minutes to assemble the RNP complexes.
672 Microinjections were performed in *B. tryoni* Ourimbah laboratory strain embryos that were
673 collected over 1 hour time period and prepared for injection as previously described²².
674 Injections were performed under paraffin oil using borosilicate capillary needles (#30-0038,
675 Harvard Apparatus) drawn out on a Sutter P-87 flaming/brown micropipette puller and
676 connected to an air-filled 20 ml syringe, a manual MM-3 micromanipulator (Narishige) and a
677 CKX31-inverted microscope (Olympus). Microscope slides with the injected embryos were
678 placed on agar in a Petri dish that was then placed in a vented container containing moist
679 paper towels at 25°C (± 2°C). Hatched first instar larvae were removed from the oil and
680 transferred to larval food. Individual G₀ flies were crossed to six virgin flies from the Ourimbah
681 laboratory strain and eggs were collected overnight for two consecutive weeks. G₁ flies were
682 then allowed to mate *inter se* and eggs were collected in the same manner. G₂ pupae were
683 then analyzed phenotypically and separated according to color of pupae (brown, mosaic or
684 white).

685 For *C. capitata* CRISPR/Cas9 gene editing, lyophilized Cas9 protein (PNA Bio Inc, CP01)
686 was reconstituted to a stock concentration of 1 µg/µl in 20 mM Hepes, 150 mM KCl, 2%
687 sucrose and 1 mM DTT (pH 7.5) and stored at -80°C until use. A guide RNA (gRNA_MFS),
688 targeting the third CDS exon of *CcMFS* was designed and tested for potential off target effects
689 using Geneious Prime⁵² and the *C. capitata* genome annotation Ccap2.1. *In silico* target site
690 analysis predicted an on-target activity score of 0.615 (scores are between 0 and 1; the higher
691 the score the higher the expected activity⁶⁶ and zero off-targets sites in the medfly genome.
692 Guide RNA was synthesized by *in vitro* transcription of linear double-stranded DNA template
693 as previously described⁶⁷ using primers P_1753 and P_369 (Supplementary Table 4), Q5 HF
694 polymerase, and a Bio-Rad C1000 Touch thermal cycler [98°C, 30 s; 35 cycles of (98°C, 10
695 s; 58°C, 20 s; 72°C, 20 s); 72°C, 2 min] and HiScribeTM T7 High Yield RNA Synthesis. Injection
696 mixes for microinjection of embryos contained 360 ng/µl Cas9 protein (1 µg/µl, dissolved in its
697 formulation buffer), 200 ng/µl gRNA_MFS and an end-concentration of 300 mM KCl according
698 to previous studies^{67, 68}. The mix was freshly prepared on ice followed by an incubation step
699 for 10 min at 37°C to allow pre-assembly of gRNA-Cas9 ribonucleoprotein complexes and
700 stored on ice prior to injections. Microinjections were conducted in wild type EgII *C. capitata*
701 embryos. Eggs were collected over a 30-40 min time period and prepared for injection as
702 previously described⁶⁷. Injections were performed using siliconized quartz glass needles
703 (Q100-70-7.5; LOT171381; Science Products, Germany), drawn out on a Sutter P-2000 laser-
704 based micropipette puller. The injection station consisted of a manual micromanipulator (MN-
705 151, Narishige), an Eppendorf FemtoJet 4i microinjector, and an Olympus SZX2-TTR
706 microscope (SDF PLAPO 1xPF objective). The microscope slide with the injected embryos

707 was placed in a Petri dish containing moist tissue paper in an oxygen chamber (max. 2 psi).
708 Hatched first instar larvae were transferred from the oil to larval food.

709 As complementation assay, reciprocal crosses between surviving G₀ adults and virgin *white*
710 *pupae* strain #1402_22m1B (pBac_fa_attP-TREhs43-Cctr-I-hid^{Ala5}-SV40_a_PUb-nls-EGFP-
711 SV40) (*wp*^(nat))²⁴ were set up either single paired (six cages) or in groups of seven to ten flies
712 (seven cages). Eggs were collected three times every 1-2 days. Progeny (G₁) exhibiting the
713 *white pupae* phenotype (*wp*^(nat)-(CRISPR)) were assayed via non-lethal genotyping and sorted
714 according to mutation genotype (see Fig. 4). Genotypes 'A-H' were group-backcrossed into
715 WT EgII (*wp*⁺⁺), genotype 'C' siblings massed crossed. Eggs were collected 4 times every 1-
716 2 days. Generation G₂ flies were analyzed via PCR using three primers, specific for *wp*⁺ and
717 *wp*^{-(CRISPR)} or *wp*^(nat) allele size respectively. Offspring of outcross cages showed brown pupae
718 phenotype and either *wp*⁺⁻-(*nat*) or *wp*⁺⁻-(CRISPR) genotype. In order to make mutations A, D, and
719 H homozygous, 40 flies (25 females, 15 males) were genotyped each, and *wp*⁺⁻-(CRISPR) positive
720 flies were inbred (mutation A: 15 females, 7 males, mutation D: 12 females, 7 males, mutation
721 H: 11 females, 8 males). G₃ showing white pupae phenotype was homozygous for *wp*^{-(CRISPR)}
722 mutations A, D, or H, respectively and was used to establish lines. Inbreeding of mutation C
723 *wp*^{-(nat)}-(CRISPR) flies produced only white pupae offspring, based on either *wp*^{-(nat)}-(*nat*), *wp*^{-(nat)}-(
724 CRISPR) or *wp*^{-(CRISPR)}-(CRISPR). 94 flies (46 females, 48 males) were genotyped, homozygous *wp*^{-(CRISPR)}
725 were inbred to establish a line (13 females, 8 males).

726
727 **Molecular analyses of *wp* mutants and mosaics.** In *B. tryoni*, genomic DNA was isolated
728 for genotyping from G₂ pupae using the DNeasy Blood and Tissue Kit (Qiagen). PCR
729 amplicons spanning both BtMFS guide recognition sites were generated using Q5 polymerase
730 (NEB) with primers BtMFS_5primeF and BtMFS_exon2R (Supplementary Table 4). Products
731 were purified using MinElute PCR Purification Kit (Qiagen), ligated into pGEM-t-easy vector
732 (Promega) and transformed into DH5α cells. Plasmids were purified with Wizard Plus SV
733 Minipreps (Promega) and sequenced.

734 In *C. capitata*, non-lethal genotyping was performed to identify parental genotypes before
735 setting up crosses. Therefore, genomic DNA was extracted from single legs of G₁ and G₂ flies
736 following a protocol established by⁶⁹. Single legs of anesthetized flies were cut at the proximal
737 femur using scissors. Legs were then homogenized by ceramic beads and 50 µl buffer (10
738 mM Tris-Cl, pH 8.2, 1 mM EDTA, 25 mM NaCl) for 15 s (6 m/s) using a FastPrep-24TM 5G
739 homogenizer. Then, 30 µl buffer and 1.7 µl proteinase-K (2.5 U/mg) were added, incubated
740 for 1 h at 37°C and the reaction stopped by 4 min at 98°C. The reaction mix was cooled down
741 on ice and used for PCR. For G₁ flies, PCR on *wp* was performed in a 25 µl reaction volume
742 using the DreamTaq polymerase, primer pair P_1643 and P_1644 (Supplementary Table 4),
743 and 3.75 µl reaction mix. Different amplicon sizes are expected for brown (*wp*⁺ and *wp*^{-(CRISPR)})

744 and white pupae (*wp*^{-(nat)}) alleles, 724 bp and 8,872 bp in size, respectively. The *wp*^{-(nat)}
745 amplicon was excluded via PCR settings [95°C, 3 min; 35 cycles of (95°C, 30 s; 56°C, 30 s;
746 72°C, 1 min); 72°C, 5 min]. The 724 bp PCR product was verified by agarose electrophoresis
747 and purified from the PCR reaction using the DNA Clean & ConcentratorTM-5 kit. PCR products
748 were sequenced using primer P_1644 and sequences analyzed using the Geneious Prime
749 Software Package (6). In generation G₂, flies were analyzed using multiplex PCR with primers
750 P_1657, P_1643, and P_1644 (Supplementary Table 4), to distinguish between the *wp*^{-(nat)}
751 (457 bp; P_1643 and P_1657), and *wp*^{-(CRISPR)} alleles (724 bp; P_1643 and P1644) using the
752 PCR protocol [95°C, 3 min; 35 cycles of (95°C, 30 s; 56°C, 30 s; 72°C, 1 min); 72°C, 5 min]).
753

754 **Image acquisition.** Images of *B. tryoni* pupae were taken with an Olympus SZXI6
755 microscope, Olympus DP74 camera and Olympus LF-PS2 light source using the Olympus
756 stream basic 2.3.3 software. Images of *C. capitata* pupae were taken with a Keyence digital
757 microscope VHX-5000. Image processing was conducted with Adobe Photoshop CS5.1
758 software to apply moderate changes to image brightness and contrast. Changes were applied
759 equally across the entire image and throughout all images.

760 **Ethics approval and consent to participate**

761 Not applicable

762 **Consent for publication**

763 Not applicable

764 **Availability of data and material**

765 All data generated or analyzed are included in this article.

766 **Funding**

767 This study was financially supported by the Joint FAO/IAEA Insect Pest Control
768 Subprogramme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and
769 Agriculture. The project has also been funded by the Horticulture Innovation Australia
770 (FF17000, FF18002), using funds from the Australian Government, and co-investment from
771 Macquarie University and South Australian Research and Development Institute (SARDI).
772 SWB was supported by the Australian Research Council (FT140101303) and Hermon Slade
773 Foundation grant HSF 18/6. Furthermore, this work was supported by the Emmy Noether
774 program of the German Research Foundation (SCHE 1833/1-1; to MFS) and the LOEWE
775 Center for Insect Biotechnology and Bioresources of the Hessen State Ministry for Higher
776 Education, Research and the Arts (HMWK; to MFS). The work was also supported by
777 Canadian Foundation for Innovation and Genome Canada Genome Technology Platform
778 awards and the International Atomic Energy Agency research contact no. 23358 as part of the
779 Coordinated Research Project “Generic approach for the development of genetic sexing
780 strains for SIT applications” (JR).

781 **Acknowledgements**

782 This study was benefitted from discussions at International Atomic Energy Agency funded
783 meetings for the Coordinated Research Projects (CRPs) and particularly the CRP on “Generic
784 approach for the development of genetic sexing strains for SIT applications”. The authors also
785 wish to thank Tanja Rehling, Jakob Martin and Johanna Rühl for technical assistance and
786 Germano Sollazzo for helping with injections and primers design (Justus-Liebig University
787 Gießen and Insect Pest Control Laboratory); Elena Isabel Cancio Martinez, Thilakasiri
788 Dammalage, Sohel Ahmad and Güllizar Pillwax for insect rearing (Insect Pest Control
789 Laboratory), Shu-Huang Chen (McGill University) for technical assistance with Nanopore
790 library preparations; and Arjen van’t Hof (University of Liverpool) for constructing libraries from
791 micro-dissected chromosomes.

792 **Competing Interests Statement**

793 The authors declare no competing interests.

794

795 **References**

- 796 1. Robinson, A.S. & Hooper, G. *Fruit flies: their biology, natural enemies, and control*,
797 Vol. 1. (Elsevier, Amsterdam; New York; 1989).
- 798 2. Suckling, D.M. et al. Eradication of tephritid fruit fly pest populations: outcomes and
799 prospects. *Pest Manag Sci* **72**, 456-465 (2016).
- 800 3. Dyck, V.A. et al. in *Sterile insect technique - principles and practice in area-wide
801 integrated pest management*. (eds. V.A. Dyck, J. Hendrichs & A.S. Robinson) 525-545
802 (Springer, Dordrecht, NL; 2005).
- 803 4. Vreysen, M., Robinson, A.S. & Hendrichs, J. *Area-wide control of insect pests: from
804 research to field implementation*. (Springer, Dordrecht, NL; 2007).
- 805 5. Rendon, P., McInnis, D., Lance, D. & Stewart, J. *Medfly* (Diptera: Tephritidae) genetic
806 sexing: large-scale field comparison of males-only and bisexual sterile fly releases in
807 Guatemala. *Journal of Economic Entomology* **97**, 1547-1553 (2004).
- 808 6. Franz, G. in *Sterile insect technique - principles and practice in area-wide integrated
809 pest management*. (eds. V.A. Dyck, J. Hendrichs & A.S. Robinson) 427-451 (Springer,
810 Dordrecht, NL; 2005).
- 811 7. Augustinos, A.A. et al. *Ceratitis capitata* genetic sexing strains: laboratory evaluation
812 of strains from mass-rearing facilities worldwide. *Entomologia Experimentalis et
813 Applicata* **164**, 305-317 (2017).
- 814 8. Zacharopoulou, A. et al. A review of more than 30 years of cytogenetic studies of
815 Tephritidae in support of sterile insect technique and global trade. *Entomologia
816 Experimentalis et Applicata* **164**, 204-225 (2017).
- 817 9. Rössler, Y. The genetics of the Mediterranean fruit fly: a “white pupae” Mutant. *Annals
818 of the Entomological Society of America* **72**, 583-585 (1979).
- 819 10. Rössler, Y. & Koltin, Y. The genetics of the Mediterranean fruit fly, *Ceratitis capitata*:
820 three morphological mutations. *Annals of the Entomological Society of America* **69**,
821 604-608 (1976).
- 822 11. McCombs, S.D. & Saul, S.H. Linkage analysis of five new genetic markers of the
823 oriental fruit fly, *Bactrocera dorsalis* (Diptera: Tephritidae). *The Journal of heredity* **83**,
824 199-203 (1992).
- 825 12. McInnis, D.O. et al. Development of a pupal color-based genetic sexing strain of the
826 melon fly, *Bactrocera cucurbitae* (Coquillett) (Diptera: Tephritidae). *Annals of the
827 Entomological Society of America* **97**, 1026-1033 (2004).
- 828 13. Wappner, P. et al. White pupa: A *Ceratitis capitata* mutant lacking catecholamines for
829 tanning the puparium, Vol. 25. (1995).
- 830 14. Rössler, Y. & Rosenthal, H. Genetics of the Mediterranean fruit fly (Diptera:
831 Tephritidae): morphological mutants on chromosome five. *Annals of the Entomological
832 Society of America* **85**, 525-531 (1992).
- 833 15. Kerremans, P. & Franz, G. Cytogenetic analysis of chromosome 5 from the
834 Mediterranean fruit fly, *Ceratitis capitata*. *Chromosoma* **103**, 142-146 (1994).
- 835 16. Papanicolaou, A. et al. The whole genome sequence of the Mediterranean fruit fly,
836 *Ceratitis capitata* (Wiedemann), reveals insights into the biology and adaptive
837 evolution of a highly invasive pest species. *Genome Biology* **17**, 192 (2016).
- 838 17. Papathanos, P.A. et al. A perspective on the need and current status of efficient sex
839 separation methods for mosquito genetic control. *Parasites & Vectors* **11**, 654 (2018).

840 18. Sim, S.B. & Geib, S.M. A chromosome-scale assembly of the *Bactrocera cucurbitae*
841 genome provides insight to the genetic basis of white pupae. *G3 (Bethesda, Md.)* **7**,
842 1927-1940 (2017).

843 19. Sim, S.B., Ruiz-Arce, R., Barr, N.B. & Geib, S.M. A new diagnostic resource for
844 *Ceratitis capitata* strain identification based on QTL mapping. *G3 (Bethesda, Md.)* **7**,
845 3637-3647 (2017).

846 20. Zdobnov, E.M. et al. OrthoDB v9.1: cataloging evolutionary and functional annotations
847 for animal, fungal, plant, archaeal, bacterial and viral orthologs. *Nucleic Acids Res* **45**,
848 D744-D749 (2017).

849 21. San Jose, M. et al. Incongruence between molecules and morphology: A seven-gene
850 phylogeny of *Dacini* fruit flies paves the way for reclassification (Diptera: Tephritidae).
851 *Mol Phylogenet Evol* **121**, 139-149 (2018).

852 22. Choo, A., Crisp, P., Saint, R., O'Keefe, L.V. & Baxter, S.W. CRISPR/Cas9-mediated
853 mutagenesis of the white gene in the tephritid pest *Bactrocera tryoni*. *Journal of*
854 *Applied Entomology* **142**, 52-58 (2018).

855 23. Gariou-Papalexiou, A. et al. Polytene chromosomes as tools in the genetic analysis of
856 the Mediterranean fruit fly, *Ceratitis capitata*. *Genetica* **116**, 59-71 (2002).

857 24. Ogaugwu, C.E., Schetelig, M.F. & Wimmer, E.A. Transgenic sexing system for
858 *Ceratitis capitata* (Diptera: Tephritidae) based on female-specific embryonic lethality.
859 *Insect Biochemistry and Molecular Biology* **43**, 1-8 (2013).

860 25. Davis, A.W. et al. Rescue of hybrid sterility in crosses between *D. melanogaster* and
861 *D. simulans*. *Nature* **380**, 157-159 (1996).

862 26. Araripe, L.O., Montenegro, H., Lemos, B. & Hartl, D.L. Fine-scale genetic mapping of
863 a hybrid sterility factor between *Drosophila simulans* and *D. mauritiana*: the varied and
864 elusive functions of "speciation genes". *BMC Evol Biol* **10**, 385 (2010).

865 27. Brideau, N.J. & Barbash, D.A. Functional conservation of the *Drosophila* hybrid
866 incompatibility gene Lhr. *BMC Evol Biol* **11**, 57 (2011).

867 28. Kotov, A.A. et al. piRNA silencing contributes to interspecies hybrid sterility and
868 reproductive isolation in *Drosophila melanogaster*. *Nucleic Acids Res* **47**, 4255-4271
869 (2019).

870 29. Barbash, D.A. Ninety years of *Drosophila melanogaster* hybrids. *Genetics* **186**, 1-8
871 (2010).

872 30. Bedo, D.G. & Zacharopoulou, A. Inter-tissue variability of polytene chromosome
873 banding patterns. *Trends Genet* **4**, 90-91 (1988).

874 31. Kriventseva, E.V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal,
875 protist, bacterial and viral genomes for evolutionary and functional annotations of
876 orthologs. *Nucleic Acids Res* **47**, D807-d811 (2019).

877 32. Zhao, Y. et al. A major facilitator superfamily protein participates in the reddish brown
878 pigmentation in *Bombyx mori*. *J Insect Physiol* **58**, 1397-1405 (2012).

879 33. The modEncode Consortium et al. Identification of functional elements and regulatory
880 circuits by *Drosophila* modENCODE. *Science (New York, N.Y.)* **330**, 1787-1797
881 (2010).

882 34. Wright, T.R. The genetics of biogenic amine metabolism, sclerotization, and
883 melanization in *Drosophila melanogaster*. *Adv Genet* **24**, 127-222 (1987).

884 35. Bourtzis, K., Psachoulia, C. & Marmaras, V.J. Evidence that different integumental
885 phosphatases exist during development in the Mediterranean fruit fly *Ceratitis capitata*:
886 possible involvement in pupariation. *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry* **98**, 411-416 (1991).

888 36. Meccariello, A. et al. *Maleness-on-the-Y (MoY) orchestrates male sex determination*
889 in major agricultural fruit fly pests. *Science* **365**, 1457-1460 (2019).

890 37. Hall, A.B. et al. *Sex determination. A male-determining factor in the mosquito Aedes*
891 *aegypti*. *Science* **348**, 1268-1270 (2015).

892 38. Liu, P. et al. *Nix is a male-determining factor in the Asian tiger mosquito Aedes*
893 *albopictus*. *Insect Biochem Mol Biol* **118**, 103311 (2019).

894 39. Ward, C.M., To, T.H. & Pederson, S.M. *ngsReports: a Bioconductor package for*
895 *managing FastQC reports and other NGS related log files*. *Bioinformatics* **36**, 2587-
896 2588 (2020).

897 40. Sedlazeck, F.J., Rescheneder, P. & von Haeseler, A. *NextGenMap: fast and accurate*
898 *read mapping in highly polymorphic genomes*. *Bioinformatics* **29**, 2790-2791 (2013).

899 41. Garrison, E. & Marth, G. in *arXiv e-prints* (2012).

900 42. Li, H. *A statistical framework for SNP calling, mutation discovery, association mapping*
901 *and population genetical parameter estimation from sequencing data*. *Bioinformatics*
902 **27**, 2987-2993 (2011).

903 43. Zheng, X. et al. *SeqArray-a storage-efficient high-performance data format for WGS*
904 *variant calls*. *Bioinformatics* **33**, 2251-2257 (2017).

905 44. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M.
906 *BUSCO: assessing genome assembly and annotation completeness with single-copy*
907 *orthologs*. *Bioinformatics* **31**, 3210-3212 (2015).

908 45. Waterhouse, R.M. et al. *BUSCO applications from quality assessments to gene*
909 *prediction and phylogenomics*. *Mol Biol Evol* **35**, 543-548 (2018).

910 46. Stamatakis, A. *RAxML version 8: a tool for phylogenetic analysis and post-analysis of*
911 *large phylogenies*. *Bioinformatics* **30**, 1312-1313 (2014).

912 47. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. *ASTRAL-III: polynomial time species*
913 *tree reconstruction from partially resolved gene trees*. *BMC Bioinformatics* **19**, 153
914 (2018).

915 48. Martin, S.H. & Van Belleghem, S.M. *Exploring evolutionary relationships across the*
916 *genome using topology weighting*. *Genetics* **206**, 429-438 (2017).

917 49. Finn, R.D., Clements, J. & Eddy, S.R. *HMMER web server: interactive sequence*
918 *similarity searching*. *Nucleic Acids Res* **39**, W29-37 (2011).

919 50. Li, H. et al. *The Sequence Alignment/Map format and SAMtools*. *Bioinformatics* **25**,
920 2078-2079 (2009).

921 51. Zimin, A.V. et al. *The MaSuRCA genome assembler*. *Bioinformatics* **29**, 2669-2677
922 (2013).

923 52. Kearse, M. et al. *Geneious Basic: an integrated and extendable desktop software*
924 *platform for the organization and analysis of sequence data*. *Bioinformatics* **28**, 1647-
925 1649 (2012).

926 53. Green, M.R. & Sambrook, J. *Isolation of High-Molecular-Weight DNA using organic*
927 *solvents*. *Cold Spring Harb Protoc* **2017**, pdb.prot093450 (2017).

928 54. Koren, S. et al. *Canu: scalable and accurate long-read assembly via adaptive k-mer*
929 *weighting and repeat separation*. *Genome Res* **27**, 722-736 (2017).

930 55. Huang, S. et al. *Haplomerger: reconstructing allelic relationships for polymorphic*
931 *diploid genome assemblies*. *Genome Res* **22**, 1581-1588 (2012).

932 56. Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.S. *Scaffolding of long read*
933 *assemblies using long range contact information*. *BMC Genomics* **18**, 527 (2017).

934 57. Haas, B.J. et al. *De novo transcript sequence reconstruction from RNA-seq using the*
935 *Trinity platform for reference generation and analysis*. *Nat Protoc* **8**, 1494-1512 (2013).

936 58. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,
937 3094-3100 (2018).

938 59. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
939 (2013).

940 60. Robinson, J.T. et al. Integrative genomics viewer. *Nature biotechnology* **29**, 24-26
941 (2011).

942 61. Zacharopoulou, A. & Franz, G. Genetic and cytogenetic characterization of genetic
943 sexing strains of *Bactrocera dorsalis* and *Bactrocera cucurbitae* (Diptera: Tephritidae).
944 *J Econ Entomol* **106**, 995-1003 (2013).

945 62. Zacharopoulou, A. et al. The genome of the Mediterranean fruit fly *Ceratitis capitata*:
946 localization of molecular markers by *in situ* hybridization to salivary gland polytene
947 chromosomes. *Chromosoma* **101**, 448-455 (1992).

948 63. Mavragani-Tsipidou, P. et al. in *Protocols for cytogenetic mapping of arthropod*
949 *genomes*. (ed. I. Sakharov) 1-62 (CRC Press, Taylor and Francis Group, LLC, Florida,
950 USA 2014).

951 64. Zacharopoulou, A. Polytene chromosome maps in the medfly *Ceratitis capitata*
952 *Genome* **33**, 184–197 (1990).

953 65. Concorde, J.P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9
954 genome editing experiments and screens. *Nucleic Acids Res* **46**, W242-W245 (2018).

955 66. Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-
956 mediated gene inactivation. *Nature biotechnology* **32**, 1262-1267 (2014).

957 67. Aumann, R.A., Schetelig, M.F. & Häcker, I. Highly efficient genome editing by
958 homology-directed repair using Cas9 protein in *Ceratitis capitata*. *Insect Biochemistry*
959 and *Molecular Biology* **101**, 85-93 (2018).

960 68. Burger, A. et al. Maximizing mutagenesis with solubilized CRISPR-Cas9
961 ribonucleoprotein complexes. *Development (Cambridge, England)* **143**, 2025-2037
962 (2016).

963 69. Carvalho, G.B., Ja, W.W. & Benzer, S. Non-lethal PCR genotyping of single
964 Drosophila. *Biotechniques* **46**, 312-314 (2009).

965