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Abstract 12 

Anatomically modern humans evolved around 300 thousand years ago in Africa1. Modern humans 13 

started to appear in the fossil record outside of Africa about 100 thousand years ago though other 14 

hominins existed throughout Eurasia much earlier2–4. Recently, several researchers argued in 15 

favour of a single out of Africa event for modern humans based on whole-genome sequences 16 

analyses5–7. However, the single out of Africa model is in contrast with some of the findings from 17 

fossil records, which supports two out of Africa8,9, and uniparental data, which proposes back to 18 

Africa movement10,11. Here, we used a novel deep learning approach coupled with Approximate 19 

Bayesian Computation and Sequential Monte Carlo to revisit these hypotheses from the whole 20 

genome sequence perspective. Our results support the back to Africa model over other alternatives. 21 

We estimated that there are two successive splits between Africa and out of African populations 22 

happening around 60-80 thousand years ago and separated by 12-13 thousand years. One of the 23 

populations resulting from the more recent split has to a large extent replaced the older West 24 

African population while the other one has founded the out of Africa populations. 25 

Keywords 26 

Neural Network, Approximate Bayesian Computation (ABC), Sequential Monte Carlo (SMC), 27 

Out of Africa (OOA).  28 
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Introduction 29 

In the last few decades, the development of efficient and powerful computing infrastructure 30 

allowed us to gain substantial progress in the machine learning field, especially for 31 

computationally demanding algorithms such as Neural Network (NN)12,13 and Bayesian 32 

methods14,15. NN was demonstrated to be an useful tool for specific types of tasks, such as 33 

classification or natural language processing12–14,16. However, NN requires a large amount of data 34 

as a training set. In some cases, simulated datasets are one of the strategies to overcome this 35 

limitation. The simulation of synthetic genetic data can be helpful to substantially mitigate this 36 

problem17,18. NN is already adopted in population genomics studies to interpret the genomics data 37 

in terms of underlying demography19–21 and positive selection22,23. However, unlike classical 38 

approaches, it is still challenging to measure the significance of a prediction performed by NN, 39 

given that it is a black-box approach. Approximate Bayesian Computation (ABC) can be used to 40 

weigh the accuracy of a NN-based prediction from the data itself, without knowing the maximum 41 

likelihood function19,20,24. 42 

Recent fossil record analysis suggests that anatomically modern humans appeared around 300 43 

thousand years ago (kya) in Africa1. This hypothesis is corroborated by genetic data25, which 44 

projected the deepest splits between modern human populations at a similar time interval. 45 

Although fossil records advocate that there might be multiple Out Of Africa (OOA) events for 46 

modern humans26, recent genetic studies revealed that all modern non-African or OOA populations 47 

fit a model characterised by a single OOA event5–7. This conclusion indicates that older OOA 48 

migrations, documented by archaeological records, might have not left much  contribution to 49 

modern human populations, with the possible exception in Oceania (Papuan populations)27 and 50 

some archaic hominin28. 51 

While the single OOA model finds support in both autosomal and uniparental data11,29,30, there is 52 

some evidence for a more complicated scenario. Most of the uniparental haplogroups are closer to 53 

each other in OOA populations than African haplogroups (thus having less time to the most recent 54 

common ancestor [TMRCA]), corroborating a single clean OOA model, apart from the sister Y 55 

haplogroups D and E. The haplogroup D can be found in isolated populations in Asia (i.e., 56 

Andamanese, Tibetan, Japanese, etc.), while the haplogroup E is ubiquitous in sub-Saharan 57 

African populations. They are slightly closer to each other than any other haplogroups found in 58 

OOA populations from them11,31. This observation might be explained by a back to Africa 59 

migration11 or a more complicated scenario32. Some autosomal analyses also suggest that the 60 

separation between Africa and OOA populations might not be a single split event33–36. 61 

Testing these hypotheses (single out of Africa, back to Africa and two out of Africa) is challenging 62 

due to the strong bottleneck of non-African populations37–39, differential archaic introgression 63 

between populations5,19,40 and various migrations within Africa36,41. The lack of ancient genomic 64 

data older than 15 kya42 from Africa or the Middle East makes it difficult to address this issue from 65 

an ancient DNA perspective. However, NN have been shown to be extremely powerful to 66 

disentangle such complex scenarios19. Here, we present ABC-DLS (Approximate Bayesian 67 

Computation using Deep Learning and Sequential Monte Carlo method) which allows us to infer 68 
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the most likely scenario among different competing demographic models as well as to estimate 69 

their parameter values with high precision. Our approach relies on a NN trained on simulated 70 

genetic data under the models being tested. However, it has three key improvements compared to 71 

other similar approaches. First, the use of the hdf543 data format and tensor flow44,45 allows for 72 

extremely large training datasets. Second, the conventional NN approach is augmented using ABC 73 

which helps to provide statistical support for the NN prediction and to obtain posterior distribution 74 

for the model parameter values. Third, inspired by previous works46, we applied a modification of 75 

the Sequential Monte Carlo (SMC, also known as the Particle Filter method)47 approach to iterate 76 

the whole procedure. This improved the accuracy substantially compared to previously 77 

implemented methods19,48. We apply this method to test the three OOA models mentioned above.  78 

Results 79 

ABC-DLS 80 

The general workflow for ABC-DLS (both for model selection and parameters estimation) 81 

includes the following steps. First, we simulated18 multiple sets of genetic data for each tested 82 

model using demographic parameters sampled from a uniform distribution within prior ranges 83 

(Table 1). Next, we converted this data into joint site frequency spectrum (SFS) (although 84 

potentially any other summary statistics (SS) can be used) and split the data into a training and a 85 

testing subset. We then trained the NN (implemented using TensorFlow44 with Keras backended45) 86 

on the training dataset to either select between demographic models or to estimate the demographic 87 

parameters. The resulting NN is applied to the testing dataset as well as to the observed SS data 88 

(see below as well as Methods for more details). Next, we apply ABC to estimate support for the 89 

NN prediction on the observed data comparing the NN prediction outcome between the observed 90 

data and the testing dataset (see Methods, Supplementary Figure 2 and also our previous paper 19). 91 

Finally, in cases when SMC is used, we essentially iterate the parameter estimation step by SMC.  92 

When estimating the posterior range for the parameters using ABC, we kept the top five percent 93 

(equal to the tolerance level) of simulations from the testing dataset that best matched with the 94 

observed data. We then used the parameters of those simulations to update our prior range and sent 95 

it for next iteration till convergence reached (Supplementary Figures 2 and 3). 96 

Before testing our primary hypothesis on real sequence data, we tested if our new approach (ABC-97 

DLS) is robust enough for the known results. The predicted parameters for real sequence data (see 98 

later for more details) are consistent with previous works from the literature37,39,49(Supplementary 99 

Table 1). We also simulated models (model S, B, M, see later for more information) and created 100 

mock observed SS (simulation parameters coming from Table 2, Supplementary Table 2 and 3). 101 

We found that our novel approach with SMC predicted the right model for every case, suggesting 102 

it can find the correct model.  103 

Model Selection 104 

To test our hypothesis, we simulated three OOA models: Simple model (model S), Back to Africa 105 

model (model B), and Mix model (model M) with all the models having introgression from 106 
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Neanderthal to all OOA populations50, Denisova or Unknown to Asia19,51,52, African Archaic to 107 

Africa36,53,54 and European Farmers to Africa55 (NDXF) (see methods for more details, 108 

Supplementary Figure 1 and Table 1). We used HGDP dataset56 of five Yoruba (African), five 109 

French (European) and five Han Chinese (East Asian) as our real dataset. Next, we used three 110 

different methods to choose between the competing models: i) ABC-RF that combines random 111 

forests with ABC (here onwards referred to as RF)48; ii) NN and ABC together (here onwards 112 

referred to as DL) which is analogous to our previously published method ABC-DL19; and iii) the 113 

novel method introduced here ABC-DLS which augments the DL method with SMC (here 114 

onwards referred as DLS). Although all three methods identified the model B as the most probable 115 

one, the prediction certainty varied between methods (Table 3). While DLS returned 100% 116 

probability for model B, DL and RF gave lower support. Also, when 10 independent runs were 117 

tested, model B won 10 times out of 10 using DLS and 9 out of 10 using DL. Moreover, Bayes 118 

factor value was predicted to be 6.69 between model B and model S by DL. These suggest that we 119 

cannot reject model S completely with DL. This difference in prediction certainty was likely due 120 

to the better power of DLS to differentiate between the three models compared to the other (Table 121 

3).  122 

The DLS results were reproduced under different data filtering strategies and different datasets 123 

(Supplementary Table 6). As our base models assumed four pulse migration events based on 124 

previous studies (three introgression scenarios and recent migration of Neolithic farmers), we 125 

tested if these assumptions could affect our inference. We tested different models with 1) No 126 

introgression and no farming migration (NI), 2) Neanderthal and Denisova introgression (ND), 3) 127 

Neanderthal, Denisova and Africa Archaic introgression (NDX) 4) Neanderthals, Denisova 128 

introgression with farming migration (NDF) using only DLS. Except for the no introgression 129 

model (Supplementary Table 7), we always found model B to be supported over models S and M. 130 

When we compared all these 15 models together ([B, M, S] x [NI, ND, NDX, NDF, NDXF]) using 131 

DLS, model B with Neanderthal, Denisova, African archaic introgression, and Neolithic migration 132 

(BNDXF) is supported over all other possibilities (P(BNDXF|data) =0.76) (Supplementary Table 133 

8). This result not only demonstrated the robustness of our inference for model B but also 134 

independently supported other assumptions which were reported before but not all of them were 135 

confirmed together19,36,50–52,54,55. We would also like to point out a simpler model without Neolithic 136 

migration (P(BNDX|data=0.24) cannot be rejected by our approach.  137 

Parameter Estimation 138 

After demonstrating that model B best explains the real SS data, we used the three methods 139 

described above (RF, DL and DLS) to estimate the model’s parameters. The confidence intervals 140 

returned by DLS are much narrower than those of the alternative approaches (Table 2, 141 

Supplementary Tables 9 and 10) and comparable with other methods37,39,49 thus showing good 142 

performance of our new method. Hence, all the results discussed below are the ones obtained with 143 

DLS.  144 

Our inference suggests that there was first a separation between the Ancient African population 145 

(AA) and a population ancestral to both Back-to-Africa and the actual Out-of-Africa populations 146 

(OOAʹ) around 72.2 (CI 70.6 - 73.7) kya followed by a split between back to Africa (B2A) and 147 
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OOA 59 (CI 57.4 - 60.5) kya and an admixture between AA and B2A 47.7 (CI 46.4 - 49.1) kya. 148 

The Neanderthal introgression to OOA happened much later, 39.9 (CI 38.9 - 40.9) kya, suggesting 149 

that this Back to Africa migration cannot explain the Neanderthal ancestry found in modern 150 

African populations55. Our method predicted the admixture proportion from B2A to be as high as 151 

92% (CI 89.66 - 93.08) suggesting a massive replacement of the AA population. 152 

Our results also comply with Y-chromosomal phylogeny and support back to Africa as proposed 153 

before11. However, our estimation time of separation between populations is much younger than 154 

what is reported in Y-chromosomes. One explanation might be that we used a slightly higher 155 

mutation rate (1.45×10-8 per bp per generation)57 instead of a slightly slower alternative (1.25×10-156 
8 per bp per generation)58,59. When we used the slower mutation rate, our estimation for most of 157 

the events time increased (Supplementary Table 11). Indeed, the separation time between B2A and 158 

OOA populations corresponds to 67 (CI 66.3 - 67.6) kya, which is close to the estimate of TMRCA 159 

between Haplogroup D and E (72 kya11). 160 

To independently validate our results, we compared effective population size (Ne) trajectories and 161 

cross-coalescent rates obtained by applying Relate32 to real data as well as to data simulated under 162 

each of the three models using the mean posterior parameters (Table 2 and Supplementary Table 163 

2 and 3) predicted by DLS (following a flowchart represented in Supplementary Figure 3a)34. We 164 

observe a close match between the estimates for the real data and our best predicted model (Figure 165 

2) which suggests our parameter estimation to be accurate. This similarity is particularly 166 

interesting, given that we have not used any LD-based SS to optimize those parameters. On the 167 

other hand, neither the Ne trajectory nor the cross-coalescent rate over time is informative to 168 

differentiate between the three models (data not shown). Specifically, the gradual separation 169 

between African and OOA populations, which was observed before with Relate and similar 170 

methods33,34, cannot be directly explained by the back to Africa or two out of Africa migration as 171 

this separation is also matched in our model S (Supplementary Figure 4). 172 

Discussion 173 

We presented here that the ABC analysis can be substantially improved by using NN coupled with 174 

the SMC approach. Our methodology is robust to test any hypotheses which can be simulated, 175 

which cannot be extensively tested by other methods (especially for scenarios of admixture from 176 

ghost populations where the ancient genomes are unavailable) and can accommodate any kind of 177 

SS. In this study, we used SFS as SS because it is effortless to calculate and have sufficient 178 

information37,60. Our results might be further improved by using some LD-based SS53,61 but we 179 

opted out as they are computationally demanding to produce and the improvement in the result is 180 

minimal (at least for the tested scenario). Although our approach (DLS) is fast enough, the main 181 

bottleneck currently is the production of the simulated SS data. 182 

In our models, we have not adopted any migration rates between populations, although our 183 

approach can use it. This is because we found out that our approach (Parameter Estimation using 184 

DLS) predicted non-zero migration rates when we used a mock observed SS data coming from a 185 

pulse model with no migration (mean values from Table 1) and a NN trained on an island model 186 
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with migrations (Supplementary Table 4 and 5). This suggests that models including migration 187 

rates may lead to equifinality as suggested by others62 and/or our approach is incapable of 188 

estimating them. 189 

Although in our scenarios model B is preferred over model S, considering no introgression as an 190 

option (NI) supported model M over other models (Supplementary Table 7). This result might be 191 

a side effect of the Neanderthal introgression in OOA. Under certain conditions (i.e., older 192 

separation time between Africa and OOA [T_B]), model M with no introgression and model S 193 

with Neanderthal introgression are comparable (Neanderthal population behaves like the first 194 

OOA population in this scenario). This result suggests a possible drawback of our method as 195 

different demographic histories can give similar SFS patterns, which can bias our interpretation if 196 

not incorporated in the model correctly63 and also advocates for the importance of parameter 197 

estimation as it can give insight for the choice of model selected. 198 

Although the estimated proportions of introgression from Archaic populations have values 199 

consistent with those previously reported28,53, the separation time between Homo sapiens and 200 

archaic populations are more recent than those previously inferred50,64 if we used a loose prior of 201 

400-1,100 kya. These deviations were not reproduced when we used simulated SS generated under 202 

known parameters from Table 2. This may be specific to real sequence data and might be a side 203 

effect of some of our assumptions (for example some unknown interactions between these 204 

populations which was not modelled here) or systematic biases due to the use of European 205 

reference genome65 or recent changes of generation time or mutation rate per generation66,67. Thus, 206 

the admixture with archaic populations may be seen as a way of introducing noise in the 207 

simulations for model selection rather than an attempt to obtain true parameter estimates. Most 208 

probably in the future, we can improve this estimate by directly using the available ancient 209 

genomes together with modern datasets.  210 

We cannot also reject a simpler model of no Neolithic migration55. Even if we assume the Neolithic 211 

migration affected Yoruba, the predicted total length of Neanderthal sequence in an average 212 

Yoruba genome would be less than 5 Mb compared to the 17 Mb identified by Chen et al55. This 213 

discrepancy also cannot be explained by the back to Africa model as introgression happened much 214 

later after the separation. This suggests that most of the Neanderthal signal in Yoruba should be 215 

explained by some other migration (for example from Human to Neaderthal28). 216 

Our results suggested a back to Africa model (model B) is more likely than a simple out of Africa 217 

event (model S). Although this model is better in explaining the real data, it might not be the final 218 

one. An even more complicated migration or admixture model which was not tested here might 219 

still better explain the real data. We have not tested two out of Africa events directly, although our 220 

model M is similar to two out of Africa model under certain conditions (assuming that European 221 

and East Asian do not have differential admixture with first OOA population). It will be interesting 222 

to revisit this hypothesis with Papuan populations in the future. 223 

We would like to caution that although we are naming the model “Back to Africa”, the OOA 224 

population did not need to be geographically out of Africa68. Our estimates, particularly the 225 

effective population size of B2A (N_BC) and the time of Neanderthal introgression (T_NIntro), 226 
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advocate that the split might have happened within Africa itself before the actual out of Africa 227 

event. In such a case, our results can be explained by the separation of West and East African 228 

population 80 kya (T_B) and then later the primary separation of OOA and East African population 229 

67 kya (T_Sep) (assuming mutation rate of 1.25×10-8 per bp per generation58,59 and generation 230 

time of 29 years69). In this regard, our model is more akin to Lipson et al. 202036 model rather than 231 

what is suggested by Cole et al. 202035. If we assume model from Lipson et al. to be true, the most 232 

parsimonious explanation would be that our B2A population represents Basal West African 233 

population which separated from OOA populations 67 kya (T_Sep). Our AA represents Ghost 234 

modern36 which contributed to modern West African population around 10% which admixed 235 

around 60 kya from our prediction. On the other hand, if we assume true back to Africa, then most 236 

likely the OOA event took place less than 80 kya (T_B). This suggests that most of the older fossils 237 

(>80 kya) found outside Africa2–4 are unlikely to have contributed to OOA populations (assuming 238 

the ancestor of all modern human originated in Africa and never left Africa before OOA event). 239 

Geographical location where B2A separated from OOA is immensely important for this hypothesis 240 

but cannot be estimated from our approach. It will be especially fascinating to test this hypothesis 241 

using ancient genomes from those areas from that time point when they will be available.  242 
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Methods 243 

Real Data 244 

We have downloaded the high coverage HGDP vcf files56 and randomly selected five African 245 

(Yoruba, YRI), five European (French, FRN), and five East Asian (Han Chinese, HAN) 246 

individuals. As an alternative dataset, we have also downloaded the high coverage 1000 Genome 247 
70 vcf files with personal communication from Michael Zody of New York Genome Center (this 248 

data is yet to be published). We randomly selected five individuals from Africa (Yoruba from 249 

Ibadan, Nigeria YRI), Europe (Utah Residents with European origin, CEU), and East Asia 250 

(Chinese Han from Beijing, CHB) population. We kept both the data set separated and kept only 251 

positions present in every individual (within every data set), bi-allelic and Single Nucleotide 252 

Polymorphism (SNP). We lifted the genome to GR37 using Picard tools. Moreover, we filtered 253 

out regions with genes and CpG islands (for more details, please see Mondal et al. 201919). 254 

Independently, we also used a mappability mask for the HGDP dataset in Supplementary Table 6. 255 

All the filterings were done with combinations of vcftools and bcftools71,72. The vcf file was 256 

converted to SFS using an in-house code using scikit allel73. 257 

Simulations 258 

All the simulations were done in  msprime18. We have produced the joint site frequency spectrum 259 

(SFS) of five individuals per populations (African, European, and East Asian genome) simulating 260 

one mega base pair (Mbp) of replicates with the recombination rate of 10-8 per base pair (bp) per 261 

generation and the mutation rate of 1.45×10-8 per bp per generation57. We also alternatively used 262 

1.25×10-8 per bp per generation for mutation rate (only for Supplementary Table 11)58,59. Here, we 263 

kept the recombination rate constant, as SFS is not affected by the local recombination rate63. We 264 

assumed generation time of 29 years69.  265 

In msprime, Admixtures were represented as MassMigration (the fraction of a population replaced 266 

by another population in a single generation). In contrast, migration rates under island models 267 

(where appliable) were represented as Migrationrate (the rate of fraction per generation of a 268 

population was replaced by another population for several generations). 269 

The ABC-DLS analysis is efficient enough to be done on a single computer. The main bottleneck 270 

of the whole approach is the production of the SFS data. Msprime is fast, but the total amount of 271 

data, which needs to be simulated for the NN, is impossible to produce in a single computer. We 272 

have used a snakemake pipeline to produce the SFS on the cluster74. 273 

Demographic models 274 

Simple out of Africa (model S) 275 

In this simulation model, we have modeled a simple OOA event (Supplementary Figure 1) closely 276 

following Gravel et al.39, except the migration rates are assumed to be nil. When we simulated 277 

models with migrations rates, we slightly modified the model proposed by Gravel et al39. Migration 278 

rates are denoted by m_pop1_pop2, where pop1 is the population that received the migration, and 279 
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pop2 is the population from where the migration originated. If the migration rates are bi-directional 280 

and equal, we have four parameters (Supplementary Table 1) like in Gravel et al39. However, if 281 

they are not equal, we have eight parameters (Supplementary Table 4 and 5) to have all the 282 

combinations between African, European, East Asian and OOA population. 283 

Back to Africa (model B) 284 

In this model, the basic OOA model still holds plus additional changes required for Back to Africa 285 

migration (Supplementary Figure 1) are added. The basic idea is drawn from Poznik et al.11. In 286 

this scenario, the OOA’ population is separated into populations B2A and OOA T_Sep generations 287 

ago before the separation between European and Asian populations (which happens between T_B 288 

and T_EU_AS generations ago). Next, B2A migrated to Africa having an effective population size 289 

of N_BC and mixed with the African population (AA) T_Mix generations ago with a mixing 290 

proportion of Mix (the portion of AA ancestry replaced). After the admixture, the effective 291 

population size of the African population is changed from N_AF0 to N_AF. 292 

Mixed out of Africa (model M) 293 

This model (Supplementary Figure 1) is similar to model S with an additional population M 294 

separating from the African population around T_Sep generation ago and having an effective 295 

population size of N_MX. M mixed with OOA at T_Mix generations ago with Mix being the 296 

proportion of OOA ancestry being replaced by M. After the admixture, the effective population 297 

size of OOA is changed from N_B0 to N_B. The basic idea came from Haber et al32 as well as two 298 

OOA27. 299 

Other Migrations as Prior 300 

We also added some pulse migrations or admixtures proposed by different studies on top of these 301 

basic models. We simulated OOA to  have introgression from Neanderthal50 around T_NM 302 

generation ago with the proportion of NMix. After the separation between Europeans and East 303 

Asians, the East Asian population has introgression from Denisova51,52 or an unknown population19 304 

around T_DM and the amount is DMix. Neanderthal separated from Denisova or the unknown 305 

around T_N_D generation ago, and Neanderthal-Denisovan lineage separated from the modern 306 

human lineage T_H_A generation ago28,64. The African population also has introgression from 307 

another unknown archaic population36,53,54, which introgressed around T_XM generations ago 308 

with the proportion of XMix. This unknown population separated from modern human lineage 309 

around T_H_X generation ago. We found out that our method is incapable of finding the effective 310 

population size for archaic populations. Thus, we assumed them equal to N_A same with the 311 

ancestral effective population size. We also simulated Neolithic farmers, which separated from 312 

Europeans around T_FS generations ago with effective population size of N_F and admixed with 313 

the African population around T_FM generation ago with the proportion of Fmix55. 314 

Some events can only happen after a particular event has already taken place (for example, the 315 

separation of European and Asian populations can only happen after the Neanderthal introgression, 316 

based on our prior assumption). The relations between these events are not straightforward and 317 

written in Supplementary Table 12. 318 
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Genotype to Site Frequency Spectrum 319 

We ran several simulations and converted every instance of simulations into a joint 320 

multidimensional unfolded site frequency spectrum (SFS) of a three-dimensional array from three 321 

populations: Africa, Europe, and East Asia. SFS is the total number of segregating sites for a given 322 

derived allele count present in each population. 323 

SFS (i, j, k) =  ∑ [𝑠1 = 𝑖,  𝑠2 = 𝑗,  𝑠3 = 𝑘]

𝑛

𝑚=1

 324 

Where, 325 

i, j, k= The number of derived alleles count per SNP in pop1, pop2 and pop3 respectively. 326 

n= the total number of segregating SNPs. 327 

The SFS was generated from simulations by msprime18 and then represented in a row. A similar 328 

conversion was done on the real data from the vcf file. Although it is possible to use any SS for 329 

our approach, we only used SFS as our choice of SS, given that it is straightforward to obtain and 330 

informative enough37,60. All the elements of real SFS were multiplied by a constant (frac) to make 331 

it comparable with the length of simulated regions if they do not match. For example, we multiplied 332 

the real SFS by 10 / 647 if we simulate a 10 Mbp region per simulation, and the real data is coming 333 

from 647 Mbp region (after filtering). 334 

ABC-DLS 335 

We have used TensorFlow with Keras backend44 for building the NN and used a simpler version 336 

of the SMC approach47 to improve the prediction. 337 

Parameter Estimation with DL 338 

Here we describe parameter estimation using NN with ABC. We ran a total of 60,000 different 339 

simulations, with every simulation producing 3,000 of 1 Mbp regions (3 Gbp [giga base pair] in 340 

total, roughly equal to the length of the human genome). Throughout all our steps, we always 341 

simulated regions of 1 Mbp replicates, as they are fast to produce. Every line is one such simulation 342 

performed under a given demographic model with the first few columns being the parameters used 343 

for that simulation and the rest of the columns representing SFS elements. We ran Parameter 344 

estimation on this CSV file to retrieve the parameters predicted on observed data for the given 345 

model. We used the known parameters as labels for training the NN (y), and we used the SFS as 346 

input (x). Thus, we can think of NN here as an inverse function of the simulation. We kept 10,000 347 

random lines for the testing dataset and ABC analysis, and the rest were used for training the NN. 348 

All the columns of SFS and parameters were normalized with MinMax scaler75, so the whole data 349 

is within 0.0 and 1.0 per column. 350 

We used four hidden layers of a dense NN (Supplementary Figure 5) with activation relu, and we 351 

used linear for the output layer with the same number of units as the number of parameters. We 352 
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used a Masking layer at the beginning to remove cells with zero from the learning algorithm and 353 

then Gaussian noise injection of .05 to introduce some noise (Supplementary Figure 5). We used 354 

logcosh as a loss function and Nadam for the optimizer. The NN ran through the training dataset 355 

several times (epochs) to increase accuracy.  We used EarlyStopping on loss coming from 356 

validation dataset with the patient of 100 and used the ModelCheckpoint of the lowest loss result 357 

on validation data. We also used ReduceLROnPlateau of factor 0.2 to reduce the learning rate if 358 

we reached minima for several epochs (10 by default). 359 

After training is done, we used the testing dataset to predict the parameter from the SFS, which 360 

was then used for cross-validation tests and parameter prediction using loclinear from ABC76 with 361 

the tolerance of 0.01. 362 

This approach is similar to what we have published before in ABC-DL19, although we have used 363 

the latest tools (TensorFlow, Keras, and hdf5). The whole approach is presented in a flowchart 364 

(Supplementary Figure 2). 365 

Model Selection with DL 366 

Here we describe model selection using NN and ABC. After running simulations for the three 367 

demographic models (sample numbers are same as above per model), we produced three 368 

corresponding CSV files. These CSV files are used together as input for Model Selection. 369 

We used SFS as input (x) in the NN, and the model names as the output (y) and removed the 370 

parameters as they are not necessary for this step. We used MinMax scaler from sklearn 75 only on 371 

the SFS data as above, and the names of the models are converted to One-Hot Encoding by using 372 

pandas.Categorical and keras.utils.to_categorical. After concatenating files coming from all the 373 

competitive models, we randomized rows by a custom code77. We left around 10,000 random lines 374 

per each model to test the power of NN (as a testing dataset) and for ABC analysis and used the 375 

rest to train the NN (as a training dataset). The rest of the approach is exactly similar as before. 376 

We used two hidden layers of the Dense neural network with the activation relu (Supplementary 377 

Figure 5). We used softmax for the output layer with the same number of units as the number of 378 

trained models. We added a Masking layer and a noise injection layer as above. We used a 1% 379 

dropout layer within every dense layer to make it more robust. We used categorical_crossentropy 380 

for the loss function from Keras and adam for the optimizer. 381 

After the training was done, we used the testing dataset to predict models from the simulated SFS, 382 

which were then used to perform the cross-validation test using ABC with the tolerance of 0.0033 383 

(which converts to 100 samples for three models) using mnlogistic. We calculated the model 384 

selection (abc.postpr) by using real data. See a schematic representation in Supplementary Figure 385 

2.  This approach is also similar to our previous  study19. 386 

Parameter Estimation with DLS 387 

This method uses the Classic parameter estimation strategy of DL (described above) together with 388 

the SMC algorithm used for recursion. The approach here is close to the classic approach of SMC47 389 

but not exactly the same.  390 
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We used the rejection method in ABC for parameter estimation as it generates posterior within the 391 

prior range with a tolerance of 0.05. We obtained the posterior range by taking the minimum and 392 

the maximum values from the ABC output. This range was then used as a prior range for the next 393 

iteration. This cycle repeated until shrinking for all parameters is more than 0.95, suggesting it has 394 

reached convergence. 395 

𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑛𝑔 =
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑚𝑎𝑥 − 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑚𝑖𝑛

𝑃𝑟𝑖𝑜𝑟𝑚𝑎𝑥 − 𝑃𝑟𝑖𝑜𝑟𝑚𝑖𝑛
 396 

If the shrinking is more than 95% for a parameter, the new posterior estimation is rejected for that 397 

parameter. Instead, the prior is kept for another cycle. This strategy was used so that the posterior 398 

stops shrinking unless NN has found some accurate prediction for the parameter from SFS. We 399 

kept simulations inside the new posterior range in every cycle to reuse simulations from a previous 400 

cycle to a new cycle. A flow chart of this strategy can be found in Supplementary Figure 2c. 401 

We used 10,000 simulations as a training dataset and 10,000 simulations for testing. The NN model 402 

is exactly as before (as used in DL, Supplementary Figure 5). To make it more efficient, we started 403 

with simulating a total length of 100 Mbp (each simulated region being 1 Mb long), and then we 404 

increased it stepwise (i.e., 0.5, 1.5, and 3 gbp). The priors for 100 Mbp regions are the same as 405 

presented in Table 1. The final posterior (after convergence reached) of 100 Mbp is used as a prior 406 

for 0.5 gbp simulation and so on. We multiplied the observed SFS by frac accordingly to scale it 407 

for to the simulated region length. 408 

After the convergence was reached with 3 gbp in total, we finalized by running 50,000 training 409 

and 10,000 testing simulations with the DL method using loclinear with the tolerance of 0.01. The 410 

flowchart of the method is represented in Supplementary Figure 3. 411 

Model Selection with DLS 412 

Here we describe model selection using NN, ABC and SMC together. In principle, we can directly 413 

use the final output of parameter estimation by DLS for every model and then use it for the ABC 414 

classification approach. However, this approach would be inefficient, given that only one model 415 

is likely for our real dataset, and thus spending considerable resources to optimize parameters for 416 

unlikely scenarios does not make sense. Instead, we used the output of 100 Mbp parameter 417 

optimizations from the DLS approach as a prior to every model, and then we used the Model 418 

selection strategy of DL, as mentioned before. We found out that we already have enough power 419 

to distinguish between models using 100 Mbp for optimization. 420 

ABC-RF 421 

We tested the real SFS against the three simulated models using a similar ABC approach but using 422 

Random Forest78 as an inferential tool implemented in the abcrf R package48,79. First, we trained 423 

our model using the bagging method applying the function abcrf, with no Linear Discriminant 424 

analysis, and 2,000 decision trees using 150,000 simulations (50,000 for each tested model). We 425 

then evaluated the performance of ABC-RF through a cross-validation dataset composed of 10,000 426 

simulations for each tested model using the function predict.abcrf. The same function and settings 427 

were used for inferring the best-supported model using the SFS obtained from real data described 428 
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above. We performed parameter estimation for the most supported scenario applying regression 429 

as implemented in the regAbcrf model using 1000 decision trees. Each parameter was inferred 430 

separately. 431 

Relate 432 

We used Relate34, a method for inferring local trees, to validate our parameter estimates.  Relate 433 

uses branch length of the local trees to estimate coalescent rate through time34. Thus, we used it to 434 

compare effective population size (Ne) trajectories and inter-population coalescent rates for the 435 

African, European and East Asian populations between the real and simulated data. We applied 436 

Relate to YRI, CEU, and CHB samples (108, 99 and 103 individuals accordingly) from the high 437 

coverage version of the 1000 Genomes project as well as to genetic data simulated under each of 438 

the three models (Table 2, Supplementary Table 4 and 5). For real data chromosome 1 was used 439 

and a region of the same length was simulated. 440 

We started with 2054 high-coverage genomes from the 1000 Genomes. We kept positions that a) 441 

are bi-allelic SNPs, b) pass the 1000 Genomes filter and have the QD (quality by depth) parameter 442 

above two and c) have a missing rate below 10%, We phased and imputed the entire dataset using 443 

Eagle version 2.4.180. Next, we ran Relate on chromosome 1 for samples coming from the three 444 

focal populations. We used the GRCh38 recombination map, 1000 Genomes strict genomic mask 445 

and a mutation rate of 1.45×10-8.  Next, we ran the Ne estimation module of Relate for each 446 

population individually for the Ne trajectory and for population pairs for the cross-coalescence 447 

curves.  448 

For each model, we simulated a region of the same length as chromosome 1 with uniform 449 

recombination together for 100 African, 100 European and 100 East Asian individuals using 450 

msprime18. We used the 1000 Genomes strict mask for consistency between real and simulated 451 

data in terms of the length of the available sequence. After that, the simulated data were treated as 452 

described above. 453 

We estimated Ne for both real and simulated data as 1/2C where C is the inferred intra-population 454 

coalescence rate.  To estimate the relative inter-population coalescence rate, we used the following 455 

formula33: 456 

𝐶′12 =
2 × 𝐶12

𝐶11 + 𝐶11
 457 

Where C11 and C22 are intra-population coalescence rates and C12 is the inter-population 458 

coalescence rate.  459 
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Tables 475 

Table 1: Prior parameters range used for producing the Site Frequency Spectrum (SFS). 476 

Parameters OOA_S OOA_B OOA_M 

N_A 5,000 - 25,000 5,000 - 25,000 5,000 - 25,000 

N_AF 10,000 - 150,000 10,000 - 150,000 10,000 - 150,000 

N_EU 10,000 - 150,000 10,000 - 150,000 10,000 - 15,0000 

N_AS 10,000 - 150,000 10,000 - 150,000 10,000 - 150,000 

N_F 5,000 - 30,000 5,000 - 30,000 5,000 - 30,000 

N_EU0 500 - 5,000 500 - 5,000 500 - 5,000 

N_AS0 500 - 5,000 500 - 5,000 500 - 5,000 

N_B 500 - 5,000 500 - 5,000 500 - 5,000 

N_BC NA 500 - 30,000 NA 

N_AF0 NA 500 - 30,000 NA 

N_MX NA NA 500 - 30,000 

N_B0 NA NA 500 - 30,000 

T_FM (ky) 2 - 5 2 - 5 2 - 5 

T_FS (ky) 0.1 - 10 0.1 - 10 0.1 - 10 

T_DM (ky) 10 - 50 10 - 50 10 - 50 

T_EU_AS (ky) 10 - 30 10 - 30 10 - 30 

T_NM (ky) 5 - 50 5 - 50 5 - 50 

T_XM (ky) 5 - 50 5 - 50 5 - 50 

T_Mix (ky) NA 5 - 50 5 - 50 

T_Sep (ky) NA 5 - 50 5 - 50 

T_B (ky) 5 - 270 5 - 220 5 - 220 

T_AF (ky) 5 - 700 5 - 700 5 - 700 

T_N_D (ky) 330 - 450 330 - 450 330 - 450 

T_H_A (ky) 120 - 250 120 -250 120 - 250 

T_H_X (ky) 450 - 700 450 - 700 450 - 700 

NMix (%) 1 - 3 1 - 3 1 - 3 

DMix (%) 0 - 2 0 - 2 0 - 2 

XMix (%) 0 - 10 0 - 10 0 - 10 

FMix (%) 0 - 10 0 - 10 0 - 10 

NA means not applicable. Ky means kilo or thousand years.  477 
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Table 2: Posterior range for parameters of model B. 478 

Parameters Mean CI Events (kya) 

N_A 13,500 13,495 - 13,501  

N_AF 21,689 21,277 - 22,496  

N_EU 119,988 111,986 - 134,779  

N_AS 122,321 114,667 - 135,974  

N_F 20,137 17,149 - 24,731  

N_EU0 1,813 1,766 - 1,871  

N_AS0 730 719 - 752  

N_BC 20,347 13,024 - 25,099  

N_B 2,123 2,100 - 2,164  

N_AF0 28,491 27,967 - 28,758  

T_FM (ky) 3.4 2.1 - 4.9 3.4 (2.1 - 4.9)  

T_FS (ky) 4.9 0.2 - 9.7 8.3 (3.4 - 13.2)  

T_DM (ky) 15 14.4 - 15.8 15 (14.4 - 15.8) 

T_EU_AS (ky) 17.7 17.2 - 18.3 32.7 (31.8 - 33.6) 

T_NM (ky) 7.2 6.7 - 7.4 39.9 (38.9 - 40.9)  

T_XM (ky) 14.7 13.7 - 15.7 47.5 (46.1 - 48.8)  

T_Mix (ky) 15 14.1 - 16.1 47.7 (46.4 - 49.1)  

T_Sep (ky) 11.2 10.8 - 12.3 59 (57.4 - 60.5)  

T_B (ky) 13.2 12.7 - 13.5 72.2 (70.6 - 73.7)  

T_AF (ky) 208.9 196.8 - 218.3 281.1 (270.2 - 291.9)  

T_N_D (ky) 447.2 444.3 - 448.9 447.2 (444.3 - 448.9)  

T_H_A (ky) 249.4 247.2 - 250.5 696.6 (693.8 - 699.5)  

T_H_X (ky) 695.4 686.1 - 700.3 695.4 (686.1 - 700.3)  

Mix (%) 91.98 89.66 - 93.08  

NMix (%) 3.01 2.98 - 3.02  

DMix (%) 0.63 0.58 - 0.68  

XMix (%) 5.04 4.85 - 5.14  

FMix (%) 2.37 2.13 - 2.49  

CI is the confidence interval of 2.5%-97.5% of respective parameters. Ky means kilo years and 479 

kya means kilo or thousand years ago from now.  480 
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Table 3: Cross validation and Model Selection using different approaches. 481 

RF OOA_B OOA_M OOA_S 

OOA_B 95.33% 1.23% 3.44% 

OOA_M 1.06% 85.12% 13.82% 

OOA_S 4.45% 8.94% 86.61% 

Posterior of votes 70.40% 13.20% 16.40% 

DL    

OOA_B 97.36% 0.53% 2.12% 

OOA_M 0.03% 85.74% 14.23% 

OOA_S 1.09% 10.55% 88.36% 

Posterior model probabilities 87.27% 0.13% 12.6% 

DLS    

OOA_B 99.84% 0.04% 0.13% 

OOA_M 0.00% 100.00% 0.00% 

OOA_S 0.00% 0.08% 99.92% 

Posterior model probabilities 100.00% 0.00% 0.00% 

Confusion matrix for misclassification is reported here using RF (Random Forest), DL (only 482 

Neural Network) and DLS (Neural Network and Sequential Monte Carlo together) for random 483 

samples from the models with ABC. Posterior of votes and Posterior model probabilities are final 484 

posterior after using the real data.  485 
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Figures  486 

Figure 1: Schematic of Inferred Demography 487 

Model B with only mean posterior. Kya is kilo years ago, AFR is African, EUR is Europeans, 488 

ASN is East Asian, NEAN is Neanderthal, DENI is Denisova and XAFR is African Archaic. 489 

  490 
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Figure 2: Effective population size trajectories and coalescence rates over time. 491 

Here we compare effective population size (a) and relative cross-coalescence rates (b) estimated 492 

using Relate between the real and data simulated under the model B. a) x axis in kya (kilo years 493 

ago) and y axis is the effective population size for corresponding populations presented in the inset. 494 

Both axes are in log scale. b) x axis is in kya and y-axis shows the relative cross coalescent rate 495 

for corresponding populations pairs presented in the insert. x axis is log scale. 496 

a) 497 

 498 
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b)499 

  500 
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