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Abstract | Signaling in brain networks unfolds over multiple topological scales. Areas may exchange
information over local circuits, encompassing direct neighbours and areas with similar functions, or
over global circuits, encompassing distant neighbours with dissimilar functions. Here we study how
the organization of cortico-cortical networks mediate localized and global communication by paramet-
rically tuning the range at which signals are transmitted on the white matter connectome. By inves-
tigating the propensity for brain areas to communicate with their neighbors across multiple scales,
we naturally reveal their functional diversity. We find that unimodal regions show preference for lo-
cal communication and multimodal regions show preferences for global communication. We show
that these preferences manifest as region- and scale-specific structure-function coupling. Namely, the
functional connectivity of unimodal regions emerges from monosynaptic communication in small-scale
circuits, while the functional connectivity of transmodal regions emerges from polysynaptic communi-
cation in large-scale circuits. Altogether, the present findings reveal how functional hierarchies emerge

from hidden but highly structured multiscale connection patterns.

INTRODUCTION

The brain is a network of anatomically connected neu-
ronal populations [17]. This complex web of connec-
tions functions as a communication network, promoting
signaling between brain regions [3, 33]. A tendency for
neuronal populations with similar functions to connect
with each other gives rise to a nested hierarchy of in-
creasingly polyfunctional neural circuits, spanning mul-
tiple topological scales [41, 47, 95].

Studies of network communication typically concep-
tualize signalling events as a global process, eschewing
the possibility that communication takes places over mul-
tiple topological scales. Namely, areas may preferen-
tially exchange information over small compact circuits
encompassing direct neighbours and areas with similar
functions, or over more extensive circuits encompassing
more distant neighbours with dissimilar functions. An in-
tuitive example is the worldwide air transportation net-
work. The purpose of regional or domestic flights per-
mitting transit between a country’s regions is different
from the purpose of international flights permitting tran-
sit between international hubs. The importance of an
airport in this network will correspondingly depend on
the type of flight considered. For example, Denver’s and
Philadelphia’s airports are important for domestic flights
within the United States, while airports in New York, Los
Angeles or Chicago are important for international flights
[36]. In other words, the topological role of a node in the
network depends on the scale at which it is evaluated.

By the same token, individual brain areas may exhibit
characteristic interactions and communication patterns
at multiple topological scales. The modular structure of
the brain [40], in concert with a prominent connective
core of high degree areas [80, 81], creates conditions
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in which information can be either segregated into local
clusters of highly interconnected brain regions, or glob-
ally integrated [93, 94]. For instance, an area may facili-
tate the integration of information among its local neigh-
bours, but lack the capacity to globally broadcast signals
across the whole brain. In other words, the functional di-
versity of a region — who it can communicate or interact
with — depends on scale.

Here we study how communication between brain re-
gions unfolds over multiple scales. For a given region,
we systematically define local neighborhoods of increas-
ing size. We then track how the centrality of individ-
ual brain regions varies as the sizes of the probed neigh-
borhoods increase. We show that variations in central-
ity are shaped by functional diversity. We further find
a localized-distributed gradient of communication pref-
erences, such that unimodal regions are preferentially
central locally and transmodal regions are preferentially
central globally. Finally, we demonstrate that structure-
function coupling is scale-specific, such that the func-
tional connectivity profiles of unimodal regions are bet-
ter captured by communication within small-scale struc-
tural neighbourhoods, while the functional connectiv-
ity profiles of transmodal regions are better captured by
communication within large-scale structural neighbour-
hoods.

RESULTS

The results are organized as follows. We delineate
multiscale neighborhoods by parametrically tuning the
range at which signals are transmitted on the white
matter connectome. We subsequently investigate the
propensity for brain areas to communicate with their
neighbours across multiple scales using a weighted mea-
sure of regional closeness centrality. Finally, we consider
how the similarity in two areas’ embedding predicts their
functional connectivity. Data sources include (see Mate-
rials and Methods for detailed procedures):
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e Structural connectivity. Structural connectomes
were generated for N = 67 healthy participants
(source: Lausanne University Hospital). Individual
weighted network were reconstructed using diffu-
sion spectrum imaging and deterministic stream-
line tractography.

e Functional connectivity. Functional connectivity
was estimated in the same individuals (N = 67)
using resting-state functional MRI (rs-fMRI).

Analyses were performed using a network parcellation
of 1000 cortical nodes [18]. They were subsequently
repeated using coarser resolutions (114, 219 and 448
nodes) and an independently collected dataset (HCP;
N = 201) (see Materials and Methods for more infor-
mation on the Validation dataset).

Multiscale regional centrality

We first characterize local neighborhoods, in each
structural connectome, using unbiased random walks.
Specifically, we use the transition probabilities of a ran-
dom walker seeded in an individual brain region to de-
lineate its local neighborhood (see Methods for more de-
tails). Transition probabilities were measured for 100
time scales ¢, logarithmically spaced between 10~°-° and
1015, Fig. 1a shows the effect of varying the scale of a
random walk initiated at nodes located in the posterior
cingulate (red), superior parietal (blue), transverse tem-
poral (green) and insular (purple) cortices, with ¢ = 2,
t = 5and t = 10. As t is increased, the random walks are
longer and the size of the probed neighborhood becomes
larger, allowing us to consider communication over more
expansive portions of the network.

To investigate how the role of different brain regions
varies across scales, we measure a region’s closeness to
other nodes in its local neighborhood. Closeness central-
ity is typically computed as the average of local scores
measuring the inverse of the shortest path between a re-
gion of interest and each individual region in the net-
work. Here we weight the local scores, for individual
nodes, according to their proximity to the region of in-
terest using the transition probability vector as a weight
function (see Methods). This weight function reflects the
intuition that the greater the number of electrochemical
synapses a signal has to traverse, the greater the conduc-
tance time and potential attenuation of that signal [27].
When studying local interactions between proximal neu-
ronal populations, distant neighbors become less rele-
vant because signals cannot reach them as readily [79].
By measuring how easily a brain region can communi-
cate with neighbors characterized across different topo-
logical scales, we obtain a multiscale measure of close-
ness centrality (Cpuii)-

For each time scale, we computed the Cp; of every
brain region. Fig. 1b shows regional values of C\ as ¢
increases, averaged across subjects. To allow for compar-
isons between scales, C,u; scores are standardized rel-

2

ative to the distribution of scores obtained at individual
scales. The centrality trajectories of four sample brain
regions are highlighted, and others are shown in grey.
The relative centrality of individual brain regions varies
considerably with increasing scale, such that some areas
are more central, and some are less central, depending
on the size of their neighbourhood. Fig. 1c illustrates the
centrality of every brain region, averaged across subjects,
for four different topological scales. Locally, we observe
clusters of highly central brain regions distributed across
the whole brain; the clusters gradually evolve into larger-
scale systems at more global scales.

Multiscale functional diversity

In homogeneous networks where nodes have similar
topological characteristics, the local centrality of a node
is expected to be similar to its global centrality. However,
in heterogeneous networks, local attributes do not nec-
essarily mirror global attributes [25]. For instance, one
node may have strong connectivity with a small number
of nodes, while another node may have moderate but di-
verse connectivity with a larger number of nodes. The
former is more central in a local sense, while the latter
is more central in a global sense. The differential contri-
bution of the two nodes to global communication, aris-
ing from their respective functional diversity, is reflected
by their different closeness trajectories. See Fig. S1 for
an illustration of this concept in an artificially generated
network.

To quantify variations in a brain region’s centrality
across scales, we compute the local slopes in the close-
ness trajectories of individual nodes of the structural con-
nectomes as ¢ increases. Fig. 2a shows the Cy,;; trajec-
tories of four nodes located in the posterior cingulate,
superior parietal, transverse temporal and insular cor-
tices (from Fig. 1a,b), colored according to their slope.
By considering the slope of a brain region at a single
scale, we can measure its functional diversity, with highly
diverse brain regions having a positive slope (red) and
less diverse brain regions having a negative slope (blue).
Fig. 2b shows how the topographic distribution of these
slopes on the brain varies across scales. Importantly,
these slopes capture the “functional diversity” of a brain
region rather than its “connection diversity”, because it
considers the diversity of a node’s relationships across a
neighborhood of arbitrary size, as opposed to the diver-
sity of its direct connections.

To demonstrate how transitions in local closeness can
highlight the functional diversity of a brain region at
multiple scales, we computed seven measures captur-
ing a node’s connection diversity at different topologi-
cal scales. These measures are nodal strength, clustering
coefficient and participation coefficients computed with
respect to modular partitions of the networks into 16,
12, 9, 6 and 4 communities. For each of the seven mea-
sures, we averaged the scores obtained across subjects
and correlated them with the Cy,,; slopes. Fig. 2c shows
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Figure 1. Multiscale regional centrality | (a) An unbiased random-walk process can be used to delineate local neighborhoods
around individual brain regions of the structural connectome. As ¢, the number of iterations, is increased, the topological size of
the characterized neighborhoods gets larger. Random walk process can be initiated, for example, in the posterior cingulate gyrus,
(red), in the superior parietal gyrus (blue), in the transverse temporal gyrus (green) or in the insula (purple), and can delineate
neighborhoods of different sizes (t = 2; ¢ = 5, t = 10). (b) The weights of a node’s transition probability vector are used to
compute a multiscale measure of closeness centrality (Crui; see Methods for more details). Grey lines represent the centrality
of individual brain regions, averaged across subjects, as ¢ increases. The centrality scores are standardized for each time scale
t. Highlighted in red, blue, green and purple are the centrality trajectories of the four individual brain regions shown in (a). A
node’s relative centrality varies largely depending on the scale of the neighborhoods. (c¢) The relative importance of a brain region
in local communication processes can be evaluated by ranking Ch scores within small neighborhoods (¢t = 1; left-most). Its
relative importance in global processes (global centrality) can be evaluated by ranking Cp, scores within large neighborhoods
(t = 10, right-most). The importance of a brain region in communication processes unfolding at intermediate scales can be
similarly evaluated (e.g. t = 2 or t = 5). Darker colors indicate brain regions with large Ci,uq ranks while lighter colors indicate
brain regions with low Ciyy ranks.

the correlations between these measures and the local
slopes evaluated across time scales. Measures are or-
dered from top to bottom according to the scale at which
they are maximally correlated with the closeness slope.
Local measures, such as strength and clustering coeffi-
cient, tend to be maximally correlated at lower scales
(t = 1.69 and ¢t = 3.90, respectively). Participation coef-

ficients — indexing the diversity of inter-modular links for
a given partition — tend to be correlated with local varia-
tions in closeness at greater values of ¢. Furthermore, as
the partition resolution is gradually decreased, from 16
to 4 communities, optimal correlations are obtained at
larger values of t. Altogether, these results demonstrate
that variations in a node’s centrality are mediated by its
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Figure 2. Multiscale functional diversity | (a) The functional diversity of a brain region is quantified as the amplitude of the local
variations in a region’s closeness centrality (slope) as t varies. (b) Slopes can show different topographic distribution, for select
values of ¢. Highly diverse brain regions have a positive slope (red) while less diverse brain regions have a negative slope (blue).
(c) Slope scores are correlated, as t increases, with other measures of connection diversity (node degree, clustering coefficient,
participation coefficients for partitions of 16, 12, 9, 6 and 4 communities). Local measures of diversity such as degree and clustering
coefficient (negative) are correlated with the centrality slopes measured at intermediate scales, with peaks at ¢ = 1.69 (r=0.80) for
node degree and ¢ = 3.90 (r=0.83) for clustering coefficient (negative). Participation coefficients, viewed as meso-scale measures
of functional diversity, are also correlated with a node’s local variation in centrality. The scale at which the correlation peaks
highlights the size of the communities used to compute the participation coefficient, with larger values of ¢ measuring the role of

brain regions inside larger communities.

functional diversity. Interestingly, the present method
serves to highlight functional diversity without a prede-
fined partition, making it a complementary measure to
more traditional diversity statistics (such as the partici-
pation coefficient), without the need to explicitly define
or assume a hard partition.

Optimal communication scales

What is the optimal scale at which individual brain re-
gions communicate? Fig. 3a shows the scale (¢) at which
the centrality of individual brain regions in the structural
connectomes peaks (topi). The top values were averaged

across subjects. Cooler colors indicate regions that pref-
erentially communicate locally while warmer colors indi-
cate regions that preferentially communicate globally. In
general, we observe preference for local communication
in primary sensory regions (pericalcarine cortex, trans-
verse temporal cortex, post-central gyrus) and in the lim-
bic cortex; conversely, we observe preference for global
communication in association cortex, including dorsolat-
eral prefrontal cortex and superior parietal cortex.

Fig. 3Db shows the distribution of optimal values of
t for seven intrinsic functional networks [91]. These
distributions are represented as heatmaps such that the
nodes in the intrinsic functional networks are vertically
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Figure 3. Optimal communication scales | (a) Representation on the surface of the brain of the optimal scale (¢o,¢:) at which the
multiscale closeness centrality of individual brain regions of the structural connectome peaks. The ¢,p¢; Scores are averaged across
participants. Sensory region are optimally central for low values of ¢ and multimodal regions are optimally central for large values
of t. (b) Heatmaps of the distribution of optimal scale values for individual brain regions, averaged across subjects, for seven intrisic
functional networks [91]. The nodes in each heatmap are vertically ordered and colored based on their ¢,,:; scores. (c) Heatmaps
of the distribution of optimal scale values for individual brain regions, averaged across subjects, for seven cytoarchitectonic classes
defined from the von Economo atlas [84, 86-88]. Yeo intrinsic networks: lim = limbic network, sm = somatomotor network, vis =
visual network, va = ventral attention network, dmn = default mode network, da = dorsal attention network, fpn = frontoparietal
network. Von Economo classes: ps = primary sensory cortex, pss = primary/secondary sensory cortex, limbic = limbic cortex,
insular = insular cortex, ass2 = association cortex 2, pm = primary motor cortex, ass1 = association cortex 1.

ordered and colored based on their top; values. The
mean of the distributions for the seven networks are
significantly different from one another following Bon-
ferroni correction (p<0.001), except for the mean tqp;
scores of the dorsal attention and default-mode networks
(p=0.45) and for the dorsal attention and fronto-parietal
networks (p=0.04). These heatmaps highlight a dif-
ferentiation between limbic and unimodal (somatomo-
tor and visual) networks versus multimodal networks
(default-mode, dorsal-attention and fronto-parietal net-
works). Fig. 3c shows, in the same way, the distribution
of top values for seven cytoarchitectonic classes defined
by the von Economo atlas [84, 86-88].The means of the

distributions for the primary sensory (ps) and association
(ass1) classes are significantly different from the mean of
the other six cytoarchitectonic classes following Bonfer-
roni correction (p<0.001). These heatmaps again high-
light a differentiation between sensory and association
areas.

We also compared the averaged Cy,i;; of the seven in-
trinsic functional networks and cytoarchitectonic classes,
as t increases, to the average Cpuy of these intrinsic
networks and classes in randomized networks with pre-
served degree sequences (Fig. S2). We find that the
variations in Cy,; are larger in the empirical networks
than those in the randomized networks. In other words,
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variations in the centrality of a node are not trivially ex-
pected from their degree.

Multiscale structure-function coupling

We next investigate how multiscale connection pat-
terns influence structure-function coupling. Functional
connectivity between pairs of brain regions is typically
computed as a correlation between the time series of
their respective fMRI BOLD signals. Coherent fluctua-
tions in neural activity are thought to arise from inter-
actions on the underlying structural connectome [9, 32,
75]. A variety of pair-wise measures have been pro-
posed to predict functional connectivity from the struc-
tural connectivity between brain regions, including struc-
tural connectivity strength, path length, search infor-
mation, path transitivity [32] and communicability [9].
Most of the proposed measures of structure-function cou-
pling assume a single-scale, global relationship between
the two (but see [1, 9] for their use of multiscale mea-
sures).

Here we assess structure-function coupling across mul-
tiple scales. By measuring the similarity between the
neighborhoods of two brain regions defined at differ-
ent values of ¢, we ask how similar the dynamical pro-
cesses unfolding around them are [70]. We hypothesize
that nodes with overlapping neighborhoods (i.e. large
neighborhood similarity) will display greater functional
coupling than nodes that are part of different neighbor-
hoods [56]. We hence quantified, for each structural con-
nectome, the neighborhood similarity of pairs of brain
regions by computing the pairwise cosine similarity be-
tween their transition probability vectors, for every value
of ¢ (Fig. 4a).

For every subject, we then measured the Pearson corre-
lation between the functional connectivity and the neigh-
borhood similarity of edges with positive functional con-
nectivity weights. Measuring this correlation for every
value of ¢ (Fig. S3a), we find the largest correlation at
t = 2.69 (mean = 0.22, SD = 0.03). Fig. S3b shows
the distribution of individual correlation scores for each
measure. The mean of the maximal correlations be-
tween functional connectivity and neighborhood similar-
ity was significantly larger than the mean of the correla-
tions obtained by correlating the functional connectivity
matrix to the weights of the structural network’s adja-
cency matrix (mean = 0.12, SD = 0.02; p < 10749), the
weights of the structural network’s shortest paths ma-
trix (mean = 0.16, SD = 0.03; p < 1072°), and the
weights of the structural network’s communicability ma-
trix (mean = 0.16, SD = 0.02; p < 1072%). The mean
of these correlations was also significantly larger than
the mean correlation between functional connectivity
and Euclidean distance (mean = 0.20, SD = 0.03; p =
0.00046). These results are in accordance with previous
results demonstrating that incorporating multiscale pro-
cesses into structure-function coupling predictions is ad-
vantageous ([1, 9]).

6

Importantly, the present framework does not assume
that structure-function relationships are uniform across
the brain, and instead opens the possibility that func-
tional interactions occur at different scales for different
brain regions. To investigate this possibility, we com-
puted the Spearman correlations between the neighbor-
hood similarity profiles and positive-valued functional
connectivity profiles of individual brain regions. We av-
eraged the correlations obtained across individual con-
nectomes for each value of ¢, and identified the maximal
correlation (pmax) of every brain region (Fig. 4b). We
find that the optimal scale for which this regional correla-
tion is maximal varies considerably across brain regions
(Fig. 4c).

As discussed in the previous section, the optimal
communication scale of brain regions varies along a
unimodal-multimodal axis. We therefore hypothesize
that the scale that best captures structure-function cou-
pling for individual regions — the scale at which the
correlation between neighborhood similarity and func-
tional connectivity is maximal — similarly varies along
a unimodal-multimodal axis. Fig. 4d shows the topo-
graphic distribution of the ¢ values at which the corre-
lation between neighborhood similarity and functional
connectivity is maximal (ty.x). We see that the pattern
indeed outlines the putative unimodal-transmodal hier-
archy, such that functional connectivity profiles of uni-
modal regions are better captured by smaller neighbour-
hoods (small ¢), while functional connectivity in trans-
modal regions is better captured inside more extensive
neighbourhoods. This relationship with the unimodal-
transmodal hierarchy is highlighted by a significant cor-
relation (r = 0.57, pspin = 2 x 107%) between the opti-
mal values of ¢ and the first (principal) gradient of func-
tional connectivity (Figs. 4e, f). This continuous gradi-
ent, which can be estimated using diffusion map embed-
ding, is thought to reflect the main organizational axis of
the brain, ranging from primary sensory and motor re-
gions to transmodal regions [43, 50]. The magnitude
of the regional correlations (Fig. 4b) were not signifi-
cantly correlated with the optimal scale of a brain region
(r = 0.25, pspin = 0.09) and with the first (principal) gra-
dient of functional connectivity (r = 0.24, pspin = 0.21),
suggesting that structure-function coupling is not weaker
in multimodal regions per se, but rather, that structure-
function coupling is scale-specific.

We next compare the maximal correlations obtained
with neighborhood similarity (pns) to the correlations ob-
tained with two topological measures, namely shortest
path (psp) and communicability (pcom), and with a geo-
metric measure, namely Euclidean distance (p.q). These
measures have been previously used to study variations
in local structure-function coupling [85]. Fig. S4a shows
the relationship between the regional correlations ob-
tained with neighborhood similarity and the correlations
obtained by comparing functional connectivity to the
other measures. The optimal correlations obtained with
neighborhood similarity were generally larger than those
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Figure 4. Multiscale structure-function coupling | (a) Neighborhood similarity for ¢t=1, t=2, ¢t=>5 and ¢=10. The neighborhood
similarity between pairs of brain regions was computed as the cosine similarity between their transition probability vectors, and
was computed for a range of topological scales ranging from 10~%® to 10"°. (b) Maximal correlations between the neighborhood
similarity profiles and functional connectivity profiles of individual brain regions, averaged across subjects. (¢) Row-standardized
heatmap of the correlations between the functional connectivity and neighborhood similarity profiles of individual brain regions,
as t increases logarithmically. (d) Values of ¢ at which the correlation between neighborhood similarity and functional connectivity
profiles is maximal, for individual brain regions, averaged across subjects. (e) Topographic distribution of the first (principal)
gradient of functional connectivity estimated using diffusion map embedding, which reflects the main organizational axis of the
brain, ranging from primary sensory and motor regions to transmodal regions [43, 50]. (f) Relationship between the principal
gradient of functional connectivity and 10g tmax (r=0.57; pspin = 221074).

obtained with the three measures. We next compute
the difference between the correlation scores obtained
with neighborhood similarity and the correlation scores
obtained with the other three measures. We find that
the largest local differences are observed in multimodal
brain regions (Fig. S4b). Namely, for all three measures,
neighborhood similarity was relatively better at predict-
ing functional connectivity in multimodal brain regions.
For all three measures, we found a significant correlation
between the first (principal) gradient of functional con-
nectivity and the local differences (Fig. S4c). Altogether,
these results demonstrate that while other measures per-
form as well (or better) in the prediction of functional
connectivity in sensory regions, neighborhood similarity
is significantly better at predicting functional connectiv-
ity in multimodal brain regions.

Sensitivity and replication

We ultimately asked if the results are sensitive to dif-
ferent processing choices, if they are replicable with dif-
ferent parcellations and if they are replicable in an in-
dependently acquired dataset. In the present report, we
delineated local topological neighborhoods using unbi-
ased random walks. To ensure that the observed re-
sults are not dependent on our choice of this particu-
lar dynamical process, we repeated the analyses using
personalized PageRank vectors (i.e. random-walks with
restarts) and the normalized Laplacian matrix (i.e. dif-
fusion process). These alternative dynamical processes
also allow for multiscale investigations with a parameter
that can be tuned to constrain their length (see Methods
for more details). We also repeated the analyses using
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binarized networks, and to ensure that the log transfor-
mation of the streamline densities did not bias the re-
sults, we replicated all experiments using the stream-
line densities scaled to values between 0 and 1 as the
weights of the structural connections (instead of their
log-transform). To ensure that the results do not de-
pend on parcellation resolution [92], we replicated all
experiments with the same dataset, but parcellated into
114, 219 or 448 cortical brain regions. Finally, to ensure
that the results were replicable in an independently ac-
quired dataset, we repeated our analyses in a Validation
dataset (HCP, N=201), which was parcellated accord-
ing to a functional parcellation of 800 nodes [69]. We
obtain similar results for all sensitivity and replication
experiments. The optimal communication scales are pre-
sented in Fig. S5 and Fig. S6 shows their relationship
with the ¢, values presented in the main text. Fig. S7
shows the topographic distributions of ¢y, values, and
Fig. S8 shows that those distributions are significantly
correlated with the principal FC gradient. Finally, Fig.
S9 shows that as the parcellations get more fine-grained,
structure-function coupling must be predicted by consid-
ering dynamical processes unfolding in larger neighbor-
hoods.

DISCUSSION

In the present report, we study how inter-regional
communication between brain regions occurs over mul-
tiple topological scales. By tracing the trajectory of a re-
gion’s closeness in expanding neighborhoods, we iden-
tify topological attributes that mediate transitions from
more localized communication to more global commu-
nication. We find that less diverse unimodal regions
show preference for local communication and more di-
verse multimodal regions show preferences for global
communication. These preferences manifest as scale-
specific structure-function relationships with the func-
tional connectivity of unimodal regions emerging from
local communication in small-scale circuits and the func-
tional connectivity of multimodal regions emerging from
global communication in large-scale, poly-synaptic, cir-
cuits.

Numerous reports have found evidence of regional
differences in centrality measures [16, 30, 38, 74, 82,
94, 96]. These studies were however performed at a
single scale, eschewing the possibility that communica-
tion occurs across a spectrum of local, intermediate and
global scales [4]. In other words, traditional methods
overlook the possibility that proximal populations with
similar functions engage in a different mode of commu-
nication from more distant populations with dissimilar
functions. By tracing the trajectory of a node’s central-
ity over a spectrum of local neighborhoods, we show
how brain regions communicate over multiple topolog-
ical scale, and therefore naturally reveal their functional
diversity.

The diversity of a brain region is typically estimated

8

from the number of direct connections within- vs.
between-modules [35, 64]. Regions with diverse con-
nection profiles, with links to many specialized commu-
nities, are theoretically well-placed to integrate informa-
tion from multiple domains [6-8, 66, 94]. By considering
interactions over multiple hops, we not only characterize
the diversity of a node’s direct connections, but also the
diversity of its higher-order relationships with other re-
gions. Moreover, our method allows for the characteriza-
tion of functional diversity across a continuous range of
scales, eliminating the need to partition the network into
communities. This property may prove to be method-
ologically convenient and theoretically desirable for two
reasons. First, brain networks possess prominent com-
munity structure at multiple scales, and there may not
exist a single “characteristic” scale [10, 11]. Second, the
community structure of the brain may not be exclusively
assortative [13, 26, 63], yet most community detection
algorithms assume the presence of assortative communi-
ties [28]. By tracking functional diversity over a range
of expanding neighbourhoods, we avoid having to make
assumptions about the presence, nature or scale of com-
munities.

By identifying the optimal scale at which a brain re-
gion can communicate with neighboring regions, we find
that regions participating in fewer integrative functions,
such as primary visual, auditory and somatosensory cor-
tices, optimally communicate at local scales. Conversely,
polysensory regions in association or transmodal cortex
optimally communicate at global scales. In other words,
we show that a region’s functional specialization natu-
rally emerges from its anatomical connectivity [52, 62].
Our results are naturally intertwined with the concept of
segregation and integration in the brain [73]: local con-
nectivity among regions with similar functions promotes
specialized information processing whereas global con-
nection patterns among regions with dissimilar functions
promote integrative information processing. By tracing
the trajectory of a brain region across multiple topolog-
ical scales, we highlight a continuous gradient of local-
ized versus distributed processing [44].

This localized-distributed gradient is further high-
lighted by local variations in structure-function cou-
pling. The similarity of local structural neighborhoods
best predicts functional connectivity in sensory areas,
suggesting that interactions among these regions unfold
mainly over local, small-scale neighbourhoods. Con-
versely, functional connectivity in multimodal brain re-
gions is best predicted by the topological similarity of
large-scale neighborhoods, suggesting that interactions
among these regions unfold mainly over more extensive,
large-scale neighbourhoods. These results build upon re-
cent reports showing that structure-function coupling is
region specific [5, 22, 67, 75, 85, 89]. Our findings sug-
gest that this phenomenon is explained by the increasing
scales at which communication processes unfold. Func-
tional connectivity in sensory regions is easier to predict
from structural connectivity because it is mediated by di-
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rect communication on the structural connectome, while
functional connectivity in multimodal region is harder
to predict from structural connectivity because it is me-
diated via more indirect, polysynaptic communication
pathways [9].

Our results are in line with an emerging literature em-
phasizing large-scale gradients of cortical organization
[31, 39, 43, 50, 60]. Our findings offer a possible expla-
nation for how these large-scale gradients emerge from
the brain’s structural embedding. Namely, at individ-
ual topological scales, areas may appear to preferentially
form connections with a subset of others areas, manifest-
ing as specific communities. As we zoom across multiple
scales, however, we reveal a layered organization of in-
terdigitated connections among areas, yielding an orga-
nizational axis of scale-specific organizational character-
istics, including centrality and connection diversity. It is
noteworthy that, from a geometric perspective, unimodal
brain regions tend to have preferentially short-distance
connections and multimodal regions have preferentially
long-distance connections [57, 58, 71]. Our results are
therefore consistent with recent theories suggesting that
the main role of long-distance connections is to enhance
the functional diversity of a brain region [12].

The present findings should be interpreted with re-
spect to several important methodological considera-
tions. We focused on the topological organization of
networks reconstructed from diffusion-weighted imaging
data using computational tractometry. This approach is
prone to systematic false positives and false negatives
[49, 76]. In addition, the connectomes generated are
undirected, naturally limiting inferences about causal in-
fluence. We did, however, ensure that our results did
not trivially depend on confounding factors by replicat-
ing our results using (1) different dynamical processes
to generate neighborhoods, (2) different weights for
our structural connectivity matrices, (3) a different par-
cellation resolution and (4) an independent validation
dataset.

Altogether, the present findings demonstrate that ex-
clusively considering communication at the global level
might obscure functionally relevant features of brain net-
works. By studying regional embedding across multiple
topological scales, we reveal a continuous range of com-
munication preferences. In doing so, we take a step to-
wards conceptually linking long-standing ideas in neuro-
science such as integration and segregation, functional
hierarchies and connection diversity.

METHODS
Network reconstruction

All analyses were performed in two independently col-
lected and preprocessed datasets, one collected at the
Lausanne University Hospital (N = 67; Discovery) [34]
and one as part of the Human Connectome Project S900
release (N = 201; Validation) [83].

9
Discovery dataset

The Discovery data acquisition protocol comprised a
diffusion spectrum imaging (DSI) sequence and a resting
state functional magnetic resonance imaging (rs-fMRI)
sequence. The N = 67 participants were scanned in a
3-Tesla MRI Scanner (Trio, Siemens Medical, Germany)
using a 32-channel head coil. The protocol included a
magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence sensitive to white/gray matter con-
trast (Imm in-plane resolution, 1.2mm slice thickness),
a DSI sequence (128 diffusion-weighted volumes and a
single b0 volume, maximum b-value 8,000 s/mm?, 2.2
x 2.2 x 3.0 mm vozxel size), and a gradient echo-planar
imaging (EPI) sequence sensitive to blood-oxygen-level-
dependent (BOLD) contrast (3.3 mm in-plane resolu-
tion and slice thickness with a 0.3-mm gap, TR 1,920
ms, resulting in 280 images per participant). Initial sig-
nal processing for all MPRAGE, DSI and rs-fMRI data
was performed using the Connectome Mapper pipeline
[21]. Gray and white matter were segmented from the
MPRAGE volume using freesurfer [23]. Grey matter was
parcellated into either 114, 219, 448 or 1000 equally
sized parcels [18].

Structural connectivity matrices were reconstructed
for individual participants using deterministic stream-
line tractography on reconstructed DSI data, initiating
32 streamline propagations per diffusion direction, per
white matter voxel. Within each voxel, the starting
points were spatially random. For each starting point,
a fiber growth continued along the ODF maximum direc-
tion that produces the least curvature for the fiber. Fibers
were stopped if the change in direction was greater
than 60 degrees/mm. The process was complete when
both ends of the fiber left the white matter mask. The
weights of the edges correspond to the log-transform of
the streamline density, scaled to values between 0 and 1.

fMRI volumes were corrected for physiological vari-
ables, including regression of white matter, cerebrospinal
fluid, as well as motion (three translations and three ro-
tations, estimated by rigid body co-registration). BOLD
time series were then subjected to a lowpass filter (tem-
poral Gaussian filter with full width half maximum equal
to 1.92 s). The first four time points were excluded
from subsequent analysis to allow the time series to sta-
bilize. Motion "scrubbing" was performed as described by
[65]. Functional connectivity matrices were constructed
by computing the zero-lag Pearson correlation coefficient
between the fMRI BOLD time series of each pairs of brain
regions.

Validation dataset

The Validation data acquisition protocol included a
high angular resolution diffusion imaging (HARDI) se-
quence and four resting state fMRI sessions. All analyses
were performed in a subset of N = 201 unrelated partic-
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ipants. The participants were scanned in the HCP’s cus-
tom Siemens 3T "Connectome Skyra" scanner. Further
information regarding the acquisition protocol is avail-
able at [83] while more information regarding the pre-
processing and the network reconstruction is available at
[61].

Briefly, the dMRI data was acquired with a spin-echo
EPI sequence (TR=5,520 ms; TE=89.5 ms; FOV=210 x
180 mm 2; voxel size=1.25 mm 3; b-value=three differ-
ent shells i.e., 1,000, 2,000, and 3,000 s/mm 2%; num-
ber of diffusion directions=270; and number of b0 im-
ages=18) and the rs-fMRI data was acquired using a
gradient-echo EPI sequence (TR=720 ms; TE=33.1 ms;
FOV=208 x 180 mm 2; voxel size=2 mm 3; number of
slices=72; and number of volumes=1,200). The data
was pre-processed according to the HCP minimal prepro-
cessing pipelines [29].

Structural connectomes were reconstructed from the
dMRI data using the MRtrix3 package [77]. Fiber ori-
entation distributions were generated using the multi-
shell multi-tissue constrained spherical deconvolution al-
gorithm from MRtrix [24, 46]. The initial tractogram
was generated with 40 million streamlines, with a maxi-
mum tract length of 250 and a fractional anisotropy cut-
off of 0.06. Spherical-deconvolution informed filtering
of tractograms (SIFT2) was applied to reconstruct whole
brain streamlines weighted by cross-section multipliers
[72]. To ensure that our results were not confounded by
the parcellation scheme or resolution, grey matter was
parcellated with a different parcellation. This time, grey
matter was parcellated into 800 cortical regions accord-
ing to the Schaefer functional atlas [69]. Functional con-
nectivity matrices were constructed for individual sub-
jects by computing the zero-lag Pearson correlation co-
efficient between the fMRI BOLD time series of each
pairs of brain regions. The functional weights of the four
resting-state sessions were then averaged for each indi-
viduals.

Yeo intrinsic networks and von Economo classes

To facilitate our analyses, nodes of the brain networks
were stratified according to their membership to seven
intrinsic functional networks and seven cytoarchitectonic
classes. The seven intrinsic functional networks were
identified by applying a clustering technique on resting-
state fMRI data from 1000 subjects. More details can be
found in [91]. The seven resting-states parcellation, in
the FreeSurfer fsaverage5 surface space, was first down-
loaded from https://github.com/ThomasYeoLab/CBIG/.
We then attributed to each parcel of the 1000 nodes
Cammoun parcellation the most common intrinsic net-
work assignments of its vertices. The seven cytoarchitec-
tonic classes consist in an extended version of the classi-
cal von Economo atlas [87, 88]. The class of each par-
cel was manually assigned based on visual comparison
with the von Economo and Koskinas’s parcellation and
anatomical landmarks [84, 86].
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Multiscale topological neighborhoods

Local neighborhoods were characterized by modelling
dynamical process initiated from individual nodes in
the networks. By controlling the length of these pro-
cesses, we controlled the topological size of the delin-
eated neighborhoods. Our main results relied on unbi-
ased random-walks. We further replicated our results
using random walks with restarts and a heat-diffusion
process.

Unbiased random-walks

Given an adjacency matrix A where A;; corresponds
to the weight of the edge connecting nodes i and 7, the
probability that a walker at node 4 transitions to node

j in a single iteration is given by i‘iﬂ , Where d; is the
degree (strength if weighted) of node 7 and corresponds
to the sum of the weights of the edges leaving node i.
The overall transition probabilities of a network can be

represented in a transition matrix P such that:

P =D A, 1)

where D is the diagonal matrix with the value D,; corre-
sponding to the degree of node i. Given an initial distri-
bution of random walkers p(0), it is possible to compute
the distribution of these random walkers at a discrete
time ¢, p(t):

p(t) = p(0)P". 2

The vector p(t) indicates the proportion of walkers lo-
cated at any other node at time ¢. We initiate this random
walk process on a single node i by setting the initial dis-
tribution p(0) to be equal to 0 everywhere, and be equal
to 1 in position . This initial vector can be written as e;.
The transition probability vector at time ¢, given that the
random walk process was started on node i can then we
written as:

p(ti) = e;P". 3

The discrete-time random walk process defined above
can be "continuized" by considering the interval of time
between two moves as an exponential random variable
with A = 1 [54]. The transition probability vector, for a
random walk process initiated on node i, is then given
by:

p(t]i) = ei(e” ), Q)

where L,.,, = I—P is the graph random-walk normalized
Laplacian.
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By initiating a random-walk process from a single
node, we can measure the topological proximity between
this node and the other nodes in the network. By increas-
ing the value of ¢, we increase the length of the random-
walks, and consequently measure the topological prox-
imity of nodes in larger neighborhoods. We measured
the transition probabilities for 100 time scales ¢, loga-
rithmically spaced between 10~%° and 10'-°.

Random-walks with restarts

A variant of this equation consists in adding to this
random-walk process an additional probability that the
random walker randomly teleports itself back to the seed
node. Random walks with teleportation are the basis
for the PageRank algorithm [15] and ensure that ran-
dom walks on directed networks do not get trapped in
absorbing states. The equation, given that the random
walk process is initiated on a single node 4, is defined as
follows:

p(tla,i) = (a)e;P’ + (1 - a)e;, ©)

where « corresponds to the damping factor. By varying
the damping factor, we can decrease the probability of
restart of the random walks and therefore increase their
length. More specifically, the probability that a random-
walks is of length [ (Prob|[L = []) is geometrically related
to the value of the parameter «:

Prob,[L=1]=(1- oz)o/. 6)

Ultimately, the stationary distribution of this Markov
chain, which can be computed using the power iteration
method, indicate the probability that random walkers
of a certain length, starting from a single source node,
reach other nodes in the network. We computed the
stationary distribution, also known as the personalized
PageRank, for 99 values of «, linearly spaced between
0.01 and 0.99.

Diffusion

An alternative method to dynamically measure the
topological proximity of brain regions in a network con-
sists in modelling a heat-diffusion process on the net-
work. More specifically, the Laplacian matrix (L) of the
network is used to compute the distribution of some ma-
terial at time ¢, given that the process was initiated at
node i:

p(ti) = e;(e"™)y;, 7
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where

L=I-D Y2AD /2, (8)

Again, by varying the value of ¢, we can vary the size
of the neighborhoods on which the diffusion process un-
folds, and therefore measure the topological proximity of
nodes in the network given dynamical processes unfold-
ing at increasingly large scales. We measured the tran-
sition probabilities for 100 time scales ¢, logarithmically
spaced between 107°-5 and 10'5.

Multiscale closeness centrality

Measures of network centrality often consider a node’s
relationship with all of the other nodes. For instance,
the closeness centrality of a node in a network can be
measured by computing the inverse of its averaged topo-
logical distance to the other nodes in the network:

(n—1)
> %

where n corresponds to the number of nodes in the net-
work parcellation and ¢;; corresponds to the weighted
shortest path between nodes i and j.

To capture the centrality of a node at different scales,
we propose a new measure. This measure consists in
computing the multiscale closeness centrality of a node
as a weighted average using the probability vector p as
a weight function prioritizing the node’s relationships
with nodes that are topologically close over nodes that
are topologically remote. Specifically, given a scale-
dependent weight vector p(t|i), the multiscale closeness
centrality of a node i for the specified scale ¢ is defined
as:

C(i) = 9

1
Cmulti (7*|t) = (10)

>, i 0,

The topological distance between a pair of connected
nodes ¢ and j was measured as the inverse of the con-
nection weight between the two nodes, and the topo-
logical shortest paths between pairs of nodes were sub-
sequently retrieved using the Dijkstra’s algorithm. The
code to compute this multiscale measure of closeness
centrality is available in the project’s github repository
(https://github.com/netneurolab/bazinet multiscale)

Clustering coefficient

The clustering coefficient of a node corresponds to the
number of triangles attached to it, normalized by the
maximum number of possible triangles that could be at-
tached to the node [90]:

Cli) = (11

ki(k; — 1)’
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where k; is the degree of node ¢ and ¢; is the number of
triangles attached to node i. A weighted version of the
clustering coefficient, which can be viewed as a measure
of the average "intensity" of triangles around a node, can
also be expressed as follows [59]:

) 2 RN |
)= mm =D > (i)

ik

(12)

where wj, is the weight of the connection be-
tween nodes j and k, divided by the largest
weight in the network. The clustering coefficients
were computed using the Brain Connectivity Toolbox
(https://github.com/aestrivex/bctpy) [68].

Community detection

Communities are groups of nodes with dense connec-
tivity among each other. The Louvain method was used
to identify a community assignment or partition that
maximizes the quality function @ [14]:

0= T [, 09

%]

where A;; is the weight of connection between nodes ¢
and j, s; and s; are the directed strengths of i and j,
m is a normalizing constant, ¢; is the community assign-
ment of node i and the Kronecker §-function §(u,v) is
defined as 1 if u = v and 0 otherwise. The resolution
parameter v scales the importance of the null model and
effectively controls the size of the detected communities:
larger communities are more likely to be detected when
v < 1 and smaller communities (with fewer nodes in
each community) are more likely to be detected when
v > 1.

To detect stable community assignments for our struc-
tural connectomes, we first constructed a consensus net-
work from the individual connectomes. This network
was generated such that the mean density and edge
length distribution observed across individual partici-
pants was preserved [12, 55, 56]. The edges were
weighted as the average weight across individual net-
works for which these edges existed. Using this con-
sensus network, we initiated the algorithm 100 times
at each value of the resolution parameter and consen-
sus clustering was used to identify the most represen-
tative partitions [48]. This procedure was repeated
for a range of 100 resolutions between v = 0.25 and
v = 7.5. We then quantified the similarity between
pairs of consensus partitions using the z score of the
Rand index [78]. We next identified five values of ~
at which the generated partitions showed high mutual
similarity and persisted through stretches of ~ values.
This procedure yielded partitions of 4, 6, 9, 12 and
16 communities (corresponding to v=0.54, 1.08, 2.06,
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2.85, 7.16). The whole procedure was implemented us-
ing code available in the netneurotools python toolbox
(https://github.com/netneurolab/netneurotools).

Participation coefficient

Given a partition, we quantify the diversity of a node’s
connections to multiple communities using the participa-
tion coefficient [35]. The participation coefficient is de-
fined as

(14)

re- T [5]

ceC

where s; is the total strength of node i, s;(c) is the
strength of ¢ in community ¢ and the sum is over the
set of all communities C'. Nodes with a low participation
coefficient are mainly connected with nodes in a single
community, while nodes with a high participation coef-
ficient have a diverse connection profile, with connec-
tions to multiple communities. The participation coeffi-
cients were computed using the Brain Connectivity Tool-
box (https://github.com/aestrivex/bctpy) [68].

Autocorrelation-preserving permutations

To assess the significance between the principal func-
tional connectivity gradient and ¢may, we relied on
autocorrelation-preserving permutations and generated
null distributions that preserve the spatial autocorrela-
tion of the original brain map. By preserving this au-
tocorrelation, we ensure that the null distributions do
not violate the assumption of exchangeability and that
permutation tests will not generate inflated p-values
[2, 51]. To generate autocorrelation-preserving per-
mutations, we first created a surface-based represen-
tation of the Cammoun atlas on the FreeSurfer fsav-
erage surface using the Connectome Mapper toolkit
(https://github.com/LTS5/cmp, [21]). We identified the
vertices closest to the center-of-mass of each parcel and
used the spherical projection of the fsaverage surface
to define spherical coordinates for each parcel. We
then applied randomly-sampled rotations to the spher-
ical atlas and reassigned each parcel to the closest par-
cel following this rotation. Each rotation was applied to
one hemisphere and then mirrored to the other hemi-
sphere. This process was repeated 10000 times us-
ing code available in the netneurotools python toolbox
(https://github.com/netneurolab/netneurotools). The
empirical distributions were then compared to these
spatially-autocorrelated nulls and two-sided p-values
(pspin) were computed.

Neighborhood similarity

The pairwise neighborhood similarity of nodes in the
network, for a particular scale ¢ can be represented in a
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matrix S(t), where S;;(t) corresponds to the cosine simi-
larity between the transition probability vectors of nodes
1 and j, for the scale ¢:

_ _p()p(tlj)
Ip(tli)p(t]7)]
The code to compute neighborhood similar-

ity is available in the project’s github repository
(https://github.com/netneurolab/bazinet_multiscale).

Si;(t) =1 (15)

Communicability

For a binary adjacency matrix A, communicability is
defined as

=S AN _peay (16)
n=0

n!

with walks of length n normalized by n!, ensuring that
shorter, more direct walks contribute more than longer
walks [25]. For a weighted adjacency matrix, this defini-
tion can be extended as

Cij = (exp(D™Y2AD™Y2)),;, 17)
where D is the diagonal degree matrix [20]
Principal FC gradient

The principal gradient of functional connectivity is
thought to reflect the main organizational axis of the
brain, ranging from primary sensory and motor regions
to transmodal regions [43, 50]. This gradient can be re-
constructed using diffusion map embeddding, a nonlin-
ear dimensionality reduction algorithm [19]. The algo-
rithm seeks to project a set of embeddings into a lower-
dimensional Euclidean space. Briefly, the similarity ma-
trix among a set of points (in our case, the correlation
matrix representing functional connectivity) is treated
as a graph, and the goal of the procedure is to identify
points that are proximal to one another on the graph. In
other words, two points are close together if there are
many relatively short paths connecting them. A diffu-
sion operator, representing an ergodic Markov chain on
the network, is formed by taking the normalized graph
Laplacian of the matrix. The new coordinate space is
described by the eigenvectors of the diffusion operator.
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We set the diffusion rate & = 0.5. The eigenvalues A
were divided by 1 — A to provide noise robustness and
eliminate the need for a diffusion time (t) parameter.
For each dataset and parcellation, the principal gradi-
ent was computed on a consensus functional connectivity
matrix computed by averaging the pairwise correlations
obtained across individuals and setting the negative val-
ues to 0. The procedure was implemented using the ma-
palign Toolbox (https://github.com/satra/mapalign).
Generative model

A stochastic block model [42] was used to generate an
artificial hierarchically modular network of 2000 nodes
with a layer of 4 equally-sized communities and another
of 2 equally-sized communities. The edge probability
matrix P was defined as follows:

0.05 00125 0.005 0.005
0.0125 005 0.005 0.005
P=10005 0005 005 00125) 18

0.005 0.005 0.0125 0.05

The stochastic block model was implemented using the
NetworkX package [37]. The two-dimensional embed-
ding of this network was generated using the ForceAtlas2
algorithm [45].

Data availability

The Discovery dataset (Lausanne) is available at
https://doi.org/10.5281/zenodo.2872624 and the Vali-
dation dataset (Human Connectome project) is available
at https://www.humanconnectome.org/study/hcp-
young-adult. The code wused to conduct the
analyses presented in this paper is available at
https://github.com/netneurolab/bazinet multiscale.
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Figure S1. Closeness trajectories in a modular network | In this figure, we illustrate how the closeness trajectory of a node
in a network reflects its functional diversity. We first generated an artificial network of n=2000 nodes using a stochastic block
model (a) Two-dimensional representation, generated using the ForceAtlas2 algorithm [45], of the hierarchical modular network.
Its community structure is composed of two large communities of 1000 nodes (1B and 2B) as well as four smaller communities
of 500 nodes (1A, 2A, 3A and 4A). (b) The functional diversity of individual nodes is usually characterized by the participation
coefficient, which compares the number of within- and between-community connections [35]. By measuring the participation
coefficient for a 4-communities partition (left) and for a 2-communities partition (right), we can identify nodes in the network that
are important for communication between the four sub-communities, and between the two larger communities. Nodes with large
participation coefficients are located at the borders between the communities. (¢) Two nodes can have the same global centrality,
yet different local architectures. For instance node (i) in the red community and node (iv) in the purple community have the same
global closeness centrality, but their location in the low dimensional embedding illustrated in panel (a) suggests that they have very
different connection profiles. Node (i) is located on the external edge of the red community while node iv) is located on the internal
edge of the purple community, closer to the border between the four communities. Their different connection diversity is captured
by their different closeness centrality trajectories. Node (iv) shows an increase in its centrality as the topological scale of the probed
neighborhood increases while node (i) shows a decrease in its centrality. Similar comparisons can be done between nodes (ii) and
(iii). Variations in a node’s closeness can be quantified by measuring the local variations (slope) in their centrality. (d) Closeness
trajectories of the network’s nodes, colored according to their participation coefficients given a 4-communities parcellation (left)
and a 2-communities parcellation (right). Nodes with a large participation coefficient show a positive slope and nodes with a small
participation coefficient show a negative slope. (e) Slopes can be measured for any value of ¢, highlighting the diversity of a node’s
connections at the chosen scale. At small values of ¢, slopes are correlated with local measures of diversity, such as clustering
coefficient (negative correlation), and as ¢ increases, slopes are correlated with increasingly more global measures of diversity (e.g.
participation coefficients).
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Figure S2. Chur in degree-preserved randomized networks | Mean Cpyy; of seven intrinsic functional networks (right) and
seven cytoarchitectonic classes (left) as t increases (colored lines), compared to the mean Chy; of the same intrinsic networks
and cytoarchiteconic classes in 100 degree-preserving randomized networks (gray lines). The empirical Ci,y Scores are averaged
across the individual connectomes while each individual gray line represents the Ci,i of a randomized network. The surrogate
networks were constructed by first generating a consensus structural connectivity network that preserved the mean density and
edge length distributions of the individual networks [12, 55, 56]. The edges of the consensus network were then randomly swapped
to create randomized networks with the same degree sequence and density as the original network [53].
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Figure S3. Connectome-wide structure-function coupling | (a) Mean, across subjects, of the Pearson correlations between
functional connectivity and edge-wise measures of communication (neighborhood similarity with respect to t, black/dashed; struc-
tural connectivity weight, blue; communicability, green, shortest path, red; Euclidean distance, yellow). The correlation between
neighborhood similarity and functional connectivity is maximal at ¢ = 2.69. (b) Distributions of subject-wise correlations between
edge-wise measures of communication and functional connectivity. The mean of the distribution of maximal correlations between
neighborhood similarity and functional connectivity (mean=0.22, SD=0.03) is significantly larger than the mean of the distribu-
tions of correlations between functional connectivity and Euclidean distance (mean=0.20, SD=0.03, p = 4.6 x 10~%), shortest

paths (mean=0.16, SD=0.03, p < 10~2°), communicability (mean=0.16, SD=0.02, p < 10~25) as well as structural connectivity
weights (mean=0.12, SD=0.02, p < 10~%°).
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Figure S4.  Structure-function coupling using alternate topological and geometric measures | (a) Relationship between
the regional correlations obtained by comparing functional connectivity profiles to neighborhood similarity profiles (pns) and
the regional correlations obtained by comparing functional connectivity profiles to communicability (pcom), shortest path (psp) and
Euclidean distance (peq) profiles. The dashed black line highlights the identity line and nodes are colored according to the difference
between each pair of regional correlations. (b) Topographic distributions of the differences between the functional connectivity
correlations measured with neighborhood similarity and the functional connectivity correlations measured with communicability
(left), shortest path (middle) and Euclidean distance (right). (c) Relationship between the correlation differences and the principal
gradient of functional connectivity.
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Figure S5. Sensitivity and replication analyses | Topographic distributions of the optimal communication scales (copti O 108 topti),
averaged across subjects, for different sensitivity or replication experiments. Top row, from left to right: Optimal closeness scales
computed using personalized PageRank vectors, and using the network’s normalized graph Laplacian. Optimal closeness scales
computed in the binarized structural connectomes, and in structural connectomes with weights corresponding to the streamline
densities, scaled to values between 0 and 1. Bottom row, from left to right: optimal closeness scales computed in structural
connectomes reconstructed using the Cammoun 114, 219 and 448 parcellations [18]. Optimal closeness scales computed in
structural connectomes reconstructed from the HCP validation dataset. For all experiments, we find that primary sensory regions
optimally communicate at local scales while association regions optimally communicate at global scales.
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Figure S6. Sensitivity and replication analyses | The distributions of optimal closeness scales obtained for each sensitivity or
replication test (replication) are compared to the distribution presented in the main text (discovery). The parcel-wise results are
projected to the vertex level, to allow comparison between parcellations of different sizes. Top row, from left to right: optimal
closeness scales computed using personalized PageRank vectors (r = 0.95; p < 1 x 1073%®), and using the network’s normalized
graph Laplacian (r = 0.88; p < 1 x 1073%%), Optimal closeness scales computed in the binarized structural connectomes (r =
0.84; p < 1 x 1073°®), and in structural connectomes with weights corresponding to the streamline densities scaled to values
between 0 and 1 (r = 0.66; p < 1 x 1073%%). Bottom row, from left to right: optimal closeness scales computed in structural
connectomes reconstructed using the Cammoun 114 (r = 0.49; p < 1 x 1073%%), 219 (r = 0.65; p < 1 x 1073°®) and 448
parcellations (r = 0.82; p < 1 x 1073%8) [18]. Optimal closeness scales computed in structural connectomes reconstructed from
the HCP validation dataset (r = 0.45; p < 1 x 1073%®). For all experiments (replication), we find significant correlations with the
results presented in the main text (discovery).
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Figure S7. Sensitivity and replication analyses | Topographic distributions of the topological scale at which the correlation
between regional functional connectivity and regional neighborhood similarity is maximal (amax Or 10g tmax). The results are pre-
sented for different sensitivity or replication experiments. Top row, from left to right: am.x computed using personalized PageRank
vectors, and 10g ¢max computed using the network’s normalized graph Laplacian. log tmax computed in binarized structural connec-
tomes, and log tmax computed in structural connectomes with weights corresponding to the streamline densities scaled to values
between 0 and 1. Bottom row, from left to right: log ¢max computed in structural connectomes reconstructed using the Cammoun
114, 219 and 448 parcellations [18]. log tmax computed in structural connectomes reconstructed from the HCP validation dataset.
For all experiments, we observe small values of ¢ in sensory regions and large values of ¢ in multimodal regions. In other words, the
functional connectivity of sensory regions is maximally correlated to the similarity of small, local, structural neighborhoods while
the functional connectivity of multimodal regions is maximally correlated to the similarity of large-scale structural neighborhoods.
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Figure S8. Sensitivity and replication analyses | Distributions of the topological scale at which the correlation between regional
functional connectivity and regional neighborhood similarity is maximal (cmax Or 10g tmax), compared to the principal functional
connectivity gradient. The results are presented for different sensitivity or replication experiments. Top row, from left to right: amax
computed using the personalized PageRank (r = 0.53; pspin = 1 x 10™%), and log tmax computed using the network’s normalized
graph Laplacian (r = 0.61; ppin = 1 X 10™%). log tmax computed in the binarized structural connectomes (r = 0.54; Dspin =
3 x 10™%), and log tmax computed in the structural connectomes with weights corresponding to the streamline densities scaled to
values between 0 and 1 (r = 0.44; pepin = 1 X 10~%). Bottom row, from left to right: log tmax computed in structural connectomes
reconstructed using the Cammoun 114 (r = 0.45; pypin = 1.3 x 107%), 219 (r = 0.43; pypin = 1.6 x 107%) and 448 (r =
0.54; popin = 3 X 10~*) parcellations [18]. log tmax computed in structural connectomes reconstructed from the HCP validation
dataset (r = 0.48; pypin < 1 x 107*). For all experiments, we observe significant correlations between the principal gradient of
functional connectivity and ¢max. In other words, these results confirm the existence of a relationship between a brain region’s
coupling scale and its location in the unimodal-multimodal hierarchy.
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Figure S9. Structure-function coupling across parcellation scales | Distributions of l0g ¢max scores, for the Cammoun 114, 219,
448 and 1000 parcellations. For fine-grained parcellations, structure-function coupling is best predicted by considering dynamical
processes unfolding in larger-scale neighborhoods.
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