

1 Revisiting the Out of Africa event with a 2 novel Deep Learning approach

3 Francesco Montinaro^{1,2*}, Vasili Pankratov^{1*}, Burak Yelmen^{1,3}, Luca Pagani^{1,4}, Mayukh Mondal¹

4 **Affiliations:**

5 1. Institute of Genomics, University of Tartu, Tartu, Estonia

6 2. Department of Biology-Genetics, University of Bari, Bari, Italy

7 3. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia

8 4. APE Lab, Department of Biology, University of Padova, Padova, Italy

9 * Contributed Equally

10 Correspondence and requests for materials should be addressed MM (email: mondal [dot] mayukh
11 [at] gmail [dot] com).

12 **Abstract**

13 Anatomically modern humans evolved around 300 thousand years ago in Africa¹. Modern humans
14 started to appear in the fossil record outside of Africa about 100 thousand years ago though other
15 hominins existed throughout Eurasia much earlier²⁻⁴. Recently, several researchers argued in
16 favour of a single out of Africa event for modern humans based on whole-genome sequences
17 analyses⁵⁻⁷. However, the single out of Africa model is in contrast with some of the findings from
18 fossil records, which supports two out of Africa^{8,9}, and uniparental data, which proposes back to
19 Africa movement^{10,11}. Here, we used a novel deep learning approach coupled with Approximate
20 Bayesian Computation and Sequential Monte Carlo to revisit these hypotheses from the whole
21 genome sequence perspective. Our results support the back to Africa model over other alternatives.
22 We estimated that there are two successive splits between Africa and out of African populations
23 happening around 60-80 thousand years ago and separated by 12-13 thousand years. One of the
24 populations resulting from the more recent split has to a large extent replaced the older West
25 African population while the other one has founded the out of Africa populations.

26 **Keywords**

27 Neural Network, Approximate Bayesian Computation (ABC), Sequential Monte Carlo (SMC),
28 Out of Africa (OOA).

29 Introduction

30 In the last few decades, the development of efficient and powerful computing infrastructure
31 allowed us to gain substantial progress in the machine learning field, especially for
32 computationally demanding algorithms such as Neural Network (NN)^{12,13} and Bayesian
33 methods^{14,15}. NN was demonstrated to be an useful tool for specific types of tasks, such as
34 classification or natural language processing^{12–14,16}. However, NN requires a large amount of data
35 as a training set. In some cases, simulated datasets are one of the strategies to overcome this
36 limitation. The simulation of synthetic genetic data can be helpful to substantially mitigate this
37 problem^{17,18}. NN is already adopted in population genomics studies to interpret the genomics data
38 in terms of underlying demography^{19–21} and positive selection^{22,23}. However, unlike classical
39 approaches, it is still challenging to measure the significance of a prediction performed by NN,
40 given that it is a black-box approach. Approximate Bayesian Computation (ABC) can be used to
41 weigh the accuracy of a NN-based prediction from the data itself, without knowing the maximum
42 likelihood function^{19,20,24}.

43 Recent fossil record analysis suggests that anatomically modern humans appeared around 300
44 thousand years ago (kya) in Africa¹. This hypothesis is corroborated by genetic data²⁵, which
45 projected the deepest splits between modern human populations at a similar time interval.
46 Although fossil records advocate that there might be multiple Out Of Africa (OOA) events for
47 modern humans²⁶, recent genetic studies revealed that all modern non-African or OOA populations
48 fit a model characterised by a single OOA event^{5–7}. This conclusion indicates that older OOA
49 migrations, documented by archaeological records, might have not left much contribution to
50 modern human populations, with the possible exception in Oceania (Papuan populations)²⁷ and
51 some archaic hominin²⁸.

52 While the single OOA model finds support in both autosomal and uniparental data^{11,29,30}, there is
53 some evidence for a more complicated scenario. Most of the uniparental haplogroups are closer to
54 each other in OOA populations than African haplogroups (thus having less time to the most recent
55 common ancestor [TMRCA]), corroborating a single clean OOA model, apart from the sister Y
56 haplogroups D and E. The haplogroup D can be found in isolated populations in Asia (i.e.,
57 Andamanese, Tibetan, Japanese, etc.), while the haplogroup E is ubiquitous in sub-Saharan
58 African populations. They are slightly closer to each other than any other haplogroups found in
59 OOA populations from them^{11,31}. This observation might be explained by a back to Africa
60 migration¹¹ or a more complicated scenario³². Some autosomal analyses also suggest that the
61 separation between Africa and OOA populations might not be a single split event^{33–36}.

62 Testing these hypotheses (single out of Africa, back to Africa and two out of Africa) is challenging
63 due to the strong bottleneck of non-African populations^{37–39}, differential archaic introgression
64 between populations^{5,19,40} and various migrations within Africa^{36,41}. The lack of ancient genomic
65 data older than 15 kya⁴² from Africa or the Middle East makes it difficult to address this issue from
66 an ancient DNA perspective. However, NN have been shown to be extremely powerful to
67 disentangle such complex scenarios¹⁹. Here, we present ABC-DLS (Approximate Bayesian
68 Computation using Deep Learning and Sequential Monte Carlo method) which allows us to infer

69 the most likely scenario among different competing demographic models as well as to estimate
70 their parameter values with high precision. Our approach relies on a NN trained on simulated
71 genetic data under the models being tested. However, it has three key improvements compared to
72 other similar approaches. First, the use of the hdf5⁴³ data format and tensor flow^{44,45} allows for
73 extremely large training datasets. Second, the conventional NN approach is augmented using ABC
74 which helps to provide statistical support for the NN prediction and to obtain posterior distribution
75 for the model parameter values. Third, inspired by previous works⁴⁶, we applied a modification of
76 the Sequential Monte Carlo (SMC, also known as the Particle Filter method)⁴⁷ approach to iterate
77 the whole procedure. This improved the accuracy substantially compared to previously
78 implemented methods^{19,48}. We apply this method to test the three OOA models mentioned above.

79 Results

80 ABC-DLS

81 The general workflow for ABC-DLS (both for model selection and parameters estimation)
82 includes the following steps. First, we simulated¹⁸ multiple sets of genetic data for each tested
83 model using demographic parameters sampled from a uniform distribution within prior ranges
84 (Table 1). Next, we converted this data into joint site frequency spectrum (SFS) (although
85 potentially any other summary statistics (SS) can be used) and split the data into a training and a
86 testing subset. We then trained the NN (implemented using TensorFlow⁴⁴ with Keras backended⁴⁵)
87 on the training dataset to either select between demographic models or to estimate the demographic
88 parameters. The resulting NN is applied to the testing dataset as well as to the observed SS data
89 (see below as well as Methods for more details). Next, we apply ABC to estimate support for the
90 NN prediction on the observed data comparing the NN prediction outcome between the observed
91 data and the testing dataset (see Methods, Supplementary Figure 2 and also our previous paper¹⁹).
92 Finally, in cases when SMC is used, we essentially iterate the parameter estimation step by SMC.
93 When estimating the posterior range for the parameters using ABC, we kept the top five percent
94 (equal to the tolerance level) of simulations from the testing dataset that best matched with the
95 observed data. We then used the parameters of those simulations to update our prior range and sent
96 it for next iteration till convergence reached (Supplementary Figures 2 and 3).

97 Before testing our primary hypothesis on real sequence data, we tested if our new approach (ABC-
98 DLS) is robust enough for the known results. The predicted parameters for real sequence data (see
99 later for more details) are consistent with previous works from the literature^{37,39,49} (Supplementary
100 Table 1). We also simulated models (model S, B, M, see later for more information) and created
101 mock observed SS (simulation parameters coming from Table 2, Supplementary Table 2 and 3).
102 We found that our novel approach with SMC predicted the right model for every case, suggesting
103 it can find the correct model.

104 Model Selection

105 To test our hypothesis, we simulated three OOA models: Simple model (model S), Back to Africa
106 model (model B), and Mix model (model M) with all the models having introgression from

107 Neanderthal to all OOA populations⁵⁰, Denisova or Unknown to Asia^{19,51,52}, African Archaic to
108 Africa^{36,53,54} and European Farmers to Africa⁵⁵ (NDXF) (see methods for more details,
109 Supplementary Figure 1 and Table 1). We used HGDP dataset⁵⁶ of five Yoruba (African), five
110 French (European) and five Han Chinese (East Asian) as our real dataset. Next, we used three
111 different methods to choose between the competing models: i) ABC-RF that combines random
112 forests with ABC (here onwards referred to as RF)⁴⁸; ii) NN and ABC together (here onwards
113 referred to as DL) which is analogous to our previously published method ABC-DL¹⁹; and iii) the
114 novel method introduced here ABC-DLS which augments the DL method with SMC (here
115 onwards referred as DLS). Although all three methods identified the model B as the most probable
116 one, the prediction certainty varied between methods (Table 3). While DLS returned 100%
117 probability for model B, DL and RF gave lower support. Also, when 10 independent runs were
118 tested, model B won 10 times out of 10 using DLS and 9 out of 10 using DL. Moreover, Bayes
119 factor value was predicted to be 6.69 between model B and model S by DL. These suggest that we
120 cannot reject model S completely with DL. This difference in prediction certainty was likely due
121 to the better power of DLS to differentiate between the three models compared to the other (Table
122 3).

123 The DLS results were reproduced under different data filtering strategies and different datasets
124 (Supplementary Table 6). As our base models assumed four pulse migration events based on
125 previous studies (three introgression scenarios and recent migration of Neolithic farmers), we
126 tested if these assumptions could affect our inference. We tested different models with 1) No
127 introgression and no farming migration (NI), 2) Neanderthal and Denisova introgression (ND), 3)
128 Neanderthal, Denisova and Africa Archaic introgression (NDX) 4) Neanderthals, Denisova
129 introgression with farming migration (NDF) using only DLS. Except for the no introgression
130 model (Supplementary Table 7), we always found model B to be supported over models S and M.
131 When we compared all these 15 models together ([B, M, S] x [NI, ND, NDX, NDF, NDXF]) using
132 DLS, model B with Neanderthal, Denisova, African archaic introgression, and Neolithic migration
133 (BNDXF) is supported over all other possibilities ($P(BNDXF|data) = 0.76$) (Supplementary Table
134 8). This result not only demonstrated the robustness of our inference for model B but also
135 independently supported other assumptions which were reported before but not all of them were
136 confirmed together^{19,36,50-52,54,55}. We would also like to point out a simpler model without Neolithic
137 migration ($P(BNDX|data) = 0.24$) cannot be rejected by our approach.

138 Parameter Estimation

139 After demonstrating that model B best explains the real SS data, we used the three methods
140 described above (RF, DL and DLS) to estimate the model's parameters. The confidence intervals
141 returned by DLS are much narrower than those of the alternative approaches (Table 2,
142 Supplementary Tables 9 and 10) and comparable with other methods^{37,39,49} thus showing good
143 performance of our new method. Hence, all the results discussed below are the ones obtained with
144 DLS.

145 Our inference suggests that there was first a separation between the Ancient African population
146 (AA) and a population ancestral to both Back-to-Africa and the actual Out-of-Africa populations
147 (OOA') around 72.2 (CI 70.6 - 73.7) kya followed by a split between back to Africa (B2A) and

148 OOA 59 (CI 57.4 - 60.5) kya and an admixture between AA and B2A 47.7 (CI 46.4 - 49.1) kya.
149 The Neanderthal introgression to OOA happened much later, 39.9 (CI 38.9 - 40.9) kya, suggesting
150 that this Back to Africa migration cannot explain the Neanderthal ancestry found in modern
151 African populations⁵⁵. Our method predicted the admixture proportion from B2A to be as high as
152 92% (CI 89.66 - 93.08) suggesting a massive replacement of the AA population.
153 Our results also comply with Y-chromosomal phylogeny and support back to Africa as proposed
154 before¹¹. However, our estimation time of separation between populations is much younger than
155 what is reported in Y-chromosomes. One explanation might be that we used a slightly higher
156 mutation rate (1.45×10^{-8} per bp per generation)⁵⁷ instead of a slightly slower alternative (1.25×10^{-8}
157 per bp per generation)^{58,59}. When we used the slower mutation rate, our estimation for most of
158 the events time increased (Supplementary Table 11). Indeed, the separation time between B2A and
159 OOA populations corresponds to 67 (CI 66.3 - 67.6) kya, which is close to the estimate of TMRCA
160 between Haplogroup D and E (72 kya¹¹).
161 To independently validate our results, we compared effective population size (Ne) trajectories and
162 cross-coalescent rates obtained by applying Relate³² to real data as well as to data simulated under
163 each of the three models using the mean posterior parameters (Table 2 and Supplementary Table
164 2 and 3) predicted by DLS (following a flowchart represented in Supplementary Figure 3a)³⁴. We
165 observe a close match between the estimates for the real data and our best predicted model (Figure
166 2) which suggests our parameter estimation to be accurate. This similarity is particularly
167 interesting, given that we have not used any LD-based SS to optimize those parameters. On the
168 other hand, neither the Ne trajectory nor the cross-coalescent rate over time is informative to
169 differentiate between the three models (data not shown). Specifically, the gradual separation
170 between African and OOA populations, which was observed before with Relate and similar
171 methods^{33,34}, cannot be directly explained by the back to Africa or two out of Africa migration as
172 this separation is also matched in our model S (Supplementary Figure 4).

173 Discussion

174 We presented here that the ABC analysis can be substantially improved by using NN coupled with
175 the SMC approach. Our methodology is robust to test any hypotheses which can be simulated,
176 which cannot be extensively tested by other methods (especially for scenarios of admixture from
177 ghost populations where the ancient genomes are unavailable) and can accommodate any kind of
178 SS. In this study, we used SFS as SS because it is effortless to calculate and have sufficient
179 information^{37,60}. Our results might be further improved by using some LD-based SS^{53,61} but we
180 opted out as they are computationally demanding to produce and the improvement in the result is
181 minimal (at least for the tested scenario). Although our approach (DLS) is fast enough, the main
182 bottleneck currently is the production of the simulated SS data.

183 In our models, we have not adopted any migration rates between populations, although our
184 approach can use it. This is because we found out that our approach (Parameter Estimation using
185 DLS) predicted non-zero migration rates when we used a mock observed SS data coming from a
186 pulse model with no migration (mean values from Table 1) and a NN trained on an island model

187 with migrations (Supplementary Table 4 and 5). This suggests that models including migration
188 rates may lead to equifinality as suggested by others⁶² and/or our approach is incapable of
189 estimating them.

190 Although in our scenarios model B is preferred over model S, considering no introgression as an
191 option (NI) supported model M over other models (Supplementary Table 7). This result might be
192 a side effect of the Neanderthal introgression in OOA. Under certain conditions (i.e., older
193 separation time between Africa and OOA [T_B]), model M with no introgression and model S
194 with Neanderthal introgression are comparable (Neanderthal population behaves like the first
195 OOA population in this scenario). This result suggests a possible drawback of our method as
196 different demographic histories can give similar SFS patterns, which can bias our interpretation if
197 not incorporated in the model correctly⁶³ and also advocates for the importance of parameter
198 estimation as it can give insight for the choice of model selected.

199 Although the estimated proportions of introgression from Archaic populations have values
200 consistent with those previously reported^{28,53}, the separation time between *Homo sapiens* and
201 archaic populations are more recent than those previously inferred^{50,64} if we used a loose prior of
202 400-1,100 kya. These deviations were not reproduced when we used simulated SS generated under
203 known parameters from Table 2. This may be specific to real sequence data and might be a side
204 effect of some of our assumptions (for example some unknown interactions between these
205 populations which was not modelled here) or systematic biases due to the use of European
206 reference genome⁶⁵ or recent changes of generation time or mutation rate per generation^{66,67}. Thus,
207 the admixture with archaic populations may be seen as a way of introducing noise in the
208 simulations for model selection rather than an attempt to obtain true parameter estimates. Most
209 probably in the future, we can improve this estimate by directly using the available ancient
210 genomes together with modern datasets.

211 We cannot also reject a simpler model of no Neolithic migration⁵⁵. Even if we assume the Neolithic
212 migration affected Yoruba, the predicted total length of Neanderthal sequence in an average
213 Yoruba genome would be less than 5 Mb compared to the 17 Mb identified by Chen et al⁵⁵. This
214 discrepancy also cannot be explained by the back to Africa model as introgression happened much
215 later after the separation. This suggests that most of the Neanderthal signal in Yoruba should be
216 explained by some other migration (for example from Human to Neaderthal²⁸).

217 Our results suggested a back to Africa model (model B) is more likely than a simple out of Africa
218 event (model S). Although this model is better in explaining the real data, it might not be the final
219 one. An even more complicated migration or admixture model which was not tested here might
220 still better explain the real data. We have not tested two out of Africa events directly, although our
221 model M is similar to two out of Africa model under certain conditions (assuming that European
222 and East Asian do not have differential admixture with first OOA population). It will be interesting
223 to revisit this hypothesis with Papuan populations in the future.

224 We would like to caution that although we are naming the model “Back to Africa”, the OOA
225 population did not need to be geographically out of Africa⁶⁸. Our estimates, particularly the
226 effective population size of B2A (N_BC) and the time of Neanderthal introgression (T_NIntro),

227 advocate that the split might have happened within Africa itself before the actual out of Africa
228 event. In such a case, our results can be explained by the separation of West and East African
229 population 80 kya (T_B) and then later the primary separation of OOA and East African population
230 67 kya (T_Sep) (assuming mutation rate of 1.25×10^{-8} per bp per generation^{58,59} and generation
231 time of 29 years⁶⁹). In this regard, our model is more akin to Lipson et al. 2020³⁶ model rather than
232 what is suggested by Cole et al. 2020³⁵. If we assume model from Lipson et al. to be true, the most
233 parsimonious explanation would be that our B2A population represents Basal West African
234 population which separated from OOA populations 67 kya (T_Sep). Our AA represents Ghost
235 modern³⁶ which contributed to modern West African population around 10% which admixed
236 around 60 kya from our prediction. On the other hand, if we assume true back to Africa, then most
237 likely the OOA event took place less than 80 kya (T_B). This suggests that most of the older fossils
238 (>80 kya) found outside Africa²⁻⁴ are unlikely to have contributed to OOA populations (assuming
239 the ancestor of all modern human originated in Africa and never left Africa before OOA event).
240 Geographical location where B2A separated from OOA is immensely important for this hypothesis
241 but cannot be estimated from our approach. It will be especially fascinating to test this hypothesis
242 using ancient genomes from those areas from that time point when they will be available.

243 Methods

244 Real Data

245 We have downloaded the high coverage HGDP vcf files⁵⁶ and randomly selected five African
246 (Yoruba, YRI), five European (French, FRN), and five East Asian (Han Chinese, HAN)
247 individuals. As an alternative dataset, we have also downloaded the high coverage 1000 Genome
248 ⁷⁰ vcf files with personal communication from Michael Zody of New York Genome Center (this
249 data is yet to be published). We randomly selected five individuals from Africa (Yoruba from
250 Ibadan, Nigeria YRI), Europe (Utah Residents with European origin, CEU), and East Asia
251 (Chinese Han from Beijing, CHB) population. We kept both the data set separated and kept only
252 positions present in every individual (within every data set), bi-allelic and Single Nucleotide
253 Polymorphism (SNP). We lifted the genome to GR37 using Picard tools. Moreover, we filtered
254 out regions with genes and CpG islands (for more details, please see Mondal et al. 2019¹⁹).
255 Independently, we also used a mappability mask for the HGDP dataset in Supplementary Table 6.
256 All the filterings were done with combinations of vcftools and bcftools^{71,72}. The vcf file was
257 converted to SFS using an in-house code using scikit allel⁷³.

258 Simulations

259 All the simulations were done in msprime¹⁸. We have produced the joint site frequency spectrum
260 (SFS) of five individuals per populations (African, European, and East Asian genome) simulating
261 one mega base pair (Mbp) of replicates with the recombination rate of 10^{-8} per base pair (bp) per
262 generation and the mutation rate of 1.45×10^{-8} per bp per generation⁵⁷. We also alternatively used
263 1.25×10^{-8} per bp per generation for mutation rate (only for Supplementary Table 11)^{58,59}. Here, we
264 kept the recombination rate constant, as SFS is not affected by the local recombination rate⁶³. We
265 assumed generation time of 29 years⁶⁹.

266 In msprime, Admixtures were represented as MassMigration (the fraction of a population replaced
267 by another population in a single generation). In contrast, migration rates under island models
268 (where applicable) were represented as Migrationrate (the rate of fraction per generation of a
269 population was replaced by another population for several generations).

270 The ABC-DLS analysis is efficient enough to be done on a single computer. The main bottleneck
271 of the whole approach is the production of the SFS data. Msprime is fast, but the total amount of
272 data, which needs to be simulated for the NN, is impossible to produce in a single computer. We
273 have used a snakemake pipeline to produce the SFS on the cluster⁷⁴.

274 Demographic models

275 Simple out of Africa (model S)

276 In this simulation model, we have modeled a simple OOA event (Supplementary Figure 1) closely
277 following Gravel et al.³⁹, except the migration rates are assumed to be nil. When we simulated
278 models with migrations rates, we slightly modified the model proposed by Gravel et al³⁹. Migration
279 rates are denoted by m_{pop1_pop2} , where $pop1$ is the population that received the migration, and

280 pop2 is the population from where the migration originated. If the migration rates are bi-directional
281 and equal, we have four parameters (Supplementary Table 1) like in Gravel et al³⁹. However, if
282 they are not equal, we have eight parameters (Supplementary Table 4 and 5) to have all the
283 combinations between African, European, East Asian and OOA population.

284 [Back to Africa \(model B\)](#)

285 In this model, the basic OOA model still holds plus additional changes required for Back to Africa
286 migration (Supplementary Figure 1) are added. The basic idea is drawn from Poznik et al.¹¹. In
287 this scenario, the OOA' population is separated into populations B2A and OOA T_Sep generations
288 ago before the separation between European and Asian populations (which happens between T_B
289 and T_EU_AS generations ago). Next, B2A migrated to Africa having an effective population size
290 of N_BC and mixed with the African population (AA) T_Mix generations ago with a mixing
291 proportion of Mix (the portion of AA ancestry replaced). After the admixture, the effective
292 population size of the African population is changed from N_AF0 to N_AF.

293 [Mixed out of Africa \(model M\)](#)

294 This model (Supplementary Figure 1) is similar to model S with an additional population M
295 separating from the African population around T_Sep generation ago and having an effective
296 population size of N_MX. M mixed with OOA at T_Mix generations ago with Mix being the
297 proportion of OOA ancestry being replaced by M. After the admixture, the effective population
298 size of OOA is changed from N_B0 to N_B. The basic idea came from Haber et al³² as well as two
299 OOA²⁷.

300 [Other Migrations as Prior](#)

301 We also added some pulse migrations or admixtures proposed by different studies on top of these
302 basic models. We simulated OOA to have introgression from Neanderthal⁵⁰ around T_NM
303 generation ago with the proportion of NMix. After the separation between Europeans and East
304 Asians, the East Asian population has introgression from Denisova^{51,52} or an unknown population¹⁹
305 around T_DM and the amount is DMix. Neanderthal separated from Denisova or the unknown
306 around T_N_D generation ago, and Neanderthal-Denisovan lineage separated from the modern
307 human lineage T_H_A generation ago^{28,64}. The African population also has introgression from
308 another unknown archaic population^{36,53,54}, which introgressed around T_XM generations ago
309 with the proportion of XMix. This unknown population separated from modern human lineage
310 around T_H_X generation ago. We found out that our method is incapable of finding the effective
311 population size for archaic populations. Thus, we assumed them equal to N_A same with the
312 ancestral effective population size. We also simulated Neolithic farmers, which separated from
313 Europeans around T_FS generations ago with effective population size of N_F and admixed with
314 the African population around T_FM generation ago with the proportion of Fmix⁵⁵.

315 Some events can only happen after a particular event has already taken place (for example, the
316 separation of European and Asian populations can only happen after the Neanderthal introgression,
317 based on our prior assumption). The relations between these events are not straightforward and
318 written in Supplementary Table 12.

319 [Genotype to Site Frequency Spectrum](#)

320 We ran several simulations and converted every instance of simulations into a joint
321 multidimensional unfolded site frequency spectrum (SFS) of a three-dimensional array from three
322 populations: Africa, Europe, and East Asia. SFS is the total number of segregating sites for a given
323 derived allele count present in each population.

324
$$\text{SFS } (i, j, k) = \sum_{m=1}^n [s_1 = i, s_2 = j, s_3 = k]$$

325 Where,

326 i, j, k = The number of derived alleles count per SNP in pop1, pop2 and pop3 respectively.

327 n = the total number of segregating SNPs.

328 The SFS was generated from simulations by msprime¹⁸ and then represented in a row. A similar
329 conversion was done on the real data from the vcf file. Although it is possible to use any SS for
330 our approach, we only used SFS as our choice of SS, given that it is straightforward to obtain and
331 informative enough^{37,60}. All the elements of real SFS were multiplied by a constant (frac) to make
332 it comparable with the length of simulated regions if they do not match. For example, we multiplied
333 the real SFS by 10 / 647 if we simulate a 10 Mbp region per simulation, and the real data is coming
334 from 647 Mbp region (after filtering).

335 [ABC-DLS](#)

336 We have used TensorFlow with Keras backend⁴⁴ for building the NN and used a simpler version
337 of the SMC approach⁴⁷ to improve the prediction.

338 [Parameter Estimation with DL](#)

339 Here we describe parameter estimation using NN with ABC. We ran a total of 60,000 different
340 simulations, with every simulation producing 3,000 of 1 Mbp regions (3 Gbp [giga base pair] in
341 total, roughly equal to the length of the human genome). Throughout all our steps, we always
342 simulated regions of 1 Mbp replicates, as they are fast to produce. Every line is one such simulation
343 performed under a given demographic model with the first few columns being the parameters used
344 for that simulation and the rest of the columns representing SFS elements. We ran Parameter
345 estimation on this CSV file to retrieve the parameters predicted on observed data for the given
346 model. We used the known parameters as labels for training the NN (y), and we used the SFS as
347 input (x). Thus, we can think of NN here as an inverse function of the simulation. We kept 10,000
348 random lines for the testing dataset and ABC analysis, and the rest were used for training the NN.
349 All the columns of SFS and parameters were normalized with MinMax scaler⁷⁵, so the whole data
350 is within 0.0 and 1.0 per column.

351 We used four hidden layers of a dense NN (Supplementary Figure 5) with activation relu, and we
352 used linear for the output layer with the same number of units as the number of parameters. We

353 used a Masking layer at the beginning to remove cells with zero from the learning algorithm and
354 then Gaussian noise injection of .05 to introduce some noise (Supplementary Figure 5). We used
355 logcosh as a loss function and Nadam for the optimizer. The NN ran through the training dataset
356 several times (epochs) to increase accuracy. We used EarlyStopping on loss coming from
357 validation dataset with the patient of 100 and used the ModelCheckpoint of the lowest loss result
358 on validation data. We also used ReduceLROnPlateau of factor 0.2 to reduce the learning rate if
359 we reached minima for several epochs (10 by default).

360 After training is done, we used the testing dataset to predict the parameter from the SFS, which
361 was then used for cross-validation tests and parameter prediction using loclinear from ABC⁷⁶ with
362 the tolerance of 0.01.

363 This approach is similar to what we have published before in ABC-DL¹⁹, although we have used
364 the latest tools (TensorFlow, Keras, and hdf5). The whole approach is presented in a flowchart
365 (Supplementary Figure 2).

366 Model Selection with DL

367 Here we describe model selection using NN and ABC. After running simulations for the three
368 demographic models (sample numbers are same as above per model), we produced three
369 corresponding CSV files. These CSV files are used together as input for Model Selection.

370 We used SFS as input (x) in the NN, and the model names as the output (y) and removed the
371 parameters as they are not necessary for this step. We used MinMax scaler from sklearn⁷⁵ only on
372 the SFS data as above, and the names of the models are converted to One-Hot Encoding by using
373 pandas.Categorical and keras.utils.to_categorical. After concatenating files coming from all the
374 competitive models, we randomized rows by a custom code⁷⁷. We left around 10,000 random lines
375 per each model to test the power of NN (as a testing dataset) and for ABC analysis and used the
376 rest to train the NN (as a training dataset). The rest of the approach is exactly similar as before.

377 We used two hidden layers of the Dense neural network with the activation relu (Supplementary
378 Figure 5). We used softmax for the output layer with the same number of units as the number of
379 trained models. We added a Masking layer and a noise injection layer as above. We used a 1%
380 dropout layer within every dense layer to make it more robust. We used categorical_crossentropy
381 for the loss function from Keras and adam for the optimizer.

382 After the training was done, we used the testing dataset to predict models from the simulated SFS,
383 which were then used to perform the cross-validation test using ABC with the tolerance of 0.0033
384 (which converts to 100 samples for three models) using mnlogistic. We calculated the model
385 selection (abc.postpr) by using real data. See a schematic representation in Supplementary Figure
386 2. This approach is also similar to our previous study¹⁹.

387 Parameter Estimation with DLS

388 This method uses the Classic parameter estimation strategy of DL (described above) together with
389 the SMC algorithm used for recursion. The approach here is close to the classic approach of SMC⁴⁷
390 but not exactly the same.

391 We used the rejection method in ABC for parameter estimation as it generates posterior within the
392 prior range with a tolerance of 0.05. We obtained the posterior range by taking the minimum and
393 the maximum values from the ABC output. This range was then used as a prior range for the next
394 iteration. This cycle repeated until shrinking for all parameters is more than 0.95, suggesting it has
395 reached convergence.

396
$$\text{shrinking} = \frac{\text{Posterior}_{\max} - \text{Posterior}_{\min}}{\text{Prior}_{\max} - \text{Prior}_{\min}}$$

397 If the shrinking is more than 95% for a parameter, the new posterior estimation is rejected for that
398 parameter. Instead, the prior is kept for another cycle. This strategy was used so that the posterior
399 stops shrinking unless NN has found some accurate prediction for the parameter from SFS. We
400 kept simulations inside the new posterior range in every cycle to reuse simulations from a previous
401 cycle to a new cycle. A flow chart of this strategy can be found in Supplementary Figure 2c.

402 We used 10,000 simulations as a training dataset and 10,000 simulations for testing. The NN model
403 is exactly as before (as used in DL, Supplementary Figure 5). To make it more efficient, we started
404 with simulating a total length of 100 Mbp (each simulated region being 1 Mb long), and then we
405 increased it stepwise (i.e., 0.5, 1.5, and 3 gbp). The priors for 100 Mbp regions are the same as
406 presented in Table 1. The final posterior (after convergence reached) of 100 Mbp is used as a prior
407 for 0.5 gbp simulation and so on. We multiplied the observed SFS by frac accordingly to scale it
408 for to the simulated region length.

409 After the convergence was reached with 3 gbp in total, we finalized by running 50,000 training
410 and 10,000 testing simulations with the DL method using loclinear with the tolerance of 0.01. The
411 flowchart of the method is represented in Supplementary Figure 3.

412 Model Selection with DLS

413 Here we describe model selection using NN, ABC and SMC together. In principle, we can directly
414 use the final output of parameter estimation by DLS for every model and then use it for the ABC
415 classification approach. However, this approach would be inefficient, given that only one model
416 is likely for our real dataset, and thus spending considerable resources to optimize parameters for
417 unlikely scenarios does not make sense. Instead, we used the output of 100 Mbp parameter
418 optimizations from the DLS approach as a prior to every model, and then we used the Model
419 selection strategy of DL, as mentioned before. We found out that we already have enough power
420 to distinguish between models using 100 Mbp for optimization.

421 ABC-RF

422 We tested the real SFS against the three simulated models using a similar ABC approach but using
423 Random Forest⁷⁸ as an inferential tool implemented in the abcrf R package^{48,79}. First, we trained
424 our model using the bagging method applying the function abcrf, with no Linear Discriminant
425 analysis, and 2,000 decision trees using 150,000 simulations (50,000 for each tested model). We
426 then evaluated the performance of ABC-RF through a cross-validation dataset composed of 10,000
427 simulations for each tested model using the function predict.abcrf. The same function and settings
428 were used for inferring the best-supported model using the SFS obtained from real data described

429 above. We performed parameter estimation for the most supported scenario applying regression
430 as implemented in the regAbcrf model using 1000 decision trees. Each parameter was inferred
431 separately.

432 [Relate](#)

433 We used Relate³⁴, a method for inferring local trees, to validate our parameter estimates. Relate
434 uses branch length of the local trees to estimate coalescent rate through time³⁴. Thus, we used it to
435 compare effective population size (Ne) trajectories and inter-population coalescent rates for the
436 African, European and East Asian populations between the real and simulated data. We applied
437 Relate to YRI, CEU, and CHB samples (108, 99 and 103 individuals accordingly) from the high
438 coverage version of the 1000 Genomes project as well as to genetic data simulated under each of
439 the three models (Table 2, Supplementary Table 4 and 5). For real data chromosome 1 was used
440 and a region of the same length was simulated.

441 We started with 2054 high-coverage genomes from the 1000 Genomes. We kept positions that a)
442 are bi-allelic SNPs, b) pass the 1000 Genomes filter and have the QD (quality by depth) parameter
443 above two and c) have a missing rate below 10%. We phased and imputed the entire dataset using
444 Eagle version 2.4.1⁸⁰. Next, we ran Relate on chromosome 1 for samples coming from the three
445 focal populations. We used the GRCh38 recombination map, 1000 Genomes strict genomic mask
446 and a mutation rate of 1.45×10^{-8} . Next, we ran the Ne estimation module of Relate for each
447 population individually for the Ne trajectory and for population pairs for the cross-coalescence
448 curves.

449 For each model, we simulated a region of the same length as chromosome 1 with uniform
450 recombination together for 100 African, 100 European and 100 East Asian individuals using
451 msprime¹⁸. We used the 1000 Genomes strict mask for consistency between real and simulated
452 data in terms of the length of the available sequence. After that, the simulated data were treated as
453 described above.

454 We estimated Ne for both real and simulated data as $1/2C$ where C is the inferred intra-population
455 coalescence rate. To estimate the relative inter-population coalescence rate, we used the following
456 formula³³:

$$457 C'_{12} = \frac{2 \times C_{12}}{C_{11} + C_{11}}$$

458 Where C_{11} and C_{22} are intra-population coalescence rates and C_{12} is the inter-population
459 coalescence rate.

460 **Author Contributions**

461 MM, FM and LP planned the project. MM, FM, VP, BY did the data analysis. MM, FM and VP
462 wrote the paper. LP and BY corrected it.

463 **Acknowledgement**

464 We kindly thank Michael Zody of New York Genome Center for giving us access to high coverage
465 1000 genome data. These data were generated at the New York Genome Center with funds
466 provided by NHGRI Grant 3UM1HG008901-03S1. This research was supported by the European
467 Union through Horizon 2020 research and innovation programme under grant no 810645, the
468 European Regional Development Fund Project no. MOBEC008, 2014-2020.4.01.16-0030 and
469 2014-2020.4.01.16-0024.

470 **Code availability**

471 We implemented a python based software package in [https://github.com/mayukhmondal/ABC-
472 DLS](https://github.com/mayukhmondal/ABC-DLS). Although it is python based the entire package can be accessible through the command line.

473 **Competing interests**

474 The authors declare no competing interests.

475 Tables

476 Table 1: Prior parameters range used for producing the Site Frequency Spectrum (SFS).

Parameters	OOA_S	OOA_B	OOA_M
N_A	5,000 - 25,000	5,000 - 25,000	5,000 - 25,000
N_AF	10,000 - 150,000	10,000 - 150,000	10,000 - 150,000
N_EU	10,000 - 150,000	10,000 - 150,000	10,000 - 15,0000
N_AS	10,000 - 150,000	10,000 - 150,000	10,000 - 150,000
N_F	5,000 - 30,000	5,000 - 30,000	5,000 - 30,000
N_EU0	500 - 5,000	500 - 5,000	500 - 5,000
N_AS0	500 - 5,000	500 - 5,000	500 - 5,000
N_B	500 - 5,000	500 - 5,000	500 - 5,000
N_BC	NA	500 - 30,000	NA
N_AF0	NA	500 - 30,000	NA
N_MX	NA	NA	500 - 30,000
N_B0	NA	NA	500 - 30,000
T_FM (ky)	2 - 5	2 - 5	2 - 5
T_FS (ky)	0.1 - 10	0.1 - 10	0.1 - 10
T_DM (ky)	10 - 50	10 - 50	10 - 50
T_EU_AS (ky)	10 - 30	10 - 30	10 - 30
T_NM (ky)	5 - 50	5 - 50	5 - 50
T_XM (ky)	5 - 50	5 - 50	5 - 50
T_Mix (ky)	NA	5 - 50	5 - 50
T_Sep (ky)	NA	5 - 50	5 - 50
T_B (ky)	5 - 270	5 - 220	5 - 220
T_AF (ky)	5 - 700	5 - 700	5 - 700
T_N_D (ky)	330 - 450	330 - 450	330 - 450
T_H_A (ky)	120 - 250	120 -250	120 - 250
T_H_X (ky)	450 - 700	450 - 700	450 - 700
NMix (%)	1 - 3	1 - 3	1 - 3
DMix (%)	0 - 2	0 - 2	0 - 2
XMix (%)	0 - 10	0 - 10	0 - 10
FMix (%)	0 - 10	0 - 10	0 - 10

477 NA means not applicable. Ky means kilo or thousand years.

478 Table 2: Posterior range for parameters of model B.

Parameters	Mean	CI	Events (kya)
N_A	13,500	13,495 - 13,501	
N_AF	21,689	21,277 - 22,496	
N_EU	119,988	111,986 - 134,779	
N_AS	122,321	114,667 - 135,974	
N_F	20,137	17,149 - 24,731	
N_EU0	1,813	1,766 - 1,871	
N_AS0	730	719 - 752	
N_BC	20,347	13,024 - 25,099	
N_B	2,123	2,100 - 2,164	
N_AF0	28,491	27,967 - 28,758	
T_FM (ky)	3.4	2.1 - 4.9	3.4 (2.1 - 4.9)
T_FS (ky)	4.9	0.2 - 9.7	8.3 (3.4 - 13.2)
T_DM (ky)	15	14.4 - 15.8	15 (14.4 - 15.8)
T_EU_AS (ky)	17.7	17.2 - 18.3	32.7 (31.8 - 33.6)
T_NM (ky)	7.2	6.7 - 7.4	39.9 (38.9 - 40.9)
T_XM (ky)	14.7	13.7 - 15.7	47.5 (46.1 - 48.8)
T_Mix (ky)	15	14.1 - 16.1	47.7 (46.4 - 49.1)
T_Sep (ky)	11.2	10.8 - 12.3	59 (57.4 - 60.5)
T_B (ky)	13.2	12.7 - 13.5	72.2 (70.6 - 73.7)
T_AF (ky)	208.9	196.8 - 218.3	281.1 (270.2 - 291.9)
T_N_D (ky)	447.2	444.3 - 448.9	447.2 (444.3 - 448.9)
T_H_A (ky)	249.4	247.2 - 250.5	696.6 (693.8 - 699.5)
T_H_X (ky)	695.4	686.1 - 700.3	695.4 (686.1 - 700.3)
Mix (%)	91.98	89.66 - 93.08	
NMix (%)	3.01	2.98 - 3.02	
DMix (%)	0.63	0.58 - 0.68	
XMix (%)	5.04	4.85 - 5.14	
FMix (%)	2.37	2.13 - 2.49	

479 CI is the confidence interval of 2.5%-97.5% of respective parameters. Ky means kilo years and
 480 kya means kilo or thousand years ago from now.

481 Table 3: Cross validation and Model Selection using different approaches.

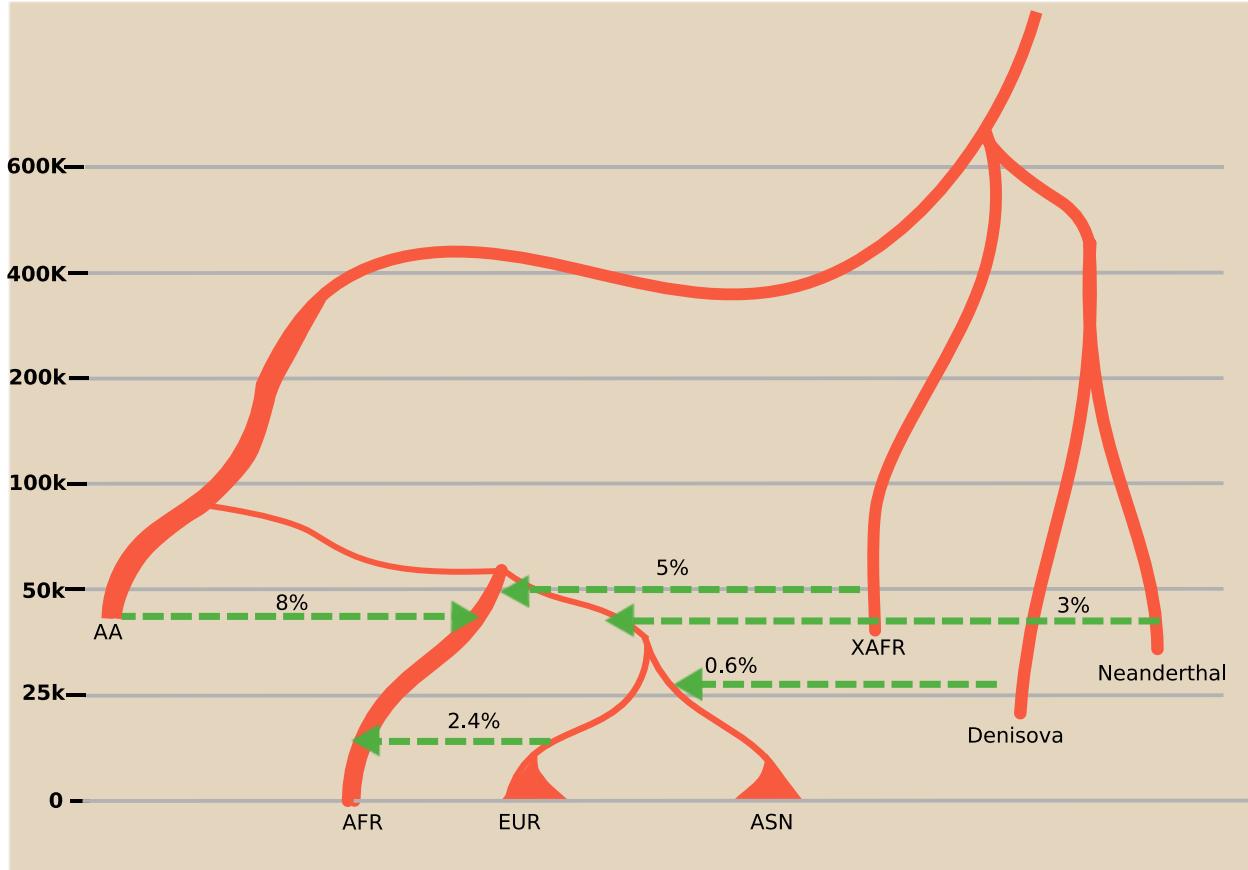
RF	OOA_B	OOA_M	OOA_S
OOA_B	95.33%	1.23%	3.44%
OOA_M	1.06%	85.12%	13.82%
OOA_S	4.45%	8.94%	86.61%
Posterior of votes	70.40%	13.20%	16.40%
DL			
OOA_B	97.36%	0.53%	2.12%
OOA_M	0.03%	85.74%	14.23%
OOA_S	1.09%	10.55%	88.36%
Posterior model probabilities	87.27%	0.13%	12.6%
DLS			
OOA_B	99.84%	0.04%	0.13%
OOA_M	0.00%	100.00%	0.00%
OOA_S	0.00%	0.08%	99.92%
Posterior model probabilities	100.00%	0.00%	0.00%

482 Confusion matrix for misclassification is reported here using RF (Random Forest), DL (only
483 Neural Network) and DLS (Neural Network and Sequential Monte Carlo together) for random
484 samples from the models with ABC. Posterior of votes and Posterior model probabilities are final
485 posterior after using the real data.

486 Figures

487 **Figure 1: Schematic of Inferred Demography**

488 Model B with only mean posterior. Kya is kilo years ago, AFR is African, EUR is Europeans,
489 ASN is East Asian, NEAN is Neanderthal, DENI is Denisova and XAFR is African Archaic.

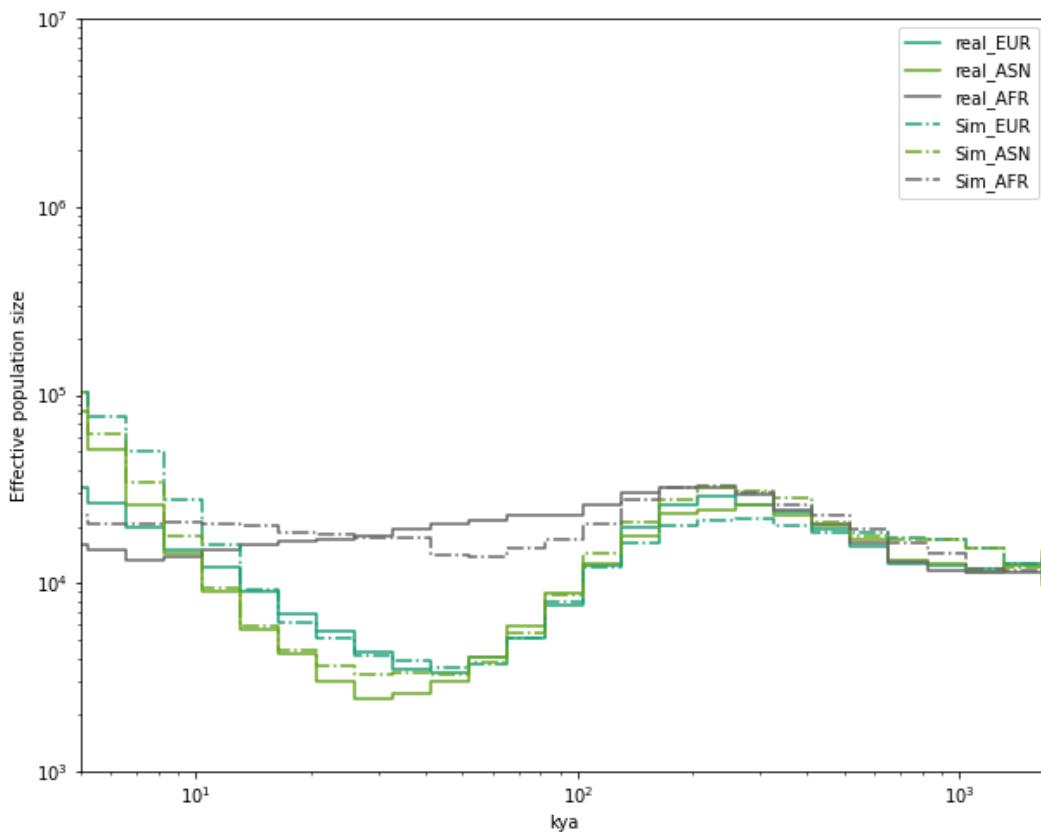


490

491 **Figure 2: Effective population size trajectories and coalescence rates over time.**

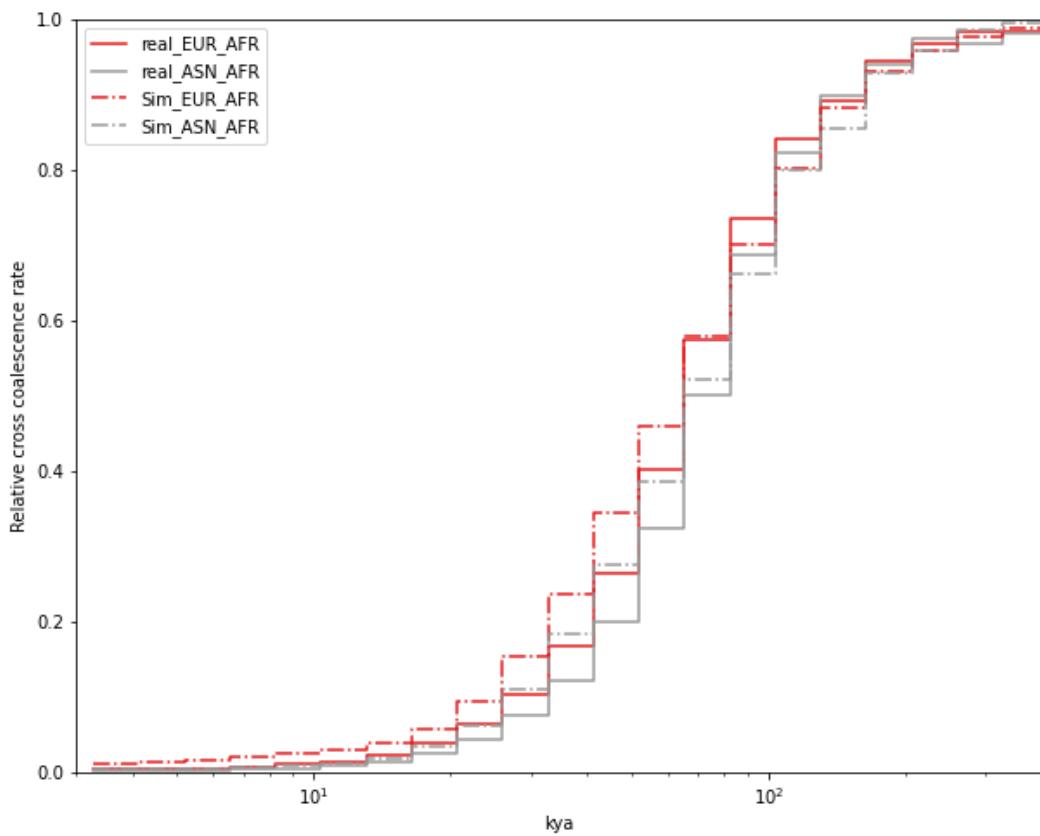
492 Here we compare effective population size (a) and relative cross-coalescence rates (b) estimated
493 using Relate between the real and data simulated under the model B. a) x axis in kya (kilo years
494 ago) and y axis is the effective population size for corresponding populations presented in the inset.
495 Both axes are in log scale. b) x axis is in kya and y-axis shows the relative cross coalescent rate
496 for corresponding populations pairs presented in the insert. x axis is log scale.

497 a)



498

499 b)



500

501 **Reference**

- 502 1. Hublin, J.-J. *et al.* New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo
503 sapiens. *Nature* **546**, 289–292 (2017).
- 504 2. Trinkaus, E. Femoral neck-shaft angles of the Qafzeh-Skhul early modern humans, and activity
505 levels among immature Near Eastern Middle Paleolithic hominids. *J. Hum. Evol.* **25**, 393–416
506 (1993).
- 507 3. Liu, W. *et al.* The earliest unequivocally modern humans in southern China. *Nature* **526**, 696–
508 699 (2015).
- 509 4. Harvati, K. *et al.* Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia.
510 *Nature* **571**, 500–504 (2019).
- 511 5. Mondal, M. *et al.* Genomic analysis of Andamanese provides insights into ancient human
512 migration into Asia and adaptation. *Nat. Genet.* **48**, 1066–70 (2016).
- 513 6. Malaspinas, A. S. *et al.* A genomic history of Aboriginal Australia. *Nature* **538**, 1–152 (2016).
- 514 7. Mallick, S. *et al.* The Simons Genome Diversity Project: 300 genomes from 142 diverse
515 populations. *Nature* (2016) doi:10.1038/nature18964.
- 516 8. Clarkson, C. *et al.* Human occupation of northern Australia by 65,000 years ago. *Nature* **547**,
517 306–310 (2017).
- 518 9. Groucutt, H. S. *et al.* Homo sapiens in Arabia by 85,000 years ago. *Nat. Ecol. Evol.* **2**, 800–809
519 (2018).

520 10. Cabrera, V. M., Marrero, P., Abu-Amero, K. K. & Larruga, J. M. Carriers of mitochondrial
521 DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000
522 years ago. *BMC Evol. Biol.* **18**, 98 (2018).

523 11. Poznik, G. D. *et al.* Punctuated bursts in human male demography inferred from 1,244
524 worldwide Y-chromosome sequences. *Nat. Genet.* **48**, 593–599 (2016).

525 12. Ciregan, D., Meier, U. & Schmidhuber, J. Multi-column deep neural networks for image
526 classification. in *2012 IEEE conference on computer vision and pattern recognition* 3642–3649
527 (IEEE, 2012).

528 13. Graves, A. & Schmidhuber, J. Offline handwriting recognition with multidimensional
529 recurrent neural networks. in *Advances in neural information processing systems* 545–552
530 (2009).

531 14. Hutter, M. On universal prediction and Bayesian confirmation. *Theor. Comput. Sci.* **384**,
532 33–48 (2007).

533 15. Kurtz, D. M. *et al.* Dynamic risk profiling using serial tumor biomarkers for personalized
534 outcome prediction. *Cell* **178**, 699–713 (2019).

535 16. Goldberg, Y. A primer on neural network models for natural language processing. *J. Artif.*
536 *Intell. Res.* **57**, 345–420 (2016).

537 17. Hudson, R. R. Generating samples under a Wright-Fisher neutral model of genetic
538 variation. *Bioinforma. Oxf. Engl.* **18**, 337–338 (2002).

539 18. Kelleher, J., Etheridge, A. M. & McVean, G. Efficient Coalescent Simulation and
540 Genealogical Analysis for Large Sample Sizes. *PLoS Comput. Biol.* **12**, 1–22 (2016).

541 19. Mondal, M., Bertranpetti, J. & Lao, O. Approximate Bayesian computation with deep
542 learning supports a third archaic introgression in Asia and Oceania. *Nat. Commun.* **10**, (2019).

543 20. Jay, F., Boitard, S. & Austerlitz, F. An ABC method for whole-genome sequence data:
544 Inferring Paleolithic and Neolithic human expansions. *Mol. Biol. Evol.* **36**, 1565–1579 (2019).

545 21. Villanea, F. A. & Schraiber, J. G. Multiple episodes of interbreeding between Neanderthal
546 and modern humans. *Nat. Ecol. Evol.* **3**, 39–44 (2019).

547 22. Kern, A. D. & Schrider, D. R. diploS/HIC: an updated approach to classifying selective
548 sweeps. *G3 Genes Genomes Genet.* **8**, 1959–1970 (2018).

549 23. Torada, L. *et al.* ImaGene: a convolutional neural network to quantify natural selection
550 from genomic data. *BMC Bioinformatics* **20**, 337 (2019).

551 24. Sanchez, T., Cury, J., Charpiat, G. & Jay, F. Deep learning for population size history
552 inference: design, comparison and combination with approximate Bayesian computation.
553 *bioRxiv* 2020.01.20.910539 (2020) doi:10.1101/2020.01.20.910539.

554 25. Schlebusch, C. M. *et al.* Southern African ancient genomes estimate modern human
555 divergence to 350,000 to 260,000 years ago. *Science* **358**, 652–655 (2017).

556 26. Grün, R. *et al.* U-series and ESR analyses of bones and teeth relating to the human burials
557 from Skhul. *J. Hum. Evol.* **49**, 316–334 (2005).

558 27. Pagani, L. *et al.* Genomic analyses inform on migration events during the peopling of
559 Eurasia. *Nature* **538**, 238–242 (2016).

560 28. Kuhlwilm, M. *et al.* Ancient gene flow from early modern humans into Eastern
561 Neanderthals. *Nature* (2016) doi:10.1038/nature16544.

562 29. Soares, P. *et al.* The expansion of mtDNA haplogroup L3 within and out of Africa. *Mol.*
563 *Biol. Evol.* **29**, 915–927 (2012).

564 30. Karmin, M. *et al.* A recent bottleneck of Y chromosome diversity coincides with a global
565 change in culture. *Genome Res.* **25**, 459–466 (2015).

566 31. Mondal, M. *et al.* Y-chromosomal sequences of diverse Indian populations and the ancestry
567 of the Andamanese. *Hum. Genet.* **136**, (2017).

568 32. Haber, M. *et al.* A rare deep-rooting D0 African Y-chromosomal haplogroup and its
569 implications for the expansion of modern humans out of Africa. *Genetics* **212**, 1421–1428
570 (2019).

571 33. Schiffels, S. & Durbin, R. Inferring human population size and separation history from
572 multiple genome sequences. *Nat. Genet.* **46**, 919–925 (2014).

573 34. Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy
574 estimation for thousands of samples. *Nat. Genet.* **51**, 1321–1329 (2019).

575 35. Cole, C. B., Zhu, S. J., Mathieson, I., Prüfer, K. & Lunter, G. Ancient Admixture into
576 Africa from the ancestors of non-Africans. *bioRxiv* (2020) doi:10.1101/2020.06.01.127555.

577 36. Lipson, M. *et al.* Ancient West African foragers in the context of African population
578 history. *Nature* **577**, 665–670 (2020).

579 37. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the
580 joint demographic history of multiple populations from multidimensional SNP frequency data.
581 *PLoS Genet.* **5**, (2009).

582 38. Li, H. & Durbin, R. Inference of Human Population History From Whole Genome
583 Sequence of A Single Individual. *Nature* **475**, 493–496 (2012).

584 39. Gravel, S. *et al.* Demographic history and rare allele sharing among human populations.

585 *Proc. Natl. Acad. Sci. U. S. A.* **108**, 11983–11988 (2011).

586 40. Information, S. Geographical barriers , environmental challenges , and complex migration

587 events during the peopling of Eurasia.

588 41. Schlebusch, C. M. *et al.* Ancient genomes from southern Africa pushes modern human

589 divergence beyond 260,000 years ago. *Doi.Org* **655**, 145409 (2017).

590 42. Loosdrecht, M. van de *et al.* Pleistocene North African genomes link Near Eastern and sub-

591 Saharan African human populations. *Science* **360**, 548–552 (2018).

592 43. Collette, A. *Python and HDF5: unlocking scientific data.* (O'Reilly Media, Inc., 2013).

593 44. Abadi, M. *et al.* TensorFlow: A system for large-scale machine learning. in *Proceedings*

594 *of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016*

595 (2016).

596 45. Chollet, F. and others. Home - Keras Documentation. <https://keras.io/> (2015).

597 46. Sisson, S. A., Fan, Y. & Tanaka, M. M. Sequential monte carlo without likelihoods. *Proc.*

598 *Natl. Acad. Sci.* **104**, 1760–1765 (2007).

599 47. Liu, J. S. & Chen, R. Sequential Monte Carlo methods for dynamic systems. *J. Am. Stat.*

600 *Assoc.* **93**, 1032–1044 (1998).

601 48. Raynal, L. *et al.* ABC random forests for Bayesian parameter inference. *Bioinformatics* **35**,

602 1720–1728 (2019).

603 49. Jouganous, J., Long, W. & Gravel, S. Inferring the Joint Demographic History of Multiple

604 Populations : Beyond the Diffusion Approximation . 1–37 (2017).

605 50. Green, R. E. *et al.* A draft sequence of the Neandertal genome. *Science* **328**, 710–722
606 (2010).

607 51. Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of Human
608 Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. *Cell* **173**, 53-61.e9
609 (2018).

610 52. Jacobs, G. S. *et al.* Multiple Deeply Divergent Denisovan Ancestries in Papuans. *Cell* **177**,
611 1010-1021.e32 (2019).

612 53. Ragsdale, A. P. & Gravel, S. Models of archaic admixture and recent history from two-
613 locus statistics. *PLoS Genet.* **15**, 1–19 (2019).

614 54. Lorente-galdos, B. *et al.* Whole-genome sequence analysis of a Pan African set of samples
615 reveals archaic gene flow from an extinct basal population of modern humans into sub-Saharan
616 populations. 1–15 (2019).

617 55. Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and Interpreting Apparent
618 Neanderthal Ancestry in African Individuals. *Cell* **180**, 677-687.e16 (2020).

619 56. Bergström, A. *et al.* Insights into human genetic variation and population history from 929
620 diverse genomes. *Science* **367**, (2020).

621 57. Scally, A. The mutation rate in human evolution and demographic inference. *Curr. Opin.*
622 *Genet. Dev.* **41**, 36–43 (2016).

623 58. Kong, A. *et al.* Rate of de novo mutations and the importance of father's age to disease
624 risk. *Nature* **488**, 471–475 (2012).

625 59. Tian, X., Browning, B. L. & Browning, S. R. Estimating the genome-wide mutation rate
626 with three-way identity by descent. *Am. J. Hum. Genet.* **105**, 883–893 (2019).

627 60. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust
628 Demographic Inference from Genomic and SNP Data. *PLoS Genet.* **9**, (2013).

629 61. Theunert, C., Tang, K., Lachmann, M., Hu, S. & Stoneking, M. Inferring the History of
630 Population Size Change from Genome-Wide SNP Data Research article. **29**, 3653–3667 (2012).

631 62. Wall, J. D. Inferring Human Demographic Histories of Non-African Populations from
632 Patterns of Allele Sharing. *Am. J. Hum. Genet.* (2017) doi:10.1016/j.ajhg.2017.04.002.

633 63. Lapierre, M., Lambert, A. & Achaz, G. Accuracy of demographic inferences from the site
634 frequency spectrum: The case of the yoruba population. *Genetics* **206**, 139–449 (2017).

635 64. Meyer, M. *et al.* A High-Coverage Genome Sequence from an Archaic Denisovan
636 Individual. *Science* **338**, 222–226 (2012).

637 65. Mondal, M., Casals, F., Majumder, P. P. & Bertranpetti, J. Reply to ‘No evidence for
638 unknown archaic ancestry in South Asia’. *Nat. Genet.* **50**, 1637–1639 (2018).

639 66. Moorjani, P. Molecular clock helps estimate age of ancient genomes. *PNaS* **113**, 5459–
640 5460 (2016).

641 67. Besenbacher, S., Hvilsom, C., Marques-Bonet, T., Mailund, T. & Schierup, M. H. Direct
642 estimation of mutations in great apes reconciles phylogenetic dating. *Nat. Ecol. Evol.* **3**, 286–
643 292 (2019).

644 68. Pagani, L. & Crevecoeur, I. *What is Africa? A human perspective.* (2018).
645 doi:10.13140/RG.2.2.16605.10728.

646 69. Tremblay, M. & Vézina, H. New Estimates of Intergenerational Time Intervals for the
647 Calculation of Age and Origins of Mutations. *Am. J. Hum. Genet.* **66**, 651–658 (2000).

648 70. Auton, A. *et al.* A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).

649 71. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping
650 and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–
651 2993 (2011).

652 72. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158
653 (2011).

654 73. Alistair Miles *et al.* *cgg/cggh/scikit-allel*: v1.3.2. (Zenodo, 2020).
655 doi:10.5281/zenodo.3976233.

656 74. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine.
657 *Bioinformatics* **28**, 2520–2522 (2012).

658 75. Pedregosa, F. *et al.* Scikit-learn: Machine learning in Python. *J. Mach. Learn. Res.* **12**,
659 2825–2830 (2011).

660 76. Csilléry, K., François, O. & Blum, M. Approximate Bayesian Computation (ABC) in R: A
661 Vignette. *202.162.217.53* 1–21 (2012).

662 77. Salle, A., Idiart, M. & Villavicencio, A. Matrix factorization using window sampling and
663 negative sampling for improved word representations. *ArXiv Prepr. ArXiv160600819* (2016).

664 78. Breiman, L. Random forests. *Mach. Learn.* **45**, 5–32 (2001).

665 79. Pudlo, P. *et al.* Reliable ABC model choice via random forests. *Bioinformatics* **32**, 859–
666 866 (2016).

667 80. Loh, P.-R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK
668 Biobank cohort. *Nat. Genet.* **48**, 811–816 (2016).

