bioRxiv preprint doi: https://doi.org/10.1101/2020.02.22.961052; this version posted December 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

The costs of competition: high social status males experience accelerated epigenetic agingin
wild baboons

Jordan A. Anderson't, Rachel A. Johnston't, Amanda J. Lea®*“, Fernando A. Campos™®, Tawni
N. Voyles', Mercy Y. Akinyi® Susan C. Alberts"*®, Elizabeth A. Archie®’, Jenny Tung*?%®

'Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708,
USA

’Department of Biology, Duke University, Durham, North Carolina 27708, USA
3Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University,
Princeton, NJ 08544, USA

*Department of Ecology and Evolution, Princeton University, Princeton, NJ 08544, USA
®Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249,
USA

®|nstitute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
"Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556,
USA

8Duke Population Research Institute, Duke University, Durham, NC 27708, USA

tAuthors contributed equally to thiswork
*Correspondence: jt5@duke.edu


https://doi.org/10.1101/2020.02.22.961052
http://creativecommons.org/licenses/by-nd/4.0/

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.22.961052; this version posted December 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Abstract

Aging, for virtually all life, isinescapable. However, within populations, biological aging
rates vary. Understanding sources of variation in this process is central to understanding the
biodemography of natural populations. We constructed a DNA methylation-based age predictor
for an intensively studied wild baboon population in Kenya. Consistent with findings in humans,
the resulting “epigenetic clock” closely tracks chronological age, but individuals are predicted to
be somewhat older or younger than their known ages. Surprisingly, these deviations are not
explained by the strongest predictors of lifespan in this population, early adversity and social
integration. Instead, they are best predicted by male dominance rank: high-ranking males are
predicted to be older than their true ages, and epigenetic age tracks changes in rank over time.
Our results argue that achieving high rank for male baboons—the best predictor of reproductive
success—imposes costs consistent with a“live fast, die young” life history strategy.

I ntroduction

Aging, the nearly ubiquitous functional decline experienced by organisms over time', isa
fundamental component of most animal life histories’. At aphysiological level, age affects
individual quality, which in turn affects the ability to compete for mates and other resources,
invest in reproduction, and maintain somatic integrity. At a demographic level, ageis often one
of the strongest predictors of survival and mortality risk, which are major determinants of
Darwinian fitness. In order for patterns of aging to evolve, individuals must vary in their rates of
biologica aging. Thus, characterizing variation in biological aging rates and its sources—beyond
simply chronological age—is an important goal in evolutionary ecology, with the potential to
offer key insight into the trade-offs that shape individual life history strategies®.

Recent work suggests that DNA methylation data can provide exceptionally accurate
estimates of chronological age®. These approaches typically use supervised machine learning
methods that draw on methylation data from several hundred CpG sites, identified from hundreds
of thousands of possible sites, to produce a single chronological age prediction®”. Intriguingly,
some versions of these clocks also predict disease risk and mortality, suggesting that they capture
aspects of biological aging that are not captured by chronological age alone®. For example, in
humans, individuals predicted to be older than their true chronological age are at higher risk of
Alzheimer’s disease’, cognitive decline®', and obesity™’. Accelerated epigenetic ageisin turn
predicted by environmental factors with known links to health and lifespan, including childhood
social adversity™®*2 and cumulative lifetime stress™. These observations generalize to other
animals. Dietary restriction, for instance, decelerates biological aging based on DNA methylation
clocks developed for laboratory mice and captive rhesus macaques, and genetic knockout mice
with extended lifespans also appear epigenetically young for age™*’. However, while DNA
methylation data have been used to estimate the age structure of wild populations (where
birthdates are frequently unknown)™®?*, they have not been applied to investigating sources of
variance in biological aging in the wild.

To do so here, we coupled genome-wide data on DNA methylation levels with detailed
behavioral and life history data available for one of the most intensively studied wild mammal
populations in the world, the baboons of the Amboseli ecosystem of Kenya?. First, we calibrated
a DNA methylation-based “epigenetic clock” and assessed the clock’s composition. Second, we
compared the accuracy of this clock against other age-associated traits and between sexes. Third,
we tested whether variance in biological aging was explained by socioenvironmental predictors
known to impact fertility or survival in this population. Finally, we investigated an intriguing
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association between epigenetic age acceleration and male dominance rank. Our results show that
predictors of lifespan can be decoupled from rates of epigenetic aging. However, other factors—
particularly male dominance rank—are strong predictors of epigenetic clock-based age
acceleration. These results establish the first epigenetic clock available for any wild nonhuman
primate, and are the first to establish alink between social factors and epigenetic aging in any
natural animal population. Together, they highlight potential sex-specific trade-offs that may
maximize fitness, but also compromise physiological condition and potentially shorten male

lifespan.

Results
Epigenetic clock calibration and composition

We used a combination of previously published® and newly generated reduced-
representation bisulfite sequencing (RRBS) data from 245 wild baboons (N = 277 blood
samples) living in the Amboseli ecosystem of Kenya® to generate a DNA methylation-based age
predictor (an “epigenetic clock”>°). Starting with a data set of methylation levels for 458,504
CpG sites genome-wide (Supplementary Figure 1; Supplementary Table 1), we used elastic net
regression to identify a set of 573 CpG sites that together accurately predict baboon age to within
amedian absolute difference (MAD) of 1.1 years+ 1.9 s.d. (Figure 1; Supplementary Table 2;
Pearson’sr = 0.762, p = 9.70 x 10™>* median adult life expectancy in this population is 10.3
years for females and 7.9 for males™). The choice of these sites reflects a balance between
increasing predictive accuracy within the sample and minimizing generalization error to
unobserved samples, using asimilar approach as that used to develop epigenetic clocks in
humans>® (see also Methods and Supplementary Figure 2).

Consistent with findingsin humans’, clock sites are enriched in genes, CpG islands,
promoter regions, and putative enhancers, compared to the background set of all siteswe initially
considered (Supplementary Figure 3; Fisher’s exact tests, al p < 0.05). Clock sites are also more
common in age-associated differentially methylated regions in baboons (Supplementary Figure
3; sites that increase with age: Iogzz[SOR] =4.189, p = 3.64 x 10°°; sites that decrease with age:
log,[OR] =5.344, p=1.54 x 10™)°, such that many, but not all, of the clock sites also exhibit
individual associations between DNA methylation levels and age (Supplementary Figures 4 and
5; Supplementary Table 3). Additionally, clock sites were more likely to be found in regions that
exhibit enhancer-like activity in amassively parallel reporter assay (sites that increase with age:
log[OR] = 2.685, p = 1.22 x 10°% sites that decrease with age: 10g,[OR] = 4.789, p = 1.78 x 10°
%)% and in regions implicated in the gene expression response to bacteriain the Amboseli baboon
population (overlap of lipopolysaccharide [LPS] up-regulated genes and sites that increase with
age: 10gz] OR] = 0.907, p = 7.03 x 10™*; overlap of LPS down-regulated genes and sites that
decrease with age: 1og,[OR] = 1.715, p = 1.55 x 10°%)?". Our results thus suggest that the
Amboseli baboon epigenetic clock not only tracks chronological age, but also captures age-
related changes in DNA methylation levels that are functionally important for gene regulation.

Comparison with other age-associated traits and differences between sexes

Overall, the clock performed favorably relative to other morphological or biomarker
predictors of age in this population. The epigenetic clock generally explained more variance in
true chronological age, resulted in lower median error, and exhibited less bias than predictions
based on raw body mass index (BM1) or blood cell composition data from flow cytometry or
blood smears (traits that change with age in baboons?®%). Its performance was comparable to
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114  molar dentine exposure, a classical marker of age® (Supplementary Figure 6). For a subset of 30
115 individuas, we had two samples collected at different pointsin time. The predicted ages from
116  theselongitudinally collected samples were older for the later-collected samples, as expected
117  (Figure 1C-D; binomial test p = 5.95 x 10°°). Furthermore, the change in epigenetic clock

118  predictions between successive longitudinal samples positively predicted the actual changein
119  age between sample dates (p = 0.312, p = 0.027, controlling for sex; difference between actual
120  change and predicted change: mean 3.11 years + 3.25 s.d.).

121 However, clock performance was not equivalent in males and females. Specifically, we
122  observed that the clock was significantly more accurate in males (Figure 1; males. N = 135;

123 MAD =0.85years+ 1.0 s.d.; Pearson’sr = 0.86, p = 5.49 x 10*; females: N = 142; MAD = 1.6
124  years+2.4sd.;r =0.78, p = 6.78 x 10™*; two-sided Wilcoxon test for differencesin absolute
125  error by sex: p = 4.37 x 10°®). Sex differences were also apparent in the slope of the relationship
126  between predicted age and chronological age. Males show a 2.2-fold higher rate of changein
127  predicted age, as afunction of chronological age, compared to females (Figure 1A-B;

128  chronological age by sex interaction in alinear model for predicted age: B = 0.448, p = 9.66 x 10
129 % N =277). Interestingly, sex differences are not apparent in animals < 8 years, which roughly
130  corresponds to the age at which the majority of males have achieved adult dominance rank and
131  dispersed from their natal group®® (N = 158, chronological age by sex interaction p = -0.038, p
132  =0.808). Rather, sex differences become apparent after baboons have reached full physiological
133 and socia adulthood (N = 119, chronological age by sex interaction p = 0.459, p=9.74x 10" in
134  animals> 8 years), when divergence between male and female life history strategies is most

135  marked® ™ and when aging rates between the sexes are predicted to diverge® .
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136  Figurel. Epigenetic clock age predictionsin the Amboseli baboons. Predicted ages are shown relative to true
137  chronological agesfor (A) females (Pearson’st = 0.78, p = 6.78 x 10%°, N = 142 samples) and (B) males (r = 0.86, p
138  =5.49x10*, N = 135 samples). Solid lines represent the best fit ling; dashed lines show the line for y = x. (C) and
139 (D) show predictions for individuals with at least two samplesin the data set (N = 30; 14 females and 16 males). In
140 26 of 30 cases (87%), samples collected later were correctly predicted to be from an older animal.
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141 Because of these differences, we separated males and females for all subsequent analyses.
142  However, we note that the effects of age on DNA methylation levels at individual clock sites are
143 highly correlated between the sexes (Pearson’st = 0.91, p = 3.35 x 102%™, with effect sizes that
144  are, on average, more precisely estimated in males (paired t-test p = 4.53 x 10" for standard

145  errors of B Supplementary Figure 4). In other words, the sex differencesin clock performance
146  reflect changesin methylation that occur at the same CpG sites, but with higher variancein

147 females. Lower accuracy in females compared to males therefore appears to result from the

148  greater variability in DNA methylation change in older females (Figure 1).

149

150 Socioenvironmental predictors of variance in biological aging

151 Although the baboon epigenetic clock is a good predictor of age overall, individuals were
152  often predicted to be somewhat older or younger than their known chronological age. In humans
153  and some mode systems, the sign and magnitude of this deviation captures information about
154 %h337/si ological decline and/or mortality risk beyond that contained in chronological age alone™
155 =

156 To test whether this observation extends to wild baboons, we focused on four factors of
157  known importance to fitness in the Amboseli population. First, we considered cumulative early
158 adversity, whichisastrong predictor of shortened lifespan and offspring survival for female
159  baboons®*. We measured cumulative adversity as a count of major adverse experiences

160 sufferedin early life, including low maternal social status, early life drought, a competing

161 younger sibling, maternal loss, and high experienced population density (i.e., social group size).
162  Second, we considered social bond strength in adulthood, which positively predicts longer adult
163 lifespan in baboons, humans, and other wild social mammals®®“. Third, we considered

164  dominance rank, which isamajor determinant of accessto mates, socia partners, and other

165  resourcesin baboons***. Finally, we considered body massindex (BMI), a measure of body
166  condition that, in the Amboseli baboons, primarily reflects lean muscle mass (mean body fat

167  percentages have been estimated at <2% in adult females and <9% in adult males)”’. Because
168 raw BMI (i.e,, BMI not correcting for age) also tracks growth and development (increasing as
169  baboons reach their prime and then declining thereafter®®, Supplementary Figure 7; Pearson’sr
170  in males between rank and raw BMI = -0.56, p = 6.38 x 10™®), we calculated BM relative to the
171  expected value for each animal’ s age using piecewise regression, which also eliminates

172  correlations between BMI and male rank (Pearson’sr = -0.070, p = 0.504). We refer to this

173  adjusted measure of BMI as age-adjusted BMI.

174 Because high cumulative early adversity and low social bond strength are associated with
175  increased mortality risk in the Amboseli baboons, we predicted that they would also be linked to
176  increased epigenetic age. For rank and age-adjusted BMI, our predictions were less clear:

177  improved resource access could conceivably slow biological aging, but increased investment in
178  growth and reproduction (either through higher fertility in females or physical competition for
179  rank in males) could also be energetically costly. To investigate these possibilities, we modeled
180 the deviation between predicted age and known chronological age (Aage) as afunction of

181 cumulative early adversity, ordinal dominance rank, age-adjusted BM|, and for females, social
182  bond strength to other females. Socia bond strength was not included in the model for males, as
183  this measure was not available for a large proportion of malesin this data set (53.8%). We also
184  included chronological age as a predictor in the model, as epigenetic age tendsto be

185  systematically overpredicted for young individuals and underpredicted for old individuals

186  (Figure 1A-B; this bias has been observed in both foundational work on epigenetic clocks® and
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187  recent epigenetic clocks calibrated for rhesus macaques®, aswell as for dastic net regression
188  analyses more generally®). Including chronological agein the model, as previous studies have
189  done”’, controls for this compression effect. None of the predictor variables were strongly

190 linearly correlated (all Pearson’sr < 0.35; Supplementary Table 4).

191 Surprisingly, despite being two of the strongest known predictors of lifespan in wild

192  baboons, neither cumulative early life adversity nor social bond strength explain variation in Aage
193 (Tablel). In contrast, high male dominance rank is strongly and significantly associated with
194  larger values of Ayge (B =-0.078, p=7.39 x 10™* Figure 2; Table 1; Supplementary Figure 8).
195  Alphamales are predicted to be an average of 10.95 months older than their true chronological
196 age—adifference that translates to 11.5% of a male baboon’s expected adult lifespan in

197  Amboseli®. In contrast, dominance rank did not predict Ase in females (p = 0.228; Table 1).

198  Finally, age-adjusted BM| also predicted Axge in males (p = 6.33 x 10°®) but not in females (p =
199 0.682; Table 1). Despite the tendency for high-ranking males to have higher raw BMI due to
200 increased muscle mass, the effects of rank and age-adjusted BMI in males are distinct.

201  Specifically, modeling dominance rank after adjusting for raw BMI also produces a significant
202  effect of rank on Agge in the same direction (p = 9.93 x 10™* Supplementary Table 5), as does
203  substituting the age-adjusted BM| measure for either raw BMI or the residuals of raw BMI after
204  adjusting for dominance rank (rank p = 1.52 x 10% and p = 1.88 x 10 respectively;

205  Supplementary Table 5). In contrast, BMI is only a significant predictor of male Axge Wwhen

206  corrected for age (i.e., age-adjusted) and when rank isincluded in the same model (Table 1;

207  Supplementary Table 5). Further, we obtain the same qualitative resultsif al low BMI males are
208 removed from the sample (BMI < 41, this cut-off was used because it drops all young males who
209  have clearly not reached full adult size; p = 7.14 x 10°; Supplementary Table 5). Dropping these
210 malesaso eiminates the age-raw BMI correlation (Pearson’sr =-0.16, p = 0.21).

Table 1. Predictors of Ay

Covariate B P-value B P-value
(Female) (Female) (Male) (Male)
Intercept 5.400 1.33x 10" 3.294 1.19 x 10°®
Cumulative early adversity -0.050 0.807 -0.005 0.973
Social bond strength 0.382 0.164 — —
Dominance rank 0.025 0.228 -0.078  7.39x 10"
Age-adjusted BMI 0.026 0.682 0.111 6.33x 10
Chronological age 0699  162x10%  -0277 836x10°

211 Separate linear models for Aqge Were fit for females (N = 66) and for males (N = 93) for whom no data values were
212 missing; social bond strength was not included in the model for males. Significant results are shown in bold.
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213  Figure2. Dominancerank predictsrelative epigenetic age in male baboons. High rank is associated
214 with elevated values of Age (B =-0.0785, p=7.39 x 10*, N = 105). The y-axis shows relative epigenetic
215  age, ameasure of epigenetic aging similar to Ay that is based on the sample-specific residuals from the
216  relationship between predicted age and true chronological age. Positive (negative) values correspond to
217  predicted agesthat are older (younger) than expected for that chronologica age. Dominance rank is

218  measured using ordinal values, such that smaller values indicate higher rank. Dots and error bars

219  represent the means and standard errors, respectively. Gray values above the x-axis indicate sample sizes
220  for each rank.

221
222  Male dominance rank predicts epigenetic age
223 In baboon males, achieving high rank depends on physical condition and fighting

224  ability®. Consequently, rank in males is dynamic across the life course: males tend to attain their
225  highest rank between 7 and 12 years of age and fall in rank thereafter (Supplementary Figure 9).
226  Thus, nearly all malesin thetop four rank positionsin our data set were between 7 and 12 years
227  of age at the time they were sampled (however, because not all 7 — 12 year-olds are high-

228  ranking, low rank positions include males across the age range; Supplementary Table 1,

229  Supplementary Figure 9). We therefore asked whether the association between high rank in

230 malesand accelerated epigenetic aging is afunction of absolute rank values, regardless of age, or
231  deviations from the expected mean rank given amale’ s age (i.e., “rank-for-age’; Supplementary
232 Figure9). Wefound that including rank-for-age as an additional covariate in the Axe model

233 recapitulates the significant effect of ordinal male rank (p = 0.045), but finds no effect of rank-
234 for-age (p = 0.819; Supplementary Table 5). Our results therefore imply that males incur the

235  costs of high rank primarily in early to mid-adulthood, and only if they succeed in attaining high
236  rank.
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237 Figure 3. Male baboons exhibit higher relative epigenetic age when they occupy higher ranks. Relative

238  epigenetic age for males in which multiple samples were collected when they occupied different ordinal rank values.
239  Arrow indicates the temporal direction of rank changes: |eft-facing arrows represent cases in which the later sample
240  was collected when males were higher-ranking, and right-facing arrows represent cases in which the later sample
241  was collected when males were lower-ranking.

242

243 If attainment of high rank is linked to changes in epigenetic age within individuals, this
244  pattern should be reflected in longitudinal samples. Specifically, males who improved in rank
245  between samples should look older for age in their second sample relative to their first, and vice-
246  versa. To assessthis possibility, we calculated “relative epigenetic age” (the residuals of the best
247  fitlinerelating chronological age and predicted age) for 14 males for whom we had repeated
248  samples over time, 13 of whom changed ranks across sample dates (N = 28 samples, 2 per male).
249  Samples collected when males were higher status predicted higher values of relative epigenetic
250 age compared to samples collected when they were lower status (Figure 3; paired t-test, t = -2.99,
251 p=0.011). For example, in the case of a male whom we first sampled at low status (ordinal rank
252 = 18) and then after he had attained the alpha position (ordinal rank 1), the actual time that

253  elapsed between samples was 0.79 years, but he exhibited an increase in predicted age of 2.6
254  years. Moreover, the two males that showed a decrease in predicted age, despite increasing in
255  chronological age (Figure 1D), were among those that experienced the greatest drop in social
256  status between samples. Thus, change in rank between samples for the same male predicts

257  changein Aye, controlling for chronological age (R?=0.37, p= 0.021). Consistent with our

258  cross-sectional results, we found a suggestive relationship between change in Ay and BMI (R?=
259  0.31, p=0.08). Here, too, the effect of dominance rank does not seem to be driven by BMI:

260  while the association between change in Axge and changein rank is no longer significant when
261  modeling rank after adjusting for raw BMI, the correlation remains consistent (R* = 0.20, p =
262  0.167). In contrast, raw BMI adjusted for rank explains almost none of the variance in changein
263 Ane(R?=0.01, p=0.779).

264

265
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266  Discussion

267 Together, our findings indicate that major environmental predictors of lifespan and
268  mortality risk—particularly social bond strength and early life adversity in this population—do
269  not necessarily predict epigenetic measures of biological age. Although thisassumption is

270  widespread in the literature, including for epigenetic clock analyses®®>*, our results are broadly
271 consistent with empirical results in humans. Specifically, while studies of early life adversity,
272 which also predicts lifespan in human populations, find relatively consistent support for a

273 relationship between early adversity and accelerated epigenetic aging in children and

274  adolescents™®**°%% thereislittle evidence for the long-term effects of early adversity on

275  epigenetic age in adulthood™*>"®*, Thus, while DNA methylation may make an important

276  contribution to the biological embedding of early adversity into adulthood®®?, it does not seem
277  todo so through affecting the epigenetic clock itself. Social and environmental effects on the
278  clock instead seem to be most influenced by concurrent conditions, lending support to “recency”
279  modesfor environmental effects on aging that posit that health is more affected by the current
280  environment than past experience®®. Additional longitudinal sampling will be necessary to
281  evaluate whether current conditions alone can explain accelerated epigenetic aging, or whether it
282  also requiresintegrating the effects of exposures across the life course (the “accumul ation”

283  model®*®). Alternatively, the effects of early life adversity and social bond strength may act
284  through entirely distinct pathways than those captured by our epigenetic clock (including

285  targeting tissues or cell types that we were unable to assess here). Indeed, the proliferation of
286  aternative epigenetic clocks in humans has revealed that the clocks that best predict

287  chronological age are not necessarily the clocks that most closely track environmental exposures,
288  and the sameislikely to betruein other species™®’.

289 We found that the most robust socioenvironmental predictor of epigenetic agein the

290  Amboseli baboonsis male dominance rank, with a secondary effect of age-adjusted BMI

291  observable when rank isincluded in the same model. Although high BMI also predicts

292  accelerated epigenetic age in some human populations®, high BMI in these human populationsis
293  related to being overweight or obese. In contrast, because wild-feeding baboons in Amboseli are
294  extremely lean*’, the range of BMI in most human populationsis distinct from the range

295  exhibited by our study subjects (importantly, BMI in humansis calculated differently than BMI
296  inbaboons [see Methods], and therefore the BMI scales are species-specific). Instead, the higher
297 BMI valuesin our dataset represent baboons in better body condition (more muscle mass). Given
298  that rank in male baboonsis determined by physical fighting ability®, these results suggest that
299 investment in body condition incurs physiological coststhat accelerate biological age. If so, the
300 rank effect we observe may be better interpreted as a marker of competitiveness, not asa

301 consequence of being in a“high rank” environment. In support of thisidea, work on dominance
302 rank and gene expression levelsin the Amboseli baboons suggests that gene expression

303 differences associated with male dominance rank tend to precede attainment of high rank, rather
304 than being a consequence of behaviors exhibited after high rank is achieved®’. Consistent with
305 potential costs of attaining or maintaining high status, alpha malesin Amboseli also exhibit

306 elevated glucocorticoid levels®®, increased expression of genes involved in innate immunity and
307 inflanmation®’, and a trend towards elevated mortality risk**. Males who can tolerate these costs
308 and maintain high rank are nevertheless likely to enjoy higher lifetime reproductive success,

309 sincehigh rank isthe single best predictor of mating and paternity successin baboon males™,
310 This interpretation may also explain major sex differences in the effects of rank on

311  epigenetic age, where dominance rank shows no detectable effect in females. Dominance rank in
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312 female baboonsis determined by nepotism, not physical competition: females typically insert
313  intorank hierarchies directly below their mothers, and hierarchies therefore tend to remain stable
314  over time (and even intergenerationally)®. Our results contribute to an emerging picture in which
315 dominance rank effects on both physiological and demographic outcomes are asymmetrical

316  acrosssexes, and larger in males. Specifically, in addition to Axe, Male rank is a better predictor
317  of immune cell gene expression and glucocorticoid levels than female rank?® ™, Recent

318  findings suggest that high rank may also predict increased mortality risk in male Amboseli

319  baboons, whereas neither high nor low rank predicts increased mortality risk in females™.

320 Together, these results argue that social status/dominance rank effects should not be interpreted
321 asauniversal phenomenon. Instead, the manner through which social statusis achieved and

322 maintained islikely to be key to understanding its consequences for physiology, health, and

323 fitness™. Specifically, we predict that high status will be most likely to accelerate the aging

324  process, including epigenetic age, in species-sex combinations where high status increases

325  reproductive success or fecundity, and achieving statusis energetically costly (e.g., male red

326  deer, mandrills, and geladas; female meerkats'® %). Expanding studies of biological agingto a
327  broader set of natural populations, especially those for which behavioral and demographic data
328 arealso available, will be key to testing these predictions.

329

330 Methods

331  Sudy population and biological sample collection

332 This study focused on a longitudinally monitored population of wild baboons (Papio

333  cynocephalus, the yellow baboon, with some admixture from the closely related anubis baboon
334  P.anubis™"®) inthe Amboseli ecosystem of Kenya. This population has been continuously

335  monitored by the Amboseli Baboon Research Project (ABRP) since 1971%. For the majority of
336  study subjects (N = 242 of 245 individuals), birth dates were therefore known to within a few
337 days error; for the remaining 3 individuals, birth dates were known within 3 months' error

338 (Supplementary Table 1).

339 All DNA methylation data were generated from blood-derived DNA obtained during

340 periodic darting efforts, as detailed in 2”-"""®, Samples were obtained under approval from the
341 Institutional Animal Care and Use Committee (IACUC) of Duke University and adhered to all
342 thelawsand regulations of Kenya. In brief, individually recognized study subjects were

343  temporarily anesthetized using a Telazol-loaded dart delivered through ablow gun. Baboons
344  werethen safely moved to a new location where blood samples and morphometric data,

345 including body mass and crown-rump length, were collected. Baboons were then allowed to

346  recover from anesthesiain a covered holding cage and released to their group within 2 —4 hours.
347  Blood samples were stored at -20° C in Kenya until export to the United States.

348

349  DNA methylation data

350 DNA methylation data were generated from blood-extracted DNA collected from known
351 individualsinthe Ambosdli study population (N = 277 samples from 245 animals; 13 females
352  and 15 males were each sampled twice, and 1 female and 1 male were each sampled three times).
353 Here, we analyzed a combined data set that included previously published reduced representation
354  bisulfite sequencing” (RRBS) data from the same population (N = 36 samples)®® and new RRBS
355 datafrom 241 additional samples.

356 RRBS libraries were constructed following ®, using ~200 ng baboon DNA plus 0.2 ng
357 unmethylated lambda phage DNA per sample as input. Samples were sequenced to a mean depth
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358 of 17.8 (= 10.5 s.d.) million reads on either the Illumina HiSeq 2000 or HiSeq 4000 platform
359  (Supplementary Table 1), with an estimated mean bisulfite conversion efficiency (based on the
360 conversion rate of lambda phage DNA) of 99.8% (minimum = 98.1%). Sequence reads were
361  trimmed with Trim Galore!®* to remove adapters and low quality sequence (Phred score < 20).
362  Trimmed reads were mapped with BSMAP* to the baboon genome (Panu2.0) allowing a 10%
363  mismatch rate to account for the degenerate composition of bisulfite-converted DNA. We used
364  the mapped reads to count the number of methylated and total reads per CpG site, per sample™,
365 Following %%, CpG sites were filtered to retain sites with amean methylation level between 0.1
366 and 0.9 (i.e, to exclude constitutively hyper- or hypo-methylated sites) and mean coverage >5x.
367 Weadso excluded any CpG sites with missing data for > 5% of individuals in the sample. After
368 filtering, we retained N = 458,504 CpG sites for downstream analysis. For the remaining missing
369  data (mean number of missing sites per sample = 1.4% * 3.5% s.d., equivalent to 6,409 + 16,024
370 s.d. sites), weimputed methylation levels using a k-nearest neighbors approach in the R package
371 impute, using default parameters™.

372
373  Building the epigenetic clock
374 We used the R package glmnet® version 2.0.10 to build a DNA methylation clock for

375 baboons. Specifically, wefit alinear model in which the predictor variables were normalized
376 levelsof DNA methylation at 458,504 candidate clock CpG sites across the genome and the

377  response variable was chronological age. To account for the excess of CpG sites relativeto

378  samples, glmnet uses an elastic net penalty to shrink predictor coefficients toward 0%°. Optimal
379 dphaparameters were identified by grid searching across arange of alphasfrom O (equivalent to
380 ridgeregression) to 1 (equivalent to Lasso) by increments of 0.1, which impacts the number of
381 clock CpG sites by varying the degree of shrinkage of the predictor coefficients toward O

382  (Supplementary Figure 2). We defined the optimal alpha as the value that maximized R? between
383  predicted and true chronological age across all samples. We set the regularization parameter

384 lambdato the value that minimized mean-squared error during n-fold internal cross-validation.
385 To generate predicted age estimates for a given sample, we used a leave-one-out cross-
386 validation approach in which all samples but the “test” sample were included for model training,
387  and theresulting model was used to predict age for the left-out test sample. Importantly, training
388 sampleswere scaled independently of the test samplein each leave-one-out model to avoid

389  bleed-through of information from the test data into the training data. To do so, wefirst quantile
390 normalized methylation ratios (the proportion of methylated counts to total counts for each CpG
391 dite) within each sample to a standard normal distribution. Training samples were then separated
392  from the test sample and the methylation levels for each CpG sitein the training set were

393  quantile normalized across samples to a standard normal distribution. For predicting age in the
394 test sample, we compared the methylation value for each site in the test sample to the empirical
395 cumulative distribution function for the training samples (at the same site) to estimate the

396 quantilein which the training sample methylation ratio fell. The training sample was then

397  assigned the same quantile value from the standard normal distribution using the function gnorm
398 inR.

399
400 Epigenetic clock enrichment analyses
401 To evaluate whether CpG sites included in the epigenetic clock were enriched in

402  functionally important regions of the baboon genome®™*®®, we used two-sided Fisher’s exact tests
403  toinvestigate enrichment/depletion of the 573 epigenetic clock sitesin (i) gene bodies and exons,
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404  based on the Ensembl annotation Panu2.0.90; (i) CpG islands annotated in the UCSC Genome
405  Browser; (iii) CpG shores, defined as the 2,000 basepairs flanking CpG islands (following

406  *®%87): and (iv) promoter regions, defined as the 2,000 basepairs upstream of the 5'-most

407  annotated transcription start site for each gene (following ). We also considered (v) putative
408  enhancer regions, which have not been annotated for the Panu2.0 assembly. We therefore used
409 ENCODE H3K4mel ChlP-seq data from humans® and the liftOver tool to define likely

410 enhancer coordinatesin Panu2.0.

411 We also tested for enrichment of clock sites in regions of the genome that have been

412  identified by previous empirical studiesto be of special interest. First, we considered regions that
413  likely have regulatory activity in blood cells, defined as all 200 base-pair windows that showed
414  evidence of enhancer activity in arecently performed massively paralle reporter assay®. We
415  used liftOver to identify the inferred homologous Panu2.0 coordinates for these windows, which
416  wereoriginally defined in the human genome. Second, we defined age-related differentially

417  methylated regions (age DMRs) in the Amboseli baboons based on genomic intervals found, in
418  previous analyses, to contain at least three closely spaced age-associated CpG sites (inter-CpG
419  distance < 1kb), as described in %. Third, because inflammatory processes involved in innate
420 immunity are strongly implicated in the aging process, we defined lipopolysaccharide (LPS) up-
421  regulated and LPS down-regulated genes as those genes that were significantly differentially
422  expressed (1% false discovery rate) between unstimulated Amboseli baboon white blood cells
423  and LPS-stimulated cells from the same individual, following 10 hours of culturein parallel?’.
424

425  Comparisons to alternative predictors of aging

426 To assess the utility of the DNA methylation clock relative to other data types, we

427  compared its predictive accuracy to clocks based on three other age-related phenotypes: tooth
428  wear (percent molar dentine exposure™), body condition (body massindex: BM1?), and blood
429  cell type composition (blood smear counts and lymphocyte/monaocyte proportions from flow
430  cytometry performed on peripheral blood mononuclear cells, asin #"*). Leave-one-out model
431  training and prediction were performed for each data type using linear modeling. To compare the
432  relative predictive accuracy of each datatype, we calculated the R? between predicted and

433  chronological age, the median absolute difference between predicted and chronological age, and
434  thebiasin age predictions (the absolute value of 1 - slope of the best fit line between predicted
435  and chronological age) (Supplementary Figure 6).

436 Tooth wear. Molar enamel in baboons wears away with age to expose the underlying
437  dentine layer. Percent dentine exposure (PDE) on the molar occlusal surface has been shown to
438  bestrongly age-correlated in previous work®. To assess its predictive power, we obtained PDE
439  datafrom tooth casts reported by Galbany and colleagues™ for the left upper molars (tooth

440 positionsM1, M2, M3) and left lower molars (tooth positions M1, M2, M3) for 39 males and 34
441  femalesin our data set. For each molar position (M1, M2, M3) within each individual, we

442  calculated PDE asthe mean for the upper and lower molars. Because dentine exposure scales
443  quadratically with respect to age®™, we fit age as a function of PDE using the following mode!:
444  age ~\/PDEy, + /PDEy; + /PDEys.

445 Body massindex. For both male and female baboons in Amboseli, body mass increases
446  with age until individuals reach peak size, and then tends to decrease with age as animals lose fat
447  and/or muscle mass*®. To quantify body condition using body mass, we calculated body mass
448  index (BMI) valuesfor 139 males and 154 females for whom body mass and crown-rump length
449  datawere available from periodic darting efforts. We retained only measures taken from animals
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450  borninto and sampled in wild-feeding study groups, when sex-skin swellings (in females only)
451  that could affect crown-rump length measures were absent. BMI was calculated as mass

452  (kilograms) divided by crown-rump length (meters squared), following *’. To assess the

453  predictive power of age-adjusted BMI, we built sex-specific piecewise-regression models using
454  the package segmented in R®. Breakpoints for the piecewise-regression models (to separate

455  “youthful” versus “aged” animals) were initialized at 8 years old for males and 10 years old for
456  females, following findings from previous work on body massin the Amboseli population?.

457 Blood cell type composition. The proportions of different cell typesin blood change

458  across thelife course, including in baboons™. We assessed the predictive power of blood cell
459  composition for age using two data sets. First, we used data collected from blood smear counts
460 (N =134) for five magor white blood cell types: basophils, eosinophils, monocytes, lymphocytes,
461  and neutrophils. Second, we used data on the proportional representation of five peripheral blood
462  mononuclear cell (PBMC) subsets: cytotoxic T cells, helper T cells, B cells, monocytes, and

463  natural killer cells, measured using flow cytometry as reported by Lea and colleagues”™ (N = 53).
464  Cell typeswereincluded asindividual covariates for leave-one-out model training.

465

466  Sources of variance in predicted age

467 We asked whether factors known to be associated with inter-individual variationin

468  fertility or survival also predict inter-individual variation in Aqe (predicted age from the

469  epigenetic clock minus known chronological age). To do so, wefit linear models separately for
470 males and females, with Ay as the dependent variable and dominance rank at the time of

471  sampling, cumulative early adversity, age-adjusted BMI, and chronological age as predictor

472  variables®. For females, we also included a measure of social bond strength to other females as a
473  predictor variable, based on findings that show that socially isolated females experience higher
474  mortality rates in adulthood**®*. Samples with missing values for any of the predictor variables
475  were excluded in the model, resulting in afinal analysis set of 66 female samples (from 59

476  females) and 93 male samples (from 84 males). The chronological ages of samples with

477  complete data relative to samples with missing data were equivalent for females (t-test, t = 1.95,
478  p=0.053) but were slightly lower for males (t-test, t = -3.04, p = 0.003; mean chronological ages
479  are7.98 and 9.65 years for complete and missing samples, respectively). Predictor variables

480 were measured asfollows.

481 Dominance rank. Sex-specific dominance hierarchies were constructed monthly for every
482  social group in the study population based on the outcomes of dyadic agonistic encounters. An
483  animal was considered to win adyadic agonistic encounter if it gave aggressive or neutral, but
484  not submissive, gestures, and the other animal gave submissive gestures only®. These wins and
485  |osses were entered into a sex-specific data matrix, such that animals were ordered to minimize
486  the number of entriesfalling below the matrix diagonal (which would indicate that the lower

487  ranked individual won a dyadic encounter). Ordinal dominance ranks were assigned on a

488 monthly basisto every adult based on these matrices, such that low numbers represent high

489  rank/socia status and high numbers represent low rank/social status™®°. Although most analyses
490 of datafrom the Amboseli baboons have used ordinal ranks as the primary measure of social

491  status, in some analyses proportional rank (i.e., the proportion of same-sex members of an

492  individual’s socia group that he or she dominates) has proven to be a stronger predictor of other
493  trait outcomes™%. In this study, we chose to use ordinal ranks, but proportional and ordinal

494  dominance rank were highly correlated in this particular data set (R*= 0.70, p = 1.13 x 10°).
495  Using ordinal rank rather than proportional rank therefore did not qualitatively affect our
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496  analyses. Additionally, to investigate whether the patterns we observed are due to a consistent
497  effect of rank across all ages, or instead an effect of being high or low rank relative to the
498  expected (mean) value for amal€' s age, we also calculated a “rank-for-age” value. Rank-for-age
499 isdefined asthe residuals of amodel with dominance rank as the response variable and age and
500 age’ asthe predictor variables (Supplementary Figure 8).
501 Cumulative early adversity. Previous work in Amboseli defined a cumulative early
502 adversity score as the sum of 6 different adverse conditions that a baboon could experience
503  during early life®®. Thisindex strongly predicts adult lifespan in female baboons, and a modified
504  version of thisindex also predicts offspring survival®. To maximize the sample size available for
505 anaysis, we excluded maternal social connectedness, the source of adversity with the highest
506 frequency of missing data, leaving us with a cumulative early adversity score generated from 5
507 different binary-coded adverse experiences. These experiences were: (i) early life drought
508 (defined as <200 mm of rainfall in the first year of life), which islinked to reduced fertility in
509 females'®®; (ii) having alow ranking mother (defined as falling within the lowest quartile of
510 ranksfor individuals in the data set), which predicts age at maturation®®; (iii) having a close-in-
511  ageyounger sibling (< 1.5 years), which may redirect maternal investment to the sibling®, (iv)
512  being born into alarge social group, which may increase within-group competition for shared
513  resources’®®'® and (v) maternal desth before the age of 4, which resultsin aloss of both social
514  and nutritional resources®*.
515 Body massindex. Age-adjusted BM| was modeled as the residuals from sex-specific
516  piecewise regression models relating raw BMI to age. By taking this approach, we asked whether
517  having relatively high BMI for on€e's age and sex predicted higher (or lower) Aqe. To calculate
518 rank-adjusted BMI values, we modeled raw BMI as afunction of rank in alinear model and
519 calculated the residuals from the model. To calculate dominance rank adjusted for raw BMI, we
520 took theinverse approach. We note that BM|I for baboonsis not directly comparable to BMI for
521  humans because baboon BMI is measured as body mass divided by the square of crown-rump
522  length (because baboons are quadrupedal), whereas human BMI is calculated as body mass
523  divided by the square of standing height.
524 Social bond strength. For this analysis, we measured female social bond strength to other
525  females using the dyadic sociality index (DSIg)*. We did not include this parameter (male's
526  socia bond strength to females) for the male model, because this measure is unavailable for
527 many malesin thisdata set. DSI¢ was calculated as an individual’ s average bond strength with
528 her top three female social partners, in the 365 days prior to the day of sampling, controlling for
529  observer effort. Thisapproach is based on representative interaction sampling of grooming
530 interactions between females, in which observers record al grooming interactions in their line of
531  sight while moving through the group conducting random-ordered, 10-minute long focal animal
532  samples of pre-selected individuals. Because smaller groups receive more observer effort per
533 individual and per dyad (and thus record more grooming interactions per individual or dyad), we
534  estimated observer effort for dyad d in year y as.

_ ca(Sq)
Fay = fa
535  where c, isthe number of days the two females in a dyad were coresident in the same social
536 group, s; isthe number of focal samples taken during the dyad’s coresidence, and f,; isthe
537 average number of femalesin the group during the dyad’ s coresidence.
538 DSlIg for each adult female dyad in each year is the z-scored residual, &, from the model:

log(Ra,) = B(log(Eq,)) + ¢
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539  where R, ,, isthe number of grooming interactions for dyad d in year y divided by the number of
540 days that the two individuals were coresident, and E; ,, is observer effort.

541
542  Analysisof longitudinal samples
543 To test whether changes in rank predict changes in relative epigenetic age within

544  individuals, we used datafrom 11 males from the original data set and generated additional

545 RRBSdatafor 9 samples, resulting in afinal set of 14 males who each were sampled at |east
546 twicein the data set, 13 of whom occupied different ordinal ranks at different sampling dates
547  (mean years elapsed between samples = 3.7 + 1.65 s.d.; mean absolute difference in dominance
548 ranks=1.29 + 8.34 s.d.). Thiseffort increased our total sample sizeto N = 286 samples from
549 248 uniqueindividuals. To incorporate the new samplesinto our analysis, we reperformed |eave-
550 one-out age prediction with N-fold internal cross validation at the optimal alpha selected for the
551 original N = 277 samples (alpha= 0.1). For the 277 samples carried over from the original

552  analysis, we verified that age predictions were nearly identical between the previous analysis and
553  the expanded data set (R*= 0.98, p = 2.21 x 10%**; Supplementary Table 1).

554 Based on the new age predictions for malesin the data set (N = 140), we again calcul ated
555  relative epigenetic age as the residual of the best fit line relating predicted age to chronological
556 age. We then used the 14 males with repeated DNA methylation profiles and rank measuresin
557  thisdata set to test whether, within individuals, changes in dominance rank or rank-for-age

558 explained changesin relative epigenetic age between samples. In total, five males were sampled
559 threetimes. For four of these five, we only included the two samples that were sampled the

560 farthest gpart in time (i.e., excluded the temporal middle sample) to maximize the age change
561  between sample dates. For the fifth male, BMI information was missing for the third sample, so
562  weincluded the first two samples collected in time.

563

564  Data Availability

565  All sequencing data generated during this study are available in the NCBI Sequence Read

566  Archive (project accession PRINAGAS767; reviewer access. #HHHHHHHHH).

567

568 Code Availability

569 All R code used to analyze data in this study are available at

570  https://github.com/janderson94/BaboonEpigeneticAging.
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Supplementary Table 4. Pearson correlations among covariates for females (above diagonal)
and males (below diagonal), with p-values in parentheses.
cumulative DSk rank Age-adjusted age
BMI
cumulative - -0.222 0.310 0.098 (0.432) -0.284
(0.073) (0.011) (0.021)
DSl NA - -0.266 -0.188 0.112 (0.372)
(0.031) (0.131)
rank -0.058 (0.578) NA - 0.058 (0.646) 0.218 (0.078)
Age-adjusted BMI -0.038 (0.719) NA -0.068 - -0.098
(0.516) (0.434)
age 0.133(0.202) NA -0.313 -0.075 -
(0.002) (0.476)
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Supplementary Figure 1. Characteristics of the RRBS data set. (A) Proportion of the 458,504
evaluated CpG sites that overlapped annotated features of the Panu2 genome. (B) Proportion of
annotated features in the Panu2 genome that overlapped at least one of the 458,504 evaluated
CpG sites. (C) Distribution of mean DNA methylation levels for CpG sites within annotated
features of the Panu2 genome. Each white box represents the interquartile range, with the
median value depicted as a black horizontal bar. Whiskers extend to the most extreme values
within 1.5 x the interquartile range. As expected, CpG sites tended to be highly methylated
genome-wide and have lower average methylation in promoters, enhancers, and CpG islands.
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865  Supplementary Figure 2. Comparison of clock performance across alter native values of
866 alpha. Alphawas set viagrid search across possible values from 0.1 to 1, in steps of 0.1, and
867  chosen based on the highest R? value between predicted age and known chronological age (red
868 lines). The blue lines show the median absolute difference between predicted and true age (lower
869 isbetter), and exhibits roughly inverse behavior to R?. (A) For each clock generated with a

870 different alphavalue, the total number of CpG sites included in the clock is shown on top, and
871 thenumber of clock sitesthat overlap the final clock used in thisstudy (N = 573 sites, alpha=
872  0.1) isgiven in parentheses immediately below. (B, C) Asin (A), but with results shown

873  gpecifically for males (B) versus females (C).
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Supplementary Figure 3. Enrichment of the epigenetic clock CpG sites by genomic
compartment. The logx(odds ratio) of CpG sites in the epigenetic clock, relative to all 458,504
CpG sitesinitially evaluated, in (A) annotated genomic regions and (B) in loci with putative
regulatory activity or in or near genes that are responsive to age or immune stimulation. Regions
of regulatory activity were identified with the massively parallel reporter assay, mSTARR-Seq™,
following aliftover from the human genome to the baboon genome to identify putatively
orthologous coordinates. Age differentially methylated regions (DMR) and genes responsive to
lipopolysaccharide (LPS) were previously identified from blood samples from the same baboon
population®?’. Two-sided Fisher's exact tests were performed separately for epigenetic clock
sites that increased (positive clock sites: N = 459) or decreased (negative clock sites: N = 134) in
DNA methylation levels with age. See Supplementary Table 2 for a complete list of the genomic
locations of the 573 epigenetic clock sites. * p < 0.05, *** p < 0.005.
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886  Supplementary Figure 4. Association between age and DNA methylation level for
887 individual clock CpG sites. (A) Volcano plot of the effect size (Bage) Versus the -logio(p-value)
888  of age effects on DNA methylation for males (blue) and females (red), based on estimates from a
889  binomia mixed-effects model designed for bisulfite sequencing data™. Results for the 534 sites
890 that could be modeled using this approach are shown. Other predictor variablesin the model
891 included afixed effect for sample batch and a random effect that controlled for kinship
892  (estimated via Queller and Goodnight’sr and multilocus microsatellite genotype datain the
893  program coancestry™*). Dashed line corresponds to a nominal p-value of 0.01. (B) Age effects
894  on DNA methylation estimated separately in males and females are highly correlated (R?= 0.83,
895 p=3.35x10°%). The dashed lineindicatesthey = x line. The solid black line indicates the best
896 fitline.
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Supplementary Figure 5. Methylation levels of clock CpG sites acr oss different genomic
compartments. Each circle represents a sample, with chronological age of the animal at time of
sampling shown on the x-axis. The y-axis represents the average methylation level for that
sample across CpG clock sites that overlap the annotated genomic region shown in the panel
labdl, stratified by sites that increased (denoted “hyper”) or decreased (denoted “hypo”)
methylation levels with age. Number of clock sites overlapping each annotated region isgiven in
each pane title; a clock site can overlap multiple annotated regions, and can therefore be
represented in more than one plot. Red and blue lines represent best fit lines for female and male
samples, respectively. All best it lines are significant (p < 1 x 10°%).
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906 Supplementary Figure 6. Comparison of the performance of the epigenetic clock to other
907 predictorsof chronological age. Performance measures of age predictors are presented

908 separately for females (A, C, E) and males (B, D, F) except for differential white blood cell

909 counts (blood smears), where males and females were combined. Predictors are ordered in the
910  samefashionin all panels (epigenetic clock to the left, and then following highest to lowest R in
911 females). The breakpoint to define youthful versus aged animal BMI was 10 and 8 years old for
912  females and males, respectively. (A-B) Adjusted R? between predicted age and true

913 chronological age. (C-D) Absolute difference between they = x line (slope of one) and the slope
914  of the best-fit line of predicted age as a function of true chronological age. This metric captures
915 biasin age prediction estimates (values that are lower on the reverse-coded y-axis are more

916 biased). (E-F) Median absolute difference (MAD) between each individual’ s predicted age and
917  truechronological age (values that are lower on the reverse-coded y-axis have higher MAD).
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Supplementary Figure 7. Thereationship between age and body massindex in the
Amboseli baboons. Chronological age in years at the time of sampling versus body mass index
(kilograms/meters?) for males and femalesin our sample. Two distinct patterns are observable
for both sexes: a stage when animals are still growing (prior to ~7 — 8 years old) and astage in
which animals vary in BMI as adults. BMI in baboons is measured using the distance between
the crown of the head and the rump asthe “height” measure, and so differs in scale from humans,
where BMI is calculated using standing height. Dashed gray line at BMI = 41 shows the cut-off
for the analysis in which only males with BM1 > 41 were retained for modeling Aage.
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Supplementary Figure 8. Relative epigenetic age ver sus chronological age. Each circle
represents a baboon, colored by the animal’ s dominance rank at the time of sampling. The y-axis
shows relative epigenetic age, a measure of epigenetic aging sSimilar to Aqe that is based on the
sample-specific residuals from the relationship between predicted age and true chronological
age. Positive (negative) values correspond to predicted ages that are older (younger) than
expected for that chronological age. Dominance rank is measured using ordinal values, such that
smaller values indicate higher rank.
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934  Supplementary Figure 9. Male dominance rank ver sus chronological age. Each circle
935  represents a male baboon at the time of sampling. Nearly all malesin the top four rank positions
936 are between ages 7 and 12 years (but not all 7 — 12 year olds are also high-ranking: range of rank
937 positions =1 — 20), whereas both young and old males tend to be lower-ranking. The quadratic
938  curve represents the model with dominance rank as the response variable and age and age” asthe
939 predictor variables. Rank-for-age was defined as the residuals of this model.
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