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Highlights 22 

• Converging inputs to the subthalamic nucleus arriving via the external segment of globus 23 

pallidus and cortex act in antagonism and promote different beta rhythms. 24 

• Phase locked stimulation has the capacity to selectively enhance or suppress a brain rhythm 25 

depending on the stimulation timing. 26 

• The efficacy of stimulation and the parameters required to deliver it, e.g. stimulation timing, 27 

effective sensing and stimulation locations, are functions of network state. 28 

Abstract 29 

State-of-the-art therapeutic brain stimulation strategies are delivered open loop, using fixed parameters. 30 

However, brain states exhibit spontaneous fluctuations dependent upon different behavioural or disease 31 

states. Here, we use a model of the cortico-basal ganglia-thalamic circuit to demonstrate how 32 
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connectivity underpins changes in subcortical beta oscillations – a commonly used control parameter 33 

for deep brain stimulation in Parkinson’s disease. We show that recurrent cortical-subcortical loops 34 

involving either the cortico-subthalamic or pallido-subthalamic pathways can act in antagonism to 35 

modulate the expression of beta band activity (14-30 Hz). These pathways alter the relative timing of 36 

intermittent activity across the network, with increased pallido-subthalamic connectivity increasing the 37 

propensity of the circuit to enter a state of autonomous oscillation. We demonstrate that phase-locked 38 

stimulation can modulate these oscillations, with an efficacy that ultimately depends upon the 39 

connectivity across the circuit. This work outlines critical factors required to implement state-adaptive 40 

closed-loop brain stimulation. 41 

Keywords 42 

Parkinson’s disease, basal ganglia, phase-locked stimulation, closed-loop brain stimulation 43 

Introduction 44 

The delivery of therapeutic brain stimulation, such as continuous deep brain stimulation (cDBS) for 45 

Parkinson’s disease (PD), is typically defined by statically parameterized, open-loop controllers. 46 

Stimulation parameters are set in the clinic in order to maximize the amelioration of patient’s symptoms 47 

while at the same time minimizing side effects (Volkmann et al., 2009). cDBS suppresses aberrant 48 

neural oscillations that emerge during so called ‘oscillopathies’ (Llinás et al., 1999; Brown et al., 2001; 49 

Dostrovsky and Bergman, 2004; Uhlhaas and Singer, 2006; Brittain and Brown, 2014). For example, 50 

in dopamine depleted states associated with PD, oscillatory activity in the beta frequencies (14-30 Hz), 51 

normally engaged during the functional control of movement (Engel and Fries, 2010; Jenkinson and 52 

Brown, 2011; Khanna and Carmena, 2015; Palmer et al., 2016), becomes abnormally amplified across 53 

the circuits formed by the cortex, thalamus, and basal ganglia (Brown et al. 2001; Levy 2002; Mallet et 54 

al. 2008b; Weinberger et al. 2006). These pathological rhythms are widely synchronized with their 55 

frequency and amplitude modulated by specific brain states such as rest, movement, anaesthesia, and 56 

changes in dopamine levels (Sharott et al., 2005a; de Solages et al., 2010; Litvak et al., 2011; van Wijk 57 

et al., 2012; Brazhnik et al., 2014; Delaville et al., 2014; West et al., 2016, 2018). 58 

Neural activity in the beta frequencies exhibits intermittent fluctuations, consisting of high-amplitude 59 

sub-second events. These are referred to as ‘bursts’ and have been characterised in both pathological 60 

(Tinkhauser et al., 2017b; Torrecillos et al., 2018; Cagnan et al., 2019b) and functional (Feingold et al., 61 

2015; Lundqvist et al., 2016; Sherman et al., 2016; Khanna and Carmena, 2017; Shin et al., 2017; Little 62 

et al., 2019) brain activity. Recent experiments have demonstrated that these rhythms can be specifically 63 

interrupted using adaptive DBS (aDBS; Little et al., 2013; Arlotti et al., 2016; Tinkhauser et al., 2017a) 64 

- a closed-loop control strategy that triggers stimulation at the onset of a beta burst. Importantly the 65 
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delivery of stimulation in the context of ongoing neural activity has important impacts upon behaviour 66 

(Stagg et al., 2011; Pirulli et al., 2013; Martin et al., 2014; Herz et al., 2018; Kahan et al., 2019) 67 

indicative of state dependent efficacy (Silvanto et al., 2008; Kahan et al., 2019). It is thus important to 68 

understand how the precise timing of stimulating input interacts with ongoing, spontaneous fluctuations 69 

in neural activity (McIntyre and Hahn, 2010; Cagnan et al., 2019a).  70 

To understand how the delivery of stimulation can be optimized to interact with state dependent 71 

fluctuations in rhythms such as Parkinsonian beta bursts, it is necessary to derive the relationship 72 

between the structural connectivity of the circuits responsible for their generation, propagation, and 73 

maintenance. Several candidate circuits have been proposed, these include: the pallido-subthalamic 74 

feedback loop (Bevan et al., 2002; Terman et al., 2002; Cruz et al., 2011; Tachibana et al., 2011; Liu et 75 

al., 2017; Shouno et al., 2017); cortico-basal ganglia thalamic ‘long loop’ (Pavlides et al., 2015; 76 

Brazhnik et al., 2016); the thalamocortical relay (van Albada et al., 2009; Reis et al., 2019); striato-77 

pallidal feedback (Corbit et al., 2016; Blenkinsop et al., 2017; Crompe et al., 2020); changes in striatal 78 

outflow (Gillies and Willshaw, 2004; Brown, 2007; Hammond et al., 2007; Kumar et al., 2011; Sharott 79 

et al., 2017); and intrinsic striatal dynamics (McCarthy et al., 2011). It is likely that the observed activity 80 

arises from a competition of the output of these circuits (Leblois et al., 2006; Pavlides et al., 2015; 81 

Fountas and Shanahan, 2017).  82 

Propagation of beta activity is accompanied by altered phase synchronization of neural activity across 83 

the cortico-basal ganglia circuit (Cagnan et al., 2015, 2019b). Novel therapies aim to deliver stimulation 84 

that is phase-locked to an ongoing control signal such as the peripheral tremor amplitude (Brittain et 85 

al., 2013; Cagnan et al., 2017) or neuronal beta activity (Holt et al., 2019; Peles et al., 2020; Sanabria 86 

et al., 2020) in order to specifically target phase synchronization across circuits. Phase-locked 87 

stimulation has also been shown to modulate coherent neural activity underpinning healthy 88 

communication in the brain and modulate behaviour (Polanía et al., 2012; Siegle and Wilson, 2014; 89 

Cordon et al., 2018; Zanos et al., 2018).  90 

In this work we use a computational model of the cortico-basal ganglia-thalamic circuit (Moran et al., 91 

2011; Marreiros et al., 2013; van Wijk et al., 2018) that has been fit (West et al., 2019) to in vivo 92 

intracranial recordings of neuronal activity obtained from rats rendered Parkinsonian by chronic 93 

dopamine depletion (Mallet et al., 2008b). This model demonstrates that rhythmic activity within this 94 

circuit is the manifestation of an interplay between reciprocal cortico-basal ganglia loops. Furthermore, 95 

these rhythms can be manipulated using precisely timed, phase-locked stimulation of the cerebral cortex 96 

or STN. We investigate the interaction between state-dependent changes in the expression of beta 97 

rhythms and the efficacy of phase-locked stimulation to better inform how adaptive control of 98 

stimulation can provide optimal therapeutic effects in the face of spontaneous alterations of brain 99 

networks.  100 
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Materials and Methods 101 

Model Optimization with Approximate Bayesian Computation 102 

This study reports a computational model of the population activity within the cortical-basal ganglia-103 

thalamic circuit. In a previous paper, we described a model optimization and model selection procedure 104 

based upon the Approximate Bayesian Computation framework (ABC) (West et al. 2019a). This 105 

procedure was used to fit 13 different models of the network to empirical data (Magill et al., 2006; 106 

Mallet et al., 2008b, 2008a; Moran et al., 2011)., and then subsequently select the candidate model that 107 

could best explain its spectral features (see below). For a full formulation of the fitting and model 108 

selection procedure please see West et al. (2019a). ABC provides a likelihood free optimization 109 

algorithm (Beaumont et al., 2002; Liepe et al., 2014) that is founded in the generation of ‘pseudo-data’ 110 

from numerical simulations of a model that can then be compared to the empirical data using a common 111 

set of features (e.g. spectral power and directed functional connectivity). By iteratively minimizing the 112 

error between a set of data features common to the empirical data and pseudodata through the 113 

optimisation of model parameters, the algorithm may converge to an approximation to the distribution 114 

over parameters of the model that best explain the observed data. ABC allows for models of steady state 115 

features such as spectra to be modelled without any requirements to approximate the system’s behaviour 116 

by its equilibria. This leaves us free to explore non-steady state activity, such as transient burst like 117 

behaviour. Here, we placed a restriction on the model space to only those yielding intermittent, burst 118 

like behaviour. Therefore, models that yielded either exponentially divergent, or highly autocorrelated 119 

envelopes were excluded (West et al., 2019) enabling us to explore transient dynamics such as beta 120 

bursts in post-hoc numerical simulations of the fitted models. In this study, the population’s local 121 

oscillatory profile (i.e. the power spectra) plus the patterns of connectivity between them (i.e. the 122 

directed functional connectivity) were used as data features to fit model parameters. To determine 123 

directed functional connectivity, we used non-parametric directionality (NPD; see section below). 124 

Model Description 125 

We employ a model formalism that is based upon a description of the propagation of activity across the 126 

neural populations of the cortico-basal ganglia-thalamic network. Specifically, we use a system of 127 

coupled neural mass equations (Jansen and Rit, 1995; David and Friston, 2003) to simulate the 128 

distributed activity across this network. The biological and theoretical basis of this model has been 129 

described previously (Moran et al., 2011; Marreiros et al., 2013; van Wijk et al., 2018). Furthermore, 130 

we adapt the original state equations to incorporate stochastic inputs and explicit, finite transmission 131 

delays. For the full state space description of the model and technical details regarding the numerical 132 

schemes used for integration of the equations, please see West et al. (2019). Overall, the model consists 133 

of nine coupled 2nd order stochastic differential equations, each modelling a separate (assumingly 134 

homogenous) population of neurons within the circuit. This includes a model of the motor cortex 135 

microcircuit consisting of three pyramidal layers (superficial, middle, and deep) plus an inhibitory 136 
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interneuron population (Bhatt et al., 2016). Each cortical layer also contained recurrent self-inhibitory 137 

connections reflecting local neuronal gain control. Furthermore, we modelled neuronal populations in 138 

the striatum (STR); the external and internal segments of the globus pallidus (GPe/i); the subthalamic 139 

nucleus (STN); and the thalamus (Thal.). The GPi and Thalamus were included as ‘hidden sources’ to 140 

model re-entrant feedback from basal ganglia to the cortex. Stochastic inputs (Gaussian noise process 141 

with a parameterized gain factor) were delivered to all subcortical populations and the middle pyramidal 142 

layer of the motor cortex. 143 

In this paper we bring forward the posterior model fit (specifically – the maximum a posteriori estimates 144 

of the parameters) from West et al. (2019a) where we used ABC to fit 13 variations of the full model 145 

that included or excluded different key connections such as the subthalamo-pallidal connection (STN 146 

→ GPe) and the hyperdirect pathway (M2 → STN). We then used a Bayesian model comparison 147 

approach to determine a subset of these models as the best explanations of the empirical data, accounting 148 

for both the individual model’s ability to accurately reproduce the observed data and the extent to which 149 

model parameters deviate from a prior distribution.  150 

After discounting for difference in the parsimony of posterior model fits (i.e. the divergence between 151 

posterior and prior distributions over parameters), we found that a model incorporating both the 152 

hyperdirect and subthalamo-pallidal pathways was the best candidate in describing the patterns of 153 

neuronal activity in recordings made in Parkinsonian rats (see below). This posterior model fit is used 154 

for the simulations in this paper which we refer to as the fitted model and its structure is presented in 155 

figure 1. 156 

Empirical Data – 6-hydroxydopamine (6-OHDA)-Lesioned Rats 157 

The models were fitted to archival data consisting of multisite recordings in the basal ganglia and 158 

cerebral cortex of nine adult male Sprague-Dawley rats (Charles River, Margate, UK) with 6-OHDA-159 

induced dopamine depletion, a model of the dopaminergic degeneration associated with Parkinsonism 160 

in humans as described previously (Magill et al., 2004, 2006). All experiments were conducted in 161 

accordance with the Animals (Scientific Procedures) Act, 1986 (United Kingdom), and with Society 162 

for Neuroscience Policies on the Use of Animals in Neuroscience Research. Animals were implanted 163 

with two multi-contact silicon probes to measure local field potentials (LFP) from multiple structures 164 

in the basal ganglia: dorsal striatum, GPe, and STN. Additionally, electrocorticography (ECoG) was 165 

measured over “secondary motor cortex” (M2) a homologue of the premotor cortex in humans (Paxinos 166 

and Watson, 2007) using a 1 mm diameter steel screw juxtaposed to the dura mater above the right 167 

frontal cortex. Anaesthesia was induced with 4% v/v isoflurane (Isoflo, Schering-Plough Ltd., Welwyn 168 

Garden City, UK) in O2 and maintained with urethane (1.3 g/kg, i.p.; ethyl carbamate, Sigma, Poole, 169 

UK), and supplemental doses of ketamine (30 mg/kg; Ketaset, Willows Francis, Crawley, UK) and 170 

xylazine (3 mg/kg; Rompun, Bayer, Germany). Recordings were made during periods of ‘cortical 171 
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activation’ (Steriade, 2000) induced by a hind-paw pinch. For more details of the experimental 172 

recordings and their acquisition please see the original experimental papers (Magill et al., 2006; Mallet 173 

et al., 2008b, 2008a; Moran et al., 2011). 174 

Preprocessing of time series data (both LFP and ECoG) were done as follows: all data 1) were down 175 

sampled from the hardware native 17.9 kHz to 250 Hz using Spike2 acquisition and analysis software 176 

(Cambridge Electronic Design Ltd., Cambridge, UK); 2) imported into MATLAB; 3) mean subtracted; 177 

4) band-passed filtered 4-100 Hz with a finite impulse response, two-pass (zero-lag) filter with order 178 

optimized for data length; 5) Z-scored to standardize to unit variance; 6) epoched to 1 second segments; 179 

and 7) subjected to a Z-score threshold criterion such that epochs containing any high amplitude 180 

artefacts were removed. The exact threshold was chosen on a case by case basis dependent upon 181 

recording gain and size of the artefact. This artefact-rejected, epoched data was then taken forward to 182 

compute the autospectra and NPD used as features for the ABC fitting procedure.  183 

Spectral Estimation of Empirical and Simulated Data 184 

Analysis of simulated and empirical data involved computation of power spectra. Power spectra were 185 

constructed using the averaged periodogram method across 1 second epochs multiplied by a Hanning 186 

window of the same length. Spectra from the nine rats were summarised using the group average. To 187 

account for this, the 1/f background was removed by first performing a linear regression on the log-log 188 

empirical spectra and then subtracting the linear component from the spectra. This ensured that the 189 

parameter estimation scheme was focused upon fitting the spectral peaks in the empirical data and not 190 

the profile of 1/f background noise.  191 

To compute functional connectivity (magnitude squared coherence; used only in the analysis of the 192 

post-hoc simulations) and directed functional connectivity (NPD; used only as a data feature in the ABC 193 

fitting), we used the Neurospec toolbox (http://www.neurospec.org/). NPD provides a non-parametric 194 

assessment of directed connections between neural signals derived from their spectral estimates alone 195 

(Halliday et al., 2016; West et al., 2020). The resulting NPD spectra were averaged across the nine rats. 196 

Features in the group averaged empirical data were smoothed using a sum of Gaussians (maximum of 197 

three), with order optimized using adjusted R2 to aid the fitting procedures.  198 

In-Silico Inactivation Experiments to Determine Individual Contribution of Connections 199 

In the first set of simulations we perform a systematic inactivation analysis to determine which 200 

connections are required for the generation and/or propagation of beta oscillations in the STN. This was 201 

done by taking the fitted model and removing individual connections from the model by setting their 202 

weights to zero. We then re-simulate the data and compare the resulting power/magnitude and frequency 203 

of the power and coherence with that of the original model in order to determine the percentage change 204 

in beta amplitude. We define the power as the sum within the beta band from 14-30 Hz, divided by the 205 
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number of frequency bins; magnitude as the peak value within this band; and frequency as the location 206 

of the peak within this band.  207 

Impact of Connection Strength upon Rhythmic Activity 208 

In order to determine the influence of not only inactivation but also modulation of connections we also 209 

performed an analysis of spectral changes associated with a range of connection strengths. We simulate 210 

models with strengths of connections initially ranging from 10% to 1000% of the parameter inferred 211 

from the empirical data. The connection strength of the nth connection Cn is given by: 212 

 𝐶" = 	𝑃" × exp	(𝐾") 213 

Equation (1) 214 

with Pn as the expected value of the posteriors of the fitted model, and Kn as a log scaling parameter. 215 

Individual connection strengths are reported as a percentage of the parameter Cn in the fitted model. In 216 

the remaining analyses we choose a range of connection strengths from the smallest connection strength 217 

examined (10%) up to a maximum strength that yields a 200% increase in the STN beta power. 218 

Analysis of Recurrent Circuit Activity in the Maintenance of Beta Power and Cortico-219 

Subthalamic Beta Coherence 220 

To investigate how differences in the strengths of loops within the circuit impact the steady state (i.e. 221 

the time averaged) properties of beta synchrony within the network, we simulated models with 222 

randomly configured connectivity. To this end, we drew 500 sets of connectivity parameters from the 223 

posterior distribution (see supplementary table I for values). In order to increase the range of 224 

connectivity that was analysed the spread of the posterior distributions was artificially inflated prior to 225 

this draw by scaling their variances to be 5 times larger. All other parameters were held fixed at the 226 

values specified by the expected value of the posterior derived from the model fit. For each random 227 

model, 30 seconds of data was simulated, and the spectral properties were estimated (see Spectral 228 

Estimation of Empirical and Simulated Data). To summarise the connectivity within each model we 229 

derive two measures: 230 

1) A measure of the sum of absolute connection strength (disregarding the sign of the connection): 231 

𝑁𝑒𝑡𝐶 =0|𝐶"|
234

5

 232 

Equation (2) 233 

where Cn is the connection strength of the nth connection. This is then reported as a percentage 234 

difference from the mean of the simulated set. This measures the total degree of connectivity 235 

within the loop irrespective of whether it comprises inhibitory or excitatory connections. We 236 

refer to this as net loop strength. 237 
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2) In order to measure differences in circuitry arising from either a net increase in excitation or 238 

inhibition, we also derive a measure of the E/I balance within a loop: 239 

𝑁𝑒𝑡𝐸𝐼 = 	0𝐶"

234

5

 240 

Equation (3) 241 

We report this as a difference from the mean of the simulated set. By accounting for the sign of 242 

the connection this measure yields the net change in the relative excitation or inhibition within 243 

the loop. We refer to this as net loop E/I balance. 244 

Using these two measures we then estimate how both change between models yielding either the 1st and 245 

4th quartiles of STN, M2, and STN/M2 coherence at beta (14-30 Hz). Differences in loop strength 246 

associated with these two model sets are estimated using Student’s t-test, and statistical significance 247 

established using a Bonferroni corrected significance threshold. We also test for the correlation of loop 248 

connectivity measures (1) and (2) with power and coherence. In the cases that the non-parametric 249 

(Spearman’s) correlation test reached (Bonferroni corrected) significance level, we computed linear 250 

regressions of the relations.  251 

Definition of Burst Events and their Timings 252 

To define and characterize the properties of intermittencies in rhythms within the simulated data, we 253 

follow a similar approach to that taken in previous experimental work (Tinkhauser et al., 2017b; Cagnan 254 

et al., 2019b) that constructs a band filtered signal and uses a threshold to define burst events as 255 

suprathreshold amplitude activity. In this case we use a two-pass, Butterworth filter with a passband of 256 

18± 7.5 Hz. We take the Hilbert transform of this narrowband signal to compute the analytic signal. 257 

The amplitude envelope of this signal is then taken as the absolute value of the transform. From this 258 

signal we can then define a threshold to determine burst events. In this application we use the 75th 259 

percentile of the data and only consider bursts which had a duration longer than at least 1 cycle of an 260 

18 Hz oscillation (middle of the passband) equivalent to 56 ms. In analyses comparing bursts across 261 

connection strengths or during phase-locked stimulation, we compute a common threshold that is 262 

derived from the 75th percentile of the envelope obtained from the unstimulated, fitted model (i.e. at 263 

100% connectivity). Burst properties such as the median interburst interval (time from offset to onset); 264 

the burst amplitude (75th percentile of the within-burst envelope); and burst duration (time from onset 265 

to offset) are also reported.  266 

In order to explore the dynamics that occur around burst initiation, maintenance, and termination we 267 

performed a time-locked analysis of the evolution of the simulated signals. The timing of concurrent 268 

bursts across the network were analysed by using the threshold crossing of an amplitude envelope from 269 

a given sensing population as reference (Cagnan et al., 2019b) by which to temporally align the data.  270 
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We analyse both the probability of a coincident burst occurring across the remaining populations, as 271 

well as their relative timing (estimated via the median onset/offset time across all bursts) within a 272 

window ±150ms either side of the onset of the burst in the sensing population. This can be used to 273 

determine a sequence of changes in the beta amplitudes of each population that preclude the onset and 274 

termination of a burst in the reference sensing population. Furthermore, we alter the strength of inputs 275 

to the STN to determine how connectivity can dictate the temporal ordering of these events. For the set 276 

 
Figure 1 – Schematic of cortico-basal ganglia-thalamic model and fit to empirical data from Parkinsonian rodents. 

A model describing the population activity in this circuit was fit to data features (power spectra and directed functional 

connectivity) of (A) electrophysiological recordings: electrocorticography from motor cortex M2 (blue) as well as local 

field potentials from striatum STR (red); external segment of the globus pallidus GPe (green); and the subthalamic nucleus 

STN (yellow) made in a 6-OHDA-lesioned rat model of Parkinsonism (procedure detailed in West et al. 2019a). Data was 

normalized and band-passed 4-100 Hz before being transformed to the data features used to fit parameters of the 

computational model. (B) Schematic of model architecture, detailing excitatory populations and their glutamatergic 

projections (triangular nodes with arrows) and inhibitory/GABAergic projections (circular nodes with ball ended arrows). 

The motor cortex microcircuit (Bhatt et al., 2016) comprises three layers: superficial pyramidal cells (SP; supragranular); 

middle pyramidal (MP; granular); and deep pyramidal cells (DP; infragranular), plus an inhibitory interneuron population 

(II). The basal ganglia model comprises four populations, with each node representing activity in the STR, GPe, STN, and 

internal segment of the pallidus (GPi). The GPi forms the output of the basal ganglia and acts to inhibit relay cells of the 

thalamus (REL). The main subcortical pathways include the direct, indirect, hyperdirect, and cortico-thalamic interactions. 

The inset graphs indicate the empirical and simulated power spectra in bold and dashed lines, respectively. For the full set 

of empirical and fitted data features please see supplementary information I. GPi and REL were treated as hidden nodes 

and their respective neural activities were inferred from the dynamics of the empirically recorded brain regions. (C) 

Simulations of this circuit yields time series with transient, burst like behaviour similar to that seen in vivo (A).  
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of results presented in figure 6 we use the STN as the population from which to time-lock the analysis. 277 

Differences in the timings of burst onsets and offsets with respect to activity in the STN were computed 278 

using two sample t-tests and Bonferroni corrected for multiple comparisons. 279 

Modelling Closed-Loop Stimulation of Motor Cortex or STN 280 

To explore the impact of phase-locked stimulation on beta bursts, we first simulated a dataset (100s in 281 

duration) from the fitted model and identified bursts using the procedures described in section 282 

“Definition of Burst Events and their Timings”. We then re-simulated the model with an identical noise 283 

process and added an input which had a fixed phase relation with respect to beta activity in either the 284 

STN or motor cortex. We analysed models using either cortical stimulation/STN sensing; or cortical 285 

sensing/STN stimulation. External stimulation was delivered to the stimulated population for a duration 286 

of 300 ms at the onset of a burst in the sensing population. 287 

In order to derive the phase-locked stimulation waveform, we used the analytic phase of the beta activity 288 

from the sensing population (𝜙9:;(𝑡): the argument of the Hilbert Transform of the unstimulated signal 289 

from the sensing population). The stimulation was then given by: 𝑆𝑡𝑖𝑚 = 𝐴	sin	(𝜙9:;(𝑡) + Δ𝜙) where 290 

Δ𝜙 sets the phase of the stimulation with respect to the beta activity from the sensing population. A 291 

denotes the stimulation amplitude and was fixed to yield ¼ of the variance of the intrinsic noise the 292 

stimulated population received as an input in the fitted model. For models exploring cortical stimulation, 293 

phase-locked stimulation was delivered only to the superficial layer of the cortex (Ali et al., 2013).The 294 

phase shift, Δ𝜙  was swept from -π to +π radians in 12 bins. The resulting power spectra for each 295 

stimulation regime was analysed and beta power plotted against phase to yield band-limited amplitude 296 

response curves (ARCs) in either lower (14-21 Hz) or upper (21-30 Hz) beta bands. Note that this 297 

simulation only mimics closed-loop, as we do not use an on-line phase detection algorithm but rather 298 

use the phase computed from the unstimulated data. Identical random input was used to ensure 299 

replication of the burst timings for the phase-locked stimulation condition.  300 

In a final set of simulations, we investigate how the ARCs pertaining to the phase-locked stimulation 301 

of the motor cortex relative to STN are influenced by the connectivity state of the circuit. To do this we 302 

perform the same simulation and analysis as above but modulate the strength of connectivity of the 303 

hyperdirect and pallido-subthalamic pathways. The percentage change in amplitude from the median is 304 

then used to plot the ARC. We summarise changes to the ARC by reporting the minimum and maximum 305 

power, and then plotting these against the strength of connectivity. As above, bursts were predefined 306 

according to the unstimulated data.  307 
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Results 308 

Results of Model Fitting to Electrophysiological Signals in Parkinsonian Rats  309 

Electrophysiological recordings of ECoGs and subcortical LFPs (figure 1A) made in 6-OHDA-lesioned 310 

rats were used to constrain a biophysically plausible model of population activity within the 311 

Parkinsonian cortico-basal ganglia-thalamic circuit (figure 1B), using a procedure previously reported 312 

in West et al. (2019a). The structure of this circuit model, a subset of the data to which it was fit 313 

(autospectra only), and the resulting fits are presented in figure 1B. Model parameters were optimized 314 

in order to best explain the observed local oscillatory dynamics at each population estimated via their 315 

auto-spectra, as well as the interaction between them as measured with directed functional connectivity 316 

(estimated using NPD, see methods). For the full set of data features and the resulting fit, see 317 

supplementary information I. Properties of the ‘hidden’ unobserved nodes (figure 1B insets indicated 318 

with black solid lines) were inferred from the recorded data. Several empirical features of the data were 319 

well reproduced by the fitting procedure, such as: 1) widely synchronized beta oscillations across the 320 

network (figure 1B; inset); 2) significant feedback of beta oscillations from subcortex to cortex 321 

(supplementary information I); 3) bursting behaviour similar to that seen in traces recorded in vivo 322 

(figures 1A and C). However, model fits did not well reproduce the higher frequency activity (30-60 323 

Hz) present in the empirical data (figure 1B; inset). The remainder of the results in this paper explore 324 

the dynamics of the fitted model, how changes in network state (in terms of the configuration of its 325 

constituent connectivity strengths) affect spontaneous activity, and finally how phase-locked 326 

stimulation can be utilized to interact with rhythmic activity in the model. 327 

In-silico Inactivation Experiments: Cortico-Basal Ganglia-Thalamic Connectivity Determines 328 

the Power of Subthalamic Beta Rhythms 329 

We performed a set of in-silico inactivation experiments to determine how connectivity within the 330 

cortico-basal ganglia-thalamic circuit can lead to emergence of beta rhythms in the STN. Single 331 

connections in the model were systematically removed (by setting their weight to zero), and then the 332 

resulting changes in beta power in the STN were analysed (figure 2). Three out of ten connections (STR 333 

→ GPe, GPe → STN, and STN → GPe) acted to substantially promote STN beta oscillations, such that 334 

their removal from the model caused > 60% loss in power. Notably, all three connections lay along the 335 

indirect pathway and involved the GPe, thereby suggesting that GPe is an important determinant in the 336 

promotion of beta oscillations in the STN (figures 2A and B). The cortico-striatal pathway, and the 337 

reciprocal connections linking cortex and thalamus, also promoted STN beta, but by considerably less 338 

(10% to 30% reduction in power) than those connections targeting or arising from the GPe (figure 2B). 339 

In contrast, two connections in the model (M2 → STN and STR → GPi) had suppressive effects on 340 

STN beta oscillations, such that their removal resulted in > 25% increases in power (figures 2A and B). 341 

Thus, in terms of beta oscillations in STN, the influence of connections involving the hyperdirect  342 
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and direct pathways appears to be opposite to those involving the indirect pathway. The basal ganglia 343 

output pathway (GPi → Thal) was responsible for a weakly suppressive effect (< 10% increase in 344 

power; figures 2A and B) and its exact influence is likely determined by the balance of converging 345 

inputs from direct/indirect pathways. Using the same set of in-silico inactivations, we also tested for 346 

changes in the peak frequency of STN oscillations (figure 2C). Although both STN → GPe and GPe → 347 

STN connections promoted STN beta power, they had opposite effects on STN beta frequency: 348 

inactivation of STN → GPe decreased frequency by 5 Hz, whereas removal of GPe → STN increased 349 

frequency by 4 Hz. In further contrast, removal of the beta suppressing M2 → STN connection did not 350 

alter the peak frequency of oscillations in the STN. 351 

In summary, this set of simulations identified that the GPe → STN connection is the primary promoter 352 

of STN beta oscillations, whereas the M2 → STN connection acts to suppress STN beta oscillations. 353 

Taken together, these data suggest that the influence of the pallido-subthalamic pathway on pathological 354 

beta oscillations acts in competition with that of the hyperdirect pathway. The majority of the following  355 

 
Figure 2 – Simulated inactivation experiments to determine the contribution of individual connections in the cortico-

basal ganglia-thalamic circuit to the power of STN beta oscillations. Connections in the fitted model were individually 

removed and the resulting change in simulated STN beta power measured (simulation duration 32 s). (A) Schematic of the 

results of the simulated inactivation experiments. Connections in the circuit are colour coded to indicate the change in 14-

30 Hz beta power in the STN (red or blue indicating a reduction or increase following lesion, respectively). The actual 

percentage change is annotated alongside each connection. (B) Bar plot of the percentage change in STN beta power from 

the fitted model following inactivation of each connection. (C) Bar plot of the changes in STN peak frequency (within the 

beta band) from the fitted model following inactivation. (D) Power spectra for STN population activity in the fitted (black 

line) and model with inactivation of hyperdirect pathway (red). (E) Same as (D) but for inactivation of the pallido-

subthalamic connection (blue line). 
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results will focus on simulations investigating the effects of modulating pallidal and hyperdirect inputs 356 

to the STN.  357 

 
Figure 3 – The effects of modulating the strength of STN inputs from the excitatory hyperdirect projection (A-F; M2 

→ STN) and inhibitory pallido-subthalamic projection (G-L; GPe → STN) upon the power spectra of STN and M2 

population activity, and the coherence between them. The strengths of the two connections were varied independently 

and 256 s of data was simulated from the resulting models. Changes in connection strength are denoted as a percentage of 

that in the fitted model (i.e. at 100%). Connections were modulated in the range 10% to 1000%. Models yielding an increase 

in STN beta power greater than 200 % were not analysed. (A) The power spectra of the STN resulting from a modulation 

of the hyperdirect connection. Plots are colour coded according to the key (inset) and matches the markers plot in (D-F). 

(B) Same as (A) but for M2 power spectra. Decreasing the strength of this connection decreases the frequency and amplitude 

of beta. (C) Same as (B) but for STN/M2 magnitude squared coherence. (D) Plot of peak beta (14-30 Hz) amplitude (left 

axis; reds) and peak beta frequency (right axis; blues) in the STN under modulation of hyperdirect input strength. Note X-

axis is on a logarithmic scale. (E) Same as (D) but for M2 beta power. (F) Same as (D) but for STN/M2 coherence. (G-L) 

Plots equivalent to (A-F) but for simulations modulating the pallido-subthalamic connection. 
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Hyperdirect Cortical-Subthalamic Inputs Can Suppress STN Beta Power and Induce a Switch 358 

to Higher Frequency Activity 359 

Next, we investigated how gradual changes in the strength of input to the STN from either the cortex 360 

or GPe can act to induce transitions in rhythmic behaviour of the model. In figures 3A, B and C, 361 

simulated spectra are shown for when the hyperdirect pathway strength (M2 → STN) was altered from 362 

the fitted model (connection weight scaled from 10% to 1000% change). As reported in the previous 363 

section, weakening of the M2 → STN hyperdirect connection increases the amplitude of subthalamic 364 

beta (figure 3A and D). However, strengthening of the same pathway beyond that of the fitted strength 365 

(i.e. greater than 100% connection strength) exposes a switching behaviour in the model (figure 3D). 366 

This transition involves a switch between lower (14-21 Hz) and higher beta frequencies (21-30 Hz) that 367 

occurs at around 160% hyperdirect strength. Beta power in the STN is at a minimum close to this 368 

transition in frequency. At connection strengths above 500% of the fitted value, the model is in a hyper-369 

excitable regime reflecting an exponentially divergent state. Simulations that yielded peaks in power 370 

that were greater than 200% of that found in the fitted model are treated as outside of the dynamical 371 

range of interest and excluded from the remainder of the analyses. 372 

A similar relationship was found when analysing the effects of hyperdirect pathway upon power in the 373 

motor cortex where a switch to high beta activity in the motor cortex accompanies an increase in cortical 374 

beta power (figure 3B and E). The impact of the hyperdirect pathway upon the magnitude of STN/M2 375 

coherence (figure 3C and F) was also non-monotonic: at strengths close to the fitted value, (i.e. around 376 

100%) coherence is at its minimum. Note that STN beta power approaches its minimal value at stronger 377 

connection strengths (~160%). Weakening or strengthening the M2 → STN pathway from this point 378 

increases the magnitude of coherence. Attenuating the connection to the smallest value that was 379 

simulated (~10% of the fitted strength) increases STN/M2 coherence by approximately 20%. This data 380 

can help reconcile the paradoxical findings that dopamine depletion can lead to synaptic weakening of 381 

glutamatergic inputs to the STN (Mathai et al., 2015; Chu et al., 2017) whilst at the same time lead to 382 

heightened functional connectivity of the same pathway (West et al., 2018). 383 

Pallidal Inputs to the STN Promote Beta Rhythms 384 

We next modulated the strength of the GPe → STN connection. Simulations presented in figure 3G and 385 

J demonstrate the existence of a transition point, close to 32% of the fitted weight, at which there is a 386 

shift in beta to higher amplitudes and lower frequencies (transition of peak frequency in the STN from 387 

21 Hz to 12 Hz). Above this point the system is very sensitive to small changes in the connection 388 

strength, as STN beta power increases exponentially. Strengthening the inhibition above 125% of the 389 

fitted strength results in power exceeding 200% of the fitted, and as above, theses simulations are 390 

excluded from the remainder of the analysis. Beta power in the motor cortex (figure 3H and K) yielded 391 

a similar response to the STN, with increasing pallidal inhibition inducing a shift to lower frequencies 392 
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and an exponential increase in power, but with the switch occurring with stronger connection strengths 393 

than that required for the STN- closer to the connection strength in the fitted model (~100%).  394 

The effect of strengthening pallido-subthalamic inhibition upon cortico-subthalamic synchronization 395 

(figure 3I and L) was found to be biphasic, similar to that found with respect to hyperdirect pathway. 396 

Coherence was increased by ~20% when pallidal inhibition was both weakened or strengthened. Again, 397 

this switching point was close to the fitted value (90%) at which M2/STN coherence showed a rapid 398 

increase and a transition to lower frequencies. The increase in coherence was found to lag that of STN 399 

power and exhibited less sensitivity to increases in connectivity. 400 

Different Feedback Loops Modulate Cortical and Subcortical Beta Activity and their 401 

Synchronization 402 

Alterations in the network state likely result from changes in the strength of multiple interacting 403 

connections. To explore this hypothesis, we simulated data from 500 models with random strengths 404 

drawn from the (inflated) posterior distributions of the fitted model (see methods). We investigate five 405 

reciprocal loops shown to be important in maintenance of rhythmic activity (depicted in figure 4A): 406 

1) direct loop: M2 → STR → GPi → Thal. → M2; 407 

2) indirect loop: M2 → STR → GPe → STN → GPi → Thal. → M2; 408 

3) hyperdirect loop: M2 → STN → GPi → Thal. → STN; 409 

4) thalamocortical loop: M2 → Thal. → M2; 410 

5) pallido-subthalamic loop: GPe → STN → GPe. 411 

The degree of connectivity within these loops is summarised using either the net loop strength (sum of 412 

the absolute connectivity strengths) or net loop E/I balance (sum of the signed connection strengths; 413 

see methods). The differences in these parameters between the models yielding STN beta power, M2 414 

beta power, and STN/M2 coherence below or above the 1st or 4th quartile is presented in figures 4C and 415 

4D. 416 

Results in figure 4C show that for models yielding strengthened STN beta power (1st column) there is 417 

an increased loop strength in both indirect loop (-16.3 ±8.8, t(33) = -7.5, P < 0.001, α* = 0.003) and the 418 

pallido-subthalamic loop (-28.3 ±16.7, t(33) = -6.9, P < 0.001, α* = 0.003). These changes are associated 419 

with an overall increase in inhibition of the two pathways (figure 4D). Correlation analysis of both 420 

pathways (figure 4B; supplementary information II and III) confirms the existence of a strong linear 421 

relationship between the strengths of these pathways and the spectral features in question. Importantly, 422 

M2 beta power is sensitive to different pathways (figure 4C; 2nd column), with increased loop strength 423 

of the hyperdirect loop yielding the most prominent change (-22.1 ±19.3, t(33) = -4.7, P = 0.001, α* = 424 

0.003). This change was associated with an overall increase in loop excitation (-8.5 ±10.0, t(33) = -3.5, 425 

P < 0.05, α* = 0.003) and in agreement with the results reported in the previous sections. Analysis of  426 
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Figure 4 – Contributions of loops within the cortico-basal ganglia-thalamic circuit towards the expression of beta 

(14-30 Hz) power in the STN and motor cortex, as well as their coherence. Random models were generated by drawing 

500 samples of connectivity parameters from the (inflated) posterior distributions of the fitted model. These models were 

then simulated for 30s and the spectral properties of their outputs analysed. (A) Circuit diagram indicating the various loops 

under investigation: direct, indirect, hyperdirect, thalamocortical, and pallido-subthalamic loops. The individual 

connections contributing to each of the five loops are given by the annotations and colour coding given in the key (inset). 

(B) Scatter plots of loop strength vs the resulting STN beta power. Samples in the upper and lower quartiles of beta power 

are marked in black and grey respectively. Where there was significant correlation (Spearman’s coefficient; Bonferroni 

corrected α* = α/n; where n = 15 separate tests) a linear regression is plot and resulting statistics inset. This is a selection 

of graphs- for the full results please see supplementary information II and III. (C) Bar graphs of the mean percentage change 

in loop strength associated with models yielding changed in STN beta (14-30 Hz) power, M2 beta power, and STN/M2 

coherence below or above the 1st and 4th quartiles (black and grey respectively), and in the first, second, and third columns 

respectively. Differences in connectivity were tested using student t-tests with Bonferroni corrected significance thresholds 

(α* = α/n; where n = 30 separate tests; (*: P < 0.05; **: P < 0.01; ***: P < 0.001). Error bars give the standard error of the 

mean. (D) Same as (C) but estimating differences in excitation/inhibition balance. Positive values indicate an increase in 

excitation. 
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models with increased M2/STN coherences demonstrated an enhancement of the hyperdirect pathway 427 

(-24.5 ±17.1, t(33) = -5.8, P < 0.001, α* = 0.003) and indirect pathways (-14.3 ±10.4, t(33) = -5.6, P < 428 

0.001, α* = 0.003) which again was associated with an increased excitatory drive in these pathways. 429 

Pathway Strength Dictates the Probability of Burst Coincidence Across the Network 430 

We next investigated how inputs to the STN alter the evolution of transient beta activity across the 431 

network (Tinkhauser et al., 2017b; Cagnan et al., 2019b). To this end, we first estimated the probability 432 

of detecting coincident bursts in two populations i.e. given that a burst has been sensed in one 433 

population, what is the probability that a coincident burst can be observed in another population? (figure 434 

5A). In general, bursts are highly synchronous across the network with the majority of analyses showing 435 

that, in the fitted model, there is over a 50% chance of bursts coinciding within ±150 ms of the onset 436 

time at the sensing population. Importantly, these results show that the choice of site at which the 437 

reference burst is defined is important in determining the probability of whether a concurrent burst will 438 

be observed at another site. 439 

When strengthening the hyperdirect pathway it was found that there was a high probability of bursts 440 

across the network coinciding with those detected in the cortex, with > 95% of bursts detected in M2 441 

coinciding with bursts in the STN or GPe (figure 5B, at 500% connection strength). However, if bursts 442 

are instead sensed at the STN (figure 5E), increasing hyperdirect strength has the opposite effect: 443 

reducing the probability of a coincident bursts being detected at M2, STR, or GPe to below 75% (at 444 

500% connection strength). This result suggests that in the presence of strong cortical inputs to the STN, 445 

the majority of suprathreshold beta activity is propagated to STN or GPe, but also that lower amplitude 446 

activity (i.e. that are not detectable as a burst in the cortex) becomes sufficient to trigger a high amplitude 447 

burst at the STN. 448 

Next, we did the same analysis but when modulating the pallidal-subthalamic pathway (figure 5F). This 449 

showed that if this pathway is weak (i.e. less than 50% strength of that in the fitted model), there was a 450 

less than 5% probability that bursts sensed at M2 were coincident with those detected in either the STN 451 

or GPe (figure 5F, at 10% connection strength). However, when pallidal inputs to the STN were 452 

strengthened (and the overall STN beta power was amplified), there is an increased probability of bursts 453 

across the network being synchronous with those detected at M2 (greater than 80% probability at 125% 454 

pathway strength; figure 5F). If the sensing site is switched to the STN (figure 5I), then again results 455 

show an opposite effect to that observed in M2: when the pathway is at its weakest (and still sufficient 456 

to generate detectable bursts), then greater than 95% of STN bursts coincide with activity detected in 457 

the M2, STR, and GPe. Interestingly, strengthening this input further acts to decrease the probability 458 

that bursts sensed in the GPe or STN are coincident with activity in the cortex or striatum (figures 5H 459 

and I, less than 75% coincidence at connections greater than the fitted strength). These results suggest  460 
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Figure 5 – Burst coincidence when beta bursts from different populations are used to define burst onset and the 

analysis window. The strength of the hyperdirect and pallido-subthalamic projections were modulated from a minimum of 

10% of the fitted parameter, up to a maximum that was found to evoke 200% beta power in the STN. (A) The probability 

of coinciding bursts (blue; identified according to the criteria set out in the methods) was calculated within a window 150 

ms ± the onset time of a burst detected in the sensing population (yellow). Note that the sensing site will, by definition, 

have a 100% probability of burst occurrence. (B, C, D and E) Analysis of how the probability of burst coincidence changes 

as a function of hyperdirect pathway strength, when using activity in the M2 (blue), STR (red), GPe (green), or STN 

(yellow) respectively as a sensing site for detection of beta bursts. (E, F, G and H) Same as (A-D) but for modulation of 

the pallido-subthalamic connection. The equivalent changes in burst properties can be seen in supplementary information 

IV. 

 

that increased pallidal-subthalamic inhibition can permit beta bursts in the STN or GPe to be maintained 461 

in the absence of large suprathreshold activity in the motor cortex.  462 
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The Timing of Beta Burst Propagation Across the Network is Altered by Strength of Inputs to 463 

the STN 464 

Having identified how bursts coincide across the network, we next analysed the relative timing of burst 465 

activity in M2, STR, GPe, and STN and how they change with altered input to the STN. The timings of 466 

the burst onsets and offsets (depicted in figure 6A) are given with respect to the STN beta burst onset 467 

(i.e. at t = 0). In figure 6B, an example set of beta bursts (defined with a narrowband filter at 18 ±7.5 468 

Hz), simulated from the fitted model, show a cascade of activity with timings that are summarised in 469 

figure 6C.  470 

Figure 6C shows that the timing of the beta bursts across the motor circuit (relative to the onset at the 471 

STN) is altered depending upon the strength of input to the STN from cortex or GPe. In the fitted model 472 

(i.e. at 100% connection strength), burst onsets occur sequentially: beginning with median onset times 473 

at M2 at -36 ms, GPe at -19 ms, STR at -11 ms, prior to STN onset at 0 ms. Bursts began terminating 474 

at STR at 92 ms, followed by a gap of ~80 ms (equivalent to ~1.5 cycles of beta), and then a rapid 475 

termination of the burst in the remainder of the circuit (M2 at 171 ms, GPe at 179 ms, and STN at 180 476 

ms). At all connection strengths that were investigated, striatal bursts terminate from 50ms to 100ms 477 

prior to those in the remainder of the circuit suggesting that they may not be required for the 478 

maintenance of STN beta activity.  479 

The effect of the hyperdirect M2 → STN connection on burst timing is shown in figure 6C (left panel). 480 

This analysis shows that the strength of this pathway determines whether cortical burst onsets precede 481 

or succeed those in the STN (M2 onset times min. vs max. hyperdirect connection strength: 73 ±14.5 482 

ms, t(573) = 9.84, P < 0.001), with the strongest hyperdirect connection postponing M2 onset to +27 483 

ms. These effects are accompanied by a delaying of bursts offsets (STN offset times for min. vs max. 484 

hyperdirect connection strength: 249 ±19.5 ms, t(1029) = 25.1, P < 0.001) . 485 

Similarly, the effects of the pallido-subthalamic GPe → STN connection are shown in the right panel 486 

of figure 6C. As might be expected, increasing this pathway’s strength from the fitted model, brings 487 

GPe bursts’ onset closer to that found in the STN (GPe onset times for fitted. vs max. pallido-488 

subthalamic connection strength: 22 ±4.0 ms, t(1398) = 11.0, P < 0.001). Additionally, strengthening 489 

pallido-subthalamic input to its maximum elongates bursts in the STN by delaying burst termination by 490 

an average of 125 ms (equivalent to ~2 cycles of beta) when compared to the fitted model (STN offset 491 

times for fitted vs max pallido- subthalamic strength: 125.0 ±16.5 ms, t(1523) = 14.8, P < 0.001) with 492 

activity that is tightly followed by the GPe. At the same time the quenching of beta activity in the cortex 493 

is unchanged (M2 offset times for fitted vs max pallido- subthalamic strength: 3.4 ±3.5 ms, t(895) = 494 

0.28, P = 0.78). These changes indicate that increased pallidal inhibition induces a divergence of 495 

activities in STN and GPe that extend for one to two cycles beyond the termination of beta bursts in the 496 

cortex.  497 
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Phase-Locked Stimulation of Motor Cortex Triggered by Beta Bursts Sensed in the 498 

Subthalamic Nucleus  499 

In the next set of simulations, we explored how the timing of cortical activity modulated STN beta 500 

bursts by modelling the effects of phase-locked stimulation delivered to the cortex. Beta activity sensed 501 

at the STN was used to control phase locked stimulation. Assuming that stimulation is delivered to 502 

cortex non-invasively e.g. using transcranial alternating current stimulation, stimulation was modelled 503 

 
Figure 6 – Time-locked analysis of simulated beta bursts across the cortico-basal ganglia-thalamic circuit following 

modulation of STN inputs via excitatory hyperdirect (M2 → STN) projections and pallido-subthalamic inhibition 

(GPe → STN). (A) Periods of high amplitude beta activity (burst events) were identified by thresholding the band-filtered 

envelope at the 75th percentile of the data (per population and identified in the simulations of the fitted model). Bursts 

timings were estimated by the threshold crossing onset and offset. (B) Example segment of simulated data shows the 

propagation of burst activity across the network, with the threshold crossings (i.e. burst onset) of each population in the 

example annotated. All timings are set relative to the STN burst onset at t = 0 ms. (C) Ribbon diagram of the changes in 

burst timings following modulation of the hyperdirect (left panel) and pallido-subthalamic (right panel) connections. Colour 

coded lines for each node in the network are given to show the median burst onset (dotted) and offset (dashed) times with 

borders indicating the 95% confidence interval. The strength of either pathways was modulated from a minimum of 10% 

of the fitted parameter, up to a maximum that evoked < 200% beta power in the STN. Bold lines indicate simulations in 

which M2, STR, or GPe bursts onsets/offsets were significantly different from that measured in the STN (t-test, Bonferroni 

corrected α* = α/n; where n = 18 separate tests). 
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as input to the superficial layers of cortex (methods; figure 1B). Figure 7A demonstrates that STN beta 504 

activity can be either amplified or suppressed depending on the relative phase of the stimulation signal 505 

delivered to M2. When close to anti-phase (i.e. a phase difference of 180° equivalent to when a peak in 506 

M2 peak is aligned to a trough in STN), there is a promotion of STN beta amplitude, and a suppression 507 

when in-phase (i.e. a phase difference of 0° equivalent to an alignment of M2 and STN peaks). These 508 

effects presumably occur due to constructive/destructive interference (Rosenblum and Pikovsky, 2004; 509 

Witt et al., 2013), with the precise phase of the effect matched to the transmission delays involved in 510 

propagation of the rhythmic activity. Cortical stimulation impacts both the cortical and subthalamic 511 

power spectra, as well as the coherence between them (shown in supplementary information V) with a 512 

response that is dependent on the precise phase difference with respect to ongoing activity in the STN. 513 

Despite the stimulation phase being derived from 18 ± 7.5 Hz STN activity, phase locked stimulation 514 

differentially affects spectral peaks at low (14-21 Hz) and high (21-30 Hz) beta frequencies in STN and 515 

M2 depending on the stimulation angle.  516 

These phase specific effects of stimulation can be summarised by constructing ARCs which show that 517 

there are differences in the maximally suppressive phases of low beta in the M2 and STN: in M2 this 518 

occurs close to a stimulation phase value of 60° (figure 7B, green circle; 9% reduction of power) versus 519 

120° in STN (figure 7C, orange circle; 37% reduction in power). Secondly, there is a differential 520 

response for modulation of high and low frequency beta rhythms in the STN: low beta is enhanced at 521 

300° (figure 7C, blue circle; 125% increase in power); whilst at the same phase STN high beta is close 522 

to its most suppressed (figure 7C, blue square; 10% reduction in power). The difference in peak 523 

modulation for the two bands is separated by 120°. These results indicate that the range of phases in 524 

which it is possible to achieve a suppressive effect for STN low beta (4/12 phase bins) is smaller than 525 

that found to be amplifying (8/12 of phase bins). Coherence of the STN/M2 beta shows only a weak 526 

capacity to be modulated by phase locked stimulation of M2 (figure 7D; maximum modulation of ±14% 527 

from baseline).  528 

Phase-Locked Stimulation of Cortex can Modulate Properties of Burst Activity in the 529 

Subthalamic Nucleus  530 

We next demonstrate how the effects of phase locked stimulation of the cortex upon STN beta power 531 

can be explained in terms of changes to the temporal patterning of beta activity (figure 7E, F, and G). 532 

The properties of these bursts are depicted schematically in supplementary information VI. We show 533 

that stimulation of the motor cortex at phase values which suppress STN low beta, this effect is 534 

predominantly related to an increase in the average interburst interval (figure 7F; maximum suppressive 535 

stim phase. vs base.; -0.1 ±0.24 s, t(265) = -2.86, P < 0.01, α* = 0.01) and the abridgment of burst 536 

durations (figure 7G; maximum suppressive stim phase. vs base.; 44 ±20.8 ms, t(269) = 4.19, P < 0.001, 537 

α* = 0.01), rather than through reduction in burst amplitude (figure 7F; maximum suppressive stim. 538 

phase vs base.; 6.7 x 10-8 ± 5.6 x 10-8, t(269) = 2.37, P = 0.0184, α* = 0.01).  539 
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Figure 7 – Phase locked stimulation of motor cortex when sensing bursts in the STN of the fitted model. Bursts were 

defined using the narrowband activity (18 ±7.5 Hz) simulated at the STN. (A) Example simulation within a single STN 

burst: a high amplitude STN burst was detected from simulations of the fitted model (burst onset indicated by grey dashed 

line and time courses of activity across the network shown by the bold grey line). Phase locked inputs were then added in 

a second repeat simulation which used identical noise inputs to the network to ensure burst timings were replicated. The 

timings of burst onsets were used to trigger a 300ms sinusoidal input to cortex (example shown in orange and blue; top) 

with its phase manipulated to have an offset with respect to that of ongoing beta activity in the STN. We show M2 

stimulation phases yielding maximal promotion (blue; close to in-phase with STN- i.e. peak to peak) or suppression (orange; 

close to anti-phase with STN- i.e. peak to trough) of STN low beta power (14-21 Hz). (B, C, D) ARCs corresponding to 

the changes in spectral power (for corresponding spectra see supplementary information V) indicating the modulation of 

low beta (14-21 Hz; bold, circles) and high beta (21-30 Hz; dashed, squares) frequencies. Peaks are plot as a percentage 

difference from the fitted model (i.e. the unstimulated condition). Coloured symbols correspond to the phase bins given in 

the key (inset). Changes in burst properties (see supplementary information VI for schematic of methods and additional 

changes to burst properties) are shown for the inter-burst interval (E), burst amplitude (F), and burst duration (G). 
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Figure 8 – Simulating phase-locked stimulation of STN when sensing bursts in the motor cortex of the fitted model. 

(A, B, and C) Plots of M2 power spectra, STN power spectra, and STN/M2 coherence for six selected phase bins (given in 

legend). The dashed line gives the spectra from the unstimulated condition (i.e. fitted model). (D, E, F) Response curves 

corresponding to the spectra in the row above indicating the modulation of low beta (14-21 Hz; bold, circles) and high beta 

(21-30 Hz; dashed, squares) frequencies. Peaks are plot as a percentage difference from the fitted model. Coloured symbols 

correspond to the sample phase bins of the spectra shown in the above row. 

 

Phase Locked Stimulation of STN Triggered by Beta Bursts in the Motor Cortex  540 

The results presented in the section Pathway Strength Dictates the Probability of Burst Coincidence 541 

Across the Network suggests that, dependent upon the connectivity state of the network, there can be a 542 

high coincidence between cortical and STN beta bursts. We next explored the impacts of switching 543 

sensing and stimulation sites such that stimulation was delivered to the STN with respect to the phase 544 

of cortical beta bursts. Phase-locked stimulation applied to the STN yields smaller effects upon the 545 

power spectra (figure 8A, B, and C). The response to stimulation is largest in the STN and mainly 546 

restricted to low beta band activity (figure 8B and E, bold line; maximum of 59% increase in power for 547 

low beta vs maximum of 13% increase for high beta). The suppressive effect of low beta was slightly 548 

weaker than that seen during M2 stimulation (-31% versus -37% for STN stimulation). Modulation of 549 

cortico-subthalamic coherence by STN stimulation was also smaller than that during cortical 550 

stimulation, with a modulation of only ±7% from the baseline (figure 8C and F) compared to ±14% for 551 

M2 stimulation. Overall, results suggest that STN stimulation may provide more specific targeting of 552 

STN low beta activity but lacks the larger effect sizes that M2 stimulation can elicit. 553 
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Modulation of STN Beta Amplitude by Cortico-Subthalamic Relative Phase is State 554 

Dependent  555 

In figure 9, we return to the more efficacious stimulation of the cortex and investigate the effect of 556 

modulating the strength of inputs to the STN. These analyses show that the profiles of the ARCs are 557 

significantly altered by changes in the strength of cortical or pallidal inputs to the STN (examples shown 558 

in figure 9A and D respectively). These changes involve both alterations in the maximum suppression 559 

and amplification of beta rhythms achieved by stimulation, as well as shifts in the effective stimulation 560 

angle. The dependency of ARC properties upon hyperdirect M2 → STN connectivity is shown in figure 561 

9B. Most ARCs indicate an amplifying and suppressive regime, although amplification is always larger 562 

than the corresponding suppression (e.g. 149% vs -52% in the fitted model). Analysis of the maximal 563 

suppressive/amplifying phase (figure 9C) indicates a shift in the maximally suppressive angle around 564 

160% connection strength, the same transition point that was found to result in a shift to higher 565 

 
Figure 9 – Simulating state dependent changes in the efficacy of phase locked stimulation of motor cortex (M2) when 

modulating pallido-subthalamic (GPe → STN) and hyperdirect (M2 → STN) connection strength. Connection 

strengths were varied from 10% of the fitted model up to a maximum that elicited < 200% change in STN beta power. 

Changes in power are scaled as the percentage difference from the unstimulated for each connection strength. (A) Simulated 

ARCs when the strength of the M2 → STN connection was modulated. These ARCs exhibit changes in maximum 

suppression/amplification, as well as shifts in phase. (B) The ARCs were characterised by taking the minimum (dotted line; 

circles) and maximum (dashed line; squares) power and then plotting these against the corresponding connection strength. 

The coloured markers correspond to the selected ARCs shown in (A). (C) Plot of the maximally suppressive (dashed; 

downwards arrows) and promoting (bold; upwards arrows) phase versus connection strength. There is a clear transition in 

phase close to 200% change in connection strength. (D, E, F) Same as (A, B, C) but for simulations modulating the GPe 

→ STN connection. 
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frequency beta activity in figure 3. This result likely arises from a shift in pathways responsible for the 566 

maintenance of beta oscillations.  567 

Modulation of the pallido-subthalamic GPe → STN connectivity shows that the response is mostly 568 

amplifying, with amplification found to be much larger than suppression in all cases tested (figure 9D 569 

and E). Both suppressing and promoting stimulation phases were found to be stable for states associated 570 

with significant beta power (i.e. at connection strengths greater than ~60%; figure 9F). 571 

Discussion  572 

Summary of Findings 573 

Using a set of in silico analyses, we have shown that the emergence of subthalamic and cortical beta 574 

oscillations is under the influence of an interplay of overlapping loops across the cortico-basal ganglia-575 

thalamic circuit. Due to their prominent effect on subthalamic beta power, we focused on inhibitory and 576 

excitatory inputs to the STN, arriving from the external pallidum and motor cortex respectively, and 577 

used variations in these connections to shift the cortico-basal ganglia-thalamic circuit into different 578 

network states. We have shown that these connections also influence the rhythm of subthalamic beta 579 

oscillations; with hyperdirect pathway input biasing these oscillations to higher frequencies. We have 580 

characterised the intermittent nature of beta oscillations and determined burst coincidence, onset and 581 

termination across the motor circuit. This analysis has demonstrated that subthalamic and pallidal beta 582 

bursts significantly overlap and given sufficiently strong pallidal inhibition of the STN, will dissociate 583 

from those observed in the cortex and striatum. Finally, we have shown that phase-locked stimulation 584 

can selectively enhance or suppress beta oscillations depending on stimulation timing, and yields an 585 

effect that is strongly dependent on network state (in the context of the balance of excitatory and 586 

inhibitory inputs to the STN). Phase-locked stimulation induced an increase in the average inter-burst 587 

interval and reduced mean burst durations when subthalamic beta oscillations were suppressed. 588 

Extensive effort is currently being devoted to the development of novel stimulation based therapies 589 

(Cagnan et al., 2019a). Our results provide valuable insights that can guide the design of 590 

neuromodulation strategies that are reactive to changes in brain state. 591 

The Amplitude of STN Beta Rhythms is Influenced by Alterations in Network Connectivity  592 

In this work, we have shown how subthalamic beta power, a key biomarker used for aDBS (Little et 593 

al., 2013; Rosa et al., 2015), can be modulated by shifts in the engagement of different pathways across 594 

the motor circuit (figures 2-4). The STN/GPe loop has been previously implicated in basal ganglia 595 

pathophysiology and is associated with aberrant STN beta power (Mallet et al., 2008a; Cruz et al., 2011; 596 

Tachibana et al., 2011). In our study, we observed that reducing the strength of the pallido-subthalamic 597 

connection diminished beta power in the STN, in good agreement with the recent empirical 598 

demonstration that suppressing GPe neuron activity decreases the engagement of STN neurons in 599 
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Parkinsonian beta oscillations (Crompe et al., 2020). In contrast to the influences of STN/GPe 600 

connections, we observed that reducing the strength of the cortico-subthalamic hyperdirect connection 601 

augmented beta power in STN. Thus, moderate increases in hyperdirect pathway transmission might 602 

decrease STN beta, with attendant behavioural benefits, a prediction supported by small-scale studies 603 

in Parkinsonian mice (Sanders and Jaeger, 2016). Taken together, the results presented here indicate 604 

that the propensity of the STN/GPe subcircuit to enter a resonant state arises from an interplay of pallidal 605 

and hyperdirect pathway inputs impinging upon the STN. This matches well with previous 606 

computational models (Pavlides et al., 2015; Fountas and Shanahan, 2017) that propose that the 607 

STN/GPe loop selectively resonates (Hahn et al., 2014) at beta frequency as a result of inputs arriving 608 

from the motor cortex, as well as experimental findings that Parkinsonism predisposes the circuit to 609 

synchronization by the cortex (Baaske et al., 2019). 610 

The results of our model reconcile the apparently paradoxical findings that dopamine depletion can 611 

result in enhanced cortical-subthalamic coherence (Sharott et al., 2005b; West et al., 2018; Baaske et 612 

al., 2019) following synaptic weakening of glutamatergic inputs to the STN (Mathai et al., 2015; Chu 613 

et al., 2017). Our work suggests that this effect results from the loss of competing input to STN that 614 

acts to increase patterning of the STN by beta activity propagating via the cortico-striatal indirect route. 615 

Critically, indirect and hyperdirect loops may leave distinct spectral signatures in terms of the 616 

expression of low and high frequency beta, respectively (figure 3). 617 

In contrast to previous work (van Albada et al., 2009; Brazhnik et al., 2016; Reis et al., 2019) we find 618 

little evidence to support the significance of the corticothalamic relay (acting in insolation from basal 619 

ganglia output) in the maintenance STN beta rhythms (figures 2 and 4). It is however important to note 620 

that our study did not use thalamic recordings to constrain model parameters, which may explain its 621 

relatively unimportant role in the presented analyses. By expanding on the principle of competing loops 622 

(Leblois et al., 2006) to include those formed by the subthalamo-pallidal feedback, indirect, and 623 

thalamocortical relay in addition to the hyperdirect and direct loops, we show that maintenance of STN 624 

and cortical beta involve distinct loops (figure 4).  625 

Disrupting Antecedent Cortical Activity May Provide Selective Targeting of Pathological 626 

Activity 627 

Beta activity evolves as it propagates through the different loops of the circuit. Beta bursts in the basal 628 

ganglia tended to be preceded by bursts in the cortex (figures 5 and 6), a finding in agreement with 629 

experimental evidence demonstrating that cortical beta rhythms on average drive those in the STN 630 

(Williams et al., 2002; Fogelson et al., 2006; Lalo et al., 2008; Litvak et al., 2011; Sharott et al., 2018). 631 

In this study, noise was delivered across subcortical populations and cortex. Therefore, temporal 632 

evolution of beta bursts is not explicitly built into the model. Analysis of the timing of burst termination 633 

in the model demonstrates how increased pallidal inhibition of the STN can result in burst elongation 634 
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(figure 6C), offering a candidate mechanism for generation of long bursts that have been correlated with 635 

the Parkinsonian state (Deffains et al. 2018; Tinkhauser et al. 2018). A synthesis of the two above 636 

findings suggest that long duration beta bursts may begin as either subthreshold or short duration beta 637 

bursts in the motor cortex that is later prolonged within the STN/GPe loop (Cagnan et al., 2019b). The 638 

circuit will resonate at beta frequencies given sufficient strength of the GPe/STN feedback and a suitable 639 

phase alignment with cortex. Intriguingly, beta bursts in this network state tend to be at low beta 640 

frequencies (14-21 Hz; figure 3). When the STN/GPe coupling is very high, beta activity can be 641 

sustained to such a degree that it may terminate several cycles later than cortical beta bursts (figure 6). 642 

Our results give rise to an experimentally testable hypothesis and suggest that beta bursts in the cortex 643 

and STN should diverge in duration with increased activity of neurons in the GPe. Critically, 644 

interruption of precursor activity in the cortex may be used to quench the states that promote the 645 

emergence of heightened STN beta resonance using existing surgical techniques (Swann et al., 2017).  646 

The Responses of STN Beta Rhythm to Phase Locked Stimulation are State Dependent  647 

At its most basic, therapeutic brain stimulation, such as cDBS for PD, provide stimulation using fixed 648 

parameters (i.e. frequency and amplitude) that are chosen to provide clinically significant reductions in 649 

patients’ symptoms whilst minimising undesired adverse effects (Castrioto et al., 2014; Cagnan et al., 650 

2019a). More recently, approaches such as aDBS have been proposed to gate the delivery of stimulation 651 

to biomarkers associated with a pathological or functional state (Little et al., 2013; Rosa et al., 2015; 652 

Swann et al., 2018; Bouthour et al., 2019). This approach has been shown to be effective in reducing 653 

PD motor symptoms (Little et al., 2016a) together with improving stimulation side-effects such as 654 

speech intelligibility (Little et al., 2016b). However, beta rhythms which are commonly used to control 655 

the delivery of stimulation, and also correlate with physiological processes across the cortico-basal 656 

ganglia circuit (Khanna and Carmena, 2015; Mirzaei et al., 2017; Shin et al., 2017; Hannah et al., 2019), 657 

suggesting that stimulation specificity may need to be further improved.  658 

Phase-locked DBS could provide such a refinement in stimulation specificity by delivering precisely 659 

timed stimulation to modulate rhythmic activity together with interregional synchronization. This 660 

approach follows on from the fact that neuronal ensembles demonstrate phase locked firing to 661 

population activity. Therefore, precisely timed stimulation relative to the rhythmic control signal may 662 

act to either enhance or reduce the amplitude of these rhythms depending on stimulation timing 663 

(Rosenblum and Pikovsky, 2004; Witt et al., 2013; Holt and Netoff, 2014; Wilson and Moehlis, 2015). 664 

Phase locked stimulation approaches have been demonstrated to be effective in modulating tremor 665 

(Brittain et al., 2013; Cagnan et al., 2017), supressing beta oscillations in Parkinsonian patients (Holt et 666 

al., 2019), as well as in healthy (Peles et al., 2020) and Parkinsonian primates (Sanabria et al., 2020). 667 

The parameters required for optimal therapeutic neuromodulation are likely to be brain state dependent 668 

(Bergmann et al., 2016; Karabanov et al., 2016; Kahan et al., 2019). In this work we have demonstrated 669 

that the optimal stimulation phase and its ability to modulate beta rhythms, is influenced by the strength 670 
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of synaptic inputs to the STN. This dependency arises from the impact these projections have on 671 

synchronous neural activity across the motor circuit (figure 3; Tass, 2000; Weerasinghe et al., 2019). 672 

These results suggest that static approaches to selecting stimulation control parameters are likely to be 673 

non-optimal in the face of spontaneous shifts in brain state that, for instance, accompany movement or 674 

action selection. Future stimulation strategies that can provide dynamic parameterization of stimulation 675 

may adopt state estimation techniques (Baker et al., 2014) or dual control algorithms that can provide 676 

behaviour responsive delivery of neuromodulation (Grado et al., 2018).  677 

Targeting Interareal Synchronization with Phase Locked Stimulation 678 

Our simulations demonstrate that when phase-locked stimulation supressed STN rhythms in low beta 679 

frequencies, there was a simultaneous enhancement of beta activity at higher frequencies (> 21 Hz) 680 

(figure 7), comparable to spontaneous shifts we observed due to increases in the excitatory inputs to the 681 

STN via the hyperdirect pathway (figure 3). Similar results have been demonstrated experimentally 682 

(Sanabria et al., 2020) where a higher frequency beta rhythm (> 18 Hz) emerged during phasic DBS 683 

targeting 11-17 Hz rhythms. These results suggest that phasic suppression of neural rhythms at a certain 684 

node may shift circuit activity and promote communication via specific loops such as the hyperdirect 685 

pathway. This phenomenon is not limited to the cortico-basal ganglia-thalamic circuit and was also 686 

observed in essential tremor patients during phase-locked thalamic DBS (Cagnan et al., 2017). The 687 

potential to reshape activity in these circuits is likely to have important implications for motor execution 688 

and planning (Frank et al., 2007; Jahfari et al., 2011). These effects can be controlled by careful 689 

determination of both the “sensing” site at which pathological activity is detected, as well as the site at 690 

which stimuli are delivered (figures 7 and 8). Alternating the “sensing” and “stimulating” nodes 691 

between the STN and cortex impacted both the emergence of different rhythms during stimulation and 692 

the stimulation effect size: with phase-locked subthalamic stimulation with respect to cortical beta 693 

rhythms giving rise to smaller effect sizes than phase-locked cortical stimulation with respect to 694 

subthalamic beta. Critically, phase-locked stimulation induced an increase in the inter-burst interval and 695 

reduced mean burst durations while having minimal impact on burst amplitude. 696 

Limitations 697 

All computational models are limited to the range of neuronal features they can describe by the form of 698 

the equations used to explain them. In this work we utilize so called “lumped parameter” models that 699 

simplify the description of neuronal dynamics by effectively averaging over a very large number of 700 

states and parameters. In making this simplification, these models lack the ability to describe many 701 

phenomena such as the complex neuronal spiking of basal-ganglia neurons, or their nonlinear 702 

integration of inputs (Farries et al., 2010; Amadeus Steiner et al., 2019). The low dimensionality of 703 

these models also effectively restricts their dynamic range, with population time constants restricting 704 

investigation of the interaction between very fast inputs and slower neuronal responses, such as that 705 

imposed by high frequency DBS. Moreover, this model does not capture several rhythms such as higher 706 
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frequency gamma rhythms (Swann et al., 2018) thought to be important in movement, or low frequency 707 

alpha/theta which has been implicated in this circuit in dystonia (Wang et al., 2018). To capture these 708 

features, extensions of the model would require the inclusion of populations with time constants suited 709 

to propagating different rhythms. Finally, this model is the result of fitting to time averaged features of 710 

the original data. It remains to be seen as to whether including parameters of the temporal 711 

intermittencies to further constrain model parameters can provide better mechanistic models of the 712 

cortico-basal ganglia-thalamic system. 713 

Conclusions 714 

This study builds upon our understanding of the emergence of beta oscillations in the cortical-basal 715 

ganglia-thalamic circuit by elucidating the potential mechanisms by which pathological activity may 716 

propagate throughout the recurrent circuits. Our results suggest that heightened beta activity in the STN 717 

results from the strengthening of the indirect pathway involving GPe, whilst beta activity in the motor 718 

cortex is promoted by the hyperdirect pathway and its thalamocortical return. Analysis of the state 719 

dependent changes in beta burst timings suggest that strengthening of pallidal input to the STN leads to 720 

beta rhythms in the STN/GPe circuit to become progressively less dependent on cortical input. Finally, 721 

we show that subcortical beta rhythms can be modulated by precisely timed stimulation of the cortex, 722 

with a response that is non-trivially related to network connectivity. These results support novel 723 

approaches to neuromodulation that can adapt stimulation in accordance with changes in brain state. 724 

The broad involvement of interareal synchronization in both pathology and functioning of the brain 725 

(Schnitzler and Gross, 2005; Bressler and Menon, 2010; Thut et al., 2012) makes phase-locked 726 

modulation of brain networks of great relevance to circuits beyond the cortical-basal ganglia-thalamic 727 

network and could potentially be applied to those involved in memory, sleep, and decision making.  728 
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Figures 1062 

Figure 1 1063 

 1064 

 
Figure 1 – Schematic of cortico-basal ganglia-thalamic model and fit to empirical data from Parkinsonian rodents. 

A model describing the population activity in this circuit was fit to data features (power spectra and directed functional 

connectivity) of (A) electrophysiological recordings: electrocorticography from motor cortex M2 (blue) as well as local 

field potentials from striatum STR (red); external segment of the globus pallidus GPe (green); and the subthalamic nucleus 

STN (yellow) made in a 6-OHDA-lesioned rat model of Parkinsonism (procedure detailed in West et al. 2019a). Data was 

normalized and band-passed 4-100 Hz before being transformed to the data features used to fit parameters of the 

computational model. (B) Schematic of model architecture, detailing excitatory populations and their glutamatergic 

projections (triangular nodes with arrows) and inhibitory/GABAergic projections (circular nodes with ball ended arrows). 

The motor cortex microcircuit (Bhatt et al., 2016) comprises three layers: superficial pyramidal cells (SP; supragranular); 

middle pyramidal (MP; granular); and deep pyramidal cells (DP; infragranular), plus an inhibitory interneuron population 

(II). The basal ganglia model comprises four populations, with each node representing activity in the STR, GPe, STN, and 

internal segment of the pallidus (GPi). The GPi forms the output of the basal ganglia and acts to inhibit relay cells of the 

thalamus (REL). The main subcortical pathways include the direct, indirect, hyperdirect, and cortico-thalamic interactions. 

The inset graphs indicate the empirical and simulated power spectra in bold and dashed lines, respectively. For the full set 

of empirical and fitted data features please see supplementary information I. GPi and REL were treated as hidden nodes 

and their respective neural activities were inferred from the dynamics of the empirically recorded brain regions. (C) 

Simulations of this circuit yields time series with transient, burst like behaviour similar to that seen in vivo (A).  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.03.20.000711doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000711
http://creativecommons.org/licenses/by-nc/4.0/


 42 

Figure 2 1065 
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Figure 2 – Simulated inactivation experiments to determine the contribution of individual connections in the cortico-

basal ganglia-thalamic circuit to the power of STN beta oscillations. Connections in the fitted model were individually 

removed and the resulting change in simulated STN beta power measured (simulation duration 32 s). (A) Schematic of the 

results of the simulated inactivation experiments. Connections in the circuit are colour coded to indicate the change in 14-

30 Hz beta power in the STN (red or blue indicating a reduction or increase following lesion, respectively). The actual 

percentage change is annotated alongside each connection. (B) Bar plot of the percentage change in STN beta power from 

the fitted model following inactivation of each connection. (C) Bar plot of the changes in STN peak frequency (within the 

beta band) from the fitted model following inactivation. (D) Power spectra for STN population activity in the fitted (black 

line) and model with inactivation of hyperdirect pathway (red). (E) Same as (D) but for inactivation of the pallido-

subthalamic connection (blue line). 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.03.20.000711doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000711
http://creativecommons.org/licenses/by-nc/4.0/


 43 

Figure 3 1067 

 1068 

  1069 

 
Figure 3 – The effects of modulating the strength of STN inputs from the excitatory hyperdirect projection (A-F; M2 

→ STN) and inhibitory pallido-subthalamic projection (G-L; GPe → STN) upon the power spectra of STN and M2 

population activity, and the coherence between them. The strengths of the two connections were varied independently 

and 256 s of data was simulated from the resulting models. Changes in connection strength are denoted as a percentage of 

that in the fitted model (i.e. at 100%). Connections were modulated in the range 10% to 1000%. Models yielding an increase 

in STN beta power greater than 200 % were not analysed. (A) The power spectra of the STN resulting from a modulation 

of the hyperdirect connection. Plots are colour coded according to the key (inset) and matches the markers plot in (D-F). 

(B) Same as (A) but for M2 power spectra. Decreasing the strength of this connection decreases the frequency and amplitude 

of beta. (C) Same as (B) but for STN/M2 magnitude squared coherence. (D) Plot of peak beta (14-30 Hz) amplitude (left 

axis; reds) and peak beta frequency (right axis; blues) in the STN under modulation of hyperdirect input strength. Note X-

axis is on a logarithmic scale. (E) Same as (D) but for M2 beta power. (F) Same as (D) but for STN/M2 coherence. (G-L) 

Plots equivalent to (A-F) but for simulations modulating the pallido-subthalamic connection. 
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Figure 4 1070 

 
Figure 4 – Contributions of loops within the cortico-basal ganglia-thalamic circuit towards the expression of beta 

(14-30 Hz) power in the STN and motor cortex, as well as their coherence. Random models were generated by drawing 

500 samples of connectivity parameters from the (inflated) posterior distributions of the fitted model. These models were 

then simulated for 30s and the spectral properties of their outputs analysed. (A) Circuit diagram indicating the various loops 

under investigation: direct, indirect, hyperdirect, thalamocortical, and pallido-subthalamic loops. The individual 

connections contributing to each of the five loops are given by the annotations and colour coding given in the key (inset). 

(B) Scatter plots of loop strength vs the resulting STN beta power. Samples in the upper and lower quartiles of beta power 

are marked in black and grey respectively. Where there was significant correlation (Spearman’s coefficient; Bonferroni 

corrected α* = α/n; where n = 15 separate tests) a linear regression is plot and resulting statistics inset. This is a selection 

of graphs- for the full results please see supplementary information II and III. (C) Bar graphs of the mean percentage change 

in loop strength associated with models yielding changed in STN beta (14-30 Hz) power, M2 beta power, and STN/M2 

coherence below or above the 1st and 4th quartiles (black and grey respectively), and in the first, second, and third columns 

respectively. Differences in connectivity were tested using student t-tests with Bonferroni corrected significance thresholds 

(α* = α/n; where n = 30 separate tests; (*: P < 0.05; **: P < 0.01; ***: P < 0.001). Error bars give the standard error of the 

mean. (D) Same as (C) but estimating differences in excitation/inhibition balance. Positive values indicate an increase in 

excitation. 
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Figure 5 1071 

 
Figure 5 – Burst coincidence when beta bursts from different populations are used to define burst onset and the 

analysis window. The strength of the hyperdirect and pallido-subthalamic projections were modulated from a minimum of 

10% of the fitted parameter, up to a maximum that was found to evoke 200% beta power in the STN. (A) The probability 

of coinciding bursts (blue; identified according to the criteria set out in the methods) was calculated within a window 150 

ms ± the onset time of a burst detected in the sensing population (yellow). Note that the sensing site will, by definition, 

have a 100% probability of burst occurrence. (B, C, D and E) Analysis of how the probability of burst coincidence changes 

as a function of hyperdirect pathway strength, when using activity in the M2 (blue), STR (red), GPe (green), or STN 

(yellow) respectively as a sensing site for detection of beta bursts. (E, F, G and H) Same as (A-D) but for modulation of 

the pallido-subthalamic connection. The equivalent changes in burst properties can be seen in supplementary information 

IV. 
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Figure 6 – Time-locked analysis of simulated beta bursts across the cortico-basal ganglia-thalamic circuit following 

modulation of STN inputs via excitatory hyperdirect (M2 → STN) projections and pallido-subthalamic inhibition 

(GPe → STN). (A) Periods of high amplitude beta activity (burst events) were identified by thresholding the band-filtered 

envelope at the 75th percentile of the data (per population and identified in the simulations of the fitted model). Bursts 

timings were estimated by the threshold crossing onset and offset. (B) Example segment of simulated data shows the 

propagation of burst activity across the network, with the threshold crossings (i.e. burst onset) of each population in the 

example annotated. All timings are set relative to the STN burst onset at t = 0 ms. (C) Ribbon diagram of the changes in 

burst timings following modulation of the hyperdirect (left panel) and pallido-subthalamic (right panel) connections. Colour 

coded lines for each node in the network are given to show the median burst onset (dotted) and offset (dashed) times with 

borders indicating the 95% confidence interval. The strength of either pathways was modulated from a minimum of 10% 

of the fitted parameter, up to a maximum that evoked < 200% beta power in the STN. Bold lines indicate simulations in 

which M2, STR, or GPe bursts onsets/offsets were significantly different from that measured in the STN (t-test, Bonferroni 

corrected α* = α/n; where n = 18 separate tests). 
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Figure 7 1075 

 
Figure 7 – Phase locked stimulation of motor cortex when sensing bursts in the STN of the fitted model. Bursts were 

defined using the narrowband activity (18 ±7.5 Hz) simulated at the STN. (A) Example simulation within a single STN 

burst: a high amplitude STN burst was detected from simulations of the fitted model (burst onset indicated by grey dashed 

line and time courses of activity across the network shown by the bold grey line). Phase locked inputs were then added in 

a second repeat simulation which used identical noise inputs to the network to ensure burst timings were replicated. The 

timings of burst onsets were used to trigger a 300ms sinusoidal input to cortex (example shown in orange and blue; top) 

with its phase manipulated to have an offset with respect to that of ongoing beta activity in the STN. We show M2 

stimulation phases yielding maximal promotion (blue; close to in-phase with STN- i.e. peak to peak) or suppression (orange; 

close to anti-phase with STN- i.e. peak to trough) of STN low beta power (14-21 Hz). (B, C, D) ARCs corresponding to 

the changes in spectral power (for corresponding spectra see supplementary information V) indicating the modulation of 

low beta (14-21 Hz; bold, circles) and high beta (21-30 Hz; dashed, squares) frequencies. Peaks are plot as a percentage 

difference from the fitted model (i.e. the unstimulated condition). Coloured symbols correspond to the phase bins given in 

the key (inset). Changes in burst properties (see supplementary information VI for schematic of methods and additional 

changes to burst properties) are shown for the inter-burst interval (E), burst amplitude (F), and burst duration (G). 
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Figure 8 – Simulating phase-locked stimulation of STN when sensing bursts in the motor cortex of the fitted model. 

(A, B, and C) Plots of M2 power spectra, STN power spectra, and STN/M2 coherence for six selected phase bins (given in 

legend). The dashed line gives the spectra from the unstimulated condition (i.e. fitted model). (D, E, F) Response curves 

corresponding to the spectra in the row above indicating the modulation of low beta (14-21 Hz; bold, circles) and high beta 

(21-30 Hz; dashed, squares) frequencies. Peaks are plot as a percentage difference from the fitted model. Coloured symbols 

correspond to the sample phase bins of the spectra shown in the above row. 
  1077 
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Figure 9 – Simulating state dependent changes in the efficacy of phase locked stimulation of motor cortex (M2) when 

modulating pallido-subthalamic (GPe → STN) and hyperdirect (M2 → STN) connection strength. Connection 

strengths were varied from 10% of the fitted model up to a maximum that elicited < 200% change in STN beta power. 

Changes in power are scaled as the percentage difference from the unstimulated for each connection strength. (A) Simulated 

ARCs when the strength of the M2 → STN connection was modulated. These ARCs exhibit changes in maximum 

suppression/amplification, as well as shifts in phase. (B) The ARCs were characterised by taking the minimum (dotted line; 

circles) and maximum (dashed line; squares) power and then plotting these against the corresponding connection strength. 

The coloured markers correspond to the selected ARCs shown in (A). (C) Plot of the maximally suppressive (dashed; 

downwards arrows) and promoting (bold; upwards arrows) phase versus connection strength. There is a clear transition in 

phase close to 200% change in connection strength. (D, E, F) Same as (A, B, C) but for simulations modulating the GPe 

→ STN connection. 
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Supplementary Information 1081 

Supplementary Information I 1082 

 1083 

Supplementary Information I – Full set of empirical data features: autospectra (diagonal) and directed functional 1084 
connectivity (off-diagonal) used in the parameter optimization, and their resulting fits. Empirical data (bold) is taken 1085 
from a group level analysis of electrophysiological recordings made in the 6-OHDA rodent model of Parkinsonism (Mallet et 1086 
al., 2008b, 2008a). ECoG was recorded from M2 region of cortex (blue), and LFPs from the STR (red), GPe (green), and STN 1087 
(yellow). Data is shown prior to Gaussian smoothing that was applied before fitting. Predicted spectra are shown for the hidden 1088 
nodes at GPi and Thalamus. Autospectra are placed along the diagonal. Directed functional connectivity (Non-parametric 1089 
directionality; West et al., (2018)) is on the off-diagonal and can be read from source (row) to target (column). 1090 
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Supplementary Information II 1092 

 1093 

Supplementary Information II– Full set of correlations of beta (14-30 Hz) power in the STN (first row), M2 (second row) 1094 
and STN/M2 coherence following changes in loop strength. The fitted “Net Strength” in the base model is denoted as 0%. 1095 
Samples in the upper and lower quartiles of beta power are marked in blue and red respectively. Where there was significant 1096 
correlation (Spearman’s coefficient; Bonferroni corrected α* = α/n; where n = 15 separate tests) a linear regression is plot and 1097 
resulting statistics inset.  1098 
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Supplementary Information III 1099 

 1100 

Supplementary Information III – Full set of correlations of beta (14-30 Hz) power in the STN (first row), M2 (second row) 1101 
and STN/M2 coherence following changes in loop E/I balance. The fitted E/I balance in the base model is denoted as 0%. 1102 
Samples in the upper and lower quartiles of beta power are marked in blue and red respectively. Where there was significant 1103 
correlation (Spearman’s coefficient; Bonferroni corrected α* = α/n; where n = 15 separate tests) a linear regression is plot and 1104 
resulting statistics inset. 1105 
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Supplementary Information IV 1107 

 1108 

Supplementary Information IV – Changes in burst properties associated with changes in connection strength. (A-D) 1109 
Changes relating to modulation of the hyperdirect pathway. (E-H) Changes relating the modulation of the pallido-subthalamic 1110 
pathway. 1111 

1112 
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Supplementary Information V 1113 

 1114 

Supplementary Information V – Resulting power spectra from phase locked stimulation of M2 when sensing activity in 1115 
the STN. (A) Power in the cortex, (B) Power in the STN, and (C) STN/M2 coherence. The angle of stimulation is given by 1116 
the legend (inset).   1117 
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Supplementary Information VI 1118 

 1119 

Supplementary Information VI – Schematic of the analysis of burst properties. Burst rate (A) is calculated as the total 1120 
number of bursts within the simulated time, (B) the interburst interval is the time between burst offset and onset, (C) the burst 1121 
amplitude is the maximum of the within-burst envelope, and (D) the burst duration is the time from onset to offset. 1122 

  1123 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.03.20.000711doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000711
http://creativecommons.org/licenses/by-nc/4.0/


 56 

Supplementary Table I 1124 

 1125 

Table of Model Parameters 
Cortex Prior Prior variance Posterior -log scaling Posterior 
Time constant (ms)     
middle (mp) 3  1/4  -0.48 2 
superficial (sp) 2  1/4  -0.27 2 
Interneurons (ii) 12  1/4  0.35 17 
deep (dp) 18  1/4  -0.19 15 
Synaptic gain (Hz)     
mp → mp (self inh.) -400  1/4  0.15 -464.90 
mp → sp 800  1/4  0.41 1207.82 
ii → mp -400  1/4  0.07 -431.02 
ii → ii (self inh.) -400  1/4  0.72 -822.30 
mp → ii  400  1/4  -0.95 155.41 
dp → ii 400  1/4  0.35 565.31 
sp → sp (self inh.) -400  1/4  0.01 -402.60 
sp → mp 400  1/4  0.40 593.93 
ii → dp -400  1/4  -0.50 -241.61 
dp → dp (self inh.) -400  1/4  0.51 -667.42 
sp → dp 800  1/4  -0.92 318.44 
ii → sp -400  1/4  0.46 -632.43 
sp → ii -400  1/4  0.33 -554.68 
dp → sp 400  1/4  -0.07 371.34 
Input gain (scalar)     
 1  1/16 -0.066 0.9364 
Striatum Prior Prior variance Posterior -log scaling Posterior 
Time constant (ms)     
 8  1/8  -0.05 8 
Synaptic gain (Hz)     
self inh. 400  1/8  2.12 849 
Input gain (scalar)     
 1  1/16 0.25 1.288 
GPe Prior Prior variance Posterior -log scaling Posterior 
Time constant (ms)     
 8  1/8  0.49 13 
Input gain (scalar)     
 1  1/16 -0.207 0.813 
STN Prior Prior variance Posterior -log scaling Posterior 
Time constant (ms)     
 4  1/8  -0.68 2 
Input gain (scalar)     
 1  1/16 -0.188 0.829 
GPI Prior Prior variance Posterior -log scaling Posterior 
Time constant (ms)     
 8  1/8  -0.01 8 
Input gain (scalar)     
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 1  1/16 -0.14 0.874 
Thalamus Prior Prior variance Posterior -log scaling Posterior 
Time constant (ms)     
 8  1/8  1 8 
Synaptic gain (Hz)     
self inh. -400  1/8  1.82 -729 
Input gain (scalar)     
 1  1/16 0.37 1.45 
Extrinsic 
Parameters Prior Prior variance Posterior -log scaling Posterior 
Connection weights 
(Hz)     
M2 → STR 1600  1/4  -0.22 1284 
M2 → STN 2000  1/4  -0.64 1055 
M2 → Thal 1000  1/4  0.164 1178 
STR → GPe -2000  1/4  -0.17 -1687 
STR → GPi -1600  1/4  0.87 -3819 
GPe → STN -2000  1/4  0.9 -4919 
STN → GPe 2000  1/4  -0.7 993 
STN → GPi 1600  1/4  -0.22 1284 
GPi → Thal -1000  1/4  0.54 -1716 
Thal → M2 2000  1/4  0.14 2301 
Delays (ms)     
M2 → STR 3  1/16 0.68 6 
M2 → STN 3  1/16 -0.03 3 
M2 → Thal. 4  1/16 0.61 7.5 
STR → GPe 7  1/16 -0.44 5 
STR → GPi 12  1/16 -0.55 7 
GPe → STN 1  1/16 -0.58 1 
STN → GPe 3  1/16 -0.56 2 
STN → GPi 3  1/16 0.39 4 
GPi → Thal 3  1/16 0.56 5.5 
Thal → M2 8  1/16 0.65 15.5 
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Supplementary Table II 1127 

We thank all authors and contributors of the toolboxes below: 1128 

Toolbox Name Author Year Source/Reference 

allcomb ‘Jos’ 2018 https://uk.mathworks.com/matlabcentral/fileexchange/10064-

allcomb-varargin  

boundedline-

pkg 

Kelly Kearney 2015 https://github.com/kakearney/boundedline-pkg  

brewermap Stephen 

Cobeldick 

2014 https://github.com/DrosteEffect/BrewerMap  

Fieldtrip Donders 

Institute, 

Radbound 

University 

2020 www.fieldtriptoolbox.org/ 

linspecer Jonathan C. 

Lansey 

2015 https://github.com/davidkun/linspecer  

neurospec 2.2 David 

Halliday 

2018 http://www.neurospec.org/  

ParforProgMon Dylan Muir, 

Willem-Jan de 

Goeij, The 

MathWorks, 

Inc. 

2016 https://github.com/DylanMuir/ParforProgMon  

splitvec Bruno Luong 2009 https://uk.mathworks.com/matlabcentral/fileexchange/24255-

splitvec  

SPM 12 Wellcome 

Centre for 

Human 

Neuroimaging, 

University 

College 

London 

2020 https://www.fil.ion.ucl.ac.uk/spm/ 
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