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Abstract

How does blindness onset impact on the organization of cortical regions coding for
the deprived and the remaining senses? We show that the coding of sound categories in
the occipital cortex is enhanced and more stable within and across blind individuals when
compared to sighted controls, while a reverse group difference is found in the temporal
cortex. Importantly, occipital and temporal regions share a more similar representational
structure in blind people, suggesting an interplay between the reorganization of occipital
and temporal regions following visual deprivation. We suggest that early, and to some
extent late blindness, induces network-level reorganization of the neurobiology of auditory
categories by concomitantly increasing/decreasing the respective computational load of
occipital/temporal regions. These results highlight the interactive nature of regional brain

development in case of sensory deprivation.
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Introduction

The occipital cortex of early blind individuals enhances its response to non-visual
stimuli (Van Ackeren et al., 2018; Amedi et al., 2003; Bedny et al., 2011; Collignon et al.,
2011; Sadato et al., 1996). Importantly, this mechanism of crossmodal plasticity (CMP)
follows organizational principles known to be implemented in the occipital cortex of sighted
people for vision (Dormal and Collignon, 2011; Ricciardi et al., 2014; Striem-Amit et al.,
2012a; Wang et al., 2015). For instance, we have recently shown that the Ventral Occipito-
Temporal Cortex (VOTC) reliably encodes auditory categories in early blind using a
representational structure and connectivity partially similar to the one found in vision
(Mattioni et al., 2020).

If occipital regions enhance their functional tuning to sounds in early blinds, what is
the impact of visual deprivation on the brain regions coding for the remaining senses?
Contradictory results emerged from previous literature about the way intra-modal plasticity
expresses in early blindness. Several studies suggested that visual deprivation elicits
enhanced response in the sensory cortices responsible for touch or audition (Elbert et al.,
2002; Gougoux et al., 2009; Manjunath et al., 1998; Naveen et al., 1998; Pascual-leone and
Torres, 1993:; Rauschecker, 2002; Réder et al., 2002). In contrast, some studies observed a
decreased engagement of auditory or tactile sensory cortices during non-visual processing
in early blind individuals (Bedny et al., 2015; Burton et al., 2002; Pietrini et al., 2004;
Ricciardi et al., 2009; Stevens and Weaver, 2009; Striem-Amit et al., 2012b; Wallmeier et al.,
2015). Those opposing results were, however, both interpreted as showing improved
processing in the regions supporting the remaining senses in blind people: more activity

means enhanced processing and less activity means lower resources needed to achieve the
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same process; so, both more and less mean better. In this fallacious interpretational
context, the application of multi-voxel pattern analysis (MVPA) methods to brain imaging
data represents an opportunity to go beyond comparing mere activity level differences
between groups by allowing a detailed characterization of the information contained within
brain areas (Berlot et al., 2020; Kriegeskorte et al., 2008a). An intriguing possibility is that
early visual deprivation triggers a redeployment mechanism that would reallocate part of
the sensory processing typically implemented in the preserved senses (i.e. the temporal
cortex for audition) to the occipital cortex deprived of its dominant visual input (Dormal et
al., 2016; Jiang et al., 2016). A comprehensive investigation of information processing in
both the deprived and preserved sensory cortices in the blind is, however, missing.

A further important question that remains debated is whether and how the onset of
blindness impacts the organization of cortical regions coding for the preserved and
deprived senses. We have recently suggested that the increased representation of sound
categories in the VOTC of early blind people could be an extension of the intrinsic
multisensory categorical organization of the VOTC, that is therefore partially independent
from vision in sighted as well (Mattioni et al., 2020; see also Amedi et al., 2002; Ricciardi
and Pietrini, 2011). According to this view, one should assume that late visual deprivation
may extend the non-visual coding that is already implemented in the occipital cortex of
sighted people. In contrast with this hypothesis, previous studies suggested that late
blindness triggers a reorganization of occipital region that is less functionally organized than
the one observed in early blindness (Bedny et al., 2012; Collignon et al., 2013; Kanjlia et al.,
2019), promoting the idea that crossmodal plasticity in late blindness is more stochastic and

epiphenomenal compared to the one observed in early blind people.
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With those unsolved questions in mind, the current study aimed to carry out a
comprehensive multivariate exploration on how sound categories are encoded in the
temporal and occipital cortices of early blind and late blind people, compared to
individually age and gender matched sighted individuals.

Method

Participants

Auditory experiment

Fifty-two participants involved in our auditory fMRI study: 17 early blinds (EB;
10Female(F)), 15 late blinds (LB; 4F) and 20 sighted controls (SC). We assigned the SC to 2
different groups to maximize the matching with their respective blind group: a sighted
control group for the early blind (SCEB) including 17 subjects (6F) and a sighted control
group for the late blind (SCLB) including 15 subjects (4F). Since some SC participants were
included in both the SCEB and the SCLB groups, we never directly compared these two
groups.

EB participants were congenitally blind or lost their sight very early in life and all of
them reported not having visual memories and never used vision functionally (SI-Table 1).
The EB and SCEB were age (range 20-67 years, mean + SD: 33.29 + 10.24 for EB subjects,
range 23-63 years, mean + SD: 34.12 + 8.69 for SCEB subjects) and gender (X?(33)=1.46;
p=0.23) matched. One EB participant was able to only perform two out of the five runs and
was excluded from the analyses.

LB participants acquired blindness after functional visual experience (age of
acquisition ranging 6-45 years old and number of years of deprivation ranging 5-43 years).

All of them reported having visual memories and having used vision functionally (SI-Table
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1). The LB and SCLB were age (range 25-68 years, mean + SD: 44.4 + 11.56 for LB subjects,
range 30-63 years, mean + SD: 37.7 £ 8.69 for SCLB subjects) and gender (X*(30)=0; p=1)
matched.

All participants were blindfolded during the task. Participants received a monetary
compensation for their participation. The ethical committee of the University of Trento
approved this study (protocol 2014-007) and participants gave their informed consent
before participation.

Visual experiment

In few of our analyses (e.g. topographical analysis, hierarchical clustering analysis,
RSA between subjects correlation) we used additional data from a visual version of the
experiment.

An additional group of 16 sighted participants (SCv) took part in this visual version
of the experiment (Mattioni et al., 2020).

Materials and methods

Since this paper is submitted as a Research Advances format, it represents a
substantial development that directly build upon a Research Article published previously by
elife (Mattioni et al., 2020). As for the journal recommendation, no extensive description of
material and methods will appear when directly overlapping with our previous publication.

Stimuli

Auditory experiment

A preliminary experiment was carried out to select the auditory stimuli. Ten
participants who did not participate in the main experiment were presented with 4 different

versions of 80 acoustic stimuli from 8 different categories (human vocalization, human non-
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vocalization, birds, mammals, tools, graspable objects, environmental scenes, big
mechanical objects). We asked the participants to name the sound and then to rate, from 1
to 7, how representative the sound was of its category. We selected only the stimuli that
were recognized with at least 80% accuracy, and among those, we choose for each
category the 3 most representative sounds for a total of 24 acoustical stimuli in the final set
(see Sl-table 2). All sounds were collected from the database Freesound

(https://freesound.org), except for the human vocalizations that were recorded in the lab.

The sounds were edited and analyzed using the software Audacity

(http://www.audacityteam.org) and Praat (http://www.fon.hum.uva.nl/praat/). Each mono-

sound (44,100 Hz sampling rate) was 2 seconds long (100msec fade in/out) and amplitude-
normalized using root mean square (RMS) method.

The final acoustic stimulus set included 24 sounds from 8 different categories
(human vocalization, human non-vocalization, birds, mammals, tools, graspable objects,
environmental scenes, big mechanical objects) that could be reduced to 4 superordinate
categories (human, animals, manipulable objects, big objects/places) (see fig. 1 and SI-
Table 2).

Visual experiment

We created a visual version of the stimuli set. The images for the visual experiment
were colored pictures collected from Internet and edited using GIMP
(https://www.gimp.org). Images were placed on a gray 400 x 400 pixels background.

Procedure

Before entering the scanner, each participant was familiarized with the stimuli to

ensure perfect recognition. In the fMRI experiment each trial consisted of the same stimulus
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repeated twice. Rarely (8% of the occurrences), a trial was made up of two different
consecutive stimuli (catch trials). Only in this case, participants were asked to press a key
with the right index finger if the second stimulus belonged to the living category and with
their right middle finger if the second stimulus belonged to the non-living category. This
procedure ensured that the participants attended and processed the stimuli. In the auditory
experiment, each pair of stimuli lasted 4s (2s per stimulus) and the inter-stimulus interval
between one pair and the next was 2s long for a total of és for each trial. Within the fMRI
session participants underwent 5 runs. In the visual experiment, each pair of stimuli lasted
2s (1s per stimulus) and the inter-stimulus interval between one pair and the next was 2s
long for a total of 4s for each trial. Each run contained 3 repetitions of each of the 24
stimuli, 8 catch trials and two 20s-long periods (one in the middle and another at the end of
the run). The total duration of each run was 8min and 40s in the auditory experiment and
émin in the visual experiment. The presentation of trials was pseudo-randomized: two
stimuli from the same category (i.e. animals, humans, manipulable objects, non-manipulable
objects) were never presented in subsequent trials. The stimuli delivery was controlled

using  Matlab  R2016b  (https://www.mathworks.com)  Psychophysics  toolbox

(http://psychtoolbox.org).

fMRI data acquisition and analyses

fMRI data acquisition and preprocessing

We acquired our data on a 4T Bruker Biospin MedSpec equipped with an eight-
channel birdcage head coil. Functional images were acquired with a T2*-weighted

gradient-recalled echo-planar imaging (EPI) sequence (TR, 2000 ms; TE, 28 ms; flip angle,
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73°; resolution, 3x3 mm; 30 transverses slices in interleaved ascending order; 3mm slice
thickness; field of view (FoV) 192x192 mm?). The four initial scans were discarded to allow
for steady-state magnetization. Before each EPI run, we performed an additional scan to
measure the point-spread function (PSF) of the acquired sequence, including fat saturation,
which served for distortion correction that is expected with high-field imaging.

A structural T1-weighted 3D magnetization prepared rapid gradient echo sequence
was also acquired for each subject (MP-RAGE; voxel size 1x1x1 mm; GRAPPA acquisition
with an acceleration factor of 2; TR 2700 ms; TE 4,18 ms; Tl (inversion time) 1020 ms; FoV
256; 176 slices).

To correct for distortions in geometry and intensity in the EPl images, we applied
distortion correction on the basis of the PSF data acquired before the EPI scans (Zeng &
Constable, 2002). Raw functional images were pre-processed and analyzed with SPM12
(Welcome Trust Centre for Neuroimaging London, UK;
http://www fil.ion.ucl.ac.uk/spm/software/spm/) implemented in MATLAB (MathWorks). Pre-
processing included slice-timing correction using the middle slice as reference, the

application of temporally high-pass filtered at 128 Hz and motion correction.

Regions of interest
Cortical reconstruction of T1 scans were performed on the Freesurfer image analysis
suite v6.0 (http://surfer.nmr.mgh.harvard.edu). Parcellation of the cortex based on gyral

and sulcal structure into units (i.e. ROI’s), was performed according to Desikan-killany atlas

(Desikan et al., 2006).
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Six ROIs were then selected in each hemisphere: Lateral Occipital, Fusiform,
Parahippocampal and Infero-Temporal areas for the visual ROIs and the Transverse
Temporal and the Superior Temporal areas for the acoustic ROls. Then, we combined these
areas to obtain one bilateral ventral occipital-temporal (VOTC) ROI and one bilateral
temporal ROI (figure 1). Our strategy to work on a limited number of relatively large brain
parcels has the advantage to minimize unstable decoding results collected from small
regions (Norman et al.,, 2006) and reduce multiple comparison problems intrinsic to
neuroimaging studies (Etzel et al., 2013); while still being able to create spatial inferences at
the broad level we were interested in (temporal vs occipital). Most analyses were carried out
in subject space for enhanced anatomical precision and to avoid spatial normalization
across subjects.

General linear model

The pre-processed images for each participant were analyzed using a general linear
model (GLM). For each of the 5 runs we included 32 regressors: 24 regressors of interest
(each stimulus), 1 regressor of no-interest for the target stimuli to be detected, 6 head-
motion regressors of no-interest and 1 constant. From the GLM analysis we obtained a -
image for each stimulus (i.e. 24 sounds) in each run, for a total of 120 (24 x 5) beta maps.

Topographical selectivity map

For this analysis, we needed all participants to be coregistered and normalized in a
common volumetric space. To achieve maximal accuracy, we relied on the DARTEL
(Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (Ashburner,
2007) toolbox. DARTEL normalization takes the grey and white matter templates from each

subject to create an averaged template based on our own sample that will be used for the

10
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normalization. The creation of a study-specific template using DARTEL was performed to
reduce deformation errors that are more likely to arise when registering single subject
images to an unusually shaped template (Ashburner, 2007). This is particularly relevant
when comparing blind and sighted subjects given that blindness is associated with
significant changes in the structure of the brain itself, particularly within the occipital cortex
(Dormal et al., 2016; Jiang et al., 2009; Pan et al., 2007; Park et al., 2009).

We created a topographical selectivity map for each ROI (VOTC and TEMP) and for
each group. We also included the maps from the additional group of sighted that
performed a visual version (SCv) of the same experiment.

To create the topographical selectivity map (Fig. 2) we extracted in each participant
the B-value for each of our 4 main conditions (animals, humans, manipulable objects, and
places) from each voxel inside each mask and we assigned to each voxel the condition
producing the highest B-value (winner takes all). This analysis resulted in specific clusters of
voxels that spatially distinguish themselves from their surround in terms of selectivity for a
particular condition (Hurk et al., 2017; Mattioni et al., 2020).

Finally, to compare how similar are the topographical selectivity maps in the 3
groups we followed, for each pair of groups [1) SCv-EB; 2) SCv-SCEB; 3) SCv-LB; 4) SCv-
SCLB; 5) SCEB-EB; 6) SCLB-LB; 7) EB-LB] these steps: (1) We computed the Spearman’s
correlation between the topographical selectivity map of each subject from Group 1 with
the averaged selectivity map of Group 2 and we computed the mean of these values. (2)
We computed the Spearman’s correlation between the topographical selectivity map of
each subject from Group 2 with the averaged selectivity map of Group 1 and we computed

the mean of these values. (3) We averaged the 2 mean values obtained from step 1 and
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step 2, to have one mean value for each group comparison. To test statistical differences,
we used a permutation test (10.000 iterations): (4) We randomly permuted the conditions of
the vector of each subject from Group 1 and of the mean vector of Group 2 and we
computed the correlation (as in Step 1). (5) We randomly permuted the conditions of the
vector of each subject from Group 2 and of the mean vector of Group 1 and we computed
the correlation (as in Step 2). Importantly, we constrained the permutation performed in
the step 4 and 5 to take into consideration the inherent smoothness/spatial dependencies
in the univariate fMRI data. In each subject, we individuated each cluster of voxels showing
selectivity for the same category and we kept these clusters fixed in the permutation,
assigning randomly a condition to each of these predefined clusters. In this way, the spatial
structure of the topographical maps was kept identical to the original one, making very
unlikely that a significant result could be explained by the voxels’ spatial dependencies. We
may however note that this null-distribution is likely overly conservative since it assumes
that size and position of clusters could be created only from task-independent spatial
dependencies (either intrinsic to the acquisition or due to smoothing). We checked that
each subject has at least 7 clusters in his topographical map, which is the minimal number
to reach the 10000 combinations needed for the permutation given our four categories
tested (possible combinations= n_categories™<"*; 47=16384). (6) We averaged the 2 mean
values obtained from step 4 and step 5. (7) We repeated these steps 10.000 times to obtain
a distribution of correlations simulating the null hypothesis that the two vectors are
unrelated (Kriegeskorte et al., 2008). If the actual correlation falls within the top a x 100%
of the simulated null distribution of correlations, the null hypothesis of unrelated vectors

can be rejected with a false-positives rate of a. For each ROI the p values are reported after
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FDR correction (for 7 comparisons).

To test the difference between the group pairs’ correlations (we only test if in VOTC
the correlation between the topographical maps of SCv and EBa was different from the
correlation of SCv and SCEB and if the correlation between SCv and LB was different from
the correlation of SCv and SCLB) we used a permutation test (10.000 iterations): (8) We
computed the difference between the correlation of Pair 1 and Pair 2: mean correlation
Pairl — mean correlation Pair2. (9) We kept fixed the labels of the group common to the 2
pairs and we shuffled the labels of the subjects from the other two groups (e.g. if we are
comparing SCv-EB versus SCv-SCEB, we keep the SCv group fixed and we shuffle the
labels of EB and SCEB). (10) After shuffling the groups’ labels, we computed again the point
1-2-3 and 8. (11) We repeated this step 10.000 times to obtain a distribution of differences
simulating the null hypothesis that there is no difference between the two pairs’
correlations. If the actual difference falls within the top a x 100% of the simulated null
distribution of difference, the null hypothesis of absence of difference can be rejected with

a false-positives rate of a.

Multivoxel pattern (MVP) classification

MVP classification analysis was performed using the CoSMoMVPA (Oosterhof,
Connolly, & Haxby, 2016) toolbox, implemented in Matlab R2016b (Mathworks). We tested
the discriminability of patterns for the eight categories using linear discriminant analysis
(LDA). We performed a leave-one-run-out cross-validation procedure using beta-estimates
from 4 runs in the training set, and the beta-estimates from the remaining independent run

to test the classifier, with iterations across all possible training and test sets. This procedure
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was implemented in both ROls: in each cross-validation fold, we first defined from the
training data the 250 most discriminative voxels according to our 8 categories (De Martino
et al., 2008; Mitchell and Wang, 2007) and then we ran the MVP classification on this subset
of voxels in the test data using the parameters described above.

Statistical significance of the classification results within each group was assessed
using a non-parametric technique by combining permutations and bootstrapping (Stelzer et
al., 2013). For each subject, the labels of the different categories’ conditions were
permuted, and the same decoding analysis was performed. The previous step was
repeated 100 times for each subject. A bootstrap procedure was applied to obtain a group-
level null distribution that is representative of the whole group. From each subject’s null
distribution, one value was randomly chosen (with replacement) and averaged across all
participants. This step was repeated 100,000 times resulting in a group level null
distribution of 100,000 values. The statistical significance of our MVP classification results
was estimated by comparing the observed result to the group-level null distribution. This
was done by calculating the proportion of observations in the null distribution that had a
classification accuracy higher than the one obtained in the real test. To account for the
multiple comparisons, all p-values were corrected using false discovery rate (FDR)
(Benjamini and Hochberg, 1995).

The statistical difference between each group of blind (EB and LB) and their own
sighted control group (SCEB and SCLB) was assessed using a permutation test. We built a
null distribution for the difference of the accuracy values of the two groups by computing
them after randomly shuffling the group labels. We repeated this step 10000 times. The

statistical significance was estimated by comparing the observed result (i.e. the real
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difference of the accuracy between the two groups) to the null distribution. This was done
by calculating the proportion of observations in the null distribution that had a difference of
classification accuracy higher than the one obtained in the real test. To account for the
multiple comparisons, all p-values were corrected using false discovery rate (FDR)
(Benjamini and Hochberg, 1995).

To analyze the interaction between groups and regions, we also performed a non-
parametric test: the adjusted ranked transform test (ART) (Leys and Schumann, 2010). ART
is an advisable alternative to a factorial ANOVA when the requirements of a normal
distribution and of homogeneity of variances are not fulfilled (Leys &Schumann, 2010),
which is often the case of multivariate fMRI data (Stelzer et al., 2013). Importantly, we used
the adjusted version of the original rank transformation (RT) test (Conover and Iman, 1981).
In fact, the classical RT method loses much of its robustness as soon as the main effects
occur together with one or several interactions. To avoid this problem, in the adjusted
version the scores are adjusted by deducting the main effects and then analyzing separately
the interactions (Leys & Schumann, 2010).

We performed two separate ART tests, one for each blind group including their own
sighted control group. The first ART with regions (occipital and temporal) as within-subject
factor and with SCEB and EB Groups as between-subjects factor. The second ART with
regions (occipital and temporal) as within-subject factor and with SCLB and LB Groups as
between-subjects factor.

Early and the late blind groups were not matched for age and gender due to the
difficulty of recruit a sufficient number of blind participants using stringent inclusion criteria.

To be able to directly compare both groups, we applied a normalization of the data from

15


https://doi.org/10.1101/2020.12.17.423251
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423251; this version posted August 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

each blind group based on its own sighted control group (e.g. We subtracted the mean of
the accuracy value in SCEB group from the accuracy values in EB group and, then, we
divided the obtained values by the standard deviation of the SCEB group).

Then, we directly tested the statistical difference between the normalized data of EB

and LB using the same statistical procedure as described above.

Representational similarity analysis (RSA)

We further investigated the functional profile of the ROIls using RSA. This analysis
goes a step further compared to the decoding analysis, revealing how each region
represents the different stimuli categories. RSA analysis is based on the concept of
dissimilarity matrix (DSM): a square matrix where the columns and rows correspond to the
number of the conditions (8X8 in this experiment) and it is symmetrical about a diagonal of
zeros. Each cell contains the dissimilarity index between two stimuli (Kriegeskorte and
Kievit, 2013). This abstraction from the activity patterns themselves represents the main
strength of RSA, allowing a direct comparison of the information carried by the
representations in different brain regions, different groups and even between brain and
models (Kriegeskorte and Mur, 2012; Kriegeskorte et al., 2008b).

First, we computed the brain dissimilarity matrices for each ROl and in each subject.
We extracted the DSM (Kriegeskorte et al., 2008a) in each ROI, computing the dissimilarity
between the spatial patterns of activity for each pair of conditions. To do so, we first
extracted in each participant and in every ROI the stimulus-specific BOLD estimates from
the contrast images (i.e. SPM T-maps) for all the 8 conditions separately. Then, we used the

linear discriminant contrast (LDC) to compute the distance between each pair of patterns.
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The LDC distance is a cross-validated estimate of the Malhanobis distance (also known as
crossnobis distance). The cross-validation across runs avoids that the run-specific noise
systematically affects the estimated distances between neural patterns, which makes
possible to test the distances directly against zero. Therefore, the LDC distance provides a
measurement on a ratio scale with an interpretable zero value that indicates an absence of
distance between conditions (Evans et al., 2019; Walther et al., 2016). Since the DSMs are
symmetrical matrices, for all the RSA analyses we always use the upper triangular DSM
(excluding the diagonal) to avoid inflating correlation values.

We used these brain DSMs for several analyses: (1) Correlation between VOTC and
Temporal ROls in each subject and group; (2) Inter-subject correlation within and between
ROls (3) Hierarchical clustering analysis on the averaged DSMs’ correlation across groups
and ROls; (4) Comparison between brain DSMs and different representational models
based on our stimuli space. The rational and detailed description of each analysis is
reported below.

RSA - Correlation between VOTC and Temporal ROlIs in each subject and group.

When the sounds of our 8 categories are presented, brain regions create a
representation of these sounds, considering some categories more similar and others more
different. Would visual deprivation have an impact on the structure of representation for
sound categories in the occipital and temporal regions? Our hypothesis was that the
similarity between the representation of the 8 sound categories between temporal and
occipital regions was enhanced in blind individuals compared to their sighted controls. To
test this hypothesis, we compared the correlation between the DSMs of VOTC and

temporal ROls in each group.
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In each individual we computed the Spearman’s correlation between the VOTC and
temporal DSMs. We then averaged the values across subjects from the same group to have
a mean value per group (Fig 4).

For statistical analysis we followed the procedure suggested by Kriegeskorte and
collaborators (2008). For each group, the statistical difference from zero was determined
using permutation test (10000 iterations), building a null distribution for these correlation
values by computing them after randomly shuffling the labels of the matrices. Similarly, the
statistical difference between groups was assessed using permutation test (10000 iterations)
building a null distribution for these correlation values by computing them after randomly
shuffling the group labels. The p-values are reported after false discovery rate (FDR)
correction (Benjamini and Hochberg, 1995).

Finally, to directly compare the correlation from the early and the late blind subjects,
which are not matched for age and gender, we applied a normalization of the correlation
values from each blind group based on its own sighted control group (e.g. We subtracted
the mean of the correlation in SCEB group from the correlation values in EB group and,
then, we divided the obtained values by the standard deviation of the SCEB group).

Then, we tested the statistical difference between the normalized data of EB and LB
using the same non-parametric statistical procedure described above.

RSA- Inter-subject correlation within and between ROls (including Sighted in Vision-
SCv)

Some important information could also arise looking at the similarities of the
categorical representations across subjects, groups and regions. For instance, would the

representation of the auditory categories in the temporal cortex be more stable across
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sighted subjects compared to blind subjects? And vice versa would the representation of
the auditory categories in the ventral cortex be more stable across blind subjects compared
to sighted subjects?

A further interesting point would also be to compare the auditory categorical
representation in sighted and blind with the visual categorical representation in sighted
within VOTC, within the temporal Roi and between the two regions. That is why we decided
to include also the data from the visual experiment in sighted in this analysis.

To examine the commonalities of the neural representational space across subjects
in VOTC and in the temporal ROIls, we extracted the neural DSM of every subject
individually from both ROIs and then correlated it with the neural DSMs of every other
subject. We repeated this analysis for the EB/SCEB/SCv and the LB/SCLB/SCv separately.

In the triplet EB/SCEB/SCv we have in total 49 subjects, each subject has 2 DSMs
(one extracted from VOTC, and one extracted from the temporal ROI), therefore this
analysis resulted in a 98 x 98 matrix (Fig. 5- DSM in the top) in which each line and column
represent the correlation of one subject's DSM from a specific ROl with all other subjects’
DSM from the same and the different ROls.

In the triplet LB/SCLB/SCv we have in total 46 subjects, each subject has 2 DSMs
(one extracted from VOTC and one extracted from the temporal ROI), therefore this
analysis resulted in a 92 x 92 matrix (Fig. 6- DSM in the top).

In these DSMs we can visualize the results within VOTC, within the temporal region
and between the VOTC and the temporal ROl. In addition, we can see the results within

subjects of the same group and between subjects from different groups.
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See the section ‘Statistical analyses” of our paper Mattioni et al., 2020 for details

about the assessment of statistical differences.

RSA - Hierarchical clustering analysis based on DSM’s correlation across subjects
and ROls (Including sighted in vision SCv)

Importantly, applying a hierarchical clustering approach on these data (King et al.,
2019), we can go beyond the correlation values and look at how these DSMs would cluster
according to their (dis)similarity.

For instance, it is interesting to understand if the representational structure of VOTC
in blind individuals does remodel itself to be closer to the one of the temporal cortex or
whether it keeps a shape more similar to the one of VOTC in sighted for vision. In other
words, would the representation of VOTC in EB be closer to the representation of VOTC in
SCv or to the representation of the temporal parcels (both in EB and in SCEB)? And what
about the representation of VOTC in LB?

For both triplets of groups (EB-SCEB-SCv and LB-SCLB-SCv) we implemented a
hierarchical clustering approach (King et al., 2019) on the mean data from the previous
analysis, to better understand the structure of similarity between the brain regions and
groups. For each triplet of groups separately (EB-SCEB-SCv and LB-SCLB-SCv), we
averaged the correlation of subjects belonging to the same group and ROI (e.g. all EB
subjects in VOTC) in order to build a second order DSM in which each row and column
represent one DSM of a specific group (e.g. VOTC of EB). This resulted in a 6X6 matrix in
which each line and each row represents one ROI per group (i.e. for the early blind & their

control group: VOTC-SCv; VOTC-EB; VOTC-SCEB; TEMP-SCv; TEMP-EB; TEMP-SCEB; for
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the late blind & their control group: VOTC-SCv; VOTC-LB; VOTC-SCLB; TEMP-SCv; TEMP-
LB; TEMP-SCLB).

First, we created a hierarchical cluster tree for both DSMs using the ’‘linkage’
function in Matlab R2016b, then we defined clusters from this hierarchical cluster tree with
the ‘cluster’ function in Matlab. Hierarchical clustering starts by treating each observation as
a separate cluster. Then, it identifies the two clusters that are closest together, and merges
these two most similar clusters. This continues until all the clusters are merged or until the
clustering is ‘stopped’ to a n number of clusters. We stopped the clustering at n=2, n=3
and n=4 clusters.

In Fig. 7 we represented the results from these hierarchical clustering analyses both

with the dendrogram and with the multidimensional scaling visualizations.

RSA - Comparison between brain DSMs and representational models based on our
stimuli space.

Based on which dimensions are the 8 sound categories represented in the temporal
and in the occipital parcels in our groups? To address this question, we compared the
representation of the sound categories in the two ROlIs in each group with different
representational models based either on low-level acoustic properties of the sounds or on
different kind of categorical/high-level representations. Which of these models would better
describe the representation of the sound stimuli in each region and group? Would the
winning model (i.e. the model eliciting the highest correlation) be the same in VOTC and in

the temporal region in (early and late) blind and in sighted subjects?
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First of all, we built several representational models (see Fig. 8A) based on different
categorical ways of clustering the stimuli or on specific acoustic features of the sounds

(computed using Praat, https://praat.en.softonic.com/mac).

Seven models are based on high level properties of the stimuli (models from 1 to 7)
and 3 models are based on low level properties of the sounds (models from 8 to 10) for a
total of 10 representational models (See Fig. 8A and 8B to visualize the complete set of
models and the correlation between them):

1. Animate-inanimate model: it assumes that all the animate categories cluster
together and all the inanimate categories cluster together.

2. Four categories model: it assumes that the categories gather into 4 distinct
clusters representing the 4 main categories (i.e. (1) animals, (2) humans, (3)
manipulable objects, (4) big object & places).

3. Behavioral model: it is based on the subject’s ratings of similarity. We included
one behavioral model for each group.

4. Human model: it assumes that the human categories cluster together and all
other categories that create a second cluster.

5. Animal model: it assumes that the animal categories cluster together versus all
other categories that create a second cluster.

6. Manipulable model: it assumes that the manipulable object categories cluster
together while all other categories create a second cluster.

7. Big & Place model: it assumes that the Big objects & Place categories cluster

together and all other categories create a second cluster.
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8. Harmonicity-to-noise (HNR) ratio model: the HNR represents the degree of
acoustic periodicity of a sound.

9. Pitch model: the pitch, calculated with the autocorrelation method (see Mattioni
et al. 2020), represents the measure of temporal regularity of the sound and
corresponds to the perceived frequency content of the stimulus.

10. Spectral centroid model. The spectral center of gravity is a measure for how high
the frequencies in a spectrum are on average.

Then, we computed the Spearman’s correlation between each model and the DSM
of each subject from VOTC and from the temporal ROI. For each region separately, we
finally averaged the correlation values of all subjects from the same group (Fig 8).

For each group, we computed the statistical difference from zero following the
procedure suggested by Kriegeskorte and collaborators (2008a). A permutation test (10000
iterations) was implemented to build a null distribution for these correlation values by
computing them after randomly shuffling the labels of the matrices. The statistical
significance, for each model, was estimated by comparing the observed result (i.e. the real
correlation) to the null distribution. This was done by calculating the proportion of
observations in the null distribution that had a correlation value higher than the one
obtained in the real test. To account for the multiple comparisons, all p-values were
corrected using false discovery rate (FDR) correction across the 10 comparisons for each
ROI (Benjamini and Hochberg, 1995). We also compared the correlations across all pairs of
models within each ROI, to test which model was the best predictor of the variance in brain

RDMs in each ROI. For these pairwise comparisons, we implemented a two-sided Wilcoxon
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signed-rank tests (Tsantani et al., 2020) and only significant (i.e. p<0.05) FDR corrected
values (for 55 comparisons) are reported in Fig. 8.

To partially foreshadow the results, this analysis revealed that the human model is
the winner model in the temporal parcel of each group and that it is the winner model in
VOTC of blind subjects (both EB and LB) but not of sighted. Therefore, only for the human
model we perform statistical analyses to look at the comparison between groups (EB vs
SCEB & LB vs SCLB) in both temporal and occipital ROIs (Fig. 9).

The statistical difference between each group of blind (EB and LB) and their own
sighted control group (SCEB and SCLB) was assessed using a permutation test. We built a
null distribution for the difference of the correlation values of the two groups by computing
them after randomly shuffling the group labels. We repeated this step 10000 times. The
statistical significance was estimated by comparing the observed result (i.e. the real
difference of the correlations between the two groups) to the null distribution. This was
done by calculating the proportion of observations in the null distribution that had a
difference of correlation higher than the one obtained in the real test. To account for the
multiple comparisons, all p-values were corrected using false discovery rate (FDR)
(Benjamini and Hochberg, 1995).

Similar to the MVP- classification analysis, we performed the non-parametric ART to
analyze the interaction between groups and regions (Leys &Schumann, 2010).

Finally, we wanted to directly compare the correlation from the early and the late
blind subjects, which are not matched for age and gender. To be able to compare these

data, we applied a normalization of the data from each blind group based on its own
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sighted control group. Then, we directly tested the statistical difference between the

normalized data of EB and LB using the same statistical procedure described above.

CATEGORIES EVENT-RELATED DESIGN REGIONS OF INTEREST

AB | Animal-Bird ) 2 fMRI SCEB sub 1 EB sub 1

)
AM ' Animal-Mammal ‘))

2
%
HV | Human-Vocalization o)

HN | Human-Non Voc. ‘))) _I
MT | Manipulable-Tool /\ “)))
=3
MG Manipulable-Graspable ‘%%\ ) @'
A e
BM | Big-Mechanical ) B bilateral VOTC
o€ | Big-Environmental ) B bilateral TEMPORAL

Fig. 1. Experimental design. Categories of stimuli, design of the fMRI experiment and Regions of Interest (ROls).

Results
Topographical selectivity map

Fig. 2 represents the topographical selectivity maps, which show the voxel-wise
preferred stimulus condition based on a winner-takes-all approach (for the four main
categories: animals, humans, small objects & places) in VOTC (fig. 2A) and in the temporal
ROIs (fig. 2B).

In VOTC we found that the topographical auditory selectivity maps of the early blind
(r=0.18, p=0.0001) and SCEB (r=0.07, p=0.0002) partially matched the visual map obtained

in sighted controls during vision. The correlation was also significant between the auditory
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maps in sighted and in early blinds (r=.11, p=0.0001). These results replicate our previous
results in Mattioni et al., 2020.

Importantly for the goal of the present study, we found similar results also in the LB
group. The auditory topographic map of the late blind subjects partially matched the visual
topographic map obtained in sighted controls during vision (r=0.16, p=0.0001) and
correlated with the auditory topographic map observed in EB (r=0.12, p=0.0001). In
addition, also the auditory selectivity map observed in SCLB (r=0.08, p=0.0001) partially
matched the visual map obtained in sighted controls during vision.

The magnitude of the correlation between EB and SCv topographical category
selective maps was significantly higher when compared to the correlation between SCEB
and SCv (p=0.03). We found a similar trend also in the case of late acquired blindness: the
magnitude of correlation between LB and SCv was higher than the correlation between
SCLB and SCv (p=0.08).

In the temporal ROI we found that the auditory topographical selectivity maps were
significantly correlated between all the groups: EB-SCEB(r=.17, p=0.0002), LB-SCEB (r=.18,
p=0.0002), EB-LB (r=.17, p=0.0002). However, the correlation of the visual selectivity map
was not significantly correlated with none of the auditory topographic maps in any group
(SCv-EB: r=-.03,p=0.99; SCv-SCEB: r=-.02,p=0.99; SCv-LB: r=,-.05 p=0.99; SCv-SCLB: r=—

.02, p=0.99); in notable contrast with what is observed in VOTC.

26


https://doi.org/10.1101/2020.12.17.423251
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423251; this version posted August 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

(A) Topographical selectivity map - VOTC
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Fig. 2. Topographical selectivity maps. Averaged “winner take all” topographical selectivity maps for
our four main categories (Animals, Humans, Manipulable, Big non-manipulable) in the early blind (EB, bottom
left), and their matched sighted controls (SCEB, top left), the late blind (LB, bottom right) and their matched
sighted controls (SCLB, top left). In the center we also reported the map from an additional group of sighted
that performed the visual version of the experiment. These maps visualize the functional topography of VOTC
and TEMP regions to the main four categories in each group. These group maps are created for visualization
purpose only since statistics are run from single subject maps (see methods). To obtain those group maps, we
first averaged the B-values among participants of the same group in each voxel inside the VOTC and inside the
TEMP mask for each of our 4 main conditions (animals, humans, manipulable objects and places) separately and

we then assigned to each voxel the condition producing the highest p-value.

Multivoxel pattern (MVP) classification

MVPA results for the EB / SCEB groups are represented in figure 3A. In the SCEB
group the mean decoding accuracy (DA) of the 8 categories is significantly different from
chance level (12.5%) in both VOTC (DA= 15%; p<0.001) and temporal (DA=38%; p<0.001)
ROls. In the EB group this mean decoding accuracy is also significant in VOTC (DA=18%;
p<0.001) and the temporal cortex (DA=33%, p<0.001). Importantly, a permutation test also
revealed a significant difference between groups in both regions. In VOTC the decoding
accuracy value is significantly higher in EB than the SCEB (p=0.03), while in the temporal
ROI the accuracy value is significantly higher in SCEB than EB (p=0.03). Importantly, the
adjusted rank transform test (ART) 2 Groups X 2 ROlIs revealed a significant group by region
interaction (F31-5.647; p=0.024).

MVPA results for the LB / SCLB groups are represented in figure 3B. In the SCLB
group the decoding accuracy is significant in both VOTC (DA= 16%; p<0.001) and temporal

(DA=39%; p<0.001). In the LB group the decoding accuracy is also significant in VOTC
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(DA=18%,; p<0.001) and temporal (DA=33%; p<0.001). The permutation test did not reveal
a significant difference between groups in the VOTC (p=0.15), while in the temporal cortex
there is a tendency for a decreased accuracy value in the LB compared to SCLB (p=0.07).

The ART test 2 Groups X 2 ROls revealed a marginal effect of interaction group by region

(Fa.2=3.5076; p=0.071).

MVP-Classification results

(A) Early blind and matched controls (B) Late blind and matched controls (C) Early and Late blind
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Fig. 3 MVP-classification results in the ROIs. (A) results from the EB/SCEB groups; (B) results from the

LB/SCLB groups; (C) data from EB and LB are directly compared after normalizing them based on their own

matched group.

In order to directly compare the decoding accuracies from the early and the late
blind subjects, we normalized the data from each blind group based on its own sighted
control group in order to account for the difference in age and gender between the two
groups (Fig. 3C). The permutation test did not reveal any difference between the two

groups neither in VOTC (p=0.12) nor in the temporal ROI (p=0.3). The ART test (2 Groups X
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2 ROIs) did not reveal any significant effect of interaction group by region (F :6=2.91;

p=0.1).

Representational similarity analysis (RSA)

RSA-Correlation between the representational structure of Occipital and Temporal
ROls.

The results of this analysis are represented in figure 4. We looked at whether the
representation of the 8 sound categories shares any similarity between the VOTC and the
temporal parcels within each blind and sighted subject, with particular interest at group
differences. The permutation test revealed a significant correlation between the
representational structure of VOTC and the functional profile of the temporal region in all
groups (p<0.001 for all groups). When we look at the differences of correlations values
between groups, we found a significant difference between the EB and the SCEB groups
(p=0.04, FDR corrected), highlighting an increased similarity between the VOTC and the
temporal DSMs in the EB when compared to the SCEB group (Fig 4A). The difference
between the LB and the SCLB (Fig 4B) was not significantly different (p=0.10). We also
directly compared the EB and LB groups after normalizing the data based on their own
sighted control groups (Fig. 4C). The permutation test did not reveal a significant difference

between the two groups of blind subjects (p=0.21).
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Correlation between VOTC & TEMPORAL DSMs - within each subject
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Fig. 4. Correlation between VOTC and TEMPORAL DSMs within each subject. Each dot represents the
Spearman'’s correlation of each subject between its own VOTC and TEMP DSMs. (A) results from the EB/SCEB
groups; (B) results from the LB/SCLB groups; (C) data from EB and LB are directly compared after normalizing

them based on their own matched group.

RSA- Inter-subject correlation within and between ROls

We run this analysis to look at the similarities of the categorical representations
across subjects, groups and regions.

We run two separated analyses, one including EB, SCEB and SCv groups (Fig. 5)
and one including LB, SCLB and SCv (Fig. 6).

The results for the EB, SCEB and SCv groups are represented in Fig. 5.
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Fig. 5. Inter-subject correlation for EB-SCEB-SCv within and between groups, within and between
ROIs. Left panel: results within VOTC. Central panel: results within the temporal ROIl. Right panel: results
between VOTC and the temporal ROI. In each box, the upper part represents the correlation matrix between
the brain DSM of each subject with all the other subjects (from the same group and from different groups). The
mean correlation of each within- and between-groups combination is reported in the bottom panel (bar graphs).
The straight line ending with a square represents the average of the correlation between subjects from the same
group (i.e. within groups conditions: SCv, EB, SCEB), the dotted line ending with the circle represents the
average of the correlation between subjects from different groups (i.e. between groups conditions: SCv-EB/SCv-

SCEB/EB-SCEB).

Within VOTC we replicated the results from Mattioni et al., 2020. The permutation
test revealed that the correlation between subjects’ DSMs in the within group condition was
significant in SCv (r = 0.54; pror <0.001) and EB (r = 0.08; pror <0.001), whereas it was not

significant in SCEB (r = —.01; pror >.05). Moreover, the correlation between subjects’ DSMs
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was significant in all the three between groups conditions (SCv-EB: r = 0.18, prpr <0.001;
SCv-SCEB: r = 0.05, pror <0.001; EB-SCEB: r = 0.03; pror <0.01). When we ranked the
correlations values (Fig. 5-left box) we observed that the highest inter-subject correlation is
the within SCv group condition, which was significantly higher compared to all the other
five conditions (p<.001 for all). It was followed by inter-subject correlation between SCv and
EB group and the within EB group correlation. Interestingly, the between groups SCv-EBa
was significantly higher compared to the last 3 inter-subjects correlation’s values (between
SCv-SCEB; between EB-SCEB; within SCEB; p<.001 for the three comparisons).

Within the temporal ROl we observed a different profile of correlations (Fig. 5 -
central box). The permutation test revealed that the correlation between subjects’ DSMs in
the within group condition was significant in SCEB (r=0.61; pror <0.001) and EB
(r = 0.49; pror <0.001), whereas it was not significant in SCv (r = .02; prpr >.05). Moreover,
the correlation between subjects’ DSMs was significant in all the three between groups
conditions (SCEB-EB: r = .55, pror <0.001; EB-SCv: r=.10, pror <0.001; SCEB-SCv:
r=.09; pror <0.001). When we ranked the correlations values (Fig. 5-central box) we
observed that the highest inter-subject correlation is the within SCEB group condition,
which was significantly higher compared to all the other five conditions (p< .001 for all but
for the difference with SCEB-EB which was p=.02). It was followed by inter-subject
correlation between SCEB and EB group, which was significantly higher compared to the
other four conditions (p<.001 for all but for the difference with EB for which p=.037) and
the within EB group correlation, which was significantly higher compared to the other three
conditions (p<.001 for all). These results are showing that the within-group correlation in

the SCEB is significantly higher compared to the within-group correlation in EB group. This
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suggests a higher stability in the representation of auditory categories in the temporal
cortex between sighted subjects than between blind subjects. Finally, both the between
groups SCv-EB (p=.001) and SCv-SCEB (p=.004) were significantly higher compared to the
within SCv correlation.

Finally, we looked at the results from the between ROls analysis (Fig. 5 — right box).
In the between ROlIs analyses we have 9 different correlation values: 3 values for the 3
within group correlation conditions (SCv; EB; SCEB) and 6 values for the between groups
correlation conditions (i.e. SCv VOTC-EB TEMP; SCv VOTC-SCEB TEMP; EB VOTC-SCEB
TEMP; SCv TEMP-EB VOTC; SCv TEMP-SCEB VOTC; EB TEMP-SCEB VOTC). The
correlation values were significantly higher than zero in all the 9 conditions. When we
ranked the correlations values (Fig. 5-right box) we observed that the highest correlations
are the ones between SCv in VOTC with SCEB in the temporal ROI (r=.23; p<.001) and
between SCv in VOTC with EB in the temporal ROI (r=.21, p<.001), which were significantly
higher compared to all the other seven conditions. This result highlights the fact that the
representation of visual categories in the VOTC of sighted subjects shares a remarkable
similarity with the representation of the same categories delivered through sounds in the
temporal cortex of both sighted and early blind participants. In addition, we found that the
correlation values between VOTC and the temporal ROl in EB (r=.16; p<.001) and between
EB in VOTC and SCEB in the temporal ROI (r=.15, p<.001), were significantly higher
compared to all the other five conditions. This result suggests that the representation of
auditory categories in the VOTC of early blind subjects is more similar to the representation
of the same auditory categories in the temporal cortex of both sighted and early blind

participants.
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Here follows the results for the LB, SCLB and SCv groups (Fig. 6).

In the within ROI analysis we have 6 different correlation values: 3 values for the 3
within group correlation conditions (SCv; LB; SCLB) and 3 values for the 3 between groups
correlation conditions (i.e. SCv-LB; SCv-SCLB; LB-SCLB).

Within VOTC the results are similar to the one found in the EB analysis. The
permutation test revealed that the correlation between subjects’ DSMs in the within group
condition was significant in SCv (r = 0.54; pFDR <0.001) and LB (r=0.19; prr <0.001),
whereas it was not significant in SCLB (r =.02; pror >.05). Moreover, the correlation
between subjects’ DSMs was significant in all the three between groups conditions (SCv-LB:
r=0.16, pror <0.001; SCv-SCLB: r = .10, pror <0.001; LB-SCLB: r =.09; pror <0.01). When
we ranked the correlations values (Fig. 6 - left box) we observed that the highest inter-
subject correlation is the within SCv group condition, which was significantly higher
compared to all the other five conditions (p<.001 for all). It was followed by the within LB
group correlation and the inter-subjects correlation between SCv and LB group.
Interestingly, the between groups SCv-LB was significantly higher compared to the last 3
inter-subjects correlation’s values (between SCv-SCLB p=.004; between LB-SCLB p=.001;

within SCLB p<.001).
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Fig. 6. Inter-subject correlation for LB-SCLB-SCv within and between groups, within and between
ROIs. Left panel: results within VOTC. Central panel: results within the temporal ROI. Right panel: results
between VOTC and the temporal ROI. In each box, the upper part represents the correlation matrix between
the brain DSM of each subject with all the other subjects (from the same group and from different groups). The
mean correlation of each within- and between-groups combination is reported in the bottom panel (bar graphs).
The straight line ending with a square represents the average of the correlation between subjects from the same
group (i.e. within groups conditions: SCv, LB, SCLB), the dotted line ending with the circle represents the
average of the correlation between subjects from different groups (i.e. between groups conditions: SCv-LB/SCv-

SCLB/LB-SCLB).

Within the temporal ROl we observed a different profile of correlations (Fig. 6 -
central box). The permutation test revealed that the correlation between subjects’ DSMs in
the within group condition was significant in SCLB (r = 0.62; pror <0.001) and LB

(r = 0.62; pror <0.001), whereas it was not significant in SCv (r = .02; prpr >.05). Moreover,
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the correlation between subjects’ DSMs was significant in all the three between groups
conditions  (SCLB-LB: r=.62, pror <0.001; LB-SCv: r=.11, pror <0.001; SCLB-SCv:
r=.09; pror <0.001). When we ranked the correlations values (Fig. é-central box) we
observed that the highest inter-subject correlations are the between groups correlation
SCLB-LB, the within LB group and the within SCLB group, which were significantly higher
compared to the other three conditions (p<.001 for all). Finally, both the between groups
SCv-LB (p<.001) and SCv-SCLB (p<.001) were significantly higher compared to the within
SCv correlation.

Finally, we looked at the results from the between ROls analysis (Fig. 6 — right box).
In the between ROls analysis we have 9 different correlation values: 3 values for the 3 within
group correlation conditions (SCv; LB; SCLB) and 6 values for the between groups
correlation conditions (i.e. SCv VOTC-LB TEMP; SCv VOTC-SCLB TEMP; LB VOTC-SCLB
TEMP; SCv TEMP-LB VOTC; SCv TEMP-SCLB VOTC; LB TEMP-SCLB VOTC). The
correlation values were significantly higher than zero in all the 9 conditions. When we
ranked the correlations values (Fig. 6-right box) we observed that the highest correlations
are the ones between SCv in VOTC with LB in the temporal ROI (r=.27; p<.001), between
SCv in VOTC with SCLB in the temporal ROI (r=.26, p<.001) and also between LB in VOTC
with LB in the temporal ROI (r=.26; p<.001) and between LB in VOTC with SCLB in the
temporal ROl (r=.25, p<.001). These four correlation values were all significantly higher
compared to the other five conditions.

This result highlights that the representation of visual categories in the VOTC of
sighted subjects shares a remarkable similarity with the representation of the same

categories presented in the auditory modality in the temporal cortex of both sighted and
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late blind participants. Moreover, the representation of auditory categories in the VOTC of
late blind subjects shares a remarkable similarity with the representation of the same

auditory categories in the temporal cortex of both sighted and late blind participants.

RSA - Hierarchical clustering analysis based on DSM’s correlation across subjects
and ROlIs

We applied a hierarchical clustering analysis to the inter-subject correlation values,
to qualitatively explore our data. How would the DSMs from each group and region cluster
based on the degree of their (dis)similarity? Fig. 7 depicts the dendrogram, the
multidimentional scaling and the dissimilarity matrix representing the correlation between
the functional profile of each ROI and group, for EB — SCEB - SCv (Fig. 7A) and for LB -

SCLB - SCv (Fig. 7B) separately.
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B. Hierarchical clustering analysis in LB, SCLB & SCv
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Fig. 7. Hierarchical clustering analysis on the different groups and regions. (A) Results for EB, SCEB
and SCv. (B) Results for LB, SCLB and SCv. On the left side the dendrogram represents the hierarchical
clustering analysis for the 4 clusters. In both panels, on the right side, the multidimensional scaling represents
how the different regions and groups cluster for 2,3 and 4 clusters. On the right side on the top the dissimilarity
matrix represents the correlation values between the functional categorical profile of each ROl and group with

all other ROIs and groups.
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In the DSM (right-top) we can observe the correlation of the categorical
representation in each region and group with the representation in all other regions and
groups.

In the dendrogram and in the multidimensional scaling visualization we report the
results from the hierarchical clustering analysis. In the dendrogram plots you can see the 4
color-coded clusters that emerged from this analysis.

In the case of EB-SCEB-SCv data, the four clusters were: 1. SCEB-VOTC; 2. SCv-
TEMP; 3. EB-VOTC and SCv-VOTC; 4. EB-TEMP and SCEB-TEMP. Interestingly, the
functional profile of VOTC for the auditory categories in EB clusters together with the
functional profile of VOTC for the visual categories in sighted. The functional profiles for the
auditory categories in the temporal cortex of sighted and early blind represent a separate
cluster. However, when we look at the multidimensional scaling, where we report the results
from all the steps of the hierarchical analysis (from 2 to 4 clusters) we can see that when we
"ask” for 3 clusters VOTC of SCv and VOTC of EB cluster together with the temporal ROI of
both SCEB and EB.

In the case of LB-SCLB-SCv data, when we probe for 3 clusters, VOTC of LB clusters
together with the VOTC of SCv and with the temporal ROl of both SCLB and LB, similarly to
what happens in the EB.

These results support our previous findings (between subjects and between ROls
correlation) and are a further confirmation the representation of auditory categories in the
VOTC of (both early and late) blind subjects shares a remarkable similarity with the

representation of the same categories presented in the auditory modality in the temporal
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cortex of both sighted and blind participants and also with the representation of visual

categories in the VOTC of sighted subjects.

Comparison between brain DSMs and different representational models based on
our stimuli space.

What could explain the clustering of the DSMs? Is there a specific feature that makes
the structure of the VOTC DSM of blind closer to the temporal ROl DSMs? The RSA
comparisons with representational models can give us some important information about
which e representational structure could drive the observed clustering results.

The correlations’ results with representational models are represented in fig. 8C and

8D.

41


https://doi.org/10.1101/2020.12.17.423251
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423251; this version posted August 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.
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Fig. 8. RSA-Correlations with representational models (A) Representation of all set of models. There
are four different behavioral models, one for each group. (B) Matrix including the linear correlations between
each pair of models. Yellow indicates high correlations, blue indicated low correlation. (C) Correlations between
TEMP DSM of each group and the 10 representational models. (D) Correlation between VOTC DSM of each
group and the 10 representational models. Bars show mean Spearman'’s correlations across participants; error
bars show standard error and each dot represent one participant. Horizontal grey lines show the lower bound of
the noise ceiling. An asterisk below the bar indicates that correlations with that model were significantly higher
than zero. Correlations with individual models are sorted from highest to lowest. Horizontal lines above bars
show significant differences between the correlations of the two end points (FDR corrected for multiple

comparisons).

In fig. 8C we reported the ranked correlation between the temporal DSM in each
group and each of the ten representational models (Animate-Inanimate, 4 categories,
Behavioral, Human, Animal, Manipulable, Big & Place, HNR, Pitch, Spectral Centroid). See
also figure 8A and 8B to visualize the complete set of models and the correlation between
them.

The r values and the p values for each model and group are reported in Sl- table 3.

We also compared the correlations across all pairs of models within each ROI and
group. For these pairwise comparisons, we used two-sided Wilcoxon signed-rank test
(Tsantani et al., 2020) and only significant FDR corrected values (for 45 comparisons) are
reported in Fig. 8 (see SI-Table 1 for all correlation and p values).

For the temporal ROls, the human model was the winning model in each group
(SCEB: r=0.48, p=0.0003; EB: r=0.44, p=0.0005; SCLB: r=0.47, p=0.0003; LB: r=0.52,
p=0.0003), explaining the functional profile of the temporal regions more than all the others

(see Fig. 8C).
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In fig. 8B we reported the ranked correlation between the VOTC DSM in each group
and each of the same ten representational models. The r values and the p values for each
model and group are reported in Sl- table 4.

The human model also showed the highest correlation with the DSM of VOTC in the
blind groups only (EB: r=0.25, p=0.001; LB: r=0.32, p=0.0005), providing an explanation for
the enhanced similarity between the TEMP DSMs and the VOTC DSMs of blind subjects
(compared to sighted controls).

Since the human model is the one that explains most of the variance of our data in
the temporal ROI of each group and in the VOTC of both blind groups, we ran further
analyses for this model. That is, we directly investigated whether there was a statistical
difference between groups in the correlation with the human model, both in VOTC and in
temporal ROIls. RSA results with the human model for the EB / SCEB groups are
represented in figure 9A. In VOTC, the permutation test revealed a significantly higher
correlation in EB compared to the SCEB (p=0.007). In the temporal ROI, instead, the
correlation was not significantly different between SCEB and EB (p=0.26). Finally, ART
analysis 2 Groups X 2 ROls revealed a significant effect of interaction group by region
(p=0.0003).

RSA results with the human model for the LB / SCLB groups are represented in
figure 9B. In VOTC, the permutation test revealed a significantly higher correlation in LB
compared to the SCLB (p=0.005), while in the temporal ROI there was not a significant
difference between LB and SCLB (p=0.23). The ART analysis 2 Groups X 2 ROls revealed a

significant interaction between group and region (p=0.000003).
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Finally, we directly compared the correlation from the early and the late blind
subjects, after a normalization of the data for each blind group based on its own sighted
control group (Fig. 9C). The permutation test did not reveal any difference between the two
blind groups neither in VOTC (p=0.5) nor in the temporal ROl (p=0.11). As the previous
analyses already highlighted, we found a significant difference from zero (that in this case

represents the difference with the own sighted controls’ group) in both EB and LB, only in

VOTC (p<.01) and not in the temporal area.
(A) Early blind and matched controls (B) Late blind and matched controls (C) Normalized Early and Late blind
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Fig. 9 RSA results with the Human model: between group’s comparisons. Spearman’s correlation
between the DSMs in the 2 ROIs (VOTC and TEMP) with the human model. (A) results from the EB/SCEB
groups; (B) results from the LB/SCLB groups; (C) data from EB and LB are directly compared after normalizing

them based on their own matched control group.
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Discussion

Our study provides a comprehensive exploration of how blindness at different age
of acquisition induces large-scale reorganization of the representation of sound categories
in the brain. More precisely, compared to our previous paper on which we build on
(Mattioni et al., 2020), the present study shed new lights on at least two fundamental issues:
1) How does the reorganization of occipital regions in blind people impacts on the
response profile of temporal regions typically coding for sounds, and 2) how does the age
of blindness onset impacts on those large-scale brain (re)organization.

Does the age of onset of blindness influence the topographical organization of both
VOTC and temporal ROIs? We looked in every subject which category was preferred by
each voxel in VOTC (see Fig 2A) and in the temporal ROls (see Fig 2B). This analysis intends
to look at whether similar sets of voxels maintain their categorical preference across
modalities (vision and audition) and visual experience (sighted, early blindness and late
blindness). We show that the topographical categorical map extracted from sounds in
VOTC exhibits a significant degree of similarity with the map of VOTC in sighted subjects
processing visual stimuli, not only in sighted controls and in EB (Mattioni et al., 2020), but
also in LB (see figure 2A). However, this auditory-to-visual similarity was enhanced in blinds
compared to sighted controls (Fig 2A). This evidence suggests that the well-known
topographical organization of VOTC for visual stimuli in sighted is partially maintained in
sighted people when the same categories are presented in the auditory modality and that
such similarity is extended in case of visual deprivation, independently of the age of onset

of blindness.
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Interestingly, the topographical match between auditory and visual categories in
sighted and blind people is only observable in VOTC and not in the temporal cortex (see
Fig. 2B). Indeed, the sets of voxels that show a preference for a specific category presented
in the auditory modality in sighted, early and late blind subjects do not maintain the same
categorical preference when the stimuli are presented visually in the sighted. These results
suggest that the presence of higher-level abstracted/semantic categorical representation,
that is shared across the senses might be a selective feature of VOTC but not necessarily
present in temporal brain areas.

A further question, that goes beyond the categorical preference of each voxel, is
whether our regions of interest can discriminate the different categories across modalities
and sensory experience. If so, could we observe a difference between blind and sighted
controls? Results from the MVP classification analysis show enhanced decoding accuracies
in the VOTC of EB when compared to controls and this enhanced representation of sound
categories in VOTC was concomitant to reduced decoding accuracy in the temporal cortex
of early blind people (see figure 3). Similar to what was observed in EB, also LB showed
enhanced representation of sound categories in VOTC compared to SCLB while the
temporal cortex showed lower decoding in LB. It is, however, important to note that when
both regions are treated in isolation, decoding accuracies in LB were not statistically
different from those of SCLB. This suggests that even if brain reorganization in LB shows
qualitative similarities to those observed in EB, the expression of this plasticity might be
quantitatively less robust when visual deprivation occurs late in life (Bedny et al., 2012;

Blchel et al., 1998; Cohen et al., 1999; Collignon et al., 2013).
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Would this redistribution of computational load across temporal and occipital
regions predict a representation of auditory categories in VOTC that is more similar to the
representation of the same auditory categories in the temporal regions in blind when
compared to SC? Our results suggest that this is indeed the case. With a set of within and
between-subject analyses (Figures 4A, 5 and 7A) we showed an enhanced correlation
between the functional profile of VOTC and the temporal region in EB subjects compared
to SCEB. First, we show that within each EB subject, the correlation between the VOTC and
the temporal categorical representations is significantly higher compared to the SCEB
subjects (Fig. 4A). Also, when we look at the between subjects correlations, we find that the
correlations between the functional profile of VOTC and the temporal region between EB
subjects (r=.16; Fig 5 — right box - third column: EB-T/EB-V) is significantly higher
compared to the correlation between the functional profile of VOTC and the temporal
region between SCEB subjects (r=.05; Fig 5 - right box — seventh column: SCEB-T/SCEB-V).
Our observation that temporal and occipital regions share a more similar representation of
auditory categories in EB compared to SCEB may relate to previous studies showing an
enhanced functional connectivity between occipital and temporal regions during sound
processing in EB (Collignon et al., 2013; Dormal et al., 2016; Klinge et al., 2010).

Similarly, we found that the representation of auditory categories in VOTC was more
similar to the one of temporal regions in LB when compared to the SCLB (Figures4, 6 and
7B). However, the expression of this plasticity appears to be quantitatively less robust when
visual deprivation occurs late in life.

So far, our results highlighted two important points. First, the topographical analysis

(Fig 2A) demonstrated that the categorical profile of VOTC for auditory categories in blind
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people showed enhanced similarity with the categorical profile of VOTC for visual
categories in sighted (when compared to the categorical profile of VOTC for auditory
categories in sighted). Second, the enhanced categorical representation of VOTC for
auditory categories is closer to the categorical representation for the same auditory
categories in the temporal ROl in blind compared to sighted subjects. How can we
conciliate these two results? To do so, we included the data from the sighted control group
in vision (SCv) in in the between-subjects correlation analyses (Fig 5 and 6) and also in the
more qualitatively hierarchical clustering analysis (Fig 7). The between-subject’s analysis
highlighted a remarkable similarity between the visual categorical representation in VOTC
in sighted with the auditory categorical representation in the temporal ROl in sighted (see
both Fig. 5 - Right panel - first bar: SCEB-T/SCv-V r=.23 and Fig. 6 — Right panel - second
bar: SCLB-T/SCv-V r=.26). In other words, this result shows that the way the different
pictures are categorized by VOTC in sighted is similar to the way the different sounds are
categorized by the temporal ROI in the sighted. This explains the coexistence of the
similarity of the auditory categorical representation of VOTC in blind people with both the
visual categorical representation of VOTC in sighted and the auditory categorical
representation of temporal ROl in sighted. This result is emphasized by the hierarchical
clustering analysis and can be easily represented using the multidimensional scaling
visualization (Fig. 7A for EB and Fig. 7B for LB). We see that, when we stop the clustering
analysis at 3 clusters, one cluster (red solid line) is represented by the auditory
representation of VOTC in sighted (SCEB-VOTC & SCLB-VOTC), a second cluster (dark-blue
dashed line) is represented by the visual representation of temporal ROl in sighted (SCv-

TEMP), finally the third cluster (light-blue dashed line) includes the auditory representation
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of temporal ROI in blind and sighted (SCEB-TEMP, EB-TEMP / SCLB-TEMP, LB-TEMP), the
visual representation of VOTC in sighted (SCv-VOTC) and, crucially, the auditory
representation of VOTC in blind (EB-VOTC / LB-VOTC). Basically, the third cluster contains
the regions most involved in the categorical task (either in visual or auditory modality, either
in sighted or in blind subjects), highlighting a shared similarity in the brain representation of
the categories across regions (VOTC and Temporal ROls), modalities (visual and auditory)
and visual experiences (sighted, early blind, and late blind).

Importantly, our design allows us to go a step further and to investigate which
dimension of our stimuli may determine the response properties of the temporal ROl and of
VOTC to sounds. When compared to vision, little is known about how auditory
categorization is implemented in the brain. Previous studies reported the presence of
clusters of voxels within the superior temporal regions (Giordano et al., 2013; Peelle et al.,
2010), showing a preference for one specific category compared to others, such as human
voices (Belin et al., 2004), instrumental sounds (Leaver and Rauschecker, 2010) or the
sounds of objects (Dormal et al., 2017; Lewis et al., 2011). However, most previous studies
primarily focused on a relatively small number of categories (but see Giordano et al., 2013).
In the present study, we tried to fill this gap by looking at which model, among several
types based on different categorical (e.g. animacy, behavioral similarity judgment,
categorical clustering) and acoustic (e.g. harmonicity, pitch) dimensions, would better
account for the representation of the auditory categories in the VOTC and temporal regions
in both sighted and blind subjects (Fig. 8). In the temporal cortex, we found that in every
group the best model was a “human” model, in which human stimuli were considered

similar between themselves and different from all other animate and inanimate stimuli (Fig.

50


https://doi.org/10.1101/2020.12.17.423251
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423251; this version posted August 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

8). This result is reminiscent of a recent study reporting such a “human-centric’
representation for visual stimuli, providing evidence for a humanness dimension of visual
information represented in the human brain (Contini et al., 2020). Interestingly, we also
found that the human model, when compared to other models, showed the highest
correlation with the representation of the auditory categories in VOTC of both our blind
groups but not of the sighted controls (see Fig. 8D and Fig. 9). This shared “human-centric”
representation in both the temporal and occipital cortices of blind individuals might at least
partially explain what drives the increased representational similarity between these two
regions in visually deprived individuals.

To summarize, we discovered that in early blind, and to some extent in late blind
people, the enhanced coding of sound categories in occipital regions is coupled with lower
coding in the temporal regions compared to sighted people. Moreover, we observed a
representation of auditory categories in VOTC more similar to the representation of the
same auditory categories in the temporal regions in both early and late blind individuals
when compared to their sighted controls. These findings suggest an interplay between the
reorganization of occipital and temporal regions following visual deprivation, with a
modulation of this process according to the onset of blindness. Crucially, the functional
relevance of this reorganization is preserved also in case of late onset of blindness in
contrast to the suggestions of some previous studies (Bedny et al., 2012; Cohen et al,,
1999). An intriguing possibility raised by our results is that visual deprivation may actually
trigger a redeployment mechanism that would reallocate part of the processing typically
tagging the preserved senses (i.e. the temporal cortex for the auditory stimulation) to the

occipital cortex deprived of its most salient visual input. In other words, visual deprivation
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would trigger a redistribution of computational load across regions from the deprived sense

(e.g. vision) and those from the remaining sense (e.g. audition).
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Figure's legend

Fig. 1. Experimental design. Categories of stimuli, design of the fMRI experiment and Regions of Interest (ROls).

|u

Fig. 2. Topographical selectivity maps. Averaged “winner take all” topographical selectivity maps for our four

main categories (Animals, Humans, Manipulable, Big non-manipulable) in the early blind (EB, bottom left), and
their matched sighted controls (SCEB, top left), the late blind (LB, bottom right) and their matched sighted
controls (SCLB, top left). In the center we also reported the map from an additional group of sighted that
performed the visual version of the experiment. These maps visualize the functional topography of VOTC and
TEMP regions to the main four categories in each group. These group maps are created for visualization
purpose only since statistics are run from single subject maps (see methods). To obtain those group maps, we
first averaged the B-values among participants of the same group in each voxel inside the VOTC and inside the
TEMP mask for each of our 4 main conditions (animals, humans, manipulable objects and places) separately and

we then assigned to each voxel the condition producing the highest p-value.

Fig. 3 MVP-classification results in the ROIs. Left panel: results from the EB/SCEB groups; central panel: results
from the LB/SCLB groups; right panel: data from EB and LB are directly compared after normalizing them based

on their own matched group.

Fig. 4. Correlation between VOTC and TEMPORAL DSMs within each subject. Each dot represents the
Spearman'’s correlation of each subject between its own VOTC and TEMP DSMs. Left panel: results from the
EB/SCEB groups; central panel: results from the LB/SCLB groups; right panel: data from EB and LB are directly

compared after normalizing them based on their own matched group.

Fig. 5. Inter-subject correlation for EB-SCEB-SCv within and between groups, within and between ROls. Left
panel: results within VOTC. Central panel: results within the temporal ROI. Right panel: results between VOTC
and the temporal ROL. In each box, the upper part represents the correlation matrix between the brain DSM of
each subject with all the other subjects (from the same group and from different groups). The mean correlation
of each within- and between-groups combination is reported in the bottom panel (bar graphs). The straight line
ending with a square represents the average of the correlation between subjects from the same group (i.e.
within groups conditions: SCv, EB, SCEB), the dotted line ending with the circle represents the average of the
correlation between subjects from different groups (i.e. between groups conditions: SCv-EB/SCv-SCEB/EB-

SCEB).
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Fig. 6. Inter-subjects correlation for LB-SCLB-SCv within and between groups, within and between
ROIs. Left panel: results within VOTC. Central panel: results within the temporal ROI. Right panel: results
between VOTC and the temporal ROI. In each box, the upper part represents the correlation matrix between
the brain DSM of each subject with all the other subjects (from the same group and from different groups). The
mean correlation of each within- and between-groups combination is reported in the bottom panel (bar graphs).
The straight line ending with a square represents the average of the correlation between subjects from the same
group (i.e. within groups conditions: SCv, LB, SCLB), the dotted line ending with the circle represents the
average of the correlation between subjects from different groups (i.e. between groups conditions: SCv-LB/SCv-

SCLB/LB-SCLB).

Fig. 7. Hierarchical clustering analysis on the different groups and regions. (A) Results for EB, SCEB
and SCv. (B) Results for LB, SCLB and SCv. On the left side the dendrogram represents the hierarchical
clustering analysis for the 4 clusters. In both panels, on the right side, the multidimensional scaling represents
how the different regions and groups cluster for 2,3 and 4 clusters. On the right side on the top the dissimilarity
matrix represents the correlation values between the functional categorical profile of each ROl and group with

all other ROIs and groups.

Fig. 8. RSA-Correlations with representational models (A) Representation of all candidate models.
There are four different behavioral models, one for each group. (B) Matrix including the linear correlations
between each pair of models. Yellow indicates high correlations, blue indicated low correlation. (C) Correlations
between TEMP DSM of each group and the 10 representational models. (D) Correlation between VOTC DSM of
each group and the 10 representational models. Bars show mean Spearman’s correlations across participants;
error bars show standard error and each dot represent one participant. Horizontal grey lines show the lower
bound of the noise ceiling. An asterisk below the bar indicate that correlations with that model were significantly
higher than zero. Correlations with individual models are sorted from highest to lowest. Horizontal lines above
bars show significant differences between the correlations of the two end points (FDR corrected for multiple

comparisons).
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Fig. 9 RSA results with the Human model: between group’s comparisons. Spearman’s correlation
between the DSMs in the 2 ROIs (VOTC and TEMP) with the human model. Left panel: results from the EB/SCEB
groups; central panel: results from the LB/SCLB groups; right panel: data from EB and LB are directly compared

after normalizing them based on their own matched control group.
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