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Abstract

Anatomically modern humans evolved around 300 thousand years ago in Africa. Modern humans
started to appear in the fossil record outside of Africa about 100 thousand years ago though other
hominins existed throughout Eurasia much earlier>*. Recently, several researchers argued in
favour of a single out of Africa event for modern humans based on whole-genome sequences
analyses®’. However, the single out of Africa model is in contrast with some of the findings from
fossil records, which supports two out of Africa®®, and uniparental data, which proposes back to
Africa movement'®!!, Here, we used a novel deep learning approach coupled with Approximate
Bayesian Computation and Sequential Monte Carlo to revisit these hypotheses from the whole
genome sequence perspective. Our results support the back to Africa model over other alternatives.
We estimated that there are two successive splits between Africa and out of African populations
happening around 60-80 thousand years ago and separated by 12-13 thousand years. One of the
populations resulting from the more recent split has to a large extent replaced the older West
African population while the other one has founded the out of Africa populations.
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Introduction

In the last few decades, the development of efficient and powerful computing infrastructure
allowed us to gain substantial progress in the machine learning field, especially for
computationally demanding algorithms such as Neural Network (NN)!21 and Bayesian
methods!*®. NN was demonstrated to be an useful tool for specific types of tasks, such as
classification or natural language processing?141%. However, NN requires a large amount of data
as a training set. In some cases, simulated datasets are one of the strategies to overcome this
limitation. The simulation of synthetic genetic data can be helpful to substantially mitigate this
problem!”8, NN is already adopted in population genomics studies to interpret the genomics data
in terms of underlying demography®®2! and positive selection?*?, However, unlike classical
approaches, it is still challenging to measure the significance of a prediction performed by NN,
given that it is a black-box approach. Approximate Bayesian Computation (ABC) can be used to
weigh the accuracy of a NN-based prediction from the data itself, without knowing the maximum
likelihood function®20:24,

Recent fossil record analysis suggests that anatomically modern humans appeared around 300
thousand years ago (kya) in Africal. This hypothesis is corroborated by genetic data?®, which
projected the deepest splits between modern human populations at a similar time interval.
Although fossil records advocate that there might be multiple Out Of Africa (OOA) events for
modern humans?, recent genetic studies revealed that all modern non-African or OOA populations
fit a model characterised by a single OOA event>’. This conclusion indicates that older OOA
migrations, documented by archaeological records, might have not left much contribution to
modern human populations, with the possible exception in Oceania (Papuan populations)?” and
some archaic hominin,

While the single OOA model finds support in both autosomal and uniparental data'*?%%®, there is
some evidence for a more complicated scenario. Most of the uniparental haplogroups are closer to
each other in OOA populations than African haplogroups (thus having less time to the most recent
common ancestor [TMRCA]), corroborating a single clean OOA model, apart from the sister Y
haplogroups D and E. The haplogroup D can be found in isolated populations in Asia (i.e.,
Andamanese, Tibetan, Japanese, etc.), while the haplogroup E is ubiquitous in sub-Saharan
African populations. They are slightly closer to each other than any other haplogroups found in
OOA populations from them!'3L. This observation might be explained by a back to Africa
migration!! or a more complicated scenario®’. Some autosomal analyses also suggest that the
separation between Africa and OOA populations might not be a single split event33-%,

Testing these hypotheses (single out of Africa, back to Africa and two out of Africa) is challenging
due to the strong bottleneck of non-African populations®”-3°, differential archaic introgression
between populations>**4% and various migrations within Africa®®4l. The lack of ancient genomic
data older than 15 kya“*? from Africa or the Middle East makes it difficult to address this issue from
an ancient DNA perspective. However, NN have been shown to be extremely powerful to
disentangle such complex scenarios'®. Here, we present ABC-DLS (Approximate Bayesian
Computation using Deep Learning and Sequential Monte Carlo method) which allows us to infer
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69 the most likely scenario among different competing demographic models as well as to estimate
70  their parameter values with high precision. Our approach relies on a NN trained on simulated
71  genetic data under the models being tested. However, it has three key improvements compared to
72 other similar approaches. First, the use of the hdf5* data format and tensor flow*** allows for
73 extremely large training datasets. Second, the conventional NN approach is augmented using ABC
74 which helps to provide statistical support for the NN prediction and to obtain posterior distribution
75  for the model parameter values. Third, inspired by previous works*®, we applied a modification of
76  the Sequential Monte Carlo (SMC, also known as the Particle Filter method)*’ approach to iterate
77  the whole procedure. This improved the accuracy substantially compared to previously
78  implemented methods!®*®, We apply this method to test the three OOA models mentioned above.

79 Results

80 ABC-DLS

81  The general workflow for ABC-DLS (both for model selection and parameters estimation)
82 includes the following steps. First, we simulated'® multiple sets of genetic data for each tested
83  model using demographic parameters sampled from a uniform distribution within prior ranges
84 (Table 1). Next, we converted this data into joint site frequency spectrum (SFS) (although
85  potentially any other summary statistics (SS) can be used) and split the data into a training and a
86 testing subset. We then trained the NN (implemented using TensorFlow** with Keras backended®)
87  onthe training dataset to either select between demographic models or to estimate the demographic
88  parameters. The resulting NN is applied to the testing dataset as well as to the observed SS data
89  (see below as well as Methods for more details). Next, we apply ABC to estimate support for the
90 NN prediction on the observed data comparing the NN prediction outcome between the observed
91 dataand the testing dataset (see Methods, Supplementary Figure 2 and also our previous paper °).
92  Finally, in cases when SMC is used, we essentially iterate the parameter estimation step by SMC.
93  When estimating the posterior range for the parameters using ABC, we kept the top five percent
94  (equal to the tolerance level) of simulations from the testing dataset that best matched with the
95  observed data. We then used the parameters of those simulations to update our prior range and sent
96 it for next iteration till convergence reached (Supplementary Figures 2 and 3).

97  Before testing our primary hypothesis on real sequence data, we tested if our new approach (ABC-

98 DLS) is robust enough for the known results. The predicted parameters for real sequence data (see

99 later for more details) are consistent with previous works from the literature®”**4%(Supplementary
100  Table 1). We also simulated models (model S, B, M, see later for more information) and created
101  mock observed SS (simulation parameters coming from Table 2, Supplementary Table 2 and 3).
102  We found that our novel approach with SMC predicted the right model for every case, suggesting
103 it can find the correct model.

104 Model Selection

105  To test our hypothesis, we simulated three OOA models: Simple model (model S), Back to Africa
106  model (model B), and Mix model (model M) with all the models having introgression from
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107  Neanderthal to all OOA populations®®, Denisova or Unknown to Asial®°52 African Archaic to
108  Africa®>* and European Farmers to Africa® (NDXF) (see methods for more details,
109  Supplementary Figure 1 and Table 1). We used HGDP dataset™® of five Yoruba (African), five
110  French (European) and five Han Chinese (East Asian) as our real dataset. Next, we used three
111  different methods to choose between the competing models: i) ABC-RF that combines random
112  forests with ABC (here onwards referred to as RF)*; ii) NN and ABC together (here onwards
113  referred to as DL) which is analogous to our previously published method ABC-DL'®; and iii) the
114 novel method introduced here ABC-DLS which augments the DL method with SMC (here
115  onwards referred as DLS). Although all three methods identified the model B as the most probable
116  one, the prediction certainty varied between methods (Table 3). While DLS returned 100%
117  probability for model B, DL and RF gave lower support. Also, when 10 independent runs were
118  tested, model B won 10 times out of 10 using DLS and 9 out of 10 using DL. Moreover, Bayes
119  factor value was predicted to be 6.69 between model B and model S by DL. These suggest that we
120  cannot reject model S completely with DL. This difference in prediction certainty was likely due
121  to the better power of DLS to differentiate between the three models compared to the other (Table
122 3).

123 The DLS results were reproduced under different data filtering strategies and different datasets
124  (Supplementary Table 6). As our base models assumed four pulse migration events based on
125  previous studies (three introgression scenarios and recent migration of Neolithic farmers), we
126  tested if these assumptions could affect our inference. We tested different models with 1) No
127  introgression and no farming migration (NI), 2) Neanderthal and Denisova introgression (ND), 3)
128  Neanderthal, Denisova and Africa Archaic introgression (NDX) 4) Neanderthals, Denisova
129  introgression with farming migration (NDF) using only DLS. Except for the no introgression
130  model (Supplementary Table 7), we always found model B to be supported over models S and M.
131  When we compared all these 15 models together ([B, M, S] x [NI, ND, NDX, NDF, NDXF]) using
132 DLS, model B with Neanderthal, Denisova, African archaic introgression, and Neolithic migration
133  (BNDXEF) is supported over all other possibilities (P(BNDXF|data) =0.76) (Supplementary Table
134  8). This result not only demonstrated the robustness of our inference for model B but also
135 independently supported other assumptions which were reported before but not all of them were
136  confirmed together®36:50-525455 \we would also like to point out a simpler model without Neolithic
137  migration (P(BNDX|data=0.24) cannot be rejected by our approach.

138 Parameter Estimation

139  After demonstrating that model B best explains the real SS data, we used the three methods
140  described above (RF, DL and DLS) to estimate the model’s parameters. The confidence intervals
141  returned by DLS are much narrower than those of the alternative approaches (Table 2,
142 Supplementary Tables 9 and 10) and comparable with other methods®/*%4° thus showing good
143  performance of our new method. Hence, all the results discussed below are the ones obtained with
144  DLS.

145  Our inference suggests that there was first a separation between the Ancient African population
146  (AA) and a population ancestral to both Back-to-Africa and the actual Out-of-Africa populations
147  (OOA’) around 72.2 (CI 70.6 - 73.7) kya followed by a split between back to Africa (B2A) and
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148 OOA 59 (CI 57.4 - 60.5) kya and an admixture between AA and B2A 47.7 (Cl 46.4 - 49.1) kya.
149  The Neanderthal introgression to OOA happened much later, 39.9 (CI 38.9 - 40.9) kya, suggesting
150 that this Back to Africa migration cannot explain the Neanderthal ancestry found in modern
151  African populations®. Our method predicted the admixture proportion from B2A to be as high as
152 92% (CI 89.66 - 93.08) suggesting a massive replacement of the AA population.

153 Our results also comply with Y-chromosomal phylogeny and support back to Africa as proposed
154  before!l. However, our estimation time of separation between populations is much younger than
155  what is reported in Y-chromosomes. One explanation might be that we used a slightly higher
156  mutation rate (1.45x107 per bp per generation)®’ instead of a slightly slower alternative (1.25x10°
157 8 per bp per generation)®®°°. When we used the slower mutation rate, our estimation for most of
158  the events time increased (Supplementary Table 11). Indeed, the separation time between B2A and
159  OOA populations corresponds to 67 (Cl 66.3 - 67.6) kya, which is close to the estimate of TMRCA
160  between Haplogroup D and E (72 kya'?).

161  To independently validate our results, we compared effective population size (Ne) trajectories and
162  cross-coalescent rates obtained by applying Relate®? to real data as well as to data simulated under
163  each of the three models using the mean posterior parameters (Table 2 and Supplementary Table
164 2 and 3) predicted by DLS (following a flowchart represented in Supplementary Figure 3a)**. We
165  observe a close match between the estimates for the real data and our best predicted model (Figure
166  2) which suggests our parameter estimation to be accurate. This similarity is particularly
167 interesting, given that we have not used any LD-based SS to optimize those parameters. On the
168  other hand, neither the Ne trajectory nor the cross-coalescent rate over time is informative to
169 differentiate between the three models (data not shown). Specifically, the gradual separation
170  between African and OOA populations, which was observed before with Relate and similar
171  methods®*3*, cannot be directly explained by the back to Africa or two out of Africa migration as
172  this separation is also matched in our model S (Supplementary Figure 4).

173 Discussion

174 We presented here that the ABC analysis can be substantially improved by using NN coupled with
175  the SMC approach. Our methodology is robust to test any hypotheses which can be simulated,
176  which cannot be extensively tested by other methods (especially for scenarios of admixture from
177  ghost populations where the ancient genomes are unavailable) and can accommodate any kind of
178 SS. In this study, we used SFS as SS because it is effortless to calculate and have sufficient
179  information®”®°, Our results might be further improved by using some LD-based SS°*®! but we
180  opted out as they are computationally demanding to produce and the improvement in the result is
181  minimal (at least for the tested scenario). Although our approach (DLS) is fast enough, the main
182  Dbottleneck currently is the production of the simulated SS data.

183  In our models, we have not adopted any migration rates between populations, although our
184  approach can use it. This is because we found out that our approach (Parameter Estimation using
185  DLS) predicted non-zero migration rates when we used a mock observed SS data coming from a
186  pulse model with no migration (mean values from Table 1) and a NN trained on an island model
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187  with migrations (Supplementary Table 4 and 5). This suggests that models including migration
188 rates may lead to equifinality as suggested by others®? and/or our approach is incapable of
189  estimating them.

190  Although in our scenarios model B is preferred over model S, considering no introgression as an
191  option (NI) supported model M over other models (Supplementary Table 7). This result might be
192  a side effect of the Neanderthal introgression in OOA. Under certain conditions (i.e., older
193  separation time between Africa and OOA [T_B]), model M with no introgression and model S
194  with Neanderthal introgression are comparable (Neanderthal population behaves like the first
195  OOA population in this scenario). This result suggests a possible drawback of our method as
196  different demographic histories can give similar SFS patterns, which can bias our interpretation if
197  not incorporated in the model correctly®® and also advocates for the importance of parameter
198  estimation as it can give insight for the choice of model selected.

199  Although the estimated proportions of introgression from Archaic populations have values
200  consistent with those previously reported?®3, the separation time between Homo sapiens and
201 archaic populations are more recent than those previously inferred®>®* if we used a loose prior of
202  400-1,100 kya. These deviations were not reproduced when we used simulated SS generated under
203  known parameters from Table 2. This may be specific to real sequence data and might be a side
204  effect of some of our assumptions (for example some unknown interactions between these
205  populations which was not modelled here) or systematic biases due to the use of European
206  reference genome® or recent changes of generation time or mutation rate per generation®®®’. Thus,
207  the admixture with archaic populations may be seen as a way of introducing noise in the
208  simulations for model selection rather than an attempt to obtain true parameter estimates. Most
209  probably in the future, we can improve this estimate by directly using the available ancient
210  genomes together with modern datasets.

211 We cannot also reject a simpler model of no Neolithic migration®. Even if we assume the Neolithic
212  migration affected Yoruba, the predicted total length of Neanderthal sequence in an average
213 Yoruba genome would be less than 5 Mb compared to the 17 Mb identified by Chen et al®®. This
214  discrepancy also cannot be explained by the back to Africa model as introgression happened much
215 later after the separation. This suggests that most of the Neanderthal signal in Yoruba should be
216  explained by some other migration (for example from Human to Neaderthal®®).

217  Our results suggested a back to Africa model (model B) is more likely than a simple out of Africa
218  event (model S). Although this model is better in explaining the real data, it might not be the final
219  one. An even more complicated migration or admixture model which was not tested here might
220  still better explain the real data. We have not tested two out of Africa events directly, although our
221  model M is similar to two out of Africa model under certain conditions (assuming that European
222  and East Asian do not have differential admixture with first OOA population). It will be interesting
223  to revisit this hypothesis with Papuan populations in the future.

224  We would like to caution that although we are naming the model “Back to Africa”, the OOA
225  population did not need to be geographically out of Africa®. Our estimates, particularly the
226  effective population size of B2A (N_BC) and the time of Neanderthal introgression (T_Nintro),
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227  advocate that the split might have happened within Africa itself before the actual out of Africa
228  event. In such a case, our results can be explained by the separation of West and East African
229  population 80 kya (T_B) and then later the primary separation of OOA and East African population
230 67 kya (T_Sep) (assuming mutation rate of 1.25x107 per bp per generation®®>° and generation
231  time of 29 years®). In this regard, our model is more akin to Lipson et al. 2020%¢ model rather than
232  what is suggested by Cole et al. 2020%. If we assume model from Lipson et al. to be true, the most
233 parsimonious explanation would be that our B2A population represents Basal West African
234 population which separated from OOA populations 67 kya (T_Sep). Our AA represents Ghost
235  modern® which contributed to modern West African population around 10% which admixed
236  around 60 kya from our prediction. On the other hand, if we assume true back to Africa, then most
237  likely the OOA event took place less than 80 kya (T_B). This suggests that most of the older fossils
238 (>80 kya) found outside Africa®* are unlikely to have contributed to OOA populations (assuming
239  the ancestor of all modern human originated in Africa and never left Africa before OOA event).
240  Geographical location where B2A separated from OOA is immensely important for this hypothesis
241  but cannot be estimated from our approach. It will be especially fascinating to test this hypothesis
242  using ancient genomes from those areas from that time point when they will be available.
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243 Methods

244  Real Data

245  We have downloaded the high coverage HGDP vcf files®® and randomly selected five African
246  (Yoruba, YRI), five European (French, FRN), and five East Asian (Han Chinese, HAN)
247 individuals. As an alternative dataset, we have also downloaded the high coverage 1000 Genome
248 "0 vcf files with personal communication from Michael Zody of New York Genome Center (this
249  data is yet to be published). We randomly selected five individuals from Africa (Yoruba from
250 Ibadan, Nigeria YRI), Europe (Utah Residents with European origin, CEU), and East Asia
251  (Chinese Han from Beijing, CHB) population. We kept both the data set separated and kept only
252  positions present in every individual (within every data set), bi-allelic and Single Nucleotide
253  Polymorphism (SNP). We lifted the genome to GR37 using Picard tools. Moreover, we filtered
254  out regions with genes and CpG islands (for more details, please see Mondal et al. 2019%°).
255  Independently, we also used a mappability mask for the HGDP dataset in Supplementary Table 6.
256  All the filterings were done with combinations of vcftools and bcftools’>"2. The vcf file was
257  converted to SFS using an in-house code using scikit allel”.

258  Simulations

259  All the simulations were done in msprime'®. We have produced the joint site frequency spectrum
260  (SFS) of five individuals per populations (African, European, and East Asian genome) simulating
261  one mega base pair (Mbp) of replicates with the recombination rate of 10 per base pair (bp) per
262  generation and the mutation rate of 1.45x10® per bp per generation®’. We also alternatively used
263 1.25x10°® per bp per generation for mutation rate (only for Supplementary Table 11)%85°, Here, we
264  kept the recombination rate constant, as SFS is not affected by the local recombination rate®®. We
265  assumed generation time of 29 years®.

266  In msprime, Admixtures were represented as MassMigration (the fraction of a population replaced
267 by another population in a single generation). In contrast, migration rates under island models
268  (where appliable) were represented as Migrationrate (the rate of fraction per generation of a
269  population was replaced by another population for several generations).

270  The ABC-DLS analysis is efficient enough to be done on a single computer. The main bottleneck
271  of the whole approach is the production of the SFS data. Msprime is fast, but the total amount of
272  data, which needs to be simulated for the NN, is impossible to produce in a single computer. We
273 have used a snakemake pipeline to produce the SFS on the cluster’.

274  Demographic models
275  Simple out of Africa (model S)

276  Inthis simulation model, we have modeled a simple OOA event (Supplementary Figure 1) closely
277  following Gravel et al.*, except the migration rates are assumed to be nil. When we simulated
278  models with migrations rates, we slightly modified the model proposed by Gravel et al*. Migration
279  rates are denoted by m_popl_pop2, where popl is the population that received the migration, and
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280  pop2 is the population from where the migration originated. If the migration rates are bi-directional
281  and equal, we have four parameters (Supplementary Table 1) like in Gravel et al®®. However, if
282  they are not equal, we have eight parameters (Supplementary Table 4 and 5) to have all the
283  combinations between African, European, East Asian and OOA population.

284  Back to Africa (model B)

285  In this model, the basic OOA model still holds plus additional changes required for Back to Africa
286  migration (Supplementary Figure 1) are added. The basic idea is drawn from Poznik et al.11. In
287  this scenario, the OOA’ population is separated into populations B2A and OOA T_Sep generations
288  ago before the separation between European and Asian populations (which happens between T_B
289 and T_EU_AS generations ago). Next, B2A migrated to Africa having an effective population size
290 of N_BC and mixed with the African population (AA) T_Mix generations ago with a mixing
291  proportion of Mix (the portion of AA ancestry replaced). After the admixture, the effective
292  population size of the African population is changed from N_AF0 to N_AF.

293  Mixed out of Africa (model M)

294  This model (Supplementary Figure 1) is similar to model S with an additional population M
295  separating from the African population around T_Sep generation ago and having an effective
296  population size of N_MX. M mixed with OOA at T_Mix generations ago with Mix being the
297  proportion of OOA ancestry being replaced by M. After the admixture, the effective population
298  size of OOA is changed from N_BO to N_B. The basic idea came from Haber et al*? as well as two
299  OO0AZ,

300  Other Migrations as Prior

301  We also added some pulse migrations or admixtures proposed by different studies on top of these
302 basic models. We simulated OOA to have introgression from Neanderthal®® around T_NM
303  generation ago with the proportion of NMix. After the separation between Europeans and East
304  Asians, the East Asian population has introgression from Denisova®-°2 or an unknown population®®
305 around T_DM and the amount is DMix. Neanderthal separated from Denisova or the unknown
306 around T_N_D generation ago, and Neanderthal-Denisovan lineage separated from the modern
307 human lineage T_H_A generation ago?®®4. The African population also has introgression from
308 another unknown archaic population®°3* which introgressed around T_XM generations ago
309  with the proportion of XMix. This unknown population separated from modern human lineage
310 around T_H_X generation ago. We found out that our method is incapable of finding the effective
311  population size for archaic populations. Thus, we assumed them equal to N_A same with the
312  ancestral effective population size. We also simulated Neolithic farmers, which separated from
313  Europeans around T_FS generations ago with effective population size of N_F and admixed with
314  the African population around T_FM generation ago with the proportion of Fmix>.

315 Some events can only happen after a particular event has already taken place (for example, the
316  separation of European and Asian populations can only happen after the Neanderthal introgression,
317  based on our prior assumption). The relations between these events are not straightforward and
318  written in Supplementary Table 12.
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319 Genotype to Site Frequency Spectrum

320 We ran several simulations and converted every instance of simulations into a joint
321  multidimensional unfolded site frequency spectrum (SFS) of a three-dimensional array from three
322  populations: Africa, Europe, and East Asia. SFS is the total number of segregating sites for a given
323  derived allele count present in each population.

n
324 SFS (i,j, k) = [Sl = i, SZ :j, S3 == k]
1

=
325  Where,

326 i, ], k="The number of derived alleles count per SNP in pop1, pop2 and pop3 respectively.
327  n=the total number of segregating SNPs.

328 The SFS was generated from simulations by msprime!® and then represented in a row. A similar
329  conversion was done on the real data from the vcf file. Although it is possible to use any SS for
330  our approach, we only used SFS as our choice of SS, given that it is straightforward to obtain and
331 informative enough®”®°. All the elements of real SFS were multiplied by a constant (frac) to make
332  itcomparable with the length of simulated regions if they do not match. For example, we multiplied
333  thereal SFS by 10/ 647 if we simulate a 10 Mbp region per simulation, and the real data is coming
334  from 647 Mbp region (after filtering).

335 ABC-DLS

336  We have used TensorFlow with Keras backend** for building the NN and used a simpler version
337  of the SMC approach*’ to improve the prediction.

338 Parameter Estimation with DL

339  Here we describe parameter estimation using NN with ABC. We ran a total of 60,000 different
340  simulations, with every simulation producing 3,000 of 1 Mbp regions (3 Gbp [giga base pair] in
341 total, roughly equal to the length of the human genome). Throughout all our steps, we always
342  simulated regions of 1 Mbp replicates, as they are fast to produce. Every line is one such simulation
343  performed under a given demographic model with the first few columns being the parameters used
344  for that simulation and the rest of the columns representing SFS elements. We ran Parameter
345  estimation on this CSV file to retrieve the parameters predicted on observed data for the given
346 model. We used the known parameters as labels for training the NN (y), and we used the SFS as
347  input (X). Thus, we can think of NN here as an inverse function of the simulation. We kept 10,000
348  random lines for the testing dataset and ABC analysis, and the rest were used for training the NN.
349  All the columns of SFS and parameters were normalized with MinMax scaler’®, so the whole data
350 is within 0.0 and 1.0 per column.

351  We used four hidden layers of a dense NN (Supplementary Figure 5) with activation relu, and we
352  used linear for the output layer with the same number of units as the number of parameters. We
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353 used a Masking layer at the beginning to remove cells with zero from the learning algorithm and
354  then Gaussian noise injection of .05 to introduce some noise (Supplementary Figure 5). We used
355  logcosh as a loss function and Nadam for the optimizer. The NN ran through the training dataset
356  several times (epochs) to increase accuracy. We used EarlyStopping on loss coming from
357 validation dataset with the patient of 100 and used the ModelCheckpoint of the lowest loss result
358 on validation data. We also used ReduceLROnPIateau of factor 0.2 to reduce the learning rate if
359  we reached minima for several epochs (10 by default).

360  After training is done, we used the testing dataset to predict the parameter from the SFS, which
361  was then used for cross-validation tests and parameter prediction using loclinear from ABC’® with
362  the tolerance of 0.01.

363  This approach is similar to what we have published before in ABC-DL?'®, although we have used
364  the latest tools (TensorFlow, Keras, and hdf5). The whole approach is presented in a flowchart
365  (Supplementary Figure 2).

366  Model Selection with DL

367  Here we describe model selection using NN and ABC. After running simulations for the three
368  demographic models (sample numbers are same as above per model), we produced three
369  corresponding CSV files. These CSV files are used together as input for Model Selection.

370  We used SFS as input (x) in the NN, and the model names as the output (y) and removed the
371  parameters as they are not necessary for this step. We used MinMax scaler from sklearn 7 only on
372  the SFS data as above, and the names of the models are converted to One-Hot Encoding by using
373  pandas.Categorical and keras.utils.to_categorical. After concatenating files coming from all the
374  competitive models, we randomized rows by a custom code’’. We left around 10,000 random lines
375  per each model to test the power of NN (as a testing dataset) and for ABC analysis and used the
376  rest to train the NN (as a training dataset). The rest of the approach is exactly similar as before.

377  We used two hidden layers of the Dense neural network with the activation relu (Supplementary
378  Figure 5). We used softmax for the output layer with the same number of units as the number of
379  trained models. We added a Masking layer and a noise injection layer as above. We used a 1%
380  dropout layer within every dense layer to make it more robust. We used categorical_crossentropy
381  for the loss function from Keras and adam for the optimizer.

382  After the training was done, we used the testing dataset to predict models from the simulated SFS,
383  which were then used to perform the cross-validation test using ABC with the tolerance of 0.0033
384  (which converts to 100 samples for three models) using mnlogistic. We calculated the model
385  selection (abc.postpr) by using real data. See a schematic representation in Supplementary Figure
386 2. This approach is also similar to our previous study?®.

387 Parameter Estimation with DLS

388  This method uses the Classic parameter estimation strategy of DL (described above) together with
389  the SMC algorithm used for recursion. The approach here is close to the classic approach of SMC*’
390  but not exactly the same.
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391  We used the rejection method in ABC for parameter estimation as it generates posterior within the
392  prior range with a tolerance of 0.05. We obtained the posterior range by taking the minimum and
393  the maximum values from the ABC output. This range was then used as a prior range for the next
394 iteration. This cycle repeated until shrinking for all parameters is more than 0.95, suggesting it has
395 reached convergence.

Posteriot,,q, — Posteriory,n

396 shrinking = Prior, —— Prior.o.
397  If the shrinking is more than 95% for a parameter, the new posterior estimation is rejected for that
398  parameter. Instead, the prior is kept for another cycle. This strategy was used so that the posterior
399  stops shrinking unless NN has found some accurate prediction for the parameter from SFS. We
400  kept simulations inside the new posterior range in every cycle to reuse simulations from a previous
401 cycle to anew cycle. A flow chart of this strategy can be found in Supplementary Figure 2c.

402  Weused 10,000 simulations as a training dataset and 10,000 simulations for testing. The NN model
403 isexactly as before (as used in DL, Supplementary Figure 5). To make it more efficient, we started
404  with simulating a total length of 100 Mbp (each simulated region being 1 Mb long), and then we
405  increased it stepwise (i.e., 0.5, 1.5, and 3 gbp). The priors for 100 Mbp regions are the same as
406  presented in Table 1. The final posterior (after convergence reached) of 100 Mbp is used as a prior
407  for 0.5 gbp simulation and so on. We multiplied the observed SFS by frac accordingly to scale it
408 for to the simulated region length.

409  After the convergence was reached with 3 gbp in total, we finalized by running 50,000 training
410  and 10,000 testing simulations with the DL method using loclinear with the tolerance of 0.01. The
411  flowchart of the method is represented in Supplementary Figure 3.

412 Model Selection with DLS

413  Here we describe model selection using NN, ABC and SMC together. In principle, we can directly
414  use the final output of parameter estimation by DLS for every model and then use it for the ABC
415  classification approach. However, this approach would be inefficient, given that only one model
416 s likely for our real dataset, and thus spending considerable resources to optimize parameters for
417  unlikely scenarios does not make sense. Instead, we used the output of 100 Mbp parameter
418  optimizations from the DLS approach as a prior to every model, and then we used the Model
419  selection strategy of DL, as mentioned before. We found out that we already have enough power
420  to distinguish between models using 100 Mbp for optimization.

421  ABC-RF

422  We tested the real SFS against the three simulated models using a similar ABC approach but using
423  Random Forest’® as an inferential tool implemented in the abcrf R package®®®. First, we trained
424 our model using the bagging method applying the function abcrf, with no Linear Discriminant
425 analysis, and 2,000 decision trees using 150,000 simulations (50,000 for each tested model). We
426  then evaluated the performance of ABC-RF through a cross-validation dataset composed of 10,000
427  simulations for each tested model using the function predict.abcrf. The same function and settings
428  were used for inferring the best-supported model using the SFS obtained from real data described
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429  above. We performed parameter estimation for the most supported scenario applying regression
430 as implemented in the regAbcrf model using 1000 decision trees. Each parameter was inferred
431  separately.

432  Relate

433  We used Relate®, a method for inferring local trees, to validate our parameter estimates. Relate
434  uses branch length of the local trees to estimate coalescent rate through time®*. Thus, we used it to
435  compare effective population size (Ne) trajectories and inter-population coalescent rates for the
436  African, European and East Asian populations between the real and simulated data. We applied
437 Relate to YRI, CEU, and CHB samples (108, 99 and 103 individuals accordingly) from the high
438  coverage version of the 1000 Genomes project as well as to genetic data simulated under each of
439  the three models (Table 2, Supplementary Table 4 and 5). For real data chromosome 1 was used
440  and aregion of the same length was simulated.

441  We started with 2054 high-coverage genomes from the 1000 Genomes. We kept positions that a)
442  are bi-allelic SNPs, b) pass the 1000 Genomes filter and have the QD (quality by depth) parameter
443  above two and c) have a missing rate below 10%, We phased and imputed the entire dataset using
444  Eagle version 2.4.18°. Next, we ran Relate on chromosome 1 for samples coming from the three
445  focal populations. We used the GRCh38 recombination map, 1000 Genomes strict genomic mask
446  and a mutation rate of 1.45x10%. Next, we ran the Ne estimation module of Relate for each
447  population individually for the Ne trajectory and for population pairs for the cross-coalescence
448  curves.

449  For each model, we simulated a region of the same length as chromosome 1 with uniform
450  recombination together for 100 African, 100 European and 100 East Asian individuals using
451  msprime!8, We used the 1000 Genomes strict mask for consistency between real and simulated
452  data in terms of the length of the available sequence. After that, the simulated data were treated as
453  described above.

454  We estimated Ne for both real and simulated data as 1/2C where C is the inferred intra-population
455  coalescence rate. To estimate the relative inter-population coalescence rate, we used the following
456  formula®::

2 % Cyy

457 Cyp =7+
270+ Cy

458  Where Ci1 and Cx are intra-population coalescence rates and Ci2 is the inter-population
459  coalescence rate.
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a5 Tables

476 Table 1: Prior parameters range used for producing the Site Frequency Spectrum (SFS).

Parameters OOA_S OOA_B OOA_M

N_A 5,000 - 25,000 5,000 - 25,000 5,000 - 25,000
N_AF 10,000 - 150,000 = 10,000 - 150,000 = 10,000 - 150,000
N_EU 10,000 - 150,000 = 10,000 - 150,000 = 10,000 - 15,0000
N_AS 10,000 - 150,000 = 10,000 - 150,000 = 10,000 - 150,000
N_F 5,000 - 30,000 5,000 - 30,000 5,000 - 30,000
N_EUO0 500 - 5,000 500 - 5,000 500 - 5,000
N_ASO 500 - 5,000 500 - 5,000 500 - 5,000

N_B 500 - 5,000 500 - 5,000 500 - 5,000
N_BC NA 500 - 30,000 NA

N_AFO NA 500 - 30,000 NA

N_MX NA NA 500 - 30,000
N_BO NA NA 500 - 30,000
T_FM (ky) 2-5 2-5 2-5

T_FS (ky) 0.1-10 0.1-10 0.1-10

T_DM (ky) 10 - 50 10 - 50 10 -50

T EU AS(ky)  10-30 10 - 30 10-30

T_NM (ky) 5-50 5-50 5-50

T_XM (ky) 5-50 5-50 5-50

T_Mix (ky) NA 5-50 5-50

T_Sep (ky) NA 5-50 5-50

T B (ky) 5-270 5 - 220 5-220

T_AF (ky) 5 - 700 5 - 700 5-700

T_N_D (ky) 330 - 450 330 - 450 330 - 450

T H_A (ky) 120 - 250 120 -250 120 - 250
T_H_X (ky) 450 - 700 450 - 700 450 - 700

NMix (%) 1-3 1-3 1-3

DMix (%0) 0-2 0-2 0-2

XMix (%) 0-10 0-10 0-10

FMix (%) 0-10 0-10 0-10

477  NA means not applicable. Ky means kilo or thousand years.
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478 Table 2: Posterior range for parameters of model B.

Parameters Mean | ClI Events (kya)

N_A 13,500 13,495 - 13,501

N_AF 21,689 21,277 - 22,496

N_EU 119,988 111,986 - 134,779

N_AS 122,321 114,667 - 135,974

N_F 20,137 17,149 - 24,731

N_EUO0 1,813 1,766 - 1,871

N_ASO 730 719 - 752

N_BC 20,347 13,024 - 25,099

N_B 2,123 2,100 - 2,164

N_AFO0 28,491 27,967 - 28,758

T_FM (ky) 3.4 2.1-4.9 3.4 (2.1-4.9)

T_FS (ky) 4.9 0.2-9.7 8.3 (3.4-13.2)
T_DM (ky) 15 14.4-1538 15 (14.4 - 15.8)

T EU_AS (ky) 17.7 17.2-18.3 32.7 (31.8 - 33.6)
T_NM (ky) 7.2 6.7-7.4 39.9(38.9-40.9)
T_XM (ky) 14.7 13.7-15.7 47.5 (46.1 - 48.8)
T_Mix (ky) 15 14.1-16.1 47.7 (46.4 - 49.1)

T _Sep (ky) 11.2 10.8-12.3 59 (57.4 - 60.5)

T_B (ky) 13.2 12.7-135 72.2 (70.6 - 73.7)
T_AF (ky) 208.9 196.8 - 218.3 281.1 (270.2 - 291.9)
T_N_D (ky) 447.2 4443 - 448.9 447.2 (444.3 - 448.9)
T _H_A (ky) 249.4 247.2 - 250.5 696.6 (693.8 - 699.5)
T _H_X (ky) 695.4 686.1 - 700.3 695.4 (686.1 - 700.3)
Mix (%) 91.98 89.66 - 93.08

NMix (%) 3.01 2.98 - 3.02

DMix (%0) 0.63 0.58 - 0.68

XMix (%) 5.04 4.85-5.14

FMix (%6) 2.37 2.13-2.49

479  Cl is the confidence interval of 2.5%-97.5% of respective parameters. Ky means kilo years and
480  kya means kilo or thousand years ago from now.
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481 Table 3: Cross validation and Model Selection using different approaches.

RF OOA_B OOA M OOA S
OOA_B 95.33% 1.23%  3.44%
OOA_M 1.06% 85.12% 13.82%
OOA_S 4.45% 8.94% 86.61%
Posterior of votes 70.40% 13.20% 16.40%
DL

OOA_B 97.36% 053% 2.12%
OOA_M 0.03% 85.74% 14.23%
OOA_S 1.09% 10.55% 88.36%
Posterior model probabilities  87.27% 0.13% 12.6%
DLS

OOA_B 99.84% 0.04% 0.13%
OOA_M 0.00% 100.00%  0.00%
OOA_S 0.00%  0.08% 99.92%

Posterior model probabilities  100.00% 0.00%  0.00%

482  Confusion matrix for misclassification is reported here using RF (Random Forest), DL (only
483  Neural Network) and DLS (Neural Network and Sequential Monte Carlo together) for random
484  samples from the models with ABC. Posterior of votes and Posterior model probabilities are final
485  posterior after using the real data.

17


https://doi.org/10.1101/2020.12.10.419069
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419069; this version posted December 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

6 Figures

487  Figure 1: Schematic of Inferred Demography

488  Model B with only mean posterior. Kya is kilo years ago, AFR is African, EUR is Europeans,
489  ASN is East Asian, NEAN is Neanderthal, DENI is Denisova and XAFR is African Archaic.
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Figure 2: Effective population size trajectories and coalescence rates over time.

Here we compare effective population size (a) and relative cross-coalescence rates (b) estimated
using Relate between the real and data simulated under the model B. a) x axis in kya (kilo years
ago) and y axis is the effective population size for corresponding populations presented in the inset.
Both axes are in log scale. b) x axis is in kya and y-axis shows the relative cross coalescent rate
for corresponding populations pairs presented in the insert. x axis is log scale.
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