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Abstract 22 

Aging, for virtually all life, is inescapable. However, within populations, biological aging 23 

rates vary. Understanding sources of variation in this process is central to understanding the 24 

biodemography of natural populations. We constructed a DNA methylation-based age predictor 25 

for an intensively studied wild baboon population in Kenya. Consistent with findings in humans, 26 

the resulting “epigenetic clock” closely tracks chronological age, but individuals are predicted to 27 

be somewhat older or younger than their known ages. Surprisingly, these deviations are not 28 

explained by the strongest predictors of lifespan in this population, early adversity and social 29 

integration. Instead, they are best predicted by male dominance rank: high-ranking males are 30 

predicted to be older than their true ages, and epigenetic age tracks changes in rank over time. 31 

Our results argue that achieving high rank for male baboons—the best predictor of reproductive 32 

success—imposes costs consistent with a “live fast, die young” life history strategy. 33 

 34 

Introduction 35 
Aging, the nearly ubiquitous functional decline experienced by organisms over time1, is a 36 

fundamental component of most animal life histories2. At a physiological level, age affects 37 

individual quality, which in turn affects the ability to compete for mates and other resources, 38 

invest in reproduction, and maintain somatic integrity. At a demographic level, age is often one 39 

of the strongest predictors of survival and mortality risk, which are major determinants of 40 

Darwinian fitness. In order for patterns of aging to evolve, individuals must vary in their rates of 41 

biological aging. Thus, characterizing variation in biological aging rates and its sources—beyond 42 

simply chronological age—is an important goal in evolutionary ecology, with the potential to 43 

offer key insight into the trade-offs that shape individual life history strategies3.   44 

Recent work suggests that DNA methylation data can provide exceptionally accurate 45 

estimates of chronological age4. These approaches typically use supervised machine learning 46 

methods that draw on methylation data from several hundred CpG sites, identified from hundreds 47 

of thousands of possible sites, to produce a single chronological age prediction5-7. Intriguingly, 48 

some versions of these clocks also predict disease risk and mortality, suggesting that they capture 49 

aspects of biological aging that are not captured by chronological age alone8. For example, in 50 

humans, individuals predicted to be older than their true chronological age are at higher risk of 51 

Alzheimer’s disease9, cognitive decline9,10, and obesity11. Accelerated epigenetic age is in turn 52 

predicted by environmental factors with known links to health and lifespan, including childhood 53 

social adversity12,13 and cumulative lifetime stress14. These observations generalize to other 54 

animals. Dietary restriction, for instance, decelerates biological aging based on DNA methylation 55 

clocks developed for laboratory mice and captive rhesus macaques, and genetic knockout mice 56 

with extended lifespans also appear epigenetically young for age15-17. However, while DNA 57 

methylation data have been used to estimate the age structure of wild populations (where 58 

birthdates are frequently unknown)18-21, they have not been applied to investigating sources of 59 

variance in biological aging in the wild.  60 

To do so here, we coupled genome-wide data on DNA methylation levels with detailed 61 

behavioral and life history data available for one of the most intensively studied wild mammal 62 

populations in the world, the baboons of the Amboseli ecosystem of Kenya22. First, we calibrated 63 

a DNA methylation-based “epigenetic clock” and assessed the clock’s composition. Second, we 64 

compared the accuracy of this clock against other age-associated traits and between sexes. Third, 65 

we tested whether variance in biological aging was explained by socioenvironmental predictors 66 

known to impact fertility or survival in this population. Finally, we investigated an intriguing 67 
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association between epigenetic age acceleration and male dominance rank. Our results show that 68 

predictors of lifespan can be decoupled from rates of epigenetic aging. However, other factors—69 

particularly male dominance rank—are strong predictors of epigenetic clock-based age 70 

acceleration. These results establish the first epigenetic clock available for any wild nonhuman 71 

primate, and are the first to establish a link between social factors and epigenetic aging in any 72 

natural animal population. Together, they highlight potential sex-specific trade-offs that may 73 

maximize fitness, but also compromise physiological condition and potentially shorten male 74 

lifespan.  75 

 76 

Results  77 

Epigenetic clock calibration and composition  78 

We used a combination of previously published23 and newly generated reduced-79 

representation bisulfite sequencing (RRBS) data from 245 wild baboons (N = 277 blood 80 

samples) living in the Amboseli ecosystem of Kenya22 to generate a DNA methylation-based age 81 

predictor (an “epigenetic clock”5,6). Starting with a data set of methylation levels for 458,504 82 

CpG sites genome-wide (Supplementary Figure 1; Supplementary Table 1), we used elastic net 83 

regression to identify a set of 573 CpG sites that together accurately predict baboon age to within 84 

a median absolute difference (MAD) of 1.1 years ± 1.9 s.d. (Figure 1; Supplementary Table 2; 85 

Pearson’s r = 0.762, p = 9.70 x 10-54; median adult life expectancy in this population is 10.3 86 

years for females and 7.9 for males24). The choice of these sites reflects a balance between 87 

increasing predictive accuracy within the sample and minimizing generalization error to 88 

unobserved samples, using a similar approach as that used to develop epigenetic clocks in 89 

humans5,6 (see also Methods and Supplementary Figure 2). 90 

Consistent with findings in humans6, clock sites are enriched in genes, CpG islands, 91 

promoter regions, and putative enhancers, compared to the background set of all sites we initially 92 

considered (Supplementary Figure 3; Fisher’s exact tests, all p < 0.05). Clock sites are also more 93 

common in age-associated differentially methylated regions in baboons (Supplementary Figure 94 

3; sites that increase with age: log2[OR] = 4.189, p = 3.64 x 10-9; sites that decrease with age: 95 

log2[OR] = 5.344, p = 1.54 x 10-8)25, such that many, but not all, of the clock sites also exhibit 96 

individual associations between DNA methylation levels and age (Supplementary Figures 4 and 97 

5; Supplementary Table 3). Additionally, clock sites were more likely to be found in regions that 98 

exhibit enhancer-like activity in a massively parallel reporter assay (sites that increase with age: 99 

log2[OR] = 2.685, p = 1.22 x 10-2; sites that decrease with age: log2[OR] = 4.789, p = 1.78 x 10-
100 

5)26 and in regions implicated in the gene expression response to bacteria in the Amboseli baboon 101 

population (overlap of lipopolysaccharide [LPS] up-regulated genes and sites that increase with 102 

age: log2[OR] = 0.907, p = 7.03 x 10-4; overlap of LPS down-regulated genes and sites that 103 

decrease with age: log2[OR] = 1.715, p = 1.55 x 10-3)27. Our results thus suggest that the 104 

Amboseli baboon epigenetic clock not only tracks chronological age, but also captures age-105 

related changes in DNA methylation levels that are functionally important for gene regulation.                      106 

 107 

Comparison with other age-associated traits and differences between sexes 108 

Overall, the clock performed favorably relative to other morphological or biomarker 109 

predictors of age in this population. The epigenetic clock generally explained more variance in 110 

true chronological age, resulted in lower median error, and exhibited less bias than predictions 111 

based on raw body mass index (BMI) or blood cell composition data from flow cytometry or 112 

blood smears (traits that change with age in baboons28,29). Its performance was comparable to 113 
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molar dentine exposure, a classical marker of age30 (Supplementary Figure 6). For a subset of 30 114 

individuals, we had two samples collected at different points in time. The predicted ages from 115 

these longitudinally collected samples were older for the later-collected samples, as expected 116 

(Figure 1C-D; binomial test p = 5.95 x 10-5). Furthermore, the change in epigenetic clock 117 

predictions between successive longitudinal samples positively predicted the actual change in 118 

age between sample dates (β = 0.312, p = 0.027, controlling for sex; difference between actual 119 

change and predicted change: mean 3.11 years ± 3.25 s.d.).   120 

However, clock performance was not equivalent in males and females. Specifically, we 121 

observed that the clock was significantly more accurate in males (Figure 1; males: N = 135; 122 

MAD = 0.85 years ± 1.0 s.d.; Pearson’s r = 0.86, p = 5.49 x 10-41; females: N = 142; MAD = 1.6 123 

years ± 2.4 s.d.; r = 0.78, p = 6.78 x 10-30; two-sided Wilcoxon test for differences in absolute 124 

error by sex: p = 4.37 x 10-9). Sex differences were also apparent in the slope of the relationship 125 

between predicted age and chronological age. Males show a 2.2-fold higher rate of change in 126 

predicted age, as a function of chronological age, compared to females (Figure 1A-B; 127 

chronological age by sex interaction in a linear model for predicted age: β = 0.448, p = 9.66 x 10-
128 

19, N = 277). Interestingly, sex differences are not apparent in animals < 8 years, which roughly 129 

corresponds to the age at which the majority of males have achieved adult dominance rank and 130 

dispersed from their natal group31-33 (N = 158, chronological age by sex interaction β = -0.038, p 131 

= 0.808). Rather, sex differences become apparent after baboons have reached full physiological 132 

and social adulthood (N = 119, chronological age by sex interaction β = 0.459 , p = 9.74 x 10-7 in 133 

animals ≥ 8 years), when divergence between male and female life history strategies is most 134 

marked31-33 and when aging rates between the sexes are predicted to diverge34-36.  135 

Figure 1. Epigenetic clock age predictions in the Amboseli baboons. Predicted ages are shown relative to true 136 
chronological ages for (A) females (Pearson’s r = 0.78, p = 6.78 x 10-30, N = 142 samples) and (B) males (r = 0.86, p 137 
= 5.49 x 10-41, N = 135 samples). Solid lines represent the best fit line; dashed lines show the line for y = x. (C) and 138 
(D) show predictions for individuals with at least two samples in the data set (N = 30; 14 females and 16 males). In 139 
26 of 30 cases (87%), samples collected later were correctly predicted to be from an older animal. 140 
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Because of these differences, we separated males and females for all subsequent analyses. 141 

However, we note that the effects of age on DNA methylation levels at individual clock sites are 142 

highly correlated between the sexes (Pearson’s r = 0.91, p = 3.35 x 10-204), with effect sizes that 143 

are, on average, more precisely estimated in males (paired t-test p = 4.53 x 10-74 for standard 144 

errors of βage; Supplementary Figure 4). In other words, the sex differences in clock performance 145 

reflect changes in methylation that occur at the same CpG sites, but with higher variance in 146 

females. Lower accuracy in females compared to males therefore appears to result from the 147 

greater variability in DNA methylation change in older females (Figure 1).  148 

 149 

Socioenvironmental predictors of variance in biological aging 150 

 Although the baboon epigenetic clock is a good predictor of age overall, individuals were 151 

often predicted to be somewhat older or younger than their known chronological age. In humans 152 

and some model systems, the sign and magnitude of this deviation captures information about 153 

physiological decline and/or mortality risk beyond that contained in chronological age alone15-
154 

17,37. 155 

To test whether this observation extends to wild baboons, we focused on four factors of 156 

known importance to fitness in the Amboseli population. First, we considered cumulative early 157 

adversity, which is a strong predictor of shortened lifespan and offspring survival for female 158 

baboons38,39. We measured cumulative adversity as a count of major adverse experiences 159 

suffered in early life, including low maternal social status, early life drought, a competing 160 

younger sibling, maternal loss, and high experienced population density (i.e., social group size). 161 

Second, we considered social bond strength in adulthood, which positively predicts longer adult 162 

lifespan in baboons, humans, and other wild social mammals40-43. Third, we considered 163 

dominance rank, which is a major determinant of access to mates, social partners, and other 164 

resources in baboons40,44-46. Finally, we considered body mass index (BMI), a measure of body 165 

condition that, in the Amboseli baboons, primarily reflects lean muscle mass (mean body fat 166 

percentages have been estimated at <2% in adult females and <9% in adult males)47. Because 167 

raw BMI (i.e., BMI not correcting for age) also tracks growth and development (increasing as 168 

baboons reach their prime and then declining thereafter28, Supplementary Figure 7; Pearson’s r 169 

in males between rank and raw BMI = -0.56, p = 6.38 x 10-9), we calculated BMI relative to the 170 

expected value for each animal’s age using piecewise regression, which also eliminates 171 

correlations between BMI and male rank (Pearson’s r = -0.070, p = 0.504). We refer to this 172 

adjusted measure of BMI as age-adjusted BMI. 173 

Because high cumulative early adversity and low social bond strength are associated with 174 

increased mortality risk in the Amboseli baboons, we predicted that they would also be linked to 175 

increased epigenetic age. For rank and age-adjusted BMI, our predictions were less clear: 176 

improved resource access could conceivably slow biological aging, but increased investment in 177 

growth and reproduction (either through higher fertility in females or physical competition for 178 

rank in males) could also be energetically costly. To investigate these possibilities, we modeled 179 

the deviation between predicted age and known chronological age (Δage) as a function of 180 

cumulative early adversity, ordinal dominance rank, age-adjusted BMI, and for females, social 181 

bond strength to other females. Social bond strength was not included in the model for males, as 182 

this measure was not available for a large proportion of males in this data set (53.8%). We also 183 

included chronological age as a predictor in the model, as epigenetic age tends to be 184 

systematically overpredicted for young individuals and underpredicted for old individuals 185 

(Figure 1A-B; this bias has been observed in both foundational work on epigenetic clocks5 and 186 
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recent epigenetic clocks calibrated for rhesus macaques48, as well as for elastic net regression 187 

analyses more generally49). Including chronological age in the model, as previous studies have 188 

done5,7, controls for this compression effect. None of the predictor variables were strongly 189 

linearly correlated (all Pearson’s r < 0.35; Supplementary Table 4). 190 

Surprisingly, despite being two of the strongest known predictors of lifespan in wild 191 

baboons, neither cumulative early life adversity nor social bond strength explain variation in Δage 192 

(Table 1). In contrast, high male dominance rank is strongly and significantly associated with 193 

larger values of Δage (β = -0.078, p = 7.39 x 10-4; Figure 2; Table 1; Supplementary Figure 8). 194 

Alpha males are predicted to be an average of 10.95 months older than their true chronological 195 

age—a difference that translates to 11.5% of a male baboon’s expected adult lifespan in 196 

Amboseli24. In contrast, dominance rank did not predict Δage in females (p = 0.228; Table 1). 197 

Finally, age-adjusted BMI also predicted Δage in males (p = 6.33 x 10-3) but not in females (p = 198 

0.682; Table 1). Despite the tendency for high-ranking males to have higher raw BMI due to 199 

increased muscle mass, the effects of rank and age-adjusted BMI in males are distinct. 200 

Specifically, modeling dominance rank after adjusting for raw BMI also produces a significant 201 

effect of rank on Δage in the same direction (p = 9.93 x 10-4; Supplementary Table 5), as does 202 

substituting the age-adjusted BMI measure for either raw BMI or the residuals of raw BMI after 203 

adjusting for dominance rank (rank p = 1.52 x 10-2 and p = 1.88 x 10-4 respectively; 204 

Supplementary Table 5). In contrast, BMI is only a significant predictor of male Δage when 205 

corrected for age (i.e., age-adjusted) and when rank is included in the same model (Table 1; 206 

Supplementary Table 5). Further, we obtain the same qualitative results if all low BMI males are 207 

removed from the sample (BMI < 41; this cut-off was used because it drops all young males who 208 

have clearly not reached full adult size; p = 7.14 x 10-3; Supplementary Table 5). Dropping these 209 

males also eliminates the age-raw BMI correlation (Pearson’s r = -0.16, p = 0.21). 210 

1Separate linear models for Δage were fit for females (N = 66) and for males (N = 93) for whom no data values were 211 
missing; social bond strength was not included in the model for males. Significant results are shown in bold. 212 

Table 1. Predictors of Δage
1 

Covariate β 
(Female) 

P-value 
(Female) 

β 
(Male) 

P-value 
(Male) 

Intercept 5.400 1.33 x 10-15 3.294 1.19 x 10-8 
Cumulative early adversity -0.050 0.807 -0.005 0.973 
Social bond strength 0.382 0.164 — — 
Dominance rank 0.025 0.228 -0.078 7.39 x 10-4 
Age-adjusted BMI 0.026 0.682 0.111 6.33 x 10-3 
Chronological age -0.699 1.62 x 10-28 -0.277 8.36 x 10-8 
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Figure 2. Dominance rank predicts relative epigenetic age in male baboons. High rank is associated 213 
with elevated values of Δage (β = -0.0785, p = 7.39 x 10-4, N = 105). The y-axis shows relative epigenetic 214 
age, a measure of epigenetic aging similar to Δage that is based on the sample-specific residuals from the 215 
relationship between predicted age and true chronological age. Positive (negative) values correspond to 216 
predicted ages that are older (younger) than expected for that chronological age. Dominance rank is 217 
measured using ordinal values, such that smaller values indicate higher rank. Dots and error bars 218 
represent the means and standard errors, respectively. Gray values above the x-axis indicate sample sizes 219 
for each rank. 220 
 221 
Male dominance rank predicts epigenetic age 222 

In baboon males, achieving high rank depends on physical condition and fighting 223 

ability33. Consequently, rank in males is dynamic across the life course: males tend to attain their 224 

highest rank between 7 and 12 years of age and fall in rank thereafter (Supplementary Figure 9). 225 

Thus, nearly all males in the top four rank positions in our data set were between 7 and 12 years 226 

of age at the time they were sampled (however, because not all 7 – 12 year-olds are high-227 

ranking, low rank positions include males across the age range; Supplementary Table 1, 228 

Supplementary Figure 9). We therefore asked whether the association between high rank in 229 

males and accelerated epigenetic aging is a function of absolute rank values, regardless of age, or 230 

deviations from the expected mean rank given a male’s age (i.e., “rank-for-age”; Supplementary 231 

Figure 9). We found that including rank-for-age as an additional covariate in the Δage model 232 

recapitulates the significant effect of ordinal male rank (p = 0.045), but finds no effect of rank-233 

for-age (p = 0.819; Supplementary Table 5). Our results therefore imply that males incur the 234 

costs of high rank primarily in early to mid-adulthood, and only if they succeed in attaining high 235 

rank.   236 
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Figure 3. Male baboons exhibit higher relative epigenetic age when they occupy higher ranks. Relative 237 
epigenetic age for males in which multiple samples were collected when they occupied different ordinal rank values. 238 
Arrow indicates the temporal direction of rank changes: left-facing arrows represent cases in which the later sample 239 
was collected when males were higher-ranking, and right-facing arrows represent cases in which the later sample 240 
was collected when males were lower-ranking. 241 

 242 

If attainment of high rank is linked to changes in epigenetic age within individuals, this 243 

pattern should be reflected in longitudinal samples. Specifically, males who improved in rank 244 

between samples should look older for age in their second sample relative to their first, and vice-245 

versa. To assess this possibility, we calculated “relative epigenetic age” (the residuals of the best 246 

fit line relating chronological age and predicted age) for 14 males for whom we had repeated 247 

samples over time, 13 of whom changed ranks across sample dates (N = 28 samples, 2 per male). 248 

Samples collected when males were higher status predicted higher values of relative epigenetic 249 

age compared to samples collected when they were lower status (Figure 3; paired t-test, t = -2.99, 250 

p = 0.011). For example, in the case of a male whom we first sampled at low status (ordinal rank 251 

= 18) and then after he had attained the alpha position (ordinal rank 1), the actual time that 252 

elapsed between samples was 0.79 years, but he exhibited an increase in predicted age of 2.6 253 

years. Moreover, the two males that showed a decrease in predicted age, despite increasing in 254 

chronological age (Figure 1D), were among those that experienced the greatest drop in social 255 

status between samples. Thus, change in rank between samples for the same male predicts 256 

change in Δage, controlling for chronological age (R2 = 0.37, p = 0.021). Consistent with our 257 

cross-sectional results, we found a suggestive relationship between change in Δage and BMI (R2 = 258 

0.31, p = 0.08). Here, too, the effect of dominance rank does not seem to be driven by BMI: 259 

while the association between change in Δage and change in rank is no longer significant when 260 

modeling rank after adjusting for raw BMI, the correlation remains consistent (R2 = 0.20, p = 261 

0.167). In contrast, raw BMI adjusted for rank explains almost none of the variance in change in 262 

Δage (R
2 = 0.01, p = 0.779).  263 

 264 
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Discussion 266 

 Together, our findings indicate that major environmental predictors of lifespan and 267 

mortality risk—particularly social bond strength and early life adversity in this population—do 268 

not necessarily predict epigenetic measures of biological age. Although this assumption is 269 

widespread in the literature, including for epigenetic clock analyses50,51, our results are broadly 270 

consistent with empirical results in humans. Specifically, while studies of early life adversity, 271 

which also predicts lifespan in human populations, find relatively consistent support for a 272 

relationship between early adversity and accelerated epigenetic aging in children and 273 

adolescents12,13,52-56, there is little evidence for the long-term effects of early adversity on 274 

epigenetic age in adulthood14,57-61. Thus, while DNA methylation may make an important 275 

contribution to the biological embedding of early adversity into adulthood62,63, it does not seem 276 

to do so through affecting the epigenetic clock itself. Social and environmental effects on the 277 

clock instead seem to be most influenced by concurrent conditions, lending support to “recency” 278 

models for environmental effects on aging that posit that health is more affected by the current 279 

environment than past experience64-66. Additional longitudinal sampling will be necessary to 280 

evaluate whether current conditions alone can explain accelerated epigenetic aging, or whether it 281 

also requires integrating the effects of exposures across the life course (the “accumulation” 282 

model64,66). Alternatively, the effects of early life adversity and social bond strength may act 283 

through entirely distinct pathways than those captured by our epigenetic clock (including 284 

targeting tissues or cell types that we were unable to assess here). Indeed, the proliferation of 285 

alternative epigenetic clocks in humans has revealed that the clocks that best predict 286 

chronological age are not necessarily the clocks that most closely track environmental exposures, 287 

and the same is likely to be true in other species7,67. 288 

 We found that the most robust socioenvironmental predictor of epigenetic age in the 289 

Amboseli baboons is male dominance rank, with a secondary effect of age-adjusted BMI 290 

observable when rank is included in the same model. Although high BMI also predicts 291 

accelerated epigenetic age in some human populations37, high BMI in these human populations is 292 

related to being overweight or obese. In contrast, because wild-feeding baboons in Amboseli are 293 

extremely lean47, the range of BMI in most human populations is distinct from the range 294 

exhibited by our study subjects (importantly, BMI in humans is calculated differently than BMI 295 

in baboons [see Methods], and therefore the BMI scales are species-specific). Instead, the higher 296 

BMI values in our dataset represent baboons in better body condition (more muscle mass). Given 297 

that rank in male baboons is determined by physical fighting ability33, these results suggest that 298 

investment in body condition incurs physiological costs that accelerate biological age. If so, the 299 

rank effect we observe may be better interpreted as a marker of competitiveness, not as a 300 

consequence of being in a “high rank” environment. In support of this idea, work on dominance 301 

rank and gene expression levels in the Amboseli baboons suggests that gene expression 302 

differences associated with male dominance rank tend to precede attainment of high rank, rather 303 

than being a consequence of behaviors exhibited after high rank is achieved27.  Consistent with 304 

potential costs of attaining or maintaining high status, alpha males in Amboseli also exhibit 305 

elevated glucocorticoid levels68, increased expression of genes involved in innate immunity and 306 

inflammation27, and a trend towards elevated mortality risk41. Males who can tolerate these costs 307 

and maintain high rank are nevertheless likely to enjoy higher lifetime reproductive success, 308 

since high rank is the single best predictor of mating and paternity success in baboon males33.  309 

 This interpretation may also explain major sex differences in the effects of rank on 310 

epigenetic age, where dominance rank shows no detectable effect in females. Dominance rank in 311 
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female baboons is determined by nepotism, not physical competition: females typically insert 312 

into rank hierarchies directly below their mothers, and hierarchies therefore tend to remain stable 313 

over time (and even intergenerationally)69. Our results contribute to an emerging picture in which 314 

dominance rank effects on both physiological and demographic outcomes are asymmetrical 315 

across sexes, and larger in males. Specifically, in addition to Δage, male rank is a better predictor 316 

of immune cell gene expression and glucocorticoid levels than female rank27,68,70. Recent 317 

findings suggest that high rank may also predict increased mortality risk in male Amboseli 318 

baboons, whereas neither high nor low rank predicts increased mortality risk in females41. 319 

Together, these results argue that social status/dominance rank effects should not be interpreted 320 

as a universal phenomenon. Instead, the manner through which social status is achieved and 321 

maintained is likely to be key to understanding its consequences for physiology, health, and 322 

fitness71. Specifically, we predict that high status will be most likely to accelerate the aging 323 

process, including epigenetic age, in species-sex combinations where high status increases 324 

reproductive success or fecundity, and achieving status is energetically costly (e.g., male red 325 

deer, mandrills, and geladas; female meerkats72-74). Expanding studies of biological aging to a 326 

broader set of natural populations, especially those for which behavioral and demographic data 327 

are also available, will be key to testing these predictions.  328 

 329 

Methods 330 

Study population and biological sample collection 331 

 This study focused on a longitudinally monitored population of wild baboons (Papio 332 

cynocephalus, the yellow baboon, with some admixture from the closely related anubis baboon 333 

P. anubis75,76) in the Amboseli ecosystem of Kenya. This population has been continuously 334 

monitored by the Amboseli Baboon Research Project (ABRP) since 197122. For the majority of 335 

study subjects (N = 242 of 245 individuals), birth dates were therefore known to within a few 336 

days’ error; for the remaining 3 individuals, birth dates were known within 3 months’ error 337 

(Supplementary Table 1).  338 

All DNA methylation data were generated from blood-derived DNA obtained during 339 

periodic darting efforts, as detailed in 27,77,78. Samples were obtained under approval from the 340 

Institutional Animal Care and Use Committee (IACUC) of Duke University and adhered to all 341 

the laws and regulations of Kenya. In brief, individually recognized study subjects were 342 

temporarily anesthetized using a Telazol-loaded dart delivered through a blow gun. Baboons 343 

were then safely moved to a new location where blood samples and morphometric data, 344 

including body mass and crown-rump length, were collected. Baboons were then allowed to 345 

recover from anesthesia in a covered holding cage and released to their group within 2 – 4 hours. 346 

Blood samples were stored at -20° C in Kenya until export to the United States. 347 

 348 

DNA methylation data 349 

DNA methylation data were generated from blood-extracted DNA collected from known 350 

individuals in the Amboseli study population (N = 277 samples from 245 animals; 13 females 351 

and 15 males were each sampled twice, and 1 female and 1 male were each sampled three times). 352 

Here, we analyzed a combined data set that included previously published reduced representation 353 

bisulfite sequencing79 (RRBS) data from the same population (N = 36 samples)23 and new RRBS 354 

data from 241 additional samples.  355 

RRBS libraries were constructed following 80, using ~200 ng baboon DNA plus 0.2 ng 356 

unmethylated lambda phage DNA per sample as input. Samples were sequenced to a mean depth 357 
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of 17.8 (± 10.5 s.d.) million reads on either the Illumina HiSeq 2000 or HiSeq 4000 platform 358 

(Supplementary Table 1), with an estimated mean bisulfite conversion efficiency (based on the 359 

conversion rate of lambda phage DNA) of 99.8% (minimum = 98.1%). Sequence reads were 360 

trimmed with Trim Galore!81 to remove adapters and low quality sequence (Phred score < 20). 361 

Trimmed reads were mapped with BSMAP82 to the baboon genome (Panu2.0) allowing a 10% 362 

mismatch rate to account for the degenerate composition of bisulfite-converted DNA. We used 363 

the mapped reads to count the number of methylated and total reads per CpG site, per sample82. 364 

Following 23,25, CpG sites were filtered to retain sites with a mean methylation level between 0.1 365 

and 0.9 (i.e., to exclude constitutively hyper- or hypo-methylated sites) and mean coverage ≥5x. 366 

We also excluded any CpG sites with missing data for ≥ 5% of individuals in the sample. After 367 

filtering, we retained N = 458,504 CpG sites for downstream analysis. For the remaining missing 368 

data (mean number of missing sites per sample = 1.4% ± 3.5% s.d., equivalent to 6,409 ± 16,024 369 

s.d. sites), we imputed methylation levels using a k-nearest neighbors approach in the R package 370 

impute, using default parameters83.  371 

 372 

Building the epigenetic clock 373 

         We used the R package glmnet84 version 2.0.10 to build a DNA methylation clock for 374 

baboons. Specifically, we fit a linear model in which the predictor variables were normalized 375 

levels of DNA methylation at 458,504 candidate clock CpG sites across the genome and the 376 

response variable was chronological age. To account for the excess of CpG sites relative to 377 

samples, glmnet uses an elastic net penalty to shrink predictor coefficients toward 085. Optimal 378 

alpha parameters were identified by grid searching across a range of alphas from 0 (equivalent to 379 

ridge regression) to 1 (equivalent to Lasso) by increments of 0.1, which impacts the number of 380 

clock CpG sites by varying the degree of shrinkage of the predictor coefficients toward 0 381 

(Supplementary Figure 2). We defined the optimal alpha as the value that maximized R2 between 382 

predicted and true chronological age across all samples. We set the regularization parameter 383 

lambda to the value that minimized mean-squared error during n-fold internal cross-validation.  384 

To generate predicted age estimates for a given sample, we used a leave-one-out cross-385 

validation approach in which all samples but the “test” sample were included for model training, 386 

and the resulting model was used to predict age for the left-out test sample. Importantly, training 387 

samples were scaled independently of the test sample in each leave-one-out model to avoid 388 

bleed-through of information from the test data into the training data. To do so, we first quantile 389 

normalized methylation ratios (the proportion of methylated counts to total counts for each CpG 390 

site) within each sample to a standard normal distribution. Training samples were then separated 391 

from the test sample and the methylation levels for each CpG site in the training set were 392 

quantile normalized across samples to a standard normal distribution. For predicting age in the 393 

test sample, we compared the methylation value for each site in the test sample to the empirical 394 

cumulative distribution function for the training samples (at the same site) to estimate the 395 

quantile in which the training sample methylation ratio fell. The training sample was then 396 

assigned the same quantile value from the standard normal distribution using the function qnorm 397 

in R.  398 

 399 

Epigenetic clock enrichment analyses 400 

 To evaluate whether CpG sites included in the epigenetic clock were enriched in 401 

functionally important regions of the baboon genome25,86, we used two-sided Fisher’s exact tests 402 

to investigate enrichment/depletion of the 573 epigenetic clock sites in (i) gene bodies and exons, 403 
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based on the Ensembl annotation Panu2.0.90; (ii) CpG islands annotated in the UCSC Genome 404 

Browser; (iii) CpG shores, defined as the 2,000 basepairs flanking CpG islands (following 405 
25,86,87); and (iv) promoter regions, defined as the 2,000 basepairs upstream of the 5’-most 406 

annotated transcription start site for each gene (following 25,86). We also considered (v) putative 407 

enhancer regions, which have not been annotated for the Panu2.0 assembly. We therefore used 408 

ENCODE H3K4me1 ChIP-seq data from humans88 and the liftOver tool to define likely 409 

enhancer coordinates in Panu2.0.   410 

 We also tested for enrichment of clock sites in regions of the genome that have been 411 

identified by previous empirical studies to be of special interest. First, we considered regions that 412 

likely have regulatory activity in blood cells, defined as all 200 base-pair windows that showed 413 

evidence of enhancer activity in a recently performed massively parallel reporter assay26. We 414 

used liftOver to identify the inferred homologous Panu2.0 coordinates for these windows, which 415 

were originally defined in the human genome. Second, we defined age-related differentially 416 

methylated regions (age DMRs) in the Amboseli baboons based on genomic intervals found, in 417 

previous analyses, to contain at least three closely spaced age-associated CpG sites (inter-CpG 418 

distance ≤ 1kb), as described in 25. Third, because inflammatory processes involved in innate 419 

immunity are strongly implicated in the aging process, we defined lipopolysaccharide (LPS) up-420 

regulated and LPS down-regulated genes as those genes that were significantly differentially 421 

expressed (1% false discovery rate) between unstimulated Amboseli baboon white blood cells 422 

and LPS-stimulated cells from the same individual, following 10 hours of culture in parallel27. 423 

 424 

Comparisons to alternative predictors of aging   425 

         To assess the utility of the DNA methylation clock relative to other data types, we 426 

compared its predictive accuracy to clocks based on three other age-related phenotypes: tooth 427 

wear (percent molar dentine exposure30), body condition (body mass index: BMI28), and blood 428 

cell type composition (blood smear counts and lymphocyte/monocyte proportions from flow 429 

cytometry performed on peripheral blood mononuclear cells, as in 27,89). Leave-one-out model 430 

training and prediction were performed for each data type using linear modeling. To compare the 431 

relative predictive accuracy of each data type, we calculated the R2 between predicted and 432 

chronological age, the median absolute difference between predicted and chronological age, and 433 

the bias in age predictions (the absolute value of 1 - slope of the best fit line between predicted 434 

and chronological age) (Supplementary Figure 6).  435 

         Tooth wear. Molar enamel in baboons wears away with age to expose the underlying 436 

dentine layer. Percent dentine exposure (PDE) on the molar occlusal surface has been shown to 437 

be strongly age-correlated in previous work30. To assess its predictive power, we obtained PDE 438 

data from tooth casts reported by Galbany and colleagues30 for the left upper molars (tooth 439 

positions M1, M2, M3) and left lower molars (tooth positions M1, M2, M3) for 39 males and 34 440 

females in our data set. For each molar position (M1, M2, M3) within each individual, we 441 

calculated PDE as the mean for the upper and lower molars. Because dentine exposure scales 442 

quadratically with respect to age30, we fit age as a function of PDE using the following model: 443 

��� ~���	�� 
 ���	��  
 ���	��.  444 

Body mass index. For both male and female baboons in Amboseli, body mass increases 445 

with age until individuals reach peak size, and then tends to decrease with age as animals lose fat 446 

and/or muscle mass28. To quantify body condition using body mass, we calculated body mass 447 

index (BMI) values for 139 males and 154 females for whom body mass and crown-rump length 448 

data were available from periodic darting efforts. We retained only measures taken from animals 449 
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born into and sampled in wild-feeding study groups, when sex-skin swellings (in females only) 450 

that could affect crown-rump length measures were absent. BMI was calculated as mass 451 

(kilograms) divided by crown-rump length (meters squared), following 47. To assess the 452 

predictive power of age-adjusted BMI, we built sex-specific piecewise-regression models using 453 

the package segmented in R90. Breakpoints for the piecewise-regression models (to separate 454 

“youthful” versus “aged” animals) were initialized at 8 years old for males and 10 years old for 455 

females, following findings from previous work on body mass in the Amboseli population28.  456 

         Blood cell type composition. The proportions of different cell types in blood change 457 

across the life course, including in baboons29. We assessed the predictive power of blood cell 458 

composition for age using two data sets. First, we used data collected from blood smear counts 459 

(N = 134) for five major white blood cell types: basophils, eosinophils, monocytes, lymphocytes, 460 

and neutrophils. Second, we used data on the proportional representation of five peripheral blood 461 

mononuclear cell (PBMC) subsets: cytotoxic T cells, helper T cells, B cells, monocytes, and 462 

natural killer cells, measured using flow cytometry as reported by Lea and colleagues27 (N = 53). 463 

Cell types were included as individual covariates for leave-one-out model training. 464 

 465 

Sources of variance in predicted age 466 

We asked whether factors known to be associated with inter-individual variation in 467 

fertility or survival also predict inter-individual variation in Δage (predicted age from the 468 

epigenetic clock minus known chronological age). To do so, we fit linear models separately for 469 

males and females, with Δage  as the dependent variable and dominance rank at the time of 470 

sampling, cumulative early adversity, age-adjusted BMI, and chronological age as predictor 471 

variables38. For females, we also included a measure of social bond strength to other females as a 472 

predictor variable, based on findings that show that socially isolated females experience higher 473 

mortality rates in adulthood40,91. Samples with missing values for any of the predictor variables 474 

were excluded in the model, resulting in a final analysis set of 66 female samples (from 59 475 

females) and 93 male samples (from 84 males). The chronological ages of samples with 476 

complete data relative to samples with missing data were equivalent for females (t-test, t = 1.95, 477 

p = 0.053) but were slightly lower for males (t-test, t = -3.04, p = 0.003; mean chronological ages 478 

are 7.98 and 9.65 years for complete and missing samples, respectively). Predictor variables 479 

were measured as follows. 480 

Dominance rank. Sex-specific dominance hierarchies were constructed monthly for every 481 

social group in the study population based on the outcomes of dyadic agonistic encounters. An 482 

animal was considered to win a dyadic agonistic encounter if it gave aggressive or neutral, but 483 

not submissive, gestures, and the other animal gave submissive gestures only92. These wins and 484 

losses were entered into a sex-specific data matrix, such that animals were ordered to minimize 485 

the number of entries falling below the matrix diagonal (which would indicate that the lower 486 

ranked individual won a dyadic encounter). Ordinal dominance ranks were assigned on a 487 

monthly basis to every adult based on these matrices, such that low numbers represent high 488 

rank/social status and high numbers represent low rank/social status33,69. Although most analyses 489 

of data from the Amboseli baboons have used ordinal ranks as the primary measure of social 490 

status, in some analyses proportional rank (i.e., the proportion of same-sex members of an 491 

individual’s social group that he or she dominates) has proven to be a stronger predictor of other 492 

trait outcomes93,94. In this study, we chose to use ordinal ranks, but proportional and ordinal 493 

dominance rank were highly correlated in this particular data set (R2 = 0.70, p = 1.13 x 10-58). 494 

Using ordinal rank rather than proportional rank therefore did not qualitatively affect our 495 
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analyses. Additionally, to investigate whether the patterns we observed are due to a consistent 496 

effect of rank across all ages, or instead an effect of being high or low rank relative to the 497 

expected (mean) value for a male’s age, we also calculated a “rank-for-age” value. Rank-for-age 498 

is defined as the residuals of a model with dominance rank as the response variable and age and 499 

age2 as the predictor variables (Supplementary Figure 8). 500 

Cumulative early adversity. Previous work in Amboseli defined a cumulative early 501 

adversity score as the sum of 6 different adverse conditions that a baboon could experience 502 

during early life38. This index strongly predicts adult lifespan in female baboons, and a modified 503 

version of this index also predicts offspring survival39. To maximize the sample size available for 504 

analysis, we excluded maternal social connectedness, the source of adversity with the highest 505 

frequency of missing data, leaving us with a cumulative early adversity score generated from 5 506 

different binary-coded adverse experiences. These experiences were: (i) early life drought 507 

(defined as ≤ 200 mm of rainfall in the first year of life), which is linked to reduced fertility in 508 

females46,95; (ii) having a low ranking mother (defined as falling within the lowest quartile of 509 

ranks for individuals in the data set), which predicts age at maturation96-98; (iii) having a close-in-510 

age younger sibling (< 1.5 years), which may redirect maternal investment to the sibling99, (iv) 511 

being born into a large social group, which may increase within-group competition for shared 512 

resources46,98,100, and (v) maternal death before the age of 4, which results in a loss of both social 513 

and nutritional resources98,101. 514 

Body mass index. Age-adjusted BMI was modeled as the residuals from sex-specific 515 

piecewise regression models relating raw BMI to age. By taking this approach, we asked whether 516 

having relatively high BMI for one’s age and sex predicted higher (or lower) Δage. To calculate 517 

rank-adjusted BMI values, we modeled raw BMI as a function of rank in a linear model and 518 

calculated the residuals from the model. To calculate dominance rank adjusted for raw BMI, we 519 

took the inverse approach. We note that BMI for baboons is not directly comparable to BMI for 520 

humans because baboon BMI is measured as body mass divided by the square of crown-rump 521 

length (because baboons are quadrupedal), whereas human BMI is calculated as body mass 522 

divided by the square of standing height.  523 

Social bond strength. For this analysis, we measured female social bond strength to other 524 

females using the dyadic sociality index (DSIF)41. We did not include this parameter (male’s 525 

social bond strength to females) for the male model, because this measure is unavailable for 526 

many males in this data set. DSIF was calculated as an individual’s average bond strength with 527 

her top three female social partners, in the 365 days prior to the day of sampling, controlling for 528 

observer effort. This approach is based on representative interaction sampling of grooming 529 

interactions between females, in which observers record all grooming interactions in their line of 530 

sight while moving through the group conducting random-ordered, 10-minute long focal animal 531 

samples of pre-selected individuals. Because smaller groups receive more observer effort per 532 

individual and per dyad (and thus record more grooming interactions per individual or dyad), we 533 

estimated observer effort for dyad d in year y as: 534 

	�,� �
��
���

��
  

where �� is the number of days the two females in a dyad were coresident in the same social 535 

group, ��  is the number of focal samples taken during the dyad’s coresidence, and �� is the 536 

average number of females in the group during the dyad’s coresidence.  537 

DSIF for each adult female dyad in each year is the z-scored residual, �, from the model:  538 

log���,�� � β�log�	�,��� 
 � 
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where ��,� is the number of grooming interactions for dyad d in year y divided by the number of 539 

days that the two individuals were coresident, and 	�,� is observer effort.   540 

 541 

Analysis of longitudinal samples  542 

 To test whether changes in rank predict changes in relative epigenetic age within 543 

individuals, we used data from 11 males from the original data set and generated additional 544 

RRBS data for 9 samples, resulting in a final set of 14 males who each were sampled at least 545 

twice in the data set, 13 of whom occupied different ordinal ranks at different sampling dates 546 

(mean years elapsed between samples = 3.7 ± 1.65 s.d.; mean absolute difference in dominance 547 

ranks = 1.29 ± 8.34 s.d.). This effort increased our total sample size to N = 286 samples from 548 

248 unique individuals. To incorporate the new samples into our analysis, we reperformed leave-549 

one-out age prediction with N-fold internal cross validation at the optimal alpha selected for the 550 

original N = 277 samples (alpha = 0.1). For the 277 samples carried over from the original 551 

analysis, we verified that age predictions were nearly identical between the previous analysis and 552 

the expanded data set (R2 = 0.98, p = 2.21 x 10-239; Supplementary Table 1).  553 

Based on the new age predictions for males in the data set (N = 140), we again calculated 554 

relative epigenetic age as the residual of the best fit line relating predicted age to chronological 555 

age. We then used the 14 males with repeated DNA methylation profiles and rank measures in 556 

this data set to test whether, within individuals, changes in dominance rank or rank-for-age 557 

explained changes in relative epigenetic age between samples. In total, five males were sampled 558 

three times. For four of these five, we only included the two samples that were sampled the 559 

farthest apart in time (i.e., excluded the temporal middle sample) to maximize the age change 560 

between sample dates. For the fifth male, BMI information was missing for the third sample, so 561 

we included the first two samples collected in time. 562 

 563 

Data Availability 564 

All sequencing data generated during this study are available in the NCBI Sequence Read 565 

Archive (project accession PRJNA648767; reviewer access: ##########). 566 

 567 

Code Availability 568 

All R code used to analyze data in this study are available at 569 

https://github.com/janderson94/BaboonEpigeneticAging.  570 
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Supplementary Table 4. Pearson correlations among covariates for females (above diagonal) 854 

and males (below diagonal), with p-values in parentheses. 855 

856 
 cumulative DSIF rank Age-adjusted 

BMI 
age 

cumulative - -0.222 
(0.073) 

0.310 
(0.011) 

0.098 (0.432) -0.284 
(0.021) 

DSIF NA - -0.266  
(0.031)  

-0.188 
(0.131)  

0.112 (0.372)  

rank -0.058 (0.578)  NA - 0.058 (0.646) 0.218 (0.078)  
Age-adjusted BMI -0.038 (0.719)  NA -0.068 

(0.516)  
- -0.098 

(0.434)  
age 0.133 (0.202)  NA -0.313 

(0.002)  
-0.075 
(0.476)  

- 
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Supplementary Figure 1. Characteristics of the RRBS data set. (A) Proportion of the 458,504 857 

evaluated CpG sites that overlapped annotated features of the Panu2 genome. (B) Proportion of 858 

annotated features in the Panu2 genome that overlapped at least one of the 458,504 evaluated 859 

CpG sites. (C) Distribution of mean DNA methylation levels for CpG sites within annotated 860 

features of the Panu2 genome. Each white box represents the interquartile range, with the 861 

median value depicted as a black horizontal bar. Whiskers extend to the most extreme values 862 

within 1.5 x the interquartile range. As expected, CpG sites tended to be highly methylated 863 

genome-wide and have lower average methylation in promoters, enhancers, and CpG islands. 864 
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Supplementary Figure 2. Comparison of clock performance across alternative values of 865 
alpha. Alpha was set via grid search across possible values from 0.1 to 1, in steps of 0.1, and 866 

chosen based on the highest R2 value between predicted age and known chronological age (red 867 

lines). The blue lines show the median absolute difference between predicted and true age (lower 868 

is better), and exhibits roughly inverse behavior to R2. (A) For each clock generated with a 869 

different alpha value, the total number of CpG sites included in the clock is shown on top, and 870 

the number of clock sites that overlap the final clock used in this study (N = 573 sites, alpha = 871 

0.1) is given in parentheses immediately below. (B, C) As in (A), but with results shown 872 

specifically for males (B) versus females (C). 873 
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Supplementary Figure 3. Enrichment of the epigenetic clock CpG sites by genomic 874 

compartment. The log2(odds ratio) of CpG sites in the epigenetic clock, relative to all 458,504 875 

CpG sites initially evaluated, in (A) annotated genomic regions and (B) in loci with putative 876 

regulatory activity or in or near genes that are responsive to age or immune stimulation. Regions 877 

of regulatory activity were identified with the massively parallel reporter assay, mSTARR-Seq26, 878 

following a liftover from the human genome to the baboon genome to identify putatively 879 

orthologous coordinates. Age differentially methylated regions (DMR) and genes responsive to 880 

lipopolysaccharide (LPS) were previously identified from blood samples from the same baboon 881 

population25,27. Two-sided Fisher’s exact tests were performed separately for epigenetic clock 882 

sites that increased (positive clock sites: N = 459) or decreased (negative clock sites: N = 134) in 883 

DNA methylation levels with age. See Supplementary Table 2 for a complete list of the genomic 884 

locations of the 573 epigenetic clock sites. * p < 0.05, *** p < 0.005.  885 
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Supplementary Figure 4. Association between age and DNA methylation level for 886 

individual clock CpG sites. (A) Volcano plot of the effect size (βage) versus the -log10(p-value) 887 

of age effects on DNA methylation for males (blue) and females (red), based on estimates from a 888 

binomial mixed-effects model designed for bisulfite sequencing data25. Results for the 534 sites 889 

that could be modeled using this approach are shown. Other predictor variables in the model 890 

included a fixed effect for sample batch and a random effect that controlled for kinship 891 

(estimated via Queller and Goodnight’s r and multilocus microsatellite genotype data in the 892 

program coancestry102). Dashed line corresponds to a nominal p-value of 0.01. (B) Age effects 893 

on DNA methylation estimated separately in males and females are highly correlated (R2 = 0.83, 894 

p = 3.35 x 10-204). The dashed line indicates the y = x line. The solid black line indicates the best 895 

fit line.  896 
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Supplementary Figure 5. Methylation levels of clock CpG sites across different genomic 897 

compartments. Each circle represents a sample, with chronological age of the animal at time of 898 

sampling shown on the x-axis. The y-axis represents the average methylation level for that 899 

sample across CpG clock sites that overlap the annotated genomic region shown in the panel 900 

label, stratified by sites that increased (denoted “hyper”) or decreased (denoted “hypo”) 901 

methylation levels with age. Number of clock sites overlapping each annotated region is given in 902 

each panel title; a clock site can overlap multiple annotated regions, and can therefore be 903 

represented in more than one plot. Red and blue lines represent best fit lines for female and male 904 

samples, respectively. All best fit lines are significant (p < 1 x 10-4). 905 
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Supplementary Figure 6. Comparison of the performance of the epigenetic clock to other 906 

predictors of chronological age. Performance measures of age predictors are presented 907 

separately for females (A, C, E) and males (B, D, F) except for differential white blood cell 908 

counts (blood smears), where males and females were combined. Predictors are ordered in the 909 

same fashion in all panels (epigenetic clock to the left, and then following highest to lowest R2 in 910 

females). The breakpoint to define youthful versus aged animal BMI was 10 and 8 years old for 911 

females and males, respectively. (A-B) Adjusted R2 between predicted age and true 912 

chronological age. (C-D) Absolute difference between the y = x line (slope of one) and the slope 913 

of the best-fit line of predicted age as a function of true chronological age. This metric captures 914 

bias in age prediction estimates (values that are lower on the reverse-coded y-axis are more 915 

biased). (E-F) Median absolute difference (MAD) between each individual’s predicted age and 916 

true chronological age (values that are lower on the reverse-coded y-axis have higher MAD).  917 
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Supplementary Figure 7. The relationship between age and body mass index in the 918 

Amboseli baboons. Chronological age in years at the time of sampling versus body mass index 919 

(kilograms/meters2) for males and females in our sample. Two distinct patterns are observable 920 

for both sexes: a stage when animals are still growing (prior to ~7 – 8 years old) and a stage in 921 

which animals vary in BMI as adults. BMI in baboons is measured using the distance between 922 

the crown of the head and the rump as the “height” measure, and so differs in scale from humans,923 

where BMI is calculated using standing height. Dashed gray line at BMI = 41 shows the cut-off 924 

for the analysis in which only males with BMI > 41 were retained for modeling Δage. 925 
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Supplementary Figure 8. Relative epigenetic age versus chronological age. Each circle 927 

represents a baboon, colored by the animal’s dominance rank at the time of sampling. The y-axis 928 

shows relative epigenetic age, a measure of epigenetic aging similar to Δage that is based on the 929 

sample-specific residuals from the relationship between predicted age and true chronological 930 

age. Positive (negative) values correspond to predicted ages that are older (younger) than 931 

expected for that chronological age. Dominance rank is measured using ordinal values, such that 932 

smaller values indicate higher rank.  933 

−4

−3

−2

−1

0

1

2

3

4

0 5 10 15 20 25
Chronological age (years)

R
el

at
iv

e 
ep

ig
en

et
ic

 a
ge

 (
ye

ar
s)

5
10
15
20

Rank

FemalesA

−4

−3

−2

−1

0

1

2

3

4

0 5 10 15 20 25
Chronological age (years)

R
el

at
iv

e 
ep

ig
en

et
ic

 a
ge

 (
ye

ar
s)

5
10
15
20

Rank

MalesB

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.02.22.961052doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.22.961052
http://creativecommons.org/licenses/by-nd/4.0/


 32

Supplementary Figure 9. Male dominance rank versus chronological age. Each circle 934 

represents a male baboon at the time of sampling. Nearly all males in the top four rank positions 935 

are between ages 7 and 12 years (but not all 7 – 12 year olds are also high-ranking: range of rank 936 

positions = 1 – 20), whereas both young and old males tend to be lower-ranking. The quadratic 937 

curve represents the model with dominance rank as the response variable and age and age2 as the 938 

predictor variables. Rank-for-age was defined as the residuals of this model. 939 
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