

1 **The costs of competition: high social status males experience accelerated epigenetic aging in**  
2 **wild baboons**

3  
4 Jordan A. Anderson<sup>1,†</sup>, Rachel A. Johnston<sup>1,†</sup>, Amanda J. Lea<sup>2,3,4</sup>, Fernando A. Campos<sup>2,5</sup>, Tawni  
5 N. Voyles<sup>1</sup>, Mercy Y. Akinyi<sup>6</sup>, Susan C. Alberts<sup>1,2,6</sup>, Elizabeth A. Archie<sup>6,7</sup>, Jenny Tung<sup>1,2,6,8,\*</sup>

6  
7 <sup>1</sup>Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708,  
8 USA

9 <sup>2</sup>Department of Biology, Duke University, Durham, North Carolina 27708, USA

10 <sup>3</sup>Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University,  
11 Princeton, NJ 08544, USA

12 <sup>4</sup>Department of Ecology and Evolution, Princeton University, Princeton, NJ 08544, USA

13 <sup>5</sup>Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249,  
14 USA

15 <sup>6</sup>Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya

16 <sup>7</sup>Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556,  
17 USA

18 <sup>8</sup>Duke Population Research Institute, Duke University, Durham, NC 27708, USA

19

20 <sup>†</sup>Authors contributed equally to this work

21 \*Correspondence: jt5@duke.edu

## 22 Abstract

23 Aging, for virtually all life, is inescapable. However, within populations, biological aging  
24 rates vary. Understanding sources of variation in this process is central to understanding the  
25 biodemography of natural populations. We constructed a DNA methylation-based age predictor  
26 for an intensively studied wild baboon population in Kenya. Consistent with findings in humans,  
27 the resulting “epigenetic clock” closely tracks chronological age, but individuals are predicted to  
28 be somewhat older or younger than their known ages. Surprisingly, these deviations are not  
29 explained by the strongest predictors of lifespan in this population, early adversity and social  
30 integration. Instead, they are best predicted by male dominance rank: high-ranking males are  
31 predicted to be older than their true ages, and epigenetic age tracks changes in rank over time.  
32 Our results argue that achieving high rank for male baboons—the best predictor of reproductive  
33 success—imposes costs consistent with a “live fast, die young” life history strategy.

34

## 35 Introduction

36 Aging, the nearly ubiquitous functional decline experienced by organisms over time<sup>1</sup>, is a  
37 fundamental component of most animal life histories<sup>2</sup>. At a physiological level, age affects  
38 individual quality, which in turn affects the ability to compete for mates and other resources,  
39 invest in reproduction, and maintain somatic integrity. At a demographic level, age is often one  
40 of the strongest predictors of survival and mortality risk, which are major determinants of  
41 Darwinian fitness. In order for patterns of aging to evolve, individuals must vary in their rates of  
42 biological aging. Thus, characterizing variation in biological aging rates and its sources—beyond  
43 simply chronological age—is an important goal in evolutionary ecology, with the potential to  
44 offer key insight into the trade-offs that shape individual life history strategies<sup>3</sup>.

45 Recent work suggests that DNA methylation data can provide exceptionally accurate  
46 estimates of chronological age<sup>4</sup>. These approaches typically use supervised machine learning  
47 methods that draw on methylation data from several hundred CpG sites, identified from hundreds  
48 of thousands of possible sites, to produce a single chronological age prediction<sup>5-7</sup>. Intriguingly,  
49 some versions of these clocks also predict disease risk and mortality, suggesting that they capture  
50 aspects of biological aging that are not captured by chronological age alone<sup>8</sup>. For example, in  
51 humans, individuals predicted to be older than their true chronological age are at higher risk of  
52 Alzheimer’s disease<sup>9</sup>, cognitive decline<sup>9,10</sup>, and obesity<sup>11</sup>. Accelerated epigenetic age is in turn  
53 predicted by environmental factors with known links to health and lifespan, including childhood  
54 social adversity<sup>12,13</sup> and cumulative lifetime stress<sup>14</sup>. These observations generalize to other  
55 animals. Dietary restriction, for instance, decelerates biological aging based on DNA methylation  
56 clocks developed for laboratory mice and captive rhesus macaques, and genetic knockout mice  
57 with extended lifespans also appear epigenetically young for age<sup>15-17</sup>. However, while DNA  
58 methylation data have been used to estimate the age structure of wild populations (where  
59 birthdates are frequently unknown)<sup>18-21</sup>, they have not been applied to investigating sources of  
60 variance in biological aging in the wild.

61 To do so here, we coupled genome-wide data on DNA methylation levels with detailed  
62 behavioral and life history data available for one of the most intensively studied wild mammal  
63 populations in the world, the baboons of the Amboseli ecosystem of Kenya<sup>22</sup>. First, we calibrated  
64 a DNA methylation-based “epigenetic clock” and assessed the clock’s composition. Second, we  
65 compared the accuracy of this clock against other age-associated traits and between sexes. Third,  
66 we tested whether variance in biological aging was explained by socioenvironmental predictors  
67 known to impact fertility or survival in this population. Finally, we investigated an intriguing

68 association between epigenetic age acceleration and male dominance rank. Our results show that  
69 predictors of lifespan can be decoupled from rates of epigenetic aging. However, other factors—  
70 particularly male dominance rank—are strong predictors of epigenetic clock-based age  
71 acceleration. These results establish the first epigenetic clock available for any wild nonhuman  
72 primate, and are the first to establish a link between social factors and epigenetic aging in any  
73 natural animal population. Together, they highlight potential sex-specific trade-offs that may  
74 maximize fitness, but also compromise physiological condition and potentially shorten male  
75 lifespan.

76

## 77 **Results**

### 78 *Epigenetic clock calibration and composition*

79 We used a combination of previously published<sup>23</sup> and newly generated reduced-  
80 representation bisulfite sequencing (RRBS) data from 245 wild baboons (N = 277 blood  
81 samples) living in the Amboseli ecosystem of Kenya<sup>22</sup> to generate a DNA methylation-based age  
82 predictor (an “epigenetic clock”<sup>5,6</sup>). Starting with a data set of methylation levels for 458,504  
83 CpG sites genome-wide (Supplementary Figure 1; Supplementary Table 1), we used elastic net  
84 regression to identify a set of 573 CpG sites that together accurately predict baboon age to within  
85 a median absolute difference (MAD) of 1.1 years  $\pm$  1.9 s.d. (Figure 1; Supplementary Table 2;  
86 Pearson’s  $r = 0.762$ ,  $p = 9.70 \times 10^{-54}$ ; median adult life expectancy in this population is 10.3  
87 years for females and 7.9 for males<sup>24</sup>). The choice of these sites reflects a balance between  
88 increasing predictive accuracy within the sample and minimizing generalization error to  
89 unobserved samples, using a similar approach as that used to develop epigenetic clocks in  
90 humans<sup>5,6</sup> (see also Methods and Supplementary Figure 2).

91 Consistent with findings in humans<sup>6</sup>, clock sites are enriched in genes, CpG islands,  
92 promoter regions, and putative enhancers, compared to the background set of all sites we initially  
93 considered (Supplementary Figure 3; Fisher’s exact tests, all  $p < 0.05$ ). Clock sites are also more  
94 common in age-associated differentially methylated regions in baboons (Supplementary Figure  
95 3; sites that increase with age:  $\log_2[\text{OR}] = 4.189$ ,  $p = 3.64 \times 10^{-9}$ ; sites that decrease with age:  
96  $\log_2[\text{OR}] = 5.344$ ,  $p = 1.54 \times 10^{-8}$ )<sup>25</sup>, such that many, but not all, of the clock sites also exhibit  
97 individual associations between DNA methylation levels and age (Supplementary Figures 4 and  
98 5; Supplementary Table 3). Additionally, clock sites were more likely to be found in regions that  
99 exhibit enhancer-like activity in a massively parallel reporter assay (sites that increase with age:  
100  $\log_2[\text{OR}] = 2.685$ ,  $p = 1.22 \times 10^{-2}$ ; sites that decrease with age:  $\log_2[\text{OR}] = 4.789$ ,  $p = 1.78 \times 10^{-5}$ )<sup>26</sup>  
101 and in regions implicated in the gene expression response to bacteria in the Amboseli baboon  
102 population (overlap of lipopolysaccharide [LPS] up-regulated genes and sites that increase with  
103 age:  $\log_2[\text{OR}] = 0.907$ ,  $p = 7.03 \times 10^{-4}$ ; overlap of LPS down-regulated genes and sites that  
104 decrease with age:  $\log_2[\text{OR}] = 1.715$ ,  $p = 1.55 \times 10^{-3}$ )<sup>27</sup>. Our results thus suggest that the  
105 Amboseli baboon epigenetic clock not only tracks chronological age, but also captures age-  
106 related changes in DNA methylation levels that are functionally important for gene regulation.

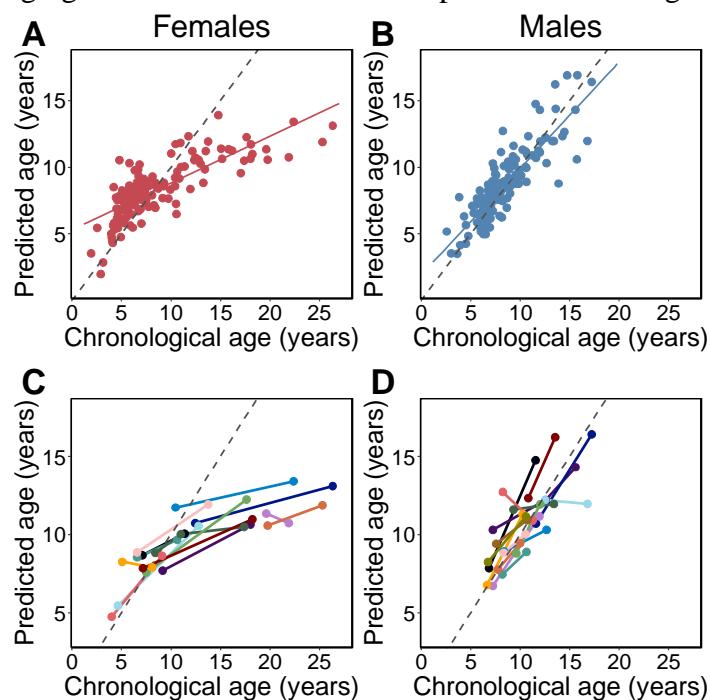
107

### 108 *Comparison with other age-associated traits and differences between sexes*

109 Overall, the clock performed favorably relative to other morphological or biomarker  
110 predictors of age in this population. The epigenetic clock generally explained more variance in  
111 true chronological age, resulted in lower median error, and exhibited less bias than predictions  
112 based on raw body mass index (BMI) or blood cell composition data from flow cytometry or  
113 blood smears (traits that change with age in baboons<sup>28,29</sup>). Its performance was comparable to

114 molar dentine exposure, a classical marker of age<sup>30</sup> (Supplementary Figure 6). For a subset of 30  
115 individuals, we had two samples collected at different points in time. The predicted ages from  
116 these longitudinally collected samples were older for the later-collected samples, as expected  
117 (Figure 1C-D; binomial test  $p = 5.95 \times 10^{-5}$ ). Furthermore, the change in epigenetic clock  
118 predictions between successive longitudinal samples positively predicted the actual change in  
119 age between sample dates ( $\beta = 0.312$ ,  $p = 0.027$ , controlling for sex; difference between actual  
120 change and predicted change: mean  $3.11 \text{ years} \pm 3.25 \text{ s.d.}$ ).

121 However, clock performance was not equivalent in males and females. Specifically, we  
122 observed that the clock was significantly more accurate in males (Figure 1; males:  $N = 135$ ;  
123  $\text{MAD} = 0.85 \text{ years} \pm 1.0 \text{ s.d.}$ ; Pearson's  $r = 0.86$ ,  $p = 5.49 \times 10^{-41}$ ; females:  $N = 142$ ;  $\text{MAD} = 1.6$   
124  $\text{years} \pm 2.4 \text{ s.d.}$ ;  $r = 0.78$ ,  $p = 6.78 \times 10^{-30}$ ; two-sided Wilcoxon test for differences in absolute  
125 error by sex:  $p = 4.37 \times 10^{-9}$ ). Sex differences were also apparent in the slope of the relationship  
126 between predicted age and chronological age. Males show a 2.2-fold higher rate of change in  
127 predicted age, as a function of chronological age, compared to females (Figure 1A-B;  
128 chronological age by sex interaction in a linear model for predicted age:  $\beta = 0.448$ ,  $p = 9.66 \times 10^{-19}$ ,  
129  $N = 277$ ). Interestingly, sex differences are not apparent in animals  $< 8$  years, which roughly  
130 corresponds to the age at which the majority of males have achieved adult dominance rank and  
131 dispersed from their natal group<sup>31-33</sup> ( $N = 158$ , chronological age by sex interaction  $\beta = -0.038$ ,  $p = 0.808$ ). Rather, sex differences become apparent after baboons have reached full physiological  
132 and social adulthood ( $N = 119$ , chronological age by sex interaction  $\beta = 0.459$ ,  $p = 9.74 \times 10^{-7}$  in  
133 animals  $\geq 8$  years), when divergence between male and female life history strategies is most  
134 marked<sup>31-33</sup> and when aging rates between the sexes are predicted to diverge<sup>34-36</sup>.  
135



136 **Figure 1. Epigenetic clock age predictions in the Amboseli baboons.** Predicted ages are shown relative to true  
137 chronological ages for (A) females (Pearson's  $r = 0.78$ ,  $p = 6.78 \times 10^{-30}$ ,  $N = 142$  samples) and (B) males ( $r = 0.86$ ,  $p = 5.49 \times 10^{-41}$ ,  $N = 135$  samples). Solid lines represent the best fit line; dashed lines show the line for  $y = x$ . (C) and  
138 (D) show predictions for individuals with at least two samples in the data set ( $N = 30$ ; 14 females and 16 males). In  
139 26 of 30 cases (87%), samples collected later were correctly predicted to be from an older animal.  
140

141 Because of these differences, we separated males and females for all subsequent analyses.  
142 However, we note that the effects of age on DNA methylation levels at individual clock sites are  
143 highly correlated between the sexes (Pearson's  $r = 0.91$ ,  $p = 3.35 \times 10^{-204}$ ), with effect sizes that  
144 are, on average, more precisely estimated in males (paired t-test  $p = 4.53 \times 10^{-74}$  for standard  
145 errors of  $\beta_{age}$ ; Supplementary Figure 4). In other words, the sex differences in clock performance  
146 reflect changes in methylation that occur at the same CpG sites, but with higher variance in  
147 females. Lower accuracy in females compared to males therefore appears to result from the  
148 greater variability in DNA methylation change in older females (Figure 1).

149

#### 150 *Socioenvironmental predictors of variance in biological aging*

151 Although the baboon epigenetic clock is a good predictor of age overall, individuals were  
152 often predicted to be somewhat older or younger than their known chronological age. In humans  
153 and some model systems, the sign and magnitude of this deviation captures information about  
154 physiological decline and/or mortality risk beyond that contained in chronological age alone<sup>15-17,37</sup>.

155 To test whether this observation extends to wild baboons, we focused on four factors of  
156 known importance to fitness in the Amboseli population. First, we considered cumulative early  
157 adversity, which is a strong predictor of shortened lifespan and offspring survival for female  
158 baboons<sup>38,39</sup>. We measured cumulative adversity as a count of major adverse experiences  
159 suffered in early life, including low maternal social status, early life drought, a competing  
160 younger sibling, maternal loss, and high experienced population density (i.e., social group size).  
161 Second, we considered social bond strength in adulthood, which positively predicts longer adult  
162 lifespan in baboons, humans, and other wild social mammals<sup>40-43</sup>. Third, we considered  
163 dominance rank, which is a major determinant of access to mates, social partners, and other  
164 resources in baboons<sup>40,44-46</sup>. Finally, we considered body mass index (BMI), a measure of body  
165 condition that, in the Amboseli baboons, primarily reflects lean muscle mass (mean body fat  
166 percentages have been estimated at <2% in adult females and <9% in adult males)<sup>47</sup>. Because  
167 raw BMI (i.e., BMI not correcting for age) also tracks growth and development (increasing as  
168 baboons reach their prime and then declining thereafter<sup>28</sup>, Supplementary Figure 7; Pearson's  $r$   
169 in males between rank and raw BMI =  $-0.56$ ,  $p = 6.38 \times 10^{-9}$ ), we calculated BMI relative to the  
170 expected value for each animal's age using piecewise regression, which also eliminates  
171 correlations between BMI and male rank (Pearson's  $r = -0.070$ ,  $p = 0.504$ ). We refer to this  
172 adjusted measure of BMI as age-adjusted BMI.

173 Because high cumulative early adversity and low social bond strength are associated with  
174 increased mortality risk in the Amboseli baboons, we predicted that they would also be linked to  
175 increased epigenetic age. For rank and age-adjusted BMI, our predictions were less clear:  
176 improved resource access could conceivably slow biological aging, but increased investment in  
177 growth and reproduction (either through higher fertility in females or physical competition for  
178 rank in males) could also be energetically costly. To investigate these possibilities, we modeled  
179 the deviation between predicted age and known chronological age ( $\Delta_{age}$ ) as a function of  
180 cumulative early adversity, ordinal dominance rank, age-adjusted BMI, and for females, social  
181 bond strength to other females. Social bond strength was not included in the model for males, as  
182 this measure was not available for a large proportion of males in this data set (53.8%). We also  
183 included chronological age as a predictor in the model, as epigenetic age tends to be  
184 systematically overpredicted for young individuals and underpredicted for old individuals  
185 (Figure 1A-B; this bias has been observed in both foundational work on epigenetic clocks<sup>5</sup> and

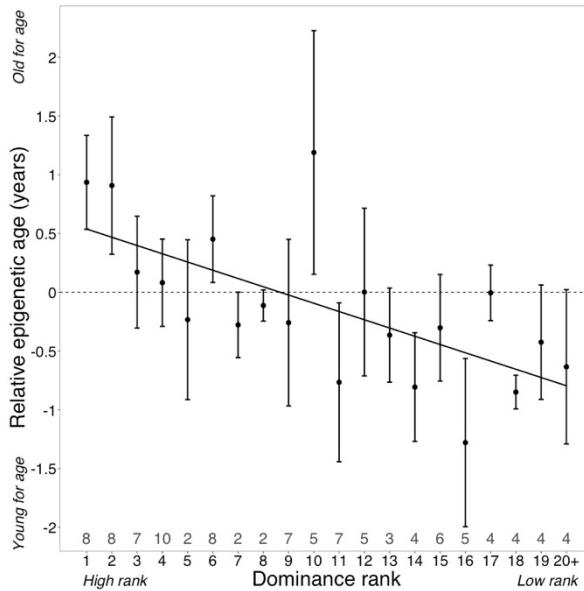
187 recent epigenetic clocks calibrated for rhesus macaques<sup>48</sup>, as well as for elastic net regression  
188 analyses more generally<sup>49</sup>). Including chronological age in the model, as previous studies have  
189 done<sup>5,7</sup>, controls for this compression effect. None of the predictor variables were strongly  
190 linearly correlated (all Pearson's  $r < 0.35$ ; Supplementary Table 4).

191 Surprisingly, despite being two of the strongest known predictors of lifespan in wild  
192 baboons, neither cumulative early life adversity nor social bond strength explain variation in  $\Delta_{age}$   
193 (Table 1). In contrast, high male dominance rank is strongly and significantly associated with  
194 larger values of  $\Delta_{age}$  ( $\beta = -0.078$ ,  $p = 7.39 \times 10^{-4}$ ; Figure 2; Table 1; Supplementary Figure 8).  
195 Alpha males are predicted to be an average of 10.95 months older than their true chronological  
196 age—a difference that translates to 11.5% of a male baboon's expected adult lifespan in  
197 Amboseli<sup>24</sup>. In contrast, dominance rank did not predict  $\Delta_{age}$  in females ( $p = 0.228$ ; Table 1).  
198 Finally, age-adjusted BMI also predicted  $\Delta_{age}$  in males ( $p = 6.33 \times 10^{-3}$ ) but not in females ( $p =$   
199 0.682; Table 1). Despite the tendency for high-ranking males to have higher raw BMI due to  
200 increased muscle mass, the effects of rank and age-adjusted BMI in males are distinct.  
201 Specifically, modeling dominance rank after adjusting for raw BMI also produces a significant  
202 effect of rank on  $\Delta_{age}$  in the same direction ( $p = 9.93 \times 10^{-4}$ ; Supplementary Table 5), as does  
203 substituting the age-adjusted BMI measure for either raw BMI or the residuals of raw BMI after  
204 adjusting for dominance rank (rank  $p = 1.52 \times 10^{-2}$  and  $p = 1.88 \times 10^{-4}$  respectively;  
205 Supplementary Table 5). In contrast, BMI is only a significant predictor of male  $\Delta_{age}$  when  
206 corrected for age (i.e., age-adjusted) and when rank is included in the same model (Table 1;  
207 Supplementary Table 5). Further, we obtain the same qualitative results if all low BMI males are  
208 removed from the sample ( $BMI < 41$ ; this cut-off was used because it drops all young males who  
209 have clearly not reached full adult size;  $p = 7.14 \times 10^{-3}$ ; Supplementary Table 5). Dropping these  
210 males also eliminates the age-raw BMI correlation (Pearson's  $r = -0.16$ ,  $p = 0.21$ ).

Table 1. Predictors of  $\Delta_{age}$ <sup>1</sup>

| Covariate                  | $\beta$<br>(Female) | P-value<br>(Female)                      | $\beta$<br>(Male) | P-value<br>(Male)                       |
|----------------------------|---------------------|------------------------------------------|-------------------|-----------------------------------------|
| Intercept                  | <b>5.400</b>        | <b><math>1.33 \times 10^{-15}</math></b> | <b>3.294</b>      | <b><math>1.19 \times 10^{-8}</math></b> |
| Cumulative early adversity | -0.050              | 0.807                                    | -0.005            | 0.973                                   |
| Social bond strength       | 0.382               | 0.164                                    | —                 | —                                       |
| Dominance rank             | 0.025               | 0.228                                    | <b>-0.078</b>     | <b><math>7.39 \times 10^{-4}</math></b> |
| Age-adjusted BMI           | 0.026               | 0.682                                    | <b>0.111</b>      | <b><math>6.33 \times 10^{-3}</math></b> |
| Chronological age          | <b>-0.699</b>       | <b><math>1.62 \times 10^{-28}</math></b> | <b>-0.277</b>     | <b><math>8.36 \times 10^{-8}</math></b> |

211 <sup>1</sup>Separate linear models for  $\Delta_{age}$  were fit for females ( $N = 66$ ) and for males ( $N = 93$ ) for whom no data values were  
212 missing; social bond strength was not included in the model for males. Significant results are shown in bold.

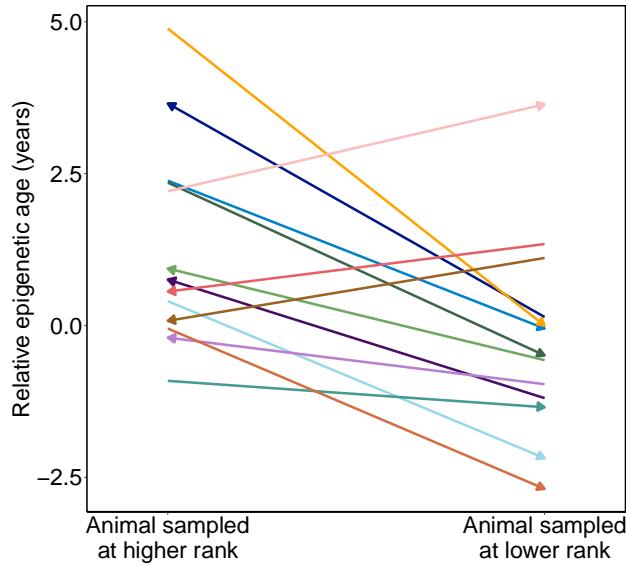


213 **Figure 2. Dominance rank predicts relative epigenetic age in male baboons.** High rank is associated  
214 with elevated values of  $\Delta_{age}$  ( $\beta = -0.0785$ ,  $p = 7.39 \times 10^{-4}$ ,  $N = 105$ ). The y-axis shows relative epigenetic  
215 age, a measure of epigenetic aging similar to  $\Delta_{age}$  that is based on the sample-specific residuals from the  
216 relationship between predicted age and true chronological age. Positive (negative) values correspond to  
217 predicted ages that are older (younger) than expected for that chronological age. Dominance rank is  
218 measured using ordinal values, such that smaller values indicate higher rank. Dots and error bars  
219 represent the means and standard errors, respectively. Gray values above the x-axis indicate sample sizes  
220 for each rank.

221

#### 222 *Male dominance rank predicts epigenetic age*

223 In baboon males, achieving high rank depends on physical condition and fighting  
224 ability<sup>33</sup>. Consequently, rank in males is dynamic across the life course: males tend to attain their  
225 highest rank between 7 and 12 years of age and fall in rank thereafter (Supplementary Figure 9).  
226 Thus, nearly all males in the top four rank positions in our data set were between 7 and 12 years  
227 of age at the time they were sampled (however, because not all 7 – 12 year-olds are high-  
228 ranking, low rank positions include males across the age range; Supplementary Table 1,  
229 Supplementary Figure 9). We therefore asked whether the association between high rank in  
230 males and accelerated epigenetic aging is a function of absolute rank values, regardless of age, or  
231 deviations from the *expected* mean rank given a male's age (i.e., "rank-for-age"; Supplementary  
232 Figure 9). We found that including rank-for-age as an additional covariate in the  $\Delta_{age}$  model  
233 recapitulates the significant effect of ordinal male rank ( $p = 0.045$ ), but finds no effect of rank-  
234 for-age ( $p = 0.819$ ; Supplementary Table 5). Our results therefore imply that males incur the  
235 costs of high rank primarily in early to mid-adulthood, and only if they succeed in attaining high  
236 rank.



237 **Figure 3. Male baboons exhibit higher relative epigenetic age when they occupy higher ranks.** Relative  
238 epigenetic age for males in which multiple samples were collected when they occupied different ordinal rank values.  
239 Arrow indicates the temporal direction of rank changes: left-facing arrows represent cases in which the later sample  
240 was collected when males were higher-ranking, and right-facing arrows represent cases in which the later sample  
241 was collected when males were lower-ranking.

242  
243 If attainment of high rank is linked to changes in epigenetic age within individuals, this  
244 pattern should be reflected in longitudinal samples. Specifically, males who improved in rank  
245 between samples should look older for age in their second sample relative to their first, and vice-  
246 versa. To assess this possibility, we calculated “relative epigenetic age” (the residuals of the best  
247 fit line relating chronological age and predicted age) for 14 males for whom we had repeated  
248 samples over time, 13 of whom changed ranks across sample dates ( $N = 28$  samples, 2 per male).  
249 Samples collected when males were higher status predicted higher values of relative epigenetic  
250 age compared to samples collected when they were lower status (Figure 3; paired t-test,  $t = -2.99$ ,  
251  $p = 0.011$ ). For example, in the case of a male whom we first sampled at low status (ordinal rank  
252 = 18) and then after he had attained the alpha position (ordinal rank 1), the actual time that  
253 elapsed between samples was 0.79 years, but he exhibited an increase in *predicted* age of 2.6  
254 years. Moreover, the two males that showed a decrease in predicted age, despite increasing in  
255 chronological age (Figure 1D), were among those that experienced the greatest drop in social  
256 status between samples. Thus, change in rank between samples for the same male predicts  
257 change in  $\Delta_{age}$ , controlling for chronological age ( $R^2 = 0.37$ ,  $p = 0.021$ ). Consistent with our  
258 cross-sectional results, we found a suggestive relationship between change in  $\Delta_{age}$  and BMI ( $R^2 =$   
259 0.31,  $p = 0.08$ ). Here, too, the effect of dominance rank does not seem to be driven by BMI:  
260 while the association between change in  $\Delta_{age}$  and change in rank is no longer significant when  
261 modeling rank after adjusting for raw BMI, the correlation remains consistent ( $R^2 = 0.20$ ,  $p =$   
262 0.167). In contrast, raw BMI adjusted for rank explains almost none of the variance in change in  
263  $\Delta_{age}$  ( $R^2 = 0.01$ ,  $p = 0.779$ ).

264  
265

266 **Discussion**

267 Together, our findings indicate that major environmental predictors of lifespan and  
268 mortality risk—particularly social bond strength and early life adversity in this population—do  
269 not necessarily predict epigenetic measures of biological age. Although this assumption is  
270 widespread in the literature, including for epigenetic clock analyses<sup>50,51</sup>, our results are broadly  
271 consistent with empirical results in humans. Specifically, while studies of early life adversity,  
272 which also predicts lifespan in human populations, find relatively consistent support for a  
273 relationship between early adversity and accelerated epigenetic aging in children and  
274 adolescents<sup>12,13,52-56</sup>, there is little evidence for the long-term effects of early adversity on  
275 epigenetic age in adulthood<sup>14,57-61</sup>. Thus, while DNA methylation may make an important  
276 contribution to the biological embedding of early adversity into adulthood<sup>62,63</sup>, it does not seem  
277 to do so through affecting the epigenetic clock itself. Social and environmental effects on the  
278 clock instead seem to be most influenced by concurrent conditions, lending support to “recency”  
279 models for environmental effects on aging that posit that health is more affected by the current  
280 environment than past experience<sup>64-66</sup>. Additional longitudinal sampling will be necessary to  
281 evaluate whether current conditions alone can explain accelerated epigenetic aging, or whether it  
282 also requires integrating the effects of exposures across the life course (the “accumulation”  
283 model<sup>64,66</sup>). Alternatively, the effects of early life adversity and social bond strength may act  
284 through entirely distinct pathways than those captured by our epigenetic clock (including  
285 targeting tissues or cell types that we were unable to assess here). Indeed, the proliferation of  
286 alternative epigenetic clocks in humans has revealed that the clocks that best predict  
287 chronological age are not necessarily the clocks that most closely track environmental exposures,  
288 and the same is likely to be true in other species<sup>7,67</sup>.

289 We found that the most robust socioenvironmental predictor of epigenetic age in the  
290 Amboseli baboons is male dominance rank, with a secondary effect of age-adjusted BMI  
291 observable when rank is included in the same model. Although high BMI also predicts  
292 accelerated epigenetic age in some human populations<sup>37</sup>, high BMI in these human populations is  
293 related to being overweight or obese. In contrast, because wild-feeding baboons in Amboseli are  
294 extremely lean<sup>47</sup>, the range of BMI in most human populations is distinct from the range  
295 exhibited by our study subjects (importantly, BMI in humans is calculated differently than BMI  
296 in baboons [see Methods], and therefore the BMI scales are species-specific). Instead, the higher  
297 BMI values in our dataset represent baboons in better body condition (more muscle mass). Given  
298 that rank in male baboons is determined by physical fighting ability<sup>33</sup>, these results suggest that  
299 investment in body condition incurs physiological costs that accelerate biological age. If so, the  
300 rank effect we observe may be better interpreted as a marker of competitiveness, not as a  
301 consequence of being in a “high rank” environment. In support of this idea, work on dominance  
302 rank and gene expression levels in the Amboseli baboons suggests that gene expression  
303 differences associated with male dominance rank tend to precede attainment of high rank, rather  
304 than being a consequence of behaviors exhibited after high rank is achieved<sup>27</sup>. Consistent with  
305 potential costs of attaining or maintaining high status, alpha males in Amboseli also exhibit  
306 elevated glucocorticoid levels<sup>68</sup>, increased expression of genes involved in innate immunity and  
307 inflammation<sup>27</sup>, and a trend towards elevated mortality risk<sup>41</sup>. Males who can tolerate these costs  
308 and maintain high rank are nevertheless likely to enjoy higher lifetime reproductive success,  
309 since high rank is the single best predictor of mating and paternity success in baboon males<sup>33</sup>.

310 This interpretation may also explain major sex differences in the effects of rank on  
311 epigenetic age, where dominance rank shows no detectable effect in females. Dominance rank in

312 female baboons is determined by nepotism, not physical competition: females typically insert  
313 into rank hierarchies directly below their mothers, and hierarchies therefore tend to remain stable  
314 over time (and even intergenerationally)<sup>69</sup>. Our results contribute to an emerging picture in which  
315 dominance rank effects on both physiological and demographic outcomes are asymmetrical  
316 across sexes, and larger in males. Specifically, in addition to  $\Delta_{age}$ , male rank is a better predictor  
317 of immune cell gene expression and glucocorticoid levels than female rank<sup>27,68,70</sup>. Recent  
318 findings suggest that high rank may also predict increased mortality risk in male Amboseli  
319 baboons, whereas neither high nor low rank predicts increased mortality risk in females<sup>41</sup>.  
320 Together, these results argue that social status/dominance rank effects should not be interpreted  
321 as a universal phenomenon. Instead, the manner through which social status is achieved and  
322 maintained is likely to be key to understanding its consequences for physiology, health, and  
323 fitness<sup>71</sup>. Specifically, we predict that high status will be most likely to accelerate the aging  
324 process, including epigenetic age, in species-sex combinations where high status increases  
325 reproductive success or fecundity, and achieving status is energetically costly (e.g., male red  
326 deer, mandrills, and geladas; female meerkats<sup>72-74</sup>). Expanding studies of biological aging to a  
327 broader set of natural populations, especially those for which behavioral and demographic data  
328 are also available, will be key to testing these predictions.  
329

### 330 **Methods**

#### 331 *Study population and biological sample collection*

332 This study focused on a longitudinally monitored population of wild baboons (*Papio*  
333 *cynocephalus*, the yellow baboon, with some admixture from the closely related anubis baboon  
334 *P. anubis*<sup>75,76</sup>) in the Amboseli ecosystem of Kenya. This population has been continuously  
335 monitored by the Amboseli Baboon Research Project (ABRP) since 1971<sup>22</sup>. For the majority of  
336 study subjects (N = 242 of 245 individuals), birth dates were therefore known to within a few  
337 days' error; for the remaining 3 individuals, birth dates were known within 3 months' error  
338 (Supplementary Table 1).

339 All DNA methylation data were generated from blood-derived DNA obtained during  
340 periodic darting efforts, as detailed in<sup>27,77,78</sup>. Samples were obtained under approval from the  
341 Institutional Animal Care and Use Committee (IACUC) of Duke University and adhered to all  
342 the laws and regulations of Kenya. In brief, individually recognized study subjects were  
343 temporarily anesthetized using a Telazol-loaded dart delivered through a blow gun. Baboons  
344 were then safely moved to a new location where blood samples and morphometric data,  
345 including body mass and crown-rump length, were collected. Baboons were then allowed to  
346 recover from anesthesia in a covered holding cage and released to their group within 2 – 4 hours.  
347 Blood samples were stored at -20° C in Kenya until export to the United States.  
348

#### 349 *DNA methylation data*

350 DNA methylation data were generated from blood-extracted DNA collected from known  
351 individuals in the Amboseli study population (N = 277 samples from 245 animals; 13 females  
352 and 15 males were each sampled twice, and 1 female and 1 male were each sampled three times).  
353 Here, we analyzed a combined data set that included previously published reduced representation  
354 bisulfite sequencing<sup>79</sup> (RRBS) data from the same population (N = 36 samples)<sup>23</sup> and new RRBS  
355 data from 241 additional samples.

356 RRBS libraries were constructed following<sup>80</sup>, using ~200 ng baboon DNA plus 0.2 ng  
357 unmethylated lambda phage DNA per sample as input. Samples were sequenced to a mean depth

358 of 17.8 ( $\pm 10.5$  s.d.) million reads on either the Illumina HiSeq 2000 or HiSeq 4000 platform  
359 (Supplementary Table 1), with an estimated mean bisulfite conversion efficiency (based on the  
360 conversion rate of lambda phage DNA) of 99.8% (minimum = 98.1%). Sequence reads were  
361 trimmed with Trim Galore!<sup>81</sup> to remove adapters and low quality sequence (Phred score < 20).  
362 Trimmed reads were mapped with BSMAP<sup>82</sup> to the baboon genome (*Panu2.0*) allowing a 10%  
363 mismatch rate to account for the degenerate composition of bisulfite-converted DNA. We used  
364 the mapped reads to count the number of methylated and total reads per CpG site, per sample<sup>82</sup>.  
365 Following<sup>23,25</sup>, CpG sites were filtered to retain sites with a mean methylation level between 0.1  
366 and 0.9 (i.e., to exclude constitutively hyper- or hypo-methylated sites) and mean coverage  $\geq 5x$ .  
367 We also excluded any CpG sites with missing data for  $\geq 5\%$  of individuals in the sample. After  
368 filtering, we retained  $N = 458,504$  CpG sites for downstream analysis. For the remaining missing  
369 data (mean number of missing sites per sample =  $1.4\% \pm 3.5\%$  s.d., equivalent to  $6,409 \pm 16,024$   
370 s.d. sites), we imputed methylation levels using a k-nearest neighbors approach in the R package  
371 *impute*, using default parameters<sup>83</sup>.  
372

### 373 *Building the epigenetic clock*

374 We used the R package *glmnet*<sup>84</sup> version 2.0.10 to build a DNA methylation clock for  
375 baboons. Specifically, we fit a linear model in which the predictor variables were normalized  
376 levels of DNA methylation at 458,504 candidate clock CpG sites across the genome and the  
377 response variable was chronological age. To account for the excess of CpG sites relative to  
378 samples, *glmnet* uses an elastic net penalty to shrink predictor coefficients toward 0<sup>85</sup>. Optimal  
379 alpha parameters were identified by grid searching across a range of alphas from 0 (equivalent to  
380 ridge regression) to 1 (equivalent to Lasso) by increments of 0.1, which impacts the number of  
381 clock CpG sites by varying the degree of shrinkage of the predictor coefficients toward 0  
382 (Supplementary Figure 2). We defined the optimal alpha as the value that maximized  $R^2$  between  
383 predicted and true chronological age across all samples. We set the regularization parameter  
384 lambda to the value that minimized mean-squared error during n-fold internal cross-validation.

385 To generate predicted age estimates for a given sample, we used a leave-one-out cross-  
386 validation approach in which all samples but the “test” sample were included for model training,  
387 and the resulting model was used to predict age for the left-out test sample. Importantly, training  
388 samples were scaled independently of the test sample in each leave-one-out model to avoid  
389 bleed-through of information from the test data into the training data. To do so, we first quantile  
390 normalized methylation ratios (the proportion of methylated counts to total counts for each CpG  
391 site) within each sample to a standard normal distribution. Training samples were then separated  
392 from the test sample and the methylation levels for each CpG site in the training set were  
393 quantile normalized across samples to a standard normal distribution. For predicting age in the  
394 test sample, we compared the methylation value for each site in the test sample to the empirical  
395 cumulative distribution function for the training samples (at the same site) to estimate the  
396 quantile in which the training sample methylation ratio fell. The training sample was then  
397 assigned the same quantile value from the standard normal distribution using the function *qnorm*  
398 in R.  
399

### 400 *Epigenetic clock enrichment analyses*

401 To evaluate whether CpG sites included in the epigenetic clock were enriched in  
402 functionally important regions of the baboon genome<sup>25,86</sup>, we used two-sided Fisher’s exact tests  
403 to investigate enrichment/depletion of the 573 epigenetic clock sites in (i) gene bodies and exons,

404 based on the Ensembl annotation *Panu2.0.90*; (ii) CpG islands annotated in the UCSC Genome  
405 Browser; (iii) CpG shores, defined as the 2,000 basepairs flanking CpG islands (following  
406 <sup>25,86,87</sup>); and (iv) promoter regions, defined as the 2,000 basepairs upstream of the 5'-most  
407 annotated transcription start site for each gene (following <sup>25,86</sup>). We also considered (v) putative  
408 enhancer regions, which have not been annotated for the *Panu2.0* assembly. We therefore used  
409 ENCODE H3K4me1 ChIP-seq data from humans<sup>88</sup> and the *liftOver* tool to define likely  
410 enhancer coordinates in *Panu2.0*.

411 We also tested for enrichment of clock sites in regions of the genome that have been  
412 identified by previous empirical studies to be of special interest. First, we considered regions that  
413 likely have regulatory activity in blood cells, defined as all 200 base-pair windows that showed  
414 evidence of enhancer activity in a recently performed massively parallel reporter assay<sup>26</sup>. We  
415 used *liftOver* to identify the inferred homologous *Panu2.0* coordinates for these windows, which  
416 were originally defined in the human genome. Second, we defined age-related differentially  
417 methylated regions (age DMRs) in the Amboseli baboons based on genomic intervals found, in  
418 previous analyses, to contain at least three closely spaced age-associated CpG sites (inter-CpG  
419 distance  $\leq 1\text{kb}$ ), as described in <sup>25</sup>. Third, because inflammatory processes involved in innate  
420 immunity are strongly implicated in the aging process, we defined lipopolysaccharide (LPS) up-  
421 regulated and LPS down-regulated genes as those genes that were significantly differentially  
422 expressed (1% false discovery rate) between unstimulated Amboseli baboon white blood cells  
423 and LPS-stimulated cells from the same individual, following 10 hours of culture in parallel<sup>27</sup>.  
424

#### 425 *Comparisons to alternative predictors of aging*

426 To assess the utility of the DNA methylation clock relative to other data types, we  
427 compared its predictive accuracy to clocks based on three other age-related phenotypes: tooth  
428 wear (percent molar dentine exposure<sup>30</sup>), body condition (body mass index: BMI<sup>28</sup>), and blood  
429 cell type composition (blood smear counts and lymphocyte/monocyte proportions from flow  
430 cytometry performed on peripheral blood mononuclear cells, as in <sup>27,89</sup>). Leave-one-out model  
431 training and prediction were performed for each data type using linear modeling. To compare the  
432 relative predictive accuracy of each data type, we calculated the  $R^2$  between predicted and  
433 chronological age, the median absolute difference between predicted and chronological age, and  
434 the bias in age predictions (the absolute value of 1 - slope of the best fit line between predicted  
435 and chronological age) (Supplementary Figure 6).

436 *Tooth wear.* Molar enamel in baboons wears away with age to expose the underlying  
437 dentine layer. Percent dentine exposure (PDE) on the molar occlusal surface has been shown to  
438 be strongly age-correlated in previous work<sup>30</sup>. To assess its predictive power, we obtained PDE  
439 data from tooth casts reported by Galbany and colleagues<sup>30</sup> for the left upper molars (tooth  
440 positions M1, M2, M3) and left lower molars (tooth positions M1, M2, M3) for 39 males and 34  
441 females in our data set. For each molar position (M1, M2, M3) within each individual, we  
442 calculated PDE as the mean for the upper and lower molars. Because dentine exposure scales  
443 quadratically with respect to age<sup>30</sup>, we fit age as a function of PDE using the following model:

$$444 \text{age} \sim \sqrt{PDE_{M1}} + \sqrt{PDE_{M2}} + \sqrt{PDE_{M3}}.$$

445 *Body mass index.* For both male and female baboons in Amboseli, body mass increases  
446 with age until individuals reach peak size, and then tends to decrease with age as animals lose fat  
447 and/or muscle mass<sup>28</sup>. To quantify body condition using body mass, we calculated body mass  
448 index (BMI) values for 139 males and 154 females for whom body mass and crown-rump length  
449 data were available from periodic darting efforts. We retained only measures taken from animals

450 born into and sampled in wild-feeding study groups, when sex-skin swellings (in females only)  
451 that could affect crown-rump length measures were absent. BMI was calculated as mass  
452 (kilograms) divided by crown-rump length (meters squared), following<sup>47</sup>. To assess the  
453 predictive power of age-adjusted BMI, we built sex-specific piecewise-regression models using  
454 the package *segmented* in R<sup>90</sup>. Breakpoints for the piecewise-regression models (to separate  
455 “youthful” versus “aged” animals) were initialized at 8 years old for males and 10 years old for  
456 females, following findings from previous work on body mass in the Amboseli population<sup>28</sup>.

457 *Blood cell type composition.* The proportions of different cell types in blood change  
458 across the life course, including in baboons<sup>29</sup>. We assessed the predictive power of blood cell  
459 composition for age using two data sets. First, we used data collected from blood smear counts  
460 (N = 134) for five major white blood cell types: basophils, eosinophils, monocytes, lymphocytes,  
461 and neutrophils. Second, we used data on the proportional representation of five peripheral blood  
462 mononuclear cell (PBMC) subsets: cytotoxic T cells, helper T cells, B cells, monocytes, and  
463 natural killer cells, measured using flow cytometry as reported by Lea and colleagues<sup>27</sup> (N = 53).  
464 Cell types were included as individual covariates for leave-one-out model training.

465  
466 *Sources of variance in predicted age*  
467 We asked whether factors known to be associated with inter-individual variation in  
468 fertility or survival also predict inter-individual variation in  $\Delta_{age}$  (predicted age from the  
469 epigenetic clock minus known chronological age). To do so, we fit linear models separately for  
470 males and females, with  $\Delta_{age}$  as the dependent variable and dominance rank at the time of  
471 sampling, cumulative early adversity, age-adjusted BMI, and chronological age as predictor  
472 variables<sup>38</sup>. For females, we also included a measure of social bond strength to other females as a  
473 predictor variable, based on findings that show that socially isolated females experience higher  
474 mortality rates in adulthood<sup>40,91</sup>. Samples with missing values for any of the predictor variables  
475 were excluded in the model, resulting in a final analysis set of 66 female samples (from 59  
476 females) and 93 male samples (from 84 males). The chronological ages of samples with  
477 complete data relative to samples with missing data were equivalent for females (t-test, t = 1.95,  
478 p = 0.053) but were slightly lower for males (t-test, t = -3.04, p = 0.003; mean chronological ages  
479 are 7.98 and 9.65 years for complete and missing samples, respectively). Predictor variables  
480 were measured as follows.

481 *Dominance rank.* Sex-specific dominance hierarchies were constructed monthly for every  
482 social group in the study population based on the outcomes of dyadic agonistic encounters. An  
483 animal was considered to win a dyadic agonistic encounter if it gave aggressive or neutral, but  
484 not submissive, gestures, and the other animal gave submissive gestures only<sup>92</sup>. These wins and  
485 losses were entered into a sex-specific data matrix, such that animals were ordered to minimize  
486 the number of entries falling below the matrix diagonal (which would indicate that the lower  
487 ranked individual won a dyadic encounter). Ordinal dominance ranks were assigned on a  
488 monthly basis to every adult based on these matrices, such that low numbers represent high  
489 rank/social status and high numbers represent low rank/social status<sup>33,69</sup>. Although most analyses  
490 of data from the Amboseli baboons have used ordinal ranks as the primary measure of social  
491 status, in some analyses proportional rank (i.e., the proportion of same-sex members of an  
492 individual’s social group that he or she dominates) has proven to be a stronger predictor of other  
493 trait outcomes<sup>93,94</sup>. In this study, we chose to use ordinal ranks, but proportional and ordinal  
494 dominance rank were highly correlated in this particular data set ( $R^2 = 0.70$ ,  $p = 1.13 \times 10^{-58}$ ).  
495 Using ordinal rank rather than proportional rank therefore did not qualitatively affect our

496 analyses. Additionally, to investigate whether the patterns we observed are due to a consistent  
497 effect of rank across all ages, or instead an effect of being high or low rank relative to the  
498 expected (mean) value for a male's age, we also calculated a "rank-for-age" value. Rank-for-age  
499 is defined as the residuals of a model with dominance rank as the response variable and age and  
500 age<sup>2</sup> as the predictor variables (Supplementary Figure 8).

501 *Cumulative early adversity.* Previous work in Amboseli defined a cumulative early  
502 adversity score as the sum of 6 different adverse conditions that a baboon could experience  
503 during early life<sup>38</sup>. This index strongly predicts adult lifespan in female baboons, and a modified  
504 version of this index also predicts offspring survival<sup>39</sup>. To maximize the sample size available for  
505 analysis, we excluded maternal social connectedness, the source of adversity with the highest  
506 frequency of missing data, leaving us with a cumulative early adversity score generated from 5  
507 different binary-coded adverse experiences. These experiences were: (i) early life drought  
508 (defined as  $\leq 200$  mm of rainfall in the first year of life), which is linked to reduced fertility in  
509 females<sup>46,95</sup>; (ii) having a low ranking mother (defined as falling within the lowest quartile of  
510 ranks for individuals in the data set), which predicts age at maturation<sup>96-98</sup>; (iii) having a close-in-  
511 age younger sibling (< 1.5 years), which may redirect maternal investment to the sibling<sup>99</sup>, (iv)  
512 being born into a large social group, which may increase within-group competition for shared  
513 resources<sup>46,98,100</sup>, and (v) maternal death before the age of 4, which results in a loss of both social  
514 and nutritional resources<sup>98,101</sup>.

515 *Body mass index.* Age-adjusted BMI was modeled as the residuals from sex-specific  
516 piecewise regression models relating raw BMI to age. By taking this approach, we asked whether  
517 having relatively high BMI for one's age and sex predicted higher (or lower)  $\Delta_{age}$ . To calculate  
518 rank-adjusted BMI values, we modeled raw BMI as a function of rank in a linear model and  
519 calculated the residuals from the model. To calculate dominance rank adjusted for raw BMI, we  
520 took the inverse approach. We note that BMI for baboons is not directly comparable to BMI for  
521 humans because baboon BMI is measured as body mass divided by the square of crown-rump  
522 length (because baboons are quadrupedal), whereas human BMI is calculated as body mass  
523 divided by the square of standing height.

524 *Social bond strength.* For this analysis, we measured female social bond strength to other  
525 females using the dyadic sociality index (DSI<sub>F</sub>)<sup>41</sup>. We did not include this parameter (male's  
526 social bond strength to females) for the male model, because this measure is unavailable for  
527 many males in this data set. DSI<sub>F</sub> was calculated as an individual's average bond strength with  
528 her top three female social partners, in the 365 days prior to the day of sampling, controlling for  
529 observer effort. This approach is based on representative interaction sampling of grooming  
530 interactions between females, in which observers record all grooming interactions in their line of  
531 sight while moving through the group conducting random-ordered, 10-minute long focal animal  
532 samples of pre-selected individuals. Because smaller groups receive more observer effort per  
533 individual and per dyad (and thus record more grooming interactions per individual or dyad), we  
534 estimated observer effort for dyad  $d$  in year  $y$  as:

$$E_{d,y} = \frac{c_d(s_d)}{f_d}$$

535 where  $c_d$  is the number of days the two females in a dyad were coresident in the same social  
536 group,  $s_d$  is the number of focal samples taken during the dyad's coresidence, and  $f_d$  is the  
537 average number of females in the group during the dyad's coresidence.

538 DSI<sub>F</sub> for each adult female dyad in each year is the z-scored residual,  $\varepsilon$ , from the model:

$$\log(R_{d,y}) = \beta(\log(E_{d,y})) + \varepsilon$$

539 where  $R_{d,y}$  is the number of grooming interactions for dyad  $d$  in year  $y$  divided by the number of  
540 days that the two individuals were coresident, and  $E_{d,y}$  is observer effort.

541

#### 542 *Analysis of longitudinal samples*

543 To test whether changes in rank predict changes in relative epigenetic age within  
544 individuals, we used data from 11 males from the original data set and generated additional  
545 RRBS data for 9 samples, resulting in a final set of 14 males who each were sampled at least  
546 twice in the data set, 13 of whom occupied different ordinal ranks at different sampling dates  
547 (mean years elapsed between samples =  $3.7 \pm 1.65$  s.d.; mean absolute difference in dominance  
548 ranks =  $1.29 \pm 8.34$  s.d.). This effort increased our total sample size to  $N = 286$  samples from  
549 248 unique individuals. To incorporate the new samples into our analysis, we reperformed leave-  
550 one-out age prediction with  $N$ -fold internal cross validation at the optimal alpha selected for the  
551 original  $N = 277$  samples (alpha = 0.1). For the 277 samples carried over from the original  
552 analysis, we verified that age predictions were nearly identical between the previous analysis and  
553 the expanded data set ( $R^2 = 0.98$ ,  $p = 2.21 \times 10^{-239}$ ; Supplementary Table 1).

554 Based on the new age predictions for males in the data set ( $N = 140$ ), we again calculated  
555 relative epigenetic age as the residual of the best fit line relating predicted age to chronological  
556 age. We then used the 14 males with repeated DNA methylation profiles and rank measures in  
557 this data set to test whether, within individuals, changes in dominance rank or rank-for-age  
558 explained changes in relative epigenetic age between samples. In total, five males were sampled  
559 three times. For four of these five, we only included the two samples that were sampled the  
560 farthest apart in time (i.e., excluded the temporal middle sample) to maximize the age change  
561 between sample dates. For the fifth male, BMI information was missing for the third sample, so  
562 we included the first two samples collected in time.

563

#### 564 **Data Availability**

565 All sequencing data generated during this study are available in the NCBI Sequence Read  
566 Archive (project accession PRJNA648767; reviewer access: #####).

567

#### 568 **Code Availability**

569 All R code used to analyze data in this study are available at  
570 <https://github.com/janderson94/BaboonEpigeneticAging>.

571 **References**

572 1 López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks  
573 of aging. *Cell* **153**, 1194-1217 (2013).

574 2 Jones, O. R. *et al.* Diversity of ageing across the tree of life. *Nature* **505**, 169 (2014).

575 3 Monaghan, P., Charmantier, A., Nussey, D. H. & Ricklefs, R. E. The evolutionary  
576 ecology of senescence. *Functional Ecology* **22**, 371-378 (2008).

577 4 Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock  
578 theory of ageing. *Nature Reviews Genetics* **19**, 371 (2018).

579 5 Hannum, G. *et al.* Genome-wide methylation profiles reveal quantitative views of  
580 human aging rates. *Molecular cell* **49**, 359-367 (2013).

581 6 Horvath, S. DNA methylation age of human tissues and cell types. *Genome biology*  
582 **14**, 3156 (2013).

583 7 Levine, M. E. *et al.* An epigenetic biomarker of aging for lifespan and healthspan.  
584 *Aging (Albany NY)* **10**, 573 (2018).

585 8 Declerck, K. & Berghe, W. V. Back to the future: Epigenetic clock plasticity towards  
586 healthy aging. *Mechanisms of ageing and development* **174**, 18-29 (2018).

587 9 Levine, M. E., Lu, A. T., Bennett, D. A. & Horvath, S. Epigenetic age of the pre-frontal  
588 cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease  
589 related cognitive functioning. *Aging (Albany NY)* **7**, 1198 (2015).

590 10 Marioni, R. E. *et al.* The epigenetic clock is correlated with physical and cognitive  
591 fitness in the Lothian Birth Cohort 1936. *International journal of epidemiology* **44**,  
592 1388-1396 (2015).

593 11 Horvath, S. *et al.* Obesity accelerates epigenetic aging of human liver. *Proceedings of  
594 the National Academy of Sciences* **111**, 15538-15543 (2014).

595 12 Jovanovic, T. *et al.* Exposure to violence accelerates epigenetic aging in children.  
596 *Scientific reports* **7**, 8962 (2017).

597 13 Raffington, L. A. S., Belsky, D. W., Malanchini, M., Tucker-Drob, E. M. & Harden, K. P.  
598 Analysis of socioeconomic disadvantage and pace of aging measured in saliva DNA  
599 methylation of children and adolescents. *bioRxiv* (2020).

600 14 Zannas, A. S. *et al.* Lifetime stress accelerates epigenetic aging in an urban, African  
601 American cohort: relevance of glucocorticoid signaling. *Genome biology* **16**, 266  
602 (2015).

603 15 Maegawa, S. *et al.* Caloric restriction delays age-related methylation drift. *Nature  
604 communications* **8**, 539 (2017).

605 16 Petkovich, D. A. *et al.* Using DNA methylation profiling to evaluate biological age and  
606 longevity interventions. *Cell metabolism* **25**, 954-960. e956 (2017).

607 17 Stubbs, T. M. *et al.* Multi-tissue DNA methylation age predictor in mouse. *Genome  
608 biology* **18**, 68 (2017).

609 18 De Paoli-Iseppi, R. *et al.* Age estimation in a long-lived seabird (Ardenna  
610 tenuirostris) using DNA methylation-based biomarkers. *Molecular ecology resources*  
611 (2018).

612 19 Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of  
613 age in humpback whales. *Molecular ecology resources* **14**, 976-987 (2014).

614 20 Thompson, M. J. An epigenetic aging clock for dogs and wolves. *Aging (Albany NY)* **9**,  
615 1055 (2017).

616 21 Wright, P. G. *et al.* Application of a novel molecular method to age free-living wild  
617 Bechstein's bats. *Molecular ecology resources* **18**, 1374-1380 (2018).

618 22 Alberts, S. C. & Altmann, J. in *Long-term field studies of primates* 261-287  
619 (Springer, 2012).

620 23 Lea, A. J., Altmann, J., Alberts, S. C. & Tung, J. Resource base influences genome-wide  
621 DNA methylation levels in wild baboons (*Papio cynocephalus*). *Molecular ecology*  
622 **25**, 1681-1696 (2016).

623 24 Colchero, F. *et al.* The emergence of longevious populations. *Proceedings of the  
624 National Academy of Sciences* **113**, E7681-E7690 (2016).

625 25 Lea, A. J., Tung, J. & Zhou, X. A flexible, efficient binomial mixed model for identifying  
626 differential DNA methylation in bisulfite sequencing data. *PLoS genetics* **11**,  
627 e1005650 (2015).

628 26 Lea, A. J. *et al.* Genome-wide quantification of the effects of DNA methylation on  
629 human gene regulation. *eLife* **7**, e37513 (2018).

630 27 Lea, A. J. *et al.* Dominance rank-associated gene expression is widespread, sex-  
631 specific, and a precursor to high social status in wild male baboons. *Proceedings of  
632 the National Academy of Sciences* **115**, E12163-E12171 (2018).

633 28 Altmann, J., Gesquiere, L., Galbany, J., Onyango, P. O. & Alberts, S. C. Life history  
634 context of reproductive aging in a wild primate model. *Annals of the New York  
635 Academy of Sciences* **1204**, 127-138 (2010).

636 29 Jayashankar, L., Brasky, K. M., Ward, J. A. & Attanasio, R. Lymphocyte modulation in a  
637 baboon model of immunosenescence. *Clin. Diagn. Lab. Immunol.* **10**, 870-875 (2003).

638 30 Galbany, J., Altmann, J., Pérez-Pérez, A. & Alberts, S. C. Age and individual foraging  
639 behavior predict tooth wear in Amboseli baboons. *American Journal of Physical  
640 Anthropology* **144**, 51-59 (2011).

641 31 Alberts, S. C. & Altmann, J. Balancing costs and opportunities: dispersal in male  
642 baboons. *The American Naturalist* **145**, 279-306 (1995).

643 32 Alberts, S. C. & Altmann, J. Preparation and activation: determinants of age at  
644 reproductive maturity in male baboons. *Behavioral Ecology and Sociobiology* **36**,  
645 397-406 (1995).

646 33 Alberts, S. C., Watts, H. E. & Altmann, J. Queuing and queue-jumping: long-term  
647 patterns of reproductive skew in male savannah baboons, *Papio cynocephalus*.  
648 *Animal Behaviour* **65**, 821-840 (2003).

649 34 Clutton-Brock, T. H. & Isvaran, K. Sex differences in ageing in natural populations of  
650 vertebrates. *Proceedings of the Royal Society B: Biological Sciences* **274**, 3097-3104  
651 (2007).

652 35 Kirkwood, T. B. & Rose, M. R. Evolution of senescence: late survival sacrificed for  
653 reproduction. *Philosophical Transactions of the Royal Society of London. Series B:  
654 Biological Sciences* **332**, 15-24 (1991).

655 36 Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence.  
656 *evolution*, 398-411 (1957).

657 37 Ryan, J., Wrigglesworth, J., Loong, J., Fransquet, P. D. & Woods, R. L. A systematic  
658 review and meta-analysis of environmental, lifestyle and health factors associated  
659 with DNA methylation age. *The journals of gerontology. Series A, Biological sciences  
660 and medical sciences* (2019).

661 38 Tung, J., Archie, E. A., Altmann, J. & Alberts, S. C. Cumulative early life adversity  
662 predicts longevity in wild baboons. *Nature communications* **7**, 11181 (2016).

663 39 Zipple, M. N., Archie, E. A., Tung, J., Altmann, J. & Alberts, S. C. Intergenerational  
664 effects of early adversity on survival in wild baboons. *eLife* **8**, e47433 (2019).

665 40 Archie, E. A., Tung, J., Clark, M., Altmann, J. & Alberts, S. C. Social affiliation matters:  
666 both same-sex and opposite-sex relationships predict survival in wild female  
667 baboons. *Proceedings of the Royal Society B: Biological Sciences* **281**, 20141261  
668 (2014).

669 41 Campos, F. A., Villavicencio, F., Archie, E. A., Colchero, F. & Alberts, S. C. Social bonds,  
670 social status, and survival in wild baboons: A tale of two sexes. *Philosophical  
671 Transactions of the Royal Society B: Biological Sciences* **In press** (2020).

672 42 Holt-Lunstad, J., Smith, T. B. & Layton, J. B. Social relationships and mortality risk: a  
673 meta-analytic review. *PLoS Med* **7**, e1000316 (2010).

674 43 Snyder-Mackler, N. *et al.* Social determinants of health and survival in humans and  
675 other animals. *Science* **368** (2020).

676 44 Alberts, S. C., Buchan, J. C. & Altmann, J. Sexual selection in wild baboons: from  
677 mating opportunities to paternity success. *Animal Behaviour* **72**, 1177-1196 (2006).

678 45 Gesquiere, L. R., Altmann, J., Archie, E. A. & Alberts, S. C. Interbirth intervals in wild  
679 baboons: Environmental predictors and hormonal correlates. *American journal of  
680 physical anthropology* **166**, 107-126 (2018).

681 46 Lea, A. J., Altmann, J., Alberts, S. C. & Tung, J. Developmental constraints in a wild  
682 primate. *The American Naturalist* **185**, 809-821 (2015).

683 47 Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. Body size and  
684 fatness of free-living baboons reflect food availability and activity levels. *American  
685 Journal of Primatology* **30**, 149-161 (1993).

686 48 Horvath, S. *et al.* Epigenetic clock and methylation studies in the rhesus macaque.  
687 *bioRxiv* (2020).

688 49 Engebretsen, S. & Bohlin, J. Statistical predictions with glmnet. *Clinical epigenetics*  
689 **11**, 1-3 (2019).

690 50 Liu, Z. *et al.* The role of epigenetic aging in education and racial/ethnic mortality  
691 disparities among older US Women. *Psychoneuroendocrinology* **104**, 18-24 (2019).

692 51 Shalev, I. & Belsky, J. Early-life stress and reproductive cost: A two-hit  
693 developmental model of accelerated aging? *Medical Hypotheses* **90**, 41-47 (2016).

694 52 Brody, G. H., Miller, G. E., Yu, T., Beach, S. R. & Chen, E. Supportive family  
695 environments ameliorate the link between racial discrimination and epigenetic  
696 aging: A replication across two longitudinal cohorts. *Psychological Science* **27**, 530-  
697 541 (2016).

698 53 Brody, G. H., Yu, T., Chen, E., Beach, S. R. & Miller, G. E. Family-centered prevention  
699 ameliorates the longitudinal association between risky family processes and  
700 epigenetic aging. *Journal of child psychology and psychiatry* **57**, 566-574 (2016).

701 54 Davis, E. *et al.* Accelerated DNA methylation age in adolescent girls: associations  
702 with elevated diurnal cortisol and reduced hippocampal volume. *Translational  
703 psychiatry* **7**, e1223 (2017).

704 55 Marini, S. *et al.* Predicting cellular aging following exposure to adversity: Does  
705 accumulation, recency, or developmental timing of exposure matter? *BioRxiv*,  
706 355743 (2018).

707 56 Sumner, J. A., Colich, N. L., Uddin, M., Armstrong, D. & McLaughlin, K. A. Early  
708 experiences of threat, but not deprivation, are associated with accelerated biological  
709 aging in children and adolescents. *Biological psychiatry* **85**, 268-278 (2019).

710 57 Austin, M. K. *et al.* Early-life socioeconomic disadvantage, not current, predicts  
711 accelerated epigenetic aging of monocytes. *Psychoneuroendocrinology* **97**, 131-134  
712 (2018).

713 58 Boks, M. P. *et al.* Longitudinal changes of telomere length and epigenetic age related  
714 to traumatic stress and post-traumatic stress disorder. *Psychoneuroendocrinology*  
715 **51**, 506-512 (2015).

716 59 Lawn, R. B. *et al.* Psychosocial adversity and socioeconomic position during  
717 childhood and epigenetic age: analysis of two prospective cohort studies. *Human*  
718 *molecular genetics* **27**, 1301-1308 (2018).

719 60 Simons, R. L. *et al.* Economic hardship and biological weathering: the epigenetics of  
720 aging in a US sample of black women. *Social Science & Medicine* **150**, 192-200  
721 (2016).

722 61 Wolf, E. J. *et al.* Traumatic stress and accelerated DNA methylation age: a meta-  
723 analysis. *Psychoneuroendocrinology* **92**, 123-134 (2018).

724 62 Aristizabal, M. J. *et al.* Biological embedding of experience: A primer on epigenetics.  
725 *Proceedings of the National Academy of Sciences*, 201820838 (2019).

726 63 Hertzman, C. Putting the concept of biological embedding in historical perspective.  
727 *Proceedings of the National Academy of Sciences* **109**, 17160-17167 (2012).

728 64 Ben-Shlomo, Y. & Kuh, D. (Oxford University Press, 2002).

729 65 Shanahan, L., Copeland, W. E., Costello, E. J. & Angold, A. Child-, adolescent-and  
730 young adult-onset depressions: differential risk factors in development?  
731 *Psychological medicine* **41**, 2265-2274 (2011).

732 66 Shanahan, M. J. & Hofer, S. M. in *Handbook of aging and the social sciences* 135-147  
733 (Elsevier, 2011).

734 67 Belsky, D. W. *et al.* Quantification of the pace of biological aging in humans through a  
735 blood test, the DunedinPoAm DNA methylation algorithm. *Elife* **9** (2020).

736 68 Gesquiere, L. R. *et al.* Life at the top: rank and stress in wild male baboons. *Science*  
737 **333**, 357-360 (2011).

738 69 Hausfater, G., Altmann, J. & Altmann, S. Long-term consistency of dominance  
739 relations among female baboons (*Papio cynocephalus*). *Science* **217**, 752-755  
740 (1982).

741 70 Levy, E. J. *et al.* Higher dominance rank is associated with lower glucocorticoids in  
742 wild female baboons: A rank metric comparison. *Hormones and Behavior* **In press**.

743 71 Simons, N. D. & Tung, J. Social status and gene regulation: conservation and context  
744 dependence in primates. *Trends in cognitive sciences* **23**, 722-725 (2019).

745 72 Clutton-Brock, T. *et al.* Intrasexual competition and sexual selection in cooperative  
746 mammals. *Nature* **444**, 1065-1068 (2006).

747 73 Clutton-Brock, T. H. & Huchard, E. Social competition and selection in males and  
748 females. *Philosophical Transactions of the Royal Society B: Biological Sciences* **368**,  
749 20130074 (2013).

750 74 Emery Thompson, M. & Georgiev, A. V. The high price of success: costs of mating  
751 effort in male primates. *International Journal of Primatology* **35**, 609-627 (2014).

752 75 Alberts, S. C. & Altmann, J. Immigration and hybridization patterns of yellow and  
753 anubis baboons in and around Amboseli, Kenya. *American Journal of Primatology: Official Journal of the American Society of Primatologists* **53**, 139-154 (2001).

754 76 Tung, J., Charpentier, M. J., Garfield, D. A., Altmann, J. & Alberts, S. C. Genetic evidence  
755 reveals temporal change in hybridization patterns in a wild baboon population.  
756 *Molecular Ecology* **17**, 1998-2011 (2008).

757 77 Altmann, J. *et al.* Behavior predicts genes structure in a wild primate group.  
758 *Proceedings of the National Academy of Sciences* **93**, 5797-5801 (1996).

759 78 Tung, J., Zhou, X., Alberts, S. C., Stephens, M. & Gilad, Y. The genetic architecture of  
760 gene expression levels in wild baboons. *Elife* **4**, e04729 (2015).

761 79 Meissner, A. *et al.* Reduced representation bisulfite sequencing for comparative  
762 high-resolution DNA methylation analysis. *Nucleic acids research* **33**, 5868-5877  
763 (2005).

764 80 Boyle, P. *et al.* Gel-free multiplexed reduced representation bisulfite sequencing for  
765 large-scale DNA methylation profiling. *Genome biology* **13**, R92 (2012).

766 81 Krueger, F. Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently  
767 apply quality and adapter trimming to FastQ files, with some extra functionality for  
768 MspI-digested RRBS-type (Reduced Representation Bisulfite-Seq) libraries. *URL*  
769 [http://www.bioinformatics.babraham.ac.uk/projects/trim\\_galore/](http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). (2012).

770 82 Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. *BMC  
771 bioinformatics* **10**, 232 (2009).

772 83 Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. impute: Imputation for microarray  
773 data. *Bioinformatics* **17**, 520-525 (2001).

774 84 Friedman, J., Hastie, T. & Tibshirani, R. glmnet: Lasso and elastic-net regularized  
775 generalized linear models. *R package version 1* (2009).

776 85 Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear  
777 models via coordinate descent. *Journal of statistical software* **33**, 1 (2010).

778 86 Vilgalys, T. P., Rogers, J., Jolly, C. J., Mukherjee, S. & Tung, J. Evolution of DNA  
779 methylation in Papio baboons. *Molecular biology and evolution* **36**, 527-540 (2018).

780 87 Irizarry, R. A. *et al.* The human colon cancer methylome shows similar hypo- and  
781 hypermethylation at conserved tissue-specific CpG island shores. *Nature genetics*  
782 **41**, 178 (2009).

783 88 Consortium, E. P. An integrated encyclopedia of DNA elements in the human  
784 genome. *Nature* **489**, 57 (2012).

785 89 Snyder-Mackler, N. *et al.* Social status alters immune regulation and response to  
786 infection in macaques. *Science* **354**, 1041-1045 (2016).

787 90 Muggeo, V. M. & Muggeo, M. V. M. Package 'segmented'. *Biometrika* **58**, 516 (2017).

788 91 Silk, J. B. *et al.* Strong and consistent social bonds enhance the longevity of female  
789 baboons. *Current Biology* **20**, 1359-1361 (2010).

790 92 Hausfater, G. Dominance and reproduction in Baboons (*Papio cynocephalus*).  
791 *Contributions to primatology* **7**, 1-150 (1975).

792 93 Archie, E. A., Altmann, J. & Alberts, S. C. Costs of reproduction in a long-lived female  
793 primate: injury risk and wound healing. *Behavioral ecology and sociobiology* **68**,  
794 1183-1193 (2014).

795 94 Levy, E. J. *et al.* Comparing proportional and ordinal dominance ranks reveals  
796 multiple competitive landscapes in an animal society. *bioRxiv* (2020).

797

798 95 Beehner, J. C., Onderdonk, D. A., Alberts, S. C. & Altmann, J. The ecology of conception  
799 and pregnancy failure in wild baboons. *Behavioral Ecology* **17**, 741-750 (2006).  
800 96 Altmann, J. & Alberts, S. C. in *Offspring: The Biodemography of Fertility and Family*  
801 *Behavior* (eds Kenneth W Wachter & Rodolfo A Bulatao) (The National Academies  
802 Press, 2003).  
803 97 Altmann, J., Hausfater, G. & Altmann, S. A. in *Reproductive Success: Studies of*  
804 *Individual Variation in Contrasting Breeding Systems* (ed Timothy Hugh Clutton-  
805 Brock) (The University of Chicago Press, 1988).  
806 98 Charpentier, M., Tung, J., Altmann, J. & Alberts, S. Age at maturity in wild baboons:  
807 genetic, environmental and demographic influences. *Molecular Ecology* **17**, 2026-  
808 2040 (2008).  
809 99 Altmann, J., Altmann, S. A. & Hausfater, G. Primate infant's effects on mother's future  
810 reproduction. *Science* **201**, 1028-1030 (1978).  
811 100 Altmann, J. & Alberts, S. C. Variability in reproductive success viewed from a  
812 life-history perspective in baboons. *American Journal of Human Biology* **15**, 401-409  
813 (2003).  
814 101 Lea, A. J., Learn, N. H., Theus, M. J., Altmann, J. & Alberts, S. C. Complex sources of  
815 variance in female dominance rank in a nepotistic society. *Animal behaviour* **94**, 87-  
816 99 (2014).  
817 102 Wang, J. COANCESTRY: a program for simulating, estimating and analysing  
818 relatedness and inbreeding coefficients. *Molecular ecology resources* **11**, 141-145  
819 (2011).  
820

821 **Acknowledgements**

822 We gratefully acknowledge the support provided by the National Science Foundation and the  
823 National Institutes of Health for the majority of the data represented here, currently through NSF  
824 IOS 1456832, NIH R01AG053308, R01AG053330, R01HD088558, and P01AG031719. R.A.J.  
825 is supported by NIH F32HD095616 and J.A.A. by NSF #2018264636. We also acknowledge  
826 support for high-performance computing resources from the North Carolina Biotechnology  
827 Center (Grant Number 2016-IDG-1013) and a seed grant from the Center for Population Health  
828 and Aging (P30AG034424 to A. O’Rand). We thank the members of the Amboseli Baboon  
829 Research Project for collecting the data presented here, especially J. Altmann for her  
830 foundational role in establishing the study population and these data sets; J. Gordon, N. Learn,  
831 and K. Pinc for managing the database; R.S. Mututua, S. Sayialel, and J.K. Warutere for data  
832 collection in the field; and T. Wango and V. Oudu for their assistance in Nairobi. We also thank  
833 the Kenya Wildlife Service, University of Nairobi, the Institute of Primate Research, the  
834 National Museums of Kenya, the National Council for Science, Technology, and Innovation,  
835 members of the Amboseli-Longido pastoralist communities, the Enduimet Wildlife Management  
836 Area, Ker & Downey Safaris, Air Kenya, and Safarilink for their assistance in Kenya. Finally,  
837 we thank J. Galbany for assistance with the molar dentine data set; current and past members of  
838 the Tung, Alberts, Archie, and Altmann labs for their helpful feedback; and J. Higham and two  
839 anonymous reviewers for constructive critiques of a previous version of this manuscript. This  
840 research was approved by IACUCs at Duke University, University of Notre Dame, and Princeton  
841 University and adhered to all the laws and regulations of Kenya. For a complete set of  
842 acknowledgments of funding sources, logistical assistance, and data collection and management,  
843 please visit <http://amboselibaboons.nd.edu/acknowledgements/>.

844

845 **Author Contributions**

846 Conceptualization, R.A.J., J.A.A., J.T., E.A.A., A.J.L.; Investigation, J.A.A., R.A.J., A.J.L.,  
847 F.A.C., M.Y.A., T.N.V., and J.T.; Formal Analysis, J.A.A. and R.A.J.; Writing—Original Draft,  
848 R.A.J., J.A.A., and J.T.; Writing—Reviewing & Editing, R.A.J., J.A.A., A.J.L., T.N.V., M.Y.A.,  
849 F.A.C., S.C.A., E.A.A., and J.T. Funding Acquisition, J.T., S.C.A., and E.A.A. Supervision, J.T.

850

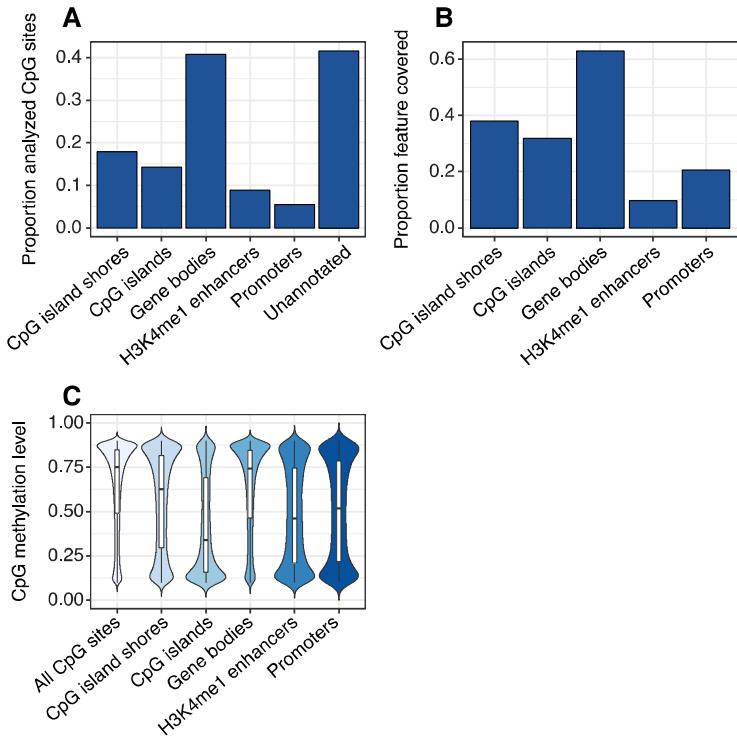
851 **Competing Interests**

852 The authors declare no competing interests.

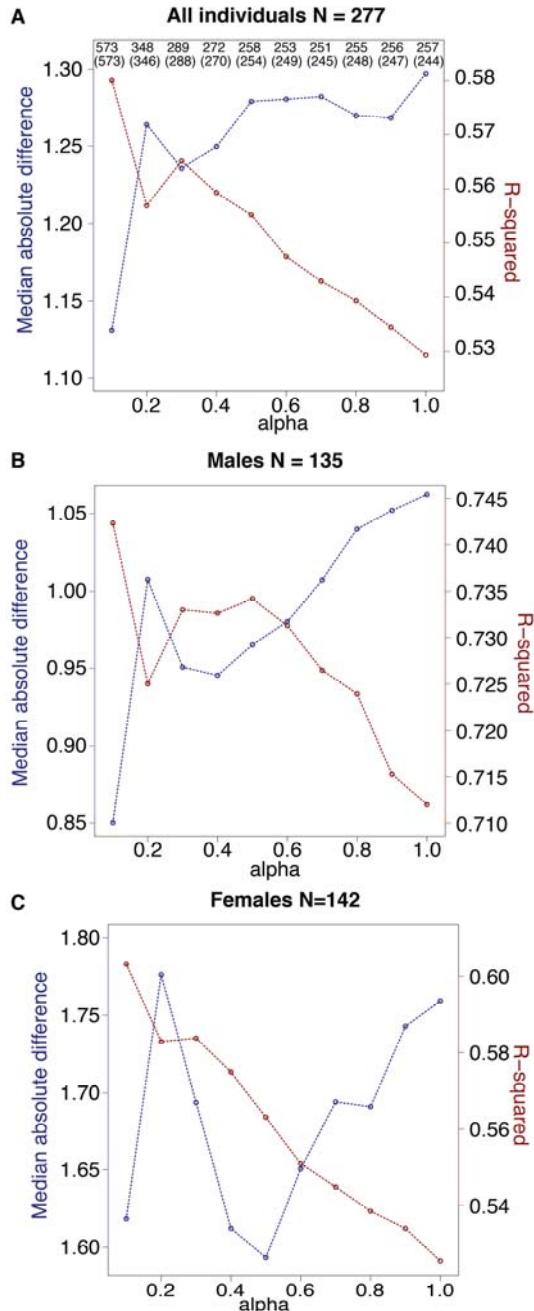
853

854 **Supplementary Table 4.** Pearson correlations among covariates for females (above diagonal)  
855 and males (below diagonal), with p-values in parentheses.  
856

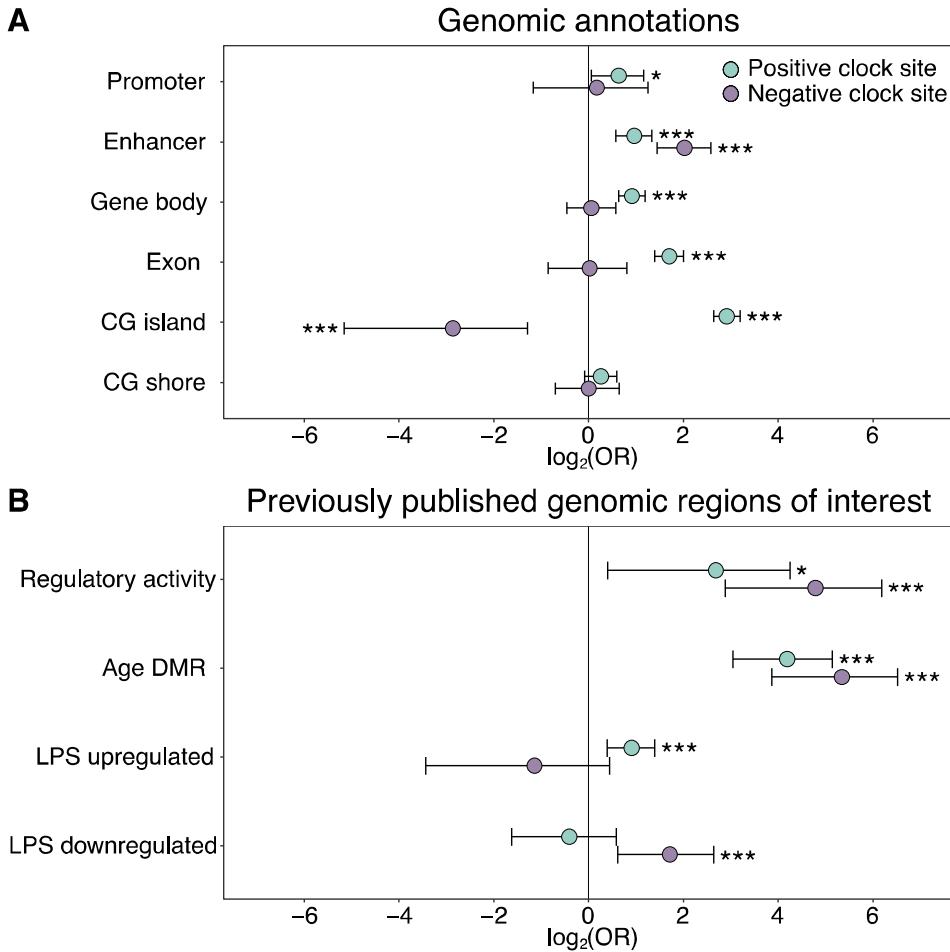
|                  | cumulative     | DSI <sub>F</sub>  | rank              | Age-adjusted<br>BMI | age               |
|------------------|----------------|-------------------|-------------------|---------------------|-------------------|
| cumulative       | -              | -0.222<br>(0.073) | 0.310<br>(0.011)  | 0.098 (0.432)       | -0.284<br>(0.021) |
| DSI <sub>F</sub> | NA             | -                 | -0.266<br>(0.031) | -0.188<br>(0.131)   | 0.112 (0.372)     |
| rank             | -0.058 (0.578) | NA                | -                 | 0.058 (0.646)       | 0.218 (0.078)     |
| Age-adjusted BMI | -0.038 (0.719) | NA                | -0.068<br>(0.516) | -                   | -0.098<br>(0.434) |
| age              | 0.133 (0.202)  | NA                | -0.313<br>(0.002) | -0.075<br>(0.476)   | -                 |



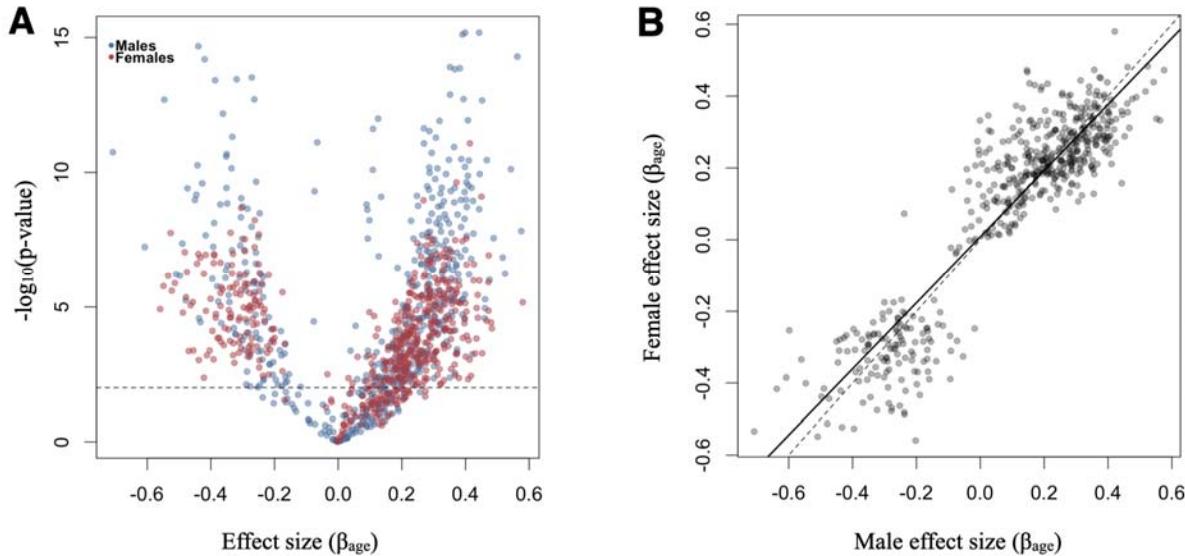
857 **Supplementary Figure 1. Characteristics of the RRBS data set.** (A) Proportion of the 458,504  
858 evaluated CpG sites that overlapped annotated features of the *Panu2* genome. (B) Proportion of  
859 annotated features in the *Panu2* genome that overlapped at least one of the 458,504 evaluated  
860 CpG sites. (C) Distribution of mean DNA methylation levels for CpG sites within annotated  
861 features of the *Panu2* genome. Each white box represents the interquartile range, with the  
862 median value depicted as a black horizontal bar. Whiskers extend to the most extreme values  
863 within 1.5 x the interquartile range. As expected, CpG sites tended to be highly methylated  
864 genome-wide and have lower average methylation in promoters, enhancers, and CpG islands.



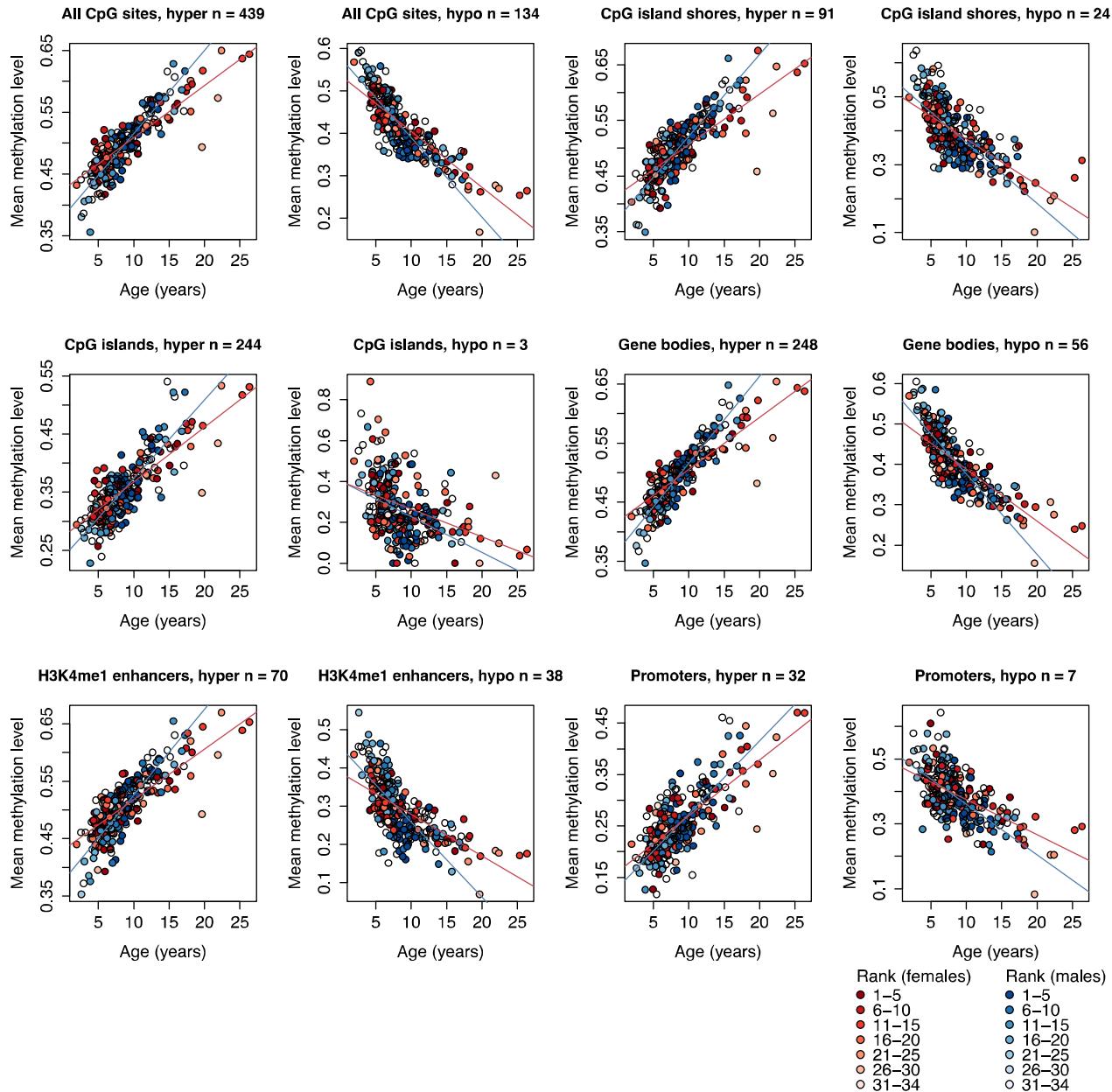
865 **Supplementary Figure 2. Comparison of clock performance across alternative values of**  
866 **alpha.** Alpha was set via grid search across possible values from 0.1 to 1, in steps of 0.1, and  
867 chosen based on the highest  $R^2$  value between predicted age and known chronological age (red  
868 lines). The blue lines show the median absolute difference between predicted and true age (lower  
869 is better), and exhibits roughly inverse behavior to  $R^2$ . **(A)** For each clock generated with a  
870 different alpha value, the total number of CpG sites included in the clock is shown on top, and  
871 the number of clock sites that overlap the final clock used in this study (N = 573 sites, alpha =  
872 0.1) is given in parentheses immediately below. **(B, C)** As in (A), but with results shown  
873 specifically for males **(B)** versus females **(C)**.



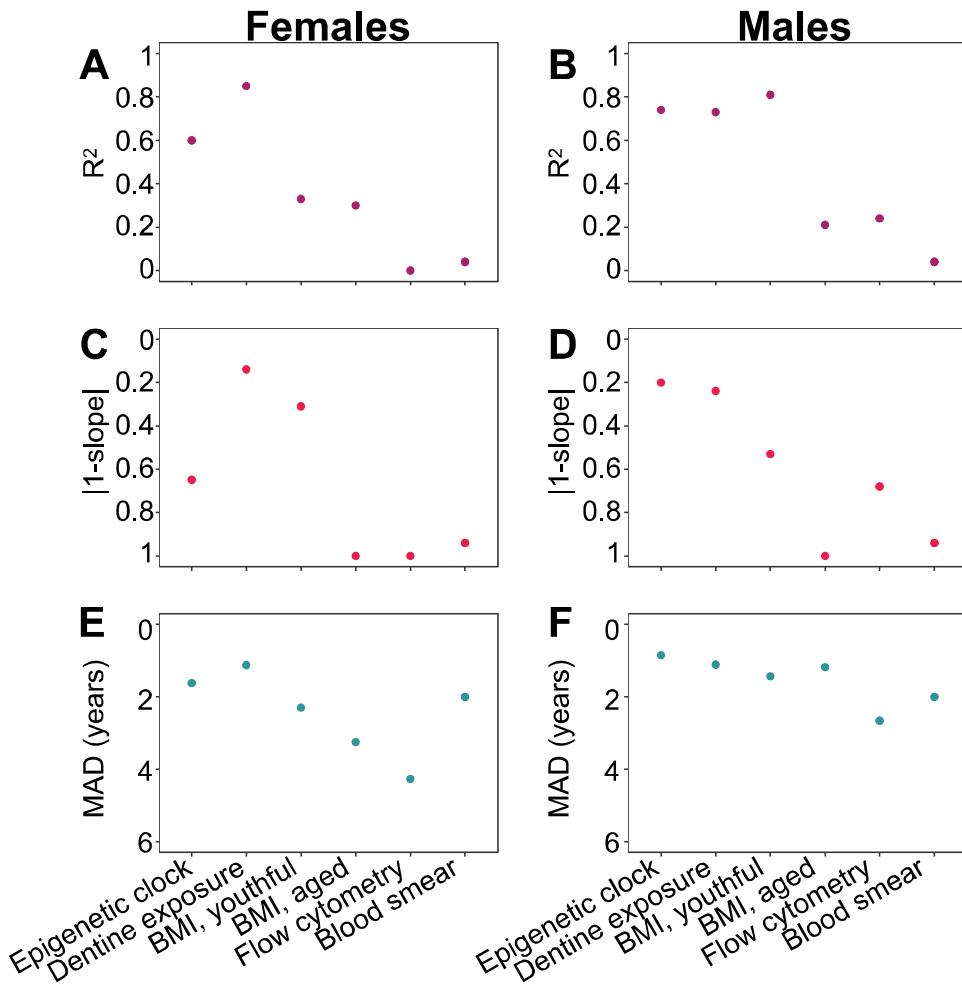
874 **Supplementary Figure 3. Enrichment of the epigenetic clock CpG sites by genomic**  
875 **compartment.** The  $\log_2(\text{odds ratio})$  of CpG sites in the epigenetic clock, relative to all 458,504  
876 CpG sites initially evaluated, in (A) annotated genomic regions and (B) in loci with putative  
877 regulatory activity or in or near genes that are responsive to age or immune stimulation. Regions  
878 of regulatory activity were identified with the massively parallel reporter assay, mSTARR-Seq<sup>26</sup>,  
879 following a liftover from the human genome to the baboon genome to identify putatively  
880 orthologous coordinates. Age differentially methylated regions (DMR) and genes responsive to  
881 lipopolysaccharide (LPS) were previously identified from blood samples from the same baboon  
882 population<sup>25,27</sup>. Two-sided Fisher's exact tests were performed separately for epigenetic clock  
883 sites that increased (positive clock sites:  $N = 459$ ) or decreased (negative clock sites:  $N = 134$ ) in  
884 DNA methylation levels with age. See Supplementary Table 2 for a complete list of the genomic  
885 locations of the 573 epigenetic clock sites. \*  $p < 0.05$ , \*\*\*  $p < 0.005$ .



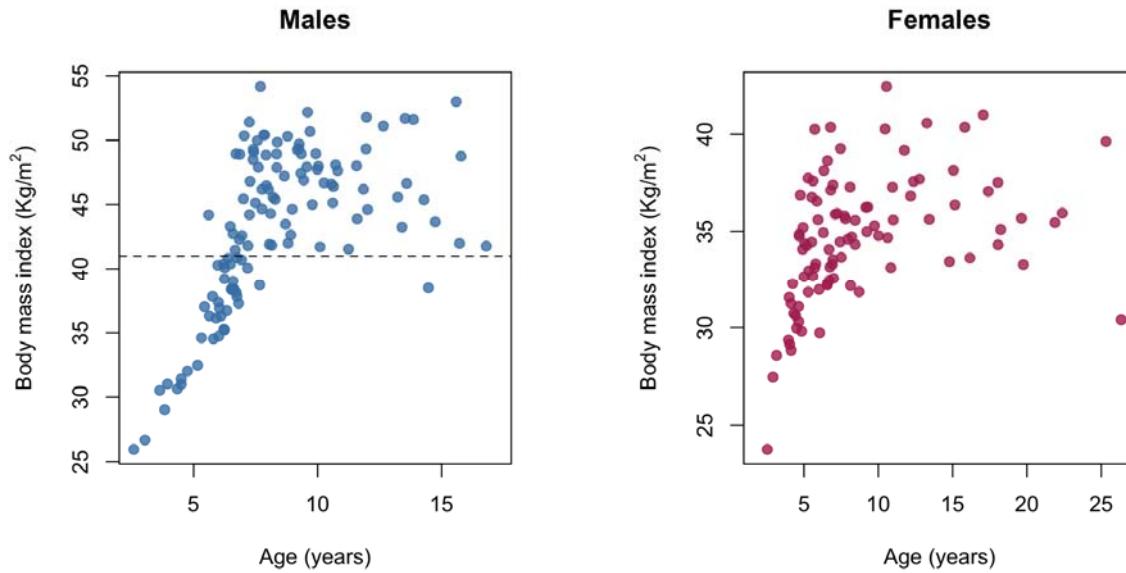
886 **Supplementary Figure 4. Association between age and DNA methylation level for**  
887 **individual clock CpG sites. (A)** Volcano plot of the effect size ( $\beta_{age}$ ) versus the  $-\log_{10}(p\text{-value})$   
888 of age effects on DNA methylation for males (blue) and females (red), based on estimates from a  
889 binomial mixed-effects model designed for bisulfite sequencing data<sup>25</sup>. Results for the 534 sites  
890 that could be modeled using this approach are shown. Other predictor variables in the model  
891 included a fixed effect for sample batch and a random effect that controlled for kinship  
892 (estimated via Queller and Goodnight's  $r$  and multilocus microsatellite genotype data in the  
893 program *coancestry*<sup>102</sup>). Dashed line corresponds to a nominal p-value of 0.01. **(B)** Age effects  
894 on DNA methylation estimated separately in males and females are highly correlated ( $R^2 = 0.83$ ,  
895  $p = 3.35 \times 10^{-204}$ ). The dashed line indicates the  $y = x$  line. The solid black line indicates the best  
896 fit line.



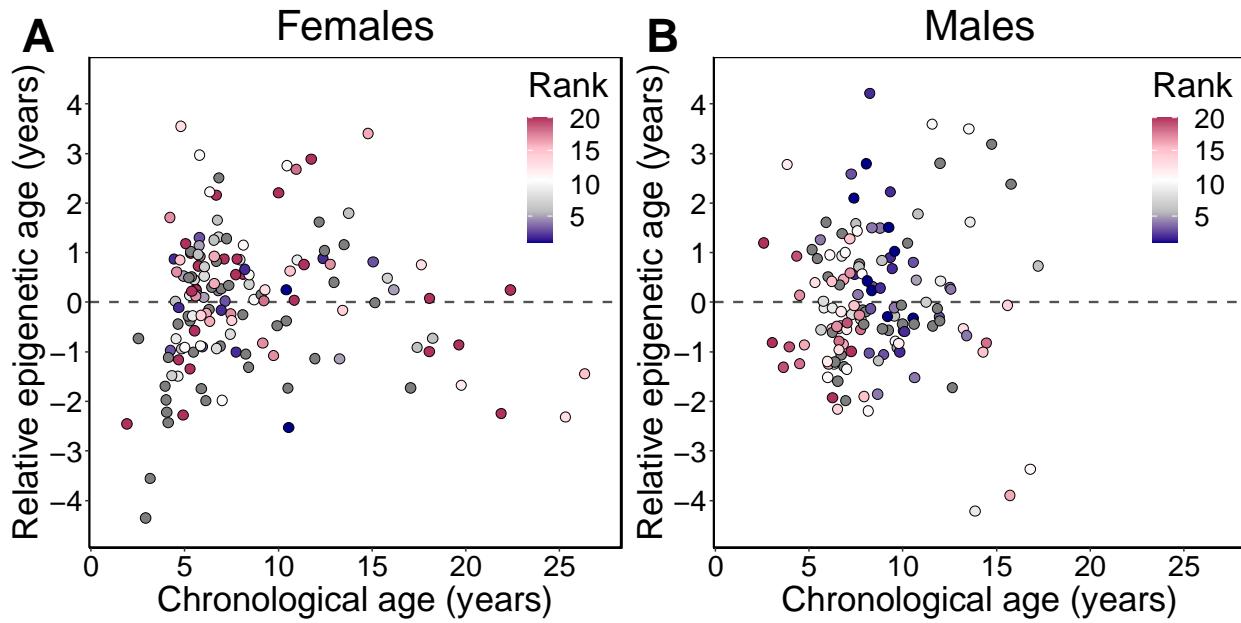
897 **Supplementary Figure 5. Methylation levels of clock CpG sites across different genomic**  
 898 **compartments.** Each circle represents a sample, with chronological age of the animal at time of  
 899 sampling shown on the x-axis. The y-axis represents the average methylation level for that  
 900 sample across CpG clock sites that overlap the annotated genomic region shown in the panel  
 901 label, stratified by sites that increased (denoted “hyper”) or decreased (denoted “hypo”)  
 902 methylation levels with age. Number of clock sites overlapping each annotated region is given in  
 903 each panel title; a clock site can overlap multiple annotated regions, and can therefore be  
 904 represented in more than one plot. Red and blue lines represent best fit lines for female and male  
 905 samples, respectively. All best fit lines are significant ( $p < 1 \times 10^{-4}$ ).



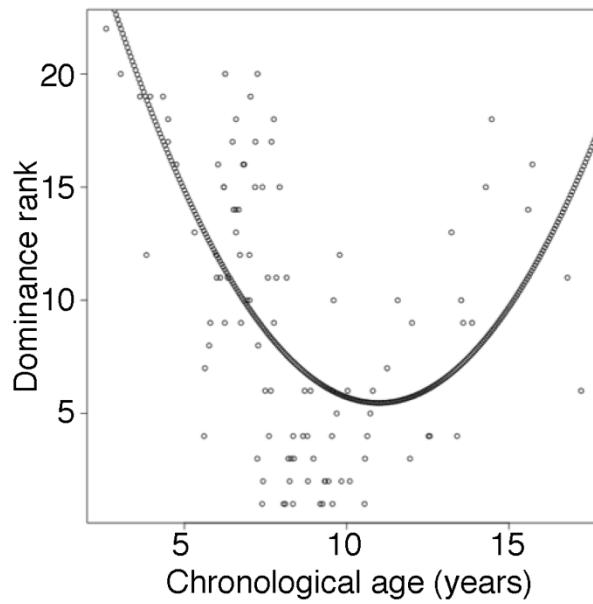
906 **Supplementary Figure 6. Comparison of the performance of the epigenetic clock to other**  
907 **predictors of chronological age.** Performance measures of age predictors are presented  
908 separately for females (A, C, E) and males (B, D, F) except for differential white blood cell  
909 counts (blood smears), where males and females were combined. Predictors are ordered in the  
910 same fashion in all panels (epigenetic clock to the left, and then following highest to lowest  $R^2$  in  
911 females). The breakpoint to define youthful versus aged animal BMI was 10 and 8 years old for  
912 females and males, respectively. (A-B) Adjusted  $R^2$  between predicted age and true  
913 chronological age. (C-D) Absolute difference between the  $y = x$  line (slope of one) and the slope  
914 of the best-fit line of predicted age as a function of true chronological age. This metric captures  
915 bias in age prediction estimates (values that are lower on the reverse-coded y-axis are more  
916 biased). (E-F) Median absolute difference (MAD) between each individual's predicted age and  
917 true chronological age (values that are lower on the reverse-coded y-axis have higher MAD).



918 **Supplementary Figure 7. The relationship between age and body mass index in the**  
919 **Ambosembo baboons.** Chronological age in years at the time of sampling versus body mass index  
920 (kilograms/meters<sup>2</sup>) for males and females in our sample. Two distinct patterns are observable  
921 for both sexes: a stage when animals are still growing (prior to ~7 – 8 years old) and a stage in  
922 which animals vary in BMI as adults. BMI in baboons is measured using the distance between  
923 the crown of the head and the rump as the “height” measure, and so differs in scale from humans,  
924 where BMI is calculated using standing height. Dashed gray line at BMI = 41 shows the cut-off  
925 for the analysis in which only males with BMI > 41 were retained for modeling  $\Delta_{age}$ .  
926



927 **Supplementary Figure 8. Relative epigenetic age versus chronological age.** Each circle  
928 represents a baboon, colored by the animal's dominance rank at the time of sampling. The y-axis  
929 shows relative epigenetic age, a measure of epigenetic aging similar to  $\Delta_{age}$  that is based on the  
930 sample-specific residuals from the relationship between predicted age and true chronological  
931 age. Positive (negative) values correspond to predicted ages that are older (younger) than  
932 expected for that chronological age. Dominance rank is measured using ordinal values, such that  
933 smaller values indicate higher rank.



934 **Supplementary Figure 9. Male dominance rank versus chronological age.** Each circle  
935 represents a male baboon at the time of sampling. Nearly all males in the top four rank positions  
936 are between ages 7 and 12 years (but not all 7 – 12 year olds are also high-ranking: range of rank  
937 positions = 1 – 20), whereas both young and old males tend to be lower-ranking. The quadratic  
938 curve represents the model with dominance rank as the response variable and age and age<sup>2</sup> as the  
939 predictor variables. Rank-for-age was defined as the residuals of this model.