

Low coverage genomic data resolve the population divergence and gene flow history of an Australian rain forest fig wasp

4 Lisa Cooper^{1#}, Lynsey Bunnefeld^{2#}, Jack Hearn^{1,3}, James M Cook⁴, Konrad Lohse^{1*},
8 Graham N. Stone^{1*}.

6 1. Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK.

10 2. Biological & Environmental Sciences, University of Stirling FK9 4LA Stirling, UK.

8 3. Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.

12 4. Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney

14 University, Richmond, New South Wales, Australia

18 Corresponding author: Prof. Graham N. Stone, Institute of Evolutionary Biology, Charlotte

22 Auerbach Road, University of Edinburgh, EH9 3FL Edinburgh, UK.

24 email: graham.stone@ed.ac.uk

14 # these authors are joint first authors of the paper

* these authors contributed equally to this work.

16 Key words: Demography, phylogeography, Australia, *Ficus*, *Pleistodontes*, Agaonidae.

18 Running title: Population divergence and gene flow in a fig wasp

18 Orcid identifiers:

20 L. Bunnefeld: [0000-0002-9226-7153](https://orcid.org/0000-0002-9226-7153)

22 J.M. Cook: 0000-0001-8447-6126

24 J. Hearn: 0000-0003-3358-4949

22 K. Lohse: 0000-0001-9918-058X

24 G.N. Stone: 0000-0002-2737-696X

26

Abstract

28 Population divergence and gene flow are key processes in evolution and ecology. Model-
based analysis of genome-wide datasets allows discrimination between alternative
30 scenarios for these processes even in non-model taxa. We used two complementary
approaches (one based on the blockwise site frequency spectrum (bSFS), the second on
32 the Pairwise Sequentially Markovian Coalescent (PSMC)) to infer the divergence history of
a fig wasp, *Pleistodontes nigriventris*. *Pleistodontes nigriventris* and its fig tree mutualist
34 *Ficus watkinsiana* are restricted to rain forest patches along the eastern coast of Australia,
and are separated into northern and southern populations by two dry forest corridors (the
36 Burdekin and St. Lawrence Gaps). We generated whole genome sequence data for two
haploid males per population and used the bSFS approach to infer the timing of
38 divergence between northern and southern populations of *P. nigriventris*, and to
discriminate between alternative isolation with migration (IM) and instantaneous admixture
40 (ADM) models of post divergence gene flow. *Pleistodontes nigriventris* has low genetic
diversity ($\pi = 0.0008$), to our knowledge one of the lowest estimates reported for a sexually
42 reproducing arthropod. We find strongest support for an ADM model in which the two
populations diverged ca. 196kya in the late Pleistocene, with almost 25% of northern
44 lineages introduced from the south during an admixture event ca. 57kya. This divergence
history is highly concordant with individual population demographics inferred from each
46 pair of haploid males using PSMC. Our analysis illustrates the inferences possible with
genome-level data for small population samples of tiny, non-model organisms and adds to
48 a growing body of knowledge on the population structure of Australian rain forest taxa.

50 Introduction

Division of an ancestral population into daughter populations is a universal and 52 repeating process in biology. The tempo and mode of population divergence are central to evolutionary processes ranging from local adaptation and range expansion to the origin of 54 species (Hey & Nielsen 2004; Martin et al., 2013; Sousa & Hey, 2013). From a demographic perspective, population divergence can be described in terms of the sizes of 56 ancestral and descendant populations, the time at which the ancestral population split, and parameters capturing the timing, extent and direction of gene flow between descendant 58 populations. Gene flow can be modelled in at least two general ways (Fig. 1): an isolation with migration (IM) model identifies gene flow as the result of ongoing dispersal (Nielsen & 60 Wakeley 2001, Hey, & Nielsen 2004, Lohse et al 2011), while an instantaneous admixture (ADM) model associates gene flow with one or more discrete dispersal events in the past 62 (Durand et al., 2011; Sousa & Hey, 2013; Lohse & Frantz, 2014). Thus, which of these models applies may tell us whether putative dispersal barriers are past or ongoing, and 64 help to identify evolutionarily independent conservation units within species. The models also have very different implications for local adaptation: while local adaptation may 66 proceed unimpeded during periods of complete isolation in the ADM model, continuous gene flow under the IM model imposes a constant genetic load of locally deleterious 68 variants (Bisschop et al 2020).

Discriminating among alternative models of gene flow and estimating the relevant 70 demographic parameters are data-hungry problems and a growing number of approaches 72 exploit the signal contained in whole genome data (WGD) for a small sample of individuals (Li & Durbin, 2011; Lohse & Frantz 2014; Bunnefeld et al., 2018). Whilst these approaches 74 are currently applicable to a limited diversity and complexity of demographic models (discussed further below), their requirement for only a small number of relatively low quality genomes makes them accessible and affordable for non-model taxa, including rare 3

76 taxa for which larger samples of individuals and reference genomes often do not exist
(Allendorf et al., 2010; Fuentes-Pardo & Ruzzante 2017).

78 Here we use two such approaches to infer the population divergence history of
Pleistodontes nigriventris, a wasp that is the only pollinator of an endemic fig species
80 (*Ficus watkinsiana*) found in two widely separated blocks of rainforest along the east coast
of Australia (see below) (Dixon 2003; Lopez-Vaamonde et al., 2002). Our overall objective
82 is to infer the extent and direction of fig wasp gene flow between these two populations,
using WGD for just two individuals per population. Our approaches take advantage of the
84 haplodiploidy of the Hymenoptera, by sampling males whose haploid genomes facilitate
data analysis and interpretation.

86 We first compare support for alternative IM and ADM models using a parametric
maximum-composite likelihood method (Lohse et al., 2011; 2016), and then compare
88 these results with those obtained using the Pairwise Sequentially Markovian Coalescent
(PSMC) (Li & Durbin, 2011), a non-parametric method. Both are well-suited to the pairwise
90 population divergence hypotheses we explore in *Pleistodontes nigriventris*. We chose
these methods because they infer population history based on different aspects of
92 genome-wide sequence variation, and have contrasting limitations. The composite
likelihood framework developed by Lohse et al. (2016) is based on a blockwise summary
94 of sequence variation, while PSMC exploits the information contained in the density of
pairwise differences along a minimal sample of two haploid genomes. The blockwise
96 method – by design – lacks power to detect very gradual demographic changes (for
example, in population size), while PSMC is known to smooth out very sudden changes (Li
98 & Durbin, 2011). The two methods therefore complement each other and together provide
a comprehensive picture of population history.

100 Fig trees are keystone biological resources in tropical and subtropical habitats
worldwide (Cook & Rasplus 2003; Harrison 2005), and fig fruits and their insect inhabitants

102 are important model systems in the study of community assembly and coevolution (Cook &
104 Rasplus 2003; Segar et al., 2014). Our target species *Plestodontes nigriventris* is the
106 specialist pollinating wasp of *Ficus watkinsiana* (Lopez-Vaamonde et al., 2002; Male &
108 Roberts 2005, Rønsted et al., 2008), a monoecious rainforest fig restricted to northern and
southern populations over 1000km apart along the eastern coast of Australia (Fig. 2)
(Dixon 2003). While the existence of intervening *F. watkinsiana* trees and associated *P.*
108 *nigriventris* cannot be categorically excluded, no populations are known; the demographic
history of *P. nigriventris* can thus be modelled in terms of pairwise population divergence.

110 The distribution of Australian rainforests has been dictated by two major processes.
First, falling temperatures during the Miocene restricted them to areas of higher rainfall
112 along the eastern and southern coasts (Markgraf et al., 1995), separated from drier inland
habitats by the Great Dividing Range (Chapple et al., 2011) (Fig. 2). Second, during the
114 Pleistocene climate oscillations, east coast Australian rain forests repeatedly expanded
from, and contracted into, a latitudinal series of refugia separated by intervening areas of
116 dry forest and shrublands (Bryant & Krosch, 2016; Chapple et al., 2011). The rainforest
areas occupied by *F. watkinsiana* are currently separated by two major dryland corridors
118 (Fig. 2): the Burdekin Gap, located between Mackay and Townsville, is the largest dry land
corridor on the east coast, and the St. Lawrence Gap is a smaller lowland dry corridor
120 located 350km further south (Weber et al., 2014; Bryant & Krosch, 2016). While the
formation and stability of these dryland corridors through time is incompletely
122 characterised (Bryant & Krosch, 2016), both have been implicated in restricting dispersal
and driving population divergence in rainforest plants (Burke et al., 2013), including *F.*
124 *watkinsiana* (Dixon, 2003H; Haine & Cook, 2005), and animals (e.g. Schauble & Moritz,
2001; Pope et al., 2001; Nicholls & Austin, 2005; Brown et al., 2006; Dolman & Moritz,
2006; Baker et al., 2008, MacQueen et al., 2012; Rix & Harvey, 2012; Bryant & Fuller,
2014; Bryant & Krosch, 2016).

128 The impact of biogeographic barriers on the genetic makeup of any species
depends on how long ago population divergence occurred, the sizes of the populations,
130 and the direction, mode and frequency of gene flow between them (Aeschbacher et al.,
2017; Ringbauer et al., 2018). Previous studies of fig/fig wasp systems provide evidence
132 for two contrasting paradigms with which patterns in *Pleistodontes nigriventris* can be
compared. Though female fig wasps are poor active flyers (and the males are wingless
134 and do not leave their natal fig) (Ware & Compton 1994a,b), they can be dispersed over
large distances by wind currents (Ahmed et al., 2009; Liu et al., 2015), particularly when
136 emerging from fig fruits high in the forest canopy (Harrison & Rasplus, 2006; Kobmoo et
al., 2010; Yang et al., 2015; Liu et al., 2015; Sutton et al., 2016). Long range dispersal by
138 fig wasps is supported by lack of genetic structure over distances ranging from several
hundred to >1500 km in pollinating fig wasps (Kobmoo et al., 2010; Liu et al., 2015; Tian et
140 al. 2015; Bain et al., 2016) and in host figs - particularly monoecious species that are often
large trees (Nazareno et al., 2013; Bain et al., 2016). *Ficus watkinsiana* can grow to 50m,
142 and if *Pleistodontes nigriventris* benefits from wind-assisted dispersal, we might expect to
find significant gene flow between *F. watkinsiana* populations. In contrast to this pattern,
144 local adaptation of diverging populations to local host figs and/or abiotic conditions could
drive genetic divergence between fig wasp populations over similar or even relatively small
146 geographic scales. Genetic divergence has been documented over tens of km between
mainland and island populations of a Chinese fig wasp (Tian et al., 2015), and between
148 the same northern and southern rainforest habitats studied here for two *Pleistodontes*
pollinators of another monoecious fig, *Ficus rubiginosa* (Darwell et al., 2014).

150 Here we answer the following questions for *Pleistodontes nigriventris*:

- 152 1) Is there evidence of genetic divergence between populations either side of the Burdekin
and St. Lawrence Gaps?
- 152 2) Is there a signal of post-divergence gene flow, and if so, in which direction?

154 3) Can we discriminate between the IM and ADM models of gene flow?

155 4) Do the blockwise and PSMC methods infer concordant population histories?

156 5) Is the inferred divergence time for *P. nigriventris* concordant with estimates for other co-distributed taxa?

158

Materials and Methods

160 Sample Collection

Samples were collected between January 2001 and August 2009 from four sites in 162 Queensland, two in each of the northern and southern ranges of *F. watkinsiana*. The two Northern individuals were sampled from Kairi (N1: 17.21° S, 145.55° E) and Kamerunga 164 (N2: 16.87° S, 145.68° E) and the two South individuals were sampled from Settlers Rise (S1: 27.68° S, 153.26° E) and Main Range (S2: 28.07° S, 152.41° E) (Fig. 2). Near-to-ripe 166 *F. watkinsiana* fruits were collected and placed individually into specimen pots. Our sampling targeted male fig wasps, whose haploid genome facilitates analysis (Bunnefeld 168 et al., 2018; Hearn et al., 2014). Once the wasps started to emerge (12-24 hours after collection depending on fig ripeness) figs were dissected and live males were placed 170 directly into 70% ethanol to preserve for DNA extraction. Due to potentially high levels of sib-mating in fig wasps (Greeff et al., 2009; Sutton et al., 2016) all individuals were 172 sampled from different figs.

174 DNA extraction and sequenced-based confirmation of identity.

DNA was extracted from whole male wasps 1.5-1.6mm long (Lopez-Vaamonde et 176 al., 2002) using the Qiagen DNeasy Blood and Tissue Extraction kit. The Purification of Total DNA from Animal Tissues (Spin-Column) Protocol was followed with the following 178 modifications to maximise DNA yield from these extremely small wasps. Step 1: Individual wasps were placed in 180 µl of buffer ATL and crushed using a mini-pestle. Step 2: 7

180 Riboshredder RNase (Epicentre) was used in place of RNase A. Steps 7-8: Buffer EB was
182 used in place of Buffer AE for the elutions as Buffer AE contains EDTA, which will interfere
184 with the downstream library preparation. Extractions were eluted in smaller volumes (25 μ l)
1mm).
186

Identification of male fig wasps was confirmed by comparison of sample sequences to voucher sequences for a 433 base pair (bp) fragment of the mitochondrial cytochrome b (cytb) gene (Lopez-Vaamonde et al., 2001). Sequences were amplified using the primers CB1/CB2 (Jermiin & Crozier, 1994). 0.3 μ l of DNA extraction was used per PCR reaction. The remainder of the PCR mix consisted of 2 μ l BSA (10 mg/ml), 2 μ l 10X PCR buffer, 0.8 μ l MgCl₂ (50mM), 0.3 μ l of each primer (20 μ M), 0.16 μ l dNTPs (each 25 mM) and 0.1 μ l Taq (Bioline 5U/ μ l), made up to 20 μ l with autoclaved MilliQ water. Amplification was carried out using a Bio-Rad S1000 thermal cycler for 2 minutes at 94°C, 35 cycles of 30 seconds at 94°C, 30 seconds at 48°C, 40 seconds at 72°C, and a final elongation step of 5 minutes at 72°C. PCR products were visualised on a 2% agarose gel and cleaned using a shrimp alkaline phosphatase and exonuclease 1 protocol. 2.5 μ l of SAPExo1 mix (1.425 μ l SAP dilution buffer, 1 μ l SAP (1U), 0.075 μ l Exo1 (1.5U)) was added to each sample before being incubated for 40 minutes at 37°C followed by 15 minutes at 94°C. Only the forward strand was sequenced for each individual, using BigDye chemistry on an ABI 3730 machine at the Edinburgh Genomics facility. Sequences for the four individuals have been deposited on GenBank (individual accession numbers: N1 MF597824; N2 MF597800; S1 MF597825; S2 MF597826).

204 **High-throughput library preparation and sequencing**

We generated an Illumina Nextera genomic library for each individual male fig wasp
206 following the manufacturers' instructions. To make best use of paired end sequencing, the
library fragment size distribution should be unimodal with a majority of fragments longer
208 than the 150bp read length. We checked the fragment size distribution by running 1 μ l of
each library on a high sensitivity DNA Bioanalyzer chip (Agilent 2100). Libraries for each
210 individual were end-labelled using a unique pair of indices, pooled and sequenced in one
lane of 150bp paired-end reads on the Illumina HiSeq platform at the Edinburgh Genomics
212 facility. Pooling volumes were calculated to achieve ~6-fold coverage per individual
assuming 50 gigabases of data per lane and a genome size of 300 Mb based on an
214 estimate for another Agaonid fig wasp, *Ceratosolen solmsi* (278 Mb; Xiao et al., 2013). Our
strategy in balancing sequencing depth across individuals was to maximise data
216 availability for our analyses while minimising cost, and to avoid biases in variant calling
that could result from sequencing one or more individuals to substantially greater depth.
218 Final coverage for each individual matched expectations and is shown in Table S2. The
short read data have been deposited at the ENA short read archive (Cooper et al., 2020a).
220

Bioinformatic pipeline

222 Reads for all four individuals were screened to remove low quality and contaminant
reads and combined. After exclusion of contaminants, reads for all four individuals were
224 combined to generate a *de novo* meta-assembly for *P. nigriventris* using *SPAdes* (version
3.6.2) (Bankevich et al., 2012). Reads from each individual were mapped back to this
226 reference using BWA; variants were called using *GATK* (Van der Auwera et al., 2013;
version 3.5.0) haplotype caller. After masking repeat sequences, sites with a minimum
228 coverage of two and a mapping quality (>20) and base quality (>10) were identified using
the *GATK* tool *CallableLoci*. The bioinformatic pipeline is summarised diagrammatically in
230 Supplementary information, Figure S1.

(i) *Quality control and processing of sequencing reads.* To exclude low quality sequence, 232 reads were checked using *Fast-QC* (www.bioinformatics.babraham.ac.uk/projects/fastqc) and trimmed at a base quality score of 20 (sliding window 15:20 and min length 50). 234 Adapters were trimmed using *Trimmomatic* version 0.32 (Bolgar et al., 2014). Any adaptors found to be present after a second pass through *Fast-QC* were removed using 236 *Cutadapt* (Martin, 2011). Paired-end reads were merged (assembled into pairs) using *PEAR* version 0.9.0 (Zhang et al., 2014) for *de novo* assembly only.

238 (ii) *Filtering of contaminant sequences.* Genomic data obtained from whole organism libraries commonly contain reads from associated non-target organisms, including 240 symbionts, parasites and commensals. *Wolbachia* bacteria are common endosymbionts in fig wasps (Haine and Cook, 2005) and diverse fungal taxa have been identified from a 242 genome assembly of the fig wasp *Ceratosolen solmsi* (Niu et al., 2015). To remove contaminant sequences from our data, we first aligned reads across all 4 individuals to 244 create a single *Velvet* reference assembly (version 1.2.10) with a k-mer length of 31 (Zerbino and Birney, 2008). The filtered reads for each individual were then mapped to this 246 *Velvet* reference assembly using *Bowtie2* version 2.2.3 (Langmead and Salzberg, 2012). Contaminant sequences were identified using blobtools (Kumar et al., 2013), which uses 248 BLAST searches to create Taxon-Annotated-GC-Coverage plots (Blobplots) that allocate aligned reads to taxa at a user-specified level. We used four BLAST approaches to assess 250 taxonomic matches: (i) The fast protein aligner *Diamond* (version 0.7.9) (Buchfink et al., 2015) was used alongside three BLAST (version 2.2.29) searches: (ii) against the NCBI 252 nucleotide database (<https://www.ncbi.nlm.nih.gov/nucleotide/>), (iii) against the genome of the Agaonid pollinating fig wasp, *Ceratosolen solmsi* (Xiao et al., 2013), and (iv) against 254 the genome of the pteromalid parasitoid wasp *Nasonia vitripennis* (Werren et al., 2010). Non-Arthropod reads (primarily allocated to Proteobacteria and Ascomycota) were 256 excluded from further analysis.

258 (iii) *Generation of a P. nigriventris reference assembly.* After exclusion of contaminants,
258 reads for all four individuals were combined and re-assembled using *SPAdes* (version
258 3.6.2) (Bankevich et al., 2012). The quality of this reference assembly was assessed using
260 *BUSCO (Benchmarking Universal Single-Copy Orthologs)* version 1.1b1 (Simão et al.,
260 2015) using the Arthropoda *BUSCO* set (<http://busco.ezlab.org>).
262 (iv) *Variant calling.* Filtered, merged reads from each individual were mapped back to the
262 reference meta-assembly using the *Burrows-Wheeler Aligner (BWA)* version 0.7.10 (Li &
264 Durbin, 2009). FASTA file indexes and sequence dictionaries were created using *samtools*
264 (Li et al., 2009) *faidx* (version 1.2) and the *picard*
266 (<https://broadinstitute.github.io/picard/index.html>) tool *CreateSequenceDictionary* (version
266 1.141) respectively. The BAM files were sorted and merged to create a single species
268 BAM file using the *picard* tool *MergeSamFiles*. Duplicate reads were removed from these
268 merged files using the *picard* tool *MarkDuplicates*. Variants were called using
270 *HaplotypeCaller* in *GATK*. As male wasps are haploid, ploidy was set to 1 and the ‘-emit
270 variants only’ option was used. Only SNPs were considered.
272 (v) *Masking repetitive regions.* Regions of repetitive DNA can cause assembly and
272 mapping errors in short read data (Treangen & Salzberg, 2011). We created a library of
274 repetitive regions in the reference meta-assembly using *RepeatScout* (version 1.0.5)
274 (Price et al., 2005), and masked these using *RepeatMasker* (version open-4.0.6) (Smit,
276 AFA, Hubley, R & Green, P. *RepeatMasker* Open-4.0. 2013-2015
276 <http://www.repeatmasker.org>). *RepeatMasker* outputs an annotation file which was used to
278 create a BED file of repeat positions for downstream processing.
278 (vi) *VCF filtering.* High quality sites were identified based on coverage and mapping quality
280 using the *GATK* tool *CallableLoci* and default parameter values except for the following:
280 minimum base quality of 10, minimum mapping quality of 20, minimum read depth of two
282 reads per site. The base quality score recalibrated (BQSR) BAM file was subsampled to

extract BAM files for each individual. We used *CallableLoci* to generate BED files of
284 callable regions in each individual. Repeat regions were excluded and positions meeting
filters across all four individuals extracted using *bedtools multiIntersectBed*. This BED file
286 was used to filter the VCF files (generated from the GATK pipeline) for callable variable
sites using *bcftools* (Li, 2011) version 1.2.

288

Fitting of IM and ADM models

290 (i) *Specification of alternative IM and ADM divergence models*: Both the IM and the ADM
model assume an ancestral population with a constant effective population size (N_a) that
292 splits into two populations (North and South). One of the descendant populations
maintains the same ancestral population size N_a , whilst the other is free to change to $(1/B)$
294 $\times N_a$ (i.e. B scales the rate of coalescence in the other population). In both models (Fig. 1),
population divergence occurs at time T in the past. In the IM model divergence is followed
296 by continuous unidirectional migration at rate $M = 4Nm$ migrants per generation (m is the
per lineage probability of migrating). In the ADM model (Fig. 1), gene flow occurs through
298 an instantaneous and unidirectional admixture event at time T_{adm} which transfers a fraction
 f of lineages from the donor population into the recipient (Fig. 1). All time parameters are
300 scaled in $2N_a$ generations. We assessed support for all four possible combinations of
population size and gene flow under both the IM and ADM models (Fig. S2), as well as for
302 simpler nested models which either involving gene flow but a single population size
parameter ($B=1$) or two population sizes but no post-divergence gene flow.

304 (i) *Generation of blockwise site frequency spectra (bSFS)*: We used the composite
likelihood calculation described in Lohse et al. (2016) to fit the IM and ADM models (see
306 also Jordan et al., 2017 and Nürnberg et al., 2017). The method uses information in
patterns of linked sequence variation contained in short blocks and has previously been
308 used for demographic inference under a variety of demographic scenarios including the IM

model (Lohse et al., 2012) and models of discrete admixture (Bunnefeld et al., 2018). For
310 a sample of four haploid individuals (two from each of the Northern and Southern
populations), we can distinguish four mutation types: variants in the two Northern samples
312 (Nvar), variants in the two Southern samples (Svar), fixed differences between North and
South (Fixed differences), or variants shared between North and South (Sharedvar)
314 (Lohse et al., 2016). The site frequency spectrum of a block (bSFS) consists of counts of
these four site types, i.e. vector {Nvar, Svar, Sharedvar, Fixed}. We used the automated
316 recursion implemented by Lohse et al. (2016) to obtain the generating function of
genealogies under the ADM model and computed the composite likelihood of both the
318 ADM and IM models in *Mathematica* as described in Lohse et al. (2016) and Nürnberg et
al. (2017).

320 The likelihood calculation assumes an infinite sites mutation model and no within-
block recombination. Given these assumptions, blocks that contain both fixed difference
322 and shared variants (violating the 4-gamete test) are not possible and were excluded from
the likelihood calculation. We chose a block length that strikes a balance between potential
324 bias (arising from recombination within blocks) and power (which suffers when too few
blocks contain multiple variant sites). We used a custom python script to extract aligned
326 sequence blocks of a fixed length of 387 base pairs, which corresponds to an average of
1.5 variant sites per block (see Table S1). The blockwise data were analysed in
328 *Mathematica* (Wolfram Research, Inc., Mathematica, Version 10.4, Champaign, IL (2016))
(Cooper et al., 2020b). The computational cost of calculating composite likelihoods
330 increases with the number of unique bSFS configurations considered in the data. We
limited the number of bSFS configurations by lumping mutation counts above a threshold
332 $k_{\max}=2$ for the Nvar, Svar and SharedVar and $k_{\max}=3$ for fixed differences. Since 87% of
the blockwise data are within these k_{\max} bounds and so included in the composite
334 likelihood calculation exactly, the expected loss of power is minimal.

(iii) *Estimation of demographic parameters*: We estimated all model parameters for both the IM and ADM model. Estimation of N_a (as $N_a = \text{theta} / (4 \mu)$) and scaling of T parameters into years requires an estimate of the mutation rate per generation (μ) and the number of fig wasp generations (g) per year. In the absence of any fig wasp estimate of μ , we used the per generation mutation rate of 2.8×10^{-9} for *Drosophila melanogaster* (Keightley et al., 2014). Note that the relative timing of events in different models is not affected by this calibration. We assumed four fig wasp generations per year ($g=4$) and converted time estimates into years by multiplying by $2N_a$ and dividing by g . The generation time for *P. nigriventris* is not known with certainty, and we assume 4 (range of 2-6) generations per year based on the following rationale. Duration of any single fig wasp generation can be estimated by measuring the time from pollination to ripening of individual figs. This is because wasp eggs are laid at the time of pollination, the emerging daughters disperse at the same time as the fig ripens, and these new females lay eggs rapidly as they live only a day or two as adults (Sutton et al. 2018). Estimates of the length of fig tree reproductive events are available for several species (e.g. Bronstein 1990), but not available for *P. nigriventris*. Jia et al. (2008) estimated a generation time of about 40 days for another Australian *Pleistodontes* fig wasp (*P. imperialis*) pollinating *Ficus rubiginosa*. This might suggest 8-9 generations per year for *P. imperialis*, but while these monoecious figs (including *F. watkinsiana*) fruit asynchronously year-round (Harrison, 2005), they are in highly seasonal environments and generation time can be much longer in cooler or drier periods. Fruit development time is also longer in species producing larger figs. Fruit development takes 3-8 months in winter figs of *F. macrophylla* (JMC, unpublished data), which has smaller figs than *F. watkinsiana* (Al-beidh, 2010). Hence, a range of 2-6 generations per year seems likely for *P. nigriventris*. We discuss the consequences of uncertainty in our generation time estimates.

360 (iv) *Correcting for the effects of linkage between blocks.* The composite likelihood
calculations do not account for linkage between blocks. Given the difficulty of assessing
362 the level of linkage between blocks in highly fragmented assemblies, we incorporated
linkage effects using a parametric bootstrap approach (Lohse et al., 2016). We used
364 *msprime* (version 0.3.1 (IM) and 0.4.0 (ADM)) (Kelleher et al., 2016) to simulate 100
datasets assuming a recombination rate of 2.719×10^{-10} per base (estimated from the
366 data, see below). Each simulated dataset had the same total length as the real data. To
keep simulations computationally tractable, we partitioned each simulated genome into 20
368 pseudo-chromosomes of equal length. Because our simulations allow for recombination
anywhere along a linear genome, this parametric bootstrap scheme allows us to quantify
370 both the uncertainty in estimates due to linkage between blocks and the potential bias due
to recombination within them. Fitting the inferred model to these simulated datasets, we
372 obtained 95% confidence intervals for parameter estimates as ± 1.96 standard deviations
(of the analogous estimates on the simulated data).

374 (v) *Model selection.* We used an analogous parametric bootstrap scheme to determine
whether the IM or ADM models provided a significantly better fit to our data. We fitted both
376 models to each of 100 bootstrap datasets simulated under the best-fit IM model
parameters. The distribution of differences in log composite likelihood (calculated as $\Delta \ln CL$
378 = $2 * (\text{ADM} \ln CL - \text{IM} \ln CL)$) between the IM model and the ADM model represents an
expectation of selecting the ADM when the IM is true (Type 1 error). We determined
380 critical values from this distribution at a significance level of 0.05.

(vi) *Recombination rate estimation.* There are no estimates of either the per generation
382 recombination rate (r) or the population recombination rate ($\rho = 4N_e r$) for any fig wasp
species. We therefore estimated a recombination rate for *P. nigriventris* using a two-locus
384 generating function that co-estimates ρ (scaled by $2N_e$) and θ , for a sample of two haploid

386 genomes drawn from a single panmictic population (here, the two Northern individuals)
(Lohse et al., 2011).

388 PSMC analysis

390 We compared the results of our blockwise analysis with inference using the
392 Pairwise Sequentially Markovian Coalescent (PSMC) (Li & Durbin, 2011). PSMC infers the
394 effective population size history from a pair of genomes, which may either be sampled
396 from a single diploid individual, or a pair of haploid individuals. PSMC provides a
continuous estimate of demographic parameters through time. While PSMC does not allow
direct inference of population divergence, comparison of the PSMC trajectories of two
diverged populations (here, North and South) reveals when these shared the same
population size and so were likely part of the same ancestral population.

398 PSMC uses the density of pairwise differences along the genome to infer a
400 trajectory of population size through time. Input files were generated from the per-
individual BAM files using *samtools mpileup* (version 0.1.19). The pileup file was converted
402 to a VCF file in *bcftools* (version 0.1.19) and a consensus sequence (fastq file) per
individual was generated using the *bcftools* utility *vcf2fq*. Consensus files contained 31,371
404 and 33,523 contigs for the Northern and Southern pairs respectively. The two consensus
files per population were merged using the *seqtk* function *mergefa* (version 1.0) and
converted to the PSMC input format using the PSMC function *fq2psmcfa* (version 0.6.5).
406 Only contigs that contain >10kb of unfiltered bases, $\geq 80\%$ of which pass a quality
408 threshold score, here set to ≥ 20 were included (6,900 and 7,305 contigs for the North and
South pairs respectively). We analysed each pair of individuals with PSMC (version 0.6.5)
using the following parameter values: $N = 30$, $t = 20$, $r = 10.3$ and $p = "4+60*1+4"$. Each
dataset was sub-sampled 100 times to generate bootstrap replicates using the PSMC

410 utility *splitfa* (version 0.6.5). Results were calibrated using the same mutation rate and
411 generation times given above.

412

Results

414 **De novo genome assembly for *Pleistodontes nigriventris***

415 Nextera libraries were generated successfully for all four male *Pleistodontes*
416 *nigriventris* (Figure S3). After initial filtering and trimming the joint assembly of reads for all
417 four individuals in *Velvet* contained 173,180 contigs ≥ 200 bp (Table S1). We identified
418 contaminant reads from a range of non-Arthropod taxa (Figure S4). Individual assemblies
419 contained between 5k and 149k reads identified as bacterial. For three individuals over
420 97% of these were attributed to *Wolbachia* (and 24% in the final individual) (Table S2).

421 The relative fraction of *Wolbachia* reads was significantly higher in Northern compared to
422 Southern individuals (Chi-squared = 95159, df = 1, p < 2.2e-16), consistent with previous
423 findings of between-population differences in *Wolbachia* prevalence in *P. nigriventris*
424 (Haine & Cook, 2005). Excluding contaminant reads resulted in between 11 and 22.5
425 million reads per individual (Table S1). Re-assembly using *SPAdes* (Cooper et al., 2020a)
426 improved the contiguity (139,731 contigs ≥ 200 bp, N50 of 9,643 bp) and the completeness
427 of the final assembly: *CEGMA* scores: 93.15% complete and 99.19% partially complete,
428 *BUSCO* scores for the reference Arthropod gene set: 74% complete, 4.5% duplicated,
429 16% fragmented and 8.4% missing. We note that the *P. nigriventris* assembly, although
430 fragmented, has higher completeness (in terms of complete Core Eukaryote Genes) than
431 the genome of *Ceratosolen solmsi* (*CEGMA*: 88% complete), the only published fig wasp
432 genome (Xiao et al., 2013). Repetitive elements made up 21.4% of the reference
433 assembly and were excluded from subsequent analyses.

434 Processing of the filtered and aligned reads (mean coverage per individual of 3.7x)
435 identified 1,837,396 SNPs. The blockwise site frequency spectrum contained the four site
436 17

436 types in the following proportions: Nvar 0.164, Svar 0.153, Fixed 0.673, and Sharedvar
0.0102. The average pairwise diversity per site (after filtering) for the North and South
438 populations were very similar ($\pi = 0.000884$ and 0.000822 respectively). This is one of the
lowest estimates of genetic diversity reported for any sexually reproducing arthropod
440 (Leffler et al., 2012; Romiguier et al., 2014). Pairwise F_{ST} was 0.74, indicating high
differentiation between the Northern and Southern populations.

442

Inferring divergence with continuous migration and admixture

444 Our block extraction protocol (Cooper et al., 2020b) resulted in 775,977 blocks of
387 base pairs. Of these, 0.8% (5,872) contained both shared variants and fixed
446 difference, violating the 4-gamete test, and were excluded from blockwise analyses.

448 *Isolation with continuous migration (IM).* Models incorporating post-divergence migration
otherwise equivalent models with no migration and/or a single N_e parameter (Table 1a).

450 The best-supported direction of migration is from South to North, irrespective of whether
we assumed a single N_e (compare model IM3 to IM2) or two N_e parameters (compare
452 IM7+IM9 to models IM6+IM8). The scenario in which the South population retained the
ancestral N_e (IM9; Figure 3a) had highest support. Under this model, the split between the
454 two populations occurred 177 (95% C.I. 172–182) thousand years ago (kya) and the N_e for
the ancestral/South population was estimated to be slightly higher (69k, 95% C.I. 65.4k–
456 72.6k) than for the North population (58k 95% C.I. 54.3k– 61.5k). We inferred a migration
rate M from south to north of 0.071. Although low (1 migrant every 28 generations), this
458 estimate was significantly greater than zero (95% C.I. 0.045 – 0.097).

458 *Isolation with instantaneous admixture (ADM).* Inferences for models assuming
460 instantaneous admixture mirrored those for IM models both in terms of model comparisons
and parameter estimates: scenarios with gene flow and two N_e parameters were

462 significantly better supported than otherwise equivalent models without admixture and/or a
464 single N_e (Table 1b). The best-supported admixture direction was again from South to
466 North, and the model assuming that the Southern population retained the ancestral N_e
468 (ADM10; Fig. 3a) had greatest support. N_e estimates under the best fitting ADM history
470 were similar to those under the analogous IM model (IM9): we inferred an
472 ancestral/Southern N_e of 69k (95% C.I. 66.1k-72.6k) and a lower Northern N_e of 59k
474 (55.2k-62.2k). In contrast, under the best fitting ADM9 the population split was estimated
476 196kya (95% C.I. 193-198kya), slightly older than under the analogous IM model. The
478 admixture event was inferred to have occurred 57kya (95% C.I. 53-62kya) (Table 1b) and
480 around a quarter (admixture fraction $f = 0.239$, 95% C.I. 0.206-0.272) of Northern lineages
482 are inferred to have originated from the Southern population.

Greater support of instantaneous admixture. The ADM model had greater support than the
474 IM model ($\Delta\ln\text{CL} = 4175$). Since the blockwise composite likelihood calculation ignores
476 linkage between blocks and given that IM and ADM models are not nested, we cannot use
478 a likelihood ratio test to compare the support for these models. To confirm whether the
480 simpler IM model fits significantly worse than the ADM model we obtained a critical value
482 for $\Delta\ln\text{CL}$ (155.4 at $p=0.05$) using a fully parametric bootstrap. The difference in model
484 support in favour of the ADM model $\Delta\ln\text{CL} = 4175$ in the real data far exceeds this and
486 confirms that admixture provides a better fit to our data than continuous gene flow. To
investigate which aspect of blockwise variation in the data allows discrimination between
482 instantaneous admixture (ADM) and continuous migration (IM), we compared the
484 frequencies of the most common bSFS configurations in the data with those expected
486 under the best fitting IM and ADM models (Figure S6). Inspection of the residual reveals
that the ADM model predicts both the frequency of monomorphic blocks ($\{0,0,0,0\}$) and
blocks with more than three fixed differences ($\{0,0,>3,0\}$) better than the IM model.

488 **PSMC supports divergence and instantaneous admixture from South to
North**

490 We used PSMC (Li & Durbin 2011) to infer trajectories of N_e change for Northern
492 and Southern populations. Comparing the trajectories both with each other and with
494 parameters inferred under the best fitting models of divergence and gene flow (ADM10)
496 reveals a close correspondence between blockwise analyses and PSMC in several
498 respects (Fig. 4). First, PSMC trajectories are consistent with the blockwise inference of a
500 slightly larger N_e in the Southern population compared to the Northern population. Second,
502 the divergence time inferred by the blockwise analyses corresponds to a period in the
504 PSMC at which the Northern and Southern populations show similar N_e (overlapping
506 confidence intervals), consistent with a shared ancestral population. Finally, PSMC infers
508 an increase in the Northern N_e prior to the time of admixture inferred under the ADM
510 model. Such an increase in genetic diversity in the (Northern) recipient population is
512 exactly what would be expected from a sudden admixture event. We note that PSMC also
reveals an increase in the Southern N_e around the same time which, however, is markedly
smaller. While PSMC also shows an increase in N_e in the very recent past (i.e. the last
3ky), the variation among bootstrap replicates (Fig. 4) suggests that our data lack the
signal to reliably infer population size change over this timescale.

506

Discussion

508 **Individual level population genomics of very small insects**

510 Genomic data offer enormous potential in inference of population relationships and
512 demography, but genomic resources remain limited for all but a tiny proportion of taxa. In
some taxa, including rare species of conservation importance, it is also not possible to
sample large panels of individuals (Allendorf et al., 2010; Fuentes-Pardo & Ruzzante

2017). In such cases, and where the distribution of populations is appropriate to a pairwise
514 comparison, the approaches we use here allow demographic inference with minimal cost
and sampling. Our approach may be of use in similar pair-wise population analyses of
516 other east coast Australian forest taxa divided by the same dry habitat corridors, and other
analogously distributed taxa.

518 We generated genomic libraries for individual male fig wasps, each only 1.5 mm
long, resulting in over 770 thousand aligned blocks of sequence containing an average of
520 1.5 variable sites. Even with minimal samples of two haploid individuals per population,
these whole genome data allowed estimation of demographic parameters with high
522 confidence. A further advantage of the two methods we use is that neither makes any
assumptions about phase in sequence data. Both can thus be applied to diploid
524 organisms, provided that coverage is high enough to distinguish sequencing error from
heterozygosity (ability to do so with high confidence is a major benefit of working with
526 haploid organisms, including male Hymenoptera).

528 The best supported IM and ADM models gave similar estimates for the age of the
initial divergence between Northern and Southern *P. nigriventris* populations, and their
530 sizes. Further, we show that a burst of admixture (ADM) provides a significantly better fit
than ongoing gene flow to the blockwise data and the individual population N_e trajectories
532 inferred by PSMC analysis. We first place our results in the broader context of
phylogeographic work on taxa spanning the Burdekin and St. Lawrence Gaps, and then
discuss the potential limits of our demographic inferences.

534

536 **Pleistocene population divergence across the Burdekin and St Lawrence Gaps in *P. nigriventris***

538 Australia has a complex climate history, a major feature of which is the aridification
that started in the Miocene and continued throughout the Pliocene and Pleistocene
21

(Schauble & Moritz, 2001; Martin, 2006; MacQueen et al., 2010, Frankham et al., 2016).

540 This resulted in the gradual restriction of rain forests to the Eastern coast of Australia, separated from more arid inland habitats by the Great Dividing Range (Kershaw 1994; 542 McGuigan et al., 1998; Schneider et al., 1998; Pope et al., 2000, Bell et al., 2007). Between 280 and 205kya, decreased precipitation and more severe aridification were 544 associated with major faunal turnover in rainforest taxa (Hocknull et al., 2007). Against the backdrop of this general trend, the Pleistocene climate oscillations drove cycles of rain 546 forest expansion during warmer, wetter interglacials and contraction during cooler, drier glacials (Byrne 2008; Maldonado et al., 2012; Burke et al., 2013). The current dry habitat 548 corridors of the Burdekin and St. Lawrence Gaps are thought to be products of the long term aridification of Australia, and though it is uncertain when they first formed, they most 550 likely existed through multiple Pleistocene cycles (Bryant & Krosch, 2016).

552 We found a strong signature of population divergence over the combined Burdekin and St. Lawrence gaps in *Pleistodontes nigriventris*. This is perhaps to be expected, given the obligate dependence of *P. nigriventris* on *Ficus watkinsiana*, and the restriction of this 554 fig species to rain forest (Dixon 2003). However, our analyses do not allow inference of the ancestral distribution of *P. nigriventris*, and are compatible with either population being 556 founded from the other, or vicariance of a previously continuous rainforest distribution (Martin, 2006). Assuming four generations per year for *P. nigriventris* (see below), the best 558 fitting IM and ADM models for *P. nigriventris* both infer divergence between the Northern and Southern populations 170-200kya ago, in the Late Pleistocene.

560 In a review encompassing a wide range of plant and animal taxa, Bryant and Krosch (2016) identified a signature of population subdivision for the Burdekin Gap in 18 of 562 27 studies (nine of which have divergence time estimates) and for the St. Lawrence Gap in 10 of 23 studies (six of which have divergence time estimates). Pleistocene divergence 564 across the Burdekin Gap has also been inferred for *Melomys cervinipes* (a wet forest

rodent (Bryant & Fuller (2014)), *Petaurus australis* (yellow-bellied glider (Brown et al., 566 2006)), and *Varanus varius* (a large lizard with broad habitat preferences (Smissen et al., 568 (2013)). Very few studies have considered insect population structure across the same potential barriers to gene flow. In contrast to our results for *P. nigriventris*, Schiffer et al., 570 (2007) found no evidence for genetic divergence across the Burdekin gap in *Drosophila birchii*, a specialist rainforest fruit fly, but instead inferred a moderate gene flow across the 572 whole range following a recent range expansion. Divergence estimates for other taxa spanning the Burdekin and/or St Lawrence Gaps are concentrated in the late Miocene to late Pleistocene (Bryant & Krosch 2016) with substantial variation across taxa. For 574 example, divergence across the Burdekin Gap was estimated to have occurred in the early Miocene-late Oligocene >20 million years ago (mya) in *Uperoleia* frogs (Catullo & Keogh 576 2014; Catullo et al., 2014), and 31-51mya in assassin spiders (Rix & Harvey 2012). Given that most of these previous estimates are not based on any statistical model of population 578 divergence, but rather a single (often mitochondrial) gene tree, it is unclear how much of the variation in previous divergence time estimates across these co-distributed taxa simply 580 reflects coalescence variance and/or differences in calibration. Model based comparative studies are needed to assess whether past vicariance events have been shared in time 582 across taxa with disjunct distributions across the Burdekin and St Lawrence gaps.

Two compatible explanations could explain observed population divergence in *P. 584 nigriventris*. A first is that aridification and lack of suitable fig hosts in intervening habitats 586 prevented viable dispersal between Northern and Southern populations. A second is that despite dispersal, migrants failed to contribute genes to receiving populations. This could 588 happen if, following initial divergence, each of the Northern and Southern populations became locally adapted, but reciprocally maladapted (Rodriguez et al., 2017). Such failure could result from reciprocal mismatches in climate, or in coevolved interactions with co- 590 distributed *Ficus watkinsiana*. That failure to disperse may not wholly explain divergence

between Northern and Southern populations of *P. nigriventris* is suggested by inferred high
592 dispersal within each population (low divergence between individuals), and the fact that
some other fig wasps (including another *Pleistodontes* species (Sutton et al. 2016)) show
594 little or no genetic divergence over distances of around 1000km, close to the separation
between our populations (e.g. Kobmoo et al., 2010; Liu et al., 2015; Tian et al. 2015; Bain
596 et al., 2016). Further evidence comes from lack of spatial genetic structure (and hence
long range pollen and/or fruit dispersal) in other monoecious figs (e.g. Nazareno et al.,
598 2013; Bain et al., 2016). That effects other than barriers to dispersal *per se* can structure
intraspecific genetic diversity is also suggested by (potentially host-mediated)
600 differentiation in other fig wasp species over distances of less than 50km (Tian et al.,
2015). The extent to which Northern and Southern populations of *P. nigriventris* are able to
602 interbreed and to induce galls in allochthonous host figs remains unknown, but could be
tested experimentally.

604

Effective population size of *P. nigriventris*

606 We estimated the effective population sizes for Northern and Southern populations of *P.*
nigriventris to be ca. 60k and 70k respectively, with 95% confidence intervals over the IM
608 and ADM models spanning 54k-73k. These figures fall within the range observed in other
similarly sized chalcidoid and cynipoid Hymenoptera (e.g. Bunnefeld et al., 2018; Walton
610 et al., 2020). The true census population size for *P. nigriventris* is almost certainly much
higher, given that a single large fig tree can bear many thousands of pollinated figs, each
612 of which required entry by at least one female *P. nigriventris*. Census population size (N ,
which contributes to fruit set) is generally one to several orders of magnitude greater than
614 N_e (Lewontin 1974; Frankham 1995; Palstra and Ruzzante 2008), particularly in taxa that,
like fig wasps, show high levels of sib-mating (Kimura and Crow 1963; Leffler et al., 2012;
616 Sutton et al., 2016 for *Pleistodontes*; Molbo et al., 2004 for *Pegoscapus*) and can

experience large population fluctuations and genetic bottlenecks (Bronstein and Hossaert-
618 McKey 1996; Harrison 2000; Wachi et al., 2016). Both are likely explanations for the
similar and very low genetic diversities observed in each of the Northern and Southern
620 populations ($\pi = 0.000884$ and 0.000822 respectively), amongst the lowest estimates for
any sexually reproducing arthropod (Leffler et al., 2012; Romiguier et al., 2014).

622

624 **The Northern population of *P. nigriventris* received a burst of admixture from the South at the end of the Pleistocene**

Both the best fitting ADM and IM models inferred gene flow from the Southern to
626 the Northern population. While the continuous migration rate inferred under the best IM
model ($M = 0.071$) is much lower than the estimated admixture fraction ($f=0.24$) under the
628 better supported ADM model, the overall amount of gene flow inferred under both models
is in fact very similar: Under the IM model, the probability that a single lineage sampled
630 from the North is derived from the South via gene flow is $1-e^{(-MT)}$. Given our estimates
for these parameters in model IM9, this is ~ 0.3 , so very comparable to the admixture
632 fraction inferred under the best ADM model. While both models agree in the overall
amount of post-divergence gene flow, our model comparison clearly shows that genetic
634 exchange occurred as a sudden burst rather than a continuous process. Additional support
for a discrete admixture event comes from the contemporary increase in the Northern
636 population size revealed by PSMC. The inferred combination of divergence and admixture
is compatible with the following demographic scenario: (i) Northern and Southern
638 populations were separated 170-200 kya following contraction of suitable habitat and
expansion of intervening inhospitable dry forest corridors. (ii) Northern and Southern
640 populations remained separated for over 100ky until favourable conditions in the late
Pleistocene allowed expansion of one or both populations of *Ficus watkinsiana*, to the
642 point at which substantial genetic exchange was possible between populations of
25

pollinating *P. nigriventris*. (iii) Subsequent aridification resulted again in range contractions
644 and a shutdown of gene flow.

Notwithstanding the uncertainty in our time calibration for *P. nigriventris* (see
646 below), the date of the inferred admixture event falls in Marine Isotope Stage 3 (27-60kya),
a period in the late Pleistocene characterised globally by abrupt phases of warming and
648 cooling (Siddall et al., 2008; Van Meerbeeck et al., 2009). These warming phases were
interspersed by cooler periods around every 7,000 years (Clark et al., 2007), and even
650 during the cooler periods average temperatures were much higher than during the Last
Glacial Maximum (~19-21kya) (Van Meerbeeck et al., 2009). The lower bound (53kya) of
652 the inferred admixture time corresponds approximately to the warmest point in one of
these cycles, and it is tempting to suggest that this allowed temporary expansion of the
654 range of the *F. watkinsiana*/*P. nigriventris* mutualism and secondary genetic contact. Such
climatic instability also raises the possibility that any selection in favour of locally adapted
656 fig wasps could sometimes have been replaced by selection in favour of adaptive
introgression of migrant genes (Hedrick 2013).

658 Our results do not rule out bidirectional dispersal, but rather imply a signal of
predominant gene flow from the South into the North. This could indicate conditions that
660 facilitated northwards dispersal in this direction, such as prevailing winds from the south.
Records from the 1940s-2000s do indicate stronger winds from the south in eastern
662 Australia (Australian Government, Bureau of Meteorology,
<http://www.bom.gov.au/climate/>). However, it is not known whether current trends can be
664 extended back into the past. Similar post-divergence dispersal from south to north across
the Burdekin gap has been inferred in a small number of other rain forest-associated taxa
666 (Bryant & Fuller, 2014; Bryant & Krosch 2016). Alternatively, the asymmetry in genetic
exchange between North and South we infer may be the result of genetic incompatibilities
668 that arose and became fixed during periods of isolation.

670 Limits of demographic inference

671 Our inference of the population history of *P. nigriventris* is contingent on the realism

672 of our models, ability to incorporate effects of linkage, and scaling of time estimates. We
673 consider these issues in turn.

674 Our IM and ADM models assume two populations with a maximum of two different

675 and constant N_e parameters (Fig. 1). While this simple model is unlikely to be true for any

676 organism, the assumption of two panmictic populations is, as far as is known, a good
677 approximation for the current distribution of *P. nigriventris*. Fitting explicit models

678 necessarily involves simplifying assumptions, and alternatives for limiting the number of N_e
679 parameters (such as assuming equal N_e for all populations, or an even split between

680 daughter populations) are even less realistic. Concordance in N_e estimates between our
681 IM/ADM models and our PSMC analysis (in which N_e is free to vary through time)

682 suggests that drastic changes in N_e are not a feature of the population history of *P.*
683 *nigriventris*, and that this simplifying assumption is unlikely to affect our inference.

684 Agreement in parameter estimates across models and the close fit of our best ADM model
685 to the observed blockwise data both suggest that we have captured key aspects of the

686 demographic history of *P. nigriventris*. Perhaps the main result of our analyses is that we
687 have shown that continuous and discrete gene flow can be clearly distinguished in this

688 species, even over relatively recent timescales (both in terms of sequence divergence and
689 genetic drift). While most analyses of demographic history choose *a priori* to model gene

690 flow as either a continuous process or a discrete event, these two extremes of model
691 space are rarely compared directly and it remains an open question which one better

692 captures the demographic history in most taxa. All three demographic scenarios we have
693 considered (IM, ADM and PSMC) are nevertheless crude simplifications of what is likely a

694 more complex history, possibly involving repeated cycles of rain forest expansion and

contraction. The upland wet forests south of the Burdekin Gap in the Clarke Range and
696 Conway Peninsula are thought to have persisted through multiple Pleistocene climate
cycles (Stuart-Fox et al., 2001), and it would be interesting in future to use the information
698 contained in larger samples to explore more realistic histories involving repeated
admixture pulses (Jésus et al., 2006) in *P. nigriventris* and *F. watkinsiana*, potentially
700 involving additional intermediate populations that may no longer exist (e.g. Stone et al.,
2017). Likewise, it would be interesting to test how well the blockwise distributions of
702 divergence and diversity in *P. nigriventris* fit a more complex generalised class of IM
models (GIM) that involve periods of historic gene flow (Costa & Wilkinson-Herbots 2017).
704 Exploring these models would allow bridging of the model space between the IM and ADM
histories we consider here (Costa & Wilkinson-Herbots 2017). However, unlike the bSFS
706 framework we have used here, analytic results for GIM models are currently limited to
pairwise samples, which, all else being equal, are less informative about gene flow (Lohse
708 et al., 2016, Fig. 7).

Demographic analyses that are based on genome-wide samples of either single
710 variants or loci/blocks generally assume that blocks are statistically independent, i.e.
unlinked. A common way of dealing with linkage effects is to use subsampling, either by
712 sampling a fixed minimum distance apart or by resampling bootstrap. We have instead
opted for a fully parametric bootstrap that incorporates recombination within and linkage
714 between blocks explicitly. Although this is computationally more intensive than
subsampling, we believe it is the only way to accurately capture the effect on parameter
716 estimates. Our parametric bootstrap for the best fitting IM and ADM models gave narrow
95% confidence intervals for all model parameters. Importantly, mean parameter estimates
718 obtained from the simulation replicates are very close to the MLEs used to simulate the
datasets (Table 1). This confirms that biases in parameter estimates due to violations of
720 the assumption of no recombination within blocks are negligible, as shown in previous

studies on a range of organisms (Jennings & Edwards, 2005; Lanier & Knowles, 2012; 722 Hearn et al., 2014; Bunnefeld et al., 2015; Wang & Liu, 2016). Another standard 724 assumption of demographic inference is that sequences evolve neutrally. While our 726 approach sampled blockwise sequence variation genome-wide, one would expect both 728 genome assembly and read mapping to be easier in regions under selective constraint. As 730 a consequence, our blockwise dataset is likely enriched for conserved coding regions. In a 732 methodologically similar study of a European gall wasp, Hearn et al., (2014) tested for the 734 effect of selective constraint by partitioning blocks according to the proportion of coding 736 sequence they contained, and scaling the estimated genome-wide mutation rate between 738 values for synonymous and non-synonymous mutations. They found that mutation rate 740 heterogeneity had no impact on the inference, reporting only a slight increase in N_e and 742 divergence time estimates. Given these results and the lack of annotated genomes or 744 transcriptome data to aid gene detection, we have not pursued this here. However, it will 746 be interesting to check whether selective constraint can explain the observed higher 748 frequency of invariant blocks in our *P. nigriventris* data compared to expectations under 750 both the best fitting IM and ADM models. Taken together, these results suggest that 752 recombination within blocks and background selection had a minimal impact on our 754 inference of demographic history.

Scaling divergence and admixture times into years requires knowledge of both the 740 mutation rate and generation time. Both are uncertain for *P. nigriventris*. In the absence of 742 direct mutation rate estimates for fig wasps, we used an estimate from *Drosophila melanogaster* (Keightley et al., 2014). While it is unclear how well this matches mutation 744 rates in fig wasps, it is reassuring that the few published mutation rate estimates for other 746 insects are similar (e.g. 2.9×10^{-9} for the butterfly *Heliconius melpomene*). A likely greater 748 source of calibration uncertainty is average wasp generation time, which is not known for 750 *P. nigriventris*. Our estimate of 4 generations per year is based on data for other Australian 752

748 *Pleistodontes* species, taking into account the seasonal habitat and large (slowly
748 developing) fruits of *F. watkinsiana* (see Methods). Calibration of the timing of
750 demographic events in *P. nigriventris* scales simply and inversely with generation time,
750 i.e., halving the number of generations per year doubles the age of events. Assuming 2
752 and 6 generations per year (rather than 4 as we have done here) still places divergence
752 and admixture times for *P. nigriventris* in the late Pleistocene: for 2 generations/year,
754 $T=392(386-396)\text{ky}$ and $T_{adm}=114(106-184)\text{ky}$, and for 6 generations/year, $T=131(129-$
754 132)ky and $T_{adm}=38(35-61)\text{ky}$. However, in the absence of precise information our attempt
756 to match the demographic history of *P. nigriventris* to past climatic events remains
756 speculative.

758 Our results show that robust demographic inferences can be made for very small
758 sample sizes of non-model taxa without significant associated genomic resources. While
760 our motivation for assembling a genome for *P. nigriventris* was solely to generate a
760 dataset for demographic inference, genome assemblies are arguably a more generally
762 useful resource than other types of genomic data (e.g. RadSeq) and can be improved in
762 the future (e.g. by adding RNASeq and long read data to improve annotation and
764 contiguity respectively). Inference based on *de novo* assemblies and minimal sampling is
764 likely to become the norm for taxa that are rare or hard to sample. Figs support highly
766 structured (and often co-evolved) communities of pollinators, inquilines and natural
766 enemies (Lopez-Vaamonde et al., 2001; Segar et al., 2014), and while a growing body of
768 work addresses phylogeographic relationships in figs and their pollinators (Bain et al.,
768 2016; Rodriguez et al., 2017; Yu et al., 2019), much less is known about the
770 phylogeography of non-pollinating fig wasps (Sutton et al., 2016). Our approach provides a
770 framework for comparative analyses that reconstruct the assembly of these species-rich
772 communities. More broadly, given that many questions about both intraspecific

demography history and speciation come down to distinguishing between ongoing gene
774 flow and discrete admixture pulses, systematic power analyses on how this can best be
achieved - especially for genomic data from non-model organisms without a contiguous
776 reference genome - are urgently needed.

778 **Acknowledgements**

This work was funded by a UK NERC grant (NE/J010499) to GS, KL and JMC. LC was
780 supported by a PhD studentship from the UK NERC. KL was supported by a NERC
fellowship (NE/L011522/1)

782 **References**

784 Aeschbacher, S., Selby, J. P., Willis, J. H. & Coop, G. (2017). Population-genomic
inference of the strength and timing of selection against gene flow. *Proceedings of the
National Academy of Sciences of the USA*, 114, 7061-7066.
786 <https://doi.org/10.1073/pnas.1616755114>

788 Ahmed, S., Compton, S. G., Butlin, R. K., & Gilmartin P. M. (2009). Wind-borne insects
mediate directional pollen transfer between desert fig trees 160 kilometers apart.
790 *Proceedings of the National Academy of Sciences of the USA*, 106, 20342-20347.
<https://doi.org/10.1073/pnas.0902213106>

792 Al-beidh, S. (2010). Investigations into stability in the fig/fig-wasp mutualism. Unpublished
794 PhD thesis, Imperial College, London, U.K.

796 Allendorf, F. W., Hohenlohe, P. A & Luikart, G. (2010). Genomics and the future of
conservation genetics. *Nature Reviews Genetics*, 11, 697–709.
798 <https://doi.org/10.1038/nrg2844>

800 Bain, A., Borges, R. M., Chevallier, M. H., Vignes, H., Kobmoo, N., Peng, Y. Q., Cruaud,
802 A., Rasplus, J. Y., Kjellberg, F., & Hossaert-McKey, M. (2016). Geographic structuring into
vicariant species-pairs in a wide-ranging, high-dispersal plant–insect mutualism: the case
804 of *Ficus racemosa* and its pollinating wasps. *Evolutionary Ecology*, 30, 663–684.
<https://doi.org/10.1007/s10682-016-9836-5>

806 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S. &
808 Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to
single cell sequencing. *Journal of Computational Biology*, 19, 455-477.
<https://doi.org/10.1089/cmb.2012.0021>

810 Baker, C. H., Graham, G. C., Scott, K. D., Cameron, S. L., Yeates, D. K. & Merritt, D. J.
812 (2008). Distribution and phylogenetic relationships of Australian glow-worms

814 Arachnocampa (Diptera, Keroplatidae)', *Molecular Phylogenetics and Evolution*, 48, 506-
514. <https://doi.org/10.1016/j.ympev.2008.04.037>

816 Bell, K. L., Moritz, C., Moussalli, A. & Yeates, D. K. (2007). Comparative phylogeography
818 and speciation of dung beetles from the Australian Wet Tropics rainforest. *Molecular
Ecology*, 16, 4984-4998. <https://doi.org/10.1111/j.1365-294X.2007.03533.x>

820 The impact of global selection on local adaptation and reproductive isolation
822 Bisschop, G., Setter, D., Rafajlović, M., Baird, S. J. E. & Lohse, K. (2019). bioRxiv 855320.
<https://doi.org/10.1101/855320>

824 Bronstein, J. L., Gouyon, P.-H., Gliddon, C., Kjellberg, F. & Michaloud, G. (1990).
826 The ecological consequences of flowering asynchrony in monoecious figs: a simulation
study. *Ecology*, 71, 2145-2156. <https://doi.org/10.2307/1938628>

828 Bronstein, J. L. & Hossaert-McKey, M. (1996). Variation in reproductive success within a
830 subtropical fig/pollinator mutualism. *Journal of Biogeography*, 23, 433–446.
<https://doi.org/10.1111/j.1365-2699.1996.tb00005.x>

832 Brown, M., Cooksley, H., Carthew, S. M. & Cooper, S. J. B. (2006). Conservation units and
834 phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (*Petaurus
australis*). *Australian Journal of Zoology*, 54, 305-317. <https://doi.org/10.1071/ZO06034>

836 Bryant, L. M. & Fuller, S. J. (2014). Pleistocene climate fluctuations influence
838 phylogeographical patterns in *Melomys cervinipes* across the mesic forests of eastern
Australia. *Journal of Biogeography*, 41, 1923-1935. <https://doi.org/10.1111/jbi.12341>

840 Bryant, L. M. & Krosch, M. N. (2016). Lines in the land: a review of evidence for eastern
842 Australia's major biogeographical barriers to closed forest taxa. *Biological Journal of the
Linnean Society*, 119, 238-264. <https://doi.org/10.1111/bij.12821>

844 Buchfink, B., Xie, C. & Huson, D. H. (2015). Fast and sensitive protein alignment using
846 DIAMOND. *Nature Methods*, 12, 59-60. <https://doi.org/10.1038/nmeth.3176>

848 Bunnefeld, L., Hearn, J., Stone, G.N. & Lohse, K. (2018). Whole genome data reveal the
850 complex history of a diverse ecological community. *Proceedings of the National Academy
of Sciences of the United States of America*. 115, E6507-E6515.
<https://doi.org/10.1073/pnas.1800334115>

852 Burke, J. M., Ladiges, P.Y., Batty, E. L., Adams, P. B., Bayly, M. J. & Katinas, L. (2013).
854 Divergent lineages in two species of *Dendrobium* orchids (*D. speciosum* and *D.
tetragonum*) correspond to major geographical breaks in eastern Australia. *Journal of
Biogeography*, 40, 2071-2081. <https://doi.org/10.1111/jbi.12145>

856 Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene
858 climatic oscillations in southern Australia inferred from phylogeography. *Quaternary
Science Reviews*, 27, 2576-2585.

860 Catullo, R. A. & Keogh, J. S. (2014). Aridification drove repeated episodes of
862 diversification between Australian biomes: evidence from a multi-locus phylogeny of
Australian toadlets (*Uperoleia*: Myobatrachidae). *Molecular Phylogenetics and Evolution*,
864 79, 106–117. <https://doi.org/10.1016/j.ympev.2014.06.012>

866 Catullo, R. A., Lanfear, R., Doughty, P. & Keogh, J. S. (2014). The biogeographical
868 boundaries of northern Australia: evidence from ecological niche models and a multi-locus
659–672. *phylogeny of *Uperoleia* toadlets (Anura: Myobatrachidae)*. *Journal of Biogeography*, 41,
870 https://doi.org/10.1111/jbi.12230

872 Chapple, D. G., Hoskin, C. J., Chapple, S. N. & Thompson, M. B. (2011). Phylogeographic
874 divergence in the widespread delicate skink (*Lampropholis delicata*) corresponds to dry
habitat barriers in eastern Australia. *BMC Evolutionary Biology*, 11, 191.
https://doi.org/10.1186/1471-2148-11-191

876 Chen, Y., Compton, S. G., Liu, M. & Chen, X. Y. (2012). Fig trees at the northern limit of
878 their range: the distributions of cryptic pollinators indicate multiple glacial refugia.
Molecular Ecology, 21, 1687–1701. https://doi.org/10.1111/j.1365-294X.2012.05491.x

880 Clark, P. U., Hostetler, S. W., Pisias, N. G., Schmittner A. & Meissner, K. J. (2007).
Mechanisms for an ~7-Kyr climate and sea-level oscillation during marine isotope stage 3.
882 In: *Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional
Overturning*. American Geophysical Union. *Geophysical Monograph Series*, Volume 173.
884 https://doi.org/10.1029/173GM15

886 Cook, James M. & Rasplus, J.-Y. (2003). Mutualists with attitude: coevolving fig wasps
888 and figs. *Trends in Ecology & Evolution*, 18, 241–248. https://doi.org/10.1016/S0169-
5347(03)00062-4

890 Cooper, L., Bunnefeld, L., Hearn, J., Cook, J. M., Lohse, K. & Stone, G. N. (2020)a.
Phylogeography of *Pleistodontes nigriventris* from northern and southern populations in
892 Australia. Sequence read data and SPAdes genome assembly in the European Nucleotide
Archive, Study PRJEB35527. Available from
894 <https://www.ebi.ac.uk/ena/browser/view/PRJEB35527>

896 Cooper, L., Bunnefeld, L., Hearn, J., Cook, J. M., Lohse, K. & Stone, G. N. (2020)b.
Phylogeography of *Pleistodontes nigriventris* from northern and southern populations in
898 Australia. Trimmed sequence block data and associated *Mathematica* notebook for
blockwise analyses. Available from the Dryad Digital Repository, doi:// (to be added on
900 acceptance).

902 Costa, R. J. & Wilkinson-Herbots, H. (2017). Inference of gene flow in the process of
904 speciation: an efficient maximum-likelihood method for the isolation-with-initial-migration
model. *Genetics*, 205, 1597–1618. https://doi.org/10.1534/genetics.116.188060.

906 Darwell, C. T., Al-Beidh, S. & Cook, J. M. (2014). Molecular species delimitation of a
908 symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal
partner specificity. *BMC Evolutionary Biology*, 14, 189. https://doi.org/10.1186/s12862-
014-0189-9

910 DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C. ... & Daly,
912 M. J. (2011). A framework for variation discovery and genotyping using next-generation
DNA sequencing data. *Nature Genetics*, 43, 491–498. https://doi.org/10.1038/ng.806

914

916 Dixon, D. J. (2003). A taxonomic revision of the Australian *Ficus* species in the section
916 Malvanthera (*Ficus* subg. *Urostigma*: Moraceae). *Telopea*, 10, 125-153.
918 <https://doi.org/10.7751/telopea20035611>

918 Dolman, G. & Moritz, C. (2006). A multilocus perspective on refugial isolation and
920 divergence in rainforest skinks (*Carlia*). *Evolution*, 60, 573-582. <https://doi.org/10.1554/05-487.1>

922 Durand E. Y., Patterson N., Reich D., & Slatkin, M. (2011). Testing for ancient admixture
924 between closely related populations. *Molecular Biology and Evolution*, 28, 2239–2252. .
926 <https://doi.org/10.1093/molbev/msr048>

928 Felsenstein, J. 2003. *Inferring Phylogenies*. Sinauer, 664pp.

930 Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: a
930 review. *Genetics Research*, 66, 95–107. <https://doi.org/10.1017/S0016672300034455>

932 Frankham, G. J., Handasyde, K. A. & Eldridge, M. D. B (2016). Evolutionary and
934 contemporary responses to habitat fragmentation detected in a mesic zone marsupial, the
936 long-nosed potoroo (*Potorous tridactylus*) in south-eastern Australia. *Journal of
Biogeography*, 43, 653-665. <https://doi.org/10.1111/jbi.12659>

938 Fuentes-Pardo, A. P. & Ruzzante, D. E. (2017). Whole-genome sequencing approaches
938 for conservation biology: Advantages, limitations and practical recommendations.
940 *Molecular Ecology*, 26, 5369–5406. <https://doi.org/10.1111/mec.14264>

942 García-Alcalde, F., Okonechnikov, K., Carbonell, J., Cruz, L. M., Götz, S., Tarazona, S.,
944 Dopazo, J., Meyer, T. F. & Conesa, A. (2012). Qualimap: evaluating next-generation
944 sequencing alignment data. *Bioinformatics*, 28, 2678–2679.
<https://doi.org/10.1093/bioinformatics/bts503>

946 Greeff, J. M., van Vuuren, G. J. J., Kryger, P. & Moore, J. C. (2009). Outbreeding and
948 possibly inbreeding depression in a pollinating fig wasp with a mixed mating system.
Heredity, 102, 349-356. <https://doi.org/10.1038/hdy.2009.2>

950 Haine, E. R., & Cook, J. M. (2005). Convergent incidences of *Wolbachia* infection in fig
952 wasp communities from two continents. *Proceedings of the Royal Society of London,
Series B Biological Sciences*, 272, 421-429. <https://doi.org/10.1098/rspb.2004.2956>

954 Hare, M. P. (2001). Prospects for nuclear gene phylogeography. *Trends in Ecology &
956 Evolution*, 16, 700-706. [https://doi.org/10.1016/S0169-5347\(01\)02326-6](https://doi.org/10.1016/S0169-5347(01)02326-6)

958 Harrison, R. D. (2000). Repercussions of El Niño: drought causes extinction and the
960 breakdown of mutualism in Borneo. *Proceedings of the Royal Society of London, Series B
Biological Sciences*, 267, 911–915. <https://doi.org/10.1098/rspb.2000.1089>

962 Harrison, R. D. (2003). Fig wasp dispersal and the stability of a keystone plant resource in
962 Borneo. *Proceedings of the Royal Society of London, Series B Biological Sciences*, 270,
964 Suppl 1: S76-9.

966 Harrison, R. D. (2005). Figs and the diversity of tropical rainforests. *Bioscience*, 55, 1053-
1064. <https://doi.org/10.1098/rsbl.2003.0018>

968 Harrison, R. D. & Rasplus, J.-Y. (2006). Dispersal of fig pollinators in Asian tropical rain
969 forests. *Journal of Tropical Ecology*, 22, 631-639.
970 <https://doi.org/10.1017/S0266467406003488>

972 Hearn, J., Stone, G. N., McInnes, L., Nicholls, J. A., Barton, N. H. & Lohse, K. (2014).
973 Likelihood-based inference of population history from low coverage de novo genome
974 assemblies. *Molecular Ecology*, 23, 198-211. <https://doi.org/10.1111/mec.12578>.

976 Hedrick, P. W. (2013). Adaptive introgression in animals: examples and comparison to
977 new mutation and standing variation as sources of adaptive variation. *Molecular Ecology*,
978 22, 4606-4618. <https://doi.org/10.1111/mec.12415>

980 Hey, J. & Nielsen, R. (2004). Multilocus methods for estimating population sizes, migration
981 rates and divergence time, with applications to the divergence of *Drosophila*
982 *pseudoobscura* and *D. persimilis*. *Genetics*, 167, 747-60.
983 <https://doi.org/10.1534/genetics.103.024182>.

984 Hocknull, S. A., Zhao, J.-X., Feng, Y.-X. & Webb, G. E. (2007). Responses of Quaternary
985 rainforest vertebrates to climate change in Australia. *Earth and Planetary Science Letters*,
986 264, 317-331. <https://doi.org/10.1016/j.epsl.2007.10.004>

988 Jennings, W. B. & Edwards, S. V. (2005). Speciation history of Australian grass finches
989 (*Poephila*) inferred from thirty gene trees. *Evolution*, 59, 2033-2047.
990 <https://doi.org/10.1111/j.0014-3820.2005.tb01072.x>

992 Jermiin, L. S. & Crozier, R. H. (1994). The cytochrome b region in the mitochondrial DNA
993 of the ant *Tetraponera rufonigra*: sequence divergence in Hymenoptera may be associated
994 with nucleotide content. *Journal of Molecular Evolution*, 38, 282-294.
996 <https://doi.org/10.1007/BF00176090>

998 Jesus, F. F., Wilkins, J. F., Solferini, V. N. & Wakeley, J. (2006). Expected coalescence
1000 times and segregating sites in a model of glacial cycles. *Genetic and Molecular Research*,
5, 466-474.

1002 Jia, X. C., Yao, J. Y., Chen, Y. Z., Cook, J. M & Crozier, R. H. (2008). The phenology and
1004 potential for self-pollination of two Australian monoecious fig species. *Symbiosis*, 45, 91–
96.

1006 Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. (2014). Estimation of the
1008 spontaneous mutation rate per nucleotide site in a *Drosophila melanogaster* full-sib family.
Genetics, 196, 313-320. <https://doi.org/10.1534/genetics.113.158758>

1010 Keightley, P. D., Pinharanda, A., Ness, R. W., Simpson, F., Dasmahapatra, K. K., Mallet,
1012 J., Davey, J. W. & Jiggins C. D. (2015). Estimation of the spontaneous mutation rate in
Heliconius melpomene. *Molecular Biology and Evolution*, 32, 239-243.
1014 <https://doi.org/10.1093/molbev/msu302>

1016 Kelleher, J., Etheridge, A. M. & McVean, G. (2016). Efficient coalescent simulation and
1018 genealogical analysis for large sample sizes. *PLoS Computational Biology*, 12, e1004842.
<https://doi.org/10.1371/journal.pcbi.1004842> <https://doi.org/10.1371/journal.pcbi.1004842>

1020 Kershaw, A. P. (1994). Pleistocene vegetation of the humid tropics of northeastern
Queensland, Australia. *Paleoclimatology, Paleogeography, Paleoecology*, 109, 399–412.
[https://doi.org/10.1016/0031-0182\(94\)90188-0](https://doi.org/10.1016/0031-0182(94)90188-0) [https://doi.org/10.1016/0031-0182\(94\)90188-0](https://doi.org/10.1016/0031-0182(94)90188-0)

1022 Kimura, M. & Crow, J. F. (1963). The measurement of effective population number.
Evolution, 17, 279-288. <https://doi.org/10.1111/j.1558-5646.1963.tb03281.x>

1026 Kobmoo, N., Hossaert-McKey, M., Rasplus, J.-Y. & Kjellberg, F. (2010). *Ficus racemosa* is
pollinated by a single population of a single agaonid wasp species in continental South-
1028 East Asia. *Molecular Ecology*, 19, 2700-2712. <https://doi.org/10.1111/j.1365-294X.2010.04654.x>

1030 Kumar, S., Jones, M., Koutsovoulos, G., Clarke, M. & Blaxter, M. (2013). Blobology:
1032 exploring raw genome data for contaminants, symbionts and parasites using taxon-
annotated GC-coverage plots', *Frontiers in Genetics*, 4, 237.
1034 <https://doi.org/10.3389/fgene.2013.00237>

1036 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nature Methods, 9, 357-359. <https://doi.org/10.1038/nmeth.1923>

1038 Lanier, H. C., & Knowles, L. L. (2012). Is recombination a problem for species-tree
1040 analyses? *Systematic Biology*, 61, 691-701. <https://doi.org/10.1093/sysbio/syr128>

1042 Leffler, E. M., Bullaughey, K., Matute, D. R., Meyer, W. K., Ségurel, L., Venkat, A.,
1044 Andolfatto, P. & Przeworski, M. (2012). Revisiting an old riddle: what determines genetic
diversity levels within species? *PLoS Biology*, 10(9), e1001388.
<https://doi.org/10.1371/journal.pbio.1001388>

1046 Lewontin, R. C. (1974). *The Genetic Basis of Evolutionary Change*. Columbia University
1048 Press, New York. 346 pp.

1050 Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
1052 *Bioinformatics*, 27, 2987-2993. <https://doi.org/10.1093/bioinformatics/btr509>

1054 Li, H. & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
1056 transform. *Bioinformatics*, 25, 1754-1760. <https://doi.org/10.1093/bioinformatics/btp324>

1058 Li, H. & Durbin, R. (2011). Inference of human population history from individual whole-
1060 genome sequences. *Nature*, 475, 493-496. <https://doi.org/10.1038/nature10231>

1062 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
1064 G., Durbin, R. & Subgroup Genome Project Data Processing. (2009). The Sequence
Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078-2079.
<https://doi.org/10.1093/bioinformatics/btp352>

1066 Liu, M., Zhao, R., Chen, Y., Zhang, J., Compton, S. G. & Chen, X. Y. (2014). Competitive
exclusion among fig wasps achieved via entrainment of host plant flowering
1068 phenology. *PLoS ONE* 9(5): e97783. doi:10.1371/journal.pone.0097783

1070 Liu, M., Compton, S. G., Peng, F. E., Zhang, J. & Chen, X. Y. (2015). Movements of genes
between populations: are pollinators more effective at transferring their own or plant

1072 genetic markers?', *Proceedings of the Royal Society of London, Series B Biological Sciences*, 282, 20150290. <https://doi.org/10.1098/rspb.2015.0290>

1074 Lohse, K., Chmelik, M., Martin, S. H. & Barton, N. H. (2016). Efficient strategies for calculating blockwise likelihoods under the coalescent. *Genetics*, 202, 775-786.
1076 <https://doi.org/10.1534/genetics.115.183814>

1078 Lohse, K. & Frantz, L. A. F. (2014). Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. *Genetics*, 196, 1241-1251.
1080 <https://doi.org/10.1534/genetics.114.162396>

1082 Lohse, K., Harrison, R. J. & Barton, N. H. (2011). A general method for calculating likelihoods under the coalescent process. *Genetics*, 189, 977-987.
1084 <https://doi.org/10.1534/genetics.111.129569>

1086 Lopez-Vaamonde, C., Rasplus, J.Y., Weiblen, G.D., and Cook, J.M. (2001) Molecular phylogenies of fig wasps: Partial cocladogenesis of pollinators and parasites. *Molecular Phylogenetics and Evolution*, 21, 55-71. <https://doi.org/10.1006/mpev.2001.0993>

1090 Lopez-Vaamonde, C., Dixon, D. J., Cook, J. M. & Rasplus, J.-Y. (2002). Revision of the Australian species of *Pleistodontes* (Hymenoptera: Agaonidae) fig-pollinating wasps and 1092 their host-plant associations. *Zoological Journal of the Linnean Society*, 136, 637-683.
<https://doi.org/10.1046/j.1096-3642.2002.00040.x>

1094 Macqueen, P., Seddon, J. M., Austin, J. J., Hamilton, S. & Goldizen, A. W. (2010).
1096 Phylogenetics of the pademelons (Macropodidae: *Thylogale*) and historical biogeography of the Australo-Papuan region. *Molecular Phylogenetics and Evolution*, 57, 1134-1148.
1098 <https://doi.org/10.1016/j.ympev.2010.08.010>

1100 Macqueen, P., Seddon, J. M. & Goldizen, A. W. (2012). Effects of historical forest contraction on the phylogeographic structure of Australo-Papuan populations of the red-legged pademelon (Macropodidae: *Thylogale stigmatica*). *Austral Ecology*, 37, 479-490.
1102 <https://doi.org/10.1111/j.1442-9993.2011.02309.x>

1104 Maldonado, S. P., Melville, J., Peterson, G. N. L. & Sumner, J. (2012). Human-induced
1106 versus historical habitat shifts: identifying the processes that shaped the genetic structure of the threatened grassland legless lizard, *Delma impar*. *Conservation Genetics*, 13, 1329-
1108 1342. <https://doi.org/10.1007/s10592-012-0377-3>

1110 Male, T. D. & Roberts, G. E. (2005). Host associations of the strangler fig *Ficus watkinsiana* in a subtropical Queensland rain forest. *Austral Ecology*, 30, 229-236.
1112 <https://doi.org/10.1111/j.1442-9993.2005.01442.x>

1114 Markgraf, V., McGlone, M. & Hope, G. (1995). Neogene paleoenvironmental and
1116 paleoclimatic change in southern temperate ecosystems — a southern perspective.
Trends in Ecology & Evolution, 10, 143-147. [https://doi.org/10.1016/S0169-5347\(00\)89023-0](https://doi.org/10.1016/S0169-5347(00)89023-0)

1118 Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation
1120 in Australia. *Journal of Arid Environments*, 66, 533-563.
<https://doi.org/10.1016/j.jaridenv.2006.01.009>

1124 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
1124 reads. *EMBnet.journal*, 17, No 1: Next Generation Sequencing Data Analysis.
1126 <https://doi.org/https://doi.org/10.14806/ej.17.1.200>

1128 Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson,
1128 F., Blaxter, M., Manica, A., Mallet, J. & Jiggins, C. D. (2013). Genome-wide evidence for
1130 speciation with gene flow in *Heliconius* butterflies. *Genome Research*, 23, 1817-1828.
<https://doi.org/10.1101/gr.159426.113>

1132 McGuigan, K., McDonald, K., Parris, K. & Moritz, C. (1998). Mitochondrial DNA diversity
1134 and historical biogeography of a wet forest-restricted frog (*Litoria pearsoniana*) from mid-
1136 east Australia. *Molecular Ecology*, 7, 175-186. <https://doi.org/10.1046/j.1365-294x.1998.00329.x>

1138 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
1140 Garimella, K., Altshuler, D., Gabriel, S., Daly, M. & DePristo, M. A. (2010). The Genome
1142 Analysis Toolkit: a MapReduce framework for analyzing next generation DNA sequencing
1144 data. *Genome Research*, 20, 1297-1303. <https://doi.org/10.1101/gr.107524.110>

1146 Molbo, D., Machado, C. A., Herre, E. A. & Keller, L. (2004). Inbreeding and population
1148 structure in two pairs of cryptic fig wasp species. *Molecular Ecology*, 13, 1613–1623.
1150 <https://doi.org/10.1111/j.1365-294X.2004.02158.x>

1152 Nazareno, A. G., Alzate-Marin, A. L. & Pereira, R. A. S. (2013). Dioecy, more than
monoecy, affects plant spatial genetic structure: the case study of *Ficus*. *Ecology and
1154 Evolution*, 3, 3495–3508. <https://doi.org/doi: 10.1002/ece3.739>

1156 Nicholls, J. A., & Austin, J. J. (2005). Phylogeography of an east Australian wet forest bird,
1158 the satin bowerbird (*Ptilonorhynchus violaceus*), derived from mtDNA, and its relationship
1160 to morphology. *Molecular Ecology*, 14, 1485-1496. <https://doi.org/10.1111/j.1365-294X.2005.02544.x>

1162 Nielsen, R. & Wakeley, J. (2001). Distinguishing migration from isolation: a Markov Chain
1164 Monte Carlo approach. *Genetics*, 158, 885-896.

1166 Niu, L.-H., Song, X.-F., He, S. M., Zhang, P., Wang, N. X., Li, Y. & Huang, D. W. (2015).
1168 New insights into the fungal community from the raw genomic sequence data of fig wasp
Ceratosolen solmsi. *BMC Microbiology*, 15, 27. <https://doi.org/10.1186/s12866-015-0370-3>

1170 Nürnberger, B., Lohse, K., Fijarczyk, A., Szymura, J. M. & Blaxter, M. L. (2016). Para-
1172 allopatry in hybridizing fire-bellied toads (*Bombina bombina* and *B. variegata*): inference
from transcriptome-wide coalescence analyses. *Evolution*, 70, 1803-1818.
<https://doi.org/10.1111/evo.12978>

1174 Okonechnikov, K., Conesa, A. & García-Alcalde, F (2016). Qualimap 2: advanced multi-
1176 sample quality control for high-throughput sequencing data. *Bioinformatics*, 32, 292–294.
1178 <https://doi.org/10.1093/bioinformatics/btv566>

1180 Oswald, J. A., Overcast, I., Mauck, W. M., Andersen, M. J. & Smith, B. T. (2017). Isolation
1182 with asymmetric gene flow during the nonsynchronous divergence of dry forest birds.
1184 *Molecular Ecology*, 26, 1386-1400. <https://doi.org/10.1111/mec.14013>

1174 Palstra, F. P. & Ruzzante, D. E. (2008). Genetic estimates of contemporary effective
1176 population size: what can they tell us about the importance of genetic stochasticity for wild
population persistence? *Molecular Ecology*, 17, 3428-3447.
<https://doi.org/10.1111/j.1365-294X.2008.03842.x>

1178
1180 Pope, L. C., Estoup, A. & Moritz, C. (2000). Phylogeography and population structure of an
ecotonal marsupial, *Bettongia tropica*, determined using mtDNA and microsatellites.
Molecular Ecology, 9, 2041-2053. <https://doi.org/10.1046/j.1365-294x.2000.01110.x>

1182
1184 Pope, L. C., Storch, D., Adams, M., Moritz, C. & Gordon, G. (2001). A phylogeny for the
genus *Isoodon* and a range expansion for *I. obesulus peninsulae* based on mtDNA control
region and morphology. *Australian Journal of Zoology*, 49, 411-434.
1186 <https://doi.org/10.1071/ZO00060>

1188 Price, A. L., Jones, N. C. & Pevzner, P. A. (2005). *De novo* identification of repeat families
in large genomes. *Bioinformatics*, 21 Suppl 1, i351-i358.
1190 <https://doi.org/10.1093/bioinformatics/bti1018>

1192 Quinlan, A. R. & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing
genomic features, *Bioinformatics*, 26, 841-842.
1194 <https://doi.org/10.1093/bioinformatics/btq033>

1196 Ringbauer, H., Kolesnikov, A., Field, D. L. & Barton, N. H. (2018). Estimating barriers to
gene flow from distorted isolation-by-distance patterns. *Genetics*, 208, 1231-1245.
1198 <https://doi.org/10.1534/genetics.117.300638>

1200 Rix, M. G. & Harvey, M. S. (2012). Phylogeny and historical biogeography of ancient
1202 assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for
Miocene speciation within Tertiary refugia. *Molecular Phylogenetics and Evolution*, 62,
375-396. <https://doi.org/10.1016/j.ympev.2011.10.009>

1204 Rodriguez, L. J., Bain, A., Chou, L.-S., Conchou, L., Cruaud, A., Gonzales, R., Hossaert-
1206 McKey, M., Rasplus, J.-Y., Tzeng, H.-Y. & Kjellberg, F. (2017). Diversification and spatial
structuring in the mutualism between *Ficus septica* and its pollinating wasps in insular
1208 South East Asia. *BMC Evolutionary Biology*, 17, 207. <https://doi.org/10.1186/s12862-017-1034-8>

1210 Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., Chiari, Y.,
1212 Dernat, R., Duret, L., Faivre, N., Loire, E., Lourenco, J. M., Nabholz, B., Roux, C.,
Tsagkogeorga, G., Weber, A. A.-T., Weinert, L. A., Belkhir, K., Bierne, N. Glémin S. &
1214 Galtier, N. (2014). Comparative population genomics in animals uncovers the
determinants of genetic diversity. *Nature*, 515, 261–263.
<https://doi.org/10.1038/nature13685>

1216 Rønsted, N., Weiblen, G. D., Savolainen, V. & Cook, J. M. (2008). Phylogeny,
1218 biogeography, and ecology of *Ficus* section *Malvanthera* (Moraceae). *Molecular
1220 Phylogenetics and Evolution*, 48, 12-22. <https://doi.org/10.1016/j.ympev.2008.04.005>

1222 Schiffer, M., Kennington, W. J., Hoffmann, A. A. & Blacket, M. J. (2007). Lack of genetic
structure among ecologically adapted populations of an Australian rainforest *Drosophila*
1224 species as indicated by microsatellite markers and mitochondrial DNA sequences.
Molecular Ecology, 16, 1687-700. <https://doi.org/10.1111/j.1365-294X.2006.03200.x>

1226 Schäuble, C. S., & Moritz, C. (2001). Comparative phylogeography of two open forest
1228 frogs from eastern Australia. *Biological Journal of the Linnean Society*, 74, 157-70.
<https://doi.org/10.1111/j.1095-8312.2001.tb01384.x>

1230 Schneider, C. J., Cunningham, M. & Moritz, C. (1998). Comparative phylogeography and
1232 the history of endemic vertebrates in the Wet Tropics rainforests of Australia. *Molecular
Ecology*, 7, 487-498. <https://doi.org/10.1046/j.1365-294x.1998.00334.x>

1234 Segar, S. T., Dunn, D. W., Darwell, C. T. & Cook, J. M. (2014). How to be a fig wasp down
1236 under: the diversity and structure of an Australian fig wasp community. *Acta Oecologica*,
57, 17-27. <https://doi.org/10.1016/j.actao.2013.03.014>

1238 Siddall, M., Rohling, E. J., Thompson, W. G. & Waelbroeck, C. (2008). Marine isotope
1240 stage 3 sea level fluctuations: data synthesis and new outlook. *Reviews of Geophysics*,
46. <https://doi.org/10.1029/2007RG000226>

1242 Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.
1244 (2015). BUSCO: assessing genome assembly and annotation completeness with single-
copy orthologs. *Bioinformatics*, 31, 3210-3212.
<https://doi.org/10.1093/bioinformatics/btv351>

1246 Smissen, P. J., Melville, J., Sumner, J. & Jessop, T. S. (2013). Mountain barriers and river
1248 conduits: phylogeographical structure in a large, mobile lizard (Varanidae: *Varanus varius*)
1250 from eastern Australia. *Journal of Biogeography*, 40, 1729–1740.
<https://doi.org/10.1111/jbi.12128>

1252 Smit, A. F. A., Hubley, R. & Green, P. (2013-2015). *RepeatMasker Open-4.0*. 2013-2015
<<http://www.repeatmasker.org>>.

1254 Sousa, V. & Hey, J. (2013). Understanding the origin of species with genome-scale data:
1256 modelling gene flow. *Nature Reviews Genetics*, 14, 404–414.
<https://doi.org/10.1038/nrg3446>

1258 Stone, G. N., White, S. C., Csóka, G., Melika, G., Mutun, S., Pénzes, Z., Sadeghi, S. E.,
1260 Schönrogge, K., Tavakoli, M. & Nicholls, J. A. (2017). Tournament ABC analysis of the
western palaeartic population history of an oak gallwasp, *Synergus umbraculus*.
1262 *Molecular Ecology*, 26, 6685-6703. doi: 10.1111/mec.14372

1264 Strasburg, J. L., & Rieseberg, L. H. (2010). How robust are “Isolation with Migration”
1266 analyses to violations of the IM model? A simulation Study. *Molecular Biology and
Evolution*, 27, 297-310. <https://doi.org/10.1093/molbev/msp233>

1268 Stuart-Fox, D. M., Schneider, C. J., Moritz, C. & Couper, P. J. (2001). Comparative
1270 phylogeography of three rainforest restricted lizards from mid-east Queensland. *Australian
Journal of Zoology*, 49, 119–127. <https://doi.org/10.1071/ZO00092>

1272 Stumpf, M. P. & McVean, G. A. (2003). Estimating recombination rates from population-
1274 genetic data. *Nature Reviews Genetics*, 4, 959-68. <https://doi.org/10.1038/nrg1227>

1276 Sutton, T.L., DeGabriel, J. L., Riegler, M. & Cook, J.M. (2018). A temperate pollinator with
high thermal tolerance is still susceptible to heat events predicted under future climate
change. *Ecological Entomology*, 43, 506-512. <https://doi.org/10.1111/een.12528>

1278 Sutton, T. L., Riegler, M. & Cook, J. M. (2016). One step ahead: a parasitoid disperses
1280 farther and forms a wider geographic population than its fig wasp host. *Molecular Ecology*,
1282 25, 882-94. <https://doi.org/10.1111/mec.13445>

1284 Tian, E., Nason, J. D., Machado, C. A., Zheng, L., Yu, H. & Kjellberg, F. (2015). Lack of
1286 genetic isolation by distance, similar genetic structuring but different demographic histories
1288 in a fig-pollinating wasp mutualism. *Molecular Ecology*, 24, 5976–5991.
<https://doi.org/10.1111/mec.13438>

1286 Treangen, T. J. & Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing:
1288 computational challenges and solutions. *Nature Reviews Genetics*, 13, 36-46.
<https://doi.org/10.1038/nrg3117>

1290 Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-
1292 Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K.,
1294 Altshuler, D., Gabriel, S. & DePristo M, (2013). From FastQ data to high confidence variant
calls: the Genome Analysis Toolkit best practices pipeline. *Current Protocols in
Bioinformatics*, 43, 11.10.1-33. <https://doi.org/10.1002/0471250953.bi1110s43>.

1296 Van Meerbeeck, C. J., Renssen, H. & Roche, D. M. (2009). How did Marine Isotope Stage
1298 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations.
Climate of the Past, 5, 33-51. <https://doi.org/10.5194/cp-5-33-2009>

1300 Wachi, N., Kusumi, J., Tzeng, H. Y. & Su, Z. H. (2016). Genome-wide sequence data
1302 suggest the possibility of pollinator sharing by host shift in dioecious figs (Moraceae,
Ficus). *Molecular Ecology*, 25, 5732-5746. <https://doi.org/10.1111/mec.13876>

1304 Wall, J. D. (2003). Estimating ancestral population sizes and divergence times. *Genetics*,
163, 395-404.

1306 Walton, W., Stone, G. N. & Lohse, K. (2020). Diverse demographic histories in a guild of
1308 hymenopteran parasitoids. *Molecular Ecology*, (in review). Add information or delete as
required.

1310 Wang, Z. & Liu, K. J. (2016). A performance study of the impact of recombination on
1312 species tree analysis. *BMC Genomics*, 17, 785. <https://doi.org/10.1186/s12864-016-3104-5>

1314 Ware, A. B. & Compton, S. G. (1994)a. Dispersal of adult female fig wasps. 1. Arrivals and
1316 departures. *Entomologia Experimentalis et Applicata*, 73, 221–229.
<https://doi.org/10.1111/j.1570-7458.1994.tb01859.x>

1318 Ware, A. B. & Compton, S. G. (1994)b. Dispersal of adult female fig wasps. 2. Movements
1320 between trees. *Entomologia Experimentalis et Applicata*, 73, 231–238.
<https://doi.org/10.1111/j.1570-7458.1994.tb01860.x>

1322 Weber, L. C., Van der Wal, J., Schmidt, S., McDonald, W. J. F., Shoo, L. P. & Ladiges, P.
1324 (2014). Patterns of rain forest plant endemism in subtropical Australia relate to stable
mesic refugia and species dispersal limitations. *Journal of Biogeography*, 41, 222-38.
1326 <https://doi.org/10.1111/jbi.12219>

1328 Werren, J. H., Richards, S., Desjardins, C. A., Niehuis, O., Gadau, J. & Colbourne, J. K.
1330 (2010). Functional and evolutionary insights from the genomes of three parasitoid *Nasonia*
species. *Science*, 327, 343-348. <https://doi.org/10.1126/science.1178028>

1332 Xiao, J. H., Yue, Z., Jia, L. Y., Yang, X. H., Niu, L. H., Wang, Z., ... Huang, D. W. (2013).
1334 Obligate mutualism within a host drives the extreme specialization of a fig wasp genome.
Genome Biology, 14, R141. <https://doi.org/10.1186/gb-2013-14-12-r141>

1336 Yang, L. Y., Machado, C. A., Dang, X. D., Peng, Y. Q., Yang, D. R., Zhang, D. Y. & Liao,
1338 W. J. (2015). The incidence and pattern of co-pollinator diversification in dioecious and
monoecious figs. *Evolution*, 69, 294-304. <https://doi.org/10.1111/evo.12584>

1340 Yu, H., Tian, E. W., Zheng, L. N., Deng, X. X., Cheng, Y. F., Chen, L. F. ... & Kjellberg, F.
1342 (2019) Multiple parapatric pollinators have radiated across a continental fig tree displaying
clinal genetic variation. *Molecular Ecology*, 28, 2391-2405.
<https://doi.org/10.1111/mec.15046>

1344 Zerbino, D. R. & Birney, E. (2008). Velvet: algorithms for *de novo* short read assembly
1346 using de Bruijn graphs. *Genome Research*, 18, 821-9.
<https://doi.org/10.1101/gr.074492.107>

1348 Zhang, J., Kober, K., Flouri, T. & Stamatakis, A. (2014). PEAR: a fast and accurate
1350 Illumina Paired-End reAd mergeR. *Bioinformatics*, 30, 614-620.
<https://doi.org/10.1093/bioinformatics/btt593>

1352

1354 **Data Accessibility**

The short read data and the *SPAdes* genome assembly have been deposited at the ENA
1356 short read archive (number PRJEB35527).

CO1 barcode sequences for the four *Pleistodontes nigriceps* individuals have been
1358 deposited in Genbank: N1 MF597824; N2 MF597800; S1 MF597825; S2 MF597826).

A *Mathematica* notebook and blockwise sequence data for this study are available from
1360 the Dryad repository, doi: (added on acceptance).

1362 **Author contributions.**

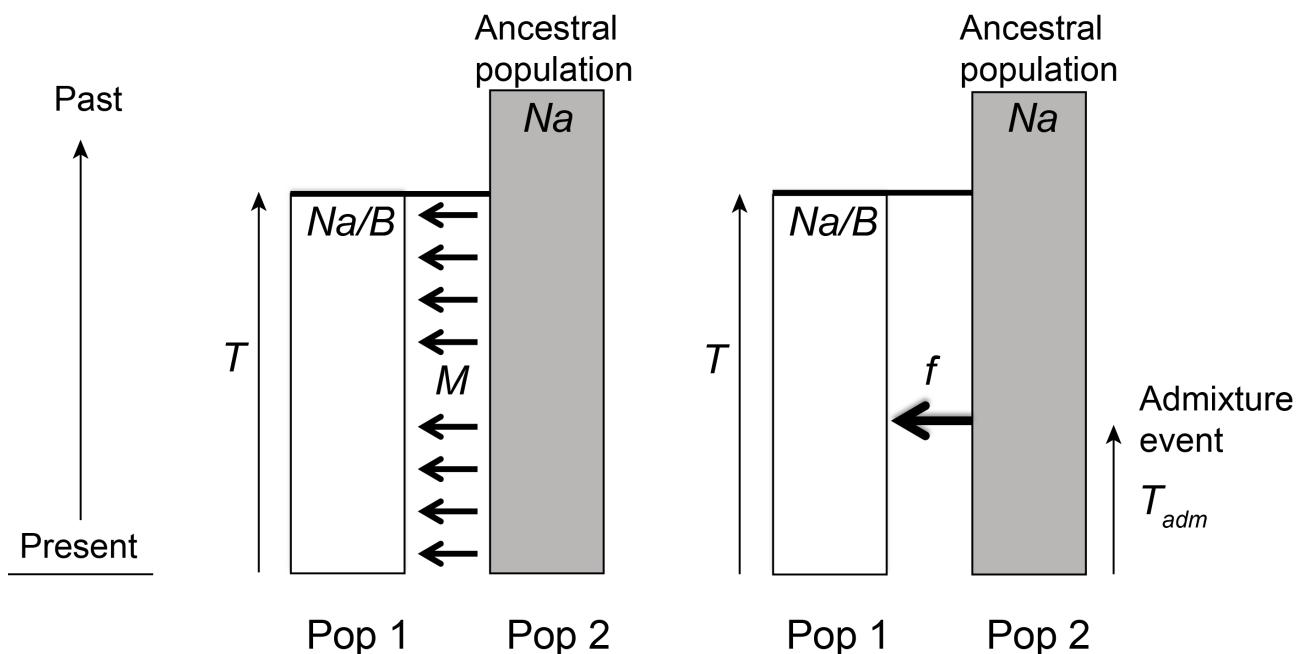
LC, GNS, KL and JMC designed the research. LC, LB, KL and JH performed the research
1364 and analysed the data. GNS, KL and LC wrote the paper, with editorial input from all
authors.

1366

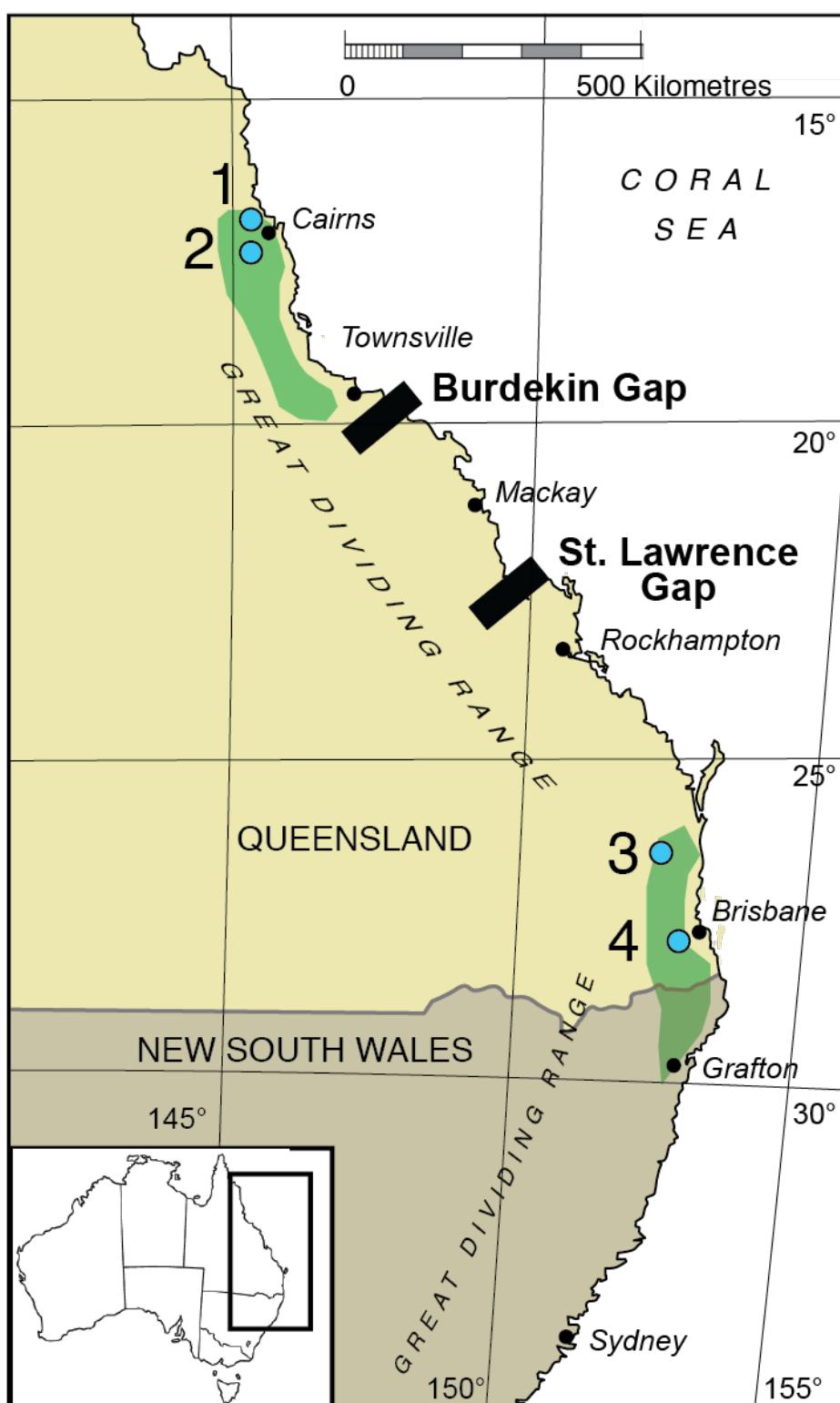
1368 **Table 1.** Maximum composite likelihood estimates (MCLE) of model support and
 1370 demographic parameters under (a) IM and (b) ADM models. The best supported model is
 1372 highlighted in bold with parameter 95% confidence intervals estimated by parametric
 1374 bootstrap. $n(N_e)$ indicates the number of population size parameters in the model, and N_a
 indicates the population(s) retaining the ancestral population size. Mig indicates the
 direction of gene flow in the model, with 0 indicating a model with no gene flow. Model
 support is measured relative to the best fit model in each class (IM9 in (a) and ADM10 in
 (b)). Likelihood ratio tests (LRT) were calculated as $2\Delta\ln L$.

1376 (a) IM (Isolation with migration) models

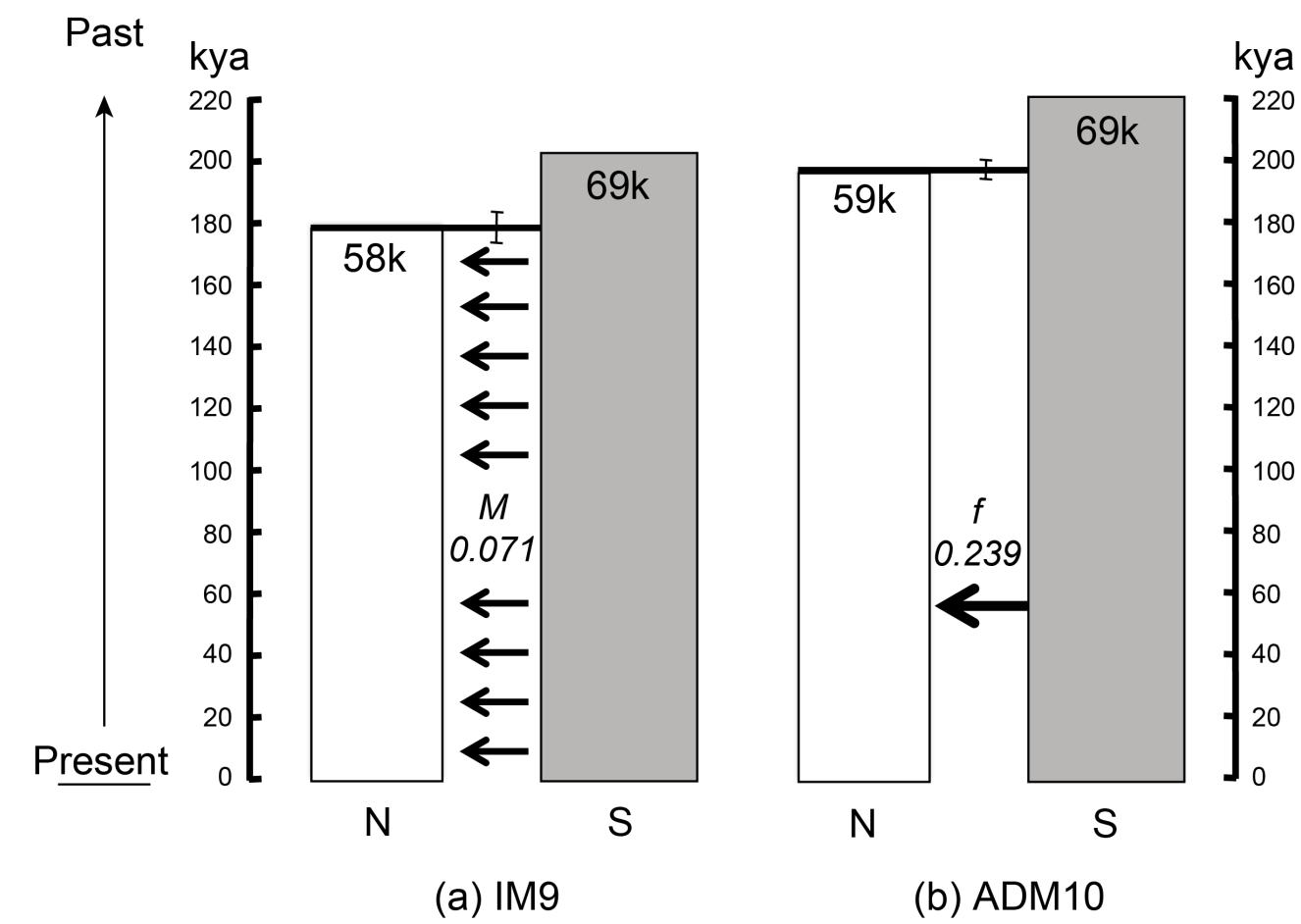
Model	$n(N_e)$	N_a	Mig	$\Delta\ln L$	LRT	T	B	M
IM1	1	both	0	-22,877	n/a	3.938	n/a	n/a
IM2	1	both	N->S	-5,078	35,598	5.210	n/a	0.044
IM3	1	both	S->N	-1,122	43,509	5.533	n/a	0.057
IM4	2	N	0	-22,740	274	3.523	1.198	n/a
IM5	2	S	0	-21,298	3,157	3.808	1.055	n/a
IM6	2	N	N->S	-2,855	36,885	6.417	0.774	0.051
IM7	2	N	S->N	-500	44,479	6.193	0.872	0.061
IM8	2	S	N->S	-1,757	39,081	4.573	1.348	0.065
IM9	2	S	S->N	0	45,481	5.137 (4.784-5.489)	1.193 (1.089-1.296)	0.071 (0.045-0.097)
IM9 sim						0.299	5.150	1.197


(b) ADM (Instantaneous admixture) models

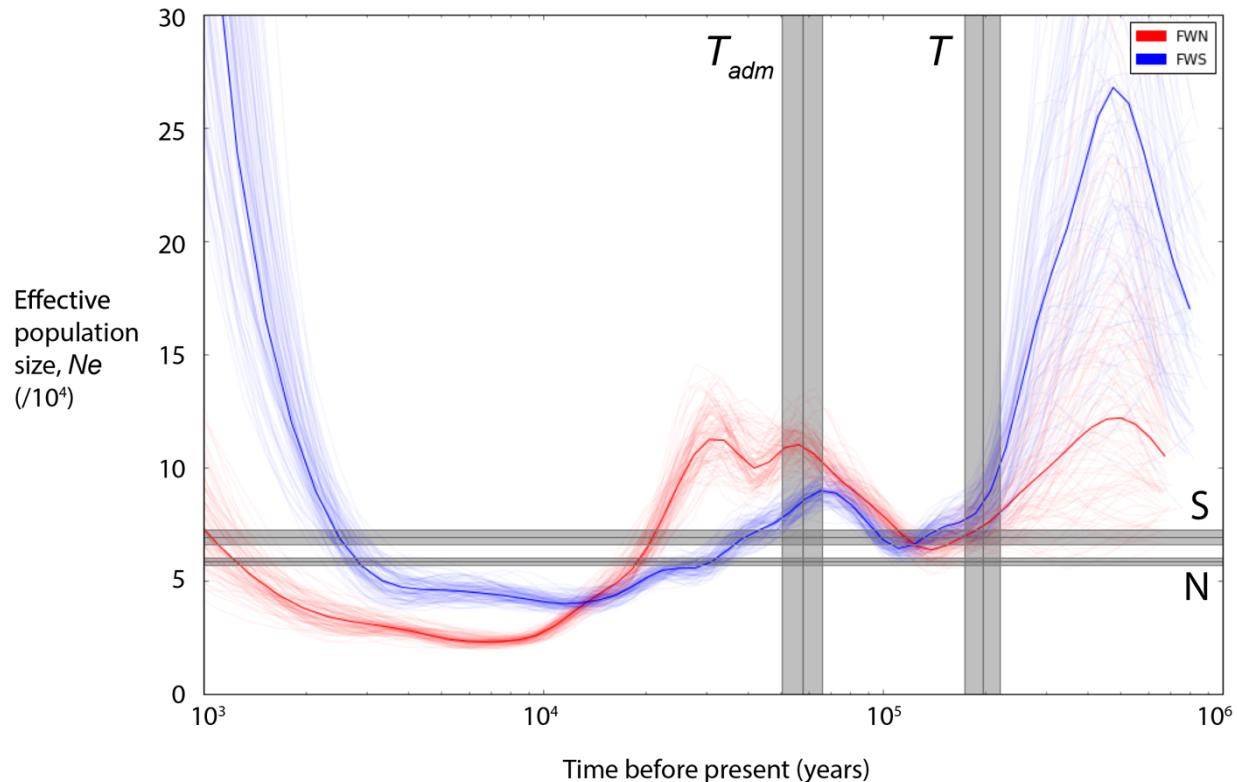
Model	$n(N_e)$	N_a	Mig	$\Delta\ln L$	LRT	Tadm	T	B	f
ADM1	1	both	0	-6,349	37,230	n/a	4.969	n/a	0.015
ADM2	1	both	0	-6,349	37,230	n/a	4.969	n/a	0.015
ADM3	1	both	N->S	-4,995	2,634	2.194	6.122	n/a	0.296
ADM4	1	both	S->N	-1,110	10,478	1.970	6.095	n/a	0.257
ADM5	2	N	0	-6,536	36,583	n/a	4.193	1.313	0.014
ADM6	2	S	0	-5,632	35,508	n/a	4.631	1.152	0.017
ADM7	2	N	N->S	-1,645	9,784	1.642	5.195	1.329	0.257
ADM8	2	N	S->N	-172	10,919	2.003	6.872	0.857	0.256
ADM9	2	S	N->S	-1975	9,122	2.281	7.276	0.767	0.291
ADM10	2	S	S->N	0	11,263	1.656 (1.509-1.802)	5.643 (5.317-5.966)	1.181 (1.093-1.269)	0.239 (0.206-0.272)
ADM10 sim						0.302	1.653	5.604	1.184


1378

IM


ADM

1380 **Figure 1.** The IM (divergence with continuous migration) and ADM (divergence with
1382 instantaneous admixture) models of population divergence with gene flow, showing the
1384 demographic parameters estimated in our blockwise method analyses. Gene flow can be
1386 modelled in either direction. Na represents the size of an ancestral population extending
1388 back into the past that splits into two daughter populations at time T (scaled by $2N_e$)
1390 generations. One population retains the same population size Na , and one is free to have
a new population size Na/B , where B is a scaling factor. Post divergence gene flow in the
IM model is a continuous process with total M per generation = $4N_e * m$, where m is the
individual migration rate per generation. In the ADM model, gene flow is modelled as an
instantaneous admixture event at time T_{adm} (scaled by $2N_e$) generations ago, at which a
fraction f of lineages in the source population are transferred to the receiving population.


1392 **Figure 2.** Map of the east coast of Australia, showing the distribution of *Ficus watkinsiana*
1394 (green) (after Dixon (2003)), the Burdekin and St. Lawrence Gaps (black), and the four
1396 sample sites (blue circles). The two Northern sampling sites are Kamerunga (1) and Kairi
study region within the whole of Australia is shown by the box in the inset at bottom left.

1398 **Figure 3.** The best supported models under (a) IM and (b) ADM scenarios for
1400 *Pleistodontes nigriventris*. Bars joining the populations at divergence are the 95%
1402 confidence intervals for the divergence time. Time is measured in thousands of years,
1404 assuming 4 generations per year. The population widths are scaled according to their
population size estimates (given in thousands). 95% confidence intervals for other
parameters are given in Table 1.

1406

1408

1410 **Figure 4.** Population size trajectories for the Northern (red) and Southern (blue)
1411 populations inferred using PSMC. Heavy red and blue lines represent estimates for each
1412 population, thin lines show individual bootstrap replicates. Maximum composite likelihood
1413 estimate (MCLE) for the population sizes for the North and South populations and the
1414 dates of admixture (T_{adm}) and population divergence (T) under the model that gives the
1415 best fit to the blockwise data (ADM10) (and their 95% confidence intervals) are overlaid in
1416 grey.

1418

Low coverage genomic data resolve the population divergence and gene flow history of an Australian rain forest fig wasp

Lisa Cooper, Lynsey Bunnefeld, Jack Hearn, James Cook, Konrad Lohse & Graham Stone

Supplemental Information

Table S1. Summary statistics for the Velvet and SPAdes assemblies for the four individual *Pleistodontes nigriventris* fig wasps. Contig N50 is a measure of assembly quality, and indicates that 50% of bases in the assembly are contained in contigs greater than or equal to this value. The CEGMA 'Complete' % completeness indicates the percentage of the 248 core eukaryotic genes (CEGs) for which >70% of the protein length was present in the genome assembly the Core Eukaryotic Genes Mapping Approach (CEGMA) program (version 2.5) (Parra et al., 2007; Parra et al., 2009). The CEGMA 'Partial' % completeness indicates the summed percentage of CEGs scored as complete or represented by <70% of their protein length in the genome assembly. BUSCO scores represent the percentages of complete (C), duplicated (D), fragmented (F) and missing (M) BUSCOs (Benchmarking sets of Universal Single-Copy Orthologs) for the Arthropoda set of 2675 genes found in the assembly. Percentage masked is the percentage of each assembly identified as comprising repetitive elements. SNPs is the number of SNPs called during the GATK variant calling pipeline, excluding multivariate sites. π is the average pairwise nucleotide diversity per site across individuals.

Statistic	Velvet	SPAdes
No. of individuals	4	4
No. of contigs \geq 200bp	173,180	139,731
Contig N50	4,104	9,643
Mean contig length	2,282	3,053
Maximum contig length	90,040	99,701
Contig span (total length of contigs \geq 200bp)	395,224,362	426,733,192
No. of scaffolds \geq 200bp		105,765
Scaffold N50		35,331
Mean scaffold length		4,097
Maximum scaffold length		581,070
Scaffold span (total length of scaffolds \geq 200bp)		433,370,639
GC content	0.293	0.296
CEGMA - complete %completeness	96.77	93.15
CEGMA - partial %completeness	99.19	99.19

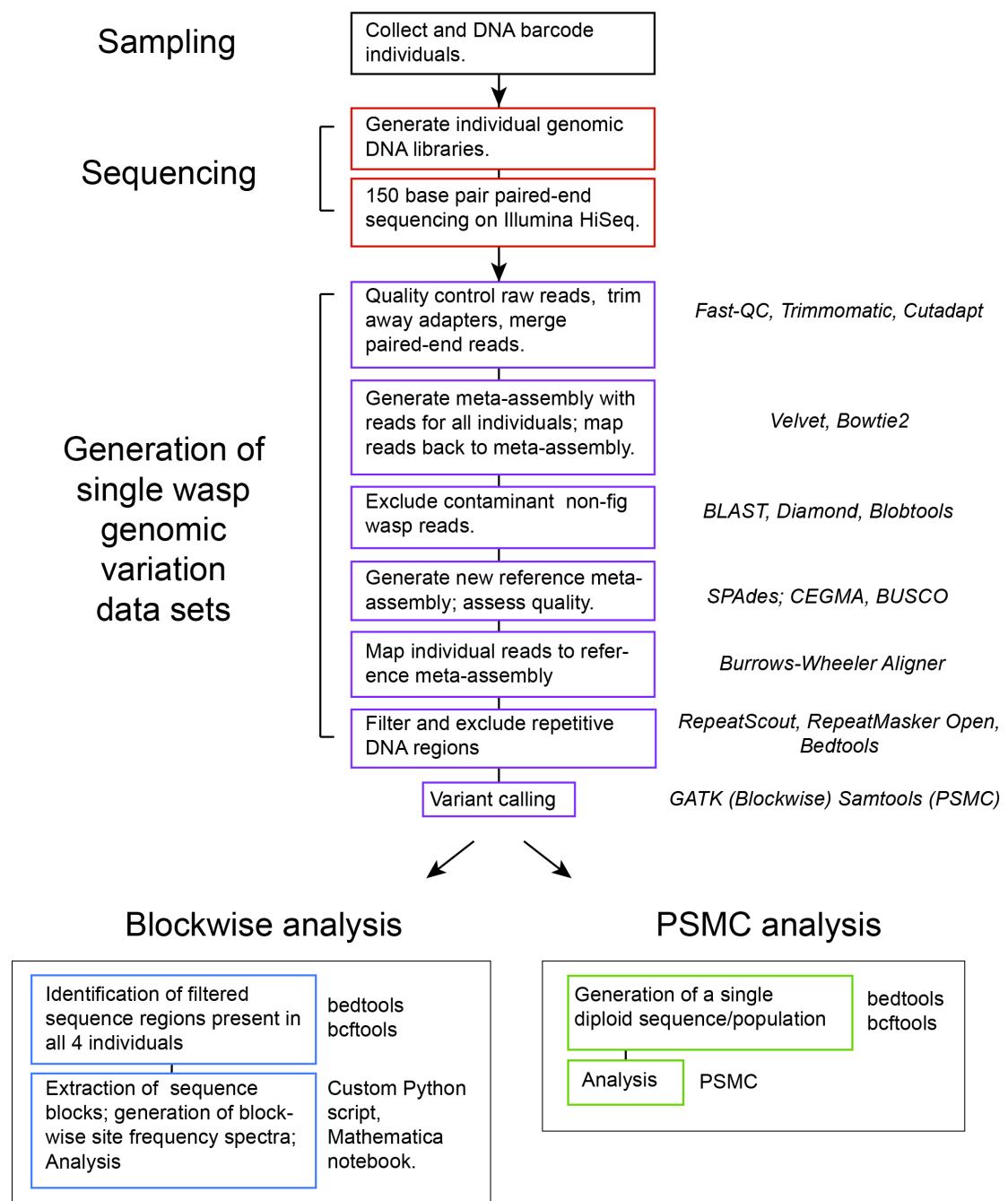
BUSCO C		74.0
BUSCO D		4.5
BUSCO F		16.0
BUSCO M		8.4
Percentage masked		21.39
SNPs		1,837,396
Mean nucleotide diversity across individuals (π)		0.00399
Mean coverage for the species-wide reference assembly		14.805568
Mean coverage per individual		3.701

References

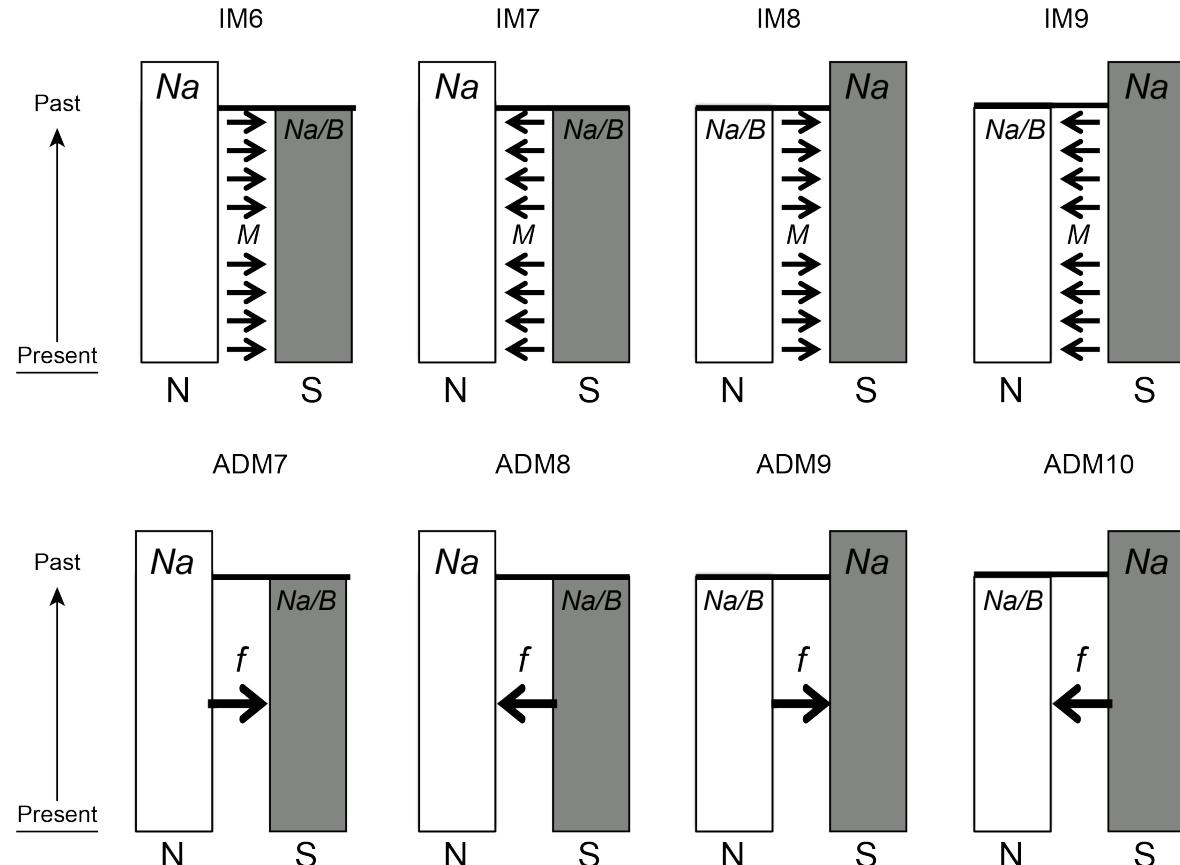
Parra, G., Bradnam, K. & Korf, I. (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. *Bioinformatics*, 23, 1061-1067.

Parra, G., Bradnam, K., Ning, Z., Keane, T. & Korf, I. (2009). Assessing the gene space in draft genomes. *Nucleic Acids Research*, 37, 289-297.

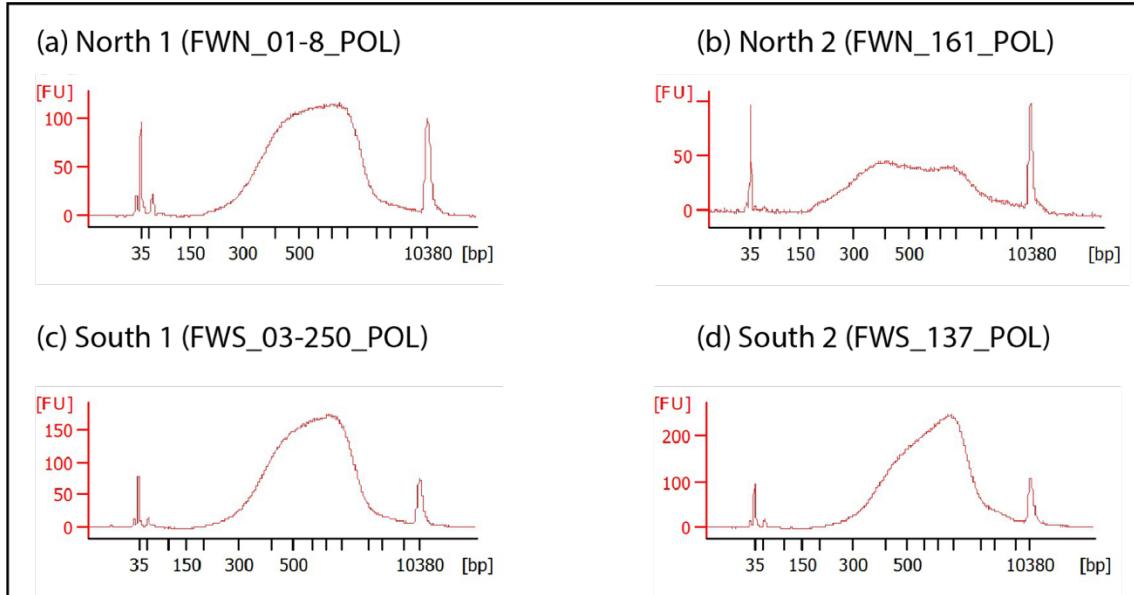
Table S2. Summary statistics for mapping of paired reads for each individual to the SPAdes reference assembly. A phred-scaled mapping quality score of 20 (Q20) means the aligner has designated the read as having a 1 in 100 chance of being misaligned. Average read coverages per individual were calculated using Mosdepth (version 0.2.9) (Pedersen and Quinlan, 2018) and per-individual bam files. Average SNP coverages per individual were extracted using vcftools (version 0.1.16) and mean depth per individual calculated in R.

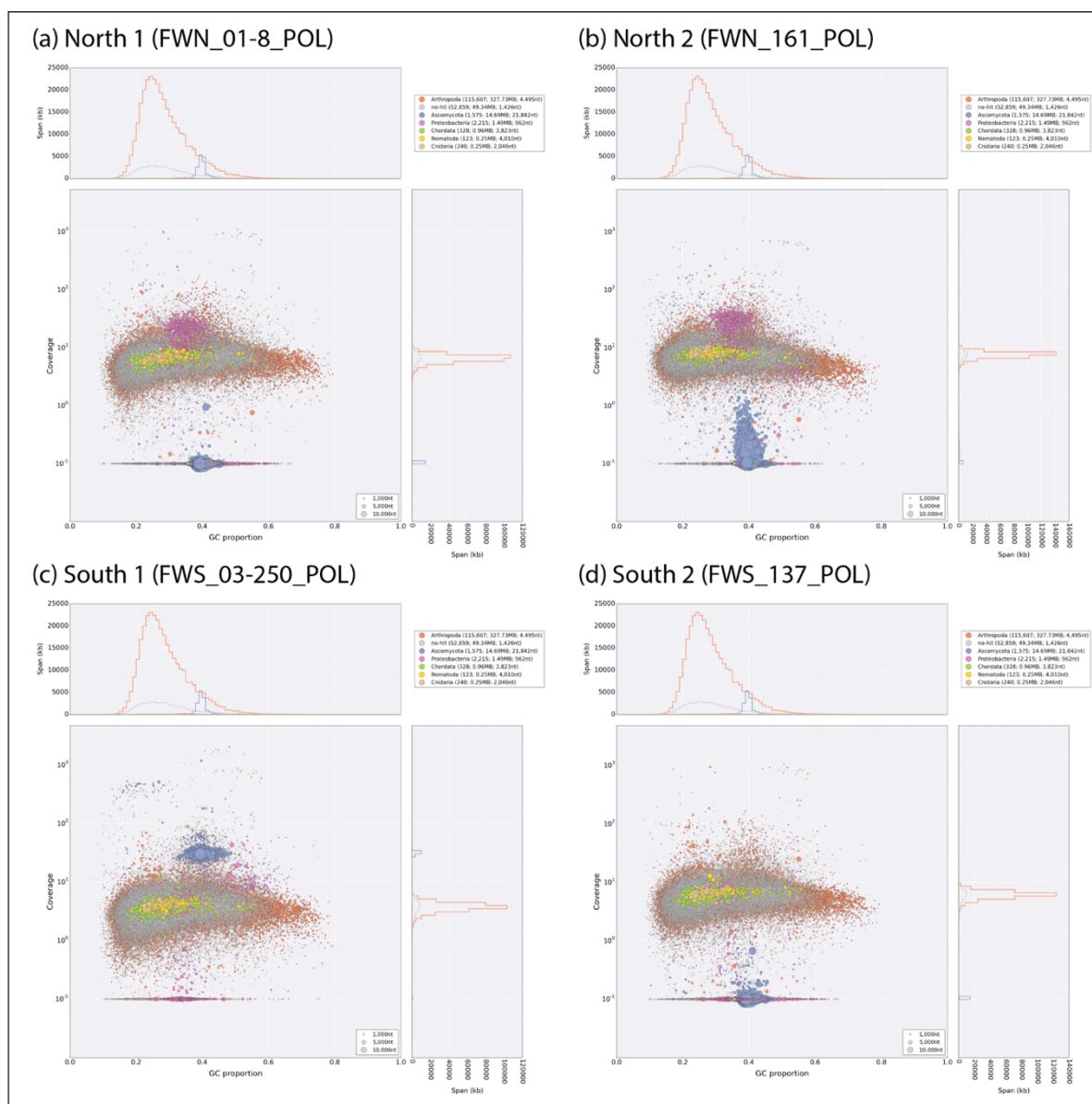

Individual	Contaminant reads (% attributed to <i>Wolbachia</i>)	Total reads (including both of the pair)	Average read coverage per individual	Average SNP read depth per individual	Percentage of reads aligned (including both of the pair)	Reads that mapped with Q20 or higher as percentage of all aligned reads
North 1	103,059 (99.75)	17,947,652	6.32	6.46	99.98	99.73
North 2	148,885 (97.80)	22,452,403	7.17	7.64	99.97	99.71
South 1	14,021 (23.90)	10,994,084	3.75	3.89	99.93	99.66
South 2	5,372 (99.20)	16,653,787	5.32	5.85	99.97	99.74

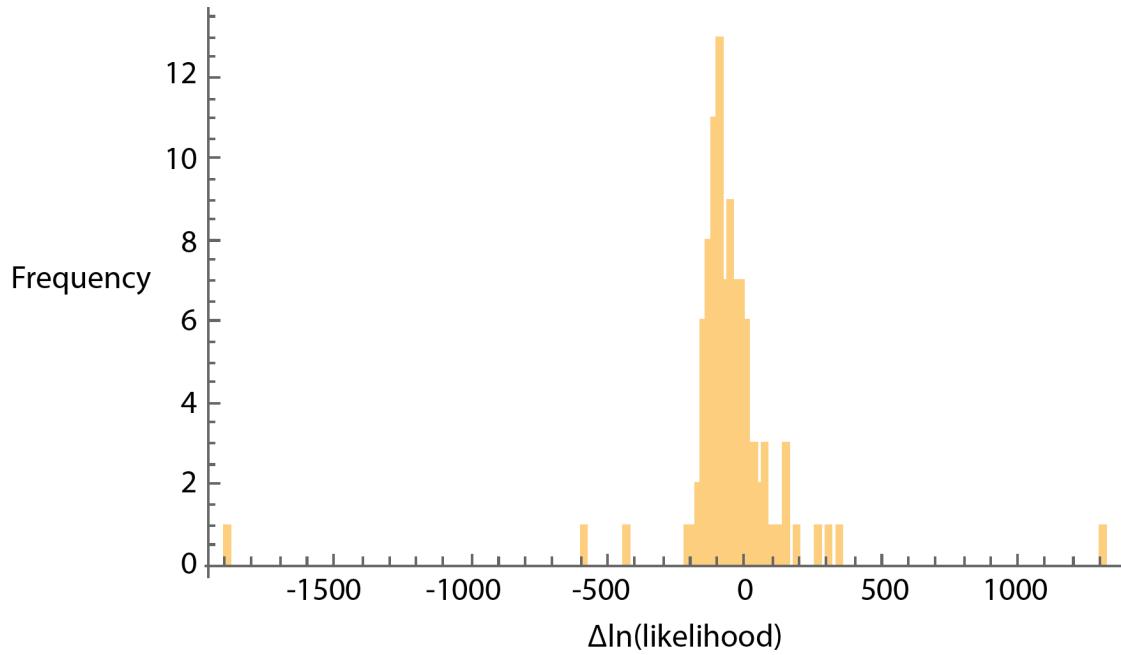
Reference:


Pedersen, B. S. & Quinlan, A. R. (2018). Mosdepth: quick coverage calculation for genomes and exomes. *Bioinformatics*, 34(5): 867–868. doi: 10.1093/bioinformatics/btx699

Supplementary Figures


Figure S1. Diagrammatic summary of the informatic pipeline leading to the blockwise and PSMC analyses used in this study. Where a particular approach was used for one but not both analyses, the relevant analysis is specified in brackets. We encourage readers to update our pipeline in a modular fashion as newer (and superior) tools are developed for individual steps.


Figure S2. The four population size and gene flow direction topologies fitted for North (N) and South (S) populations of *Pleistodontes nigriventris* in IM (upper row) and ADM models using the blockwise approach. The parameters fitted for IM and ADM models are shown in main text Fig. 1. Model names are used to refer to specific models in the main text and in Table 1. For both IM and ADM approaches we compared the models shown with simpler nested models with a single population size (Na) and no gene flow ($M=0$ in the IM model, $f=0$ in the ADM model) (models IM 1-5 and ADM 1-6, Table 1).


Figure S3. Nextera genomic library fragment size distributions for each of the four male *P. nigrovittatus*. The x axis in each plot is fragment length in base pairs (bp), and the y axis is relative abundance in fluorescent units (FUs). The distributions were generated from 1 μ l of each library run on an Agilent 2100 Bioanalyzer using a high sensitivity DNA chip.

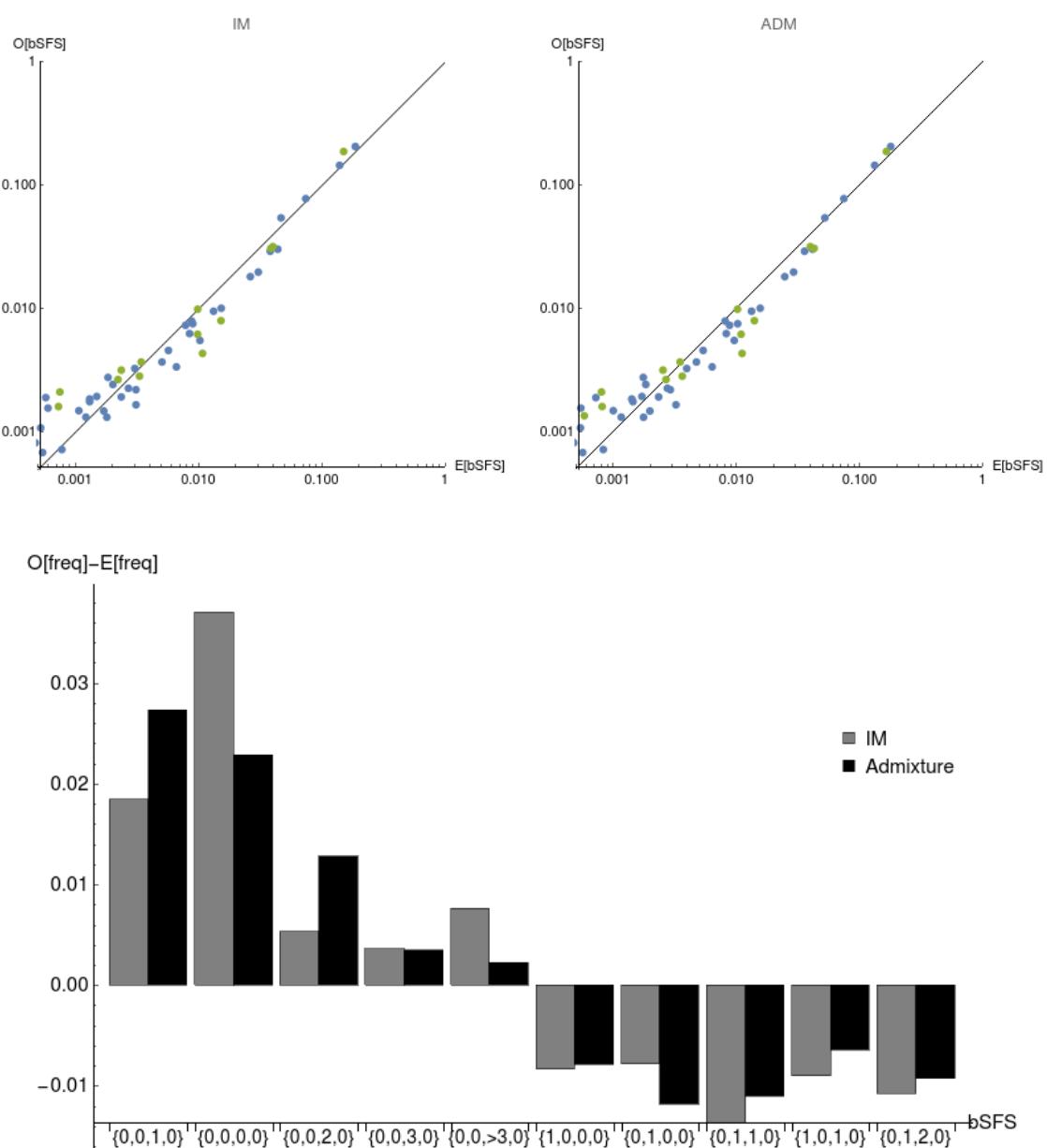

Figure S4. Blobplots for each of the four *P. nigriventris* individuals. Each point shows the GC content (x axis) and coverage (y axis) of a single contig. Points are scaled by contig length and colour-coded by phylum (see key). The distributions above and to the right of each blob plot show the span size for each phylum, e.g. blue blobs represent Ascomycota-designated contigs, pink blobs Proteobacteria-designated contigs (primarily *Wolbachia*). The total number of contigs assigned to each phylum, the total length (span) and the average contig length allocated are given in brackets. Phyla are ranked (top to bottom) in order of declining span.

Figure S5. The distribution of relative support (difference in log likelihood, $\Delta \ln L$) for the best fitting ADM (ADM10) relative to the IM (IM9) models obtained from datasets simulated under the IM9 model (maximum composite likelihood estimates obtained from the real data). This empirical distribution of $\Delta \ln L$ values under the null hypothesis (i.e. the simpler IM9 model is true) was used to obtain a critical value of 155.4 at $p=0.05$.

Figure S6. Top) Comparison of the observed frequencies of bSFS configurations with those expected under the best-fitting IM model IM9 (left), and the best fitting ADM model ADM10 (right). A perfect fit to the data would place all points on the diagonal. bSFS configurations without fixed differences are shown in green. Bottom) The residual, i.e. the difference between observed and expected frequency for the 10 most frequent bSFS configurations in the data (are ordered by their frequency in the data from right to left). The ADM model provides a better fit to both monomorphic blocks ($\{0,0,0,0\}$, the 2nd most common bSFS configuration in the data) and blocks with a large number of

