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ABSTRACT

While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species,
including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet,
in situ metagenomic water surveys face substantial challenges in cost and logistics. Here we present a simple, fast,
cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore
sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an
example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a
benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore
metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with
complementary physicochemical measurements. In a public health context, these data feature relevant sewage
signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum

for new environmental monitoring initiatives using portable devices.

INTRODUCTION

The global assurance of safe drinking water and basic sanitation has been recognised as a United Nations
Millennium Development Goal (Bartram, Lewis, Lenton, & Wright, 2005), particularly in light of the pressures
of rising urbanisation, agricultural intensification and climate change (Haddeland et al., 2014; Schewe et al.,

2014). Waterborne diseases represent a particular global threat, with zoonotic diseases such as typhoid fever,
cholera or leptospirosis resulting in hundreds of thousands of deaths each year (Priiss-Ustiin, Kay, Fewtrell, &

Bartram, 2002; Priiss-Ustiin et al., 2019).

To control for risks of infection by waterborne diseases, microbial assessments can be conducted. While traditional

microbial tests focus on the isolation of specific bacterial indicator organisms through selective media outgrowth

in a diagnostic laboratory, this cultivation process is all too often time consuming, infrastructure-dependent and
lacks behind in automatisation (Salazar & Sunagawa, 2017; Tringe & Rubin, 2005). Environmental
metagenomics, the direct tracing of DNA from environmental samples, constitutes a less organism-tailored, data-
driven monitoring alternative. Such approaches have been demonstrated to provide robust measurements of
relative taxonomic species composition as well as functional diversity in a variety of environmental contexts

(Almeida et al., 2019; Bahram et al., 2018; Sunagawa et al., 2015), and overcome enrichment and resolution biases
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common to culturing (Salazar & Sunagawa, 2017; Tringe & Rubin, 2005). However, they usually depend on
expensive stationary equipment, specialised operational training and substantial time lags between fieldwork,
sample preparation, raw data generation and access. Combined, there is an increasing demand for freshwater
monitoring frameworks that unite the advantages of metagenomic workflows with high cost effectiveness, fast

technology deployability and data transparency (Gardy & Loman, 2018).

In recent years, these challenges have been revisited with the prospect of mobile DNA analysis. The main driver
of this is the ‘portable’ MinlON device from Oxford Nanopore Technologies (ONT), which enables real-time
DNA sequencing using nanopores (Jain, Olsen, Paten, & Akeson, 2016). Nanopore read lengths can be
comparably long, currently up to ~2*10° bases (Payne, Holmes, Rakyan, & Loose, 2018), which is enabled by
continuous electrical sensing of sequential nucleotides along single DNA strands. In connection with a laptop for
the translation of raw voltage signal into nucleotides, nanopore sequencing can be used to rapidly monitor long
DNA sequences in remote locations. Although there are still common concerns about the technology's base-level
accuracy, mobile MinION setups have already been transformative for real-time tracing and rapid data sharing
during bacterial and viral pathogen outbreaks (Boykin et al., 2019; Chan et al., 2020; Faria et al., 2018; Faria et
al., 2017; Kafetzopoulou et al., 2019; Quick et al., 2015; Quick et al., 2016). In the context of freshwater analysis,
a MinlON whole-genome shotgun sequencing protocol has recently been leveraged for a comparative study of 11
rivers (Reddington et al., 2020). This report highlights key challenges which emerge in serial monitoring scenarios
of a relatively low-input DNA substrate (freshwater), for example large sampling volumes (2-4 litres) and small
shotgun fragments (mean <4 kbp). We reasoned that targeted DNA amplification may be a suitable means to

bypass these bottlenecks and assess river microbiomes with nanopore sequencing.

Here we report a simple, cost-effective workflow to assess and monitor microbial freshwater ecosystems with
targeted nanopore DNA sequencing. Our benchmarking study involves the design and optimisation of essential
experimental steps for multiplexed MinlON usage in the context of local environments, together with an
evaluation of computational methods for the bacterial classification of nanopore sequencing reads from
metagenomic libraries. To showcase the resolution of sequencing-based aquatic monitoring in a spatiotemporal
setting, we combine DNA analyses with physicochemical measurements of surface water samples collected at
nine locations within a confined ~12 kilometre reach of the River Cam passing through the city of Cambridge

(UK) in April, June and August 2018.
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RESULTS

Experimental design and computational workflows

Using a bespoke workflow, nanopore full-length (V1-V9) 16S ribosomal RNA (rRNA) gene sequencing was
performed on all location-barcoded freshwater samples at each of the three time points (Figure 1; Supplementary
Table 1; Material and Methods). River isolates were multiplexed with negative controls (deionised water) and

mock community controls composed of eight bacterial species in known mixture proportions.
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Figure 1: Freshwater microbiome study design and experimental setup. (a) Schematic map of Cambridge
(UK), illustrating sampling locations (colour-coded) along the River Cam. Geographic coordinates of latitude and
longitude are expressed as decimal fractions according to the global positioning system. (b) Laboratory workflow
to monitor bacterial communities from freshwater samples using nanopore sequencing (Material and Methods).

To obtain valid taxonomic assignments from freshwater sequencing profiles using nanopore sequencing, twelve
different classification tools were compared through several performance metrics (Figure 2; Supplementary Figure
1; Material and Methods). Our comparison included established classifiers such as RDP (Wang, Garrity, Tiedje,
& Cole, 2007), Kraken (Wood & Salzberg, 2014) and Centrifuge (Kim, Song, Breitwieser, & Salzberg, 2016), as
well as more recently developed methods optimised for higher sequencing error rates such as IDTAXA (Murali,
Bhargava, & Wright, 2018) and Minimap2 (Li, 2018). An Enterobacteriaceae overrepresentation was observed

across all replicates and classification methods, pointing towards a consistent Escherichia coli amplification bias

potentially caused by skewed taxonomic specificities of the selected 16S primer pair 27f and 1492r (Frank et al.,
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2008) (Figure 2b). Root mean square errors (RMSE) between observed and expected bacteria of the mock

community differed slightly across all classifiers (Figure 2c). Robust quantifications were obtained by Minimap2

alignments against the SILVA v.132 database (Quast et al., 2013), for which 99.68 % of classified reads aligned

to the expected mock community taxa (mean sequencing accuracy 92.08 %). Minimap2 classifications reached

the second lowest RMSE (excluding Enterobacteriaceae), and relative quantifications were highly consistent

between mock community replicates. Benchmarking of the classification tools on one aquatic sample further

confirmed Minimap2's reliable performance in a complex bacterial community (Figure 2d), although other tools

such as MAPseq (Matias Rodrigues, Schmidt, Tackmann, & von Mering, 2017), SPINGO (Allard, Ryan, Jeffery,

& Claesson, 2015), or IDTAXA also produced highly concordant results — despite variations in memory usage

and runtime over several orders of magnitude (Supplementary Figure 1).
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Figure 2: Benchmarking of classification tools with nanopore full-length 16S sequences. (a) Schematic of
mock community quantification performance testing. (b) Observed vs. expected read fraction of bacterial families
present in 10,000 nanopore reads randomly drawn from mock community sequencing data. Example
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127 representation of Minimap?2 (kmer length 15) quantifications with (upper) and without (lower) Enterobacteriaceae
128 (Material and Methods). (c) Mock community classification output summary for twelve classification tools tested
129 against the same 10,000 reads. Root mean squared errors observed and expected bacterial read fractions are
130 provided with (RMSE) and without Enterobacteriaceae (RMSE reduced). (d) Classification output summary for
131 10,000 reads randomly drawn from an example freshwater sample (Material and Methods). ‘Overlapping’
132 fractions (red) represent agreements of a classification tool with the majority of tested methods on the same reads,
133 while ‘non-overlapping’ fractions (light blue) represent disagreements. Dark green sets highlight rare taxon
134 assignments not featured in any of the 10,000 majority classifications, while dark blue bars show unclassified read
135  fractions.

136

137  Diversity analysis and river core microbiome

138 Using Minimap?2 classifications within our bioinformatics consensus workflow (Supplementary Figure 2; Material
139  and Methods), we then inspected sequencing profiles of three independent MinION runs for a total of 30 river
140  DNA isolates and six controls. This yielded ~8.3 million sequences with exclusive barcode assignments (Figure
141 3a; Supplementary Table 2). Overall, 82.9 % (n = 6,886,232) of raw reads could be taxonomically assigned to the
142 family level (Figure 3b). To account for variations in sample sequencing depth, rarefaction with a cut-off at 37,000
143 reads was applied to all samples. While preserving ~90 % of the original family level taxon richness (Mantel test,
144 R =0.814, p = 2.1*10*; Supplementary Figure 3), this conservative thresholding resulted in the exclusion of 14
145 samples, mostly from the June time point, for subsequent high-resolution analyses. The 16 remaining surface
146 water samples revealed moderate levels of microbial heterogeneity (Figure 3b; Supplementary Figure 3):
147 microbial family alpha diversity ranged between 0.46 (June-6) and 0.92 (April-7) (Simpson index), indicating

148 low-level evenness with a few taxonomic families that account for the majority of the metagenomic signal.

149
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Figure 3: Bacterial diversity of the River Cam. (a) Nanopore sequencing output summary. Values in the centre
of the pie charts depict total numbers of classified nanopore sequences per time point. Percentages illustrate
representational fractions of locations and control barcodes (negative control and mock community). (b) Read
depth and bacterial classification summary. Upper bar plot shows the total number of reads, and the number of
reads classified to any taxonomic level, to at least bacterial family level, to the ten most abundant bacterial families
across all samples, or to other families. Rarefaction cut-off displayed at 37,000 reads (dashed line). Lower bar
plot features fractions of the ten most abundant bacterial families across the samples with more than 100 reads.
Colours in bars for samples with less than 37,000 reads are set to transparent.

Hierarchical clustering of taxon profiles showed a dominant core microbiome across all aquatic samples (clusters
C2 and C4, Figure 4a). The most common bacterial families observed were Burkholderiaceae (40.0 %),
Spirosomaceae (17.7 %), and NS11-12 marine group (12.5 %), followed by Arcobacteraceae (4.8 %),
Sphingomonadaceae (2.9 %) and Rhodobacteraceae (2.5 %) (Figure 4b). Members of these families are
commonly associated with aquatic environments; for example, major fractions of Burkholderiaceae reads

originated from genera such as Limnohabitans, Rhodoferax, Polynucleobacter or Aquabacterium (Supplementary

Figure 4), which validates the suitability of this nanopore metagenomics workflow. Hierarchical clustering
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additionally showed that two biological replicates collected at the same location and time point (April samples
9.1 and 9.2), grouped with high concordance; this indicates that spatiotemporal trends are discernible even within

a highly localised context.
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172 Figure 4: Core microbiome of the River Cam. (a) Hierarchical clustering of bacterial family abundances across
173 freshwater samples after rarefaction, together with the mock community control. Four major clusters of bacterial
174 families occur, with two of these (C2 and C4) corresponding to the core microbiome of ubiquitously abundant


https://doi.org/10.1101/2020.02.06.936302
http://creativecommons.org/licenses/by-nc-nd/4.0/

189

190
191
192

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.06.936302; this version posted November 18, 2020. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

families, one (C3) corresponding to the main mock community families and one (C1) corresponding to the
majority of rare accessory taxa. (b) Detailed river core microbiome. Violin plots summarise fractional
representation of bacterial families from clusters C2 and C4 (logio scale of relative abundance [%] across all
samples, napril = 7, Njune = 2, Naugust = 7), sorted by median total abundance. Vertical dashed lines depict 0.1 %
proportion.

Besides the dominant core microbiome, microbial profiles showed a marked arrangement of time dependence,
with water samples from April grouping more distantly to those from June and August. Principal component
analysis (PCA) illustrates the seasonal divergence among the three sampling months (Figure 5a; Supplementary
Figure 5). The strongest differential abundances along the chronological axis of variation (PC3) derived from
Carnobacteriaceae (Figure 5b), a trend also highlighted by taxon-specific log-normal mixture model

decomposition between the two seasons (April vs. June/August; p < 0.01; Material and Methods). Indeed,

members of this bacterial family have been primarily isolated from cold substrates (Lawson & Caldwell, 2014).
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Figure 5: Spatiotemporal axes of taxonomic diversity in the River Cam. (a) PCA of bacterial composition
across locations, indicating community dissimilarities along the main time (PC3) and spatial (PC4) axes of
variation; dots coloured according to time points. Kruskal-Wallis test on PC3 component contributions, with post-
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193 hoc Mann-Whitney U rank test (April vs. August): p = 2.2*107. (b) Contribution of individual bacterial families
ig‘sl to the PCs in (a). Error bars represent the standard deviation of these families across four independent rarefactions.
196  Hydrochemistry and seasonal profile of the River Cam

197 While a seasonal difference in bacterial composition can be expected due to increasing water temperatures in the
198 summer months, additional changes may have also been caused by alterations in river hydrochemistry and flow
199  rate (Figure 6a; Supplementary Figure 6; Supplementary Table 1). To assess this effect in detail, we measured the
200 pH and a range of major and trace cations in all river water samples using inductively coupled plasma-optical
201 emission spectroscopy (ICP-OES), as well as major anions using ion chromatography (Material and Methods).
202 As with the bacterial composition dynamics, we observed significant temporal variation in water chemistry,
203 superimposed on a spatial gradient of generally increasing sodium and chloride concentrations along the river
204 reach (Figure 6b-c). This spatially consistent effect is likely attributed to wastewater and agricultural discharge
205 inputs in and around Cambridge city. A comparison of the major element chemistry in the River Cam transect
206 with the world's 60 largest rivers further corroborates the likely impact of anthropogenic pollution in this fluvial

207 ecosystem (Gaillardet, Dupré, Louvat, & Allegre, 1999) (Figure 6d; Material and Methods).

208
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210 Figure 6: Geological and hydrochemical profile of the River Cam and its basin. (a) Outline of the Cam River
211  catchment surrounding Cambridge (UK), and its corresponding lithology. Overlay of bedrock geology and
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212 superficial deposits (British Geological Survey data: DiGMapGB-50, 1:50,000 scale) is shown as visualised by
213 Geolndex. Bedrock is mostly composed of subtypes of Cretaceous limestone (chalk), gault (clay, sand) and
214 mudstone. Approximate sampling locations are colour-coded as in Figure 1. (b) Principal component analysis of
215 measured pH and 13 inorganic solute concentrations of this study's 30 river surface water samples. PC1 (~49 %
216 variance) displays a strong, continuous temporal shift in hydrochemistry. (c) Parameter contributions to PC1 in
217 (b), highlighting a reduction in water hardness (Ca?*, Mg?") and increase in pH towards the summer months (June
218 and August). (d) Mixing diagram with Na*-normalised molar ratios, representing inorganic chemistry loads of the
219 world's 60 largest rivers; open circles represent polluted rivers with total dissolved solid (TDS) concentrations
220  >500 mg I''. Cam River ratios are superimposed as ellipses from ten samples per month (50 % confidence,
221 respectively). Separate data points for all samples from August are also shown and colour-coded, indicating the
222 upstream-to-downstream trend of Na* increase (also observed in April and June). End-member signatures show
223 typical chemistry of small rivers draining these lithologies exclusively (carbonate, silicate and evaporite).

224

225 Maps of potential bacterial pathogens at species level resolution

226 Freshwater sources throughout the United Kingdom have been notorious for causing bacterial infections such as
227 leptospirosis (Public Health England, 2016, 2019). In line with the physicochemical profile of the River Cam, we
228 therefore next determined the spatiotemporal enrichment of potentially important functional bacterial taxa through
229 nanopore sequencing. We retrieved 55 potentially pathogenic bacterial genera through integration of species
230 known to affect human health (Jin et al., 2018; Wattam et al., 2017), and also 13 wastewater-associated bacterial
231 genera (Wu et al., 2019) (Supplementary Table 3). Of these, 21 potentially pathogenic and eight wastewater-
232 associated genera were detected across all of the river samples (Figure 7, Material and Methods). Many of these
233 signals were stronger downstream of urban sections, within the mooring zone for recreational and residential
234 barges (location 7; Figure 1a) and in the vicinity of sewage outflow from a nearby wastewater treatment plant
235 (location 8). The most prolific candidate pathogen genus observed was Arcobacter, which features multiple
236 species implicated in acute gastrointestinal infections (Kayman et al., 2012).

237

238 In general, much of the taxonomic variation across all samples was caused by sample April-7 (PC1 explains 27.6
239 % of the overall variance in bacterial composition; Supplementary Figure 5a-b). Its profile was characterised by
240 an unusual dominance of Caedibacteraceae, Halomonadaceae and others (Supplementary Figure S5c). Isolate
241 April-8 also showed a highly distinct bacterial composition, with some families nearly exclusively occurring in
242 this sample (outlier analysis; Material and Methods). The most predominant bacteria in this sewage pipe outflow
243 are typically found in wastewater sludge or have been shown to contribute to nutrient pollution from effluents of
244 wastewater plants, such as Haliangiaceae, Nitospiraceae, Rhodocyclaceae, and Saprospiracea (Nielsen,
245 Saunders, Hansen, Larsen, & Nielsen, 2012; Wu et al., 2019) (Figure 7).

246
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Figure 7: Potentially pathogenic and wastewater treatment related bacteria in the River Cam. Boxplots on
the left show the abundance distribution across locations per bacterial genus. Error bars represent Q1 — 1.5*IQR
(lower), and Q3 + 1.5*IQR (upper), respectively; Q1: first quartile, Q3: third quartile, IQR: interquartile range.
The central table depicts the categorisation of subsets of genera as waterborne bacterial pathogens (WB), drinking
water pathogens (DWP), potential drinking water pathogens (pDWP), human pathogens (HP) and core genera
from wastewater treatment plants (WW) (dark grey: included, light grey: excluded) (Supplementary Table 3). The
right-hand circle plot shows the distribution of bacterial genera across locations of the River Cam. Circle sizes
represent overall read size fractions, while circle colours (sigma scheme) represent the standard deviation from
the observed mean relative abundance within each genus.

Using multiple sequence alignments between nanopore reads and pathogenic species references, we further
resolved the phylogenies of three common potentially pathogenic genera occurring in our river samples,
Legionella, Salmonella and Pseudomonas (Figure 8a-c; Material and Methods). While Legionella and Salmonella

diversities presented negligible levels of known harmful species, a cluster of reads in downstream sections

indicated a low abundance of the opportunistic, environmental pathogen Pseudomonas aeruginosa (Figure 8c).

Along the course here investigated, we also found significant variations in relative abundances of the Leptospira
genus, which was recently described to be enriched in wastewater effluents in Germany (Numberger et al., 2019)
(Figure 8d). Indeed, the peak of River Cam Leptospira reads fell into an area of increased sewage influx (~0.1 %
relative abundance; Figure 7). The Leptospira genus contains several potentially pathogenic species capable of
causing life-threatening leptospirosis through waterborne infections, however also features close-related

saprophytic and ‘intermediate’ taxa (Vincent et al., 2019; Wynwood et al., 2014). To resolve its complex
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270 phylogeny in the River Cam surface, we aligned Leptospira reads from all samples together with many reference
271 sequences assigned to pre-classified pathogenic, saprophytic and other environmental Leptospira species (Figure
272 8d; Supplementary Table 4; Material and Methods). Despite the presence of nanopore sequencing errors
273 (Supplementary Figure 7) and correspondingly inflated read divergence, we could pinpoint spatial clusters and a
274 distinctly higher similarity between our amplicons and saprophytic rather than pathogenic Leptospira species.
275 These findings were subsequently validated by targeted, Leptospira species-specific gPCR (Supplementary Table
276 5; Material and Methods), confirming that R9.4.1 nanopore sequencing quality is already high enough to yield
277 indicative results for bacterial monitoring workflows at the species level.

278
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280 Figure 8: High-resolution phylogenetic clustering of candidate pathogenic genera in the River Cam.
281 Phylogenetic trees illustrating multiple sequence alignments of exemplary River Cam nanopore reads (black
282 branches) classified as (a) Legionella, (b) Salmonella, (c) Pseudomonas, or (d) Leptospira, together with known
283  reference species sequences ranging from pathogenic to saprophytic taxa within the same genus (coloured
284  branches). Reference species sequences are numbered in clockwise orientation around the tree (Supplementary
285 Table 4). Nanopore reads highlighted in light violet background display close clustering with pathogenic isolates

286  of (b) Salmonella spp. and (c) Pseudomonas aeruginosa.
287

288  DISCUSSION

289  Using a cost-effective, easily adaptable and scalable framework based on nanopore sequencing, we provide the
290 first spatiotemporal nanopore sequencing atlas of bacterial microbiota throughout the course of a river. Our results
291 suggest that this workflow allows for robust assessments of both, the core microbiome of an example fluvial
292 ecosystem and heterogeneous bacterial compositions in the context of supporting physical (temperature, flow rate)
293 and hydrochemical (pH, inorganic solutes) parameters. We show that the technology's current sequencing
294 accuracy of ~92 % allows for the designation of significant human pathogen community shifts along rural-to-
295 urban river transitions, as illustrated by downstream increases in the abundance of pathogen candidates.

296

297 Our assessment of bioinformatics workflows for taxonomic classification highlights current challenges with error-
298 prone nanopore sequences. A number of recent reports feature bespoke 16S read classification schemes centred
299 around a single software (Acharya et al., 2019; Benitez-Paez, Portune, & Sanz, 2016; Kerkhof, Dillon, Haggblom,
300 & McGuinness, 2017; Nygaard, Tunsjo, Meisal, & Charnock, 2020), and others integrated outputs from two
301  methods (Cusco, Catozzi, Vines, Sanchez, & Francino, 2018). Through systematic benchmarking of twelve
302 different classification tools, using matched mock community and river water datasets with respect to the SILVA
303  v.132 reference database, we lay open key differences in terms of these methods' read (mis)classification rates,
304  consensus agreements, speed and memory performance metrics. For example, our results indicate that very fast
305 implementations like Kraken 2 or Centrifuge may yield less accurate classifications than slightly slower and more
306 memory-demanding frameworks such as Minimap2 (Figure 2; Supplementary Figure 1).

307

308  Using Minimap2, 16.2 % of freshwater-derived sequencing reads were assigned to a bacterial species on average,
309 thereby primarily encouraging automated analyses on the genus (65.6 % assigned) or family level (76.6 %
310 assigned). As nanopore sequencing quality continues to increase through refined pore chemistries, basecalling
311 algorithms and consensus sequencing workflows (Calus, Ijaz, & Pinto, 2018; Karst et al., 2020; Latorre-Perez,

312 Villalba-Bermell, Pascual, & Vilanova, 2020; Rang, Kloosterman, & de Ridder, 2018; Santos, van Aerle,
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313 Barrientos, & Martinez-Urtaza, 2020), future bacterial taxonomic classifications are likely to improve and advance
314  opportunities for species discovery.

315

316  We show that nanopore amplicon sequencing data can resolve the core microbiome of a freshwater body, as well
317 as its temporal and spatial fluctuations. Common freshwater bacteria account for the vast majority of taxa in the
318 River Cam,; this includes Sphingomonadaceae, which had also been previously found at high abundance in source
319 water from the same river (Rowe et al, 2016). Our findings suggest that the differential abundances of
320 Carnobacteriaceae most strongly contribute to seasonal loadings in the River Cam. Carnobacteriaceae have been
321 previously associated with a range of low temperature environments (Lawson & Caldwell, 2014), and we found
322  these taxa to be more abundant in colder April samples (mean 11.3 °C, vs. 15.8 °C in June and 19.1 °C in August).
323 This might help to further establish this family as an indicator for bacterial community shifts along with
324 temperature fluctuations, albeit the influence of co-occurring hydrochemical trends such as Ca** and Mg?* (water
325 hardness), dissolved carbon or flow speed changes should also be noted (Figure 6b-d; Supplementary Figure 6).
326

327 Most routine freshwater surveillance frameworks focus on semi-quantitative diagnostics of only a limited number
328 of target taxa, such as pathogenic Salmonella, Legionella and faecal coliforms (Ramirez-Castillo et al., 2015; Tan
329 et al., 2015), whereas metagenomics approaches can give a complete and detailed overview of environmental
330  microbial diversity. Beyond nanopore shotgun-sequencing (Reddington et al., 2020), our proof-of-principle
331 analysis highlights that the combination of targeted full-length 16S rRNA gene MinlON sequencing is a suitable
332 complement to hydrochemical controls in pinpointing relatively contaminated freshwater sites, some of which in
333 case of the River Cam had been previously highlighted for their pathogen diversity and abundance of antimicrobial
334  resistance genes (Rowe et al., 2017; Rowe et al., 2016). Nanopore amplicon sequencing has here allowed us to
335 reliably distinguish closely related pathogenic and non-pathogenic bacterial species of the common Legionella,
336 Salmonella, Pseudomonas and Leptospira genera. For Leptospira bacteria, which are of particular interest to
337 communal stakeholders of the River Cam, we validated nanopore sequencing results through the gold standard
338 qPCR workflow of Public Health England (Supplementary Table 5). In order to also study the potential viability
339  and functional implications of sequenced pathogen candidates for public health, we encourage future studies to
340  combine nanopore based freshwater metagenomics with targeted follow-up measurements of living pathogens by

341 established microbiological approaches, including species-specific isolation and subsequent culturing.

342
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343 A number of experimental intricacies should be addressed towards nanopore freshwater sequencing with our
344 approach, mostly by scrutinising water DNA extraction yields, PCR biases and molar imbalances in barcode
345 multiplexing (Figure 3a; Supplementary Figure 7). Similar to challenges with other organic substrates, microbial
346 raw DNA extraction protocols require careful pre-testing and optimisation towards the physicochemical
347 composition of a given freshwater source, in order to avoid both taxonomic enrichment biases and drop-offs in
348 total yield. One example lies in the optimisation of the filtrate volume — in this study, membrane DNA extraction
349 from 400 mL River Cam water was sufficient to yield valuable insights, while as much as 10,000 mL were used
350 in a previous study of the same river (Rowe et al., 2016). Moreover, potentially dissolved inhibitory compounds
351 for DNA extraction, sample cooling and storage chains should be thoroughly considered for larger and remote
352 river monitoring projects. We witnessed that yield variations may bear negative effects on the molar balance of
353 barcoded nanopore sequencing runs, as illustrated by elevated sample drop outs in June 2018, emphasising the
354  need for highly accurate concentration measurement and scaling when dozens of input DNA sources are pooled.
355 Our study further highlights that MinION (R9.4.1) flow cell throughput can fluctuate by an order of magnitude,
356 altogether causing the exclusion of measurements upon application of a conservative read threshold. We reason
357 that real-time selective nanopore sequencing could serve as a powerful means to improve barcode balances in
358 context of multiplexed 16S analyses (Loose, Malla, & Stout, 2016), albeit such approaches are yet undergoing
359 computational optimisations (Kovaka, Fan, Ni, Timp, & Schatz, 2020; Payne et al., 2020).

360

361 Our results show that it would already be theoretically feasible to obtain meaningful river microbiota from >100
362  barcoded samples on a single nanopore flow cell, thereby enabling water monitoring projects involving large
363  collections at costs below £20 per sample (Supplementary Table 6). In line with this, ONT has already released
364 several commercial 96-barcode multiplexing kits for PCR and non-PCR based applications, as well as the smaller
365 ‘Flongle’ flow cell with considerably reduced cost as compared to the traditional MinlON model. On the other
366 hand, shotgun nanopore sequencing approaches may bypass pitfalls associated with amplicon sequencing, namely
367  taxon-specific primer biases (Frank et al., 2008), 16S rDNA copy number fluctuations between species (Darby,
368 Todd, & Herman, 2013) or the omission of functionally relevant sequence elements. In combination with sampling
369 protocol adjustments, shotgun nanopore sequencing could moreover be used for the serial monitoring of

370  eukaryotic microorganisms and viruses in freshwater ecosystems (Reddington et al., 2020).

371
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372 Since the commercial launch of the MinION in 2015, a wide set of microbial nanopore sequencing applications
373 in the context of rRNA gene (Benitez-Paez et al., 2016; Cusco et al., 2018; Kerkhof et al., 2017; Nygaard et al.,
374 2020) and shotgun (Leggett et al., 2019; Nicholls, Quick, Tang, & Loman, 2019; Reddington et al., 2020; Stewart
375 etal., 2019) metagenomics have attracted the interest of a growing user community. Two independent case studies
376 have recently provided decomposition analyses of faecal bacterial pathogens in MinlON libraries derived from
377 river and spring waters in Montana, USA (Hamner et al., 2019) and Kathmandu Valley, Nepal (Acharya et al.,
378 2019). Although it is to be expected that short-read metagenomics technology continues to provide valuable
379 environmental insights, as illustrated through global cataloguing efforts of ocean (Sunagawa et al., 2015) and
380  wastewater (Wu et al., 2019) microbiomes, due to their large sizes and fixed costs these traditional platforms
381 remain unfeasible for the monitoring of remote environments — especially in low-resource settings. We reason
382 that the convenience of MinlON handling and complementary development of portable DNA purification methods
383 (Boykin et al., 2019; Gowers et al., 2019) will allow for such endeavours to become increasingly accessible to
384 citizens and public health organisations around the world, ultimately democratising the opportunities and benefits
385  of DNA sequencing.

386
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402  MATERIAL AND METHODS

403 1.1 Freshwater sampling

404 We monitored nine distinct locations along a 11.62 km reach of the River Cam, featuring sites upstream,
405 downstream and within the urban belt of the city of Cambridge, UK. Measurements were taken at three time
406 points, in two-month intervals between April and August 2018 (Figure 1; Supplementary Table 1a). To warrant
407 river base flow conditions and minimise rain-derived biases, a minimum dry weather time span of 48h was
408 maintained prior to sampling (Fisher, Newton, Dila, & McLellan, 2015). One litre of surface water was collected
409  in autoclaved DURAN bottles (Thermo Fisher Scientific, Waltham, MA, USA), and cooled to 4 °C within three
410  hours. Two bottles of water were collected consecutively for each time point, serving as biological replicates of
411  location 9 (samples 9.1 and 9.2).

412

413 1.2 Physical and chemical metadata

414 We assessed various chemical, geological and physical properties of the River Cam (Figure 6; Supplementary
415  Figure 6; Supplementary Table 1b-c).

416

417  In situ water temperature was measured immediately after sampling. To this end, we linked a DS18B20 digital
418 temperature sensor to a portable custom-built, grid mounted Arduino nano v3.0 system. The pH was later recorded
419 under temperature-controlled laboratory conditions, using a pH edge electrode (HI-11311, Hanna Instruments,
420  Woodsocket, RI, USA).

421

422 To assess the dissolved ion concentrations in all collected water samples, we aerated the samples for 30 seconds
423 and filtered them individually through a 0.22 puM pore-sized Millex-GP polyethersulfone syringe filter
424  (MilliporeSigma, Burlington, MA, USA). Samples were then acidified to pH ~2, by adding 20 pL of 7M distilled
425  HNOs per 3 mL sample. Inductively coupled plasma-optical emission spectroscopy (ICP-OES, Agilent 5100
426 SVDV; Agilent Technologies, Santa Clara, CA, USA) was used to analyse the dissolved cations Na', K*, Ca?",
427  Mg*, Ba*, Li', as well as Si and SO4> (as total S) (Supplementary Table 1b). International water reference
428 materials (SLRS-5 and SPS-SW2) were interspersed with the samples, reproducing certified values within 10 %
429 for all analysed elements. Chloride concentrations were separately measured on 1 mL of non-acidified aliquots of
430 the same samples, using a Dionex ICS-3000 ion chromatograph (Thermo Fisher Scientific, Waltham, MA, USA)

431 (Supplementary Table 1b). Long-term repeat measurements of a USGS natural river water standard T-143
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432 indicated precision of more than 4 % for CI. However, the high CI" concentrations of the samples in this study
433 were not fully bracketed by the calibration curve and we therefore assigned a more conservative uncertainty of 10
434 % to Cl concentrations.

435

436 High calcium and magnesium concentrations were recorded across all samples, in line with hard groundwater and
437 natural weathering of the Cretaceous limestone bedrock underlying the river catchment (Figure 6a). There are no
438 known evaporite salt deposits in the river catchment, and therefore the high dissolved Na', K* and CI
439 concentrations in the River Cam are likely derived from anthropogenic inputs (Rose, 2007) (Figure 6¢c-d). We
440 calculated bicarbonate concentrations through a charge balance equation (concentrations in mol/L):

441  conc (HCOs") = conc (Li*) + conc (Na*) + conc (K*) + 2*conc (Mg?") + 2*conc (Ca*") - conc (CI°) - 2*conc (S*)
442

443 The total dissolved solid (TDS) concentration across the 30 freshwater samples had a mean of 458 mg/L (range
444 325 - 605 mg/L) which is relatively high compared to most rivers, due to 1.) substantial solute load in the Chalk
445 groundwater (particularly Ca?*, Mg?", and HCO3") and 2.) likely anthropogenic contamination (particularly Na®,
446  CI, and SO4*). The TDS range and the major ion signature of the River Cam is similar to other anthropogenically
447 heavily-impacted rivers (Gaillardet et al., 1999), exhibiting enrichment in Na* (Figure 6d).

448

449 Overall, ion profiles clustered substantially between the three time points, indicating characteristic temporal shifts
450 in water chemistry. PC1 of a PCA on the solute concentrations [umol/L] shows a strong time effect, separating
451 spring (April) from summer (June, August) samples (Figure 6b). We highlighted the ten most important features
452 (i.e., features with the largest weights) and their contributions to PC1 (Figure 6c).

453

454 We integrated sensor data sets on mean daily air temperature, sunshine hours and total rainfall from a public,
455 Cambridge-based weather station (Supplementary Figure 6a-c; Supplementary Table 1c). Similarly, mean gauged
456 daily Cam water discharge [m®s™!] of the River Cam was retrieved through publicly available records from three
457 upstream gauging stations connected to the UK National River Flow Archive (https://nrfa.ceh.ac.uk/), together

458 with historic measurements from 1968 onwards (Supplementary Figure 6d)

459
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460 1.3 DNA extraction

461 Within 24 hours of sampling, 400 mL of refrigerated freshwater from each site was filtered through an individual
462 0.22 pm pore-sized nitrocellulose filter (MilliporeSigma, Burlington, MA, USA) placed on a Nalgene polysulfone
463 bottle top filtration holder (Thermo Fisher Scientific) at -30 mbar vacuum pressure. Additionally, 400 mL de-
464 ionised (DI) water was also filtered. We then performed DNA extractions with a modified DNeasy PowerWater
465 protocol (Qiagen, Hilden, Germany). Briefly, filters were cut into small slices with sterile scissors and transferred
466  to 2 mL Eppendorf tubes containing lysis beads. Homogenization buffer PW1 was added, and the tubes subjected
467 to ten minutes of vigorous shaking at 30 Hz in a TissueLyser II machine (Qiagen). After subsequent DNA binding
468  and washing steps in accordance with the manufacturer's protocol, elution was done in 50 uL EB. We used Qubit
469 dsDNA HS Assay (Thermo Fisher Scientific) to determine water DNA isolate concentrations (Supplementary
470  Table 2a).

471

472 1.4 Bacterial full-length 16S rDNA sequence amplification

473 DNA extracts from each sampling batch and DI water control were separately amplified with V1-V9 full-length
474 (~1.45 kbp) 16S rRNA gene primers, and respectively multiplexed with an additional sample with a defined
475 bacterial mixture composition of eight species (Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica,
476  Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Listeria monocytogenes, Bacillus
477 subtilis; D6305, Zymo Research, Irvine, CA, USA) (Figure 2), which was previously assessed using nanopore
478 shotgun metagenomics (Nicholls et al., 2019). We used common primer binding sequences 27f and 1492r, both
479  coupled to unique 24 bp barcodes and a nanopore motor protein tether sequence (Supplementary Table 7). Full-
480  length 16S rDNA PCRs were performed with 30.8 uL DI water, 6.0 uL barcoded primer pair (10 uM), 5.0 uL
481  PCR-buffer with MgClz (10x), 5.0 pL dNTP mix (10x), 3.0 uL freshwater DNA extract, and 0.2 uL Taq (Qiagen)
482  under the following conditions:

483 94 °C - 2 minutes

484 94 °C - 30 seconds, 60 °C - 30 seconds, 72 °C - 45 seconds (35 cycles)

485 72 °C - 5 minutes

486

487 1.5 Nanopore library preparation

488 Amplicons were purified from reaction mixes with a QIAquick purification kit (Qiagen). Two rounds of alcoholic

489 washing and two additional minutes of drying at room temperature were then performed, prior to elution in 30 pL.
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490 10 mM Tris-HCI pH 8.0 with 50 mM NaCl. After concentration measurements with Qubit dsSDNA HS, twelve
491 barcoded extracts of a given batch were pooled in equimolar ratios, to approximately 300 ng DNA total
492  (Supplementary Table S2b). We used KAPA Pure Beads (KAPA Biosystems, Wilmington, MA, USA) to
493 concentrate full-length 16S rDNA products in 21 pL DI water. Multiplexed nanopore ligation sequencing libraries
494  were then made by following the SQK-LSK 109 protocol (Oxford Nanopore Technologies, Oxford, UK).

495

496 1.6 Nanopore sequencing

497 R9.4.1 MinION flow cells (Oxford Nanopore Technologies) were loaded with 75 ul of ligation library. The
498  MinION instrument was run for approximately 48 hours, until no further sequencing reads could be collected.
499 Fast5 files were basecalled using Guppy (version 3.15) and output DNA sequence reads with Q>7 were saved as
500 fastq files. Various output metrics per library and barcode are summarised in Supplementary Table 2c.

501

502 1.7 Leptospira validation

503 In collaboration with Public Health England, raw water DNA isolates of the River Cam from each location and
504  time point were subjected to the UK reference service for leptospiral testing (Supplementary Table 5). This test is
505 based on quantitative real-time PCR (qPCR) of 16S rDNA and LipL32, implemented as a TagMan assay for the
506 detection and differentiation of pathogenic and non-pathogenic Leptospira spp. from human serum. Briefly, the
507 assay consists of a two-component PCR; the first component is a duplex assay that targets the gene encoding the
508 outer membrane lipoprotein LipL32, which is reported to be strongly associated with the pathogenic phenotype.
509 The second reaction is a triplex assay targeting a well conserved region within the 16S rRNA gene (rrn) in
510 Leptospira spp. Three different genomic variations correlate with pathogenic (PATH probe), intermediate (i.e.,
511 those with uncertain pathogenicity in humans; INTER probe) and non-pathogenic Leptospira spp. (ENVIRO
512  probe), respectively.

513

514 2. DNA sequence processing workflow

515 The described data processing and read classification steps were implemented using the Snakemake workflow
516 management system (Koster & Rahmann, 2012) and are available on Github - together with all necessary

517 downstream analysis scripts to reproduce the results of this manuscript (https://github.com/d-j-k/puntseq).

518
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519 2.1 Read data processing

520  Reads were demultiplexed and  adapters  trimmed using  Porechop  (version  0.2.4,
521 https://github.com/rrwick/porechop). The only non-default parameter set was '--check reads' (to 50,000), to
522 increase the subset of reads to search for adapter sets. Next, we removed all reads shorter than 1.4 kbp and longer
523 than 1.6 kbp with Nanofilt (version 2.5.0, https://github.com/wdecoster/nanofilt).

524

525 We assessed read statistics including quality scores and read lengths using NanoStat (version 1.1.2,
526 https://github.com/wdecoster/nanostat), and used Pistis (https://github.com/mbhall88/pistis) to create quality
527  control plots. This allowed us to assess GC content and Phred quality score distributions, which appeared
528 consistent across and within our reads. Overall, we obtained 2,080,266 reads for April, 737,164 for June, and
529 5,491,510 for August, with a mean read quality of 10.0 (Supplementary Table 2c).

530

531 2.2 Benchmarking of bacterial taxonomic classifiers using nanopore reads

532 We used twelve different computational tools for bacterial full-length 16S rDNA sequencing read classification

533 (section2.2.1).:

Tool Version Commands
BLASTN (Altschul, v.2.9.0+ blastn -task "blastn" -db silva.fa -query Cam16S.fa -out
Gish, Miller, Myers, Cam16S.out -outfmt '6'

& Lipman, 1990;
Camacho et al., 2009)

Centrifuge (Kim et v.1.0.4 centrifuge -x centrifuge silva -U Cam168S.fq -S Cam16S.out --

al., 2016) report-file Cam16S.report

IDTAXA (Muraliet | Implemented in R | load(“SILVA SSU r132 March2018.RData”)

al., 2018) DECIPHER IdTaxa(Cam168S.fa, trainingSet, strand = "both", threshold = 0)
v.2.10.2 (Wright,
2016)

Kraken 2 (Wood, Lu, | v.2.0.7 kraken?2 --db kraken2 silva --output Cam16S.out --report

& Langmead, 2019; Cam16S.report Cam16S.fa

Wood & Salzberg,

2014)

MAPseq (Matias v.1.2.3 mapseq Cam16S.fa silva.fa > Cam16S.out

Rodrigues et al.,

2017)

MegaBLAST v.2.9.0+ blastn -task "megablast" -db silva.fa -query Cam16S.fa -out

(Camacho et al., Cam168S.out -outfimt '6'

2009; Morgulis et al.,
2008)
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Minimap?2 (Li, 2018)

v.2.13-r852-dirty

minimap2 -ax map-ont -L silva.mmi Cam16S.fa >
Cam16S.sam

Mothur (Schloss et v.1.43.0 align.seqs(candidate=Cam16S.fa,
al., 2009) template=mothur.silva.nr v132.align, processors=1, ksize=6,
align=needleman)
QIIME 2 (Bolyenet | v.2019.7 qiime feature-classifier classify-consensus-blast --i-query
al., 2019) Cam16S.qza --i-reference-reads silva.qza --i-reference-
taxonomy silva_tax.qza --o-classification Cam16S.out
RDP (Wang et al., Implemented in R | assignTaxonomy(seqs = Cam16S.fa, refFasta =
2007) DADA2v.1.12.1 silva nr v132 train set.fa.gz", tryRC =T,
(Callahan et al., outputBootstraps=T,minBoot=0)
2016)
SINTAX (R.C. Implemented in vsearch -sintax Cam16S.fa -db silva.udb

Edgar, 2016) VSEARCH
v.2.13.3 (Rognes,
Flouri, Nichols,

Quince, & Mahe,

-tabbedout Cam16S.out -strand both -sintax_cutoff 0.5

2016)

SPINGO (Allard et v.1.3 spingo -d silva.fa -k 8 -a -i Cam16S.fa > Cam16S.out

al., 2015)
534
535  2.2.1 Datasets
536  We used nanopore sequencing data from our mock community and freshwater amplicons for benchmarking the
537  classification tools. We therefore subsampled (a) 10,000 reads from each of the three mock community sequencing
538 replicates (section 1.4), and (b) 10,000 reads from an aquatic sample (April-8; three random draws served as
539  replicates). We then used the above twelve classification tools to classify these reads against the same database,
540  SILVA v.132 (Quast et al., 2013) (Figure 2; Supplementary Figure 1).
541
542 2.2.2 Comparison of mock community classifications
543 For the mock community classification benchmark, we assessed the number of unclassified reads, misclassified
544 reads (i.e. sequences not assigned to any of the seven bacterial families), and the root mean squared error (RMSE)
545 between observed and expected taxon abundance of the seven bacterial families. Following the detection of a
546 strong bias towards the Enterobacteriaceae family across all classification tools, we also analysed RMSE values
547  after exclusion of this family (Figure 2b-c).

548
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549  2.2.3 Comparison of river community classifications

550 For the aquatic sample, the number of unclassified reads were counted prior to monitoring the performance of
551 each classification tool in comparison with a consensus classification, which we defined as majority vote across
552 classifications from all computational workflows. We observed stable results across all three draws of 10,000
553 reads from the same dataset (data not shown), indicating a robust representation of the performance of each
554  classifier.

555

556  2.2.4 Memory and runtime measurements

557 To systematically assess the computational requirements and performance metrics of the twelve classification
558 methods, 15 random subsamples of the same aquatic sample (April-8) were drawn. This test set involved 5 x 100,
559 5x 1,000 and 5 x 10,000 reads, each of which were independently classified by the different software frameworks
560 (commands summarised in section 2.2). CPU time, average and peak memory metrics were recorded on a single
561 computing node (Supplementary Figure 1). Due to their reusability, tool-specific reference index file generations
562  were omitted from these measurements.

563

564  2.2.5 Overall classification benchmark

565 Minimap2 performed second best at classifying the mock community (lowest RMSE), while also delivering
566 freshwater bacterial profiles in line with the majority vote of other classification tools (Figure 2), in addition to
567 providing comparably rapid speed (Supplementary Figure 1). To classify each of this study's full MinION data
568 sets within a reasonable memory limit of 50 Gb, it was necessary to reduce the number of threads to 1, set the
569  kmer size (k') to 15 and the minibatch size ('-K') to 25M.

570

571 2.3 Bacterial analyses

572

573 2.3.1 General workflow

574 After applying Minimap2 to the processed reads as explained above (section 2.2.5), we processed the resulting
575 SAM files by firstly excluding all header rows starting with the '@' sign and then transforming the sets of read
576 IDs, SILVA IDs, and alignment scores to tsv files of unique read-bacteria assignments either on the bacterial
577  genus or family level. All reads that could not be assigned to the genus or family level were discarded, respectively.

578 In the case of a read assignment to multiple taxa with the same alignment score, we determined the lowest
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579 taxonomic level in which these multiple taxa would be included. If this level was above the genus or family level,
580  respectively, we discarded the read.

581

582 2.3.2 Estimating the level of misclassifications and DNA contaminants

583 Across three independent sequencing replicates of the same linear bacterial community standard (section 2.2.1),
584  we found that the fraction of reads assigned to unexpected genus level taxa lies at ~1 % when using the Minimap2
585  classifier and the SILVA v.132 database.

586

587 Raw quantified DNA, PCR amplicons and sequencing read counts were considerably less abundant in DI water
588 negative controls, as compared to actual freshwater specimens (Supplementary Table 2a). Only the negative
589 control of the most prolific flow cell run (August 2018) passed the relatively high confidence threshold of 37,000
590 sequencing reads on the family level (Figure 3b; Supplementary Figure 3; section 2.4). Further inspection of these
591 negative control reads revealed that their metagenomic profile closely mimicked the taxonomic classification
592 profiles of river samples within the same sequencing batch, in addition to low-level kit contaminants like
593 alphaproteobacteria of the Bradyrhizobium and Methylobacterium genus (Salter et al., 2014) which were
594 otherwise nearly completely absent in any of the true aquatic isolates (Supplementary Table 8).

595

596  2.3.3 Determination of nanopore sequencing accuracy

597 Minimap?2 alignments against mock community taxa were used to determine the mean read-wise nanopore

598 sequencing accuracy for this study (92.08 %), as determined by the formula:

599 accuracy = 1 - (read mismatch length + read alignment length)

600

601 These values were calculated for each of all eight species against each sequencing replicate, using the samtools
602 (v.1.3.1) stats function (Li et al., 2009).

603

604 2.4 Rarefaction and high-confidence samples

605 Sample-specific rarefaction curves were generated by successive subsampling of sequencing reads classified by
606 Minimap2 against the SILVA v.132 database (section 2.2.1). For broader comparative data investigations, we
607 chose to only retain samples that passed a conservative minimum threshold of 37,000 reads. Family and genus

608 level species richness was hence kept at ~90 % of the original values, in accordance with stable evenness profiles
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609  across a series of 100 bootstrap replicates (Supplementary Figure 3; section 2.4.1). Although we mainly present a
610 single example rarefied dataset within this manuscript, we repeated each analysis, including PCAs, hierarchical
611 clustering and Mantel tests, based on additional rarefied datasets to assess the stability of all results.

612

613  2.4.1 Mantel test

614 We performed Mantel tests to compare rarefied datasets with the full dataset. We therefore compared the
615 Euclidean distance based on Z-standardised bacterial genera between all samples with more than 37,000 reads
616  (two-sided test, 99,999 permutations). This resulted in a Pearson correlation of 0.814 (p = 2.1*10*) for our main
617 rarefied dataset (results of the Mantel test applied to the remaining three other rarefied datasets: R = 0.819 and p
618 =1.0¥10% R = 0.828 and p = 8.0*105, R = 0.815 and p = 1.4*10, respectively). Results of the Mantel tests
619 applied to the genus level bacterial classifications were also similar for all four subsampled datasets (R = 0.847
620  andp=1.0*10", R =0.863 and p=1.0*10", R = 0.851 and p = 1*10”°, R = 0.856 and p = 1.0*¥107).

621

622 2.5 Meta-level bacterial community analyses

623 All classification assessment steps and summary statistics were performed in R or Python (https://github.com/d-
624  j-k/puntseq). We used the Python package scikit-bio for the calculation of the Simpson index and the Shannon's
625 diversity as well as equitability index.

626

627 2.6 Hierarchical clustering, principal component, mixture model and outlier analyses

628  Rarefied read count data was subjected to a logio(x+1) transformation before hierarchical clustering using the
629  complete linkage method. Resulting family and genus dendrograms were separated into four groups (clusters C1
630 - C4), while sample trees were split into two groups (separating mock communities from aquatic samples).

631

632 For PCA analyses, rarefied read count data was subjected to logl10(x+1) and Z-transformations. Negative control
633  samples were removed. Mock community samples were initially removed to then be re-aligned to the eigenspace
634 determined by the aquatic samples. We provide PCA visualisations of the four main principal components (PCs
635 explaining >5 % variance, respectively). For each of these relevant PCs, we further highlight the ten most
636 important features (i.e. taxa with largest weights) and their contributions to the PCs in barplots. To assess statistical

637  differences in the PC3 component contribution between the three seasonal time points, a Kruskal-Wallis H-test
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638 with corresponding aquatic sample groupings was applied, followed by post-hoc comparisons using two-sided
639  Mann-Whitney U rank tests.

640

641 We fit a zero-inflated log-normal mixture model of each bacterial taxon against the different time points using the
642 fitFeatureModel function embedded in the R package metagenomeSeq (Paulson, Stine, Bravo, & Pop, 2013). As
643  only three independent variables can be accounted for by the model (including the intercept), we chose to
644 investigate the difference between the spring (April) and summer (June, August) months. Seven significant
645 bacterial taxa were inspected below a nominal P-value threshold of 0.05: Cyanobiaceae (1.5%10%), Listeriaceae
646  (2.0*10%), Azospirillaceae  (6.8*10%), Cryomorphaceae (1.3*1073), Carnobacteriaceae  (4.3%¥107),
647  Microbacteriaceae (0.014), Armatimonadaceae (0.046).

648

649 To determine location and time point-specific bacterial overabundance (outlier analysis), we identified taxa which
650  were 1.) tagged by more than 500 reads and 2.) at least five times more abundant in any single sample than in the
651  mean of all samples combined.

652

653 2.7 Identification of the core microbiome

654  The core microbiome was calculated based on rarefied read count data from four independent downsampling sets
655 on either family or genus level (Figure 4; Supplementary Figure 4). It represents the most abundant taxa that
656 showed relatively consistent abundance profiles between samples, based on hierarchical clustering analysis on
657 one independent rarefaction (Figure 4a, C2 and C4; Supplementary Figure 4a, C3 and C2) and rarefactions with
658 a median abundance of > 0.1 %. For the genus level, only those with median abundance of > 0.2 % are displayed.
659

660 2.8 Pathogen candidate assessments

661 A list of 55 known bacterial pathogenic genera, spanning 37 families, was compiled for targeted sequence testing.
662 This was done through the manual integration of curated databases and online sources, foremost using PATRIC
663 (Wattam et al., 2017) and data on known waterborne pathogens (Jin et al., 2018) (Supplementary Table 3a).
664 Additionally, we integrated known genera from a large wastewater reference collection (Wu et al., 2019)
665  (Supplementary Table 3b).

666
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667 To identify if DNA reads assigned to Leptospiraceae were more similar to sequence reads of previously identified
668 pathogenic, intermediate or environmental Leptospira species, we built a neighbour-joining tree of Leptospiraceae
669  reads classified in our samples data, together with sequences from reference databases (Figure 8d; species names
670  and NCBI accession numbers in clockwise rotation around the tree in Supplementary Table 4d). We matched the
671 orientation of our reads, and then aligned them with 68 Leptospira reference sequences and the Leptonema illini
672 reference sequence (DSM 21528 strain 3055) as an outgroup. We then built a neighbour-joining tree using Muscle
673 v.3.8.31 (R. C. Edgar, 2004), excluding three reads in the ‘Other Environmental’ clade that had extreme branch
674 lengths >0.2. The reference sequences were annotated as pathogenic and saprophytic clades P1, P2, S1, S2 as
675 recently described (Vincent et al., 2019). Additional published river water Leptospira that did not fall within these
676  clades were included as ‘Other Environmental’ (Ganoza et al., 2006). Similarly, we constructed phylogenies for
677  the Legionella, Salmonella and Pseudomonas genus, using established full-length 16S reference species sequences
678 from NCBI (Figure 8a-c; Supplementary Table 4a-c).

679

680 3. Total project cost

681  This study was designed to enable freshwater microbiome monitoring in budget-constrained research
682 environments. Although we had access to basic infrastructure such as pipettes, a PCR and TissueLyser Il machine,
683 as well a high-performance laptop, we wish to highlight that the total sequencing consumable costs were held
684 below £4,000 (Supplementary Table 6a). Individual processing and sequencing costs ranged at ~£75 per sample
685 (Supplementary Table 6b). With the current MinlON flow cell price of £720, we estimate that per-sample costs
686  could be further reduced to as low as ~£20 when barcoding and pooling ~100 samples in the same sequencing run
687 (Supplementary Table 6¢). Assuming near-equimolar amplicon pooling, flow cells with an output of ~5,000,000
688  reads can yield well over 37,000 sequences per sample and thereby surpass this conservative threshold applied

689 here for comparative river microbiota analyses.

690
691
692
693
694

695
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Supplementary Figure 1: Benchmarking of twelve taxonomic classifiers with nanopore full-length 16S
sequences. (a) Top 10 represented bacterial taxon families across all methods, based on the 10,000 aquatic reads
used in Figure 2d. (b) Comparison of computational performances with respect to (upper) runtime and average
memory (lower) usage for the classification of 5 x 100, 5 x 1,000 and 5 x 10,000 random read draws of the same
sample. BLASTN based classifications of 10,000 read sets are omitted, as their runtimes exceeded 14 days (>10°
seconds).
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Supplementary Figure 2: Bioinformatics consensus workflow. Essential data processing steps, from nanopore
sequencing to spatiotemporal bacterial composition analysis (Material and Methods). After full-length 16S rDNA
sequencing with the MinION (R9.4.1 flow cell), local basecalling of the raw fast5 files was performed using
Guppy (Wick, Judd, & Holt, 2019). Output fastq files were filtered for length and quality (Material and Methods),
and reads assigned to their location barcode using Porechop. We then used Minimap2 (k = 15) and the SILVA
v.132 database for taxonomic classifications. Rarefaction reduced each sample to the same number of reads
(37,000), allowing for a robust comparison of bacterial composition across samples in various analyses.
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Supplementary Figure 3: Impact of rarefaction on diversity estimation. (a) Example rarefaction curve for
bacterial family classifications of the 'April-1' sample. The chosen cut-off preserves most (~90 %) of the original
family taxon richness (vertical line). (b) Difference between original and rarefied family richness at 37,000 reads
across all freshwater sequencing runs with quantitative sequencing outputs above the chosen cut-off. Boxplots
feature 100 independent rarefactions per sample. Error bars represent Q1 — 1.5*IQR (lower), and Q3 + 1.5*IQR
(upper), respectively. (c) Diversity visualisation of the ten most abundant bacterial families across all samples
with sequencing outputs >37,000 reads, through 400 ‘unordered bubbles’. Taxonomic proportions and colours are
in accordance with Figure 3b. Shannon (H) and Simpson (D) indices for all samples indicate marginal differences
between pairs of original and rarefied sets.
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Supplementary Figure 4: River Cam core microbiome analysis on the bacterial genus level. (a) Hierarchical
clustering of bacterial genera abundances across freshwater samples after rarefaction, together with the mock
community control. In similarity to the family analysis displayed in Figure 4, bacterial genera are clustered into 4
groups. Two of these (C3 and partially C2) correspond to the core microbiome of ubiquitously abundant genera,
one (C4) corresponding to the main mock community genera and one (C1) corresponding to the majority of rare
accessory taxa. (b) Dominant river core microbiome on the genus level. Violin plots (logw scale of relative
abundance [%] across all samples, Naa = 7, e = 2, Naes = 6) summarise fractional representation of the top 27
bacterial genera and corresponding families from clusters C2 and C3, sorted by median total abundance. Vertical
dashed line depicts 0.1 % proportion. Out of the top 16 core families (Figure 4b), only the NS11-12 marine group
family was found not to be represented on the genus level; NS11-12 marine group genera are mainly composed
of uncultured bacteria, which here could not be classified at higher resolution.
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Supplementary Figure 5: Principal component analysis of river bacterial family compositions. (a-b) PCA
with two independent rarefaction sets to 37,000 reads in all freshwater sequencing samples. Numbers and coloured
dots indicate locations for each time point. The first and second principal components (PC1 and PC2, combined
variance: ~41 %) robustly capture outlier samples 'April-7' along PC1 and 'April-2', 'August-4' and 'April-8' along
PC2. (c-d) Fractional loads of the ten bacterial families most strongly contributing to changes along PC1 (c) and
along PC2 (d). Error bars represent standard deviation of these families to the respective PC across four
independent rarefactions. Subsequent principal components (PC3 and PC4) are less outlier-driven and depict
spatial and temporal metagenomic trends within the River Cam.
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820  Supplementary Figure 6: Cambridge weather and River Cam flow rate. (a) Daily air temperature [°C], (b)
821 daily sunshine [hours], and (c) daily rainfall [mm] of Cambridge in 2018 (black trend line) vs. 1998-2017 (blue
822 background trend lines). (d) Cam River gauged daily flow [m3s™!] in 2018 (black trend line) vs. 1968-2017 (blue
823  background trend lines). Data was compiled from public repositories
824 https://www.cl.cam.ac.uk/research/dtg/weather/ and https://nrfa.ceh.ac.uk/. Gauged daily flow measurements at
825 Jesus Lock, Cambridge (between sampling locations 5 and 6; NRFA #33016) were discontinued in 1983. Yet,
826  contemporary flow rates can be modelled with high accuracy (Pearson's R = 0.9, R? = 0.8) through linear data
827 integration of three upstream stations already in operation since before 1983: Rhee at Wimpole (NRFA #33027,
828 70.2 % model weight), Granta at Stapleford (NRFA #33053, 19.6 % model weight) and Cam at Dernford (NRFA
829  #33024, 10.3 % model weight).
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Supplementary Figure 7: Key challenges of freshwater monitoring with nanopore sequencing. (a-b)
Correlation analysis between DNA extraction yield, 16S amplification yield and raw sequencing output
(Supplementary Table 2). (a) DNA concentrations (x-axis) obtained from 30 freshwater samples after extraction
with the DNeasy PowerWater Kit (Material and Methods) are compared against the DNA concentration of the
same samples after full-length 16S PCR amplification (y-axis), as measured by Qubit dsDNA HS. (b) The DNA
concentration obtained for each sample after full-length 16S PCR amplification (x-axis) is compared against the
final number of demultiplexed nanopore sequencing reads. Samples with a minimum input concentration
measurement of ~5 ng/pl yielded sequencing outputs sufficient to pass the rarefaction threshold of 37,000 reads.
(c) Multiple sequence alignment of an example set of related nanopore 16S sequences, displaying increased indel
rates at homopolymer reference sites (underlined); the mean sequencing error rate for this study lies at 7.92 %.
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852 SUPPLEMENTARY TABLE LEGENDS

853 Table S1: Summary of samples and metadata. (a) Sampling locations. (b) Environmental metadata by sample. (c)
854  Environmental metadata by time point.

856 Table S2: Summary of raw DNA, amplicon and sequencing yields. (a) Water DNA extraction yields. (b) Full-
857  length 16S PCR amplicon extraction yields. (c) Nanopore sequencing read metrics.

859  Table S3: Summary of pathogen and wastewater bacterial genera tested. (a-b) List of pathogen (a) and wastewater
860  (b) candidate bacterial genera.

862  Table S4: Summary of reference sequences for high-resolution pathogen mapping. (a-d) References and NCBI
863 accessions for Legionella (a), Salmonella (b), Pseudomonas (c) and Leptospira (d).

865 Table S5: Summary of multi-species Leptospira quantifications by Tagman qPCR.

867 Table S6: Summary of project costs. (a) Basic sequencing workflow cost estimate. (b) Cost estimate per sample,
868  based on a 12-plex MinION sequencing run. (c) Projected cost estimate per sample, based on a 100-plex MinION
869  sequencing run.

871  Table S7: Summary of full-length 16S primer sequences (5' - 3").

873 Table S8: Summary of negative controls. (a-c) Relative classification output per sample (%), sorted by negative
874  control abundances in April (a), June (b) and August (c).
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