

1 **Open database searching enables the identification and comparison of glycoproteomes**
2 **without defining glycan compositions prior to searching**

3 Ameera Raudah Ahmad Izaham¹ and Nichollas E. Scott^{1#}

4

5 ¹Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty
6 Institute for Infection and Immunity, Melbourne 3000, Australia

7

8 To whom correspondence and requests for materials should be addressed N.E.S
9 (Nichollas.scott@unimelb.edu.au).

10

11

12

13

14

15

16 **Running title:** glycopeptide identification independent of glycan databases

17

18

19

20

21

22

23

24

25 **ABBREVIATIONS**

26 mass spectrometry (MS)

27 Luria Bertani (LB)

28 phosphate-buffered saline (PBS)

29 sodium dodecyl sulfate (SDS)

30 normalized collisional energy (NCE)

31 Zwitterionic Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC)

32 Trifluoroacetic acid (TFA)

33 Electron-transfer/higher-energy collision dissociation (EThcD)

34 higher-energy collision dissociation (HCD)

35 Collision-induced dissociation (CID)

36 Automatic Gain Control (AGC)

37 2,4-diacetamido-2,4,6 trideoxyglucopyranose (diNAcBac)

38 peptide spectrum matches (PSMs)

39 Glucose (Glc)

40 galactose (Gal)

41 N-Acetylgalactosamine (GalNAc)

42 N-Acetylglucosamine (GlcNAc)

43 N-acetylhexoseamine (HexNAc)

44 Hexose (Hex)

45 GlcNAc3NAcA4OAc (2,3-diacetamido-2,3-dideoxy- α -D-glucuronic acid)

46

47 **ABSTRACT**

48 Mass spectrometry has become an indispensable tool for the characterisation of glycosylation
49 across biological systems. Our ability to generate rich fragmentation of glycopeptides has
50 dramatically improved over the last decade yet our informatic approaches still lag behind.
51 While glycoproteomic informatics approaches using glycan databases have attracted
52 considerable attention, database independent approaches have not. This has significantly
53 limited high throughput studies of unusual or atypical glycosylation events such as those
54 observed in bacteria. As such, computational approaches to examine bacterial glycosylation and
55 identify chemically diverse glycans are desperately needed. Here we describe the use of wide-
56 tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial
57 glycoproteomes. We benchmarked this approach using *N*-linked glycopeptides of
58 *Campylobacter fetus subsp. fetus* as well as *O*-linked glycopeptides of *Acinetobacter baumannii*
59 and *Burkholderia cenocepacia* revealing glycopeptides modified with a range of glycans can be
60 readily identified without defining the glycan masses prior to database searching. Utilising this
61 approach, we demonstrate how wide tolerance searching can be used to compare glycan
62 utilisation across bacterial species by examining the glycoproteomes of eight *Burkholderia*
63 species (*B. pseudomallei*; *B. multivorans*; *B. dolosa*; *B. humptydooensis*; *B. ubonensis*, *B.*
64 *anthina*; *B. diffusa*; *B. pseudomultivorans*). Finally, we demonstrate how open searching
65 enables the identification of low frequency glycoforms based on shared modified peptides
66 sequences. Combined, these results show that open searching is a robust computational
67 approach for the determination of glycan diversity within proteomes.

68

69 **INTRODUCTION**

70 Protein glycosylation, the addition of carbohydrates to proteins, is a widespread and
71 heterogeneous class of protein modifications [1-3]. Within Eukaryotes, multiple glycosylation
72 systems have been identified [1-3] and up to 20% of the proteome is thought to be subjected to
73 this class of modification [4]. Within Eukaryotes, both *N*-linked and *O*-linked glycosylation
74 systems are known to generate highly heterogeneous glycan structures [2, 3] with this glycan
75 heterogeneity important for the function of glycoproteins [5, 6]. Although the glycan repertoire
76 utilised in Eukaryotic systems is thought to be large, the diversity within any given biological
77 sample is constrained by the limited number of monosaccharides used in Eukaryotic systems
78 [7], as well as the expression of proteins required for the construction of glycans such as
79 glycosyltransferases [8]. Experimentally, these constraints lead to only a limited number of
80 glycans being produced across Eukaryotic samples [9, 10] despite the large number of potential
81 glycan structures [11, 12]. This limited diversity within both Eukaryotic *N*-linked and *O*-linked
82 glycans has enabled the development of glycan databases which have facilitated high
83 throughput glycoproteomic studies [13] using tools such as Byonic [14] and pGlyco [15].
84 Unfortunately, these databases are not suitable for all glycosylation systems and fail to identify
85 glycopeptides modified with novel or atypical glycans such as those found in bacterial
86 glycosylation systems.

87

88 Within bacterial systems, glycosylation is increasingly recognised as a common modification
89 [16-19]. While glycosylation in bacteria was first identified in the 1970s [20], it is only within the
90 last two decades that it has become clear that this class of modifications is ubiquitous across

91 bacterial genera [16, 18, 21]. Unlike Eukaryotic systems, which utilise a relatively small set of
92 monosaccharides, bacterial glycoproteins are decorated with a diverse range of
93 monosaccharides [22] leading to a staggering array of glycan structures [23-32]. This glycan
94 diversity represents a significant challenge to the field as it makes the identification of novel
95 bacterial glycoproteins a non-trivial analytical undertaking. Yet, through advancements in mass
96 spectrometry (MS) [28, 30, 33, 34], these once obscure modifications are increasingly
97 recognisable and are now known to be essential for bacterial fitness [26, 35-38]. Despite our
98 ability to generate rich bacterial glycopeptide data the field still largely uses manual
99 interrogation to identify and characterise novel glycosylation systems [23-32]. This dependency
100 on manual interrogation is not scalable, time-consuming and prone to human error, especially
101 in the detection of glycoform heterogeneity. This is exemplified in our own experience
102 characterising glycosylation in *Acinetobacter baumannii* where our initial analysis overlooked
103 alternative methylated and deacetylated forms of glucuronic acid [26]. Thus, new approaches
104 are needed to ensure bacterial glycosylation studies can be undertaken in a robust and high-
105 throughput manner.

106
107 Wide precursor mass tolerance database searching, also known as 'open' or wildcard searching,
108 is an increasingly popular approach for the detection of protein modifications within proteomic
109 datasets [39-43]. The underlying premise of this approach is that by allowing a wide precursor
110 mass tolerance, modified peptides can be detected by the difference in their observed mass
111 from their expected mass. Importantly, this makes the identification of modifications
112 independent of needing to define the modification in the initial search parameters. This

113 approach has been utilised to examine chemical modifications such as formylation [44] and
114 miss-alkylation events [45] as well as large modifications such as DNA-peptide crosslinks [43].
115 Although this approach is effective, it is not without trade-offs being computationally more
116 expensive than traditional searches leading to longer search times [46]. To date, these searches
117 have typically been undertaken using ± 500 Da tolerances [39-43] although searches using
118 ± 1000 Da tolerances have also been reported [43, 46]. Despite the growing application of open
119 database searching in Eukaryotic proteomics, few bacterial studies have utilised this technique.
120 That said, alternative strategies such as dependent peptide searching have been used in
121 bacteria to track misincorporation of amino acids [47] and novel forms of glycosylation such as
122 arginine-rhamnosylation [48].

123
124 In this study, we demonstrate that wide mass (up to 2000 Da) open database searching enables
125 the rapid identification of bacterial glycopeptides without the need to assign glycan masses
126 prior to database searching. We benchmark this approach using three previously characterised
127 bacterial glycosylation systems, the *N*-linked glycosylation system of *Campylobacter fetus*
128 *subsp. fetus* NCTC10842 [25], the *O*-linked glycosylation system of *Acinetobacter baumannii*
129 ATCC17978 [26, 49, 50] and the *O*-linked glycosylation system of *Burkholderia cenocepacia*
130 J2315 [23, 37]. Each of these bacteria have increasingly complex proteomes (ranging from 1600
131 proteins to nearly 7000) enabling us to assess the performance of open database searching
132 across a range of proteome sizes. We find open database searching readily enabled previously
133 characterised glycoforms and microheterogeneity to be identified across all samples. Applying
134 this approach to representative species of the *Burkholderia* genus [23, 37], we provide the first

135 snapshot of glycosylation across this genus. Consistent with the conservation of the
136 biosynthetic pathway responsible for the *Burkholderia* *O*-linked glycans [23] all *Burkholderia*
137 species examined predominately modify their glycoproteins with two glycan structures of
138 similar composition. Excitingly, we demonstrate that open searching also enables low
139 frequency glycoforms to be detected, highlighting that species-specific glycan structures do
140 exist in *Burkholderia*. Thus, open database searching provides a new platform to enable the
141 identification of new glycan structures in a high-throughput manner.

142

143 **EXPERIMENTAL PROCEDURES**

144 **Bacterial strains and growth conditions:** *C. fetus* subsp. *fetus* NCTC 10842 was grown on Brain-
145 Heart Infusion medium (Hardy Diagnostics) with 5% defibrinated horse blood (Hemostat, Dixon,
146 CA) under microaerobic conditions (10% CO₂, 5% O₂, 85% N₂) at 37 °C as previously reported
147 [25]. *Burkholderia pseudomallei* K96243 was grown as previously reported [51] in Luria Bertani
148 (LB) broth. All other bacterial strains were grown overnight LB agar at 37 °C as previously
149 described [37]. Complete details on the strains, their origins, references and proteome
150 databases used in this study are listed in Table 1.

151

152 **Table 1. Strain list**

Strains	Source (Description, Country, Year)	Reference	Proteome database
<i>C. fetus</i> subsp. <i>fetus</i> NCTC 10842	Brain of sheep fetus, France, 1952	[52]	Uniprot: UP000001035

<i>Acinetobacter baumannii</i> ATCC17978	Fatal meningitis of a 4-month old infant, 1951	[53]	GenBank assembly accession: GCA_001593425.2
<i>Burkholderia pseudomallei</i> K96243	Human clinical specimen, Thailand, 1996	[54]	Uniprot: UP000000605
<i>Burkholderia cenocepacia</i> (LMG 16656 / J2315)	Human clinical specimen, United Kingdom, 1989	[55]	Uniprot: UP000001035
<i>Burkholderia multivorans</i> MSMB2008	Soil isolate, Australia, 2012	[56]	Burkholderia Genome Database [57], Strain number: 3016
<i>Burkholderia dolosa</i> AU0158	Human clinical specimen, USA unknown	[58]	Uniprot database: UP000032886
<i>Burkholderia humptydooensis</i> MSMB43	Water isolate, Australia, unknown	[56, 59]	Burkholderia Genome Database [57], Strain number: 4072
<i>Burkholderia ubonensis</i> MSMB22	Soil isolate, Australia, 2001	[58]	Burkholderia Genome Database [57], Strain number: 3404
<i>Burkholderia anthina</i> MSMB649	Soil isolate, Australia, 2010	[56]	Burkholderia Genome Database [57], Strain number: 2849

<i>Burkholderia diffusa</i> MSMB375	Water isolate, Australia, 2008	[56]	Burkholderia Genome Database [57], Strain number: 2966
<i>Burkholderia</i> <i>pseudomultivorans</i> MSMB2199	Soil isolate, Australia, 2011	[56]	Burkholderia Genome Database [57], Strain number: 3251

153

154 **Generation of bacterial lysates for glycoproteome analysis:** Bacterial strains were grown to
155 confluence on agar plates before being flooded with 5 mL of pre-chilled sterile phosphate-
156 buffered saline (PBS) and bacterial cells collected by scraping. Cells were washed 3 times in PBS
157 to remove media contaminates, collected by centrifugation at 10,000 x g at 4°C and then snap
158 frozen. Frozen whole cell samples were resuspended in 4% SDS, 100mM Tris pH 8.0, 20mM
159 Dithiothreitol and boiled at 95°C with shaking at 2000rpm for 10 min. Samples were clarified by
160 centrifugation at 17,000 x g for 10 min, the supernatants then collected, and protein
161 concentration determined by a bicinchoninic acid assay (Thermo Scientific). 1mg of protein
162 from each sample was acetone precipitated by mixing one volume of sample with 4 volumes of
163 ice-cold acetone. Samples were precipitated overnight at -20°C and then spun down at 16,000G
164 for 10 min at 0°C. The precipitated protein pellets were resuspended in 80% ice-cold acetone
165 and precipitated for an additional 4 hours at -20°C. Samples were centrifuged at 17,000 x g for
166 10 min at 0°C, the supernatant discarded, and excess acetone driven off at 65 °C for 5 min.
167 Three biological replicates of each bacterial strain were prepared.

168

169 **Digestion of protein samples:** Protein digestion was undertaken as previously described with
170 minor alterations [28]. Briefly, dried protein pellets were resuspended in 6 M urea, 2 M
171 thiourea, 40 mM NH₄HCO₃ and reduced with 20mM Dithiothreitol then alkylated with 40mM
172 chloroacetamide prior to digestion with Lys-C (1/200 w/w) for 3 hours and trypsin (1/50 w/w)
173 overnight. Digested samples were acidified to a final concentration of 0.5% formic acid and
174 desalted with 50 mg tC18 SEP-PAK (Waters corporation, Milford, USA) according to the
175 manufacturer's instructions. tC18 SEP-PAKs columns were conditioned with 10 bed volumes of
176 Buffer B (80% acetonitrile, 0.1% formic acid), then equilibrated with 10 bed volumes of Buffer
177 A* (0.1% TFA, 2% acetonitrile) before use. Samples were loaded on to equilibrated columns
178 then columns washed with at least 10 bed volumes of Buffer A* before bound peptides were
179 eluted with Buffer B. Eluted peptides were dried by using vacuum centrifugation and stored at -
180 20 °C.

181
182 **ZIC-HILIC enrichment of bacterial glycopeptides:** ZIC-HILIC enrichment was performed
183 according to Scott N E *et al*, 2011 with minor modifications [28]. ZIC-HILIC Stage-tips [60] were
184 created by packing 0.5cm of 10 µm ZIC-HILIC resin (Millipore, Massachusetts, United States)
185 into p200 tips containing a frit of C8 Empore™ (Sigma) material. Prior to use, the columns were
186 washed with ultra-pure water, followed by 95% acetonitrile and then equilibrated with 80%
187 acetonitrile and 5% formic acid. Digested proteome samples were resuspended in 80%
188 acetonitrile and 5% formic acid. Samples were adjusted to a concentration of 3 µg/µL (a total of
189 300 µg of peptide used for each enrichment) then loaded onto equilibrated ZIC-HILIC columns.
190 ZIC-HILIC columns were washed with 20 bed volumes of 80% acetonitrile, 5% formic acid to

191 remove non-glycosylated peptides and bound peptides eluted with 10 bed volumes of ultra-
192 pure water. Eluted peptides were dried by using vacuum centrifugation and stored at -20 °C.

193

194 **Reverse phase LC-MS:** ZIC-HILIC enriched samples were re-suspended in Buffer A* and
195 separated using a two-column chromatography set up composed of a PepMap100 C18 20 mm x
196 75 μ m trap and a PepMap C18 500 mm x 75 μ m analytical column (Thermo Fisher Scientific).
197 Samples were concentrated onto the trap column at 5 μ L/min for 5 minutes with Buffer A (0.1%
198 formic acid) and then infused into an Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer
199 (Thermo Fisher Scientific) at 300 nl/minute via the analytical column using a Dionex Ultimate
200 3000 UPLC (Thermo Fisher Scientific). 185-minute analytical runs were undertaken by altering
201 the buffer composition from 2% buffer B to 28% B over 150 minutes, then from 28% B to 40% B
202 over 10 minutes, then from 40% B to 100% B over 2 minutes. The composition was held at
203 100% B for 3 minutes, and then dropped to 2% B over 5 minutes before being held at 2% B for
204 another 15 minutes. The Lumos™ Mass Spectrometer was operated in a data-dependent mode
205 automatically switching between the acquisition of a single Orbitrap MS scan (120,000
206 resolution) every 3 seconds and Orbitrap HCD scans of precursors (NCE 30%, maximum fill time
207 80 ms, AGC $1*10^5$ with a resolution of 15000). Scans containing the HexNAc oxonium ion m/z
208 204.087 triggered three additional scans per precursor; a Orbitrap EThcD scan (NCE 15%,
209 maximum fill time 250 ms, AGC $2*10^5$ with a resolution of 30000); a ion trap CID scan (NCE
210 35%, maximum fill time 40 ms, AGC $5*10^4$) and a stepped collision energy HCD scan (using NCE
211 32%, 40%, 48% for *N*-linked glycopeptide samples and NCE 28%, 38%, 48% for *O*-linked
212 glycopeptide samples with a maximum fill time of 250 ms, AGC $2*10^5$ with a resolution of

213 30000). For *B. pseudomallei* K96243 samples, duplicate runs were undertaken as above with
214 the Orbitrap EThcD scans modified to use the extended mass range setting (200 m/z to 3000
215 m/z) to improve the detection of high mass glycopeptide fragment ions [61].

216

217 **Data Analysis:** Raw data files were batched processed using Byonic v3.5.3 (Protein Metrics Inc.
218 [14]) with the proteome databases denoted within Table 1. Data was searched on a desktop
219 with two 3.00GHz Intel Xeon Gold 6148 processors, a 2TB SDD and 128 GB of RAM using a
220 maximum of 16 cores for a given search. For all searches, a semi-tryptic N-ragged specificity
221 was set and a maximum of two miss cleavage events allowed. Carbamidomethyl was set as a
222 fixed modification of cystine while oxidation of methionine was included as a variable
223 modification. A maximum mass precursor tolerance of 5 ppm was allowed while a mass
224 tolerance of up to 10 ppm was set for HCD fragments and 20 ppm for EThcD fragments. For
225 open searching of *C. fetus fetus* samples (*N*-linked glycosylation), the wildcard parameter was
226 enabled allowing a delta mass between 200 Da and 1600 Da on asparagine residues. For open
227 searching of *O*-linked glycosylation samples, the wildcard parameter was enabled allowing a
228 delta mass between 200 Da and 2000 Da on serine and threonine residues. For focused
229 searches, all parameters listed above remained constant except wildcard searching which was
230 disabled and specific glycoforms as identified from open searches included as variable
231 modifications. To ensure high data quality, separate datasets from the same biological samples
232 were combined using R and only glycopeptides with a Byonic score >300 were used for further
233 analysis. This score cut-off is in line with previous reports highlighting that score thresholds
234 greater than at least 150 are required for robust glycopeptide assignments with Byonic [44, 61].

235 It should be noted that a score threshold of above 300 resulted in false discovery rates of less
236 than 1% for all combined datasets. Pearson correlation analysis of delta mass profiles was
237 undertaken using Perseus [62]. Data visualization was undertaken using ggplot2 within R with
238 all scripts included in the PRIDE uploaded datasets. All mass spectrometry proteomics data
239 (Raw data files, Byonic searches outputs, R Scripts and output tables) have been deposited into
240 the PRIDE ProteomeXchange Consortium repository [63, 64] with the dataset identifier:
241 PXD018587. Data can be accessed using the **username: reviewer19225@ebi.ac.uk, Password:**
242 KNcCmH98

243

244 **Experimental Design and Statistical Rationale:** For each bacterial strain examined three
245 biological replicates were prepared and used for glycopeptide enrichments leading to three LC-
246 MS runs per bacterial strain. Three separate enrichments were prepared and run to ensure an
247 accurate representation of the observable glycoproteome was generated. *B. pseudomallei*
248 K96243 biological replicates were run twice with two different instrument methods to improve
249 the characterisation of the 990 Da glycan. For *C. fetus fetus NCTC 10842* unenriched peptide
250 samples were run with identical methods as those used for glycopeptide analysis to assess the
251 presence of formylated glycans prior to enrichment.

252

253 **RESULTS**

254 **Open database searching allows the identification of bacterial *N*-linked glycopeptides**

255 Although open database searching enables the detection of a variety of modifications, to our
256 knowledge, it has not been applied to bacterial systems or the study of atypical forms of

257 glycosylation. To enable the identification of glycopeptides with complex glycans, large delta
258 mass windows are needed as even modest glycans (>three monosaccharides) would be larger
259 than the 500 Da window typically used [39-43]. Although the tolerance window of open
260 searching tools can be extended above 500 Da, it has been noted that this leads to increased
261 search times [46]. As bacterial systems possess small proteomes, we reasoned that for these
262 samples the overall searching time may not be prohibitive even when large search windows are
263 used. To assess this, we first examined glycopeptide enrichments of *C. fetus fetus* NCTC 10842.
264 *C. fetus fetus* possesses a small proteome (~1600 proteins [65]) and is known to produce two *N*-
265 linked glycans composed of β -GlcNAc- α 1,3-[GlcNAc1,6-]GlcNAc- α 1,4-GalNAc- α 1,4-GalNAc- α 1,3-
266 diNAcBac (1243.507Da) and β -GlcNAc- α 1,3-[Glc1,6-]GlcNAc- α 1,4-GalNAc- α 1,4-GalNAc- α 1,4-
267 diNAcBac (1202.481Da) where diNAcBac is the bacterial specific sugar 2,4-diacetamido-2,4,6
268 trideoxyglucopyranose [25].

269
270 To assess the viability of open database searching for glycopeptides, we searched *C. fetus fetus*
271 glycopeptide enrichments allowing a wildcard mass of 200Da to 1600 Da on asparagine. 3hr LC-
272 MS runs were able to be processed by open searching in less than 2hours (Supplementary
273 figure 1A). Examination of the detected modifications by binning the observed delta masses in
274 0.001Da increments demonstrated a clear cluster of modifications with masses >1000Da (Figure
275 1A). Within these masses 1242.501Da and 1201.475Da were the most numerous delta masses
276 observed (Figure 1A, Supplementary Table 1) yet these are one Dalton off the expected
277 glycoforms of *C. fetus fetus* [25]. Close examination of the observed delta masses reveals
278 evidence of miss-assignments of the mono-isotopic masses by the appearance of satellite peaks

279 [42, 46] differing by exactly one Dalton (Supplementary Figure 2A). Miss-assignments of the
280 mono-isotopic peaks of large glycopeptides is common place [66] and within Byonic is
281 combated by allowing correction for isotope assignment denoted as the “off-by-x” parameter.
282 Examination of the “off-by-x” masses supports the inappropriate mass correction of the
283 1243/1202 Da glycans to the observed 1242/1201 delta masses (Supplementary Figure 2B).
284 These results support that the 1243/1202 Da glycans are readily detected in *C. fetus fetus*
285 samples using open database searching despite splitting of the delta mass observations across
286 multiple masses due to errors in mono-isotope assignments.

287
288 Surprisingly, our open search also revealed additional glycoforms corresponding to formylated
289 glycans (+27.99Da) as well as a modification corresponding to the loss of a HexNAc (-
290 203.079Da) or Hex (-162.053Da) from the 1243Da or 1202Da glycans respectively (Figure 1B).
291 MS/MS analysis supports these delta masses as unexpected but bona fide glycoforms
292 (Supplementary Figure 3A to J). Formylated glycans have been previously observed [25, 28]
293 during ZIC-HILIC enrichment and are most likely artefacts due to the high concentrations of
294 formic acid [44] used during enrichment. Consistent with glycan formylation being artifactual, it
295 is not observed on *C. fetus fetus* glycopeptides within unenriched samples (Supplementary
296 Figure 4). To assess the accuracy of the glycan masses obtained using open searching, we
297 extracted the mean delta mass of the 1243 and 1202 Da glycans using a density based fitting
298 approach [67] (Figure 1C and D). We find the open search defined mass of the 1243Da and
299 1202Da glycans are both within 5 ppm of the known masses [25] supporting that this approach
300 allows high accuracy determination of large modifications. Finally, we assessed the proteome

301 coverage of our open database approach to a traditional search using the seven identified
302 glycoforms (1040.423Da, 1068.419Da, 1202.475Da, 1230.469Da, 1243.501Da, 1271.497Da,
303 1299.492Da, Figure 1B) as a focused database [68]. Interestingly, focused searches
304 outperformed the open database search improving the identification of unique glycopeptides
305 by 35% and glycoproteins by 28% (Figure 1D, Supplementary Table 2). This improvement was
306 also associated with an increase in the mean Byonic score of identified glycopeptides (from 456
307 to 491, Supplementary figure 5). Combined, these results demonstrate open searching allows
308 the detection of heterogeneous bacterial *N*-linked glycopeptides without the need to define
309 glycans prior to searching.

310

311 **Open database searching allows the identification of bacterial *O*-linked glycopeptides**

312 To assess open searching's compatibility with bacterial *O*-linked glycopeptides, we examined
313 glycopeptide enrichments of *A. baumannii* ATCC17978. The *A. baumannii* proteome is twice the
314 size of *C. fetus fetus* (~3600 proteins [69]) with glycosylation of both serine and threonine
315 residues reported to date [49]. Within this system, glycoproteins are modified predominantly
316 with the glycan GlcNAc3NAcA4OAc-4-(β -GlcNAc-6-)- α -Gal-6- β -Glc-3- β -GalNAc where
317 GlcNAc3NAcA4OAc corresponds to the bacterial sugar 2,3-diacetamido-2,3-dideoxy- α -D-
318 glucuronic acid (glycan mass 1030.368 Da [49]). Importantly, this terminal glucuronic acid can
319 also be found in methylated as well as un-acetylated states (corresponding to the glycan
320 masses 1044.383 Da and 988.357 Da respectively [26, 49]). *A. baumannii* glycopeptide
321 enrichments were searched allowing a wildcard mass of 200Da to 2000 Da on serine and
322 threonine residues. The increased complexity of this search, both in terms of the number of

323 amino acids potentially modified as well as the size of the proteome, resulted in a marked
324 increase in the search times per data files to ~10 hours (Supplementary figure 1B). Within these
325 samples, open searching readily enabled the identification of multiple delta masses of similar
326 sizes to the expected glycans of *A. baumannii* ATCC17978 as well as the unexpected glycoforms
327 of 827.281 and 1058.358 Da (Figure 2A, Supplementary Table 3). These novel glycan masses are
328 consistent with formylation (+27.99Da) as well as the loss of HexNAc (-203.079Da) from the
329 1030Da glycan with MS/MS analysis supporting these assignments (Supplementary Figure 6).

330
331 Examination of these masses revealed the most numerous delta masses (1029.362 Da, 987.355
332 Da and 1043.378 Da) were one Dalton less than the expected *A. baumannii* glycan masses
333 (Figure 2B [26, 49]). As with *C. fetus fetus*, inspection of these assignments reveals the incorrect
334 application of the "off-by-x" parameter leading to the splitting of delta masses across multiple
335 mass assignments separated by one Dalton (Supplementary figure 7). Using the masses
336 1030.368 Da, 988.357 Da, 1044.383 Da, 827.281 Da and 1058.358 Da, we researched these *A.*
337 *baumannii* datasets to assess the performance of open searching to a focused search. In
338 contrast to the ~35% increase observed in the coverage of the *C. fetus fetus* glycoproteome, we
339 noted a dramatic improvement in the coverage of the *A. baumannii* glycoproteome with a
340 >240% increase in the number of unique glycopeptides and glycoproteins identified (Figure 2C).
341 To understand this dramatic improvement, we examined the 67 glycopeptides unique to the
342 focused search. Within these glycopeptides we noted a large proportion of PSMs corresponded
343 to glycopeptides modified with multiple glycans (Figure 2D, Supplementary table 4). In fact,
344 >20% (494 out of the total 2282 glycopeptide PSMs) corresponded to glycopeptides with

345 greater than one glycan attached. Within these PSMs, 31 unique peptide sequences are only
346 observed with >1 glycan attached (Figure 2E). Similar to the *N*-linked glycopeptides of *C. fetus*
347 *fetus*, the improvement in the total number of identifications is also associated with an increase
348 in the mean observed Byonic score (from 555 to 601, Supplementary Figure 8). It is important
349 to note that the delta masses of multiply glycosylated peptides fall outside the 2000 Da window
350 used for open searching making the inability to detect these glycopeptides an expected
351 limitation of the search parameters. Thus, although open searching enables the rapid
352 identification of glycopeptides, large glycans / multiply glycosylated peptides can be overlooked
353 supporting the value of a two-step (open followed by focused) searching approach.

354

355 **Open database searching enables the identification of glycosylation within large proteomes**
356 As open searching enabled the identification of both *N* and *O*-linked glycopeptides, we sought
357 to explore the compatibility of this approach with larger proteomes using the bacteria *B.*
358 *Cenocepacia* J2315 as a model. The *B. Cenocepacia* proteome encodes ~7000 proteins [70] and
359 possesses an *O*-linked glycosylation system responsible for modifying at least 23 proteins [37].
360 Previously, we showed that this glycosylation system transfers two glycans composed of β -Gal-
361 (1,3)- α -GalNAc-(1,3)- β -GalNAc and Suc- β -Gal-(1,3)- α -GalNAc-(1,3)- β -GalNAc where Suc is
362 Succinyl with these glycans corresponding to the masses 568.211Da and 668.228Da
363 respectively [23, 37]. As with *A. baumannii*, the increased complexity of this proteome led to an
364 increase in the search time with individual data files taking ~20hours to process
365 (Supplementary figure 1C). These open searches revealed the presence of the expected
366 glycoforms of *B. cenocepacia* (568.207Da and 668.223Da) as well as additional formylated

367 variants (596.202Da, 624.197, and 696.218Da) leading to the identification of five unique
368 glycoforms (Figure 3A, Supplementary Table 5). Unlike the large glycans of *C. fetus fetus* and *A.*
369 *baumannii*, it is notable that the mono-isotopic mass of the known *B. Cenocepacia* glycans [37]
370 were correctly assigned (Figure 3A). Thus, this supports that for smaller glycans miss-
371 assignment of the mono-isotopic masses during open searches does not appear as problematic.

372
373 Incorporating these glycoforms into focused searches again led to a dramatic ~4-fold increase
374 in the number of glycopeptides and a ~2-fold increase in the total number glycoproteins
375 identified compared to open searches (Figure 3B, Supplementary Table 6). Unlike *C. fetus fetus*
376 and *A. baumannii*, this improvement in the total number of identifications was associated with
377 a decrease in the mean Byonic score (from 728 to 700, Supplementary Figure 9). As the
378 dramatic improvement in the glycoproteome coverage of *A. baumannii* was partially driven by
379 the detection of multiply glycosylated peptides we examined the amount of glycosylation
380 within glycopeptide PSMs in *B. Cenocepacia*. As *B. Cenocepacia* glycopeptides modified with
381 multiple glycans would be less than 2000 Da, we were surprised by the limited number of
382 multiply glycosylated peptides identified within our open searches (<10% of all identified
383 glycopeptides, Supplementary figure 10). In contrast, focused searches identified ~40% of all
384 PSMs (Figure 3C, 1508 out of 3937 identified glycopeptide PSMs) corresponded to multiply
385 modified peptides. This data supports that, although open searching performs well for singly
386 modified peptides, this approach appears to underrepresent multiply glycosylated peptides
387 even if the combined mass of the glycan is within the range of the open search.

388

389 **Open database searching allows the screening of glycan utilisation across biological samples**

390 Having established that open searching enables the identification of a range of glycans, we
391 sought to explore if this could also facilitate the comparison of glycan diversity across bacterial
392 samples. Recently, we reported that a single-loci was responsible for the generation of the O-
393 linked glycans in *B. Cenocepacia* and that this loci is conserved across the *Burkholderia* [23].
394 Although these results support that *Burkholderia* species utilise similar glycans, it has been
395 noted that within other bacterial genera extensive glycan heterogeneity exists [25, 26, 29, 32].
396 As glycan heterogeneity can be challenging to predict, we reasoned that open searching would
397 provide a means to assess the similarities in glycans used across *Burkholderia* species. We
398 examined glycopeptide enrichments from eight species of *Burkholderia* (*B. pseudomallei*
399 *K96243*; *B. multivorans* *MSMB2008*; *B. dolosa* *AU0158*; *B. humptydooensis* *MSMB43*; *B.*
400 *ubonensis* *MSMB22*, *B. anthina* *MSMB649*; *B. diffusa* *MSMB375*; and *B. pseudomultivorans*
401 *MSMB2199*). Examination of the delta masses observed across these eight species demonstrate
402 that the 568Da and 668Da glycoforms as well as their formylated variants are present in all
403 strains (Figure 4A and Supplementary Figure 11, Supplementary Tables 7 to 14). Having
404 generated “delta mass fingerprints” for each species, we assessed if these profiles could enable
405 the comparison across samples using Pearson correlation and hierarchical clustering (Figure 4B
406 and Supplementary Figure 12). Consistent with the similarities in the delta mass fingerprints
407 Pearson correlation and hierarchical clustering resulted in the grouping of all *Burkholderia*
408 species compared to the delta mass fingerprints of *C. fetus fetus* and *A. baumannii* (Figure 4B).
409 These result support that consistent with the conservation of the glycosylation loci within
410 *Burkholderia*, the major glycoforms observed within *Burkholderia* species, based on mass at

411 least, are identical. It should be noted that as with the above glycopeptide datasets, focused
412 searches significantly improved the identification of glycopeptides and glycoproteins in all
413 Burkholderia species (Supplementary figure 13, Supplementary Table 15 to 22).

414

415 **Open database searching allows the detection of glycoforms identified at a low frequency**
416 **based on known glycosylatable peptides**

417 In addition to allowing the comparison of glycan diversity across species, we reasoned that
418 open searching would also allow the identification of novel glycans based on the shared
419 utilization of glycosylatable peptide sequences. Within bacterial glycosylation studies, proteins
420 compatible with different glycosylation machinery are routinely used to “fish” out glycans used
421 for protein glycosylation in different bacterial species [26, 32]. As such, we reasoned the
422 identification of peptides modified with the 568/668Da glycans within Burkholderia species
423 may provide the means to detect alternative glycans used for glycosylation. To assess this, we
424 examined the glycopeptide enrichments of *B. pseudomallei* K96243 filtering for delta masses
425 only observed on peptide sequences also modified with either the 568/668Da glycans (Figure
426 5A). Examination of these delta masses readily revealed the presence of PSMs matching the
427 modification of peptides with single (203.077Da) or double (406.158Da) HexNAc residues, two
428 568Da glycans (1136.422Da) and an unexpected mass at 990.390Da (Figure 5A). Examination of
429 PSMs assigned to this 990Da delta mass revealed a linear glycan composed of HexNAc-Heptose-
430 Heptose-188-215 where the 188 Da and 215 Da are moieties of unknown composition (Figure
431 5B). Incorporation of this unexpected glycan mass into a focused search with the known
432 Burkholderia glycans demonstrate that less than 6% of all glycopeptide PSMs correspond to this

433 novel glycan (Figure 5C). Thus, this demonstrates that open searching provides an effective
434 means to detect unexpected glycoforms which could be overlooked due to the low frequency
435 of their occurrence in glycoproteomic datasets.

436

437 **DISCUSSION**

438 MS analysis of glycoproteomic samples typically requires knowledge of both the proteome and
439 possible glycan compositions to facilitate software-based identification [13]. As bacterial
440 glycosylation systems do not utilize glycans found in Eukaryotic glycan databases [23-32], we
441 sought to establish an alternative approach for the high-throughput analysis of bacterial
442 glycoproteomes. Within this work we demonstrate that wide mass open database searching
443 enables the identification of glycosylation without the need to define glycan masses prior to
444 searching. This approach overcomes a significant bottleneck in the identification and
445 characterization of novel bacterial glycosylation systems. We demonstrate that a range of
446 diverse glycan structures, both known [25, 26, 37, 49] as well as not previously reported such as
447 the 990 Da glycan observed in *B. pseudomallei* K96243, can be identified with this approach. In
448 addition, we also demonstrate that open database searches can be used to provide a simple
449 means to compare delta mass profiles across biological samples. This enables a straightforward
450 method to compare and contrast bacterial glycoproteomes, enabling the grouping of
451 *Burkholderia* profiles from non-similar glycoproteomes such as those seen in *C. fetus fetus* or *A.*
452 *baumannii*.

453

454 Within this work we utilized open searching within Byonic, a widely used tool in the
455 glycoproteomic community for the analysis of glycosylation [61, 71, 72]. This enabled us to
456 directly compare the performance of open searches to focused glycopeptide searches within
457 the same platform. We observed a marked improvement in glycopeptide and glycoprotein
458 identifications within focused searches, especially for glycopeptides modified with multiple
459 glycans. As a number of unique considerations which are not implemented in open searches,
460 such as accounting for oxonium ions and glycan fragments [13, 73], are needed for optimal
461 glycopeptide identification, this improvement in performance is unsurprising. Consistent with
462 this we observe an increase in the mean Byonic score within focused searches compared to
463 open searches for most datasets (Supplementary figure 5, 8 and 9). This improvement
464 translates to an increase in the numbers of unique glycopeptides and glycoproteins identified
465 by ~35% to 240%. This is in line with previous studies which have shown non-optimized settings
466 for glycopeptide analysis can lead to a reduction in glycoproteome coverage [68]. Although
467 Byonic was used within this study it should be noted alternative non-commercial platforms
468 such as MSfragger [43] also allow open searching. In our hands MSfragger performed
469 comparably to Byonic for the identification of glycoforms using open searches (Supplementary
470 Figure 14A to F). Yet as with our open Byonic searches MSfragger did not identify as many
471 unique glycopeptides / glycoproteins as focused Byonic searches (Supplementary Figure 15A to
472 F). These results demonstrate that open searching can be used to identify glycopeptides, yet
473 due to the unique challenges associated with glycopeptide identification open searches can be
474 less sensitive than focused searches.

475

476 At its core, this analytical approach utilizes a “strength in numbers” based strategy for the
477 detection of glycans. A key strength of this approach is that it does not require the
478 identification of unmodified versions of a peptide for the modified forms to be identified as
479 required in dependent peptide based approaches [47, 48]. This independence of the need for
480 unmodified peptides also makes this approach compatible with enrichment strategies such as
481 ZIC-HILIC glycopeptide enrichment. This is important as for optimal performance this approach
482 requires large numbers of PSMs with identical delta masses. Within this work we focused on
483 bacterial glycosylation systems known to target multiple protein substrates [16, 18], ensuring
484 large numbers of unique PSMs / peptide sequences would be identified. We found that, within
485 glycopeptide enrichments, the known glycoforms of *C. fetus fetus*, *A. baumannii* and *B.*
486 *cenocepacia* were easily detected while infrequently observed glycans, such as the 990Da
487 glycan observed within *B. pseudomallei*, required additional filtering to distinguish this from
488 background signals. This supports that although open searching enables the detection of
489 glycoforms, it is sensitive to the frequency at which modification events are observed within
490 datasets. Although we utilized filtering based on glycosylatable peptide sequences to identify
491 low frequency events, It should be noted that recently Kernel density estimation based fitting /
492 signal detection approaches were shown to effectively address this issue in a more general
493 manner [67]. Thus, open database searching provides multiple approaches to identify
494 modifications even those which are poorly resolved from background.

495

496 Although open searching enabled the identification of glycosylation within all bacterial samples,
497 the analysis of *C. fetus fetus* and *A. baumannii* datasets highlighted the commonality at which

498 mono-isotopic masses of glycopeptides with large glycans (>1000 Da) are miss-assigned. This
499 problem has been highlighted previously [66] and is not unique to glycopeptides with the
500 mono-isotopic mass of other large biomolecules such as cross-linked peptide shown to be miss-
501 assigned in 50 to 75% of PSMs [74]. This miss-assignment of mono-isotopic masses leads to the
502 splitting of the number of observed PSMs with a specific glycan mass across multiple mass
503 channels. Although we demonstrate that these miss-assigned glycopeptides can be readily
504 identified by examining the “off-by-x” parameter, it should be noted that this splitting dilutes
505 the observable glycopeptides at a specific mass, complicating the analysis of glycoproteomes
506 from open searches. This complication, coupled with the lower sensitivity of glycopeptide
507 identification with open searching compared to focused searches discussed above, supports
508 that open searching is a useful discovery tool yet typically under reports unique glycopeptides
509 and glycoproteins within datasets. The simplest solution to this issue is to use open searching as
510 a means to identify glycans which can then be included as variables within a focused search. As
511 highlighted above, this significantly improved glycoproteome coverage and in our hands
512 provided the flexibility of being able to detect novel glycans yet also ensured optimal
513 identification of glycopeptides. Automated pipelines using multi-step searching have already
514 been demonstrated [42, 46] yet to our knowledge these have not been optimized or
515 implemented for glycopeptide identification. Thus, we recommend a multi-step analysis to
516 enable the identification of atypical glycosylation, using open searching to define glycans which
517 are then incorporated into focused searches.

518

519 Finally, it should be noted that although not the subject of this manuscript, the
520 glycoproteins/glycopeptides identified in this work are themselves a useful resource for the
521 bacterial glycosylation community. Previous studies on *C. fetus fetus*, *A. baumannii* and *B.*
522 *cenocepacia* identified a total of 26, 26 and 23 unique glycoproteins respectively [25, 26, 37] yet
523 the majority of these studies were undertaken on previous generations of MS instrumentation.
524 Within this work, undertaken on a current generation instrument, we observed a marked
525 improvement in the number of glycoproteins identified with 61 (2.3-fold), 53 (2.0-fold) and 125
526 (5.4-fold) glycoproteins identified in *C. fetus fetus*, *A. baumannii* and *B. cenocepacia*
527 respectively. Similarly, our glycoproteomic analysis of the 8 Burkholderia species highlights that
528 at least 70 proteins are glycosylated within each Burkholderia species. Together, this work
529 highlights that the glycoproteomes of most bacterial species are likely far larger than earlier
530 studies suggested with open searching providing an accessible starting point to probe these
531 systems.

532

533 **ACKNOWLEDGEMENTS**

534 This work was supported by a National Health and Medical Research Council of Australia
535 (NHMRC) project grant awarded to NES (APP1100164). We thank the Melbourne Mass
536 Spectrometry and Proteomics Facility of The Bio21 Molecular Science and Biotechnology
537 Institute for access to MS instrumentation and Byonic. We would like to thank Christine
538 Szymanski and Justin Duma for the kind gift of *Campylobacter fetus fetus* NCTC 10842 lysates;
539 Mitali Sarkar-Tyson and Nicole Bzdyl for providing the *Burkholderia pseudomallei* K96243
540 lysates; Deborah Yoder-Himes, Mark Mayo, Bart Currie and Amy Cain for kindly providing

541 Burkholderia strains for this analysis as well as Chris McDevitt and Saleh Alquethamy for
542 providing *A. baumannii* ATCC17978. We thank Ben Parker and Nick Williamson for their critical
543 feedback on the manuscript.

544

545 **DATA AVAILABILITY**

546 All raw data is available through the PRIDE repository, PRIDE accession: PXD018587.

547 **username:** reviewer19225@ebi.ac.uk, **Password:** KNcCmH98

548 **REFERENCES:**

549 1. Struwe WB, Robinson CV. Relating glycoprotein structural heterogeneity to function -
550 insights from native mass spectrometry. *Curr Opin Struct Biol.* 2019;58:241-8. doi:
551 10.1016/j.sbi.2019.05.019.

552 2. Brockhausen I, Stanley P. O-GalNAc Glycans. In: rd, Varki A, Cummings RD, Esko JD,
553 Stanley P, Hart GW, et al., editors. *Essentials of Glycobiology*. Cold Spring Harbor (NY) 2015. p.
554 113-23.

555 3. Stanley P, Taniguchi N, Aebi M. N-Glycans. In: rd, Varki A, Cummings RD, Esko JD, Stanley
556 P, Hart GW, et al., editors. *Essentials of Glycobiology*. Cold Spring Harbor (NY) 2015. p. 99-111.

557 4. Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification
558 statistics: frequency analysis and curation of the swiss-prot database. *Sci Rep.* 2011;1. doi:
559 10.1038/srep00090.

560 5. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity,
561 synthesis and function. *Nat Rev Mol Cell Biol.* 2012;13(7):448-62. doi: 10.1038/nrm3383.

562 6. Xu C, Ng DT. Glycosylation-directed quality control of protein folding. *Nat Rev Mol Cell
563 Biol.* 2015;16(12):742-52. doi: 10.1038/nrm4073.

564 7. Freeze HH, Hart GW, Schnaar RL. Glycosylation Precursors. In: rd, Varki A, Cummings RD,
565 Esko JD, Stanley P, Hart GW, et al., editors. *Essentials of Glycobiology*. Cold Spring Harbor (NY)
566 2015. p. 51-63.

567 8. Kawano S, Hashimoto K, Miyama T, Goto S, Kanehisa M. Prediction of glycan structures
568 from gene expression data based on glycosyltransferase reactions. *Bioinformatics*.
569 2005;21(21):3976-82. doi: 10.1093/bioinformatics/bti666.

570 9. Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM. GlycoBase and autoGU: tools
571 for HPLC-based glycan analysis. *Bioinformatics*. 2008;24(9):1214-6. doi:
572 10.1093/bioinformatics/btn090.

573 10. Bohm M, Bohne-Lang A, Frank M, Loss A, Rojas-Macias MA, Lutteke T. Glycosciences.DB:
574 an annotated data collection linking glycomics and proteomics data (2018 update). *Nucleic
575 Acids Res.* 2019;47(D1):D1195-D201. doi: 10.1093/nar/gky994.

576 11. McDonald AG, Tipton KF, Davey GP. A Knowledge-Based System for Display and
577 Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts. *PLoS
578 Comput Biol.* 2016;12(4):e1004844. doi: 10.1371/journal.pcbi.1004844.

579 12. Akune Y, Lin CH, Abrahams JL, Zhang J, Packer NH, Aoki-Kinoshita KF, et al.
580 Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate
581 UniCorn: A theoretical N-glycan structure database. *Carbohydr Res.* 2016;431:56-63. doi:
582 10.1016/j.carres.2016.05.012.

583 13. Hu H, Khatri K, Klein J, Leymarie N, Zaia J. A review of methods for interpretation of
584 glycopeptide tandem mass spectral data. *Glycoconj J.* 2016;33(3):285-96. doi: 10.1007/s10719-
585 015-9633-3.

586 14. Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software.
587 Curr Protoc Bioinformatics. 2012; Chapter 13:Unit13 20. doi: 10.1002/0471250953.bi1320s40.

588 15. Liu MQ, Zeng WF, Fang P, Cao WQ, Liu C, Yan GQ, et al. pGlyco 2.0 enables precision N-
589 glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact
590 glycopeptide identification. Nat Commun. 2017;8(1):438. doi: 10.1038/s41467-017-00535-2.

591 16. Nothaft H, Szymanski CM. New discoveries in bacterial N-glycosylation to expand the
592 synthetic biology toolbox. Curr Opin Chem Biol. 2019;53:16-24. doi:
593 10.1016/j.cbpa.2019.05.032.

594 17. Szymanski CM, Wren BW. Protein glycosylation in bacterial mucosal pathogens. Nature
595 reviews Microbiology. 2005;3(3):225-37. doi: 10.1038/nrmicro1100.

596 18. Koomey M. O-linked protein glycosylation in bacteria: snapshots and current
597 perspectives. Curr Opin Struct Biol. 2019;56:198-203. doi: 10.1016/j.sbi.2019.03.020.

598 19. Joshi HJ, Narimatsu Y, Schjoldager KT, Tytgat HLP, Aebi M, Clausen H, et al. SnapShot: O-
599 Glycosylation Pathways across Kingdoms. Cell. 2018;172(3):632- e2. doi:
600 10.1016/j.cell.2018.01.016.

601 20. Schaffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS microbiology
602 reviews. 2017;41(1):49-91. doi: 10.1093/femsre/fuw036.

603 21. Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C, Mijakovic I. Protein
604 post-translational modifications in bacteria. Nature reviews Microbiology. 2019;17(11):651-64.
605 doi: 10.1038/s41579-019-0243-0.

606 22. Imperiali B. Bacterial carbohydrate diversity - a Brave New World. Curr Opin Chem Biol.
607 2019;53:1-8. doi: 10.1016/j.cbpa.2019.04.026.

608 23. Fathy Mohamed Y, Scott NE, Molinaro A, Creuzenet C, Ortega X, Lertmemongkolchai G,
609 et al. A general protein O-glycosylation machinery conserved in *Burkholderia* species improves
610 bacterial fitness and elicits glycan immunogenicity in humans. *The Journal of biological
611 chemistry*. 2019; 294(36):13248-13268 doi: 10.1074/jbc.RA119.009671.

612 24. Harding CM, Nasr MA, Kinsella RL, Scott NE, Foster LJ, Weber BS, et al. *Acinetobacter*
613 strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin,
614 and the other one dedicated to O-glycosylation of multiple proteins. *Molecular microbiology*.
615 2015;96(5):1023-41. doi: 10.1111/mmi.12986.

616 25. Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, et al. Diversity in the protein N-
617 glycosylation pathways within the *Campylobacter* genus. *Molecular & cellular proteomics* :
618 MCP. 2012;11(11):1203-19. doi: 10.1074/mcp.M112.021519.

619 26. Scott NE, Kinsella RL, Edwards AV, Larsen MR, Dutta S, Saba J, et al. Diversity within the
620 O-linked protein glycosylation systems of *acinetobacter* species. *Molecular & cellular
621 proteomics* : MCP. 2014;13(9):2354-70. doi: 10.1074/mcp.M114.038315.

622 27. Scott NE, Nothaft H, Edwards AV, Labbate M, Djordjevic SP, Larsen MR, et al. Modification of the *Campylobacter jejuni* N-linked glycan by EptC protein-mediated addition of
623 phosphoethanolamine. *The Journal of biological chemistry*. 2012;287(35):29384-96. doi:
624 10.1074/jbc.M112.380212.

625 28. Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, et al. Simultaneous
626 glycan-peptide characterization using hydrophilic interaction chromatography and parallel
627 fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation

629 MS applied to the N-linked glycoproteome of *Campylobacter jejuni*. *Molecular & cellular*
630 *proteomics : MCP*. 2011;10(2):M000031-MCP201. doi: 10.1074/mcp.M000031-MCP201.

631 29. Hadjineophytou C, Anonsen JH, Wang N, Ma KC, Viburiene R, Vik A, et al. Genetic
632 determinants of genus-Level glycan diversity in a bacterial protein glycosylation system. *PLoS*
633 *Genet*. 2019;15(12):e1008532. doi: 10.1371/journal.pgen.1008532.

634 30. Ulasi GN, Creese AJ, Hui SX, Penn CW, Cooper HJ. Comprehensive mapping of O-
635 glycosylation in flagellin from *Campylobacter jejuni* 11168: A multienzyme differential ion
636 mobility mass spectrometry approach. *Proteomics*. 2015;15(16):2733-45. doi:
637 10.1002/pmic.201400533.

638 31. Jervis AJ, Wood AG, Cain JA, Butler JA, Frost H, Lord E, et al. Functional analysis of the
639 *Helicobacter pullorum* N-linked protein glycosylation system. *Glycobiology*. 2018;28(4):233-44.
640 doi: 10.1093/glycob/cwx110.

641 32. Jervis AJ, Butler JA, Lawson AJ, Langdon R, Wren BW, Linton D. Characterization of the
642 structurally diverse N-linked glycans of *Campylobacter* species. *Journal of bacteriology*.
643 2012;194(9):2355-62. doi: 10.1128/JB.00042-12.

644 33. Madsen JA, Ko BJ, Xu H, Iwashkiw JA, Robotham SA, Shaw JB, et al. Concurrent
645 automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions by
646 ultraviolet photodissociation mass spectrometry. *Anal Chem*. 2013;85(19):9253-61. doi:
647 10.1021/ac4021177.

648 34. Zampronio CG, Blackwell G, Penn CW, Cooper HJ. Novel glycosylation sites localized in
649 *Campylobacter jejuni* flagellin FlaA by liquid chromatography electron capture dissociation

650 tandem mass spectrometry. *Journal of proteome research.* 2011;10(3):1238-45. doi:
651 10.1021/pr101021c.

652 35. Cain JA, Dale AL, Niewold P, Klare WP, Man L, White MY, et al. Proteomics reveals
653 multiple phenotypes associated with N-linked glycosylation in *Campylobacter jejuni*. *Molecular*
654 & *cellular proteomics : MCP.* 2019 18(4):715-734. doi: 10.1074/mcp.RA118.001199.

655 36. Elhenawy W, Scott NE, Tondo ML, Orellano EG, Foster LJ, Feldman MF. Protein O-linked
656 glycosylation in the plant pathogen *Ralstonia solanacearum*. *Glycobiology.* 2016;26(3):301-11.
657 doi: 10.1093/glycob/cwv098.

658 37. Lithgow KV, Scott NE, Iwashkiw JA, Thomson EL, Foster LJ, Feldman MF, et al. A general
659 protein O-glycosylation system within the *Burkholderia cepacia* complex is involved in motility
660 and virulence. *Molecular microbiology.* 2014;92(1):116-37. doi: 10.1111/mmi.12540.

661 38. Abouelhadid S, North SJ, Hitchen P, Vohra P, Chintoan-Uta C, Stevens M, et al.
662 Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial
663 Pathogen. *MBio.* 2019;10(2). doi: 10.1128/mBio.00297-19.

664 39. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, et al. A mass-tolerant
665 database search identifies a large proportion of unassigned spectra in shotgun proteomics as
666 modified peptides. *Nat Biotechnol.* 2015;33(7):743-9. doi: 10.1038/nbt.3267.

667 40. Na S, Bandeira N, Paek E. Fast multi-blind modification search through tandem mass
668 spectrometry. *Molecular & cellular proteomics : MCP.* 2012;11(4):M111 010199. doi:
669 10.1074/mcp.M111.010199.

670 41. Devabhaktuni A, Lin S, Zhang L, Swaminathan K, Gonzalez CG, Olsson N, et al. TagGraph
671 reveals vast protein modification landscapes from large tandem mass spectrometry datasets.
672 Nat Biotechnol. 2019;37(4):469-79. doi: 10.1038/s41587-019-0067-5.

673 42. Solntsev SK, Shortreed MR, Frey BL, Smith LM. Enhanced Global Post-translational
674 Modification Discovery with MetaMorpheus. Journal of proteome research. 2018;17(5):1844-
675 51. doi: 10.1021/acs.jproteome.7b00873.

676 43. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFagger:
677 ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.
678 Nature methods. 2017;14(5):513-20. doi: 10.1038/nmeth.4256.

679 44. Lenco J, Khalikova MA, Svec F. Dissolving Peptides in 0.1% Formic Acid Brings Risk of
680 Artificial Formylation. Journal of proteome research. 2020;19(3):993-9. doi:
681 10.1021/acs.jproteome.9b00823.

682 45. Muller T, Winter D. Systematic Evaluation of Protein Reduction and Alkylation Reveals
683 Massive Unspecific Side Effects by Iodine-containing Reagents. Molecular & cellular proteomics
684 : MCP. 2017;16(7):1173-87. doi: 10.1074/mcp.M116.064048.

685 46. Li Q, Shortreed MR, Wenger CD, Frey BL, Schaffer LV, Scalf M, et al. Global Post-
686 Translational Modification Discovery. Journal of proteome research. 2017;16(4):1383-90. doi:
687 10.1021/acs.jproteome.6b00034.

688 47. Cvetesic N, Semanjski M, Soufi B, Krug K, Gruic-Sovulj I, Macek B. Proteome-wide
689 measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of
690 protein modifications. Sci Rep. 2016;6:28631. doi: 10.1038/srep28631.

691 48. Lassak J, Keilhauer EC, Furst M, Wuichet K, Godeke J, Starosta AL, et al. Arginine-
692 rhamnosylation as new strategy to activate translation elongation factor P. *Nat Chem Biol.*
693 2015;11(4):266-70. doi: 10.1038/nchembio.1751.

694 49. Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, et al. Identification
695 of a general O-linked protein glycosylation system in *Acinetobacter baumannii* and its role in
696 virulence and biofilm formation. *PLoS pathogens.* 2012;8(6):e1002758. doi:
697 10.1371/journal.ppat.1002758.

698 50. Lees-Miller RG, Iwashkiw JA, Scott NE, Seper A, Vinogradov E, Schild S, et al. A common
699 pathway for O-linked protein-glycosylation and synthesis of capsule in *Acinetobacter*
700 *baumannii*. *Molecular microbiology.* 2013;89(5):816-30. doi: 10.1111/mmi.12300.

701 51. Bzdyl NM, Scott NE, Norville IH, Scott AE, Atkins T, Pang S, et al. Peptidyl-Prolyl
702 Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in *Burkholderia*
703 *pseudomallei*. *Infection and immunity.* 2019;87(10). doi: 10.1128/IAI.00528-19.

704 52. VÉRON MC, R. Taxonomic Study of the Genus *Campylobacter* Sebald and Véron and
705 Designation of the Neotype Strain for the Type Species, *Campylobacter fetus* (Smith and Taylor)
706 Sebald and Véro. *INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY.* 1973;23(3):122-
707 34.

708 53. Baumann P, Doudoroff M, Stanier RY. A study of the *Moraxella* group. II. Oxidative-
709 negative species (genus *Acinetobacter*). *Journal of bacteriology.* 1968;95(5):1520-41.

710 54. Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, et al.
711 Genomic plasticity of the causative agent of melioidosis, *Burkholderia pseudomallei*.

712 Proceedings of the National Academy of Sciences of the United States of America.

713 2004;101(39):14240-5. doi: 10.1073/pnas.0403302101.

714 55. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, et al.

715 Occurrence of multiple genomovars of *Burkholderia cepacia* in cystic fibrosis patients and

716 proposal of *Burkholderia multivorans* sp. nov. *Int J Syst Bacteriol.* 1997;47(4):1188-200. doi:

717 10.1099/00207713-47-4-1188.

718 56. Sahl JW, Vazquez AJ, Hall CM, Busch JD, Tuanyok A, Mayo M, et al. The Effects of Signal

719 Erosion and Core Genome Reduction on the Identification of Diagnostic Markers. *mBio.*

720 2016;7(5). doi: 10.1128/mBio.00846-16.

721 57. Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FS. The *Burkholderia*

722 Genome Database: facilitating flexible queries and comparative analyses. *Bioinformatics.*

723 2008;24(23):2803-4. doi: 10.1093/bioinformatics/btn524.

724 58. Johnson SL, Bishop-Lilly KA, Ladner JT, Daligault HE, Davenport KW, Jaissle J, et al.

725 Complete genome sequences for 59 *burkholderia* isolates, both pathogenic and near neighbor.

726 *Genome Announc.* 2015;3(2). doi: 10.1128/genomeA.00159-15.

727 59. Ginther JL, Mayo M, Warrington SD, Kaestli M, Mullins T, Wagner DM, et al.

728 Identification of *Burkholderia pseudomallei* Near-Neighbor Species in the Northern Territory of

729 Australia. *PLoS Negl Trop Dis.* 2015;9(6):e0003892. doi: 10.1371/journal.pntd.0003892.

730 60. Rappaport J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-

731 fractionation and storage of peptides for proteomics using StageTips. *Nature protocols.*

732 2007;2(8):1896-906. doi: 10.1038/nprot.2007.261.

733 61. Lee LY, Moh ES, Parker BL, Bern M, Packer NH, Thaysen-Andersen M. Toward
734 Automated N-Glycopeptide Identification in Glycoproteomics. *Journal of proteome research.*
735 2016;15(10):3904-15. doi: 10.1021/acs.jproteome.6b00438.

736 62. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus
737 computational platform for comprehensive analysis of (prote)omics data. *Nature methods.*
738 2016;13(9):731-40. doi: 10.1038/nmeth.3901.

739 63. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al.
740 The PRIDE database and related tools and resources in 2019: improving support for
741 quantification data. *Nucleic Acids Res.* 2019;47(D1):D442-D50. doi: 10.1093/nar/gky1106.

742 64. Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the
743 PRIDE database and its related tools. *Nucleic Acids Res.* 2016;44(D1):D447-56. doi:
744 10.1093/nar/gkv1145.

745 65. Oliveira LM, Resende DM, Dorneles EM, Horacio EC, Alves FL, Goncalves LO, et al.
746 Complete Genome Sequence of Type Strain *Campylobacter fetus* subsp. *fetus* ATCC 27374.
747 *Genome Announc.* 2016;4(6). doi: 10.1128/genomeA.01344-16.

748 66. Shin B, Jung HJ, Hyung SW, Kim H, Lee D, Lee C, et al. Postexperiment monoisotopic
749 mass filtering and refinement (PE-MMR) of tandem mass spectrometric data increases accuracy
750 of peptide identification in LC/MS/MS. *Molecular & cellular proteomics : MCP.* 2008;7(6):1124-
751 34. doi: 10.1074/mcp.M700419-MCP200.

752 67. Avtonomov DM, Kong A, Nesvizhskii AI. DeltaMass: Automated Detection and
753 Visualization of Mass Shifts in Proteomic Open-Search Results. *Journal of proteome research.*
754 2019;18(2):715-20. doi: 10.1021/acs.jproteome.8b00728.

755 68. Khatri K, Klein JA, Zaia J. Use of an informed search space maximizes confidence of site-
756 specific assignment of glycoprotein glycosylation. *Anal Bioanal Chem.* 2017;409(2):607-18. doi:
757 10.1007/s00216-016-9970-5.

758 69. Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M, et al. New
759 insights into *Acinetobacter baumannii* pathogenesis revealed by high-density pyrosequencing
760 and transposon mutagenesis. *Genes Dev.* 2007;21(5):601-14. doi: 10.1101/gad.1510307.

761 70. Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-Tarraga AM,
762 et al. The genome of *Burkholderia cenocepacia* J2315, an epidemic pathogen of cystic fibrosis
763 patients. *Journal of bacteriology.* 2009;191(1):261-77. doi: 10.1128/JB.01230-08.

764 71. Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, et al. Site-
765 specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. *Journal*
766 *of proteome research.* 2013;12(12):5791-800. doi: 10.1021/pr400783j.

767 72. Riley NM, Hebert AS, Westphall MS, Coon JJ. Capturing site-specific heterogeneity with
768 large-scale N-glycoproteome analysis. *Nat Commun.* 2019;10(1):1311. doi: 10.1038/s41467-
769 019-09222-w.

770 73. Darula Z, Medzihradzky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a
771 Good Start, but There is a Long Way to Go. *Molecular & cellular proteomics : MCP.*
772 2018;17(1):2-17. doi: 10.1074/mcp.MR117.000126.

773 74. Lenz S, Giese SH, Fischer L, Rappaport J. In-Search Assignment of Monoisotopic Peaks
774 Improves the Identification of Cross-Linked Peptides. *Journal of proteome research.*
775 2018;17(11):3923-31. doi: 10.1021/acs.jproteome.8b00600.

776

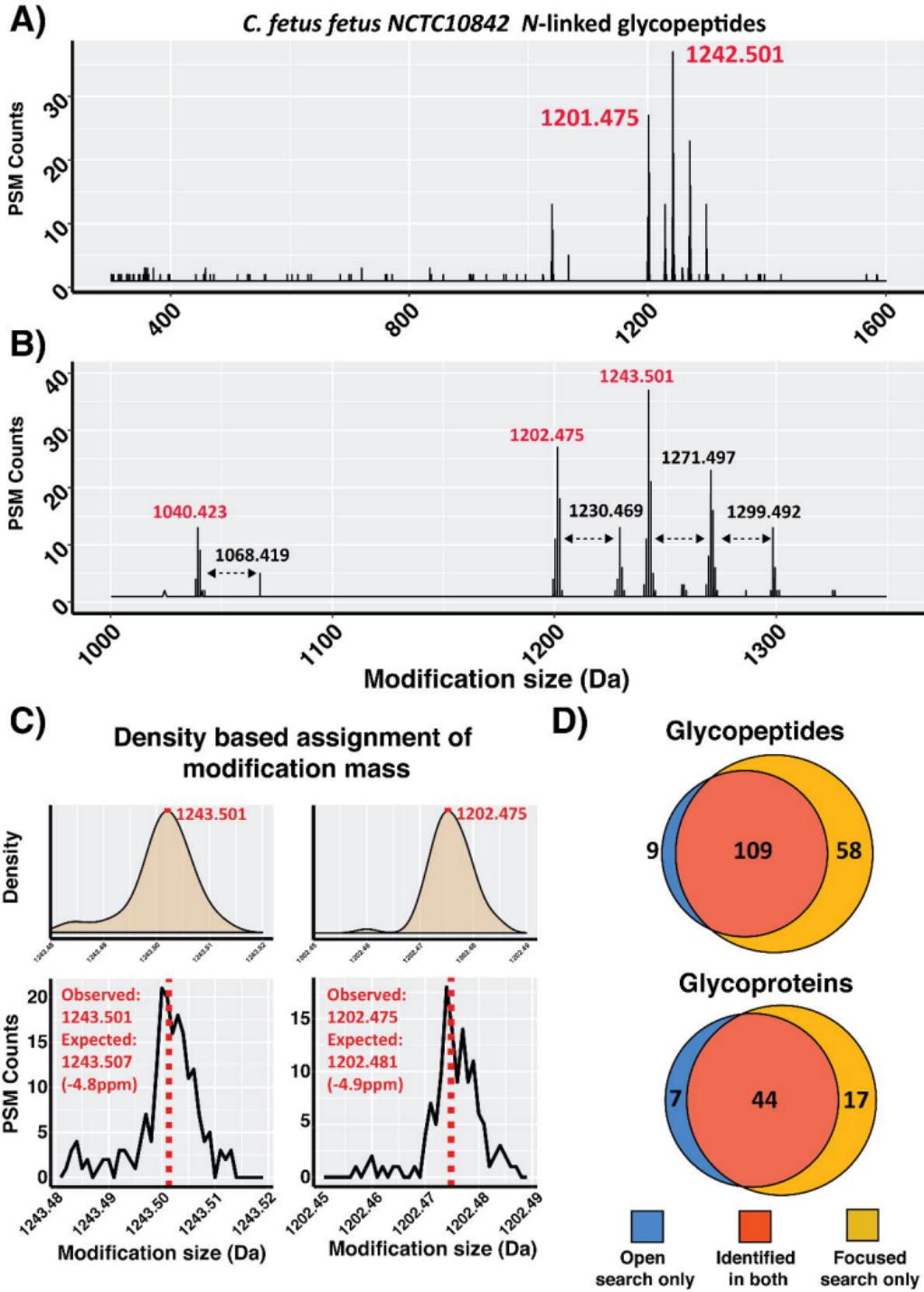
777 **FIGURE LEGENDS**

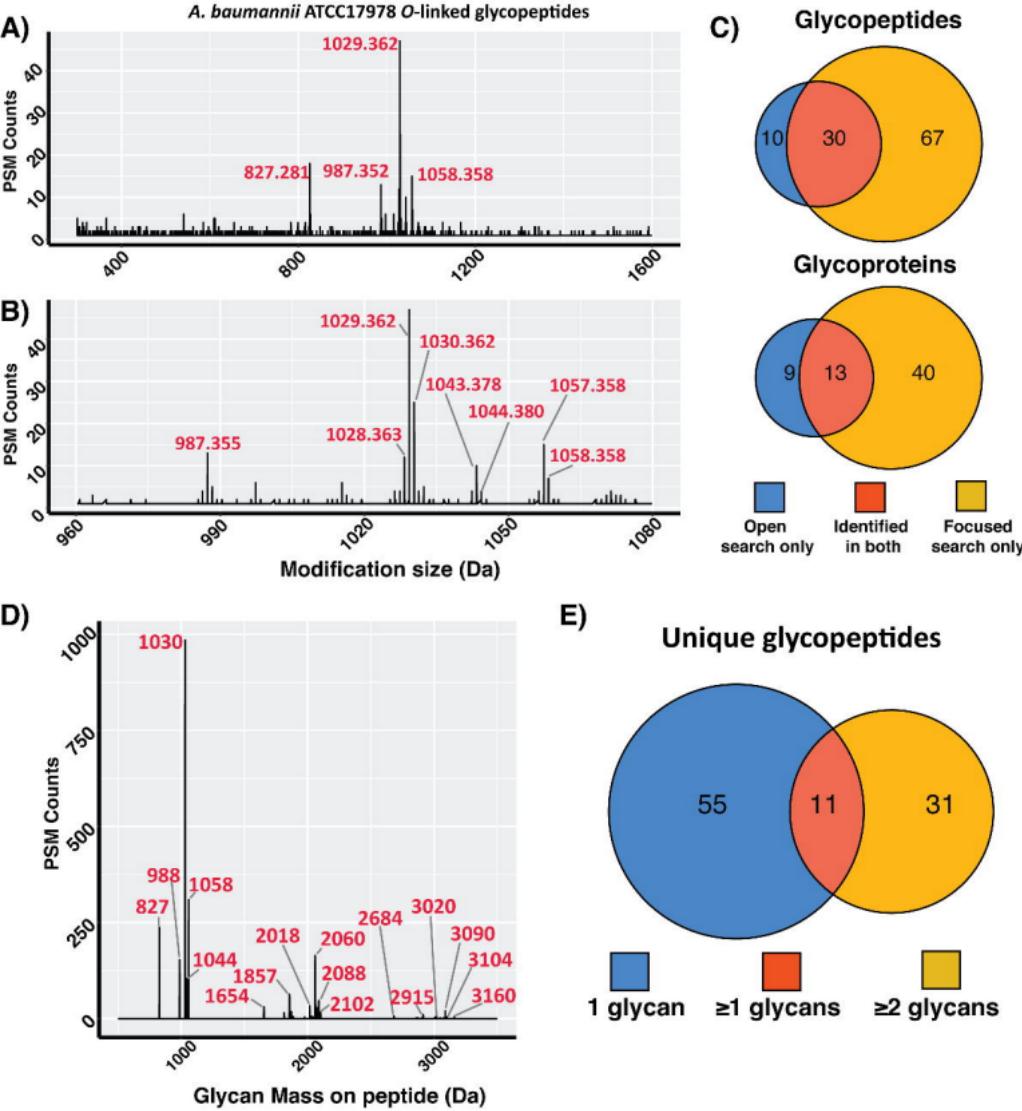
778 **Figure 1: Open searching analysis of *C. fetus fetus* NCTC 10842 glycopeptides. A)** *C. fetus fetus*
779 glycopeptide delta mass plot of 0.001 Dalton increments showing the detection of PSMs
780 modified with masses over 1000 Da. **B)** Zoomed view of *C. fetus fetus* glycopeptide delta mass
781 plot highlighting the most numerous observed delta masses; red masses correspond to non-
782 formylated glycans while black masses correspond to formylated glycans. **C)** Density and
783 zoomed delta mass plot of the *C. fetus fetus* glycan masses 1243.507Da and 1202.481Da. **D)**
784 Comparison of the glycoproteome coverage observed between open and focused searches
785 across *C. fetus fetus* datasets.

786

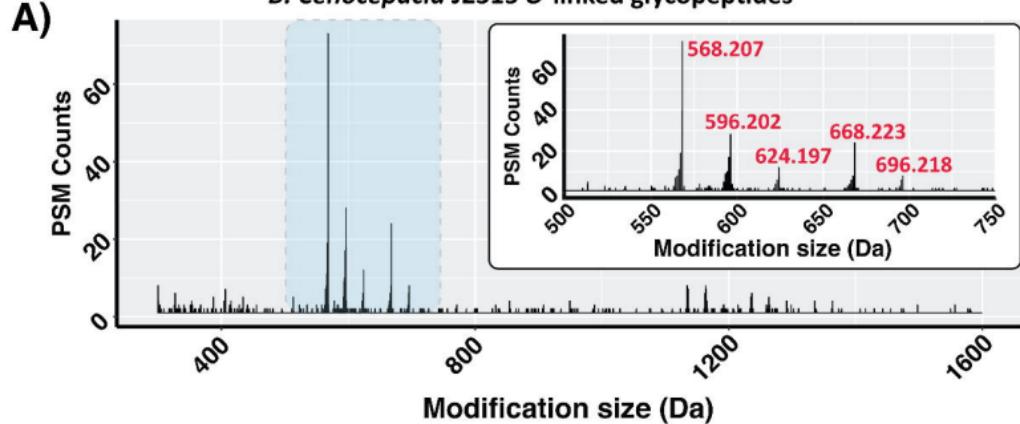
787 **Figure 2: Open searching analysis of *A. baumannii* ATCC17978 glycopeptides. A)** *A. baumannii*
788 glycopeptide delta mass plot of 0.001 Dalton increments showing the detection of PSMs
789 modified with masses over 800 Da. **B)** Zoomed view of *A. baumannii* glycopeptide delta mass
790 plot highlighting the most numerous observed modifications. **C)** Comparison of the
791 glycoproteome coverage observed between open and focused searches across of *A. baumannii*
792 datasets **D)** Glycan mass plot showing the amount of glycan (in Da) observed on glycopeptides
793 PSMs within the focused searches. **E)** Venn diagram showing the number of unique peptide
794 sequences grouped based on the number of glycans observed on these peptides.

795

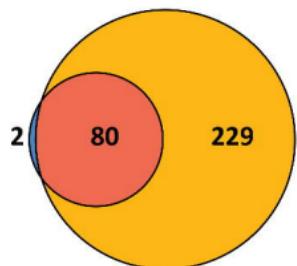

796 **Figure 3: Open searching analysis of *B. Cenocepacia* J2315 glycopeptides. A)** *B. Cenocepacia*
797 glycopeptide delta mass plot of 0.001 Dalton increments showing the detection of PSMs
798 modified with masses over 500 Da. Highlighted area shown in zoomed panel. **B)** Comparison of

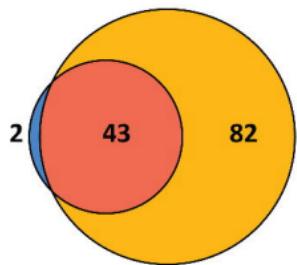

799 the glycoproteome coverage observed between open and focused searches across *B.*
800 *Cenocepacia* datasets **C)** Glycan mass plot showing the amount of glycan (in Da) observed on
801 glycopeptides PSMs within the focused searches. Nearly 40% of all glycopeptide PSMs are
802 decorated with two or more glycans.

803
804 **Figure 4: Comparison of Burkholderia glycoproteomes using open searching. A)**
805 Representative delta mass plots of four out of the eight Burkholderia strains examined
806 demonstrating the 568Da and 668Da glycans are frequently identified delta masses in
807 Burkholderia glycopeptide enrichments. Formylated glycans are denoted in black while
808 Burkholderia O-linked glycans are in red. **B)** Pearson correlation and clustering analysis of delta
809 mass plots enable the comparison and grouping of samples.


810
811 **Figure 5: Identification of minor glycoforms within *B. pseudomallei* K96243. A)** Delta mass
812 plot, binned by 0.001 Dalton increments, showing delta masses observed for peptide sequences
813 also modified with the 568 or 668D glycans. **B)** MS/MS analysis (FTMS-HCD, ITMS-CID and
814 FTMS-EThcD) supporting the assignment of a linear glycan of HexNAc-Heptose-Heptose-188-
815 215 attached to the peptide KAATAAPADAASQ. **C)** Glycan mass plot showing the amount of
816 glycan (in Da) observed on glycopeptides PSMs within focused searches. Only ~6% of all PSMs
817 observed are modified with the 990 Da glycan.

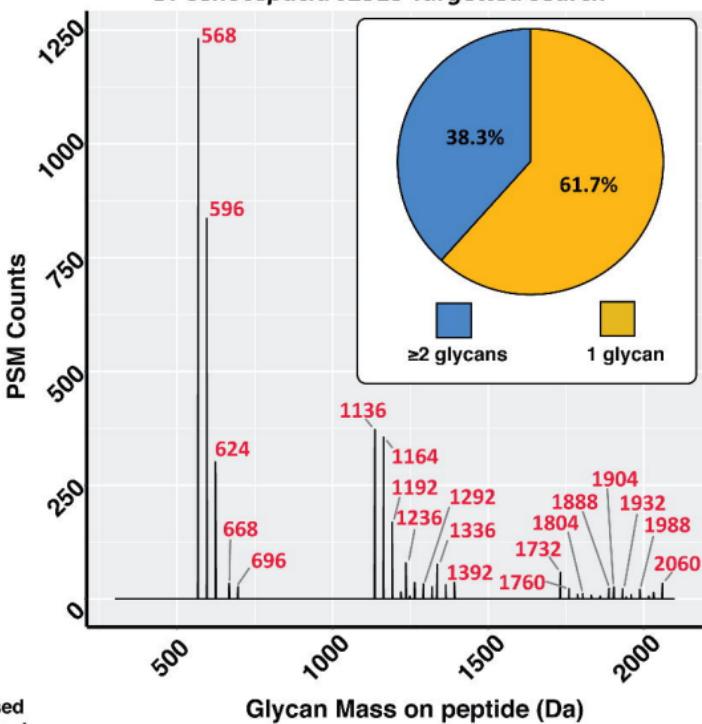
818

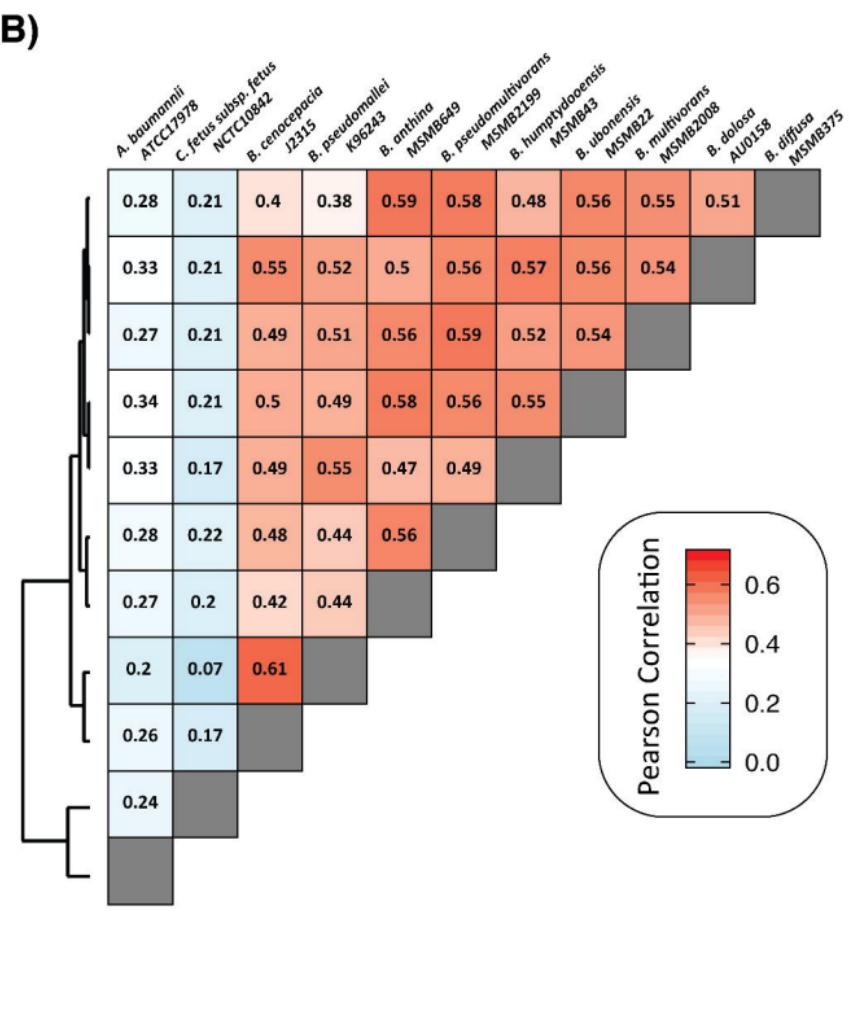
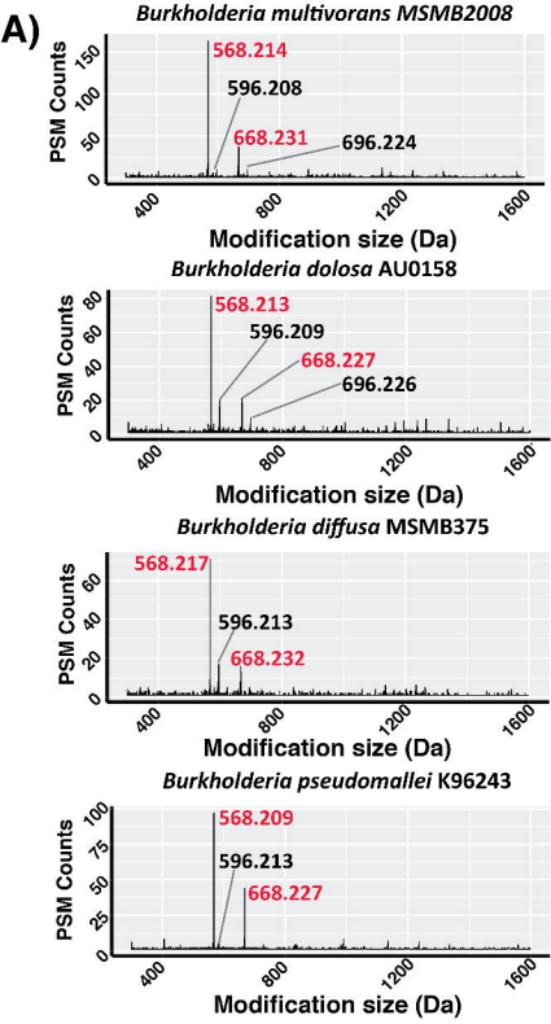



B. Cenocepacia J2315 O-linked glycopeptides

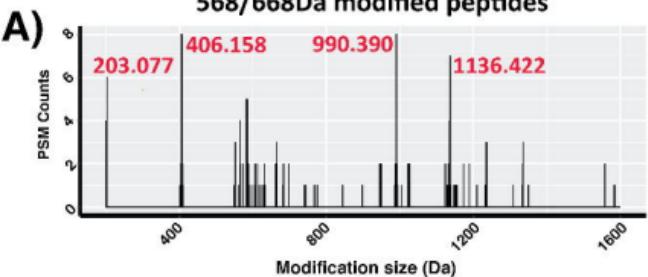
B) Glycopeptides

Glycoproteins

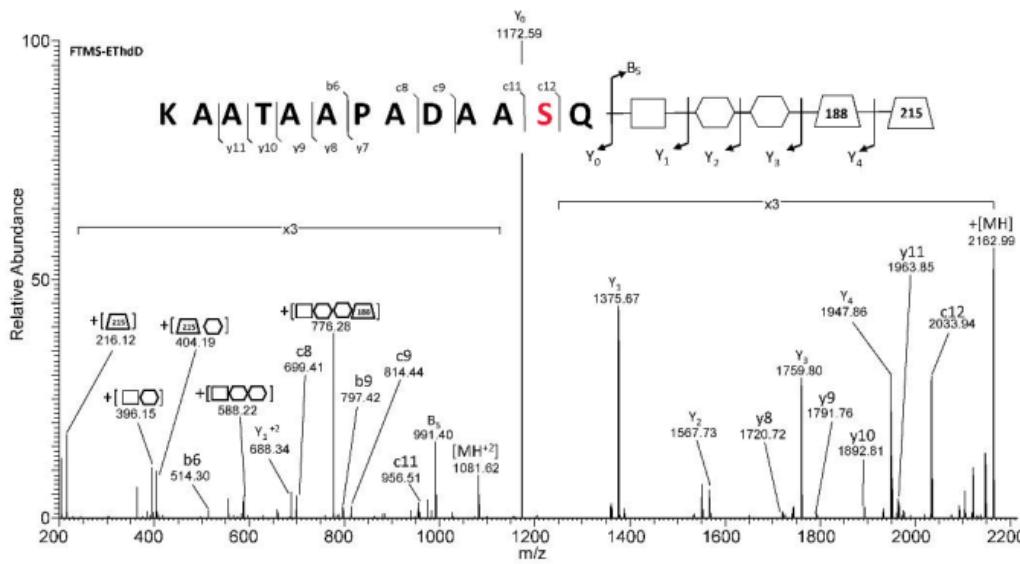
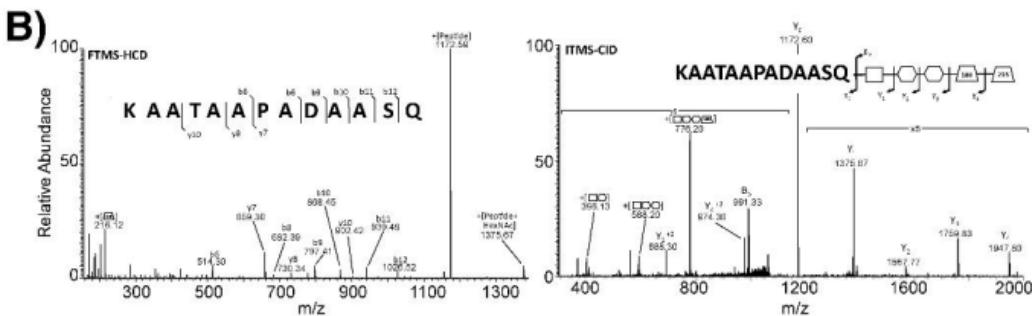
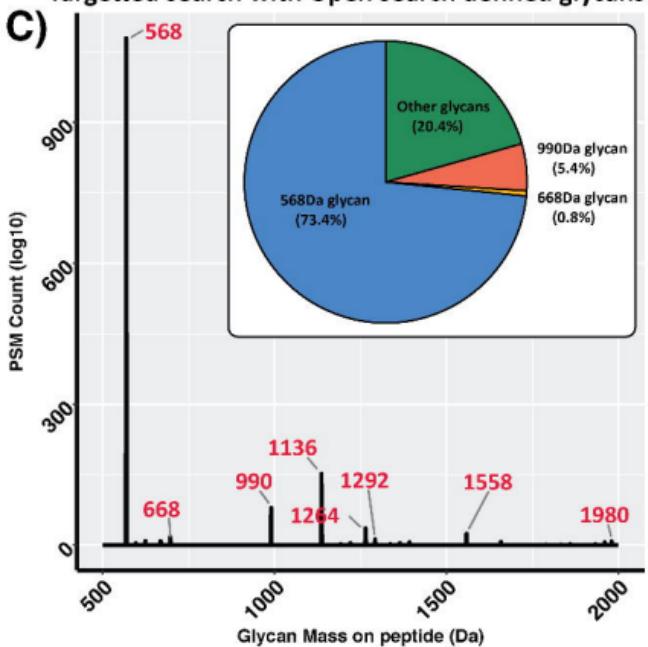

Open
search only



Identified
in both

Focused
search only


C)

B. Cenocepacia J2315 Targetted search

Masses associated with 568/668Da modified peptides

Targetted search with Open search defined glycans

