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Abstract

The hidden Markov model (HMM) is a framework for time series analysis widely applied to single molecule
experiments. It has traditionally been used to interpret signals generated by systems, such as single molecules,
evolving in a discrete state space observed at discrete time levels dictated by the data acquisition rate. Within
the HMM framework, originally developed for applications outside the Natural Sciences, such as speech recog-
nition, transitions between states, such as molecular conformational states, are modeled as occurring at the
end of each data acquisition period and are described using transition probabilities. Yet, while measurements
are often performed at discrete time levels in the Natural Sciences, physical systems evolve in continuous
time according to transition rates. It then follows that the modeling assumptions underlying the HMM are
justified if the transition rates of a physical process from state to state are small as compared to the data
acquisition rate. In other words, HMMs apply to slow kinetics. The problem is, as the transition rates are
unknown in principle, it is unclear, a priori, whether the HMM applies to a particular system. For this reason,
we must generalize HMMs for physical systems, such as single molecules, as these switch between discrete
states in continuous time. We do so by exploiting recent mathematical tools developed in the context of
inferring Markov jump processes and propose the hidden Markov jump process (HMJP). We explicitly show
in what limit the HMJP reduces to the HMM. Resolving the discrete time discrepancy of the HMM has clear
implications: we no longer need to assume that processes, such as molecular events, must occur on timescales
slower than data acquisition and can learn transition rates even if these are on the same timescale or otherwise
exceed data acquisition rates.

1 Introduction

Hidden Markov models (HMMs) have been important tools of time series analysis for over half a century (1–
3). Under some modeling assumptions, detailed shortly, HMMs have been used to self-consistently determine
dynamics of physical systems under noise and the properties of the noise obscuring the system’s dynamics itself.

Originally developed for applications in speech recognition (4, 5), the relevance of HMMs to single molecule time
series analysis was quickly recognized (6–14). Since then, HMMs and variants have successfully been used in the
interpretation of single ion channel patch clamp data (15–19); fluorescence resonant energy transfer (FRET) (20–
28); force spectroscopy (29–31); amongst many other physical applications (4, 32, 33).

In order for HMMs to apply to single molecules and other physical systems, the assumptions underlying the HMMs
must hold for such systems. There are several such assumptions worthy of consideration.

• HMMs assume that the system under study evolves in a discrete state space (whether physical of confor-
mational). This is a reasonable approximation for biomolecules visiting different conformations (33–35) or
fluorophores visiting different photo-states (33, 34, 36). Of parallel interest to this point is the notion that
the number of discrete states is known (though the transition probabilities between states is unknown).
The assumption of a known number of states has been lifted thanks to extensions of the HMM (34, 37–43)
afforded by nonparametrics that we discuss elsewhere (33, 34, 38–40, 43).

• HMMs assume that measurements are obtained at discrete time levels. That is, successive measurements are
reported at regular time levels separated by some fixed period ∆t. For clarity, we call ∆t the data acquisition
period. This assumption is consistent with a number of experimental biophysical settings (11, 12, 38–40, 44–
56).

• HMMs assume that physical systems transition between states in discrete time steps. Put differently,
HMMs apply under the implicit assumption that the underlying system switches between states rarely as
compared to the data acquisition period, ∆t. This can only really be assured if the transition rates (as
required in a continuous time description) are slow. This assumption is implicit to the very definition of
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Fig. 1. A conceptual illustration of single molecule continuous time switching kinetics between discrete states
probed in discrete time. For illustrative purposes only, the trajectory of a single molecule between two states (σ1, σ2) is
shown in cyan in panel (a1) and (b1). For concreteness, we can think of these molecular states as conformational states.
The state levels, i.e., signal level in the absence of noise, for these states is µσ1 and µσ2 , respectively, and shown by
the horizontal gray dotted line in (a1) and (b1). This synthetic experiment starts at time t0 = 0.05 s, and ends at time
tN = 20 s and the data acquisition period, ∆t, is 0.1 s. Next, again only for illustration, we assume that the measurements
are acquired by a detector that has a fixed integration period τ = 90 ms (light gray) for each fixed data acquisition period
shown in panels (a1) and (a2). As a molecule may switch between states during an integration period, the measurements
represent the signal levels capturing the average of the amount of time spent at each state levels (µσ1 , µσ2 ) visited (in
addition to added noise). Panels (a1)-(a2) are associated with single molecule kinetics that are slower than the data
acquisition rate. Instead, in panels (b1)-(b2) we show a single molecule trajectory when a molecule’s kinetics are faster
than the data acquisition rate. In panel (b1), slow kinetics result in well separated state occupancy histograms around the
average state levels. In panel (b2), we don’t have well separated histograms centered around the average state levels due
to fast kinetics of the molecule.
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a HMM which requires that the system’s switching occurs precisely at the end of the data acquisition
periods (4, 38, 39, 57–59).

This last assumption is problematic and presents the following conundrum: on the one hand, the transition rates
are unknown and their analog for discrete time processes (transition probabilities) are typically to be determined
using HMMs. On the other hand, we must assume that these unknowns are slow as compared to the data
acquisition rate. Even if, optimistically, transition rates are slow, molecular events themselves are stochastic and,
as with all physical processes, occur in continuous time. As such, any one event has a probability of occurring on
timescales faster than the data acquisition period.

As an example, Fig. 1 illustrates the types of dynamical measurements that we can and cannot analyze within
the HMM paradigm. The top panel shows an example of single molecule measurements characterized by slow
kinetics that can be analyzed within an HMM paradigm. In contradistinction to the above is the bottom panel
illustrating an example of fast kinetics, as compared to the data acquisition rate, that cannot currently be
analyzed within the HMM paradigm. The reason for this is simple: the fast kinetics give rise to a large number
of apparent states that go beyond the two real states. This is because the measurements reported at each time
point averages the molecular signal from all states visited in each acquisition period. Yet it is clear that the
information on the transition rates between the rapidly switching molecular states is encoded in the time trace
however uninterpretable.

Indeed, to address the last assumption, a recent method (45), termed H2MM, was proposed. H2MMs have
been applied to single molecule FRET (smFRET) photon arrival time series analyses (46, 47). They handle fast
switching kinetics within an HMM framework by embedding a finer discrete timescale into the HMM; in this case
one fine enough to avoid the arrival of two photons in one discrete time bin. The H2MM applies to a scenario
different from that provided in Fig. 1 for which the detector model produces measurement that coincide with
noise on top of average molecular signal obtained throughout the detector’s exposure time.

Statistical analysis methods exploiting finer time grids, to approximate faster continuous time processes, had
previously been considered albeit for applications outside the Natural Sciences (60, 61). Such statistical meth-
ods (60, 61) have been criticized (62) for two main reasons: 1) they sometimes, though not always, introduce
computational complexity associated with a finer time grid; and, almost certainly, 2) introduce bias by discretely
approximating a continuous time process. In the mathematical literature, these two challenges are what motivated
the development of strategies to infer kinetic rates for genuinely continuous time processes albeit measured in
discrete time (62).

It is therefore natural for us to propose an analysis method that treats physical processes as they occur in
continuous time in order to extract rates directly from traces with fast kinetics without relying on the artificial
assumption that the physical processes involved occur on timescales much slower than the data acquisition period.

To do so, we must fundamentally upgrade both key ingredients of the HMM model: 1) the system dynamics must
be in continuous time; and 2) the measurement output must realistically reflect an average over the dynamics of
the system over the data acquisition period. The output is then understood to encode fast dynamics, that can
be retrieved (56, 63–67).

It is indeed to address processes evolving in continuous time that continuous time Markov models, so-called
Markov jump processes (MJPs), were developed (44, 68–70). MJPs describe continuous time events using rates
(rather than transition probabilities) and recent advances in computational statistics (62, 71–75), have made it
possible to learn these rates given data. However, an important challenge remains for us to infer MJP rates
under the assumption that the measurement process averages the probed signal over each measurement period.
The nature of the measurement process and continuous dynamics therefore suggest a Hidden MJPs (HMJPs)
framework that we put forward herewith.
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In Section 2, below, we start with the formulation of our HMJP model and also, briefly, summarize the HMM.
Next, in Section 3, we move on to the head-to-head comparison of HMMs and HMJPs (showing in what limit the
HMM exactly reduces to the HMJP). We focus on their respective performance in learning molecular trajectories
and transition probabilities. We show how HMJPs successfully outperform HMMs especially for kinetics occurring
on timescales on the order of or exceeding the data acquisition period. Finally, in Section 4, we discuss the
broader potential of HMJPs to Biophysics. Fine details on the implementation of these two methods can be
found in Supporting Material (A).

2 Methods

In this section we describe a physical system that evolves in continuous time alongside a measurement model.
We also discuss how to generate realistic synthetic data from such a model and subsequently analyze time traces
reflecting both fast and slow dynamics. We analyze the traces using two different methods: HMMs, as they are
broadly used across the literature, and our proposed HMJPs which we describe in detail. We compare the analyses
in Section 3.

2.1 Model Description

Using the experimental data, and the model of the experiment that we will describe, our goal is to learn: 1)
the switching rates between the states of the system; 2) the state of the system at any given time (that we call
the trajectory of the system); 3) initial conditions of the system; and 4) parameters describing the measurement
process, i.e., parameters of the emission distribution.

2.1.1 Dynamics

We start by defining the trajectory T (·) that tracks the state of the system over time. Here T (t) is the state of
the system at time t and, as such, it is a function over the time interval [t0, tN ]. We adopt functional notation
and distinguish between T (·) and T (t) to avoid confusion with the entire trajectory and the value attained at
particular time levels, critical to the ensuing presentation.

We label the states to which the system has access with σk and use the subscript k = 1, . . . ,K to distinguish
them. For example, σ1/σ2 may represent a protein in folded/unfolded conformation or an ion channel in on/off
state. With this convention (borrowed from (62)) if the system is at σk at time t, then we write T (t) = σk. An
early point of distinction with the HMM is warranted: the switching times between states of the system, generally,
differ from the measurement acquisition levels tn.

As with most molecular systems (35, 38, 76, 77), the switching dynamics are faithfully modeled as memoryless.
That is, the waiting time in a state of the system is exponentially distributed. Such memoryless systems are
termed Markov jump process and below we present their mathematical formulation.

At the experiment’s onset, we assume the state of the system T (t0) is chosen stochastically among σk. We use ρσk
to denote the probability of the system starting at σk and collect all initial probabilities in ρ̄ = (ρσ1 , ρσ2 , ..., ρσK ),
which is a probability vector (78–81).

Memoryless switching kinetics are described by switching rates between all possible state pairs. These switching
rates are labeled with λσk→σk′ . By definition, all self-switching rates are zero λσk→σk = 0, which, in general,
allows for at most K(K−1) non-zero rates (35). Although, the switching rates λσk→σk′ fully describe the system’s
kinetics, as we will see shortly, it is mathematically more convenient to work with an alternative parametrization.
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In this alternative parametrization, we keep track of the escape rates

λσk =
K∑
k′=1

λσk→σk′ (1)

which, for simplicity, we gather in λ̄ = (λσ1 , λσ2 , . . . , λσK ). Further, instead of keeping track of each rate
λσk→σk′ , we keep track of the rates normalized by the escape rates, namely

πσk→σk′ =
λσk→σk′
λσk

. (2)

Gathering all normalized rates out of the same state in π̄σk = (πσk→σ1 , πσk→σ2 , · · · , πσk→σM ), we see that each
π̄σk forms a probability vector (80).

In summary, instead of K(K − 1) switching rates λσk→σk′ , we describe the system’s kinetics with K escape
rates λσk and K switching probability vectors π̄σk . The latter have, by definition, πσk→σk = 0, and so, the total
number of scalar parameters is the same in both parametrizations. Below, for simplicity, we gather all transition
probability vectors into a matrix

¯̄π =


π̄σ1

π̄σ2
...

π̄σK

 . (3)

2.1.2 Measurements

The overall input to our method consists of the measurements x = (x1, x2, ..., xN ) acquired in an experiment.
Here, xn indicates the nth measurement and, for clarity, we assume measurements are time ordered, so n = 1
labels the earliest acquired measurement and n = N the latest. These measurements may be camera ADUs
generated from photon detections, FRET efficiencies, derived inter-molecular extensions, or any other quantity
determinable in an experiment.

Each xn is reported at a time tn = tn−1 + ∆t, which is ∆t later than the time tn−1 at which the previous
measurement xn−1 was reported. For completeness, together with the time levels t1, t2, . . . , tN at which a
measurement is reported, we also consider an additional time level t0, that marks the onset of the experiment,
which is not associated with any measurement, Fig. 1.

The most common assumption made almost universally by HMMs is that the instantaneous state of the system
at tn determines xn. Yet, for realistic detectors, the reported value xn is influenced by the entire trajectory of
our system during the nth integration period which we represent by the time window [tn − τ, tn]. Here, τ is the
duration of each integration time (such as an exposure period for optical experiments).

We account for detector features in the generation of the measurements via characteristic state levels which
we label with µσk and, for simplicity, gather these in µ̄ = (µσ1 , µσ2 , . . . , µσK ). In our formulation, each σk
is associated with its own characteristic level µσk . If the system remains at a single state σk throughout an
entire integration period [tn − τ, tn], then the detector is triggered by µσk and so, provided measurement noise
is negligible, the reported measurement xn is similar to µσkτ . However, if the system switches multiple states
during an integration period, the detector is influenced by the levels of every state attained and the time spent
in each state.
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More specifically, the nth signal level triggering the detector during the nth integration period, [tn − τ, tn], is
obtained from the time average of µT (·) over this integration period. Mathematically, this time average equals
1
τ

∫ tn
tn−τ dt µT (t) and, provided measurement noise is negligible, the reported measurement xn is similar to the

value of this average.

In the presence of measurement noise, such as shot-noise (82–86), quantification noise (87–89), or other degrading
effects common to detectors currently available, each measurement xn depends stochastically upon the signal
that triggers the detector (33, 90, 91). Of course, the precise relationship depends on the detector employed in
the experiment and differs between the various types of cameras, single photon detectors or other devices used.
To continue with our formulation, we assume that measurement noise is additive, which results in

xn
∣∣T (·) ∼ Normal

(
1
τ

∫ tn

tn−τ
dt µT (t), v

)
. (4)

The latter expression is a statistical shorthand for the following: the measurement xn is a random variable that
is sampled from a normal distribution whose mean is 1

τ

∫ tn
tn−τ dt µT (t) and whose variance is v. For the Normal

distribution, the variance is related to the detector’s full-with-at-half-maximum (FWHM) by v = FWHM2

8 log 2 .

Our choice of a Normal distribution itself is incidental (and can be changed depending on detector type). However,
this type of measurement model is general enough to capture the effect of the history of the system during
the detector’s integration time. For example, in an accompanying article (92), we adapt Eq. (4) to FRET
measurements in separate donor and acceptor channels with shot-noise and background as follows

xDn
∣∣T (·) ∼ Poisson

(
µDbackτ +

∫ tn

tn−τ
dt µDT (t)

)
xAn
∣∣T (·) ∼ Poisson

(
µAbackτ +

∫ tn

tn−τ
dt µAT (t)

)
where xD =

(
xD1 , x

D
2 , . . . , x

D
N

)
and xA =

(
xA1 , x

A
2 , . . . , x

A
N

)
denote the measurements acquired in the donor’s

and the acceptor’s channels, respectively. Here, µDback, µ
A
back denote the background and µDσk , µ

A
σk

the characteristic
state levels in the two channels.

2.1.3 Simulation

Given ρ̄ and λ̄, ¯̄π, a trajectory T (·) that mimics real systems may be simulated using the Gillespie algorithm (76)
which we describe briefly here only in an effort to introduce necessary notation.

To begin, an initial state s0 is chosen among σ1, σ2, · · · , σK with probability ρσk . Then, the period d1 that the
system spends in s0 is chosen from the Exponential distribution with mean 1/λs0 . Subsequently, the next state
s1 is chosen among σ1, σ2, · · · , σK with probability πs0→σk . As πs0→s0 = 0, any chosen s1 is different from s0,
therefore the transition s0 → s1 is a jump in the system’s time course that occurs at time t0 + d1. Next, a new
period d2 is sampled from an Exponential distribution with mean 1/λs1 and a new state s2 is chosen among σk
with probability πs1→σk , and so on. These steps are repeated until the end of the experiment which, in our setup,
is the same as the time tN of the last measurement.

More formally, we summarize the sampling of a Gillespie trajectory as follows

s0 ∼ Categorical (ρ̄) (5)
dm|sm ∼ Exponential (λsm) (6)

sm+1|sm ∼ Categorical (π̄sm) (7)
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for m = 0, 1, 2, ...,M − 1 where M − 1 is the lowest value such that

t0 +
M−1∑
m=0

dm ≥ tN . (8)

The Categorical distribution we use here is the generalization of the Bernoulli distribution for which more than
two outcomes are possible (57).

The successive states of the system s0, s1, · · · , sM−1 and the associated durations d0, d1, d2, · · · , dM−1, which
we term holding states and holding times, respectively, encode T (·) throughout the experiment’s time course
[t0, tN ]. Namely

T (t) =


s0 if t0 ≤ t < t0 + d0

s1 if t0 + d1 ≤ t < t0 + d0 + d1
...

...
sM−1 if t0 + d0 + · · ·+ dM−2 ≤ t < t0 + d0 + d1 + · · ·+ dM−1.

(9)

For convenience, we summarize the representation of T (·) in a triplet (~S, ~D,M), where

~S = {s0, s1, ..., sM−1}, ~D = {d0, d1, ..., dM−1}.

and M is the size of ~S and ~D.

Once a trajectory is obtained through the Gillespie algorithm just described, the signal levels
∫ tn
tn−τ dt µT (t) for

each integration period can be computed. For instance, as the trajectory is piecewise constant, the integrals
reduce to sums that can be easily calculated. Therefore, given an appropriate detector model, such as Eq. (4),
and a trajectory’s triplet (~S, ~D,M), we can obtain simulated measurements by adding noise according to the
detector’s distribution.

2.2 Model Inference

Using the data x, and the model of the experiment that we have just described, our goal is now to learn initial
probabilities ρσk , switching rates λσk→σk′ , and state levels µσk for all states as well as the trajectory of the system
T (·) throughout the experiment’s time course [t0, tN ]. Below we attempt to learn these using time series analysis
with a HMM and then introduce a novel time series analysis relying on HMJPs.

2.2.1 Model Inference via HMMs

An HMM requires that each measurement xn depends exclusively on the instantaneous state of the system,
namely T (tn). In view of Eq. (4), this is achieved by the trajectory of the system T (·) remaining constant during
the integration period [tn − τ, tn]. To a sufficiently good approximation, this is satisfied provided

τλσk � 1 (10)

for all σk. Thereby, the system rarely exhibits switching during periods that last shorter than τ . This approximation
allows for 1

τ

∫ tn
tn−τ dtµT (t) ≈ µT (tn) to be used. Accordingly, in a HMM, Eq. (4) is replaced with

xn
∣∣T (·) ∼ Normal

(
µT (tn), v

)
. (11)
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Again, as with Eq. (4), the exact choice of distribution (whether Normal or otherwise) is incidental. HMMs can
treat any emission distribution provided xn only depends on T (tn) as opposed to the full history of the trajectory
over the integration time.

With the measurements described by Eq. (11), we can use a HMM to learn the probabilities of the transitions
T (tn−1) → T (tn) → T (tn+1). For clarity, from now on, we will use cn = T (tn) and denote these transitions
with cn−1 → cn → cn+1. That is, cn is the state of the system precisely at the time tn.

For an HMM, transition probabilities are denoted with Pcn−1→cn . Since the system can attain K different
states σk, in general, a HMM possesses K ×K transition probabilities Pσk→σk′ . Now, we gather the transition
probabilities out of the same σk in a vector P̄k = (Pσk→σ1 , Pσk→σ2 , · · · , Pσk→σK ) and, for clarity, gather all of
the vectors in a matrix

¯̄P =


P̄σ1

P̄σ2
...

P̄σK

 . (12)

The matrix ¯̄P is related to the system’s switching rates λσk→σk′ and escape rates λσk . Specifically, if we gather
them in

¯̄G =


−λσ1 λσ1→σ2 . . . λσ1→σK
λσ2→σ1 −λσ2 . . . λσ2→σK

...
...

. . .
...

λσK→σ1 λσK→σ2 . . . −λσK

 (13)

which is termed generator matrix (80, 93), then ¯̄P is obtained by

¯̄P = exp
( ¯̄G∆t

)
(14)

where exp(·) denotes the matrix exponential. We point out that ¯̄π and ¯̄P are both probability matrices, however,
they assume quite different properties. For instance, πσk→σk = 0 while Pσk→σk > 0.

Although knowing ¯̄G is sufficient to specify ¯̄P , the inverse is not true: knowing ¯̄P does not necessarily lead
us to a unique ¯̄G and so the switching rates cannot simply be inferred from ¯̄P . This is a consequence of the
multivalued nature of the logarithm. As such, one transition probability matrix may corresponds to multiple rate
matrices (93). Instead, provided λσk∆t� 1 for all σk, we may approximate Eq. (14) by

¯̄P ≈ ¯̄I + ¯̄G∆t (15)

where ¯̄I is the identity matrix of size K × K. Under this approximation, we can estimate transition rates by
¯̄G ≈ ( ¯̄P − ¯̄I)/∆t.

Below, we highlight the steps necessary to estimate the quantities of interest in a HMM. Specifically, a HMM
relies on the statistical model

c0 ∼ Categorical (ρ̄) (16)
cn+1

∣∣cn ∼ Categorical
(
P̄cn
)

(17)
xn
∣∣cn ∼ Normal (µcn , v) . (18)
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To model the full distribution over the quantities of interest, e.g., initial probabilities, ρ̄, transition probabilities
P̄σk , state levels µ̄ and the trajectory of the system T (·) which is encoded by ~c = (c0, c1, . . . , cN ), we follow
the Bayesian paradigm (78, 94). Within this paradigm, we place prior distributions over the parameters and we
discuss the appropriate choices next.

On the transition probabilities P̄σk , we place a Dirichlet prior with concentration parameter A

P̄σ1 ∼ Dirichlet
(
A

K
,
A

K
, ...,

A

K

)
(19)

P̄σ2 ∼ Dirichlet
(
A

K
,
A

K
, ...,

A

K

)
(20)

... (21)

P̄σK ∼ Dirichlet
(
A

K
,
A

K
, ...,

A

K

)
(22)

which is conjugate to the Categorical distribution (38, 39, 41, 81). We consider a similar prior distribution, with
concentration parameter α, also for the initial transition probability ρ̄, namely

ρ̄ ∼ Dirichlet
( α
K
,
α

K
, ...,

α

K

)
. (23)

Subsequently, we place priors on the state levels µ̄ = (µσ1 , µσ2 , ..., µσK ). The prior that we choose is the conjugate
Normal prior

µσk ∼ Normal (H,V ) (24)

with hyperparameters H,V .

Once the choices for the priors are made, we then form the posterior distribution (34, 38–43)

P
(
ρ̄, ¯̄P, µ̄, T (·)

∣∣x) = P
(
ρ̄, ¯̄P, µ̄,~c

∣∣x) (25)

containing all unknown variables that we wish to learn. As the posterior distribution in Eq. (25) does not attain an
analytical form, we develop a specialized computational scheme exploiting Markov Chain Monte Carlo (MCMC)
to generate pseudorandom samples from this posterior. We explain the details of this scheme in Section 2.2.3.

2.2.2 Model Inference via HMJPs

HMJP apply directly on the formulation of Section 2.1.2 and, unlike with HMM (see Eq. (10)), no approximations
are required on the system switching kinetics. Therefore, in order to proceed with inference, we need only provide
appropriate prior distributions on the parameters, namely ρ̄, ¯̄π, λ̄, µ̄.

We start with the prior distribution for the escape rates λ̄ = (λσ1 , λσ2 , ..., λσK ). We put priors on each of the
λσk for all k = 1, 2, ...,K. The prior we select is

λσk ∼ Gamma
(
η,
b

η

)
(26)

for all k = 1, 2, ...,K with hyperparameters η, b. We note that this prior is conjugate to the exponential distribution
given in Eq. (6). Next, we place a prior on π̄σk for all k = 1, 2, ...,K. For this, we place independent conjugate
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Dirichlet priors with concentration parameter A such that πσk→σk = 0 holds for all k = 1, 2, ...,K

π̄σ1 ∼ Dirichlet
(

0, A

K − 1 , ...,
A

K − 1

)
(27)

π̄σ2 ∼ Dirichlet
(

A

K − 1 , 0, ...,
A

K − 1

)
(28)

...

π̄σK ∼ Dirichlet
(

A

K − 1 ,
A

K − 1 , ..., 0
)
. (29)

Finally, on ρ̄ and µ̄ we place the same prior distributions as in Eq. (23) and Eq. (24), respectively.

Once the choices for the priors are made, we then form the posterior distribution

P
(
ρ̄, ¯̄π, λ̄, µ̄, T (·)

∣∣x) = P
(
ρ̄, ¯̄π, λ̄, µ̄, (~S, ~D,M)

∣∣x) (30)

containing all unknown variables that we wish to learn. As, once more, the posterior distribution does not attain
an analytical form, we develop a specialized computational scheme exploiting MCMC. We explain the details of
this scheme in Section 2.2.3.

2.2.3 Computational Inference

We carry out the analyses, shown in Section 3, evaluating the associated posteriors with an MCMC scheme relying
on Gibbs sampling (34, 38–43, 62). The overall sampling strategy, for either the HMM or the HMJP, is as follows:

1. Update the trajectory T (·), that is ~c for HMM or (~S, ~D,M) for HMJP;

2. Update the kinetics, that is P̄σk for HMM or π̄σk and λσk for HMJP;

3. Update the initial probabilities ρ̄;

4. Update state levels µ̄.

We repeat these updates to obtain a large number of samples. The end result is a sampling of the posterior
P
(
ρ̄, ¯̄P, µ̄,~c|x

)
for the HMM and P

(
ρ̄, ¯̄π, λ̄, µ̄, (~S, ~D,M)|x

)
for the HMJP. Both samplings can be used to

estimate switching rates λσk→σk′ ; for example, HMJP by Eq. (2) and HMM by Eq. (15).

In the Supporting Material (A.2) we provide a thorough description of all steps. We also freely provide a working
code through the authors’ website.

3 Results

To demonstrate how HMJPs work and highlight their advantages over HMMs, in this section, we use synthetic
data that mimic a single molecule experiment. Synthetic data are ideal for this purpose as they allow us to
benchmark the results against the exact, readily available, “ground truth”. We obtain such data from the Gillespie
algorithm described in Section 2.1.3 and we explain our simulation choices below.

We focus on two datasets: one where the system exhibits slow kinetics and another where the system exhibits
fast kinetics as compared with data acquisition, see Fig. 1. We provide the values for the hyperparameters in all
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analyses, as well as any other choices made, in Supporting Material (A.3). To be clear, we only assume to have
access to the data, i.e., the gray dashes of panels (a1) and (b1) of Fig. 1. The cyan (ground truth) trajectories
are assumed unknown and to be determined.

In our results, we first benchmark the HMJP on the easy (i.e., slow kinetics) case shown in Fig. 1 panel (a1);
see Figs. 2 and 3. This is the regime where the HMM also works well and the expected (good) results for the
HMM are relegated to the appendix; see Supporting Material (A.1). Next, we turn to the more complex case of
fast kinetics. A sample time trace is shown in Fig. 1 panel (b1). The results for both the HMJP and HMM are
shown in Figs. 4 and 5.

3.1 Data Simulation

To simulate the synthetic data, we assumed K = 2 distinct states, such as on/off or folded/unfolded states for
illustrative purposes only. We assumed well separated state levels which we set at µσ1 = 1 au and µσ2 = 7 au
where au denote arbitrary units. The prescribed detector FWHM was set at 0.25 au.

Additionally, for sake of concreteness only, we assumed an acquisition period of ∆t = 0.1 s and consider long
integration periods by setting τ equal to 90% of ∆t. In terms familiar to microscopists, our setting corresponds
to a frame rate of 10 Hz with exposure time of 90 ms and a dead time of 10 ms (40). The onset and concluding
time of the experiment are the same for all simulated measurements and set at t0 = 0.05 s and tN = 20 s,
respectively.

To specify kinetics, we use the following structure for the switching rates λσ1→σ2 , λσ2→σ1 , with a parameter τf
which sets the timescale of the system kinetics,

λσ1→σ2 = 1.1
τf
, λσ2→σ1 = 1.6

τf
. (31)

We simulate a case with τf = 0.8 s, which involves system kinetics that are slower than the data acquisition rate;
and a case with τf = 0.067 s, which involves system kinetics that are faster than the data acquisition rate.

3.2 Analysis with HMJPs

As a benchmark, we provide the results for the HMJP for those measurements shown on Fig. 1 panel (a1)
associated with slow switching rates. These results include estimates of the trajectory (~S, ~D,M) (see Fig. 2),
state levels µ̄ (see Fig. 3) and the switching rates λ̄ (see Fig. 3). To obtain these estimates, we generate samples
from the posterior distribution P(ρ̄, ¯̄π, λ̄, µ̄, (~S, ~D,M)

∣∣x) with the HMJP sampler of Section 2.2.3.

In Fig. 2 panel (a1), the ground truth trajectory is shown in cyan while the measurements are shown in gray.
We showed the zoomed trajectory and observations in panel (b). We also provide the empirical histogram of the
observation in panel (a2) highlighting the slow switching rates of the system. After determining the posteriors over
the trajectories with HMJPs, for illustrative purposes, we only show the maximum a posteriori (MAP) trajectory
in Fig. 2 panel (b). We observe that the HMJP MAP trajectory (magenta) captures most of the fast switches,
shown in Fig. 2 panel (b), in the system trajectory. In Fig. 3, there are four panels. In these four panels, we
provide the superposed posterior distributions over the two state levels and two rates estimated by the HMJP
along with its associated 95% confidence interval and ground truths (dashed green lines).

In summary: HMJP performs well on this benchmark data. The same is true of the simpler HMM (as would be
expected) whose results are shown in Figs. A.1 and A.2. An important bring home message for the HMJP however
is the fact that even if state transitions occur midway through the integration time, the HMJP can discern when
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Fig. 2. HMJP trajectory estimates for slow state switching. Here we provide trajectory estimates obtained with the
HMJP when the switching rate is slower than the data acquisition rate, 1/∆t = 10 (1/s). In this figure’s panel (a1), the
measurements are shown as gray rectangles (the width of the rectangle coincides with the integration period as shown
in Fig. 1) generated based on the description provided in Section 2.1. We superposed the true trajectory (cyan) with the
measurements in panel (a). Next, in panel (a2), we provide the histogram of all measurements to visualize the system
kinetics. For illustrative purposes, we only show the MAP estimates of the HMJP on a zoomed in region of panel (a1).
Next, we provide that region of the panel (a1) in panel (b). In panel (b), we show the the MAP trajectory estimates of
HMJP (magenta) that is superposed with the measurements and the true trajectory (cyan). For visual purposes only, we
offset the HMJP MAP trajectory estimate by slightly shifting it downward. We observe that the HMJP MAP trajectory is
able to capture switching occurring roughly in the middle of the integration time. This is not something that the HMM can
capture. Here, simulated measurements are generated with λσ1→σ2 , λσ2→σ1 Eq. (31) where the data acquisition happens
at every ∆t = 0.1 s with τf = 0.8 s and τ = 0.09 s starting at t0 = 0.05 s until tN = 20 s.
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Fig. 3. HMJP state level and rate estimates for slow state switching. Here we provide posterior state level and rate
estimates obtained with HMJP whose time trace we discussed in Fig. 2. We expect HMJPs to perform well in estimating
the true state levels and rates when these rates are slower than the data acquisition rate. In all figure panels, we superposed
the posterior distributions over state levels and rates for HMJP (blue) along with their 95% confidence intervals, the true
state levels (dashed green lines) and the corresponding prior distributions (magenta lines). We start with the information
in panels (a1) and (a2). We observe in these panels that the HMJP posterior distributions over state levels contain the
true state levels within their 95% confidence intervals. Next we move to the panels (b1) and (b2) which show the posterior
distributions over the rates labeled λσk→σk′ for all k, k′ = 1, 2. Again, the HMJP does quite well in estimating these rates
as measured by the fact that the ground truth lies within the 95% confidence intervals of the posteriors. In this figure, the
analyzed simulated measurements are generated with the same parameters as those provided in Fig. 2.
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these occurred. The same is not true of the HMM that, as mentioned earlier, assumes by construction that state
transitions must occur at the end of the data acquisition period.

3.3 Comparison of HMJPs with HMMs

We now present a comparison of HMJPs and HMMs on the analysis of the simulated measurements shown
in Fig. 1 panel (b1). We expect the HMJP to outperform the HMM as we are now operating in a regime, with
switching rates 2.5 times faster than earlier, where the HMM requirement, spelled out in Eq. (10), breaks down.

We used these measurements to estimate the posterior distribution over the trajectory, T (·), initial and switching
probabilities, ρ̄ and ¯̄π or ¯̄P , state levels, µ̄ and escape rates, λ̄. To accomplish this we generate samples from
the posterior distributions P(ρ̄, ¯̄π, λ̄, µ̄, (~S, ~D,M)

∣∣x) and P(ρ̄, ¯̄P, µ̄,~c
∣∣x) using the HMJP and HMM samplers of

Section 2.2.3, respectively.

Following the pattern from the previous section on slow kinetics, we first show the trajectories inferred by HMJPs
and HMMs in Fig. 4, then we show estimates of the state levels and transition probabilities in Fig. 5. In particular,
the escape rates estimated from HMJPs are used in Eq. (15) to yield transition probabilities that we subsequently
compared with the transition probabilities inferred by HMMs.

Predictably, the HMM performs poorly. For example, we see in Fig. 4 panel (a4) that the HMJP MAP trajectory
captures many of the fast switches occurring during integration times. The HMM MAP trajectory is severely
constrained to allowing switches at the end of the time period and, as such, cannot accommodate fast kinetics.
While the trajectory inferred by HMJPs is not perfect, this ability to tease out many correct state switches in its
MAP trajectory is sufficient for HMJPs to obtain estimates of the transition probabilities and state levels that lie
within the 95% confidence interval; see panels (a1)-(a2) and (b1)-(b4) of Fig. 5. The same does not hold for
HMMs where their inability to detect state switches now percolates down to the quality of their estimates for the
state levels and transition probabilities. To wit, from panels (a1)-(a2) of Fig. 5 we see that the HMM grossly
overestimates (by about 90%) µσ1 and underestimates (about 30%) µσ2 . What is more, as can be seen in panels
(b1)-(b4) of Fig. 5, the HMM provides very wide posterior distributions over transition probabilities. This is by
contrast to the much sharper posterior of the HMJP whose mode closely coincides with the ground truth; see
panels (b1)-(b4) of Fig. 5.

An observation is warranted here. As the HMM cannot accommodate fast kinetics, it must ascribe the apparent
spread around the Pσk→σk′ histogram (see panels (b1)-(b4) of Fig. 5) to an increased variance in the posterior
distribution of transition probabilities. So, while the breadth of the posteriors of the HMJP are primarily ascribed
to the fact that finite data informs the posterior, the origin of the breadth of the histogram of the HMM is an
artifact of its inability to accommodate fast kinetics.

In the appendix, we delve into finer details of the effect of finiteness of data on the HMM posterior distributions
over transition probabilities for fast switching rates in Supporting Material (A), see Fig. A.6. In particular, we
analyzed a sequence of 3 data sets using the HMM framework with the same fast switching rates as in Fig. 4 panel
(a1) but with differing data set lengths. While more data eventually narrows the HMM’s posterior over transition
probabilities, the amount of data has almost no effect on the poor posterior distributions over state levels Fig. A.7.
Further analysis on the performance of both HMJP and HMM is left for the Supporting Material (A) in particular
cases where the rate from one state to another is fast and the other is slow. We also provide the HMJP rate
estimates in Fig. A.5 panels (a1)-(a2) for the data set given in Fig. 1 panel (b1) as well as a comparison of HMJP
posterior transition probability estimates associated with the data provided in Fig. 1 panel (a1) with and without
learning the trajectory T (·) simultaneously in Fig. A.8. Finally, we compare the posterior trajectory estimates of
HMJP and HMM based on a metric that is the enclosed area under the learned trajectories in Fig. A.9.
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Fig. 4. HMJP with HMM trajectory estimates for fast state switching. Here we provide trajectory estimates obtained
with HMJP and HMM when the switching rate is faster than the data acquisition rate, 1/∆t = 10 (1/s). We expect HMMs
to perform poorly in estimating the true trajectory when switching is fast. In this figure’s panel (a1), the measurements
are shown with gray rectangles (the width of the rectangle coincides with the integration period as shown in Fig. 1) that
are generated based on the description provided in Section 2.1. We follow the same color scheme and layout as in Fig. 2
except for panel (a4) where we provide the MAP trajectory estimate provided by the HMJP as well as the HMM. In
panel (a4), the magenta dashed line shows the HMJP MAP trajectory estimate and the blue line shows the HMM MAP
trajectory estimate. For visual purposes, we offset the HMJP MAP trajectory estimate and HMM MAP trajectory estimate
by shifting these downward. Here, simulated measurements are generated with λσ1→σ2 , λσ2→σ1 (see Eq. (31)) where the
data acquisition happens at every ∆t = 0.1 s with τf = 1/15 s and τ = 0.09 s starting at t0 = 0.05 s until tN = 20 s.
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Fig. 5. HMJP with HMM state level and transition probability estimates for fast state switching. Here we provide
posterior state level and transition probability estimates obtained with HMJP and HMM when the switching rate is faster
than the data acquisition rate, 1/∆t = 10 (1/s). We expect HMMs to perform poorly in estimating the true state levels
and transition probabilities when the system switching is fast. In all of this figure’s panels, we superposed the posterior
distributions over state levels for both HMJP (blue) and HMM (orange) along with their 95% confidence intervals, the
true state levels and true transition probabilities (dashed green lines). Next we move to transition probability estimates
provided in panels (b1)-(b4). In these panels, we wish to test the performance of HMJPs and HMMs in estimating the
transition probabilities. In this figure, each panel is corresponding to the posterior distribution of a transition probability
labeled as Pσk→σk′ for all k, k′ = 1, 2. Here, simulated measurements are generated with the same parameters as those
provided in Fig. 4.
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4 Discussion

HMMs have been a hallmark of time series analysis in single molecule Biophysics (11, 12, 38–40, 44, 45, 48–56) but
they have a critical limitation. HMMs apply only provided the temporal resolution of the experimental apparatus
is faster than the system kinetics under study (31, 95–97). Otherwise, HMMs mistakenly ascribe the signal
generated by fast dynamics to misassignments of signal levels, such as Förster resonance energy transfer distances
in single molecule FRET (7, 12, 38, 39, 48), amongst other artefacts; see Figs. 5, A.2 and A.4. Fundamentally
this limitation arises because HMMs treat the dynamics of the probed systems discretely while, in fact, they evolve
continuously.

The HMJP we describe here is the continuous time analog of the HMM. It can be easily adapted to treat various
single molecule experiment setups. To wit, in a companion article, we will use HMJPs for the analysis of single
molecule FRET (20–27, 44).

The HMJP tackles a different problem as that of the H2MM: 1) we work in the Bayesian paradigm and obtain full
posteriors over unknowns while the H2MM uses maximum likelihood and provides point statistics over unknowns;
2) the HMJP tackles data from a different experiment as that of the H2MM. In particular, the H2MM assumes
the data are available as single photon trajectories while we focus on the fundamental challenge of unraveling
processes on timescales faster than those of detectors with finite exposure time.

The HMJP does have limitations. In the limit that state switching rate grows, the amount of data needed to
ascertain a meaningful posterior over the transition kinetics also grows. In the trivial limit that the state switching
is extremely fast, no method, whether HMJP or otherwise, would be able to tease out information on the transition
kinetics from what appears as a uniform horizontal time trace with noise with no discernible transitions. Although,
the quality of the data is not a limitation of HMJP, it is clear that the duration of the detector dead time affects
the performance of all methods of inference. Specifically, the longer the dead time, the worse the HMJP will
perform. In the limit the dead time is as long as the exposure itself, the HMJP reduces to the HMM.

Of great interest is the possibility to learn the number of states within an HMJP framework. That is, to re-pitch
the HMJP within a Bayesian nonparametric paradigm following in the footsteps of the HMM and its nonparametric
realization, the infinite HMM (37–40, 98–100). Methods have been developed to report on point statistics as
they pertain to infinite MJPs (70, 101). A natural extension for us would be to fully sample from a posterior with
realistic measurement models relevant to single molecule Biophysics within the nonparametric paradigm.
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fret and hidden markov models,” Journal of the American Chemical Society, vol. 136, pp. 4534–4543, 2014.

14. M. Andrec, R. M. Levy, and D. S. Talaga, “Direct determination of kinetic rates from single-molecule photon arrival trajectories
using hidden markov models,” The Journal of Physical Chemistry A, vol. 107, pp. 7454–7464, 2003.

15. G. Baumann and G. S. Easton, “Modeling state-dependent sodium conductance data by a memoryless random process,”
Mathematical Biosciences, vol. 60, pp. 265–276, 1982.

16. R. Edeson, G. Yeo, R. Milne, and B. Madsen, “Graphs, random sums, and sojourn time distributions, with application to
ion-channel modeling,” Mathematical biosciences, vol. 102, pp. 75–104, 1990.

17. G. F. Yeo, R. Milne, R. Edeson, and B. Madsen, “Statistical inference from single channel records: two-state markov model
with limited time resolution,” Proceedings of the Royal society of London. Series B. Biological sciences, vol. 235, pp. 63–94,
1988.

18. R. Milne, G. Yeo, B. Madsen, and R. Edeson, “Estimation of single channel kinetic parameters from data subject to limited
time resolution,” Biophysical journal, vol. 55, pp. 673–676, 1989.

19. R. Milne, G. Yeo, R. Edeson, and B. Madsen, “Stochastic modelling of a single ion channel: an alternating renewal approach
with application to limited time resolution,” Proceedings of the Royal society of London. Series B. Biological sciences, vol. 233,
pp. 247–292, 1988.

20. M. R. Wasserman, J. L. Alejo, R. B. Altman, and S. C. Blanchard, “Multiperspective smfret reveals rate-determining late
intermediates of ribosomal translocation,” Nature structural & molecular biology, vol. 23, p. 333, 2016.

21. M. Lu, X. Ma, L. R. Castillo-Menendez, J. Gorman, N. Alsahafi, U. Ermel, D. S. Terry, M. Chambers, D. Peng, B. Zhang, et al.,
“Associating hiv-1 envelope glycoprotein structures with states on the virus observed by smfret,” Nature, vol. 568, pp. 415–419,
2019.

22. A. Mazouchi, Z. Zhang, A. Bahram, G.-N. Gomes, H. Lin, J. Song, H. S. Chan, J. D. Forman-Kay, and C. C. Gradinaru,
“Conformations of a metastable sh3 domain characterized by smfret and an excluded-volume polymer model,” Biophysical
journal, vol. 110, pp. 1510–1522, 2016.

23. R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule fret,” Nature methods, vol. 5, pp. 507–516, 2008.
24. Y. Zhu, L. He, Y. Liu, Y. Zhao, and X. C. Zhang, “smfret probing reveals substrate-dependent conformational dynamics of e.

coli multidrug mdfa,” Biophysical journal, vol. 116, pp. 2296–2303, 2019.
25. E. Lerner, T. Cordes, A. Ingargiola, Y. Alhadid, S. Chung, X. Michalet, and S. Weiss, “Toward dynamic structural biology:

Two decades of single-molecule förster resonance energy transfer,” Science, vol. 359, p. eaan1133, 2018.
26. A. Krishnamoorti, R. C. Cheng, V. Berka, and M. Maduke, “Clc conformational landscape as studied by smfret,” Biophysical

Journal, vol. 116, p. 555a, 2019.
27. S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps

two-dimensional reaction landscape of the holliday junction,” Science, vol. 318, pp. 279–283, 2007.
28. B. Schuler, “Single-molecule fret of protein structure and dynamics-a primer,” Journal of nanobiotechnology, vol. 11, p. S2,

2013.
29. M. Kruithof and J. van Noort, “Hidden markov analysis of nucleosome unwrapping under force,” Biophysical journal, vol. 96,

pp. 3708–3715, 2009.
30. P. J. Elms, J. D. Chodera, C. J. Bustamante, and S. Marqusee, “Limitations of constant-force-feedback experiments,” Bio-

physical journal, vol. 103, pp. 1490–1499, 2012.
31. Y. Zhang, J. Jiao, and A. A. Rebane, “Hidden markov modeling with detailed balance and its application to single protein

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225052doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225052
http://creativecommons.org/licenses/by-nc-nd/4.0/


folding,” Biophysical journal, vol. 111, pp. 2110–2124, 2016.
32. F. G. Ball and J. A. Rice, “Stochastic models for ion channels: Introduction and bibliography,” Mathematical Biosciences,

vol. 112, pp. 189 – 206, 1992.
33. A. Lee, K. Tsekouras, C. Calderon, C. Bustamante, and S. Pressé, “Unraveling the thousand word picture: an introduction to
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A Supporting Material

In this supplement we provide: 1) additional time series analysis to test the robustness of HMJP and HMM
referenced in the main text, see Supporting Material (A.1); 2) a complete summary of the theory underlying
the HMJP and HMM frameworks, see Supporting Material (A.2); 3) a summary of notational conventions and
parameter choices used, see Supporting Material (A.3).

A.1 Additional Analyses

Additional results are provided in the following order: we investigated a) the performance of HMJP and HMM in
estimating the trajectory, state levels and transition probabilities on the analysis of the simulated measurements
generated with slow switching rates and mixed switching rates (i.e., λσ2→σ1 fast and λσ1→σ2 slow); b) the posterior
rate distributions of HMJP for fast and mixed switching cases; c) how the finiteness of the data affect HMM
posterior transition probabilities; d) the source of bias in negatively skewed HMJP posterior transition probability
estimates; e) the assessment of the mean of the are of posterior trajectory estimates of HMJP and HMM.

A.1.1 Comparison of HMJP with HMM for Slow Switching Rates

In the text in Figs. 2 and 3, we omitted the results of the slow kinetics for the HMM analysis (as this is a regime
where we expect the HMM to do well). We use the same simulation parameters that were used to generate in
Fig. 1 panel (a1). Predictably, in the slow kinetics regime, we expect both HMJP and HMM to do well and this
is what we find.

In Fig. A.1 panel (a3), we observe that there is at most one switch during one integration period. We see
in Fig. A.1 panel (a4) that both HMJP and HMM MAP trajectory estimates are capable of capturing these
switches in the true trajectory.

Next, we move to the posterior probability distribution over state levels shown in Fig. A.2 panels (a1)-(a2). In
panel (a1), we observe that the HMM grossly overestimates (by about 30%) µσ1 and in panel (a2), HMM under-
estimates (about 3%) µσ2 . By contrast, the HMJP posterior probability distribution for the state levels provide
very good state level estimates for both µσ1 and µσ2 . Put differently, true µσ1 , µσ2 values occur in the 95%
confidence intervals of the HMJP posterior distributions over state levels.
Finally, we discuss the posterior distribution over transition probabilities obtained from HMJP and HMM frame-
works in Fig. A.4 panels (b1)-(b4). We expect both HMM and HMJP to provide very good estimates for
probabilities of switching among the states as these are associated with slow switching rates prescribed with
λσ1→σ2 , λσ2→σ1 (see Eq. (31)).
In Fig. A.2 panels (b1)-(b4), we observe that HMM and HMJP perform quite well in estimating transition prob-
abilities based on its narrow 95% confidence intervals.

Now we move on to the results for mixed switching rates. We define the values for the parameters τf , τ as we
proceed.

A.1.2 Comparison of HMJP with HMM for Mixed Switching Rates

In this section, we test the performance of HMJPs and HMMs in estimating trajectory Fig. A.3, state levels Fig. A.4
and transition probabilities Fig. A.4 on the analysis of the simulated measurements associated with the switching
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Fig. A.1. HMJP with HMM trajectory estimates for slow switching. Here we provide trajectory estimates obtained
with HMJPs and HMMs. The results for the HMJP were previously provided in Figs. 2 and 3 but here we add the results for
the HMM in panel (a4). We follow identical coloring schemes and convention as with Fig. 2 of the main. The parameters
used are identical to those of Fig. 2.
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Fig. A.2. HMJP with HMM state level and transition probability estimates for slow switching. Here we provide
posterior state level and transition probability estimates obtained with HMJPs and HMMs. The results for the HMJP on
posterior state levels were previously provided in Fig. 3 but here we add the results for the posterior transition probabilities
for both HMJP and HMM in panels (b1)-(b4) and posterior state level estimaets for HMM in panels (a1)-(a2). We follow
identical coloring schemes and convention as with Fig. 3 of the main. The parameters used are identical to those of Fig. 2.
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Fig. A.3. HMJP with HMM trajectory estimates for mixed switching. Here we provide trajectory estimates obtained
with the HMJP and HMM when switching rates are slower or faster than the data acquisition rate, 1/∆t = 10 (1/s). We
follow identical coloring schemes and convention as in Fig. A.1. We see that the HMJP MAP trajectory is able to capture
most of the fast switches between the states σ1 and σ2. Simulated measurements are generated with λσ1→σ2 , λσ2→σ1

(see Eq. (A.1)) where the data acquisition happens every ∆t = 0.1 s with τf = 1/15 s and τ = 0.09 s starting at
t0 = 0.05 s until tN = 20 s.
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rates λσ1→σ2 , λσ2→σ1 , with a parameter τf which sets the timescale of the system kinetics,

λσ1→σ2 = 0.2
τf
, λσ2→σ1 = 1.6

τf
(A.1)

where τf = 1/15 s and data acquisition rate, 10 (1/s). We start with Fig. A.3 panel (a3) where we observe that
there are multiple fast switching events during one integration period. We see in Fig. A.3 panel (a4) that the
HMJP MAP trajectory estimate is capable of capturing most of the fast switches occurring in the true trajectory
while the HMM MAP trajectory estimate provides a poor trajectory estimate as compared to ground truth.

The HMM’s poor MAP trajectory estimate can be explained with the posterior probability distribution over state
levels shown in Fig. A.4 panels (a1)-(a2). In Fig. A.4, we provide the superposed posterior distributions for
HMJP and HMM over state levels in panels (a1)-(a2) and transition probabilities in panels (b1)-(b4). In panel
(a1), we observe that the HMM grossly overestimates (by about 30%) µσ1 . In panel (a2), the HMM grossly
underestimates (by about 20%) µσ2 . By contrast, the HMJP posterior probability distribution for the state levels
provide very good state level estimates for both µσ1 and µσ2 . Put differently, true µσ1 , µσ2 values take place at
the 95% confidence intervals of the HMJP posterior distributions over state levels. Finally, we discuss the posterior
distribution over transition probabilities obtained from the HMJP and HMM frameworks Fig. A.4 panels (b1)-(b4).
We expect to see HMMs provide very good estimates for the transition probabilities from state σ1 to itself and
σ2 as these are associated with slow switching rates prescribed with λσ1→σ2 (see Eq. (A.1)). By contrast, we
expect wide posterior distributions over transition probabilities from conformational state σ2 to itself and σ1 as
Pσ2→σ1 and Pσ2→σ2 are associated to the fast switching rates defined by λσ2→σ1 (see Eq. (A.1)). In Fig. A.4
panels (b1)-(b4), we observe that the HMJP still performs quite well in estimating transition probabilities based
on its narrow 95% confidence intervals. Next, we provide the posterior distributions over rates obtained by the
HMJP for fast and mixed switching kinetics.

A.1.3 Robustness Analysis for HMJP Posterior Rate Estimates for Fast and Mixed Kinetics

In the main text, for sake of comparison between HMJPs and HMMs, we compared their posterior estimates for
the transition probability. However, HMJPs are also capable of providing estimates for the transition rates, not
just transition kinetics.

Using parameter values to simulate the results of Fig. 4 for the fast kinetics and Fig. A.3 for the mixed rates we
show rate posteriors below in Fig. A.5.

In Fig. A.5, we observe that the HMJP is capable of providing very good estimates for the analyzed data generated
with slow, fast and mixed switching rates. For all simulations, we always have the same shape (η) and scale ( bη )
hyperparameters for the gamma prior distributions and we set η = 2 and b = 300. Now we move on to the rest
of the additional results. We define the values for the parameters τf , τ as we proceed.

A.1.4 Robustness Analysis with Respect to Data Set Length for HMM Posterior State Level and
Transition Probability Estimates

Here we show how our posterior estimates over quantities including MAP trajectory estimate, state level and
transition probabilities vary as a function of variable data set length, see Figs. A.6 and A.7. .

We focused on the case of fast kinetics because we want to demonstrate that the poor estimates are not due to
finiteness of data. The parameters used are identical to those used to generate the data for Fig. 1 panel (b1)
except for the final time that is tN = 60 s.

We provide a quantitative metric (area under the curve (102); see Eq. (A.2)) for deviation from ground truth
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Fig. A.4. HMJP with HMM state level and transition probability estimates for mixed switching. Here we provide
posterior state level and transition probability estimates obtained with the HMJP and HMM when the switching rate is
slower or faster than the data acquisition rate, The results for the HMJP and HMM MAP trajectory estimates are provided
in Fig. A.3. We show the superposed posterior state level estimates for the HMJP and HMM in panels (a1)-(a2) and
the superposed results for the posterior transition probabilities for both HMJP and HMM in panels (b1)-(b4). We follow
identical coloring schemes and convention as with Fig. 3 of the main text. Here, simulated measurements are generated
with the same parameters as those provided in Fig. A.3.
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Fig. A.5. HMJP rate estimates for fast and mixed switching rates. Here we provide posterior rate estimates with the
HMJP for the simulated measurements provided in Figs. 4 and A.3. We follow identical coloring schemes and convention as
with Fig. 3 of the main. Here, simulated measurements associated with estimates given in panels (a1)-(a2) and (b1)-(b2)
are generated with the same parameters used in Figs. 2 and 4.
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Fig. A.6. HMM trajectory estimates for fast state switching. Here we provide trajectory estimates obtained with the
HMM when the switching rates are faster than the data acquisition rate, 1/∆t = 10 (1/s). We follow identical coloring
schemes and conventions as we do in Fig. A.1. We demonstrate that the HMM MAP trajectory poorly estimates the true
trajectory.
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Fig. A.7. Finiteness of data analysis for HMM state level and transition probability estimates in the presence
of fast state switching. Here, we would like to show the effect of set data set length on the state level and transition
probability estimates provided by HMMs on the simulated measurements shown in Fig. A.6. To begin, in all panels, we
see the superposed posterior distributions of the state levels and transition probabilities obtained from HMMs for 33%
(orange), 66% (yellow), 100% (blue) of the entire simulated measurements along with their associated 95% confidence
intervals, the true state levels and transition probabilities (green dashed line).
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in Fig. A.9.

We performed our investigation for the HMM in 3 parts. First, we analyzed 33% of the data, next 66% of the data
and lastly we analyzed the entire data set with the HMM. We showed the simulated trajectory for the first 12% of
the entire data set in Fig. A.6. In Fig. A.6 panel (a1), we show the true trajectory (cyan) and the measurements
(gray rectangles). Next, in Fig. A.6 panel (a2) we showed the zoomed true trajectory and measurements. Finally,
in panel (a3), we provide the superposed true trajectory with HMM MAP trajectory estimate. We observe that
the HMM MAP trajectory estimate is a poor trajectory estimate. This poor trajectory estimates of HMM can be
explained by the poorly estimated state levels, see Fig. A.7 panels (a1)-(a2). In Fig. A.7, we observe in both panels
(a1)-(a2) that more data does not provide better state level estimates for HMMs. Subsequently, in Fig. A.7 panels
(b1)-(b4), we demonstrate that the posterior distributions over transition probabilities obtained with HMM for
all 3 data sets do not differ greatly from each other. Next we investigate the HMJP’s performance in estimating
transition probabilities with and without pre-specifying the ground truth trajectory.

A.1.5 Robustness Analysis with Respect to Learning the Trajectory Simultaneously with Transition
Probability Estimates for HMJPs

In this section, we test the effect of estimating trajectories simultaneously with transition probability estimates
using HMJPs. With sufficient data, we expect HMJPs to perform similarly well when: 1) the trajectory is
assumed to be known; and 2) the trajectory is not assumed to be known and thus to be estimated as well. We
demonstrated that posterior transition probabilities look similar when the trajectory is assumed to be known or
not known in Fig. A.8.

Now we compare the performance of HMJP and HMM in estimating trajectories based on the average area under
their posterior trajectory estimates.

A.1.6 Comparison of the Posterior Trajectory Estimates of HMM and HMJP

In this section, we provide a metric to compare the quality of the trajectory determination by HMMs and
HMJPs (102). As we have a posterior distribution over trajectories T (.) obtained by HMMs and HMJPs, we also
have posterior distributions over areas

area under trajectories =
∫ tN

t0

dtT (t) . (A.2)

In Fig. A.9, we compare the mean point statistic of area under trajectories for both HMM and HMJP.

We carried out this analysis for the simulated measurements investigated in the main text generated with slow
switching rates Fig. 2 and fast switching rates Fig. 4.

We observe that, the average areas under HMJP posterior trajectory estimates are very closed to the areas under
the true trajectories for slow and fast switching rate cases.
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Fig. A.8. HMJP transition probability estimates with and without trajectory information. Here, we provide the
analysis of the simulated measurements provided in Fig. 2 panel (a1). In this figure, we illustrate the HMJP’s performance
in estimating transition probabilities with and without learning the trajectory. To do so, in each figure panel we provide the
superposed posterior distributions over transition probabilities labeled as Pσk→σk′ for all k, k′ = 1, 2 obtained by HMJP
with unknown system trajectory (blue), with known system trajectory (orange) along with their associated 95% confidence
intervals for the estimates and the true transition probabilities (dashed green lines). We observe that there is very limited
change in the posterior transition probabilities based on their 95% confidence intervals when the trajectory is known or,
alternatively, learned simultaneously.
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Fig. A.9. HMJP with HMM average area under the trajectory estimates. Here we compare the performance of
HMJPs and HMMs in estimating trajectories based on the average area under their posterior trajectory estimate for the
simulated measurements generated with slow switching rates (denoted with “Slow”) , see Fig. A.1 and fast switching rates
(denoted with “Fast”), see Fig. 4. In this figure, we provide the average areas under the HMM (blue star) and HMJP
(magenta circle) posterior trajectory estimates and the area under the true trajectory (green circle) for both simulated
measurements generated with slow switching rates and fast switching rates.
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A.2 Detailed Description of the Statistical Models

A.2.1 Hidden Markov Jump Process

A.2.1.1 Summary of Equations

ρ̄ ∼ Dirichlet
(α

2 ,
α

2

)
(A.3)

λσ1 ∼ Gamma
(
η,
b

η

)
(A.4)

λσ2 ∼ Gamma
(
η,
b

η

)
(A.5)

µσ1 ∼ Normal (H,V ) (A.6)
µσ2 ∼ Normal (H,V ) (A.7)
π̄1 ∼ Dirichlet (0, A) (A.8)
π̄2 ∼ Dirichlet (A, 0) (A.9)

s0
∣∣ρ̄ ∼ Categorical (π̃0) (A.10)

dm|sm, λσ1 , λσ2 ∼ Exponential
(
λ̄sm

)
for m = 0, 1, 2, ...,M − 1 (A.11)

sm+1|sm, π̄σ1 , π̄σ2 ∼ Categorical
(
P̃sm

)
for m = 0, 1, 2, ...,M − 1 (A.12)

xm|T (·) , µσ1 , µσ2 ∼ Normal

1
τ

tm∫
tm−τ

dtµT (t), v

 for m = 1, 2, ...,M (A.13)

where T (·) is formulated as follows

T (t) =


s0 if t0 ≤ t < t0 + d0

s1 if t0 + d1 ≤ t < t0 + d0 + d1
...

...
sM−1 if t0 + d0 + · · ·+ dM−2 ≤ t < t0 + d0 + d1 + · · ·+ dM−1.

(A.14)

with M determined based on the first time

t0 +
M−1∑
m=0

dm ≥ tN . (A.15)

In this manuscript as in the case of HMM framework, we set α = A = 1,FWHM = 0.25, H = mean(data) au,
and V = 1 au.

A.2.1.2 Description of the Computational Scheme

Our MCMC exploits Gibbs sampling scheme (38, 39, 81). Accordingly posterior samples are generated by updating
each variables involved sequentially by sampling conditioned on all other variables and the measurements x.
Conceptually, the steps involved in the generation of each posterior

(
T (·) , ¯̄π, ρ̄, λ̄, µ̄

)
involve

1. Updating the trajectory T (·),
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2. Updating the transition probability matrix ¯̄π and ρ̄,

3. Updating λ̄, µ̄.

Specifically, for step 1, to sample the trajectory T (·), we need two different strategies. As the state dynamics
of the HMM evolve in discrete time, we use a forward filtering backward sampling scheme (34, 38–43). For
the HMJP, as the state dynamics evolve in continuous time, we perform uniformization prior to sampling a new
trajectory (62, 69, 70, 103, 104) and then we perform Gibbs sampling to obtain s1:M .

For steps 2, 3 we have conjugate priors. Thus, we can do direct sampling.

It is in step 1, where we update the trajectory of the system, where the HMM and HMJP differ most in methodology
and computational cost. This is because of the uniformization (103) required of the HMJP that sets M as
described in Eq. (8).

A.2.2 Hidden Markov Model

A.2.2.1 Summary of Equations

For K = 2, the full set of HMM equations is

ρ̄ ∼ Dirichlet
(α

2 ,
α

2

)
(A.16)

P̄σ1 ∼ Dirichlet
(
A

2 ,
A

2

)
(A.17)

P̄σ2 ∼ Dirichlet
(
A

2 ,
A

2

)
(A.18)

µσ1 ∼ Normal (H,V ) (A.19)
µσ2 ∼ Normal (H,V ) (A.20)

c0|ρ̄ ∼ Categorical (ρ̄) (A.21)
cn|cn−1, P̄σ1 , P̄σ2 ∼ Categorical

(
P̄cn−1

)
for n = 2, ..., N (A.22)

xn|cn, µσ1 , µσ2 ∼ Normal (µcn , v) for n = 1, ..., N (A.23)

A.2.2.2 Description of the Computational Scheme

The joint probability distribution of our framework is P
(
ρ̄, ¯̄P, µ̄, T (·)

∣∣x). As we do not have conjugacy between
dynamics and the measurements, it is not possible to have a direct sampling from the posterior distribution. For
this reason, we develop a specialized Markov Chain Monte Carlo (MCMC) scheme that can be used to generate
pseudorandom samples (81). This scheme is explained in detail below. A working implementation of the resulting
scheme in source code and GUI forms provided through the author’s website.

Our MCMC exploits Gibbs sampling scheme (38–41, 43, 81). Accordingly posterior samples are generated by
updating each one of the variables involved sequentially by sampling conditioned on all other variables and the
measurements x. Conceptually, the steps involved in the generation of each posterior

(
ρ̄, ¯̄P, µ̄,~c

)
are
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1. Update the trajectory ~c,

2. Update transition probabilities ¯̄P ,

3. Update transition probabilities ρ̄,

4. Update transition probabilities µ̄.

Sampling the trajectory T (·) = ~c involves forward filtering-backward sampling scheme (38, 39). Updating the
transition probability matrix can be carried out for every row separately on account of the independence of the
Dirichlet prior on each P̄σk and ρ̄. Because of the conjugacy between the Dirichlet distribution and Categorical
distribution, we have direct sampling updates for all P̄σk and ρ̄ (81). Similarly, due to conjugacy of the Normal
distribution with itself, we also have direct updates for µσk for all k = 1, 2.

We mention that updating ~c is carried out via forward filtering backward sampling (81) approach (38, 39, 43, 81).

In the process of generating pseudorandom numbers from the posterior distribution described above, the first
∼ 1000 pseudorandom numbers are discarded to account for MCMC burn-in. The rest of the generated numbers
contribute to the posterior probability distribution over the trajectories, transition probability matrix and state
levels.

Next, we provide the detailed information regarding these listed updates mentioned above.

A.2.2.3 Overview of the Sampling Updates

1. Sampling a trajectory T (·). We will sample continuous time trajectories using uniformization (62, 69, 103)
whose key steps 1, 2, 3 are illustrated in Fig. A.10. Uniformization uses ideas from discrete time-discrete
state space Markov processes.
To sample new trajectories, we start from rates, see Eq. (A.1) and old trajectories (see Fig. A.10 panel (a))
generating these trajectories using a Markov jump process. The trajectories are characterized by states “~S”
and associated holding times,“ ~D” namely,

T (·) =
(
~S, ~D,M

)
(A.24)

~S = {s0, s1, ..., sM−1} (A.25)
~D = {d0, d1, d2, ..., dM−1}. (A.26)

Following Eq. (13) of the main, we can construct a generator matrix ¯̄G. As a reminder, the system
occupies each state sm during the interval [tm, tm+1) with dm = (tm+1 − tm) holding times for all m =
0, 1, 2, ...,M − 1. As we can see from the cartoon figure in Fig. A.10 panel (b), we must now add virtual
jumps. At the mth time interval, we add a number virtual jumps and distribute these uniformly in tm+1−tm.
We select the number of jumps according to a Poisson distribution with intensity ν + ¯̄Gsmsm . Here

ν > max
k

λσK . To achieve this, we set ν =
(

max
k

λσK

)
ζ. In this manuscript, we choose ζ = 2 as

suggested in (62).
As such we initially overestimate the number of jump locations. We subsequently need to prune these down
by determining if these virtual jumps coincide with real jumps. In principle we can set ν to as large a value
as we like, this only increases the computational cost of pruning.
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Fig. A.10. A conceptual description of uniformization on sampling a Markov jump process. Here, we explain how
we perform uniformization to obtain a new trajectory estimate using the HMJP in 4 panels starting from an old trajectory
estimate. In panel (a), we show the old trajectory estimate that we would like to update. This green region is associated
with the nth integration period that give rise to measurement xn. We note that there is 1 jump in this old trajectory
estimate with 2 holding times that are labeled with d1, d2. We simply define the states associated with d0, d1, d2, d3 as
s0, s1, s2, s3, respectively. In panel (b), we introduce virtual jump events with circles in magenta and then we relabel the
trajectory with new holding times and states. Upon relabeling, we now have states s0, s

′
1, s
′
2, s
′
3, s
′
4, s3 associated with

the holding times d0, d
′
1, ..., d

′
4, d3. Next, we apply Gibbs sampling to sample each s′m for all m = 1, 2, 3, 4 conditioned

on all other variables. We show the newly sampled states in panel (c). The last step in this uniformization is to remove
the self-transitions from the new sampled trajectory so that it remain a Markov jump process. To do so, we remove the
self-transitions and in panel (d), we show the new sampled trajectory that is a Markov jump process with states s1

∗, s2
∗, s3

∗

and associated holding times d1
∗, d2

∗, d3
∗, respectively.
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To prune, as shown in panel (b) of Fig. A.10, we now must revert to a discrete Markov chain picture. We
begin by defining the transition matrix ¯̄B that coincides with the Poisson intensity of ν + ¯̄Gsmsm . It is

¯̄B =
¯̄G
ν

+ ¯̄I (A.27)

Given a transition matrix ¯̄B, we can now straightforwardly apply the forward filter-backward sampler to
sample those states visited to sample the states at each virtual jump point.
Below we provide the details of sampling a part of a trajectory that is associated with observation xn with
Gibbs sampling scheme.
First, we write down the target distribution and then we factorize it as follows

P
(
s′1:4
∣∣s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
(A.28)

= P
(
s′4
∣∣s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
P
(
s′3
∣∣s′4, s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
(A.29)

×P
(
s′2
∣∣s′3, s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
P
(
s′1
∣∣s′2, s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
. (A.30)

Next, we have to sample each part of this target distribution given above according to the following

(a)

P
(
s′1
∣∣s′2, s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
= P

(
s′1
∣∣s′2, s0, xn, d

′
1:4, µσ1 , µσ2

)
(A.31)

∝ P
(
s′2
∣∣s′1) (s′1∣∣s0

)
P
(
s′1
∣∣xn, . . . ) (A.32)

P
(
s′1|xn, d′1:4, µσ1 , µσ2

)
=
∑
s0

P
(
s′1, s0|xn, . . .

)
∝ P

(
xn|s1, d

′
1:4, µσ1 , µσ2

)∑
s0

P
(
s′1|s0

)
(A.33)

(b)

P
(
s′2
∣∣s′3, s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
= P

(
s′2
∣∣s′3, xn, d′1:4, µσ1 , µσ2

)
∝ P

(
s′3
∣∣s′2)P (s′2∣∣xn, . . . )(A.34)

P
(
s′2|xn, d′1:4, µσ1 , µσ2

)
=
∑
s′1

P
(
s′2, s

′
1|xn, d′1:4, µσ1 , µσ2

)
∝ P

(
xn|s′1, d′1:4, µσ1 , µσ2

)
(A.35)

×
∑
s′1

P
(
s′2|s′1

)
(c)

P
(
s′3
∣∣s′4, s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
= P

(
s′3
∣∣s′4, xn, . . . ) ∝ P

(
s′4
∣∣s′3)P (s′3∣∣xn, . . . ) (A.36)

P
(
s′3|xn, d′1:4, µσ1 , µσ2

)
=
∑
s′2

P
(
s′3, s

′
2|xn, d′1:4, µσ1 , µσ2

)
∝ P

(
xn|s′2, . . .

)∑
s′2

P
(
s′3|s′2

)
(A.37)

(d)

P
(
s′4
∣∣s0, s3, d

′
1:4, µσ1 , µσ2 , xn

)
= P

(
s′4
∣∣s3, xn, d

′
1:4, µσ1 , µσ2

)
∝ P

(
s3
∣∣s′4) (A.38)

×P
(
s′4
∣∣xn, d′1:4, µσ1 , µσ2

)
(A.39)

P
(
s′4|xn, . . .

)
=
∑
s′3

P
(
s′4, s

′
3|xn

)
∝ P

(
xn|s′4, d′1:4, µσ1 , µσ2

)
(A.40)

×
∑
s′3

P
(
s′4|s′3

)
.

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225052doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225052
http://creativecommons.org/licenses/by-nc-nd/4.0/


We repeat this process of sampling trajectory for all observations xn where n = 1, 2, ..., N . We should note
that ¯̄Bs′

k
s′
k′

= P (s′k|s′k′) with k, k′ = 1, 2, 3, 4.

Once we obtain the new trajectory (see Fig. A.10 panel (c)) we observe that this new trajectory includes
self transition events at the jump times.
However, occupying the same steps after the jump times is not allowed for continuous time processes,
therefore we can not have self transition events in Markov jump processes. To obtain a Markov jump
process from this sampled new trajectory, we drop the self transition events (see Fig. A.10 panel (d))
thereby obtaining a new trajectory which is a Markov jump process.
Next we explain how to update the transition probability matrix ¯̄π.

2. Sampling transition probabilities ¯̄π and ρ̄. We placed conjugate Dirichlet distributions to the Categorical
distribution for the rows of ¯̄π. Therefore, we update each row of ¯̄π via direct sampling as we do for the case
of the HMM

P
(
π̄k
∣∣x, s0:M , d1:M , q̄, µ̄

)
=

 M∏
m=1

∏
sn−1=σk

P (sm|sm−1 = σk, π̄k)

P (π̄k) . (A.41)

Similar direct sampling formulation applies to ρ̄ as follows

P
(
ρ̄
∣∣x, s0:M , d1:M , q̄, µ̄

)
∝ P

(
s0
∣∣ρ̄)P (ρ̄) . (A.42)

Next, we provide the details of sampling λ̄σk for all k = 1, 2.

3. Sampling λ̄. We placed conjugate Gamma prior distributions to the Exponential distribution for λ̄σk where
k = 1, 2. Therefore updating all λ̄σk with k = 1, 2 is carried out with direct sampling based on the following
formulation

P
(
λ̄σk
∣∣¯̄π,x, s0:M , d1:M , µ̄

)
∝ P

(
λ̄σk
∣∣s0:M , d1:M

)
=

M∏
n=1

∏
sn−1=σk

P (dn|sn−1 = σk)P
(
λ̄σk
)

(A.43)

=
M∏
n=1

∏
sn−1=σk

Exponential
(
dn; λ̄σk

)
Gamma

(
λ̄m; η, b

η

)

= λ̄

(
M∑
n=1

I(sn−1=σk)+ η
2−1

)
σk exp

−λ̄σk
 M∑
n=1

∑
sn−1=σk

dn + η

b

 (A.44)

= Gamma

λ̄σk ;
M∑
n=1

I (sn−1 = σk) + η,
1

M∑
n=1

∑
sn−1=σk

dn + η
b


for k = 1, 2. In this formulation, I denotes the indicator function and for example I (sn = 2) is 1 if sn = 2

for some n = 1, 2, ...,M and 0 otherwise.

4. Sampling µ̄. We perform the updates of µσk for all k = 1, 2 as a part of the Gibbs sampling scheme. There-
fore, we need the full conditional distributions of µσk for all k = 1, 2 these are P

(
µσ1 |µσ2 , s0:M , d1:M ,x, ¯̄π, λ̄

)
,

P
(
µσ2 |µσ1 , s0:M , d1:M ,x, ¯̄π, λ̄

)
. Below, we provide the explicit update formula for µσ1 and the similar for-
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mulation holds for µσ2 .

P (µσ1 |µσ2 , s0:M , d0:M ,x) ∝

(
N∏
n=1

P (xn|µσ1 , µσ2 , s0:M , d0:M )

)
P (µσ1 ) (A.45)

∝ exp

(
µσ1

(
H

1
V

+
N∑
n=1

β

(
xn −

n∗∑
kn=1

I (skn 6= 1)µskn dkn

)))
(A.46)

× exp

(
−µ2

σ1

(
1
V

2 +
N∑
n=1

β

2

(
n∗∑
kn=1

I (skn = 1) dkn

)2))
(A.47)

∝ Normal

µσ1 ;

(
H 1
V

+
N∑
n=1

β

(
xn −

n∗∑
kn=1

I (skn 6= 1)µskn dkn

))
(

1
V

+
N∑
n=1

β

(
n∗∑
kn=1

I (skn = 1) dkn

)2
) ,

1(
1
V

+
N∑
n=1

β

(
n∗∑
kn=1

I (skn = 1) dkn

)2
)


where x = (x1:N ).
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A.3 Notation

Table A.1. Notation conventions

Description Variable Units

nth measurement xn au
Total number of measurements N −
Total number of states K −
Total number of jumps M −
System trajectory T (·) −
HMJP trajectory (~S, ~D,M) −
HMM trajectory ~c −
State of the system in HMM at time tn cn −
State of the system in HMJP at nth jump sn −
Holding time of the system in HMJP at nth jump dn+1 s
Initial transition probability matrix ρ̄ −
Transition probability matrix in HMM ¯̄P −
Probability of transitioning from state σk to σk′ in HMM Pσk→σk′ −
Transition probability for the embedded discrete Markov chain in HMJP ¯̄π −
Escape rate for the kth state of the system λσK = −λσk→σk 1/s
Escape rate vector λ̄ −
State levels µ̄ au
Generator matrix in HMJP ¯̄G 1/s
Rate of transitioning form state σk to σk′ in HMJP λσk→σk′ 1/s
Initial time of the experiment t0 s
End time of the experiment tN s
Integration period τ s
Data acquisition period ∆t s
Variance of measurements v au
Representative of nth data acquisition period [tn−1, tn] −
Representative of nth integration period [tn − τ, tn] −
Concentration parameter for ρ̄ α −
Concentration parameter for ¯̄π and ¯̄P A −
Shape parameter η au
Scale parameter b s−1

State level mean H au
State level variance V au

.
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Table A.2. Parameter choices and units

Variable H V η b A α
Units au au au s−1 - -

Fig. 2 mean of measurements 1 2 300 1 1
Fig. 3 mean of measurements 1 2 300 1 1
Fig. 4 mean of measurements 1 2 300 1 1
Fig. 5 mean of measurements 1 2 300 1 1
Fig. A.1 mean of measurements 1 2 300 1 1
Fig. A.2 mean of measurements 1 2 300 1 1
Fig. A.3 mean of measurements 1 2 300 1 1
Fig. A.4 mean of measurements 1 2 300 1 1
Fig. A.6 mean of measurements 1 2 300 1 1
Fig. A.7 mean of measurements 1 2 300 1 1
Fig. A.8 mean of measurements 1 2 300 1 1
Fig. A.5 mean of measurements 1 2 300 1 1

.
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