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Comparative analysis of genome-wide DNA methylation identifies patterns that 
associate with conserved transcriptional programs in osteosarcoma. 
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Abstract 
Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults 

and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. 

While inactivation of tumor suppressor p53 TP53 is nearly universal other high 

frequency mutations or structural variations have not been identified. Despite this 

genomic heterogeneity, key conserved transcriptional programs associated with survival 

have been identified across human, canine and induced murine osteosarcoma. The 

epigenomic landscape, including DNA methylation, plays a key role in establishing 

transcriptional programs in all cell types.  The role of epigenetic dysregulation has been 

studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. 

Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine 

osteosarcoma samples identifying groups of highly correlated DNA methylation marks in 

human and canine osteosarcoma samples. We also link specific DNA methylation 

patterns to key transcriptional programs in both human and canine osteosarcoma. 

Building on previous work, we built a DNA methylation-based measure for the presence 

and abundance of various immune cell types in osteosarcoma. Finally, we determined 

that the underlying state of the tumor, and not changes in cell composition, were the 

main driver of differences in DNA methylation across the human and canine samples.  

Significance: This is the first large scale study of DNA methylation in osteosarcoma 

and lays the ground work for the exploration of DNA methylation programs that help 

establish conserved transcriptional programs in the context of different genomic 

landscapes.  
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Introduction 
Osteosarcoma is a rare disease, there are fewer than 1,000 cases diagnosed in the 

U.S. each year, mostly in children and adolescents1. However, these numbers fail to 

convey the impact that the disease has on patients, their families, caregivers, and the 

extended community due to its significant morbidity and years of life lost. Recent work is 

starting to increase our fundamental understanding of osteosarcoma2 but more than half 

of patients still relapse and die from metastatic disease within 10 years1,3. 

Osteosarcoma has been reported in every vertebrate species4. It is as rare in most 

animals as it is in humans, and when it occurs, it is most common in the axial skeleton4. 

Dogs are a notable exception. Osteosarcoma is extremely common in large and giant 

dogs, and similar to children the disease occurs most frequently in the appendicular 

skeleton4,5 

 

Many studies have evaluated the genomic landscape of osteosarcoma in humans and 

in animal models. The heterogeneity of this disease is remarkable, both within and 

among species5–10. Loss of function of the TP53 gene seems to be a nearly universal 

event in spontaneous osteosarcoma, thus it might be causally related to the chaotic 

genomes that are characteristic of this condition7. Aside from TP53 loss of function 

mutations, recurrent genomic aberrations are rare within species and even more 

infrequent between species. But unlike its highly heterogeneous mutational landscape, 

the transcriptional programs that characterize human and canine osteosarcoma are 

highly conserved8,11. More specifically, one key transcriptional program defined subsets 

with higher (or lower) rates of tumor cell proliferation and turnover, inferred from the 

expression of gene clusters associated with cell cycle progression, mitosis, DNA 

damage repair, and chromosomal instability8,11,12. We created a method to quantify this 

expression using a gene cluster expression summary score (GCESS)8 and showed that 

this GCESS was inversely associated with overall survival in both dogs and humans. 

The other salient conserved transcriptional programs defined subsets associated with 

abundance of immune and inflammatory cells in the microenvironment, inferred from the 

expression of genes uniquely or predominantly expressed by cells of the innate and 
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adaptive immune system8. Curiously, the immune GCESS were only predictive of 

survival time and metastasis in human patients and not in dogs. 

 

The discrepancy between the highly heterogeneous mutational landscape of human 

and canine osteosarcomas with diverse putative genetic drives and their relatively 

homogeneous transcriptional landscape indicates these two sets of events are probably 

unrelated in both species. In other words, these tumors do not seem to be caused by 

driver events that activate or repress specific transcription. Instead, it is most likely that 

osteosarcomas in humans and in dogs are convergent entities where epigenetic 

controls of gene expression driven by selection ultimately give rise to the limited 

molecular pathways that achieve the tissue organization required to form osteosarcoma 

tumors. One such epigenetic control is DNA methylation, which in turn is a major 

determinant of chromatin accessibility.  

 

For this study, we sought to determine the role of DNA methylation in establishing the 

conserved transcriptional programs observed in human and canine osteosarcoma. Our 

data show that, indeed, there are conserved modules of methylation in human and 

canine osteosarcomas. In spite of the apparent species differences, such conserved 

processes must reflect pathogenetically significant events that contribute to risk, 

progression, and therapeutic failure, and understanding their mechanisms will aid the 

development of better methods to identify risk and prognosticate progression, and 

ultimately more effective strategies for treatment, control, and eventually prevention. 

 

Results 

Genome wide DNA methylation patterns in human and canine osteosarcoma 
Our objective was to establish mechanisms that control conserved transcriptional 

programs in human and canine osteosarcoma tissues. Targeted bisulfite sequencing 

was used to measure genome wide DNA methylation levels in 24 samples of human 

osteosarcoma and 44 samples of canine osteosarcoma. In order to focus the 

comparisons on conserved mechanisms that underlie the cellular and molecular 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2020. ; https://doi.org/10.1101/2020.04.29.068155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.068155
http://creativecommons.org/licenses/by-nc/4.0/


 5 

organization of osteosarcoma, we only considered methylation measurements from 

homologous regions of the two genomes (54K human and 58K canine genomic regions, 

19% and 33% of total measured regions respectively, Figure 1A). Weighted gene 

correlation network analysis (WGCNA)13,14 clustering was applied to the DNA 

methylation data to reduce complexity by identifying genomic regions with highly 

correlated DNA methylation profiles across the osteosarcoma samples in both species. 

WGCNA generates large clusters of genomic regions with highly correlated DNA 

methylation measurements across samples and produces a summary value for each 

cluster. Clusters were constructed using the same parameters for the human and 

canine samples and the same correlation cut off value was used to establish cluster 

membership. We thus condensed 12,165 unique methylation measurements from the 

human osteosarcoma samples into 43 clusters containing between 16 and 2,529 

individual methylation measurements (Figure 1A). Five modules contained less than 

100 measurements and 6 modules contained more than 1,000. Similarly, we condensed 

6,099 unique methylation measurements from the canine osteosarcoma samples into 

12 clusters containing between 139 and 2,532 individual methylation measurements 

(Figure 1A). The representative methylation value for each cluster, equivalent to the first 

principal component eigenvalue, is given in the heatmaps in Figure 1B and 1C. For both 

the human and canine clusters, methylation measurements from multiple chromosomes 

are clustered together indicating larger methylation programs that extend beyond 

methylation measurements in local genomic regions. While only methylation 

measurements from homologous genomic regions were used for clustering, the human 

and canine samples were clustered independently because we were interested in 

identifying methylation clusters that contain homologous genomic regions in the two 

species. The highest levels of region overlap were seen between human cluster ME1 

and canine clusters ME1 (31.75%) and ME10 (33.26%), between human cluster ME5 

and canine cluster ME3 (33.33%), and between human cluster ME7 and canine cluster 

ME8 (33.61%) (supp table). K-means clustering using the Euclidean distance of the 

summarized methylation values for each cluster was used to identify clusters that 

showed similar patterns across either the human or canine osteosarcoma samples, as 
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indicated by the colored toe bars at the bottom of Figures 1B and 1C. The color scheme 

in Figures 1B and 1C is maintained throughout the rest of the manuscript and used as a 

reference for clusters. Some of the clusters share genomic regions across both species, 

as indicated by shared colors in the toe bars (blue, green, orange), while other clusters 

are species specific (red, light orange, yellow, purple, and black, Figures 1B, 1C, and 

1D). We assigned the nearest gene (≤1,000 bp) to each methylation measurement and 

performed pathway analysis using the Reactome database for each methylation cluster. 

Not all methylation clusters resulted in significant pathway enrichment, but with the 

exception of the black group, all others had 1 or more individual groups of methylation 

marks with enriched functional pathways (Figure 1D and supp table). Predictably13,14, 

genes in the Reactome pathways “Transcriptional Regulation by TP53: (R-HSA-

3700989) , along with other pathways associated with signal transduction, were 

enriched in modules in the blue group, and genes in the “Transcriptional regulation by 

RUNX2 '' and “Transcriptional regulation of pluripotent stem cells” pathways were 

enriched in modules in the green group in samples from both species.  

  

Association between methylation clusters and osteosarcoma transcriptional 

programs 

Previously, we identified shared transcriptional programs in human and canine 

osteosarcoma tissues that were associated with proliferation (cell cycle), presumably of 

the tumor cells that were inversely associated with overall survival in both species8. We 

also showed that the presence of immune cells (immune1 and immune2) in the 

microenvironment was directly associated with overall survival and time to metastasis, 

but only in human patients8. A subset of the samples used to identify those 

transcriptional programs were included in this study (human n = 16, canine n = 9). We 

calculated correlations between DNA methylation clusters and the summarized gene 

expression values for the expression groups from Scott et. al (2018) using the 

summarized methylation values for each cluster identified with WGCNA (Figure 2). In 

addition, we correlated DNA methylation to the age at diagnosis and overall survival 

time for the canine samples (Figure 2B). Figure 2 shows that the methylation clusters 
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not only behave similarly when looking at the global DNA methylation patterns, but also 

when they are compared to downstream transcriptional programs. Specifically, the 

methylation clusters in the green group are positively correlated with cell cycle 

expression and inversely correlated with immune expression in both the dog and the 

human samples. In contrast the methylation clusters in the orange group, in both 

species, and the red group, in the human samples, show the opposite behavior and are 

inversely correlated with expression of cell cycle-associated genes and positively 

correlated with expression of immune-related genes.  

 

Immune cell abundance across osteosarcoma samples 

The presence or absence of specific immune cell infiltrates is an important predictor of 

survival in many solid tumors15 including human osteosarcoma8. DNA methylation data, 

from 450K arrays, has been shown to be more effective at predicting the abundance of 

specific cell types in gold standard mixtures than expression data from RNA-seq16. 

Building on these previous methods, we obtained whole genome bisulfite sequencing 

data for 12 pure human cell populations from the BLUEPRINT project17. Whole genome 

bisulfite sequencing (WGBS) data were summarized to the same human/canine 

homologous regions used as input for WGCNA analysis. Cell populations of interest 

included10 immune cell populations as well as osteoclasts and mesenchymal stromal 

cells (MSC), which were used as surrogates for tumor cells as WGBS data for 

osteoblasts is not available in the public domain. We performed differential methylation 

tests between all pairs of pure cell populations, and the top 100 genomic regions with 

the largest differences in methylation levels were selected from each test and combined 

(1,312 unique regions) to generate a custom signature file in CIBERSORT (SFigure 1). 

Once generated, this custom signature file accurately predicted the cell type in 

computationally generated mixtures based on methylation levels (SFigure 2). WGBS 

data from known mixtures of canine cells were not available to further test predictions 

from this method, so we relied on the approach used to identify homologous genomic 

regions to convert canine methylation measurements to their human genome 

equivalents. We then applied the same signature file to both species and, as expected, 
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MSCs had the highest signal across all samples (Figure 3A & 3B). The data also 

suggests that all other stromal and immune cell types that we interrogated were 

infrequent (low abundance) in human osteosarcoma samples (Figure 3A), while 

suggesting that monocytes, CD8+ T-cells, and osteoclasts were relatively more 

abundant in canine osteosarcoma samples (Figure 3B).  

 

Associations between global DNA methylation modules and predicted immune 

cell abundance 
Global DNA methylation patterns are highly specific to cell type, though obtained 

through separate analysis, it is possible that the DNA methylation clusters identified via 

WGCNA were a result of the differences in the abundance of different cell types in the 

osteosarcoma samples. Though generated from the same starting regions (Figure 1A), 

there was a small overlap between the regions included in the WGCNA methylation 

clusters and the custom signature file used with CIBERSORT (352/12,165 from the 

human data and 147/6,099 from the canine data). To understand if any of our 

discovered methylation clusters were indirectly measuring immune cell abundance or 

the state of the tumor tissue, we calculated correlations between the summarized 

methylation values for each methylation cluster and predicted immune cell abundance 

scores (Figure 4). In both species, similar to the relationships between the methylation 

scores and transcription measures (Figure 2), methylation clusters of the same color 

tend to have similar relationships to the cell abundance measures (Figure 4). In the 

human data most of the methylation clusters showed similar, positive, correlations to 

MSC while they displayed a more varied behavior overall (Figure 1A) and against key 

transcriptional patters (Figure 2A). Interestingly, the orange and green clusters both 

have positive correlations to MSC abundance while they have opposite correlations, 

from each other, with the immune and cell cycle expression measures (Figure 2). In the 

canine data strong positive and negative correlations are seen between MSC, CD8+ T-

cells and inflammatory macrophages. Also, in the canine data the opposite correlations 

are seen between the green and orange/light orange groups mirroring what is seen 

when compared to the transcriptional patters (Figure 2B). In the human data, immune 
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cell abundance is very low and the strongest correlations are seen between the 

methylation modules and the MSC abundance measures. While a few of the 

methylation clusters may reflect the abundance of immune cells, many more seem to 

reflect the underlying states of the tumor itself. In the canine data, immune cell 

abundance is higher and more varied, and the same modules show strong correlations 

to both transcriptional measures of immune cell infiltration (Figure 2B) and methylation-

based measures (Figure 4B), so more of the original methylation clusters (green 

clusters) may be reflective of cell abundance. But, many clusters do not show a strong 

correlation to any cell abundance measure and most likely reflect other aspects of the 

underlying tumor state.  

 

Discussion 

The molecular basis of osteosarcoma has received considerable attention during the 

last decade18–26. Several genetic mutations including p53, RB, cMYC, and RUNX2 have 

been strongly implicated in the development of osteosarcoma7,24,27–38 but our 

understanding of osteosarcoma epigenome is still limited8–43. The clinical outcomes 

continue to be dismal and have landed this disease among the “most wanted” for 

development of new, effective therapies. Elements of our failure to understand 

osteosarcoma pathobiology and treatment include tumor heterogeneity, a lack of robust 

prognostic factors, and the fact that current therapies ultimately fail to prevent relapse 

and/or metastasis for most patients. These challenges are also compounded by the 

orphan disease status of osteosarcoma.  

 

Recently, we showed that transcriptional programs in human and canine osteosarcoma 

defined the proliferation and immune signature in the tumor microenvironment that are 

associated with aggressiveness and outcomes in osteosarcoma. Notably, our studies 

and other genomic studies have failed to identify recurrent translocation or mutational 

profiles associated with the transcriptional programs in human and canine 

osteosarcoma. In the absence of recurrent mutations the aberrant expression of pro-

survival and metastatic genes noticed in osteosarcoma may be in part due to 
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deregulation of microRNAs39,40. In addition to microRNAs the transcriptional programs 

may be regulated by epigenetic alterations41–43. Using genome-wide methylation profiles 

of human and canine osteosarcoma, here we show that transcriptional programs 

associated with cell proliferation and immune signature are associated with methylation 

patterns in both the species. Specifically, DNA methylation across the blue, green and 

orange clusters encompassing 1,773 genomic locations behave similarly between 

human and canine while other regions are species specific. Correlative analysis of 

genome-wide methylation patterns and corresponding transcriptional profiles in human 

and canine osteosarcoma revealed strong correlations between key transcriptional 

patterns and DNA methylation measurements. For example, conserved green 

methylation clusters were positively correlated with cell cycle expression programs in 

both species while conserved orange methylation clusters were negatively correlated 

again in both species. These same methylation clusters displayed the opposite behavior 

when compared to the immune expression profiles highlighting the tradeoff between 

tumors with high proliferation and those with higher immune components also seen in 

Scott et. al. 2018. These findings have implication for developing potential biomarkers 

or other predictive measures for identifying tumors that might be more aggressive due 

to higher rates of proliferation or to track very low levels of immune cell infiltration that is 

often missed using standard pathology methods.  

 

Next, we generated a new algorithm based on CIBERSORT and past use of Illumina 

450K methylation profiles16 to predict immune cell abundances from whole genome 

bisulfite sequencing data. Our analysis shows a well-defined difference between 

immune cell profiles among human and canine osteosarcoma samples. Canine 

osteosarcoma show much higher presence of immune cells across the samples 

analyzed, average absolute abundance measures were higher for 6 out of 10 immune 

cells in the canine samples as well as for osteoclasts and MSC. Notably, we observed 

increased CD8+ T cell signature in canines (mean absolute abundance 0.44) that are 

relatively less abundant in human samples (mean absolute abundance 0.01). This 

observation is intriguing because even with higher immune cell infiltration in canine 
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samples, this did not translate to increased survival in canines. Even though canine 

tumors are primarily driven by the proliferation signatures that are correlated with 

methylation patterns, we speculate that progression in canine tumors is predominantly 

driven by cell proliferation with immune cells potentially having less influence in the 

absence of immunomodulatory therapies.   

 

 We also observed high correlations between the global methylation patterns and 

immune cell abundance in both human and canine osteosarcoma. Strong correlations 

between single cell types, or cell types with correlated abundances, and methylation 

modules were not observed leading us to believe that global methylation patterns do not 

seem to be driven only by the abundance of immune cells in the microenvironment, but 

most likely reflect the proliferative and pro-survival status of the tumor cells.  Inhibiting 

pro-survival pathways linked to osteosarcoma progression has therapeutic relevance. 

Conventional therapies—including the DNA-intercalating drugs doxorubicin and 

cisplatin44 and methotrexate, an anti-metabolite in combination with leucovorin—have 

very serious side effects, including decreased production of blood cells that leads to 

infection and damage to the bladder and kidney. Platinum-containing drugs often cause 

hearing loss. New drugs such as muramyl tripeptide45, rapamycin inhibitor46, and 

Trastuzumab47, show only marginal increases in overall survival, leaving survival rates 

still distressingly low. The dysregulated transcriptional programs that are coupled with 

methylation patterns can be restored by DNA- and chromatin-modifying drugs 5-Aza (5-

Aza-2′-deoxycytidine (5-Aza or decitabine, a hypomethylating agent) and SAHA 

(Suberanilohydroxamic acid or vorinostat, a histone deacetylase inhibitor). Recently we 

showed that 5-AZA and SAHA treatment alter the transcriptional landscape of 

osteosarcoma cells towards one resembling RB expression42. Preclinical and early 

clinical studies combining 5-Aza with chemotherapies, peptide vaccines and immune 

checkpoint therapies found evidence that this treatment increases tumor suppressor 

expression and chemosensitivity. Numerous clinical studies have also reported that 5-

aza improves the efficacy of antigen-directed immunotherapy in pediatric sarcomas[45]. 

Moreover, treating osteosarcoma cell lines with a combination 5-AZA and SAHA 
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induced apoptosis, even in aggressive cell lines that are typically more resistant to 

treatment. 

 

In summary, we have we have used genome-wide methylation patterns to reveal 

association between methylation clusters and conserved transcriptional programs of 

human and canine osteosarcoma. This first large-scale genome-wide DNA methylation 

study in both human and canine osteosarcoma revealed specific DNA methylation 

programs that are highly correlated to gene expression programs important to disease 

progression and survival in both human and canine osteosarcoma. Further, exploring 

the global DNA methylation patterns between different cell types we found that the 

stromal and immune cell types were in low abundance in human osteosarcomas while 

canine osteosarcoma samples showed relatively greater abundance of monocytes, T 

cells, and osteoclasts. These comparative studies on mechanisms that regulate 

conserved transcriptional programs in both human and canine osteosarcoma are critical 

to develop biomarkers48 and therapeutic targets. 

 

Methods 

Biospecimen collection and processing  

Biospecimens were collected from newly diagnosed human patients or dogs with a 

confirmed diagnosis of appendicular osteosarcoma prior to treatment with cytotoxic 

chemotherapy drugs8,11. 

 

Human specimens(n=24) were obtained from the University of Minnesota Biological 

Materials Procurement Network (UMN BioNet) under oversight of the University of 

Minnesota’s Institutional Review Board (IRB) with an Exemption-4 category, or from the 

Cooperative Human Tissue Network (CHTN), also with an IRB Exemption-4. Samples 

were de-identified and only a limited amount of patient information was provided. 

Sample collection was done using standardized protocols with a portion of the 

diagnostic biopsy, obtained as part of a medically necessary procedure flash frozen 
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immediately in liquid nitrogen and stored at -86℃ until they were assigned to the 

project. 

 

Dog specimens (n=44) were obtained from dogs with naturally occurring primary 

appendicular tumors, recruited between 1999 and 2016. Samples were obtained from 

tissue biopsy or amputation surgeries that were part of standard treatment protocols 

and with owner consent under supervision by the appropriate Institutional Animal Care 

and Use Committees (University of Minnesota protocol numbers 0802A27363, 

1101A94713, 1312-31131A) or the University of Colorado Institutional Review Board or 

Institutional Animal Care and Use Committee (AMC 635040202, AMC 200201jm, AMC 

2002141jm, 02905603(01)1F, COMIRB 06-1008). Some of these canine tumor samples 

were flash frozen immediately in liquid nitrogen and stored at -86℃ until they were 

assigned to the project; others were immediately placed in complete, sterile cell culture 

media consisting of Dulbecco’s Modified Eagle Media supplemented with 10% fetal 

bovine serum, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 

100 µg/mL Primocin and transported to the lab by overnight courier at 4℃, and flash 

frozen at -86℃ after examination and processing upon arrival. Transport did not have a 

meaningful effect on tumor viability based on gross examination and on the functional 

capability to establish viable, immortalized osteosarcoma cell lines from the samples.  

 

Tumor tissues were removed from -86℃ and sectioned to avoid areas of necrosis. 

Thirty mg of tissue were placed in 80 µL of phosphate buffered saline (PBS) solution 

and pulverized in a tissue homogenizer. Isolation of genomic DNA was done according 

to the manufacturer’s protocol using the QIAamp DNA Mini Kit from Qiagen.  

 

Bisulfite conversion, library preparation and target region capture  
Illumina library preparation, bisulfited converted and bead capture was performed as 

specified in the Roche SeqCap Epi protocol outlined in Li et al49. Probes for the canine 

version of the SeqCap Epi were designed for canFam3.1 CpG islands as specified by 

the UCSC genome browser and CpG islands identified using EMBOSS cpgreport 
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(http://www.bioinformatics.nl/cgi-bin/emboss/cpgreport) that were homologous to hg19. 

An average of 48 and 46 million 2X125 PE Illumina reads were generated for the 

human and canine samples.  

 

Bisulfite-seq data analysis 

Illumina specific adapter sequences and low quality sequences were removed from raw 

sequencing data using Trimmomatic50. Reads were aligned to a bisulfite converted 

human (hg19) or canine (canfam3.1) genome using WALT51. Duplicate sequences were 

removed from alignment data using MethPipe52 duplicate-remover and bisulfite 

conversion rates were estimated for each sample using bsrate. All samples had 

conversion efficiencies > 99%. Sequencing depths for each sample were such that an 

average of 88.3% and 81.3% of targeted CpGs were sequenced at a 10X depth or 

higher. MethPipe methcounts was used to calculate methylation levels and read 

coverage at individual CpGs in each sample. A custom perl script was used to isolate 

CpGs with a read depth of 10 or greater and MethPipe roimethstats was used to 

summarize methylation levels in 500 bp windows, generated by BEDtools53 windowBed, 

along the capture targets in each genome.  CpG methylation levels were expressed as 

a value between 0 and 1.  

 

Identification of homologous genomic regions and region to gene mapping 

USCS utility liftOver with the appropriate genome wide alignment file was used to 

convert the canine genomic coordinates for each 500bp window from CanFam3.1 to 

hg19. and the human genomic coordinates for each 500bp window to GRCh38. 

Converting both sets of coordinates to GRCh38 resulted in the highest number of 500bp 

windows being conserved between the two species. Genomic regions were considered 

homologs if the converted GRCh38 coordinates were within 1,000bp of each other as 

calculated by BEDtools closest.  

 

Identification of highly correlated DNA methylation patterns with WGCNA, cluster 

membership and correlation analysis  
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WGCNA analysis was carried out via a custom R script. Methylation levels for 

homologous genomic regions were the starting input for WGCNA in each species. All 

homologous genomic regions with a variance greater than 0 were included in the 

WGCNA analysis. Soft thresholding power was calculated for each species separately 

using pickSoftThreshold (human power = 10, canine power = 14, sup figure). Clusters 

(aka modules) were generated using blockwiseModules with the following parameters 

for both species and the species-specific power value. 

 

blockwiseModules(<inputMethmatrix>, 
   maxBlockSize = 1500, 
   power = 14|10, 
   TOMType = “signed”, 
   corType = “bicor”, 
   minModuleSize = 20, 
   mergeCutHeight = 0.25, 
   verbose = 3, 
   numericLabels = T, 
   saveTOMs=T, 
   saveTOMFileBase=<name>) 
 

Summary methylation values for each cluster were obtained from the MEs element of 

the output from blockwiseModules. The correlation (KME) between the methylation level 

at each genomic region to every methylation cluster summary value was calculated 

using signedKME and a genomic region was determined to be a member of a specific 

cluster if the KME was >= 0.7. This classification allows individual genomic regions to 

be assigned to multiple clusters. Pearson correlations between summary methylation 

values for each cluster and other phenotypic measures (gene expression, age, survival 

time, immune cell abundances) were calculated using the WGCNA function cor and 

Student asymptotic p-values were calculated for each correlation value using 

corPvalueStudent and the number of samples for the multiple sample 

correction. Identical WGCNA analysis performed on a randomized human dataset 

resulted in the generation of 6 clusters that contained 113 DNA methylation regions and 

randomized canine data did not produce any clusters.  
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Generation of custom signature file for CIBERSORT 

BigWig files containing genome wide methylation levels from WGBS data for multiple 

replicates of 12 cell types were downloaded from the BLUEPRINT epigenome project. 

BigWig files were converted to bedGraph using the UCSC utility bigWigToBedGraph, 

sorted using BEDtools sort and mean methylation levels were calculated for the same 

500bp windows used for the WGCNA analysis using BEDtools map -c 4 -o mean. 

These summarized methylation levels were used as the input for pairwise differential 

methylation tests between every cell type, 66 tests in all. Differential tests were 

performed using the limma54 package in R. The top 100 most differentially methylated 

regions, based on adjusted p-value, from all differential tests were isolated and the raw 

methylation values for each cell type for these regions were combined and used as 

input to CIBERSORT to generate the custom signature file. Raw methylation values for 

these same regions for all osteosarcoma samples were used as the mixture file input for 

CIBERSORT. Absolute Mode was used to quantify cell abundance to try and account 

for cell types that may be missing from our model but are in the tumor.  

 

Data Access and Sharing 

All raw sequencing data, DNA methylation measurements, cluster membership and 
DNA methylation summary values have been submitted to GEO GSE149679 
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Figure 1: Genome wide DNA methylation patterns in canine and human osteosarcoma 
samples. Summary of analysis and the number of genomic regions included in each 
step (A).  DNA methylation values were calculated at homologous genomic regions in 
canine (B, n=44) and human (C, n=24) primary osteosarcoma tumor samples. Genomic 
regions were clustered based on correlation in each species resulting in 12 canine 
clusters and 43 human clusters containing genomic regions that have highly correlated 
methylation values across all osteosarcoma samples. Heatmaps represent the weighted 
average DNA methylation value for the cluster in each sample. Red is a high 
methylation value and blue is a lower methylation value. Pathway analysis was 
performed using Reactome on the gene nearest (<=1,000bp) the underlying genomic 
region in each DNA methylation cluster. Clusters that share many of the same pathways 
are color coded the same in B and C and a summary of the pathways is given for each 
colored block in D. The unknown cluster did not have any significantly enriched 
pathways.  
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Figure 2: Correlation between methylation clusters and important expression programs 
in osteosarcoma. Correlations between methylation summary values for each DNA 
methylation cluster and previously described expression programs were calculated for 
canine (A, n=9) and human (B, n=16) samples where methylation and expression data 
was available. Correlations were also calculated for additional phenotypic data for 
canine samples.  Heatmaps indicate Pearson correlation values between each DNA 
methylation cluster and phenotype where red is strong positive correlation and blue is 
strong negative correlation. Color bars next to module names indicate pathway analysis 
results and are the same as in the previous figure. HG = human GCESS, CG = canine 
GCESS from Scott et al 20188. 
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Figure 3: Immune cell abundance across osteosarcoma samples. WGBS data from 
pure human immune cell populations and mesenchymal stromal cells were obtained 
from the BLUEPRINT project. DNA methylation values were summarized to match 
those measured in our osteosarcoma samples and used to build a model to distinguish 
between each cell type. This model was used with CIBERSORT to measure the 
absolute cell abundances for each cell type in all of our osteosarcoma samples. 
Heatmap color and value in each cell indicate the abundance of each cell type in each 
sample for canine (A) and human (B) osteosarcoma tumors. Absolute mode was used 
to generate cell abundance scores and are not relative so columns will not sum to 1 
(100%).  
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Figure 4: Correlation between methylation clusters and cell type abundances in OS. 
Correlations between methylation summary values for each DNA methylation cluster 
and CIBERSORT absolute cell type abundances were calculated for canine (A, n = 44) 
and human (B, n = 24) samples. Heatmaps indicate Pearson correlation values between 
DNA methylation cluster and cell type abundance where red is a strong positive 
correlation and blue is a strong negative correlation. Values in each cell are the Student 
asymptotic p-value of the given correlation based on the number of samples. Color bars 
next to module names indicate pathway analysis results and are the same as in the 
previous figures.  
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Supplementary Figure 1: Differentially methylated regions from pure cell populations. 
Whole genome bisulfite sequencing data for 12 cell types of interest was obtained from 
BLUEPRINT. WGBS data was summarized to the same regions used to identify 
methylation modules and all pairwise differentially methylation tests were performed 
between all 12 cell types. The top 100 differently methylated regions in all pairwise 
comparisons were combined to generate the signature genes needed for CIBERSORT. 
Heatmaps give methylation values for each region for each pure cell sample for all100 
top differentially methylated regions across all pairwise comparisons. High methylation 
values are red, low methylation values are blue.  
 
 
 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2020. ; https://doi.org/10.1101/2020.04.29.068155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.068155
http://creativecommons.org/licenses/by-nc/4.0/


 32 

 
Supplementary Figure 2: CIBERSORT is able to recreate known mixtures using custom 
signature genes. Whole genome bisulfite sequencing data for 12 cell types of interest 
was obtained from BLUEPRINT. WGBS data was summarized to the same regions 
used to identify methylation modules and all pairwise differentially methylation tests 
were performed between all 12 cell types. The top 100 differently methylated regions in 
all pairwise comparisons were combined to generate the signature genes needed for 
CIBERSORT. This signature gene file was able to 100% replicate the mixture of cell 
types that were generated computationally from the pure cell populations.  
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