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ABSTRACT 31 

While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, 32 

including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, 33 

in situ metagenomic water surveys face substantial challenges in cost and logistics. Here we present a simple, fast, 34 

cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore 35 

sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an 36 

example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a 37 

benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore 38 

metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with 39 

complementary physicochemical measurements. In a public health context, these data feature relevant sewage 40 

signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum 41 

for new environmental monitoring initiatives using portable devices. 42 

 43 

INTRODUCTION 44 

The global assurance of safe drinking water and basic sanitation has been recognised as a United Nations 45 

Millennium Development Goal (Bartram, Lewis, Lenton, & Wright, 2005), particularly in light of the pressures 46 

of rising urbanisation, agricultural intensification and climate change (Haddeland et al., 2014; Schewe et al., 47 

2014). Waterborne diseases represent a particular global threat, with zoonotic diseases such as typhoid fever, 48 

cholera or leptospirosis resulting in hundreds of thousands of deaths each year (Prüss-Üstün, Kay, Fewtrell, & 49 

Bartram, 2002; Prüss-Üstün et al., 2019). 50 

 51 

To control for risks of infection by waterborne diseases, microbial assessments can be conducted. While traditional 52 

microbial tests focus on the isolation of specific bacterial indicator organisms through selective media outgrowth 53 

in a diagnostic laboratory, this cultivation process is all too often time consuming, infrastructure-dependent and 54 

lacks behind in automatisation (Salazar & Sunagawa, 2017; Tringe & Rubin, 2005). Environmental 55 

metagenomics, the direct tracing of DNA from environmental samples, constitutes a less organism-tailored, data-56 

driven monitoring alternative. Such approaches have been demonstrated to provide robust measurements of 57 

relative taxonomic species composition as well as functional diversity in a variety of environmental contexts 58 

(Almeida et al., 2019; Bahram et al., 2018; Sunagawa et al., 2015), and overcome enrichment and resolution biases 59 
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common to culturing (Salazar & Sunagawa, 2017; Tringe & Rubin, 2005). However, they usually depend on 60 

expensive stationary equipment, specialised operational training and substantial time lags between fieldwork, 61 

sample preparation, raw data generation and access. Combined, there is an increasing demand for freshwater 62 

monitoring frameworks that unite the advantages of metagenomic workflows with high cost effectiveness, fast 63 

technology deployability and data transparency (Gardy & Loman, 2018). 64 

 65 

In recent years, these challenges have been revisited with the prospect of mobile DNA analysis. The main driver 66 

of this is the ‘portable’ MinION device from Oxford Nanopore Technologies (ONT), which enables real-time 67 

DNA sequencing using nanopores (Jain, Olsen, Paten, & Akeson, 2016). Nanopore read lengths can be 68 

comparably long, currently up to ~2*106 bases (Payne, Holmes, Rakyan, & Loose, 2018), which is enabled by 69 

continuous electrical sensing of sequential nucleotides along single DNA strands. In connection with a laptop for 70 

the translation of raw voltage signal into nucleotides, nanopore sequencing can be used to rapidly monitor long 71 

DNA sequences in remote locations. Although there are still common concerns about the technology's base-level 72 

accuracy, mobile MinION setups have already been transformative for real-time tracing and rapid data sharing 73 

during bacterial and viral pathogen outbreaks (Boykin et al., 2019; Chan et al., 2020; Faria et al., 2018; Faria et 74 

al., 2017; Kafetzopoulou et al., 2019; Quick et al., 2015; Quick et al., 2016). In the context of freshwater analysis, 75 

a MinION whole-genome shotgun sequencing protocol has recently been leveraged for a comparative study of 11 76 

rivers (Reddington et al., 2020). This report highlights key challenges which emerge in serial monitoring scenarios 77 

of a relatively low-input DNA substrate (freshwater), for example large sampling volumes (2-4 litres) and small 78 

shotgun fragments (mean <4 kbp). We reasoned that targeted DNA amplification may be a suitable means to 79 

bypass these bottlenecks and assess river microbiomes with nanopore sequencing. 80 

 81 

Here we report a simple, cost-effective workflow to assess and monitor microbial freshwater ecosystems with 82 

targeted nanopore DNA sequencing. Our benchmarking study involves the design and optimisation of essential 83 

experimental steps for multiplexed MinION usage in the context of local environments, together with an 84 

evaluation of computational methods for the bacterial classification of nanopore sequencing reads from 85 

metagenomic libraries. To showcase the resolution of sequencing-based aquatic monitoring in a spatiotemporal 86 

setting, we combine DNA analyses with physicochemical measurements of surface water samples collected at 87 

nine locations within a confined ~12 kilometre reach of the River Cam passing through the city of Cambridge 88 

(UK) in April, June and August 2018. 89 
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 90 

RESULTS 91 

Experimental design and computational workflows 92 

Using a bespoke workflow, nanopore full-length (V1-V9) 16S ribosomal RNA (rRNA) gene sequencing was 93 

performed on all location-barcoded freshwater samples at each of the three time points (Figure 1; Supplementary 94 

Table 1; Material and Methods). River isolates were multiplexed with negative controls (deionised water) and 95 

mock community controls composed of eight bacterial species in known mixture proportions. 96 

 97 

 98 

Figure 1: Freshwater microbiome study design and experimental setup. (a) Schematic map of Cambridge 99 
(UK), illustrating sampling locations (colour-coded) along the River Cam. Geographic coordinates of latitude and 100 
longitude are expressed as decimal fractions according to the global positioning system. (b) Laboratory workflow 101 
to monitor bacterial communities from freshwater samples using nanopore sequencing (Material and Methods). 102 
 103 

To obtain valid taxonomic assignments from freshwater sequencing profiles using nanopore sequencing, twelve 104 

different classification tools were compared through several performance metrics (Figure 2; Supplementary Figure 105 

1; Material and Methods). Our comparison included established classifiers such as RDP (Wang, Garrity, Tiedje, 106 

& Cole, 2007), Kraken (Wood & Salzberg, 2014) and Centrifuge (Kim, Song, Breitwieser, & Salzberg, 2016),  as 107 

well as more recently developed methods optimised for higher sequencing error rates such as IDTAXA (Murali, 108 

Bhargava, & Wright, 2018) and Minimap2 (Li, 2018). An Enterobacteriaceae overrepresentation was observed 109 

across all replicates and classification methods, pointing towards a consistent Escherichia coli amplification bias 110 

potentially caused by skewed taxonomic specificities of the selected 16S primer pair 27f and 1492r (Frank et al., 111 
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2008) (Figure 2b). Root mean square errors (RMSE) between observed and expected bacteria of the mock 112 

community differed slightly across all classifiers (Figure 2c). Robust quantifications were obtained by Minimap2 113 

alignments against the SILVA v.132 database (Quast et al., 2013), for which 99.68 % of classified reads aligned 114 

to the expected mock community taxa (mean sequencing accuracy 92.08 %). Minimap2 classifications reached 115 

the second lowest RMSE (excluding Enterobacteriaceae), and relative quantifications were highly consistent 116 

between mock community replicates. Benchmarking of the classification tools on one aquatic sample further 117 

confirmed Minimap2's reliable performance in a complex bacterial community (Figure 2d), although other tools 118 

such as MAPseq (Matias Rodrigues, Schmidt, Tackmann, & von Mering, 2017), SPINGO (Allard, Ryan, Jeffery, 119 

& Claesson, 2015), or IDTAXA also produced highly concordant results – despite variations in memory usage 120 

and runtime over several orders of magnitude (Supplementary Figure 1). 121 

 122 

 123 

Figure 2: Benchmarking of classification tools with nanopore full-length 16S sequences. (a) Schematic of 124 
mock community quantification performance testing. (b) Observed vs. expected read fraction of bacterial families 125 
present in 10,000 nanopore reads randomly drawn from mock community sequencing data. Example 126 
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representation of Minimap2 (kmer length 15) quantifications with (upper) and without (lower) Enterobacteriaceae 127 
(Material and Methods). (c) Mock community classification output summary for twelve classification tools tested 128 
against the same 10,000 reads. Root mean squared errors observed and expected bacterial read fractions are 129 
provided with (RMSE) and without Enterobacteriaceae (RMSE reduced). (d) Classification output summary for 130 
10,000 reads randomly drawn from an example freshwater sample (Material and Methods). ‘Overlapping’ 131 
fractions (red) represent agreements of a classification tool with the majority of tested methods on the same reads, 132 
while ‘non-overlapping’ fractions (light blue) represent disagreements. Dark green sets highlight rare taxon 133 
assignments not featured in any of the 10,000 majority classifications, while dark blue bars show unclassified read 134 
fractions. 135 
 136 

Diversity analysis and river core microbiome 137 

Using Minimap2 classifications within our bioinformatics consensus workflow (Supplementary Figure 2; Material 138 

and Methods), we then inspected sequencing profiles of three independent MinION runs for a total of 30 river 139 

DNA isolates and six controls. This yielded ~8.3 million sequences with exclusive barcode assignments (Figure 140 

3a; Supplementary Table 2). Overall, 82.9 % (n = 6,886,232) of raw reads could be taxonomically assigned to the 141 

family level (Figure 3b). To account for variations in sample sequencing depth, rarefaction with a cut-off at 37,000 142 

reads was applied to all samples. While preserving ~90 % of the original family level taxon richness (Mantel test, 143 

R = 0.814, p = 2.1*10-4; Supplementary Figure 3), this conservative thresholding resulted in the exclusion of 14 144 

samples, mostly from the June time point, for subsequent high-resolution analyses. The 16 remaining surface 145 

water samples revealed moderate levels of microbial heterogeneity (Figure 3b; Supplementary Figure 3): 146 

microbial family alpha diversity ranged between 0.46 (June-6) and 0.92 (April-7) (Simpson index), indicating 147 

low-level evenness with a few taxonomic families that account for the majority of the metagenomic signal. 148 

 149 
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 150 

Figure 3: Bacterial diversity of the River Cam. (a) Nanopore sequencing output summary. Values in the centre 151 
of the pie charts depict total numbers of classified nanopore sequences per time point. Percentages illustrate 152 
representational fractions of locations and control barcodes (negative control and mock community). (b) Read 153 
depth and bacterial classification summary. Upper bar plot shows the total number of reads, and the number of 154 
reads classified to any taxonomic level, to at least bacterial family level, to the ten most abundant bacterial families 155 
across all samples, or to other families. Rarefaction cut-off displayed at 37,000 reads (dashed line). Lower bar 156 
plot features fractions of the ten most abundant bacterial families across the samples with more than 100 reads. 157 
Colours in bars for samples with less than 37,000 reads are set to transparent. 158 
 159 

Hierarchical clustering of taxon profiles showed a dominant core microbiome across all aquatic samples (clusters 160 

C2 and C4, Figure 4a). The most common bacterial families observed were Burkholderiaceae (40.0 %), 161 

Spirosomaceae (17.7 %), and NS11-12 marine group (12.5 %), followed by Arcobacteraceae (4.8 %), 162 

Sphingomonadaceae (2.9 %) and Rhodobacteraceae (2.5 %) (Figure 4b). Members of these families are 163 

commonly associated with aquatic environments; for example, major fractions of Burkholderiaceae reads 164 

originated from genera such as Limnohabitans, Rhodoferax, Polynucleobacter or Aquabacterium (Supplementary 165 

Figure 4), which validates the suitability of this nanopore metagenomics workflow. Hierarchical clustering 166 
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additionally showed that two biological replicates collected at the same location and time point (April samples 167 

9.1 and 9.2), grouped with high concordance; this indicates that spatiotemporal trends are discernible even within 168 

a highly localised context. 169 

 170 
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 171 
Figure 4: Core microbiome of the River Cam. (a) Hierarchical clustering of bacterial family abundances across 172 
freshwater samples after rarefaction, together with the mock community control. Four major clusters of bacterial 173 
families occur, with two of these (C2 and C4) corresponding to the core microbiome of ubiquitously abundant 174 
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families, one (C3) corresponding to the main mock community families and one (C1) corresponding to the 175 
majority of rare accessory taxa. (b) Detailed river core microbiome. Violin plots summarise fractional 176 
representation of bacterial families from clusters C2 and C4 (log10 scale of relative abundance [%] across all 177 
samples, nApril = 7, nJune = 2, nAugust = 7), sorted by median total abundance. Vertical dashed lines depict 0.1 % 178 
proportion. 179 
 180 

Besides the dominant core microbiome, microbial profiles showed a marked arrangement of time dependence, 181 

with water samples from April grouping more distantly to those from June and August. Principal component 182 

analysis (PCA) illustrates the seasonal divergence among the three sampling months (Figure 5a; Supplementary 183 

Figure 5). The strongest differential abundances along the chronological axis of variation (PC3) derived from 184 

Carnobacteriaceae (Figure 5b), a trend also highlighted by taxon-specific log-normal mixture model 185 

decomposition between the two seasons (April vs. June/August; p < 0.01; Material and Methods). Indeed, 186 

members of this bacterial family have been primarily isolated from cold substrates (Lawson & Caldwell, 2014). 187 

 188 

 189 

Figure 5: Spatiotemporal axes of taxonomic diversity in the River Cam. (a) PCA of bacterial composition 190 
across locations, indicating community dissimilarities along the main time (PC3) and spatial (PC4) axes of 191 
variation; dots coloured according to time points. Kruskal-Wallis test on PC3 component contributions, with post-192 
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hoc Mann-Whitney U rank test (April vs. August): p = 2.2*10-3. (b) Contribution of individual bacterial families 193 
to the PCs in (a). Error bars represent the standard deviation of these families across four independent rarefactions. 194 
 195 

Hydrochemistry and seasonal profile of the River Cam 196 

While a seasonal difference in bacterial composition can be expected due to increasing water temperatures in the 197 

summer months, additional changes may have also been caused by alterations in river hydrochemistry and flow 198 

rate (Figure 6a; Supplementary Figure 6; Supplementary Table 1). To assess this effect in detail, we measured the 199 

pH and a range of major and trace cations in all river water samples using inductively coupled plasma-optical 200 

emission spectroscopy (ICP-OES), as well as major anions using ion chromatography (Material and Methods). 201 

As with the bacterial composition dynamics, we observed significant temporal variation in water chemistry, 202 

superimposed on a spatial gradient of generally increasing sodium and chloride concentrations along the river 203 

reach (Figure 6b-c). This spatially consistent effect is likely attributed to wastewater and agricultural discharge 204 

inputs in and around Cambridge city. A comparison of the major element chemistry in the River Cam transect 205 

with the world's 60 largest rivers further corroborates the likely impact of anthropogenic pollution in this fluvial 206 

ecosystem (Gaillardet, Dupré, Louvat, & Allègre, 1999) (Figure 6d; Material and Methods). 207 

 208 
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 209 

Figure 6: Geological and hydrochemical profile of the River Cam and its basin. (a) Outline of the Cam River 210 
catchment surrounding Cambridge (UK), and its corresponding lithology. Overlay of bedrock geology and 211 
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superficial deposits (British Geological Survey data: DiGMapGB-50, 1:50,000 scale) is shown as visualised by 212 
GeoIndex. Bedrock is mostly composed of subtypes of Cretaceous limestone (chalk), gault (clay, sand) and 213 
mudstone. Approximate sampling locations are colour-coded as in Figure 1. (b) Principal component analysis of 214 
measured pH and 13 inorganic solute concentrations of this study's 30 river surface water samples. PC1 (~49 % 215 
variance) displays a strong, continuous temporal shift in hydrochemistry. (c) Parameter contributions to PC1 in 216 
(b), highlighting a reduction in water hardness (Ca2+, Mg2+) and increase in pH towards the summer months (June 217 
and August). (d) Mixing diagram with Na+-normalised molar ratios, representing inorganic chemistry loads of the 218 
world's 60 largest rivers; open circles represent polluted rivers with total dissolved solid (TDS) concentrations 219 
>500 mg l-1. Cam River ratios are superimposed as ellipses from ten samples per month (50 % confidence, 220 
respectively). Separate data points for all samples from August are also shown and colour-coded, indicating the 221 
upstream-to-downstream trend of Na+ increase (also observed in April and June). End-member signatures show 222 
typical chemistry of small rivers draining these lithologies exclusively (carbonate, silicate and evaporite). 223 
 224 

Maps of potential bacterial pathogens at species level resolution 225 

Freshwater sources throughout the United Kingdom have been notorious for causing bacterial infections such as 226 

leptospirosis (Public Health England, 2016, 2019). In line with the physicochemical profile of the River Cam, we 227 

therefore next determined the spatiotemporal enrichment of potentially important functional bacterial taxa through 228 

nanopore sequencing. We retrieved 55 potentially pathogenic bacterial genera through integration of species 229 

known to affect human health (Jin et al., 2018; Wattam et al., 2017), and also 13 wastewater-associated bacterial 230 

genera (Wu et al., 2019) (Supplementary Table 3). Of these, 21 potentially pathogenic and eight wastewater-231 

associated genera were detected across all of the river samples (Figure 7; Material and Methods). Many of these 232 

signals were stronger downstream of urban sections, within the mooring zone for recreational and residential 233 

barges (location 7; Figure 1a) and in the vicinity of sewage outflow from a nearby wastewater treatment plant 234 

(location 8). The most prolific candidate pathogen genus observed was Arcobacter, which features multiple 235 

species implicated in acute gastrointestinal infections (Kayman et al., 2012). 236 

 237 

In general, much of the taxonomic variation across all samples was caused by sample April-7 (PC1 explains 27.6 238 

% of the overall variance in bacterial composition; Supplementary Figure 5a-b). Its profile was characterised by 239 

an unusual dominance of Caedibacteraceae, Halomonadaceae and others (Supplementary Figure 5c). Isolate 240 

April-8 also showed a highly distinct bacterial composition, with some families nearly exclusively occurring in 241 

this sample (outlier analysis; Material and Methods). The most predominant bacteria in this sewage pipe outflow 242 

are typically found in wastewater sludge or have been shown to contribute to nutrient pollution from effluents of 243 

wastewater plants, such as Haliangiaceae, Nitospiraceae, Rhodocyclaceae, and Saprospiracea (Nielsen, 244 

Saunders, Hansen, Larsen, & Nielsen, 2012; Wu et al., 2019) (Figure 7). 245 

 246 
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 247 

Figure 7: Potentially pathogenic and wastewater treatment related bacteria in the River Cam. Boxplots on 248 
the left show the abundance distribution across locations per bacterial genus. Error bars represent Q1 – 1.5*IQR 249 
(lower), and Q3 + 1.5*IQR (upper), respectively; Q1: first quartile, Q3: third quartile, IQR: interquartile range. 250 
The central table depicts the categorisation of subsets of genera as waterborne bacterial pathogens (WB), drinking 251 
water pathogens (DWP), potential drinking water pathogens (pDWP), human pathogens (HP) and core genera 252 
from wastewater treatment plants (WW) (dark grey: included, light grey: excluded) (Supplementary Table 3). The 253 
right-hand circle plot shows the distribution of bacterial genera across locations of the River Cam. Circle sizes 254 
represent overall read size fractions, while circle colours (sigma scheme) represent the standard deviation from 255 
the observed mean relative abundance within each genus. 256 
 257 

Using multiple sequence alignments between nanopore reads and pathogenic species references, we further 258 

resolved the phylogenies of three common potentially pathogenic genera occurring in our river samples, 259 

Legionella, Salmonella and Pseudomonas (Figure 8a-c; Material and Methods). While Legionella and Salmonella 260 

diversities presented negligible levels of known harmful species, a cluster of reads in downstream sections 261 

indicated a low abundance of the opportunistic, environmental pathogen Pseudomonas aeruginosa (Figure 8c). 262 

 263 

Along the course here investigated, we also found significant variations in relative abundances of the Leptospira 264 

genus, which was recently described to be enriched in wastewater effluents in Germany (Numberger et al., 2019) 265 

(Figure 8d). Indeed, the peak of River Cam Leptospira reads fell into an area of increased sewage influx (~0.1 % 266 

relative abundance; Figure 7). The Leptospira genus contains several potentially pathogenic species capable of 267 

causing life-threatening leptospirosis through waterborne infections,  however also features close-related 268 

saprophytic and ‘intermediate’ taxa (Vincent et al., 2019; Wynwood et al., 2014). To resolve its complex 269 
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phylogeny in the River Cam surface, we aligned Leptospira reads from all samples together with many reference 270 

sequences assigned to pre-classified pathogenic, saprophytic and other environmental Leptospira species (Figure 271 

8d; Supplementary Table 4; Material and Methods). Despite the presence of nanopore sequencing errors 272 

(Supplementary Figure 7) and correspondingly inflated read divergence, we could pinpoint spatial clusters and a 273 

distinctly higher similarity between our amplicons and saprophytic rather than pathogenic Leptospira species. 274 

These findings were subsequently validated by targeted, Leptospira species-specific qPCR (Supplementary Table 275 

5; Material and Methods), confirming that R9.4.1 nanopore sequencing quality is already high enough to yield 276 

indicative results for bacterial monitoring workflows at the species level. 277 

 278 

 279 
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Figure 8: High-resolution phylogenetic clustering of candidate pathogenic genera in the River Cam. 280 
Phylogenetic trees illustrating multiple sequence alignments of exemplary River Cam nanopore reads (black 281 
branches) classified as (a) Legionella, (b) Salmonella, (c) Pseudomonas, or (d) Leptospira, together with known 282 
reference species sequences ranging from pathogenic to saprophytic taxa within the same genus (coloured 283 
branches). Reference species sequences are numbered in clockwise orientation around the tree (Supplementary 284 
Table 4). Nanopore reads highlighted in light violet background display close clustering with pathogenic isolates 285 
of (b) Salmonella spp. and (c) Pseudomonas aeruginosa. 286 
 287 

DISCUSSION 288 

Using a cost-effective, easily adaptable and scalable framework based on nanopore sequencing, we provide the 289 

first spatiotemporal nanopore sequencing atlas of bacterial microbiota throughout the course of a river. Our results 290 

suggest that this workflow allows for robust assessments of both, the core microbiome of an example fluvial 291 

ecosystem and heterogeneous bacterial compositions in the context of supporting physical (temperature, flow rate) 292 

and hydrochemical (pH, inorganic solutes) parameters. We show that the technology's current sequencing 293 

accuracy of ~92 % allows for the designation of significant human pathogen community shifts along rural-to-294 

urban river transitions, as illustrated by downstream increases in the abundance of pathogen candidates. 295 

 296 

Our assessment of bioinformatics workflows for taxonomic classification highlights current challenges with error-297 

prone nanopore sequences. A number of recent reports feature bespoke 16S read classification schemes centred 298 

around a single software (Acharya et al., 2019; Benitez-Paez, Portune, & Sanz, 2016; Kerkhof, Dillon, Haggblom, 299 

& McGuinness, 2017; Nygaard, Tunsjo, Meisal, & Charnock, 2020), and others integrated outputs from two 300 

methods (Cusco, Catozzi, Vines, Sanchez, & Francino, 2018). Through systematic benchmarking of twelve 301 

different classification tools, using matched mock community and river water datasets with respect to the SILVA 302 

v.132 reference database, we lay open key differences in terms of these methods' read (mis)classification rates, 303 

consensus agreements, speed and memory performance metrics. For example, our results indicate that very fast 304 

implementations like Kraken 2 or Centrifuge may yield less accurate classifications than slightly slower and more 305 

memory-demanding frameworks such as Minimap2 (Figure 2; Supplementary Figure 1). 306 

 307 

Using Minimap2, 16.2 % of freshwater-derived sequencing reads were assigned to a bacterial species on average, 308 

thereby primarily encouraging automated analyses on the genus (65.6 % assigned) or family level (76.6 % 309 

assigned). As nanopore sequencing quality continues to increase through refined pore chemistries, basecalling 310 

algorithms and consensus sequencing workflows (Calus, Ijaz, & Pinto, 2018; Karst et al., 2020; Latorre-Perez, 311 

Villalba-Bermell, Pascual, & Vilanova, 2020; Rang, Kloosterman, & de Ridder, 2018; Santos, van Aerle, 312 
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Barrientos, & Martinez-Urtaza, 2020), future bacterial taxonomic classifications are likely to improve and advance 313 

opportunities for species discovery. 314 

 315 

We show that nanopore amplicon sequencing data can resolve the core microbiome of a freshwater body, as well 316 

as its temporal and spatial fluctuations. Common freshwater bacteria account for the vast majority of taxa in the 317 

River Cam; this includes Sphingomonadaceae, which had also been previously found at high abundance in source 318 

water from the same river (Rowe et al., 2016). Our findings suggest that the differential abundances of 319 

Carnobacteriaceae most strongly contribute to seasonal loadings in the River Cam. Carnobacteriaceae have been 320 

previously associated with a range of low temperature environments (Lawson & Caldwell, 2014), and we found 321 

these taxa to be more abundant in colder April samples (mean 11.3 °C, vs. 15.8 °C in June and 19.1 °C in August). 322 

This might help to further establish this family as an indicator for bacterial community shifts along with 323 

temperature fluctuations, albeit the influence of co-occurring hydrochemical trends such as Ca2+ and Mg2+ (water 324 

hardness), dissolved carbon or flow speed changes should also be noted (Figure 6b-d; Supplementary Figure 6). 325 

 326 

Most routine freshwater surveillance frameworks focus on semi-quantitative diagnostics of only a limited number 327 

of target taxa, such as pathogenic Salmonella, Legionella and faecal coliforms (Ramirez-Castillo et al., 2015; Tan 328 

et al., 2015), whereas metagenomics approaches can give a complete and detailed overview of environmental 329 

microbial diversity. Beyond nanopore shotgun-sequencing (Reddington et al., 2020), our proof-of-principle 330 

analysis highlights that the combination of targeted full-length 16S rRNA gene MinION sequencing is a suitable 331 

complement to hydrochemical controls in pinpointing relatively contaminated freshwater sites, some of which in 332 

case of the River Cam had been previously highlighted for their pathogen diversity and abundance of antimicrobial 333 

resistance genes (Rowe et al., 2017; Rowe et al., 2016). Nanopore amplicon sequencing has here allowed us to 334 

reliably distinguish closely related pathogenic and non-pathogenic bacterial species of the common Legionella, 335 

Salmonella, Pseudomonas and Leptospira genera. For Leptospira bacteria, which are of particular interest to 336 

communal stakeholders of the River Cam, we validated nanopore sequencing results through the gold standard 337 

qPCR workflow of Public Health England (Supplementary Table 5). In order to also study the potential viability 338 

and functional implications of sequenced pathogen candidates for public health, we encourage future studies to 339 

combine nanopore based freshwater metagenomics with targeted follow-up measurements of living pathogens by 340 

established microbiological approaches, including species-specific isolation and subsequent culturing. 341 

 342 
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A number of experimental intricacies should be addressed towards nanopore freshwater sequencing with our 343 

approach, mostly by scrutinising water DNA extraction yields, PCR biases and molar imbalances in barcode 344 

multiplexing (Figure 3a; Supplementary Figure 7). Similar to challenges with other organic substrates, microbial 345 

raw DNA extraction protocols require careful pre-testing and optimisation towards the physicochemical 346 

composition of a given freshwater source, in order to avoid both taxonomic enrichment biases and drop-offs in 347 

total yield. One example lies in the optimisation of the filtrate volume – in this study, membrane DNA extraction 348 

from 400 mL River Cam water was sufficient to yield valuable insights, while as much as 10,000 mL were used 349 

in a previous study of the same river (Rowe et al., 2016). Moreover, potentially dissolved inhibitory compounds 350 

for DNA extraction, sample cooling and storage chains should be thoroughly considered for larger and remote 351 

river monitoring projects. We witnessed that yield variations may bear negative effects on the molar balance of 352 

barcoded nanopore sequencing runs, as illustrated by elevated sample drop outs in June 2018, emphasising the 353 

need for highly accurate concentration measurement and scaling when dozens of input DNA sources are pooled. 354 

Our study further highlights that MinION (R9.4.1) flow cell throughput can fluctuate by an order of magnitude, 355 

altogether causing the exclusion of measurements upon application of a conservative read threshold. We reason 356 

that real-time selective nanopore sequencing could serve as a powerful means to improve barcode balances in 357 

context of multiplexed 16S analyses (Loose, Malla, & Stout, 2016), albeit such approaches are yet undergoing 358 

computational optimisations (Kovaka, Fan, Ni, Timp, & Schatz, 2020; Payne et al., 2020). 359 

 360 

Our results show that it would already be theoretically feasible to obtain meaningful river microbiota from >100 361 

barcoded samples on a single nanopore flow cell, thereby enabling water monitoring projects involving large 362 

collections at costs below £20 per sample (Supplementary Table 6). In line with this, ONT has already released 363 

several commercial 96-barcode multiplexing kits for PCR and non-PCR based applications, as well as the smaller 364 

‘Flongle’ flow cell with considerably reduced cost as compared to the traditional MinION model. On the other 365 

hand, shotgun nanopore sequencing approaches may bypass pitfalls associated with amplicon sequencing, namely 366 

taxon-specific primer biases (Frank et al., 2008), 16S rDNA copy number fluctuations between species (Darby, 367 

Todd, & Herman, 2013) or the omission of functionally relevant sequence elements. In combination with sampling 368 

protocol adjustments, shotgun nanopore sequencing could moreover be used for the serial monitoring of 369 

eukaryotic microorganisms and viruses in freshwater ecosystems (Reddington et al., 2020). 370 

 371 
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Since the commercial launch of the MinION in 2015, a wide set of microbial nanopore sequencing applications 372 

in the context of rRNA gene (Benitez-Paez et al., 2016; Cusco et al., 2018; Kerkhof et al., 2017; Nygaard et al., 373 

2020) and shotgun (Leggett et al., 2019; Nicholls, Quick, Tang, & Loman, 2019; Reddington et al., 2020; Stewart 374 

et al., 2019) metagenomics have attracted the interest of a growing user community. Two independent case studies 375 

have recently provided decomposition analyses of faecal bacterial pathogens in MinION libraries derived from 376 

river and spring waters in Montana, USA (Hamner et al., 2019) and Kathmandu Valley, Nepal (Acharya et al., 377 

2019). Although it is to be expected that short-read metagenomics technology continues to provide valuable 378 

environmental insights, as illustrated through global cataloguing efforts of ocean (Sunagawa et al., 2015) and 379 

wastewater (Wu et al., 2019) microbiomes, due to their large sizes and fixed costs these traditional platforms 380 

remain unfeasible for the monitoring of remote environments – especially in low-resource settings. We reason 381 

that the convenience of MinION handling and complementary development of portable DNA purification methods 382 

(Boykin et al., 2019; Gowers et al., 2019) will allow for such endeavours to become increasingly accessible to 383 

citizens and public health organisations around the world, ultimately democratising the opportunities and benefits 384 

of DNA sequencing. 385 

 386 

 387 

 388 

 389 

 390 
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MATERIAL AND METHODS 402 

1.1 Freshwater sampling 403 

We monitored nine distinct locations along a 11.62 km reach of the River Cam, featuring sites upstream, 404 

downstream and within the urban belt of the city of Cambridge, UK. Measurements were taken at three time 405 

points, in two-month intervals between April and August 2018 (Figure 1; Supplementary Table 1a). To warrant 406 

river base flow conditions and minimise rain-derived biases, a minimum dry weather time span of 48h was 407 

maintained prior to sampling (Fisher, Newton, Dila, & McLellan, 2015). One litre of surface water was collected 408 

in autoclaved DURAN bottles (Thermo Fisher Scientific, Waltham, MA, USA), and cooled to 4 °C within three 409 

hours. Two bottles of water were collected consecutively for each time point, serving as biological replicates of 410 

location 9 (samples 9.1 and 9.2). 411 

 412 

1.2 Physical and chemical metadata 413 

We assessed various chemical, geological and physical properties of the River Cam (Figure 6; Supplementary 414 

Figure 6; Supplementary Table 1b-c). 415 

 416 

In situ water temperature was measured immediately after sampling. To this end, we linked a DS18B20 digital 417 

temperature sensor to a portable custom-built, grid mounted Arduino nano v3.0 system. The pH was later recorded 418 

under temperature-controlled laboratory conditions, using a pH edge electrode (HI-11311, Hanna Instruments, 419 

Woodsocket, RI, USA). 420 

 421 

To assess the dissolved ion concentrations in all collected water samples, we aerated the samples for 30 seconds 422 

and filtered them individually through a 0.22 µM pore-sized Millex-GP polyethersulfone syringe filter 423 

(MilliporeSigma, Burlington, MA, USA). Samples were then acidified to pH ~2, by adding 20 µL of 7M distilled 424 

HNO3 per 3 mL sample. Inductively coupled plasma-optical emission spectroscopy (ICP-OES, Agilent 5100 425 

SVDV; Agilent Technologies, Santa Clara, CA, USA) was used to analyse the dissolved cations Na+, K+, Ca2+, 426 

Mg2+, Ba2+, Li+, as well as Si and SO42- (as total S) (Supplementary Table 1b). International water reference 427 

materials (SLRS-5 and SPS-SW2) were interspersed with the samples, reproducing certified values within 10 % 428 

for all analysed elements. Chloride concentrations were separately measured on 1 mL of non-acidified aliquots of 429 

the same samples, using a Dionex ICS-3000 ion chromatograph (Thermo Fisher Scientific, Waltham, MA, USA) 430 

(Supplementary Table 1b). Long-term repeat measurements of a USGS natural river water standard T-143 431 
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indicated precision of more than 4 % for Cl-. However, the high Cl- concentrations of the samples in this study 432 

were not fully bracketed by the calibration curve and we therefore assigned a more conservative uncertainty of 10 433 

% to Cl- concentrations. 434 

 435 

High calcium and magnesium concentrations were recorded across all samples, in line with hard groundwater and 436 

natural weathering of the Cretaceous limestone bedrock underlying the river catchment (Figure 6a). There are no 437 

known evaporite salt deposits in the river catchment, and therefore the high dissolved Na+, K+ and Cl- 438 

concentrations in the River Cam are likely derived from anthropogenic inputs (Rose, 2007) (Figure 6c-d). We 439 

calculated bicarbonate concentrations through a charge balance equation (concentrations in mol/L): 440 

conc (HCO3-) = conc (Li+) + conc (Na+) + conc (K+) + 2*conc (Mg2+) + 2*conc (Ca2+) - conc (Cl-) - 2*conc (S2-) 441 

 442 

The total dissolved solid (TDS) concentration across the 30 freshwater samples had a mean of 458 mg/L (range 443 

325 - 605 mg/L) which is relatively high compared to most rivers, due to 1.) substantial solute load in the Chalk 444 

groundwater (particularly Ca2+, Mg2+, and HCO3-) and 2.) likely anthropogenic contamination (particularly Na+, 445 

Cl-, and SO42-). The TDS range and the major ion signature of the River Cam is similar to other anthropogenically 446 

heavily-impacted rivers (Gaillardet et al., 1999), exhibiting enrichment in Na+ (Figure 6d). 447 

 448 

Overall, ion profiles clustered substantially between the three time points, indicating characteristic temporal shifts 449 

in water chemistry. PC1 of a PCA on the solute concentrations [µmol/L] shows a strong time effect, separating 450 

spring (April) from summer (June, August) samples (Figure 6b). We highlighted the ten most important features 451 

(i.e., features with the largest weights) and their contributions to PC1 (Figure 6c). 452 

 453 

We integrated sensor data sets on mean daily air temperature, sunshine hours and total rainfall from a public, 454 

Cambridge-based weather station (Supplementary Figure 6a-c; Supplementary Table 1c). Similarly, mean gauged 455 

daily Cam water discharge [m3s-1] of the River Cam was retrieved through publicly available records from three 456 

upstream gauging stations connected to the UK National River Flow Archive (https://nrfa.ceh.ac.uk/), together 457 

with historic measurements from 1968 onwards (Supplementary Figure 6d) 458 

 459 
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1.3 DNA extraction 460 

Within 24 hours of sampling, 400 mL of refrigerated freshwater from each site was filtered through an individual 461 

0.22 µm pore-sized nitrocellulose filter (MilliporeSigma, Burlington, MA, USA) placed on a Nalgene polysulfone 462 

bottle top filtration holder (Thermo Fisher Scientific) at -30 mbar vacuum pressure. Additionally, 400 mL de-463 

ionised (DI) water was also filtered. We then performed DNA extractions with a modified DNeasy PowerWater 464 

protocol (Qiagen, Hilden, Germany). Briefly, filters were cut into small slices with sterile scissors and transferred 465 

to 2 mL Eppendorf tubes containing lysis beads. Homogenization buffer PW1 was added, and the tubes subjected 466 

to ten minutes of vigorous shaking at 30 Hz in a TissueLyser II machine (Qiagen). After subsequent DNA binding 467 

and washing steps in accordance with the manufacturer's protocol, elution was done in 50 µL EB. We used Qubit 468 

dsDNA HS Assay (Thermo Fisher Scientific) to determine water DNA isolate concentrations (Supplementary 469 

Table 2a). 470 

 471 

1.4 Bacterial full-length 16S rDNA sequence amplification 472 

DNA extracts from each sampling batch and DI water control were separately amplified with V1-V9 full-length 473 

(~1.45 kbp) 16S rRNA gene primers, and respectively multiplexed with an additional sample with a defined 474 

bacterial mixture composition of eight species (Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica, 475 

Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Listeria monocytogenes, Bacillus 476 

subtilis; D6305, Zymo Research, Irvine, CA, USA) (Figure 2), which was previously assessed using nanopore 477 

shotgun metagenomics (Nicholls et al., 2019). We used common primer binding sequences 27f and 1492r, both 478 

coupled to unique 24 bp barcodes and a nanopore motor protein tether sequence (Supplementary Table 7). Full-479 

length 16S rDNA PCRs were performed with 30.8 µL DI water, 6.0 µL barcoded primer pair (10 µM), 5.0 µL 480 

PCR-buffer with MgCl2 (10x), 5.0 µL dNTP mix (10x), 3.0 µL freshwater DNA extract, and 0.2 µL Taq (Qiagen) 481 

under the following conditions: 482 

94 °C - 2 minutes 483 

94 °C - 30 seconds, 60 °C - 30 seconds, 72 °C - 45 seconds (35 cycles) 484 

72 °C - 5 minutes 485 

 486 

1.5 Nanopore library preparation 487 

Amplicons were purified from reaction mixes with a QIAquick purification kit (Qiagen). Two rounds of alcoholic 488 

washing and two additional minutes of drying at room temperature were then performed, prior to elution in 30 µL 489 
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10 mM Tris-HCl pH 8.0 with 50 mM NaCl. After concentration measurements with Qubit dsDNA HS, twelve 490 

barcoded extracts of a given batch were pooled in equimolar ratios, to approximately 300 ng DNA total 491 

(Supplementary Table S2b). We used KAPA Pure Beads (KAPA Biosystems, Wilmington, MA, USA) to 492 

concentrate full-length 16S rDNA products in 21 µL DI water. Multiplexed nanopore ligation sequencing libraries 493 

were then made by following the SQK-LSK109 protocol (Oxford Nanopore Technologies, Oxford, UK). 494 

  495 

1.6 Nanopore sequencing 496 

R9.4.1 MinION flow cells (Oxford Nanopore Technologies) were loaded with 75 µl of ligation library. The 497 

MinION instrument was run for approximately 48 hours, until no further sequencing reads could be collected. 498 

Fast5 files were basecalled using Guppy (version 3.15) and output DNA sequence reads with Q>7 were saved as 499 

fastq files. Various output metrics per library and barcode are summarised in Supplementary Table 2c. 500 

 501 

1.7 Leptospira validation 502 

In collaboration with Public Health England, raw water DNA isolates of the River Cam from each location and 503 

time point were subjected to the UK reference service for leptospiral testing (Supplementary Table 5). This test is 504 

based on quantitative real-time PCR (qPCR) of 16S rDNA and LipL32, implemented as a TaqMan assay for the 505 

detection and differentiation of pathogenic and non-pathogenic Leptospira spp. from human serum. Briefly, the 506 

assay consists of a two-component PCR; the first component is a duplex assay that targets the gene encoding the 507 

outer membrane lipoprotein LipL32, which is reported to be strongly associated with the pathogenic phenotype. 508 

The second reaction is a triplex assay targeting a well conserved region within the 16S rRNA gene (rrn) in 509 

Leptospira spp. Three different genomic variations correlate with pathogenic (PATH probe), intermediate (i.e., 510 

those with uncertain pathogenicity in humans; INTER probe) and non-pathogenic Leptospira spp. (ENVIRO 511 

probe), respectively. 512 

 513 

2. DNA sequence processing workflow 514 

The described data processing and read classification steps were implemented using the Snakemake workflow 515 

management system (Köster & Rahmann, 2012) and are available on Github - together with all necessary 516 

downstream analysis scripts to reproduce the results of this manuscript (https://github.com/d-j-k/puntseq). 517 

 518 
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2.1 Read data processing 519 

Reads were demultiplexed and adapters trimmed using Porechop (version 0.2.4, 520 

https://github.com/rrwick/porechop). The only non-default parameter set was '--check_reads' (to 50,000), to 521 

increase the subset of reads to search for adapter sets. Next, we removed all reads shorter than 1.4 kbp and longer 522 

than 1.6 kbp with Nanofilt (version 2.5.0, https://github.com/wdecoster/nanofilt). 523 

 524 

We assessed read statistics including quality scores and read lengths using NanoStat (version 1.1.2, 525 

https://github.com/wdecoster/nanostat), and used Pistis (https://github.com/mbhall88/pistis) to create quality 526 

control plots. This allowed us to assess GC content and Phred quality score distributions, which appeared 527 

consistent across and within our reads. Overall, we obtained 2,080,266 reads for April, 737,164 for June, and 528 

5,491,510 for August, with a mean read quality of 10.0 (Supplementary Table 2c). 529 

 530 

2.2 Benchmarking of bacterial taxonomic classifiers using nanopore reads 531 

We used twelve different computational tools for bacterial full-length 16S rDNA sequencing read classification 532 

(section 2.2.1).: 533 

Tool Version Commands 

BLASTN (Altschul, 
Gish, Miller, Myers, 
& Lipman, 1990; 
Camacho et al., 2009) 

v.2.9.0+ blastn -task "blastn" -db silva.fa -query Cam16S.fa -out 
Cam16S.out -outfmt '6' 

Centrifuge (Kim et 
al., 2016) 

v.1.0.4 centrifuge -x centrifuge_silva -U Cam16S.fq -S Cam16S.out --
report-file Cam16S.report 

IDTAXA (Murali et 
al., 2018) 

Implemented in R 
DECIPHER 
v.2.10.2 (Wright, 
2016) 

load(“SILVA_SSU_r132_March2018.RData”) 
IdTaxa(Cam16S.fa, trainingSet, strand = "both", threshold = 0) 

Kraken 2 (Wood, Lu, 
& Langmead, 2019; 
Wood & Salzberg, 
2014) 

v.2.0.7 kraken2 --db kraken2_silva --output Cam16S.out --report 
Cam16S.report Cam16S.fa 

MAPseq (Matias 
Rodrigues et al., 
2017) 

v.1.2.3 mapseq Cam16S.fa silva.fa > Cam16S.out 

MegaBLAST 
(Camacho et al., 
2009; Morgulis et al., 
2008) 

v.2.9.0+ blastn -task "megablast" -db silva.fa -query Cam16S.fa -out 
Cam16S.out -outfmt '6' 
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Minimap2 (Li, 2018) v.2.13-r852-dirty minimap2 -ax map-ont -L silva.mmi Cam16S.fa > 
Cam16S.sam 

Mothur (Schloss et 
al., 2009) 

v.1.43.0 align.seqs(candidate=Cam16S.fa, 
template=mothur.silva.nr_v132.align, processors=1, ksize=6, 
align=needleman) 

QIIME 2 (Bolyen et 
al., 2019) 

v.2019.7 qiime feature-classifier classify-consensus-blast --i-query 
Cam16S.qza --i-reference-reads silva.qza --i-reference-
taxonomy silva_tax.qza --o-classification Cam16S.out 

RDP (Wang et al., 
2007) 

Implemented in R 
DADA2 v.1.12.1 
(Callahan et al., 
2016) 

assignTaxonomy(seqs = Cam16S.fa, refFasta = 
silva_nr_v132_train_set.fa.gz", tryRC = T, 
outputBootstraps=T,minBoot=0) 

SINTAX (R.C. 
Edgar, 2016) 

Implemented in 
VSEARCH 
v.2.13.3 (Rognes, 
Flouri, Nichols, 
Quince, & Mahe, 
2016) 

vsearch -sintax Cam16S.fa -db silva.udb  
-tabbedout Cam16S.out -strand both -sintax_cutoff 0.5 

SPINGO (Allard et 
al., 2015) 

v.1.3 spingo -d silva.fa -k 8 -a -i Cam16S.fa > Cam16S.out 

 534 

2.2.1 Datasets 535 

We used nanopore sequencing data from our mock community and freshwater amplicons for benchmarking the 536 

classification tools. We therefore subsampled (a) 10,000 reads from each of the three mock community sequencing 537 

replicates (section 1.4), and (b) 10,000 reads from an aquatic sample (April-8; three random draws served as 538 

replicates). We then used the above twelve classification tools to classify these reads against the same database, 539 

SILVA v.132 (Quast et al., 2013) (Figure 2; Supplementary Figure 1). 540 

 541 

2.2.2 Comparison of mock community classifications 542 

For the mock community classification benchmark, we assessed the number of unclassified reads, misclassified 543 

reads (i.e. sequences not assigned to any of the seven bacterial families), and the root mean squared error (RMSE) 544 

between observed and expected taxon abundance of the seven bacterial families. Following the detection of a 545 

strong bias towards the Enterobacteriaceae family across all classification tools, we also analysed RMSE values 546 

after exclusion of this family (Figure 2b-c). 547 

 548 
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2.2.3 Comparison of river community classifications 549 

For the aquatic sample, the number of unclassified reads were counted prior to monitoring the performance of 550 

each classification tool in comparison with a consensus classification, which we defined as majority vote across 551 

classifications from all computational workflows. We observed stable results across all three draws of 10,000 552 

reads from the same dataset (data not shown), indicating a robust representation of the performance of each 553 

classifier. 554 

 555 

2.2.4 Memory and runtime measurements 556 

To systematically assess the computational requirements and performance metrics of the twelve classification 557 

methods, 15 random subsamples of the same aquatic sample (April-8) were drawn. This test set involved 5 x 100, 558 

5 x 1,000 and 5 x 10,000 reads, each of which were independently classified by the different software frameworks 559 

(commands summarised in section 2.2).  CPU time, average and peak memory metrics were recorded on a single 560 

computing node (Supplementary Figure 1). Due to their reusability, tool-specific reference index file generations 561 

were omitted from these measurements. 562 

 563 

2.2.5 Overall classification benchmark 564 

Minimap2 performed second best at classifying the mock community (lowest RMSE), while also delivering 565 

freshwater bacterial profiles in line with the majority vote of other classification tools (Figure 2), in addition to 566 

providing comparably rapid speed (Supplementary Figure 1). To classify each of this study's full MinION data 567 

sets within a reasonable memory limit of 50 Gb, it was necessary to reduce the number of threads to 1, set the 568 

kmer size ('-k') to 15 and the minibatch size ('-K') to 25M. 569 

 570 

2.3 Bacterial analyses 571 

 572 

2.3.1 General workflow 573 

After applying Minimap2 to the processed reads as explained above (section 2.2.5), we processed the resulting 574 

SAM files by firstly excluding all header rows starting with the '@' sign and then transforming the sets of read 575 

IDs, SILVA IDs, and alignment scores to tsv files of unique read-bacteria assignments either on the bacterial 576 

genus or family level. All reads that could not be assigned to the genus or family level were discarded, respectively. 577 

In the case of a read assignment to multiple taxa with the same alignment score, we determined the lowest 578 
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taxonomic level in which these multiple taxa would be included. If this level was above the genus or family level, 579 

respectively, we discarded the read. 580 

 581 

2.3.2 Estimating the level of misclassifications and DNA contaminants 582 

Across three independent sequencing replicates of the same linear bacterial community standard (section 2.2.1), 583 

we found that the fraction of reads assigned to unexpected genus level taxa lies at ~1 % when using the Minimap2 584 

classifier and the SILVA v.132 database. 585 

 586 

Raw quantified DNA, PCR amplicons and sequencing read counts were considerably less abundant in DI water 587 

negative controls, as compared to actual freshwater specimens (Supplementary Table 2a). Only the negative 588 

control of the most prolific flow cell run (August 2018) passed the relatively high confidence threshold of 37,000 589 

sequencing reads on the family level (Figure 3b; Supplementary Figure 3; section 2.4). Further inspection of these 590 

negative control reads revealed that their metagenomic profile closely mimicked the taxonomic classification 591 

profiles of river samples within the same sequencing batch, in addition to low-level kit contaminants like 592 

alphaproteobacteria of the Bradyrhizobium and Methylobacterium genus (Salter et al., 2014) which were 593 

otherwise nearly completely absent in any of the true aquatic isolates (Supplementary Table 8). 594 

 595 

2.3.3 Determination of nanopore sequencing accuracy 596 

Minimap2 alignments against mock community taxa were used to determine the mean read-wise nanopore 597 

sequencing accuracy for this study (92.08 %), as determined by the formula:  598 

accuracy = 1 - (read mismatch length ÷ read alignment length) 599 

 600 

These values were calculated for each of all eight species against each sequencing replicate, using the samtools 601 

(v.1.3.1) stats function (Li et al., 2009). 602 

 603 

2.4 Rarefaction and high-confidence samples 604 

Sample-specific rarefaction curves were generated by successive subsampling of sequencing reads classified by 605 

Minimap2 against the SILVA v.132 database (section 2.2.1). For broader comparative data investigations, we 606 

chose to only retain samples that passed a conservative minimum threshold of 37,000 reads. Family and genus 607 

level species richness was hence kept at ~90 % of the original values, in accordance with stable evenness profiles 608 
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across a series of 100 bootstrap replicates (Supplementary Figure 3; section 2.4.1). Although we mainly present a 609 

single example rarefied dataset within this manuscript, we repeated each analysis, including PCAs, hierarchical 610 

clustering and Mantel tests, based on additional rarefied datasets to assess the stability of all results. 611 

 612 

2.4.1 Mantel test 613 

We performed Mantel tests to compare rarefied datasets with the full dataset. We therefore compared the 614 

Euclidean distance based on Z-standardised bacterial genera between all samples with more than 37,000 reads 615 

(two-sided test, 99,999 permutations). This resulted in a Pearson correlation of 0.814 (p = 2.1*10-4) for our main 616 

rarefied dataset (results of the Mantel test applied to the remaining three other rarefied datasets: R = 0.819 and p 617 

= 1.0*10-4, R = 0.828 and p = 8.0*10-5, R = 0.815 and p = 1.4*10-4, respectively). Results of the Mantel tests 618 

applied to the genus level bacterial classifications were also similar for all four subsampled datasets (R = 0.847 619 

and p = 1.0*10-5, R = 0.863 and p = 1.0*10-5, R = 0.851 and p = 1*10-5, R = 0.856 and p = 1.0*10-5).  620 

 621 

2.5 Meta-level bacterial community analyses 622 

All classification assessment steps and summary statistics were performed in R or Python (https://github.com/d-623 

j-k/puntseq). We used the Python package scikit-bio for the calculation of the Simpson index and the Shannon's 624 

diversity as well as equitability index. 625 

 626 

2.6 Hierarchical clustering, principal component, mixture model and outlier analyses 627 

Rarefied read count data was subjected to a log10(x+1) transformation before hierarchical clustering using the 628 

complete linkage method. Resulting family and genus dendrograms were separated into four groups (clusters C1 629 

- C4), while sample trees were split into two groups (separating mock communities from aquatic samples). 630 

 631 

For PCA analyses, rarefied read count data was subjected to log10(x+1) and Z-transformations. Negative control 632 

samples were removed. Mock community samples were initially removed to then be re-aligned to the eigenspace 633 

determined by the aquatic samples. We provide PCA visualisations of the four main principal components (PCs 634 

explaining >5 % variance, respectively). For each of these relevant PCs, we further highlight the ten most 635 

important features (i.e. taxa with largest weights) and their contributions to the PCs in barplots. To assess statistical 636 

differences in the PC3 component contribution between the three seasonal time points, a Kruskal-Wallis H-test 637 
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with corresponding aquatic sample groupings was applied, followed by post-hoc comparisons using two-sided 638 

Mann-Whitney U rank tests. 639 

 640 

We fit a zero-inflated log-normal mixture model of each bacterial taxon against the different time points using the 641 

fitFeatureModel function embedded in the R package metagenomeSeq (Paulson, Stine, Bravo, & Pop, 2013). As 642 

only three independent variables can be accounted for by the model (including the intercept), we chose to 643 

investigate the difference between the spring (April) and summer (June, August) months. Seven significant 644 

bacterial taxa were inspected below a nominal P-value threshold of 0.05: Cyanobiaceae (1.5*10-5), Listeriaceae 645 

(2.0*10-4), Azospirillaceae (6.8*10-4), Cryomorphaceae (1.3*10-3), Carnobacteriaceae (4.3*10-3), 646 

Microbacteriaceae (0.014), Armatimonadaceae (0.046). 647 

 648 

To determine location and time point-specific bacterial overabundance (outlier analysis), we identified taxa which 649 

were 1.) tagged by more than 500 reads and 2.) at least five times more abundant in any single sample than in the 650 

mean of all samples combined. 651 

 652 

2.7 Identification of the core microbiome  653 

The core microbiome was calculated based on rarefied read count data from four independent downsampling sets 654 

on either family or genus level (Figure 4; Supplementary Figure 4). It represents the most abundant taxa that 655 

showed relatively consistent abundance profiles between samples, based on hierarchical clustering analysis on 656 

one independent rarefaction (Figure 4a, C2 and C4; Supplementary Figure 4a, C3 and C2) and rarefactions with 657 

a median abundance of > 0.1 %. For the genus level, only those with median abundance of > 0.2 % are displayed. 658 

 659 

2.8 Pathogen candidate assessments 660 

A list of 55 known bacterial pathogenic genera, spanning 37 families, was compiled for targeted sequence testing. 661 

This was done through the manual integration of curated databases and online sources, foremost using PATRIC 662 

(Wattam et al., 2017) and data on known waterborne pathogens (Jin et al., 2018) (Supplementary Table 3a). 663 

Additionally, we integrated known genera from a large wastewater reference collection (Wu et al., 2019) 664 

(Supplementary Table 3b). 665 

 666 
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To identify if DNA reads assigned to Leptospiraceae were more similar to sequence reads of previously identified 667 

pathogenic, intermediate or environmental Leptospira species, we built a neighbour-joining tree of Leptospiraceae 668 

reads classified in our samples data, together with sequences from reference databases (Figure 8d; species names 669 

and NCBI accession numbers in clockwise rotation around the tree in Supplementary Table 4d). We matched the 670 

orientation of our reads, and then aligned them with 68 Leptospira reference sequences and the Leptonema illini 671 

reference sequence (DSM 21528 strain 3055) as an outgroup. We then built a neighbour-joining tree using Muscle 672 

v.3.8.31 (R. C. Edgar, 2004), excluding three reads in the ‘Other Environmental’ clade that had extreme branch 673 

lengths >0.2. The reference sequences were annotated as pathogenic and saprophytic clades P1, P2, S1, S2 as 674 

recently described (Vincent et al., 2019). Additional published river water Leptospira that did not fall within these 675 

clades were included as ‘Other Environmental’ (Ganoza et al., 2006). Similarly, we constructed phylogenies for 676 

the Legionella, Salmonella and Pseudomonas genus, using established full-length 16S reference species sequences 677 

from NCBI (Figure 8a-c; Supplementary Table 4a-c). 678 

 679 

3. Total project cost 680 

This study was designed to enable freshwater microbiome monitoring in budget-constrained research 681 

environments. Although we had access to basic infrastructure such as pipettes, a PCR and TissueLyser II machine, 682 

as well a high-performance laptop, we wish to highlight that the total sequencing consumable costs were held 683 

below £4,000 (Supplementary Table 6a). Individual processing and sequencing costs ranged at ~£75 per sample 684 

(Supplementary Table 6b). With the current MinION flow cell price of £720, we estimate that per-sample costs 685 

could be further reduced to as low as ~£20 when barcoding and pooling ~100 samples in the same sequencing run 686 

(Supplementary Table 6c). Assuming near-equimolar amplicon pooling, flow cells with an output of ~5,000,000 687 

reads can yield well over 37,000 sequences per sample and thereby surpass this conservative threshold applied 688 

here for comparative river microbiota analyses. 689 

 690 

 691 

 692 

 693 

 694 

 695 
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k/puntseq/tree/master/analysis/). We further provide complete and rarefied SILVA 132 classifications from runs 744 

of Minimap2 (https://github.com/d-j-k/puntseq/tree/master/minimap2_classifications), which can be directly used 745 

as an input for reproducible downstream analyses. 746 
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SUPPLEMENTARY FIGURES 756 

 757 

Supplementary Figure 1: Benchmarking of twelve taxonomic classifiers with nanopore full-length 16S 758 
sequences. (a) Top 10 represented bacterial taxon families across all methods, based on the 10,000 aquatic reads 759 
used in Figure 2d. (b) Comparison of computational performances with respect to (upper) runtime and average 760 
memory (lower) usage for the classification of 5 x 100, 5 x 1,000 and 5 x 10,000 random read draws of the same 761 
sample. BLASTN based classifications of 10,000 read sets are omitted, as their runtimes exceeded 14 days (>106 762 
seconds). 763 
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 764 
Supplementary Figure 2: Bioinformatics consensus workflow. Essential data processing steps, from nanopore 765 
sequencing to spatiotemporal bacterial composition analysis (Material and Methods). After full-length 16S rDNA 766 
sequencing with the MinION (R9.4.1 flow cell), local basecalling of the raw fast5 files was performed using 767 
Guppy (Wick, Judd, & Holt, 2019). Output fastq files were filtered for length and quality (Material and Methods), 768 
and reads assigned to their location barcode using Porechop. We then used Minimap2 (k = 15) and the SILVA 769 
v.132 database for taxonomic classifications. Rarefaction reduced each sample to the same number of reads 770 
(37,000), allowing for a robust comparison of bacterial composition across samples in various analyses. 771 
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 772 

Supplementary Figure 3: Impact of rarefaction on diversity estimation. (a) Example rarefaction curve for 773 
bacterial family classifications of the 'April-1' sample. The chosen cut-off preserves most (~90 %) of the original 774 
family taxon richness (vertical line). (b) Difference between original and rarefied family richness at 37,000 reads 775 
across all freshwater sequencing runs with quantitative sequencing outputs above the chosen cut-off. Boxplots 776 
feature 100 independent rarefactions per sample. Error bars represent Q1 – 1.5*IQR (lower), and Q3 + 1.5*IQR 777 
(upper), respectively. (c) Diversity visualisation of the ten most abundant bacterial families across all samples 778 
with sequencing outputs >37,000 reads, through 400 ‘unordered bubbles’. Taxonomic proportions and colours are 779 
in accordance with Figure 3b. Shannon (H) and Simpson (D) indices for all samples indicate marginal differences 780 
between pairs of original and rarefied sets. 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 
 789 
 790 
 791 
 792 
 793 
 794 
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 796 
Supplementary Figure 4: River Cam core microbiome analysis on the bacterial genus level. (a) Hierarchical 797 
clustering of bacterial genera abundances across freshwater samples after rarefaction, together with the mock 798 
community control. In similarity to the family analysis displayed in Figure 4, bacterial genera are clustered into 4 799 
groups. Two of these (C3 and partially C2) correspond to the core microbiome of ubiquitously abundant genera, 800 
one (C4) corresponding to the main mock community genera and one (C1) corresponding to the majority of rare 801 
accessory taxa. (b) Dominant river core microbiome on the genus level. Violin plots (log10 scale of relative 802 
abundance [%] across all samples, nApril = 7, nJune = 2, nAugust = 6) summarise fractional representation of the top 27 803 
bacterial genera and corresponding families from clusters C2 and C3, sorted by median total abundance. Vertical 804 
dashed line depicts 0.1 % proportion. Out of the top 16 core families (Figure 4b), only the NS11-12 marine group 805 
family was found not to be represented on the genus level; NS11-12 marine group genera are mainly composed 806 
of uncultured bacteria, which here could not be classified at higher resolution. 807 
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 808 
Supplementary Figure 5: Principal component analysis of river bacterial family compositions. (a-b) PCA 809 
with two independent rarefaction sets to 37,000 reads in all freshwater sequencing samples. Numbers and coloured 810 
dots indicate locations for each time point. The first and second principal components (PC1 and PC2, combined 811 
variance: ~41 %) robustly capture outlier samples 'April-7' along PC1 and 'April-2', 'August-4' and 'April-8' along 812 
PC2. (c-d) Fractional loads of the ten bacterial families most strongly contributing to changes along PC1 (c) and 813 
along PC2 (d). Error bars represent standard deviation of these families to the respective PC across four 814 
independent rarefactions. Subsequent principal components (PC3 and PC4) are less outlier-driven and depict 815 
spatial and temporal metagenomic trends within the River Cam. 816 
 817 

 818 
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 819 

Supplementary Figure 6: Cambridge weather and River Cam flow rate. (a) Daily air temperature [°C], (b) 820 
daily sunshine [hours], and (c) daily rainfall [mm] of Cambridge in 2018 (black trend line) vs. 1998-2017 (blue 821 
background trend lines). (d) Cam River gauged daily flow [m3s-1] in 2018 (black trend line) vs. 1968-2017 (blue 822 
background trend lines). Data was compiled from public repositories 823 
https://www.cl.cam.ac.uk/research/dtg/weather/ and https://nrfa.ceh.ac.uk/. Gauged daily flow measurements at 824 
Jesus Lock, Cambridge (between sampling locations 5 and 6; NRFA #33016) were discontinued in 1983. Yet, 825 
contemporary flow rates can be modelled with high accuracy (Pearson's R = 0.9, R2 = 0.8) through linear data 826 
integration of three upstream stations already in operation since before 1983: Rhee at Wimpole (NRFA #33027, 827 
70.2 % model weight), Granta at Stapleford (NRFA #33053, 19.6 % model weight) and Cam at Dernford (NRFA 828 
#33024, 10.3 % model weight). 829 
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 830 

Supplementary Figure 7: Key challenges of freshwater monitoring with nanopore sequencing. (a-b) 831 
Correlation analysis between DNA extraction yield, 16S amplification yield and raw sequencing output 832 
(Supplementary Table 2). (a) DNA concentrations (x-axis) obtained from 30 freshwater samples after extraction 833 
with the DNeasy PowerWater Kit (Material and Methods) are compared against the DNA concentration of the 834 
same samples after full-length 16S PCR amplification (y-axis), as measured by Qubit dsDNA HS. (b) The DNA 835 
concentration obtained for each sample after full-length 16S PCR amplification (x-axis) is compared against the 836 
final number of demultiplexed nanopore sequencing reads. Samples with a minimum input concentration 837 
measurement of ~5 ng/µl yielded sequencing outputs sufficient to pass the rarefaction threshold of 37,000 reads. 838 
(c) Multiple sequence alignment of an example set of related nanopore 16S sequences, displaying increased indel 839 
rates at homopolymer reference sites (underlined); the mean sequencing error rate for this study lies at 7.92 %. 840 
 841 
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SUPPLEMENTARY TABLE LEGENDS 852 

Table S1: Summary of samples and metadata. (a) Sampling locations. (b) Environmental metadata by sample. (c) 853 
Environmental metadata by time point. 854 
 855 
Table S2: Summary of raw DNA, amplicon and sequencing yields. (a) Water DNA extraction yields. (b) Full-856 
length 16S PCR amplicon extraction yields. (c) Nanopore sequencing read metrics. 857 
 858 
Table S3: Summary of pathogen and wastewater bacterial genera tested. (a-b) List of pathogen (a) and wastewater 859 
(b) candidate bacterial genera. 860 
 861 
Table S4: Summary of reference sequences for high-resolution pathogen mapping. (a-d) References and NCBI 862 
accessions for Legionella (a), Salmonella (b), Pseudomonas (c) and Leptospira (d). 863 
 864 
Table S5: Summary of multi-species Leptospira quantifications by Taqman qPCR. 865 
 866 
Table S6: Summary of project costs. (a) Basic sequencing workflow cost estimate. (b) Cost estimate per sample, 867 
based on a 12-plex MinION sequencing run. (c) Projected cost estimate per sample, based on a 100-plex MinION 868 
sequencing run. 869 
 870 
Table S7: Summary of full-length 16S primer sequences (5' - 3'). 871 
 872 
Table S8: Summary of negative controls. (a-c) Relative classification output per sample (%), sorted by negative 873 
control abundances in April (a), June (b) and August (c). 874 
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