bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.406454; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Early or late gestational exposure to maternal immune activation alters
neurodevelopmental trajectories in mice: an integrated neuroimaging,
behavioural, and transcriptional study

Elisa Guma '2, Pedro Bordignon 35, Gabriel A. Devenyi 24, Daniel Gallino 2, Chloe
Anastassiadis 26, Vedrana Cvetkovska 5, Amadou Barry 3", Emily Snook 27, Jurgen
Germann 28, Celia M.T. Greenwood 321011 Bratislav Misic 2, Rosemary C. Bagot 35, M.
Mallar Chakravarty 12413

! Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada

2 Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health
University Institute, Montreal, QC, Canada

3 Ludmer Center for Neuroinformatics and Mental Health, Montréal, QC, Canada

4 Department of Psychiatry, McGill University, Montreal, QC, Canada

5 Department of Psychology, McGill University, Montreal, QC, Canada

6 Institute of Medical Science & Collaborative Program in Neuroscience, University of
Toronto

7 Faculty of Medicine, University of Toronto, Toronto, ON, Canada

8 University Health Network, Toronto, Canada

9 Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University,
Montreal, QC, Canada

10 Department of Oncology, McGill University, Montreal, QC, Canada

1 Departments of Human Genetics and Epidemiology, Biostatistics and Occupational
Health, McGill University, Montreal, QC, Canada

2 Montreal Neurological Institute, McGill University, Montreal, QC, Canada

13 Department of Biological and Biomedical Engineering, McGill University, Montreal,
QC, Canada


https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.406454; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Abstract

Prenatal maternal immune activation (MIA) is a risk factor for neurodevelopmental
disorders. How gestational timing of MIA-exposure differentially impacts downstream
development remains unclear. Here, we characterize neurodevelopmental trajectories of
mice exposed to MIA induced by poly I:C either early (gestational day [GD]9) or late
(GD17) in gestation using longitudinal structural magnetic resonance imaging from
weaning to adulthood. Early MIA-exposure associated with accelerated brain volume
increases in adolescence/early-adulthood that normalized in later adulthood, in regions
including the striatum, hippocampus, and cingulate cortex. Similarly, alterations in
anxiety, stereotypic, and sensorimotor gating behaviours observed in adolescence
normalized in adulthood. In contrast, MIA-exposure in late gestation had less impact on
anatomical and behavioural profiles. Using a multivariate technique to relate imaging and
behavioural variables for the time of greatest alteration, i.e. adolescence/early adulthood,
we demonstrate that variation in anxiety, social, and sensorimotor gating associates
significantly with volume of regions including the dorsal and ventral hippocampus, and
anterior cingulate cortex. Using RNA sequencing to explore the molecular underpinnings
of region-specific alterations in early MIA-exposed mice in adolescence, we observed the
most transcriptional changes in the dorsal hippocampus, with regulated genes enriched
for fibroblast growth factor regulation, autistic behaviours, inflammatory pathways, and
microRNA regulation. This indicates that MIA in early gestation perturbs brain
development mechanisms implicated in neurodevelopmental disorders. Our findings
demonstrate the inherent strength of an integrated hypothesis- and data-driven approach
in linking brain-behavioural alterations to the transcriptome to understand how MIA
confers risk for major mental iliness.
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1. Introduction

Prenatal brain development is a complex process orchestrated by interacting
genetic, environmental, and immune factors. During this period offspring are highly
vulnerable to a variety of risk factors for neurodevelopmental disorders that may only
emerge later in childhood or adolescence (1-3). Epidemiological and preclinical evidence
supports maternal infection as a risk factor for neurodevelopmental disorders such as
autism spectrum disorder (ASD) and schizophrenia acting as a disease primer (1,4-6).

The effects of maternal infection are most often attributed to the maternal immune
activation (MIA) rather than the specific pathogen. The increase in maternal
proinflammatory cytokines disrupts the delicate immune balance between maternal and
fetal environments, altering developmental processes (7-9). Studying the impact of MIA-
exposure in animal model offspring has been critical to establishing causality between
MIA during pregnancy and downstream neurodevelopmental disruptions (6,10,11). For
example, MIA in pregnancy induces enduring behavioural, neuroanatomical, and
transcriptional alterations relevant to schizophrenia and ASD (11-16).

However, neurodevelopmental processes and maternal cytokine responsiveness
vary across gestation. Thus, the gestational timing of MIA-exposure may influence the
nature and severity of disruptions in offspring (13,17-19). Epidemiological studies
suggest exposure in early gestation confers the greatest risk for offspring (20-23).
Nonetheless, there is significant variation in the literature with respect to the effects of
MIA-timing. Previous animal studies comparing MIA-exposure in early (gestational day
[GD] 9, ~the end of the human first trimester) or late (GD 17, ~the end of the human
second trimester) report diverging neuroanatomical and behavioural phenotypes in adult
offspring (17,24—-26).

The emergence of neuroanatomical and behavioural abnormalities in the context
of neurodevelopmental disorders is a dynamic process best characterized longitudinally.
This is a strategy that has long been championed as a means for examining how variation
from a “normative” path may lead to disordered brain development, potentially giving rise
to neuropsychiatric complications (16,27-31). The effects of MIA are complex and may
differ between regions, so whole brain strategies prioritizing developmental trajectories
are particularly relevant in furthering our understanding of MIA-impact and moving beyond
the many previous studies that have focused on isolated brain regions or behaviours in
adulthood (16,25). Furthermore, given the current COVID-19 global crisis, gaining an
understanding of the long term effects of MIA is critical, as the number of MIA-exposed
offspring is expected to rise (32—-34).

Here, we examine the impact of early (GD9) or late (GD17) prenatal MIA-exposure
on developmental trajectories in mice using longitudinal whole-brain magnetic resonance
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imaging (MRI) and multi-behavioural characterization. We identify a window of deviation
from normative trajectories, specifically the adolescent/early-adult period, and apply an
integrative analysis at this timepoint to derive a pattern of linked brain-behaviour
covariation to integrate anatomical changes in affected regions, including the
hippocampus, anterior cingulate cortex, striatum, septal nucleus with affected behaviours,
including anxiety, stereotypy, and sensorimotor gating. Greater behavioural impairments
were associated with volumetric decreases in regions including the hippocampus,
thalamus, and cerebellum, and larger volume in the cingulate cortex and striatum. We
use transcriptional profiling to probe the molecular underpinnings of this emergent brain-
behaviour pattern and find dysregulation of genes regulating fibroblast growth factor
signaling, immune signaling and autistic behaviours in one of the most affected regions,
the dorsal hippocampus. Using multiple dimensions of brain anatomy, behaviour and
gene expression we construct a comprehensive understanding of how MIA-exposure,
particularly in early gestation, shapes offspring neurodevelopment. Taken together, these
findings provide key insights into how exposure to this risk factor in gestation may
increase susceptibility for neurodevelopmental disorders later in the lifespan.
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Figure 1. Experimental timeline. A. Pregnant dams were either injected (i.p.) with poly I:C (5m/kg)
or vehicle (0.9% sterile NaCl solution) at gestational day (GD) 9 or 17 (red bars). Offspring were
weaned and sexed on postnatal day (PND) 21. Longitudinal structural magnetic resonance
imaging (MRI) was performed at PND 21, 38, 60, 90 (light blue bars). Two days following the
PND38 (adolescence) and PND 90 (adulthood) scans, mice were assessed in open field test,
social preference/novelty test (3 chambered social approach), marble burying task, and prepulse
inhibition (green bars). The attentional set shifting task was also performed following the last adult
behaviour (yellow bar). B. Univariate analyses were performed to assess group differences in
neuroanatomy over time and behaviour for offspring exposed to MIA at GD 9, the early poly I:C
(POL E) group, and offspring exposed at GD17, the late poly I:C group (POL L) group, relative to
our combined vehicle exposed group, SAL (GD9 + 17). C. Partial least squares (PLS) was used
to identify patterns of brain-behaviour covariation at the adolescent timepoint (PND38) where we

behavioural pattem
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observed our greatest group differences. This was used to identify regions of interest for RNA
sequencing (D) used to probe potential molecular underpinnings of the observed changes. Figure
made with BioRender https://biorender.com/.

2. Results

21. Early and Ilate gestational MIA-exposure differentially alter
neurodevelopmental trajectory

To test the effect of MIA-exposure at GD9 or 17 on brain development across the
human equivalent of childhood (postnatal day [PND]21), adolescence (PND38), early
adulthood (PND 60), and adulthood (PND90), we collected longitudinal in vivo structural
magnetic resonance images (MRI; 100um3) (Figure 1; section 4.2). We examined
developmental trajectories using linear mixed-effects models at each voxel in the brain,
testing for group by age (cubic natural spline fit) interaction, with sex as a covariate, and
random effects for litter and mouse (section 4.2.3). This is akin to examining deviations
from “normative” trajectories of brain development commonly performed in human
neuroimaging studies (27,35). We observed the most significant deviations in
developmental trajectories in early exposed poly I:C (POL E) offspring relative to saline
(SAL) controls (for a quadratic age fit t=3.835, <1% false discovery rate [FDR]); POL E
offspring had smaller brain volumes at P21, which then overshot between PND38 and
PND60, and normalized at PND90. Many of these regions are implicated in neuro-
psychiatric and -developmental disorders such as the hippocampus, subiculum, cingulate
cortex, striatum, nucleus accumbens, and septal nucleus (36—40) (Figure 2). Other
important regions also affected include the periaqueductal gray and later developing
regions such as the cerebellar vermis/crus | further detailed in supplementary figure 4.
Offspring exposed to late poly I:C (POL L) had a flatter developmental growth trajectory
relative to SAL (for a cubic age fit t=5.286, <1%FDR), including the nucleus accumbens,
auditory cortex, reticular nucleus, subiculum and hypothalamus, whereas the amygdala
volume decreased in later adulthood (Figure 2 & supplementary figure 4). These
regions implicated in neuropsychiatric disorder show a somewhat different curve than that
observed in the POL E group. POL E trajectories were significantly different from POL L,
confirming that early MIA exposure had the largest effect on brain anatomy (section
4.2.3; supplementary materials 2.5 & supplementary figures 9 & 10). We also
observed a significant monotonic increase in volume of cortical regions in POL E offspring
(vs SAL) with a linear age fit; cubic age for POL E (vs SAL) and linear and quadratic age
fits for POL L (vs SAL) were also significant, described in supplementary materials 2.3
& 2.4 & supplementary figures 5-8. We also explored sex differences as a post-hoc
analysis, as our model comparison did not suggest it was the optimal model for our data;
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POL E (vs POL L) males were more affected than females in a number of regions, but
none were observed with SAL as the reference group (supplementary materials 2.6 &
supplementary figure 11).
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Figure 2. Developmental trajectories differ between early poly I:C group (POL E) vs saline
controls (SAL) & the late poly I:C group (POL L) vs SAL (thresholded at 5% False discovery rate
(FDR)) (A) t-statistic map of group (POL E vs SAL) by age (quadratic natural spline) thresholded
between 5% FDR (bottom, t=3.08) and 1% FDR (top, t=3.83) overlaid on the population (second
level) average (B) Plot of peak voxels (voxel within a region of volume change showing largest
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effect) selected from regions of interest highlighted (A), wherein age is plotted on the x-axis, and
the absolute Jacobian determinants plotted on the y-axis. Here a value of 1 means the voxel is
no different than the average, anything above 1 is relatively larger, and below 1 is relatively
smaller. Ranges are not normalized to enhance comparison at each specific location in space.
Trajectories are modeled as quadratic natural splines to reflect statistical modeling. (C) t-statistic
map of group (POL L vs SAL) by age (cubic natural spline) thresholded between 5% FDR (bottom,
t=38.59) and 1% FDR (top, t=5.29). (D) Plots of peak voxels as described in (B) with curves
modeled as cubic natural splines to reflect statistics.

2.2 Early MIA-exposure induces behavioural alterations in adolescence

To capture the developmental emergence of behavioural abnormalities, we
performed a battery of tests to assay schizophrenia- and ASD- relevant behaviours in the
same animals that underwent neuroimaging (section 2.1) after the adolescent (PND38)
and adult (PND90) scans. We assessed exploratory behaviour and anxiety (open field
test), social behaviour (three chambered social preference task), stereotypy (marble
burying task), and sensorimotor gating (prepulse inhibition to acoustic startle) (Figure 1;
section 4.3).

In adolescence, POL E offspring traveled less than SAL in the anxiogenic center
zone of the open field relative to total distance of the arena, however this effect did not
survive multiple comparisons correction (uncorrected p values reported, and Bonferroni
q values, a= 0.05/11 = 0.0045; t=-2.294, uncorrected p=0.039, g=0.429; section 4.3.2;
Figure 3A). They buried more marbles than SAL in the marble burying task, potentially
suggesting greater stereotypy/anxiety (t=2.937, p=0.003, q=0.033; Figure 3B). Relative
to SAL, POL E displayed a striking impairment in sensorimotor gating (t=-4.202, p=4.0 x
10 -7, g=4.0 x 10 ~5; Figure 3C) across prepulse tones (i.e. no interaction between group
and prepulse level: t=-0.995, p=0.321; Figure 3D). Surprisingly, adolescent offspring
showed no impairments in social preference or novelty Figure 3E). Moreover,
behavioural alterations were no longer present in POL E offspring in adulthood apart from
a subthreshold impairment in social novelty behaviour (t=-2.369, p=0.0311, q=0.341;
Figure 3F), wherein POL E mice spent more time exploring the familiar than the novel
social target.

Adolescent POL L offspring did not show any significant behavioural alterations.
Some subtle behavioural alterations emerged in adulthood, however they did not survive
Bonferroni correction. Details in supplementary section 2.7 and results summary in
supplementary table 3. Only subthreshold effects were observed in the attentional set
shifting task (ASST) performed only in adulthood, (supplementary materials 2.7.1 &
supplementary figure 12). Post-hoc analyses of sex-differences are reported in
supplementary materials 2.7.2 & supplementary figure 13.
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Figure 3. Early MIA-exposure induces transient behavioural impairments whereas late MIA-
exposure does not affect behaviour. Behavioural results for adolescent (left) and adult (right)
offspring from the three treatment groups: SAL (cyan), POL E (magenta), POL L (purple). For all
boxplots the midline represents the median of the data, the box represents the interquartile range,
with whiskers denoting the full range of the data. (A) In adolescence (left), POL E offspring travel
less in the center zone (relative to the total distance traveled) at a subthreshold level (1=-2.294,
p=0.039 not significant following Bonferroni correction). No statistically significant differences
observed in adulthood (right). (B) Significantly more marbles are buried by POL E adolescent
offspring (left; t=2.937, p=0.003) than SAL offspring. No group differences were observed in
adulthood (right). (C) POL E offspring show a significant decrease in % prepulse inhibition based
on maximum amplitude of startle reaction to startle tone (left; t=-4.202, 4.0 x 10 7). This deficit is
no longer present in adulthood (right). (D) %PPl is plotted for each group with increasing prepulse
tone on the x-axis and %PPI based on maximum amplitude of startle reaction on the y-axis for
adolescence (left) and adulthood (right). No significant differences in slopes are observed
between groups, however the POL E offspring are impaired at all levels in adolescence. (E) No
significant differences in sociability index for the social preference task (i.e. preference for novel
mouse over nonsocial object) between groups at either adolescence (left) or adulthood (right). (F)
No significant differences in sociability index for social novelty (i.e. preference for novel mouse
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over familiar mouse) between groups. A subthreshold impairment was observed in POL E adult

offspring (t=-2.369, p=0.031). "p<0.05; *p<0.0045 (Bonferroni correction threshold); ***p<0.0001

2.3. Multivariate analysis of brain-behaviour data links variation in autism- and
schizophrenia-related behaviours to volume changes in key brain regions

Based on the analyses described in sections 2.1 & 2.2 we identified the
adolescent/early adult period as one of greatest deviation from “normative” trajectories
(particularly for the POL E group). Focusing on single modalities (neuroimaging or
behaviour only) may obscure more complex relationships between brain and behaviour.
To probe these potentially critical associations, we employed a data-driven technique,
partial least squares (PLS), to perform multivariate mapping between whole-brain
anatomical alterations and adolescent behavioural metrics across 4 different tests (PND
38; Figure 1; section 4.4). This analysis reveals patterns of covariation that link patterns
of disordered brain development with disordered behaviours by identifying ‘latent
variables’.

We identified two significant latent variables (LVs); LV1 described a pattern of
brain-behaviour covariation (29% covariance explained, p=0.034), whereas LV2
described a brain pattern associated with sex and litter size (19% covariance explained,
p=0.002) (Figure 4A; supplementary materials 2.8 & supplementary figure 14). For
this reason, we chose to focus on LV1. We observed a pattern of attenuated behavioural
impairment, i.e. decreased locomotion and anxiety (open field test), more social
interactions (social preference and novelty), and less impairment in sensorimotor gating
(PPI) that was associated with larger volume of the ACC, somatomotor cortex, and
striatum. A pattern of greater behavioural impairment, including increased anxiety and
locomotion, fewer social interactions, and impaired sensorimotor gating was associated
with smaller volume in the dorsal and ventral hippocampus, thalamic nuclei, and
cerebellum (vermis, crus | and Il) (Figure 4 B&C).

Inspecting correlations between the brain-behaviour weights for each mouse,
colored by group, suggests that the POL E offspring load more strongly on this pattern
than the other two groups, albeit not for all subjects (Figure 4D; supplementary figure
15 shows the brain-behaviour correlation plot after removal of an outlier on behavioural
loadings circled on plot). Finally, to determine how this pattern changes in adulthood, we
applied brain-behaviour weights for LV1 computed in adolescence to the brain and
behaviour data collected in adulthood. We observed a shift along the brain axis but not
the behaviour axis, suggesting that, as mice age, changes in brain patterns are
disconnected from changes in behavioural patterns (supplementary figure 16).
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Figure 4. Partial least squares (PLS) analysis results for first latent variable (LV1). (A) Covariance
explained (y-axis) and permutation p-values (x-axis) for all 21 LVs in the PLS analysis. LV1 is
circled in red (p=0.034, %covariance=29%) and was chosen for subsequent investigation based
on the covariance explained and behavioural relevance of results. (B) Behaviour weight for each
behavioural measure included in the analysis showing how much they contribute to the pattern of
LV1. Singular value decomposition estimates the size of the bars whereas confidence intervals
are estimated by bootstrapping. Bars with error bars that cross the 0 line should not be
considered. (C) Brain loading bootstrap ratios for the LV1 deformation pattern overlaid on the
population average, with positive bootstrap ratios in orange-yellow (indicative or larger volume),
and negative in blue (indicative of smaller volume). Colored voxels make significant contributions
to LV1. (D) Correlation of individual mouse brain and behaviour score, color coded by treatment
group with a trend line per group. Outlier on the behaviour score circled in dark gray. Early poly
I:C (POL E) offspring (magenta) express this pattern more strongly than the saline controls (SAL)
and late poly 1:C (POL L) groups.
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2.4. Early MIA-exposure induces transcriptional changes in adolescence

Based on our data-informed multivariate maps of brain-behaviour covariation, as
well as a priori knowledge of regions implicated in schizophrenia- and ASD-related
pathology (38,41—-47), we identified regions in which to probe underlying transcriptional
alterations, namely the ACC, dHIP, and vHIP. We first profiled patterns of differential gene
expression in adolescent POL E (vs SAL E) mice (Figure 1; section 4.5.2). Pooling all
ROls, we identified 962 genes significantly (q < 0.05) down-regulated and 668 genes
upregulated in POL E relative to SAL mice . We observed many differentially expressed
genes (DEGs; p<0.05) in the dHIP (246 down- and 131 upregulated, g < 0.05), with more
subtle changes in the vHIP (37 down-, 12 upregulated, g < 0.05) and ACC (17 down-, O
upregulated, q < 0.05) (Figure 5A-C). Several genes were significantly downregulated
across all three ROls, including Nfkbia, a key driver of the pro-inflammatory immune
response for increasing cytokines production (48), as well as Kif2, Ddit4, and Per1
(Figure 5D & E). Full gene lists are available in supplementary table 4.

Pathway enrichment analysis of genes upregulated in dHIP (section 4.5.3)
identified enrichment of fibroblast growth factor signaling (including FGF1, 2 and 3), an
evolutionarily controlled signaling pathway critically involved in embryogenesis and
synaptogenesis (49). Autistic behaviour and regulation of microRNAs (including miR-
466i-3p, miR-362-3p, miR-329-3p) were also enriched. Downregulated dHIP genes were
enriched for apoptosis, a critical neurodevelopmental process previously shown to be
disrupted by MIA-exposure (50,51) and microRNAs (including miR-3097-3p, miR-499-5p,
miR-717). Enrichment of NF-kappa-B inhibitor alpha signaling and erythrocyte
differentiation enrichment, both implicated in the immune system, was also observed
(52,53) (Figure 5E; supplementary table 5).

In the vHIP, downregulated genes were enriched for IL-17 signaling pathway,
previously shown to be critical for promoting an ASD-like phenotype in MIA-exposed mice
(54), apoptosis, NF-kappa-B inhibitor alpha signaling, chronic myeloid leukemia and small
cell lung cancer.

ACC upregulated DEGs were enriched for white fat cell differentiation and IL-1
signaling, also involved in pro-inflammatory signaling (55), based on wikipathways
(https://www.wikipathways.org/index.php/WikiPathways). We investigated sex
differences but no striking differences were observed (supplementary materials 2.9.1).

We compared identified DEGs to those previously identified by transcriptional
profiling of post-mortem human ASD (prefrontal and temporal cortex (56)) and
schizophrenia samples (pan-cortical (56), and prefrontal cortex and hippocampus (57)).
Although disease gene lists were not significantly enriched in the mice, FGF2
(significantly enriched in upregulated dHIP genes), Tbx4, and Ccdc92 were upregulated
in both the dHIP of our mice, and the hippocampus of individuals with schizophrenia (57).

11


https://doi.org/10.1101/2020.12.03.406454
http://creativecommons.org/licenses/by-nc/4.0/

Further, there was some overlap in downregulated genes across all 3 ROls and the pan-
cortical SCZ sample, including Nfrkb (related to Nfkbia which was downregulated in all 3
ROIs), amongst others listed in supplementary table 6. This further supports the
relevance of our findings to neuropsychiatric disorders.

To explore the transcriptional synchrony between brain regions following prenatal
MIA exposure, we used RRHO to identify genome-wide (threshold-free) patterns and
significance of overlap between gene expression profiles across pairs of brain regions.
We observed the strongest overlap in genes downregulated in both the dHIP and vHIP
(4932) (supplementary figure 17A), however, there was a degree of overlap between
all pairwise comparisons. Coordinately upregulated genes across brain regions were
enriched for myelin associated processes, oxidative phosphorylation, and mitochondrial
function. Genes coordinately downregulated across all ROIs were enriched for RNA
processing and transcriptional regulation. We report sex differences in gene overlap in
supplementary materials 2.9.2 & supplementary figures 17B.
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Figure 5. Transcriptional alteration in the adolescent brain at PND38 following MIA-exposure at
GD9. Volcano plots for the ACC (A), dHIP (B), and vHIP (C) with significantly downregulated
genes in blue, and upregulated genes in red. Genes that are either down- or upregulated in
multiple ROls (as shown in D & E) are highlighted in the volcano plots (on the left side). For the
dHIP volcano plot (B) gene names on the right hand side are enriched for FGF signaling, and
also identified in human postmortem hippocampal samples from individuals with schizophrenia.
Venn diagram showing overlap in downregulated (D) and upregulated (E) genes per ROI. F. Gene
enrichment analysis results for the dHIP, with upregulated enrichment in red and downregulated
in blue. Upregulated genes were significantly enriched for FGF signaling, as well as autistic
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3. Discussion

In this study, we demonstrate that integrating brain and behavioural phenotypes
can uncover key relationships between aberrant development due to MIA-exposure and
the putative transcriptional underpinnings. Specifically, we present whole-brain
longitudinal neuroimaging and multi-behavioural phenotyping of mice prenatally exposed
to MIA at two different gestational timepoints to evaluate developmental trajectories from
childhood to adulthood, finding that early MIA induces the most robust changes.
Integrating data from the developmental window of greatest vulnerability to characterize
patterns of brain-behaviour covariation by multivariate analysis, we identified key brain
regions and investigated transcriptional alterations in adolescence in the most affected
group, POL E, revealing putative molecular underpinnings of the observed MIA-induced
brain-behaviour patterns. Based on these analyses, we conclude that prenatal MIA-
exposure early in gestation opens a window of vulnerability in adolescence/early
adulthood characterized by an accelerated increase in brain volume and emergence of
sensorimotor gating and stereotypy/anxiety-like deficits, both of which normalize in
adulthood. These deviations may be driven by transcriptional changes in genes involved
in FGF signaling, autistic behaviours, inflammatory pathways, and microRNA regulation
particularly in the adolescent dHIP.

3.1. The case for longitudinal investigation

An accurate assessment of normal and abnormal brain development can be best
achieved with a longitudinal approach. Our understanding of the emergence of
neuropsychiatric disorders such as schizophrenia or ASD has been enhanced by
longitudinal neuroimaging studies showing that deviations in brain development begin
prior to disease onset (58,59). Additionally, longitudinal studies are more sensitive,
requiring fewer participants than cross-sectional studies to detect subtle differences in
brain structure (60) and better account for interindividual differences (61). Volumetric
changes ascertained with MRI provide a robust endophenotype in animal models that
facilitate comparison to human iliness (62,63). Previous animal imaging studies from our
own group have demonstrated the utility of a longitudinal design in the context of ageing,
genotype associations, and treatments (64—68), while others provide important insight
into early brain development (69) or sex differences in the developing brain (28).

Using our longitudinal approach we identified transient deviations in development
due to MIA-exposure in early gestation which may have been missed had we focused
solely on adulthood. This may, in part, explain why some cross-sectional studies
examining MIA-induced neuroanatomical alterations have found differing results
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depending on age of testing (13). Future work should examine trajectories starting earlier
and extending later in the lifespan.

3.2. Early MIA-exposure is associated with greater deviations in
neurodevelopmental trajectories

MIA-exposure affected several regions often implicated in ASD or schizophrenia
including the striatum, hippocampus and subiculum (36-38,70), amygdala (36,71),
periaqueductal gray (72—74) (amongst others such as the somatosensory cortices (75—
77) and septal nuclei (78,79)). The shape of the developmental trajectories is also of
significant interest. The overshoot in adolescence and early adulthood is reminiscent of
the brain or cortical overgrowth phenomenon observed in ASD (39,47,80,81)(39).
Conversely, the altered hippocampal and ACC morphology is in line with psychosis
spectrum disorders (45,46). Previous MRI-based studies examining GD9 MIA-exposure
have identified microstructural alterations in similar regions such as the ACC,
hippocampus, lateral septum, and ventral striatum, albeit later in the lifespan (25,26).

POL E offspring exhibited impairments in behaviours relevant to both ASD and
schizophrenia, namely sensorimotor gating, stereotypy/repetitive behaviours, and
subthreshold deficits in anxiety-like behaviours, consistent with previous reports of
greater suppression of exploratory behaviours and sensorimotor gating impairments (17).
However, we observed transient impairments in adolescence that were resolved in
adulthood, whereas others have observed emergence of these deficits in adulthood, not
adolescence (16,17). This may be due to a number of factors including the dose of
immunogen, route of administration, mouse strain, and more (82).

Exposure late in gestation led to subtler alterations in brain morphology, with some
regions such as the amygdala showing decreases in adulthood, not paired with
behavioural impairments. Previous cross-sectional MRI studies examining the impact of
GD17 MIA-exposure in adult offspring report white matter and cerebellar volume
decreases, and enlarged 4th ventricles (25,83). Previous longitudinal studies examining
MIA-exposure in mid-gestation (GD15) have identified enlarged lateral ventricles, often
observed in MRI investigation of schizophrenia (36), as well as decreased cortical and
hippocampal volume and altered microstructure all emerging in adulthood, providing
further evidence for the impact MIA-timing on offspring outcomes (16,25,26,84).
Behaviourally, memory and cognitive deficits have been observed in GD17 MIA-exposed
adult offspring (17,24,85), whereas we only observed subthreshold deficits in cognitive
performance in the ASST task. Importantly, previous work comparing the effects of GD9
and 17 MIA-exposure also observed diverging effects on offspring brain development
(17,25,86). Taken together, these findings indicate increases in maternal cytokine levels
due to MIA that occur early in gestation may have more profound effects on offspring
development . However, they also support the theory that MIA is a disease primer, as
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exposure to this risk factor alone does not seem to be sufficient in inducing long-term
deficits later in the lifespan (5,11,87,88).

Although speculative, it is worth considering what neurodevelopmental processes
may be altered by the MIA-exposure at the gestational epochs we chose. At GD9 the
developing brain is colonized by microglia, and neuronal and immune cell migration,
neurogenesis, and cortical plate formation are being initiated (3,89,90). At GD17 the
organization of cortical layers and the hippocampus are underway, as are
synaptogenesis, gliogenesis, and apoptosis (1,5,91). It remains unclear to what extent
MIA-exposure during these periods influences downstream neurodevelopmental changes
across the differing scales of brain architecture. Previously, MIA exposure at GD9 has
been associated with an increased density of activated microglia both in the embryo and
adolescent brain; this may in turn interfere with synaptic pruning and circuit formation
leading to aberrant neurodevelopment (92—94). Alterations to myelin-related structure
and gene expression have been observed in GD17 MIA-exposed offspring (83). Finally,
MIA in mid-gestation (GD12-15) has been associated with aberrant neurogenesis,
reductions in the number of cortical neural stem cells, and reduced dendritic spine density
(95,96). Future work examining MIA at different gestational times (i.e. mid-gestation) with
the integrative approach we developed may further our understanding of how MIA
disrupts brain development.

3.3. Identifying brain-behaviour associations

One major limitation when examining neurodevelopmental phenotypes in either
human or animal models is the tendency to assign phenotypes at the level of a single
structure, or to examine associations between these structures and a specific symptom
or behaviour (97). Indeed, these strategies disregard the ever-increasingly
acknowledged network-like architecture of the brain and the inherent relationships to
behaviour (98,99). In contrast, multivariate strategies, such as PLS, move beyond
simplistic associations to better understand brain-behaviour relationships (100-102). In
the context of small animal imaging, PLS provides a novel, streamlined method to assess
cross-sectional brain-behaviour patterns from large cohorts of deeply phenotyped mice.
This analysis, seldom applied to preclinical studies, has been widely applied to human
neuroimaging studies investigating, for example, the relationship between neuroanatomy
and gene expression (103) or clinical and cognitive symptoms in schizophrenia (104).
This integrative analysis permits inclusion of multiple measures from the same individual
while accounting for their potential inter-relatedness. Further, it balances hypothesis
driven experimental choices (brain regions, behaviours tested, etc) with hypothesis-free
data-driven investigation of their relationships. Finally, it may promote cross-species
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translation by improving methodological homology between human and rodent
neuroimaging studies.

3.4. Neuroimaging-driven RNA sequencing reveals potential molecular
underpinnings of brain-behaviour relationships.

We observed significant enrichment of gene ontology terms for FGF signaling
pathways, as well as autistic behaviour, and microRNA regulation amongst upregulated
dHIP genes. Interestingly, we also saw enrichment of immune pathways such as IL-17 in
the vHIP, IL-1 in the ACC, and NFK-B in the d- and vHIP in line with previous findings
(54). This provides further evidence for immune system dysregulation following MIA-
exposure, which may interfere with neurodevelopmental processes such as neuronal
migration, microglial function, and immune system development (8,105,106).

FGFs are signaling proteins that influence the development and repair of most
mammalian tissues (107,108). They play a critical role in embryonic development,
influencing the growth and patterning of several brain structures, cell survival and
proliferation, neurogenesis and neuronal repair (109,110). In preclinical studies, FGF
signaling inhibition has been observed to disrupt cortical gyrification, neural progenitor
development in the subventricular zone of the developing cerebral cortex (111),
hippocampal excitatory and inhibitory synaptogenesis and cell maturation (112,113), and
left-right symmetry, all phenomena observed in schizophrenia and autism (114).
Enhanced FGF signaling has been associated with beneficial effects, such as reduced
anxiety, enhanced neurogenesis, and reverses hippocampal and cortical atrophy
(115,116). Dysregulation of FGF signaling has been proposed to increase vulnerability to
ASD, producing variation in brain growth and cortical circuit formation (117,118). Further,
a few of the FGF signaling genes we observed to be regulated have also been implicated
in schizophrenia in human post-mortem brains (57). FGF receptor 2 single-nucleotide
polymorphisms associate with schizophrenia (108,119,120); this gene was significantly
upregulated both in the dHIP of our early MIA-exposed mice and the hippocampi of
individuals with schizophrenia (57).

3.5. Limitations

The results and discussion of this paper should be considered in light of their
limitations. No animal model can fully recapitulate the human condition, therefore not all
observations made here may apply to human pathology and brain development (89).
However, we do observe interesting parallels between our MIA-exposed mice and
psychiatric patients’ altered trajectories of brain development, behaviour, and
transcription. Further, studies investigating the impacts of MIA exposure in humans also
report that earlier exposure induces more serious downstream effects on offspring (see
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(13) for a review). Although both the neuroimaging and behavioural studies conducted
were longitudinal, our multivariate and transcriptional analyses were cross-sectional.
Future work should be done to extend these analyses across the lifespan. We
investigated sex differences; however we did not detect statistically significant
interactions in neuroanatomy or behaviour. Although we collected data for both male and
female offspring, we may still have been underpowered to detect potentially subtle sex-
specific effects. When comparing our two POL groups directly, we did observe greater
alterations in male POL E offspring, which may indicate existence of subtle sex-effects
(121,122). Surprisingly we did not observe any strong social deficits, often reported in
MIA-offspring and central to ASD pathology (11,54,123). This may be a function of MIA-
timing, age of investigation, dose of immunogen used, or route of administration. In
contrast to our findings, previous studies observed MIA-offspring deficits in adulthood
(16,17); it is possible that these may emerge later in the lifespan or following exposure to
an additional risk factor.

3.6. Conclusions

We comprehensively examined the effects of prenatal MIA-exposure, a known risk
factor for neuropsychiatric disorders, at two different gestational timepoints, on offspring
brain and behaviour development using a robust translational measure: in vivo rodent
imaging. We applied multivariate statistical analyses to integrate these modalities,
leveraging this to investigate underlying transcriptional changes in the group and age at
which we detected the greatest changes. Taken together, these findings suggest that
prenatal MIA-exposure early in gestation may interfere with critical neurodevelopmental
processes more so than exposure in late gestation. This leads to transient deviations in
brain and behaviour development in adolescence and early adulthood, potentially
increasing susceptibility to other risk factors, but, which, in the absence of subsequent
challenge, normalize later in adulthood. These may be linked to altered transcription of
genes involved in FGF signaling and inflammatory pathways.
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4. Methods

4.1. Animals, Breeding & Maternal Immune activation protocol

Timed-mating procedures were used to generate pregnant dams, who were
injected intraperitoneally with either poly I:C (POL; P1530-25MG polyinosinic—
polycytidylic acid sodium salt TLR ligand tested; Sigma Aldrich) (5mg/kg) or vehicle (SAL;
0.9% sterile NaCl solution) at GD 9 or 17 resulting in 4 groups: POL E (5 dams), SAL E
(4 dams), POL L (6 dams), SAL L (5 dams). Experimental design is outlined in Figure 1
(see Supplementary materials 1.1 for breeding, model, birth and weaning details). We
confirmed the immunostimulatory potential of our poly I:C in a separate set of dams
(details for procedure in supplementary materials 1.6 and results in supplementary
materials 2.1 & supplementary table 2).

4.2. Magnetic resonance imaging

4.2.1. Acquisition

Longitudinal T1-weighted (100 um?3) structural MRI scans were acquired in vivo at
PND 21 (~childhood), 38 (~adolescence), 60 (~young adulthood), and 90 (~adulthood)
(89,90) at the Douglas Institute in MIA- or SAL-exposed offspring (7 Tesla Bruker Biospec
70/30; matrix size of 180 x 160 x 90; 14.5 minutes, 2 averages) (64—66,68). MnClz (62.5
mg/kg) was used for contrast enhancement (60,124), and isoflurane to anesthetize the
mice (5% induction, 1.5% maintenance) (Supplementary materials 1.3 for more details).

4.2.2. Image processing

Images (n=376) were exported as Digital Imaging and Communications in
Medicine (DICOM), converted to the Medical Imaging NetCDF (MINC) format,
preprocessed to enable downstream analyses, and visually inspected for quality control
(QC; n=27 scans were excluded
https://github.com/CoBrALab/documentation/wiki/Mouse-QC-Manual-(Structural)).
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Preprocessed images were used as inputs for the two-level Pydpiper registration
toolkit to perform longitudinal deformation based morphometry analysis
(https://wiki.mouseimaging.ca/pages/viewpage.action?pageld=1868779) (125,126).
Briefly, in the first level, affine and non-linear registration was used to create a subject-
average per mouse (by registering all scans for one mouse). In the second level all subject
averages were registered to create a study average and a common space for statistical
analysis (125) (Supplementary figure 1 for workflow). Quality control (QC) was
performed through visual inspection to ensure that registrations worked as expected.
Final numbers per group/timepoint are presented in table 1.

Table 1. Sample per timepoint following quality control. Postnatal day (PND); poly
I:C (POL); saline (SAL); late (L; gestational day 17 exposure); early (E; gestational day 9
exposure); male (M); female (F).

PND 21 scan PND 38 scan PND 60 scan PND 90 scan

SAL E + L (9|37 (19M/18F) |38 (20M/18F) |41 (21M/20F) | 40 (20M/20F)
litters)

POL E (5|21 (8M/13F) 21 (9M/12F) 20 (8M/12F) 20 (8M/12F)
litters)

POL L (6|27 (12M/15F) |29 (13M/16F) |27 (14M/13F) |28 (14M/14F)
litters)

Both relative (nonlinear deformations with residual affine removed) and absolute
(linear plus nonlinear deformations) Jacobian determinants (127) of the deformation fields
of the first level were resampled into the second level final average space in order to
perform statistics, and blurred with a 0.2 mm full-width-at-half-maximum 3D Gaussian to
better conform to Gaussian assumptions for downstream statistical testing (125,126).
Further detail in supplementary materials 1.3 and supplementary figure 1.

4.2.3. Statistical analysis

Statistical analyses were performed using the R software package (R version
3.5.1, RMINC version 1.5.2.2 www.r-project.org). Linear mixed-effects models (Ime4_1.1-
21 package) were chosen for our longitudinal analyses as they are robust to missing data,
and allow for fitting both fixed and random effects for the same subject over time. To
select the most appropriate natural spline fit for our age term, we compared increasingly
complex models with the log-likelihood ratio test at every voxel in the brain following
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similar methodology presented in previous studies (Supplementary materials 1.7.1)
(28,69). Modeling age with a cubic natural spline fit best explained the variance in our
data, with group and sex as fixed effects, and litter and mouse id as random intercept
effects (supplementary section 2.2 and supplementary figure 3). SAL E and L
offspring were merged into a single group after ensuring they were not significantly
different (Supplementary materials 1.7.2). A voxel-wise linear mixed-effects model was
applied to the first level absolute Jacobian determinant (to examine within-subject
trajectories) to assess the effect of MIA-exposure on development with an age (cubic
natural spline fit) by group interaction, covarying for sex (fixed effects), while subject and
litter were modeled as random intercept effects. The model was run again with POL L as
the reference group in order to compare POL E and POL L directly. The False Discovery
Rate (FDR) (128) correction for multiple comparison was applied to our statistical tests.
As a follow up analysis, we investigated whether there was a sex by group by age (cubic
nonlinear spline) interaction (supplementary materials 2.3).

4.3. Behavioural testing

4.3.1. Behavioural protocols

Tests were performed following the adolescent (PND38) and adult (PND90) scans,
with a 2 day resting phase between tests and 1 hour habituation to the behavioural room
prior to the test. Videos were analyzed using the Ethovision XT 12 tracking system
(Noldus Information Technology, Leesburg, VA, USA).

Briefly, the open field test was used to assess exploratory behaviour and anxiety
by comparing the distance traveled in the anxiogenic center zone (40% of a 45x45 cm?
grey plastic arena) compared to the corners and edges. Mice were allowed to explore the
arena for 15 minutes under bright light.

For the three chambered social approach task, mice were habituated (10
minutes) under red light to a three-chamber plastic box (26 (I) x 21.6 (w) x 21.6 (h) cm)
with divider panels that have open doors, with a wire container (9.5 (h) 7.6 (d) cm) in the
two extreme chambers. To measure social preference (10 minutes), interactions with an
age-matched same-sex stranger mouse were compared to interactions with a non social
object (each under wire containers); to measure social novelty, interactions were
compared between the same stranger mouse and a novel stranger mouse (which
replaced the non social object).

The marble burying task was used to assess stereotypic and repetitive digging
behaviour. We measured how many of 15 equidistantly spaced marbles mice buried in
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30 minutes under standard wood chip bedding (~7 cm deep layer) in a standard home
cage (28 (h) x 17 (w) x 12.7 (h) cm); see (129).

Sensorimotor gating to acoustic startle was measured with the prepulse
inhibition task using commercially available startle chambers (San Diego Instruments,
San Diego, CA). Startle response to an acoustic stimulus (120 dB) was compared to trials
in which the startle stimulus was preceded by a 30ms prepulse stimulus ranging from 3-
15 dB above background noise (73-85 dB; 5 trials/stimulus, 3dB increments).

An additional cognitive flexibility and reversal learning measure (attentional set
shifting task [ASST] (130)) was performed following PND90 behaviours to determine if
there were lasting effects of the MIA-exposure, as previously reported in adult MIA-
exposed offspring in late gestation (17) (supplementary materials 1.4 for details). Mice
were perfused following the last behaviour (supplementary materials 1.5).

4.3.2. Statistical analysis

We used linear mixed-effects models for adolescent and adult behavioural data,
with group and sex (SAL and male as references) as fixed effects, and litter as a random
effect to account for possible litter variability. A Bonferroni correction was applied (5 tests
in adolescence, 6 in adulthood: a= 0.05/11 = 0.0045 set as significance threshold,
uncorrected p-values, and corrected g-values reported). As with the neuroanatomy, a
follow-up assessment of sex differences was carried out (supplementary materials
2.7.2.).

4.4 Partial Least Squares Analysis

Partial Least Squares (PLS) is a multivariate analysis which allows us to find the
optimal weighted linear combination of two variables (voxel-wise DBM and behavioural
metrics) that maximally covary together (131-133). A covariance matrix was computed
from the z-scored brain (voxel-wise DBM measures) and behaviour (relevant behavioural
metrics, PND38 tests, sex, and litter) matrices. Singular value decomposition was applied
to the covariance matrix (134) to yield a set of orthogonal latent variables (LVs). This
generates a set of ‘brain weights’ and ‘behaviour weights’ describing how each voxel or
behavioural variable, respectively, weighs onto a given LV, and a singular value,
describing the proportion of covariance explained by the LV. Brain and behaviour weights
were projected onto individual subject data to generate subject-specific brain and
behaviour scores. Permutation testing (n=1000 repetitions) was used to assess the
statistical significance of each LV and bootstrap resampling (n=1000) was applied to
assess the contribution of original brain and behaviour variables to each LV. Bootstrap
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ratios were thresholded at values corresponding to a 95% confidence interval (131,135).
Further details can be found in supplementary materials 1.7.3.

4.5. Transcriptional analysis

4.5.1. Brain Extraction and RNA Isolation

A separate cohort of mice (PND38; POL E n=6M/6F, 5 litters, SAL E n=6M/6F, 6
litters) were euthanized in their home cage, brains were rapidly extracted and placed in
chilled PBS and sliced (1 mm thick sections); tissue was punched from the ACC (bregma
+0.14 mm), dHIP (bregma -2.80 mm), and vHIP (bregma -3.08 mm) and flash frozen on
dry ice (death to freezing all samples < 3 minutes). RNA extraction was performed using
ReliaPrep Tissue RNA Miniprep system (Promega). RNA quantity and integrity was
analyzed using Nanodrop (Thermo Fisher) and Bioanalyzer (Agilent). The samples were
randomized during library preparation and sequencing was performed on lllumina
NovaSeq 6000 at the McGill University Génome Québec Innovation Centre.

4.5.2. Differential expression

Read counts per gene were preprocessed (supplementary materials 1.8.1 &
supplementary figure 2). Differential expression (DE) between POL E and SAL E
offspring was calculated using the limma-voom pipeline from Bioconductor’s limma
package (Version 3.40.6) (136). A linear mixed model was used to account for the
repeated measurements from each subject to assess DE between groups at each region
of interest (ROI) (covarying for sex), as well as global differences between groups
(covarying for sex and ROI), correcting for multiple comparisons with FDR (128). A follow
up analysis was performed on each sex separately to assess potential sex differences
(supplementary materials 1.8.2). Rank rank hypergeometric overlap (RRHO) was used
to evaluate the similarity of genome-wide DE in pairs of regions by determining the degree
of statistical enrichment using hypergeometric distribution while sliding across all
possible thresholds through two ranked lists (137)
(https://systems.crump.ucla.edu/rankrank/rankranksimple.php; see  supplementary
materials 1.8.3).

4.5.3 Pathway Enrichment, Rank Rank Hypergeometric Overlap, and Disease Gene
Analysis

Pathway enrichment analysis was performed using g:Profiler (138,139) to identify
pathways with significantly enriched or overrepresented genes from our gene lists ranked
by the -log10P value relative to a background gene list. Pathways include Gene Ontology
(GO) terms (biological process, cellular components, molecular function), pathways
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(Reactome, KEGG), networks, regulatory motifs, and disease phenotypes (138).
Enrichment significance was assessed using g:GOSt, applying the hypergeometric
distribution. Multiple comparisons correction was performed using g:Profiler’s tailor-made
algorithm g:SCS (140) (supplementary materials 1.8.4). To measure concordance of
differential gene expression patterns between POL E and SAL E across ROls and
between sexes we applied a rank rank hypergeometric overlap test (RRHO) (Cabhill et al.
2018); a pathway enrichment analysis was performed on overlap lists (supplementary
materials 1.8.3).

Using the Bioconductor GeneOverlap package
(https://www.bioconductor.org/packages/release/bioc/html/GeneOverlap.html) in R, dHIP
and vHIP DEGs were compared to those identified by human post-mortem studies in the
HIP of individuals with schizophrenia (57). Similarly, all our ROIls were compared to
schizophrenia and ASD pancortical DEGs (56) (supplementary materials 1.8.5).
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