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ABSTRACT

Recent large genome-wide association studies (GWAS) have identified multiple confident risk
loci linked to addiction-associated behavioral traits. Genetic variants linked to addiction-
associated traits lie largely in non-coding regions of the genome, likely disrupting cis-regulatory
element (CRE) function. CREs tend to be highly cell type-specific and may contribute to the
functional development of the neural circuits underlying addiction. Yet, a systematic approach
for predicting the impact of risk variants on the CREs of specific cell populations is lacking. To
dissect the cell types and brain regions underlying addiction-associated traits, we applied LD
score regression to compare GWAS to genomic regions collected from human and mouse assays
for open chromatin, which is associated with CRE activity. We found enrichment of addiction-
associated variants in putative CREs marked by open chromatin in neuronal (NeuN+) nuclei
collected from multiple prefrontal cortical areas and striatal regions known to play major roles in
reward and addiction. To further dissect the cell type-specific basis of addiction-associated traits,
we also identified enrichments in human orthologs of open chromatin regions of mouse
neuronal subtypes: cortical excitatory, D1, D2, and PV. Lastly, we developed machine
learning models from mouse cell type-specific regions of open chromatin to further dissect
human NeuN+ open chromatin regions into cortical excitatory or striatal D1 and D2 neurons and
predict the functional impact of addiction-associated genetic variants. Our results suggest that
different neuronal subtypes within the reward system play distinct roles in the variety of traits
that contribute to addiction.

Significance Statement:

We combine statistical genetic and machine learning techniques to find that the

predisposition to for nicotine, alcohol, and cannabis use behaviors can be partially
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explained by genetic variants in conserved regulatory elements within specific brain
regions and neuronal subtypes of the reward system. This computational framework can
flexibly integrate open chromatin data across species to screen for putative causal variants in a

cell type- and tissue-specific manner across numerous complex traits.
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INTRODUCTION

Substance use disorders (SUD) have increased in prevalence over the last three decades,
with an estimated 100 million cases worldwide (GBD 2016 Alcohol and Drug Use Collaborators,
2018; Eddie et al., 2019). Pharmacological interventions are limited in their ability to cure
addiction due to physiological and logistical barriers (Pullen and Oser, 2014; Pear et al., 2019).
As the societal epidemic of substance use grows, there is a greater need to understand the
neurobiology of substance use behaviors and addiction.

The reward circuits co-opted in addiction as well as the associated neural cell types are
highly conserved across primates and rodents (Monaco et al., 2015; Grillner and Robertson,
2016; Scaplen and Kaun, 2016; Hodge et al., 2019). It is generally accepted that addictive
substances promote impulsive and compulsive behavior by activating the mesolimbic dopamine
system, in which dopaminergic inputs from the ventral tegmental area project to medium spiny
neurons (MSN) of the nucleus accumbens (NAc) in the ventral striatum (STR) (Koob and
Volkow, 2010). Glutamatergic inputs to the NAc from the amygdala, frontal cortex, and
hippocampus contribute to motivational action through the extrapyramidal motor system (Koob
and Volkow, 2010). Subsequently, the NAc sends outputs to nuclei of the ventral pallidum,
which are critical for processing and modulating substance reward signal (Koob and Volkow,
2010). The development of compulsive substance-seeking is hypothesized to be linked to
recruitment of the dorsal STR, which together with the prefrontal cortical regions
regulates a variety of reward and addiction-related phenotypes (Koob and Volkow, 2010;
Goldstein and Volkow, 2011). These findings emphasize that substance abuse behavior

involves the interplay of the brain regions and cell types that make up the reward system.
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95 Increasing evidence reveals strong genetic links to substance use risk (Pasman et al.,
96  2018; Erzurumluoglu et al., 2019; Karlsson Linnér et al., 2019; Liu et al., 2019b) and SUD
97  (Kendler and Prescott, 1998a, 1998b; Dick, 2016; Waaktaar et al., 2018). Genome-wide
98  association studies (GWAS) report that genetic risk for substance use shares underlying
99  architecture with other neuropsychiatric disorders (Pasman et al., 2018; Liu et al., 2019b), of
100  which risk variants tend to lie in non-coding, functional regions of the human genome (Jensen,
101 2016). These genetic variants, including single nucleotide polymorphisms (SNPs), can disrupt
102 transcription factor binding in cis-regulatory elements (CREs) with varying impact on gene
103 regulation and downstream neural circuitry. Many CREs have tissue- and cell type-specific
104  activity (Roadmap Epigenomics Consortium et al., 2015), suggesting that cell types and tissues
105  underlying addiction may be uniquely targeted by genetic variants at these CREs. GWAS for
106  nicotine-, alcohol- (Liu et al., 2019b), and cannabis-use traits (Pasman et al., 2018) have
107  identified multiple confident risk loci and SNPs linked to addiction-associated phenotypes with
108  brain-specificity, yet their effects on the CREs of specific brain regions and cell types involved
109  in addiction pathophysiology are an open area of inquiry.

110 A comparison of GWAS to functional annotations of the human genome have
111  yielded estimates that over 90% of SNPs associated with complex phenotypes lie within
112 functional non-coding regions, which are marked by epigenetic features including open
113 chromatin. (Maurano et al., 2012; Finucane et al., 2015). Linkage disequilibrium (LD) of
114  significant SNPs complicates the identification of causal variants contributing to genetic risk
115  (Bush and Moore, 2012). Regression of SNP LD scores against GWAS summary statistics
116  (LDSC regression) is the dominant method for relating human genetics to functional

117  annotations. LDSC regression partitions risk SNPs identified by GWAS into the tissues or
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118  cell types in which genetic variation in CREs may contribute to heritability of complex
119  traits (Finucane et al., 2015; Visscher et al., 2017). Yet, the functional consequences of risk
120  SNPs in CRE sequences cannot be reliably inferred from DNA sequences alone (Shlyueva et al.,
121 2014). Recent developments in epigenomic assays (Buenrostro et al., 2013; Mo et al., 2015; Tak
122 and Farnham, 2015) and machine learning (Ghandi et al., 2014; Zhou and Troyanskaya, 2015;
123 Kelley et al., 2016, 2018; Lee, 2016) can predict cell types affected by addiction-associated
124 genetic variation to propose cell type-specific hypotheses on the pathogenesis of addiction.

125 Here, we implement a framework that links the genetic predisposition to addiction-
126  associated traits to specific brain regions and cell types within them by identifying which
127  have open chromatin regions that are enriched for SNPs identified by GWAS. We first
128  intersect SNPs measured by GWAS across human and mouse bulk tissue and cell type-specific
129  open chromatin regions to identify putative region- and cell type-specific CREs that may be
130  impacted by genetic variation associated with addiction-related traits. To overcome limits of
131  cellular resolution in the human brain, we apply convolutional neural network models
132 trained on transgenically-labelled neuron populations in the reward system of mice to
133 predict the cell type-specificity of GWAS-associated SNPs in the human genome. We
134 further apply these models to the problem of screening for putative causal SNPs within dense
135  loci reported in GWAS for addiction-associated traits. This pipeline, to our knowledge, describes
136  the first integrative analyses across species, brain regions and cell types to screen for candidate
137  causal addiction-associated genetic risk variants in dense loci with numerous significant SNPs in

138 LD.
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139 RESULTS

140  Genetic risk for substance use traits is associated with the neuronal epigenomes of reward
141  areas

142 Recent well-powered GWAS have identified dozens of candidate genetic risk loci
143 associated with seven addiction-associated traits: age of smoking initiation
144 (AgeOfInitiation), average number of cigarettes smoked per day
145 (CigarettesPerDay), having ever regularly smoked (SmokingInitiation), being a
146  former versus current smoker (SmokingCessation), the number of alcoholic drinks
147  per week (DrinksPerWeek), and lifetime cannabis use (Cannabis), and risk tolerance
148 (RiskyBehavior) (Pasman et al., 2018; Karlsson Linnér et al., 2019; Liu et al., 2019b). These
149  GWAS measure reward, risk tolerance, and various substance use behaviors, thereby providing
150 a means of studying genetic variation associated with addiction. We found that 72-98% of
151  addiction-associated genetic variants lie in non-coding regions of the genome (Figure 1A). Of
152  those risk variants, 47-85% lie in introns, which is a substantial over-representation in each
153  GWAS (odds ratio, ORgcofmitiation =2-3, ORcannabis = 2.3, ORcigarettesperday = 1.4, ORprinksperweek =
154 1.6, ORRgiskyBehavior = 1.4, ORsmokingCessation = 1.8, ORsmokingmitiation =1.3, Fisher’s Exact Pgonferroni <
155 8 x 107%). Furthermore, pairwise genetic correlations of risk alleles in these seven GWAS
156 indicated shared and distinct genetic architecture across addiction-associated traits (r,,
157  Supplemental Figure 1A). Although common genetic variants are shared between addiction-
158  associated traits on a genome-wide scale, the reported significant loci are often unique to a
159  particular trait and are densely packed with SNPs in high LD (Supplemental Figure 1B). SNPs
160  that are associated with the seven traits span 205 non-overlapping loci across the human

161 genome and include on average 71 SNPs (minimum 1, median 22.5, maximum 1780) within
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162  each locus that are either genome-wide significant (Pgwas <5 x 10'8) or in high LD with the
163  lead SNPs (R*> 0.8, Supplemental Table 1).

164 We investigated whether genetic variants implicated by addiction-associated GWAS
165 show a tendency to cluster at putative cis-regulatory elements (CREs) of the brain using a
166  partitioned heritability LDSC regression approach, which looks for an enrichments of
167  significant SNPs from GWAS in human annotations (Bulik-Sullivan et al., 2015b; Finucane
168 et al, 2018). We applied LDSC to compare the seven addiction-associated GWAS to open
169  chromatin region (OCR) annotations of sorted neuronal (NeuN+) and glial (NeuN-) nuclei across
170 14 brain regions(Fullard et al., 2018) (Figure 1B). We found that genetic variants associated
171  with SmokingInitiation, SmokingCessation, DrinksPerWeek, and Cannabis
172 significantly enriched in NeuN+ OCRs of brain regions known and speculated to contribute to
173 reward and addiction(Volkow and Morales, 2015) (FDR < 0.05). We found that genetic variants
174  associated with SmokingInitiation and Cannabis shared enrichment in NeuN+
175  prefrontal cortical OCRs (from orbitofrontal cortex and dorsolateral prefrontal cortex) while
176  those associated with SmokingCessation and DrinksPerWeek shared enrichment in
177  NeuN+ striatal OCRs (both putamen and NAc). The enrichments of NeuN+ OCRs indicate that
178  genetic variation in epigenomes of neuronal populations from frontal cortex and striatum
179  contribute to addiction liability. The difference in NeuN+ enrichments between regions across
180  addiction-associated traits can likely be explained by the difference in proportions and identities
181  of neuronal subtypes of each area, so we sought to dissect the different neuronal subtypes
182  contributing to these enrichments.

183 Broad marker-gene based labeling approaches, such as using NeuN to label neurons, do

184  not capture the rich diversity of neuronal subtypes; bulk NeuN+ open chromatin signal
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185 represents an average signal from heterogeneous neuronal subtypes, each with distinct
186  epigenomic landscapes, gene regulation, network connectivity. Hence, NeuN-labeled open
187  chromatin profiles likely do not capture OCRs unique to less populous neuronal subtypes. The
188  difference in proportions of neuronal subtypes between brain regions may also contribute to
189  brain region-specific NeuN+ OCR enrichment for GWAS variants of addiction-associated traits.
190  We therefore applied LDSC regression GWAS enrichment on single cell open chromatin profiles
191  from human postmortem isocortical, striatal, hippocampal, nigral (Figure 1C) and occipital
192 cortical cell types (Lake et al., 2018; Corces et al., 2020) (Figure 1D). We found that addiction-
193  associated genetic variants largely enriched in both excitatory and inhibitory neuronal OCRs.
194  Genetic variants associated with SmokingInitiation, SmokingCessation,
195 DrinksPerWeek, and Cannabis enriched in isocortical excitatory neuron OCRSs
196  (Figure 1C). We found enrichment of genetic variants associated with
197 CigarettesPerDay, SmokingInitiation, SmokingCessation,
198 DrinksPerWeek, Cannabis, and RiskyBehavior in striatal inhibitory neurons.
199  Genetic variants associated with Cannabis also enriched in isocortical inhibitory neuron
200  and unclassified neuron OCRs. Among the glial cell types, only oligodendrocyte precursor
201  cell OCRs were enriched for an addiction-associated trait (SmokingInitiation). We
202  found enrichment of genetic variants associated with AgeOfInitiation and
203 SmokingCessation in OCRs of occipital cortical excitatory neurons. We found no
204  enrichment of genetic variants associated with CigarettesPerDay for OCRs of occipital
205  cortex cell types. Genetic variants associated with SmokingInitiation, which enriched in
206  astrocyte, endothelial, inhibitory, and oligodendrocyte precursor cell OCRs from occipital

207  cortex, shared enrichment in NeuN- OCRs of mediodorsal thalamus (Figure 1B). Interestingly,
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208  genetic variants associated with SmokingCessation, which showed enrichment for striatal
209  NeuN+ OCRs, enriched only for OCRs of occipital cortical excitatory neurons and not cortical
210  inhibitory neurons. Sorted bulk ATAC-seq only showed enrichment of SmokingCessation
211  associated genetic variants in OCRs of NeuN+ striatal regions, which are largely composed of
212 inhibitory MSNs. We overall found that the enrichments of addiction-associated genetic
213 variants in Corces et al. isocortex OCRs agreed with those in Lake e al. occipital cortex
214  OCRs. Single-cell epigenomics of human postmortem brain can further dissect the genetic risk
215  for substance-use traits into neuronal subtypes that otherwise would not be parsed with bulk
216  tissue assays.

217 We confirmed that our pipeline for LDSC regression on NeuN-sorted OCRs from 14
218  brain regions is able to reproduce the GWAS enrichments published by Fullard et al. While our
219  approach uses OCRs from reproducible ATAC-seq peaks rather than differentially accessible
220  peaks, we found consistent enrichments of genetic variants associated with schizophrenia risk
221  (Schizophrenia), highest level of educational attainment (EduAttain), and habitual
222 sleep duration (SleepDuration) (Supplemental Figure 2B). We did not find enrichment in
223 brain OCRs of genetic variants identified in several low-powered GWAS (cocaine dependence
224  (CocaineDep) (Cabana-Dominguez et al., 2019), opioid dependence (OpioidDep) (Cheng
225 et al., 2018), and obsessive-compulsive disorder (OCD) (International Obsessive Compulsive
226  Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics
227  Association Studies (OCGAS), 2018), each of which had included fewer than 5000 individuals
228  with the trait (Supplemental Figure 2A). In addition, we found no enrichments in brain OCR
229  for several well-powered studies of traits related to addiction behaviors, including multi-site

230  chronic pain (ChronicPain) (Johnston et al., 2019) and cups of coffee per day

10
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231 (CoffeePerDay) (Coffee and Caffeine Genetics Consortium et al., 2015). We also found no
232 enrichment in brain OCRs for anthropometric traits, including coronary artery disease (CAD)
233 (Howson et al., 2017), bone mineral density (BMD) (Kemp et al., 2017), and lean body mass
234  (LBM) (Zillikens et al., 2017) (Supplemental Figure 2B, C). Lastly, we validated that human
235  OCRs from non-brain tissues would not enrich for risk variants associated with brain traits. We
236  gathered publicly available OCRs from stomach ATAC-seq, adipocyte ATAC-seq, preadipocyte
237  ATAC-seq, liver DNase-seq, and lung DNase-seq profiles (ENCODE Project Consortium, 2012;
238  Thurman et al., 2012; Davis et al., 2018; Cannon et al., 2019) (Supplemental Figure 4D) and
239  performed LDSC regression on the total 18 GWAS from above. To our expectation, we did not
240  find enrichments of stomach, liver, or lung OCRs for genetic variants associated with brain-
241  related traits. We did find enrichment of BMD in lung OCRs, a connection previously recognized
242 (Lee et al., 2016; Kim et al., 2019; Zeng et al., 2019). The secondary GWAS enrichments in
243  other traits and foregrounds demonstrate two trends: a GWAS trait would enrich if the GWAS
244  was properly powered to detect genetic risk variants, and the foreground regions are from cell
245  types or tissue of that trait’s potential etiological origin.

246

247  Mouse-human conserved cell type-specific open chromatin enrich for addiction risk loci
248 In order to further interrogate the different neuronal subtypes that comprise the
249  enrichment of addiction-associated genetic variants in OCR sets measured by Fullard ez al.,
250 Lake et al., and Corces et al. (Figure 1, Supplemental Figure 2), we performed targeted
251  epigenomic experiments in mouse on isolated neuronal subtypes from key brain regions of
252  the reward circuit: frontal cortex (CTX), caudoputamen (CPU), and the nucleus accumbens

253  (NAc). We isolated nuclei from specific cell types for ATAC-seq using a modified version of

11
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254  the INTACT approach (Mo et al., 2015) called cre-specific nuclei anchored independent labeling
255  (cSNAIL). cSNAIL-INTACT was applied to isolate nuclei marked by Pvalb, Sst, Drdl, and
256  Adora2a in cre-driver lines using a shortened form of the Sunl-Gfp fusion protein packaged
257  with AAV-PHP.eb and delivered through retro-orbital injection (Figure 2A). We show that
258  cell type-targeting provided markedly distinct genome-wide ATAC-seq profiles compared to
259  bulk tissue ATAC-seq alone (Supplemental Figure 3A). cSNAIL ATAC-seq specifically
260  captured nuclei with increased accessibility around the marker gene that was driving Cre
261  recombinase expression (Supplemental Figure 3B). Accessibility around cSNAIL ATAC-seq
262  transcription start sites (TSS) strongly correlated with matched pseudobulk gene expression in
263  the same cell type and tissue (Methods, both Pearson and Spearman correlation Ppons < 2 x 10'16,
264  Supplemental Figure 3C,D). We applied HALPER, an approach that leverages reference-
265  free multi-species genome alignments to produce 1-1 contiguous CRE orthologs (Zhang et
266  al., 2020), to reliably map ~70% of mouse neuronal subtype OCRs to their human orthologs in
267  the hg38 human reference genome (Methods) for LDSC regression GWAS analysis.

268 Our GWAS enrichment analysis of human orthologs from mouse OCRs (mouse-human
269  orthologs) measured in various neuronal subtypes and bulk tissue (Figure 2B) show that
270  genetic variants associated with SmokingInitiation and Cannabis shared enrichment in
271  cortical PV and EXC neuron OCRs from both Mo et al. and this study (Pfenning data, FDR <
272 0.05). Genetic variants associated with Cannabis further enriched in CTX bulk tissue OCRs,
273 which could be attributed to signal from cortical EXC and PV neuron populations. Cortical PV
274  neuron OCRs further enriched with genetic variants associated with DrinksPerWeek.
275 SmokingCessation associated genetic variants distinctly enriched in cortical VIP neuron

276  OCRs.

12
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277 Within neuronal subtypes from CPU and NAc, we found enrichment of genetic variants
278  associated with all measured addiction-associated traits in CPU and NAc D2 MSN OCRs.
279  Genetic variants associated with all measured traits excluding SmokingInitiation and
280 RiskyBehavior all enriched in CPU and NAc D1 MSN OCRs. CPU D1 MSN OCRs were
281  enriched with genetic variants associated with all measured traits excluding RiskyBehavior.
282  We found that CPU bulk tissue OCRs were enriched with genetic variants associated with all
283  measured addiction-associated traits excluding AgeOfInitiation and RiskyBehavior.
284  Distinctly, CPU PV+ and SST+ neuron OCRs enriched with genetic variants associated with
285 Cannabis.

286 Corresponding to our analysis of human brain OCRs, we also confirmed the specificity of
287  mouse-human orthologous CRE enrichments for genetic variants associated with addiction-
288  related, brain-related, and non-brain related traits (Supplemental Figure 4). We found
289  enrichments of genetic variants associated with ChronicPain in cortical PV neuron OCRs
290  from both Mo et al. and this study (Supplemental Figure 4A). Within striatal cell types, we
291  found that CPU D2 and NAc D1 MSN OCRs were enriched for genetic variants associated with
292 ChronicPain. In contrast, CPU D1 and NAc D2 MSN OCRs were enriched for genetic
293  variants associated with OpioidDep. Genetic variants associated with OpioidDep also
294 enriched in CPU DI MSN and CPU PV OCRs. Schizophrenia, EduAttain, and
295 SleepbDuration associated genetic variants all enriched in OCRs of all measured cell types
296  (Supplemental Figure 4B). None of these mouse-human orthologs enriched for genetic variants
297  associated with non-brain-related traits: BMD, CAD, and LBM (Supplemental Figure 4C). We
298  validated that our approach to map OCRs from mouse to human did not bias enrichment to brain

299  traits by performing GWAS enrichment on OCRs from mouse non-brain tissues (kidney, liver,

13
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300 and lung) (Supplemental Figure 4D). As expected, we did not find an enrichment for genetic
301  variants associated with a brain-related trait. We did find that mouse-human orthologs of lung
302  OCRs enrich for BMD, which concords with the enrichment of human lung OCRs.

303

304  Convolutional Neural Network (CNN) models of mouse cell type-specific CRE activity
305 refine human NeuN+ OCRs for GWAS enrichment

306 The genetic tools available for mouse research allowed us to isolate the nuclei of
307  specific neuronal subtypes and generate deep open chromatin profiles at greater cellular
308  resolution. However, a lack of mouse-human conservation in the cell type-specificity of
309 CREs could lead to false negatives and false positives at specific loci that add noise to
310  GWAS comparisons. To leverage the strengths of the mouse and human approaches, we
311  developed a procedure to predict the neuronal subtype-specificity of human OCRs using
312  machine learning models trained in mouse. The OCR profile of each neuronal subtype is a
313  result of a developmental cascade of transcription factors that cooperatively recognize and
314  bind to specific sequence elements in the genome, resulting in a neuronal subtype-specific
315 open chromatin profile (Spitz and Furlong, 2012). These complex combinations of sequence
316  features comprise regulatory code that links genome sequence to neuronal subtype-specific
317  open chromatin. This regulatory code can be effectively learned using convolutional neural
318 networks (CNNs) and has been demonstrated to be highly conserved between mouse and
319  human (Zhou and Troyanskaya, 2015; Chen et al., 2018)

320 The concordant pattern of enrichment for addiction associated genetic variants in human
321  and mouse-human orthologous OCRs suggested that risk variants may affect the regulatory

322  activity of neuronal subtypes conserved between human and mouse. We therefore devised
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323  and trained a collection of CNN binary classification models to learn the genome sequence
324  features that distinguish OCRs for cortical excitatory (EXC) neurons, striatal D1 MSNs, and
325  striatal D2 MSNs (Zhou and Troyanskaya, 2015; Kelley et al., 2016, 2018; Chen et al., 2018).
326  For each set of reproducible OCRs from mouse INTACT and cSNAIL group, we trained 5-fold
327  cross-validated models to predict the reproducible peaks from ten times the number of
328 nucleotide content-matched negative sequences (Methods). Our models made confident
329  predictions on held-out test sequences as reported by high Fl-scores, high area under the
330  precision-recall curves (Supplemental Figure SA), and low false positive rates at a blind
331  threshold of 0.5 (Supplemental Figure S5B). These models reproducibly learned
332 transcription factor motif families that are enriched in human neuronal subtypes of cortex
333 (MEF2, JUN) and striatum (POU, NRF1, ZFHX3), as previously reported by Fullard et al.
334  (Supplemental Figure SF, Supplemental Table 2).

335 We reasoned that NeuN+ OCR signal, which is comprised of OCR signals from
336  several neuronal subtypes, can be parsed into its component cell types by CNNs that are
337  trained to predict OCR activity in those component cell types. This enables the study of
338  human addiction genetics at a cell type-level resolution from high-quality tissue-level open
339  chromatin profiles. To discern whether NeuN+ OCR enrichments in addiction-associated
340  genetic variants come from the same cell types observed in Figure 3, we applied our trained
341  CNN models to predict whether bulk cortical or striatal NeuN+ OCRs have activity in either
342 cortical EXC or striatal D1 and D2 neurons, respectively (Figure 3A). We did not conduct these
343  analyses for PV neurons because they comprise a much lower percentage of cortical and striatal
344  neurons than the other neuron types (Beaulieu, 1993; Lefort et al., 2009). We ran LDSC

345  regression (Finucane et al., 2018) GWAS enrichments on the sets of NeuN+ OCRs predicted to
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346  be specific to cortical EXC, striatal D1, and striatal D2 neurons. Genetic variants associated with
347 SmokingInitiation, which initially enriched in OCRs of various NeuN+ frontal cortical
348  areas (Figure 1B), enriched in NeuN+ OCRs predicted to be active in EXC neurons (Figure
349  3B). Genetic variants associated with Cannabis, which enriched in NeuN+ cortical OCRs
350 (Figure 1B), also enriched in NeuN+ OCRs predicted to be active in EXC neurons. The
351 enrichments of excitatory cortical cell type-specific OCRs for SmokingInitiation and
352 Cannabis associated genetic variants agree with the results from the analysis of the Fullard et
353  al., Corces et al.,, and Lake et al. OCR datasets (Figure 1B, C). Genetic variants associated
354  with SmokingCessation and DrinksPerWeek, which enriched in PUT and NAc NeuN+
355 OCRs (Figure 1B), shared enrichment in OCRs predicted active in both D1 and D2 MSNs of
356  both PUT and NAc. The framework that we outline in Figure 3A refines addiction genetic risk
357  signal to neuronal subtypes and maintains the brain region context of the source NeuN+ OCR.
358  This framework can be applied to CREs from any tissue-cell type combination for which
359  bulk tissue open chromatin measurements are available from human and cell type open
360 chromatin measurements are available from another vertebrate (Chen et al., 2018; Minnoye
361 etal., 2020).

362

363  Convolutional Neural Network (CNN) models predict allele-specific activity of addiction-

364  associated GWAS SNPs in neuronal subtypes

365 Lastly, we applied our convolutional neural network (CNN) models to screen addiction-
366  associated genetic variants for predicted functional activity in EXC, D1, and D2 neuronal
367  subtypes. CNN-based approaches have been demonstrated to fine-map dense risk loci and select

368 candidate causal genetic variants (Alipanahi et al., 2015; Zhou and Troyanskaya, 2015; Kelley et
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369 al, 2016, 2018; Corces et al., 2020), yet none have been applied in the context of addiction-
370  associated genetic risk or in the cell types that we have assayed. We identified 14,790 unique
371  SNPs that were collected across the seven addiction-associated GWAS to score for
372  differential neuronal subtype OCR activity (Methods). We expect that many SNPs reported
373  from GWAS are significantly associated with traits due to LD rather than being the true
374  causal variant. When scored with our CNN models, the 96.2% of addiction-associated
375  SNPs that either do not lie in any OCR or in only NeuN- OCR have low probability to be
376  active in excitatory, D1, or D2 neuronal subtypes. We also found that these SNPs have
377  significantly lower predicted probability of activity than the remaining 3.8% of addiction-
378  associated SNPs in any NeuN+ OCR (Pgonferroni < 0.05, Figure 4A). We then predicted the
379  probability of activity for both the effect and non-effect allele and estimated the differential
380 impact of the alleles in order to fine-map candidate causal effect SNP and target neuronal
381  subtype and tissue. Most SNPs do not have predicted differential allelic activity in a
382  neuronal subtype, while a handful of SNPs have larger differential activity that deviate
383 from a normal distribution when visualized on quantile-quantile plots (Supplemental
384  Figure 5C, Methods). We outline in Supplemental Figure SD an approach to prioritize the
385 candidate causal SNPs by two lines of evidence: 1) a predicted differential neuronal
386  subtype OCR activity with large effect size that is controlled for false discovery (q-value <
387  0.05, Methods) and 2) having physical overlap with measured human NeuN+ OCR in
388  Fullard ef al. (Supplemental Figure 5D). We are able to prioritize S5 SNPs spanning 37 loci
389  to Tier A which have both significant predicted ASNP probability effect and overlaps a

390  Fullard ef al. NeuN+ OCR, 505 SNPs to Tier B that only have predicted ASNP probability
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391  effect, and 502 SNPs to Tier C as overlapping NeuN+ open chromatin without a predicted
392  significant ASNP probability effect (Supplemental Table 1).

393 One such SNP from Tier A, rs7604640, lies in human NeuN+ open chromatin specific
394  to striatum 46kb upstream of the SIX3 locus on chromosome 2. rs7604640 overlaps human
395  orthologs of mouse OCRs in only D1 and D2 neurons and we predict the effect allele of
396 rs7604640 has an increased probability of open chromatin activity in D1 OCRs of the
397  striatum compared to the non-effect allele (Figure 4B). rs7604640 is one of many off-lead
398  SNPs identified in the SmokingInitiation GWAS (Pgwas =3.04 x 107%) and is in high LD
399  with the SNP rs163522 (R2 = 0.856, Pgwas =1.11 x 10'"), which is independently significant
400  from the lead SNP, rs1004787 (R2 = 0.630, Pgwas =5.27 x 10'17). rs7604640 was reported by
401  HaploRegv4 to overlap a POU1F1 motif (Ward and Kellis, 2016), which our D1 models
402  predict to contribute towards increased probability of being active in D1 MSNs (Figure
403  4C). Furthermore, this SNP is a known cis-eQTL for the antisense SIX3-4S/ gene in striatal
404  regions from the Genotype-Tissue Expression (GTEX) project (GTEx Consortium, 2013, 2015;
405  Melé et al., 2015; GTEx Consortium et al., 2017). Anti-sense gene expression is one mechanism
406  of regulating their sense gene (Pelechano and Steinmetz, 2013; Barman et al., 2019), and
407  deletion of the gene SIX3 has been shown to inhibit development of D2 medium spiny neurons
408 (Xu et al., 2018). Altogether, this evidence formulates the hypothesis that common genetic
409  variant rs7604640 has D1 MSN-specific, allelic impact on open chromatin activity in a mouse-
410  human conserved putative CRE regulating the MSN regulator SZX3.

411  In addition to rs7604640, we report four loci with 1-4 candidate SNPs each in Tier A that
412 may be putative causal SNPs with cell type-specific activity in addiction-associated traits

413 (Supplemental Figure 6). The SNPs in these loci all have reported eQTL in frontal cortex
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414  or striatum tissues from GTEXx, and they overlap corresponding NeuN+ OCRs and mouse-
415 human orthologous OCRs. In some cases, our prioritized Tier A SNPs were predicted to
416  have ASNP effects (Methods) in only striatal MSNs, showcasing our framework’s ability to
417  predict cell type-specific impact. These SNPs include rs11191352 (Psmokinginitiation=2.12 x 10
418 7, Supplemental Figure 6A), rs9826458 (PRriskyBenavior= 4.36 X 1072, Psmokinginitiation=1.21 X 10
419 14, Supplemental Figure 6B), and rs9844736 (PriskyBehavior= 3.04 X 10'7, Psmokinglnitiation=3-58 X
420 107, Supplemental Figure 6C). In a few cases, our models predicted SNPs to have strong
421  ASNP effects across both cortical excitatory and striatal cell types. These include two SNPs
422  in the highly pleiotropic MAPT-CRHRI1 locus that are 152bp apart and in perfect LD with
423  each other, rs11575895 and rs62056779 (Supplemental Figure 6D). The prioritized SNPs in
424  the MAPT-CRHRI1 locus are genome-wide significant for 5 of the 7 addiction-associated
425  traits (Supplemental Table 1) and the locus has been implicated in other neuropsychiatric
426  traits such as Alzheimer’s Disease (Hoffman et al., 2019; Corces et al., 2020; Ramamurthy
427 et al., 2020). We provide the summary of CNN predictions in these reported loci across all
428 14,790 analyzed SNPs along with the accompanying annotations that we incorporated into
429  our prioritization of candidate causal SNPs and their predicted cell types (Supplemental

430  Table 1).
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431  DISCUSSION

432 In this study, we demonstrate the first analyses integrating neuronal subtype OCRs
433 across human and mouse brain epigenomics using CNN models to select candidate addiction-
434  associated SNPs acting at putative neuronal subtype-specific CREs. We trained CNN models to
435  predict neuronal subtype-specific activity of OCRs and used the models to predict whether
436  addiction-associated genetic variants in risk loci impact putative CRE function. Our findings link
437  the genetic heritability of addiction-associated behaviors to the OCR profiles of neuronal
438  subtypes and brain regions and present specific hypotheses describing how genetic variants may
439  impact gene regulation in addiction-associated behaviors. These analyses in conjunction suggest
440  that genetic variation-associated nicotine, alcohol, and cannabis use behaviors may impact
441  putative CREs in different combinations of excitatory (EXC), D1, and D2 neuronal subtypes.
442  These findings provide a foundation for future investigations into the cell type-specific genetic
443  mechanisms underlying addiction-related traits. More broadly, our cross-species integrative
444  computational framework leverages high-resolution cell-type targeted epigenomics in model
445  organisms to interpret the genetic risk variants of complex traits in humans.

446 We initially found that addiction-associated genetic variants were enriched in human
447  NeuN+ OCRs of the prefrontal cortex and striatum, known areas involved in addiction and
448  reward circuitry (Volkow et al., 2013; Koob and Volkow, 2016) (Figure SA). Genetic variants
449  associated with SmokingInitiation and Cannabis, initiating behaviors of substance use,
450  were enriched in NeuN+ OCRs of prefrontal areas including DLPFC, VLPFC, and OFC (Figure
451  1B). These OCRs were predicted to be active in cortical excitatory neurons of these brain regions
452  (Figure 3B). Addiction-associated genetic variants that enrich in OCRs of cortical excitatory

453  neurons in these areas may reduce corticostriatal activation from prefrontal cortex to inhibit
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454  behaviors predisposing the initiation of substance use (Koob and Volkow, 2010, 2016; Volkow
455 et al., 2013; Volkow and Morales, 2015). These genetic variants may contribute to reduced
456  prefrontal self-control reward, leading to behaviors observed in addiction such as impulsivity,
457  reduced satiety, and enhanced motivation to procure drugs (Volkow et al., 2013; Volkow and
458  Morales, 2015). In addition, we found enrichment of striatal NeuN+ OCRs for genetic variants
459  associated with SmokingCessation and DrinksPerWeek (Figure 1B). In Figure 3B, we
460  showed that these genetic variants are predicted to affect open chromatin in both D1 and D2
461  MSNs, which are coordinators of mesocorticostriatal dopamine systems (Koob and Volkow,
462 2010, 2016; Volkow et al., 2013). Genetic variants affecting open chromatin in these MSN
463  subtypes may predispose individuals to increased alcohol use (DrinksPerWeek) or decreased
464  nicotine use (SmokingCessation), perhaps driving the neuroplastic changes in D1 and D2
465  MSNs observed in human and rodent drug dependence studies (Volkow et al., 1996, 1997, 2003;
466  Wang et al., 1997, Fehr et al., 2008; Cheng et al., 2017; Wilar et al., 2019). While drug addiction
467  has been attributed to various areas of the reward circuit, our investigations into heritable genetic
468  risk for addiction-associated traits unravel how regulatory DNA sequence variation in OCRs of
469  projection neurons in implicated areas link genetic risk to neural circuits to behavior.

470 Since key component cell types of the reward circuit such as D1 and D2 MSNs have
471  not been profiled for high-quality open chromatin measurements in a human reference
472  genome to our best knowledge, we leveraged high-quality mouse cell type open chromatin
473  measurements using a cross-species OCR mapping framework. We first conducted ATAC-
474  seq of MSN and interneuron subtypes in mouse brain to identify neuronal subtype-specific
475  OCRs. Then, we used a multiple genome sequence alignment framework to identify the

476  orthologous regions of the human genome. By leveraging reference-genome free CRE
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477  ortholog mapping tools, we retained high-quality cell type-specific measurements within relevant
478  brain regions of the reward circuit, enabling analysis of cell populations from brain regions
479  where we lack primary human open chromatin profiles. Across these brain regions, we found
480  remarkably concordant enrichments of cell type OCRs between mouse and human profiles as
481  well as shared enrichments between traits (Figure 5B). Genetic variants associated with both
482  SmokingInitiation and Cannabis enriched in mouse-human orthologous OCRs of
483  cortical EXC (Figure 3B), concordant with enrichments in human cortical NeuN+ OCRs
484  (Figure 1B), which were predicted to include EXC neurons (Figure 4B). Genetic variants from
485  these two traits showed replicable enrichment in human EXC neuron OCRs of isocortex and
486  occipital cortex (Figure 1C-D), providing strong evidence that genetic variation in cortical
487  excitatory neuron OCRs confers susceptibility to nicotine and cannabis use behaviors. The
488  enrichments of genetic variants associated with Cannabis in isocortical IN neuron OCRs
489  (Figure 1C) and mouse-human orthologous OCRs of cortical PV neurons (Figure 3B)
490  suggest that genetic variation in cortical PV neuron OCRs also confer susceptibility of
491  cannabis use behavior. Within striatal regions, D1 and D2 MSN mouse-human orthologous
492  OCRs enriched for genetic variants of all measured addiction-associated traits (Figure 2B), with
493  strongest concordance in human OCRs for genetic variants associated with
494  SmokingCessation and DrinksPerWeek (Figure 3B, Figure 5B). The enrichments in
495  conserved OCRs of MSN subtypes in the dorsal striatum and nucleus accumbens unsurprisingly
496  emphasize known roles of MSNs of both areas to drive and maintain addiction behaviors
497  (Ferguson et al., 2011; Ji et al., 2017). Our validations of enrichments both at the tissue and
498  cell type level across human and human-orthologous OCRs agree with LDSC regression

499  GWAS enrichments of non-coding regions around differentially expressed genes in DLPFC
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500 and NAc measured from postmortem human subjects who were diagnosed with opioid use
501  disorder vs. neuropsychiatric controls (Seney et al., 2020). Due to the conservation of
502  reward circuit between mouse and human, our approach is able to unravel the cell types in
503  which genetic variation at the epigenome level predisposes addiction-related traits even
504 from measurements in organisms that have not been exposed to addictive substances.
505  Further, this level of OCR conservation is present at the level of excitatory cell types in
506  cortical brain regions (cite). This may explain why we found enriched cell types in occipital
507  cortex (Figure 1D), which is not well-defined for its role in addiction-related traits.

508 In an orthogonal approach to mapping mouse-human orthologous OCRs, we devised and
509  trained convolutional neural network (CNN) models to classify the neuronal subtype
510 membership of mouse and human NeuN+ OCRs in order to refine GWAS enrichments of
511  bulk tissue to the major neuronal subtypes of cortex and striatum. This approach can
512 provide further validation for enrichments of human and mouse-human orthologous OCRs
513  in cell types and tissues. Refinement of NeuN+ OCRs revealed that addiction-associated traits
514  enriched for two clusters of cell types and brain regions. The first group, which displays
515 concordant cortical excitatory enrichments between human and mouse, consists of
516 SmokingInitiation and Cannabis (Figure 3B), and the second group, which displays
517 concordant D1 and D2 MSN enrichments, consists of SmokingCessation and
518 DrinksPerWeek. A draw-back of assigning human NeuN+ OCR membership to individual
519  cell types lies in the considerably low representation of interneurons in both cortical and striatal
520  neuron populations - as low as 12% in neocortex (Beaulieu, 1993; Lefort et al., 2009) and ~5%
521  in striatum (Tepper and Koos, 2017; Krienen et al., 2019). NeuN+ open chromatin profiles alone

522 do not always capture OCRs unique to rare interneurons, some of which had OCRs identified by
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523  human single-cell assays and mouse-human orthologs enriched for addiction GWAS variants
524  (Figure 1C, Figure 2B). As a result, we did not train CNN models for PV, SST, or VIP
525 interneurons. However, the striking enrichments of OCRs from certain interneuron populations
526  for addiction GWAS variants begin to demonstrate these populations’ roles in the addiction
527  neural circuits (Bracci et al., 2002; Lansink et al., 2010; Wiltschko et al., 2010; Ribeiro et al.,
528  2018; Jiang et al., 2019; Lee et al., 2020; Schall et al., 2020).

529 The overall concordance of enrichments across human and mouse-human orthologous
530  OCRs suggests a conserved regulatory code between mouse and human CREs. Correspondence
531 in the neural circuitry has been well-appreciated between human studies and rodent models of
532 addiction (Berke and Hyman, 2000; Koob and Volkow, 2016; Farrell et al., 2018), and our study
533  further demonstrates that mouse-human conserved OCRs may explain considerable heritability
534  of addiction-associated traits. This makes animal models suitable not only for studying the neural
535  circuits of addiction but also cell-type-specific gene-regulatory mechanisms of addiction.

536 We used several selection criteria along with CNN models to predict the functional
537  impact of genetic variants associated with addiction-related traits (Figure 5, Supplemental
538  Figure 5, Supplemental Table 1). The fine-mapping pipeline described effectively narrows
539  down a set of 14,790 SNPs to a putatively functional set of 55 Tier A candidate causal SNPs
540  that can be experimentally tested to determine which brain regions and neuronal subtypes they
541  would have function in. The candidate functional SNPs that our models prioritize demonstrate
542  how a candidate SNP within a locus, such as rs7604640 (Figure 4B), might act in distinct
543  neuronal subtypes and brain regions. Cell type-and brain region-specificity adds complexity
544  to identifying how genetic variation may alter gene regulation to predispose individual to

545  addiction-associated traits. Our approach often reported one to four candidates per loci,
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546  even in stretches of SNPs in perfect LD such as the MAPT-CRHRI1 locus (Supplemental
547  Figure 5D). This reflects the idea that many SNPs in the same loci are significantly associated
548  with addiction due to LD with only one or a few causal SNPs and are unlikely to influence
549  addiction-associated genetic predisposition. We report many candidate SNPs that also overlap
550  mouse-human orthologs from the same predicted cell type raise the idea that altering the
551  conserved regulatory DNA sequence may be a mechanism of cell type-specific gene regulatory
552  tuning in a population or even across species (Gjoneska et al., 2015).

553 Our study depends solely on assays of open chromatin as a proxy for putative CREs.
554  Epigenetic assays for chromatin conformation, histone modifications, and methylation would
555  further inform how putative CREs regulate nearby gene expression. While eQTL studies do not
556  control for inflated associations due to LD and report gene expression differences from bulk
557  tissue, we do note that our approach prioritizes several SNPs known to be cis-eQTLs in relevant
558  brain regions, which indirectly affirms our framework’s ability to select SNPs with functional
559  impacts on gene regulation. Although cis-EQTLs are often not cell type- or tissue-specific,
560 our findings of risk loci in brain regions implicated in addiction-related traits reflect a
561  strength of our approach in discerning brain-specific signal. In order to validate our
562  predictions, it will be necessary to further investigate candidate genetic variants such as
563 157604640 (Figure 4B) in future studies using a fluorescence reporter assay or in situ
564  hybridization studies. These methods can measure regulatory activity differences between
565 risk and non-risk alleles to verify our predictions of SNP impact on putative CREs and
566  indicate whether the reported differences in regulatory activity are cell type-specific. The

567 candidate SNPs we identified provide possible mechanisms linking differences in genetic make-
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568  up with the genes, cell types, and brain regions that could influence addiction and substance use

569  behaviors (Figure 4).
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570  MATERIALS & METHODS

571 ATAC-seq data processing pipeline:

572  We processed raw FASTQ files of ATAC-seq experiments with the official ENCODE ATAC-

573 seq pipeline (Landt et al., 2012) accessed by https://github.com/ENCODE-DCC/atac—

574 seg-pipeline. We ran this pipeline using the mm10 genome assembly for mouse and the

575  hg38 genome for human with the following settings: smooth win = 150, multimapping

576 = 0, idr thresh = 0.1, cap_num peak 300,000,
577 keep irregular chr in bfilt peak = true. We grouped biological replicates
578  when processing data to obtain individual de-duplicated, filtered bam files and reproducible
579  (IDR) peaks for each condition. Unless otherwise stated, we used the optimal reproducible set of
580 peaks for downstream analyses. We removed samples that had low periodicity indicated by

581  ENCODE quality control metrics and reprocessed the remaining replicates with the pipeline.

582  Publicly available datasets

583  Fullard ef al. NeuN-sorted ATAC-seq of human postmortem brain (Fullard et al., 2018): We
584  identified OCRs overlapping addiction-related variants through analysis of human postmortem
585  brain ATAC-seq in which cells were sorted into NeuN-positive and NeuN-negative groups via
586  fluorescence activated nuclei sorting (FANS); the brain regions we used were dorsolateral
587  prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (VLPFC),
588 anterior cingulate cortex (ACC), superior temporal gyrus (STC), inferior temporal gyrus (ITC),
589  primary motor cortex (PMC), insula (INS), primary visual cortex (PVC), amygdala (AMY),
590  hippocampus (HIP), mediodorsal thalamus (MDT), nucleus accumbens (NAc), and putamen
591 (PUT). We downloaded data from the Sequence Read Archive (SRA) through Gene Expression

592  Omnibus (GEO) accession #GSE96949. We separated samples by cell type and reprocessed
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593  them with the ENCODE pipeline as detailed above, aligning reads to hg38. We used the
594  “optimal reproducible peaks” for each cell type and brain region as foregrounds in GWAS LDSC
595  enrichment with the Honeybadger2 OCR set as the background set (see LDSC Regression
596  GWAS Enrichment Backgrounds).

597  Corces et al. human isocortex, striatum, hippocampus, and substantia nigra single cell
598  chromatin accessibility profiling (Corces et al., 2020): We downloaded 24 clusters of IDR
599  peaks in BED format through GEO accession #GSE147672. These clusters represent cell
600 populations defined by Corces ez al from the measured brain regions. We assigned clusters
601  to cell populations as described in Corces et al: astrocyte (clusters 13, 17), hippocampal
602  excitatory (clusters 3-4), isocortical astrocyte (cluster 15), isocortical excitatory (cluster 1),
603  isocortical inhibitory (cluster 11), microglia (cluster 24), neuron (cluster 7), nigral astrocyte
604  (cluster 14), nigral neurons (clusters 5-6), nigral oligodendrocyte precursor (cluster 10),
605  oligodendrocyte (clusters 19-23), oligodendrocyte precursor (clusters 8-9), striatal astrocyte
606  (cluster 16), and striatal inhibitory cells (clusters 2, 12). We did not include cluster 18,
607  which corresponds to a doublet. We merged coordinates from clusters assigned to the same
608 cell types to define foreground sets for LDSC regression GWAS enrichment. We merged
609  the foreground sets with the Honeybadger2 OCR set to define the background set (LDSC
610 regression GWAS Enrichment Backgrounds).

611 Lake et al. human occipital cortex scTHS-seq (Lake et al., 2018): We downloaded BED-
612  formatted cell type-specific differential OCRs from occipital cortex scTHS-seq of excitatory
613  neurons (EXC), inhibitory neurons (IN), astrocytes (AST), endothelial cells (END),
614  oligodendrocyte precursor cells (OPC), oligodendrocytes (OLI), and microglia (MIC) from the

615  GEO subseries #GSE97887. We used the hg38 OCR coordinates as foregrounds in LDSC
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616  regression GWAS enrichment with the Honeybadger2 OCR set as the background set (LDSC
617  regression GWAS Enrichment Backgrounds).

618 Mo et al. mouse INTACT-sorted nuclei ATAC-seq (Mo et al., 2015): We downloaded FASTQ
619 files of R26-CAG-LSL-Sunl-sfGFP-Myc transgenic mouse lines for cell type-specific ATAC-seq
620  performed using the INTACT method from the accession #GSE63137. Mo et al. isolated
621 INTACT-enriched nuclei from three cell types: excitatory neurons (EXC, Camk2a-cre),
622  vasoactive intestinal peptide neurons (VIP, Vip-cre), and parvalbumin neurons (PV, Pvalb-cre).
623  We reprocessed the data with the Kundaje Lab open chromatin pipeline using the mm10 genome
624 (https://github.com/kundajelab/atac_dnase pipelines). We mapped
625  reproducible mouse ATAC-seq peaks for each cell type to hg38 using halLiftover with the 12-
626 mammals Cactus alignment (Paten et al., 2011; Hickey et al., 2013) followed by HALPER
627  (Zhang et al., 2020) (Mapping mouse OCR orthologs) to produce a foreground set of orthologous
628  human sequences for LDSC regression GWAS enrichment (Finucane et al., 2018). We mapped
629 the ENCODE mm10 DNasel-hypersensitive peak set (Yue et al., 2014) to hg38 (Mapping
630 mouse OCR orthologs) and used successfully mapped hg38 orthologs of mm10 OCRs a
631  background set for mouse foreground enrichments. Furthermore, we used this dataset to evaluate
632  differential accessibility in ¢cSNAIL-INTACT PV and PV-negative ATAC-seq samples and
633  develop convolutional neural network models of cell type-specific open chromatin (see
634  Methods below).

635  Human negative control foregrounds (ENCODE Project Consortium, 2012; Thurman et al.,
636  2012; Davis et al., 2018; Cannon et al., 2019): We downloaded raw ATAC-seq profiles of
637  human adult female and male stomach ATAC-seq generated by Snyder et al. (ENCSR337UIU,

638 ENCSRS851SBY, respectively), female human embryonic liver DNase-seq generated by
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639  Stamatoyannopoulos et al. (ENCSR562FNN), and human embryonic lung DNase-seq generated
640 by Stamatoyannopoulos et al. (ENCSR582IPV) from
641 https://www.encodeproject.org/. We processed these files using the ENCODE
642  pipeline as detailed above to obtain optimal reproducible hg38 peaks. We also downloaded
643  BED files of human adipocyte and preadipocyte ATAC-seq profiles generated by Cannon ef al.
644  from GEO accession number #GSE110734. We mapped these BED coordinates from hgl9 to
645  hg38 using liftOver to define negative control foregrounds for human LDSC regression GWAS
646  enrichment. We merged the human negative control foregrounds and Fullard et al. foregrounds
647  with the Honeybadger2 OCR set to define the background for human negative control
648  foreground enrichments.

649  Human-orthologous negative control foregrounds (Liu et al., 2019a): We also downloaded raw
650 ATAC-seq data profiled in female mouse kidney, female mouse liver, and male mouse lung
651  generated by Liu et al. from SRA accession #SRP167062 to define human-orthologous negative
652  control foregrounds. We processed these files using the ENCODE pipeline as detailed above to
653  get optimal reproducible peaks. We mapped optimal reproducible peaks from mm10 to hg38
654  using halLiftover with the 12-mammals Cactus alignment followed by HALPER (Mapping
655 mouse OCR orthologs) to define negative control foregrounds for human-orthologous LDSC
656 GWAS enrichments. We merged all human orthologous foregrounds with the human orthologs
657 of the ENCODE mm10 DNasel-hypersensitive peak set to define a background for human-
658  orthologous LDSC GWAS enrichments.

659 Mapping mouse open chromatin region (OCR) orthologs

660  We employed halLiftover (Hickey et al., 2013) with the 12-mammals Cactus alignment (Paten et

661 al., 2011) followed by HALPER
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662 (https://github.com/pfenninglab/halliftover-postprocessing) (Zhang et

663  al., 2020) to map mm1 0 mouse reproducible OCRs to hg38 human orthologs in order to perform
664  LDSC regression GWAS enrichment. The Cactus multiple sequence alignment file (Paten et al.,
665  2011) has 12 genomes, including mm10 and hg38, aligned in a reference-free manner, allowing
666 us to leverage multi-species alignments to confidently identify orthologous regions across
667  species. halLiftover uses a Cactus-format multiple species alignment to map BED coordinates
668  from a query species to orthologous coordinates of a target species, and HALPER constructs
669  contiguous orthologs from the outputs of halLiftover (Zhang et al., 2020). We ran the
670 orthologFind.py function from HALPER on the outputs of halLiftover using the following
671  parameters: -max frac 5.0 -min frac 0.05 -protect dist 5 -narrowPeak
672 -mult keepone. In general, 70% of mouse brain ATAC-seq reproducible peaks were able to
673  be mapped to confident human orthologs. To map the ENCODE mm10 mouse DHS background,
674  which does not contain summit information, to hg38 we used the mouse coordinates of position
675  with the most species aligned in a region to define the summit. Only for the mm10 mouse DHS
676  background set, for which a significant proportion of regions could not be confidently mapped to
677 hg38, we flanked the original assembly coordinates by 300 bp to increase OCR mapping from
678  54% to 64%.

679 LDSC Regression GWAS Enrichment Backgrounds:

680 We found that LDSC regression GWAS enrichment analysis is sensitive to the selected
681  background set of matched regions. To construct appropriate background sets for each GWAS
682  enrichment, we used the ENCODE and RoadMap Honeybadger2(Roadmap Epigenomics
683  Consortium et al., 2015) and Mouse DHS peak sets for the respective human and mouse-based

684 open chromatin GWAS enrichment. The Honeybadger2 set, downloaded from
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685 https://personal.broadinstitute.org/meuleman/reg2map/, consists of

686  DNasel-hypersensitive OCRs across 53 epigenomes consisting of promoter, enhancer, and
687  dyadic regions. Honeybadger2 is an appropriate epigenetic reference for enrichment of cell type-
688  specific open chromatin from various foregrounds such as the Fullard et al. and Lake et al.
689  Honeybadger2 regions allow the LDSC algorithm to properly account for the heritability from
690  OCRs of a particular cell type or regions rather than because they tend to be more conserved, are
691  enriched for ubiquitously active transcription factor motifs, or other factors distinguishing open
692  chromatin from heterochromatin. The human orthologs of the ENCODE Mouse DHS peak set,
693  downloaded through the ENCODE ATAC-seq pipeline at

694 http://mitra.stanford.edu/kundaje/genome data/mml0/atagc/mml0 un

695 iv dhs ucsc.bed.gz, is a set of peaks combined from mouse DNasel-hypersensitivity

696 OCRs from ENCODE and provides a background for human orthologs of mouse OCRs. The
697 mml10 mouse DHS regions were mapped to hg38 as described in Mapping mouse OCR
698  orthologs. For each respective foreground-background pairing, the foreground regions were
699 merged with the background reference to ensure the background always contained the
700  foreground set. The mouse background was used to calculate the significance of the relationship
701  between mouse OCRs and GWAS for addiction-associated traits to control for a possible
702  association between the degree to which a region is conserved and its likelihood in influencing
703  the predisposition to an addiction-associated trait.

704  GWAS enrichment with partitioned LD score regression analysis

705  We computed the partitioned heritability of CREs for GWAS variants using the LDSC
706  regression  pipeline  for  cell  type-specific enrichment as  outlined in

707 https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
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708  (Bulik-Sullivan et al., 2015b). We downloaded the GWAS summary statistics files and processed
709  them with the LDSC munge sumstats function to filter rare or poorly imputed SNPs with
710  default parameters. We munged the summary statistics files for HapMap3 SNPs excluding the
711  MHC regions downloaded at

712 http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.

713 zip. We inspected GWAS file to ensure the effect allele, non-effect allele, sample size, p-value,
714 and signed summary statistic for each SNP in each GWAS were included and appropriate for
715  LDSC. The addiction-associated GWAS measure genetic predisposition for age of smoking
716  initiation (AgeofInitiation) (Liu et al, 2019b), heaviness of smoking
717 (CigarettesPerDay) (Liu et al, 2019b), having ever regularly smoked
718  (SmokingInitiation) (Liu et al, 2019b), current versus former smokers
719  (SmokingCessation) (Liu et al., 2019b) , alcoholic drinks per week (DrinksPerWeek)
720  (Liu et al., 2019b), cannabis consumption (Cannabis) (Pasman et al., 2018), and risk tolerance
721 (RiskyBehavior) (Karlsson Linnér et al., 2019). GWAS traits related to addiction include
722 multisite chronic pain (ChronicPain) (Johnston et al., 2019) and number of coffee cups drank
723  per data (CoffeePerDay) (Coffee and Caffeine Genetics Consortium et al., 2015). Other
724  addiction-related traits come from underpowered GWAS including opioid dependence
725 (OpioidDep) (Cheng et al., 2018) , cocaine dependence (CocaineDep) (Cabana-Dominguez
726 et al., 2019), and diagnosis of obsessive-compulsive disorder (OCD) (International Obsessive
727  Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative
728  Genetics Association Studies (OCGAS), 2018). GWAS from strong brain-related traits used are
729  schizophrenia risk (Schizophrenia)(Schizophrenia Working Group of the Psychiatric Genomics

730  Consortium, 2014), highest level of educational attainment (EduAttain) (Lee et al., 2018), and
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731  sleep duration (SleepDuration) (Dashti et al., 2019). The non-brain related traits measure
732 genetic liability for lean body mass (LBM) (Zillikens et al., 2017), bone mineral density (BMD)

733 (Kemp et al., 2017), and coronary artery disease (CAD) (Howson et al., 2017).

734 We estimated LD scores for each foreground set and corresponding background set with
735  the LDSC regression pipeline make annot and ldsc functions using hg38 1000 Genomes
736  European Phase 3 European super-population (1000G EUR) cohort plink files downloaded from

737 https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/. An

738  example of an ATAC-seq optimal set of reproducible peaks mapped to hg38 in narrowPeak

739  format is annotated with 1000G EUR LD scores using the following call:

740 python make annot.py \

741 --bed-file optimal peak.narrowPeak.gz \

742 --bimfile 1000G.EUR.hg38.S${chr}.bim \

743 -—-annot-file foreground.S${chr}.annot

744 We downloaded the baseline v1.2 files for cell type-specific enrichment in hg38

745  coordinates from the same link above as well as the corresponding weights
746  "weights.hm3 noMHC’ file excluding the MHC region from

747 https://data.broadinstitute.org/alkesgroup/LDSCORE/.  HapMap SNPs

748  and corresponding weights file used in the LDSC analyses only refer to the SNP rsIDs, rather
749  than genomic coordinates, so only the baseline and LD statistics used to annotate the foreground
750  and background files must be in hg38 coordinates. In accordance with the LDSC regression
751  script input format, we created an ‘enrichment.ldcts’ file listing the annotated
752  foreground/background pair for each foreground set. We estimated the partitioned heritability

753  using the 1dsc function, which integrates the foreground and background LD score estimates,

34


https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318329; this version posted April 19, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

754  munged GWAS SNP data, baseline variant data, and variants weights. The final function call to
755  GWAS enrichment is as follows:

756  python ldsc.py --h2-cts $Munged GWAS \

757 --ref-ld-chr baseline vl.2/baseline. \

758 --w-1ld-chr weights.hm3 noMHC. \

759 --ref-1ld-chr-cts enrichment.ldcts \

760 --out $SOutput Label

761 The pipeline produced LD score regression coefficient, coefficient error, and coefficient

762  p-value estimates. We adjusted for multiple testing using the false discovery rate on p-values of
763  the LD score regression coefficients (alpha = 0.05) on all 18 GWAS traits intersected on
764  within the same foreground/background set. A significant FDR-value indicates enrichment of the
765  foreground genomic regions for GWAS SNPs relative to the background. Lastly, we computed
766  genetic correlations in Supplemental Figure 1A between GWAS of addiction-associated traits
767  using the pre-munged summary statistics as described by Bulik-Sullivan et al. (Bulik-Sullivan et
768  al., 2015a)

769  Bulk tissue ATAC-seq

770  To augment and compare to mouse cell type-specific ATAC-seq datasets generated in this study,
771  we also performed bulk tissue ATAC-seq from cortex (CTX) and dorsal striatum/nucleus
772  accumbens (CPU) of 7- and 12-week-old C57BI/6J mice (N = 2 each age) as described in
773  Buenrostro et al., 2015(Buenrostro et al., 2015) with the following minor differences in buffers
774  and reagents. We euthanized mice with isoflurane, rapidly decapitated to extract the brain, and
775  sectioned it in ice-cold oxygenated aCSF (119mM NaCl, 2.5 mM KCIl, 1mM
776 ~ NaH,POs(monobasic), 26.2mM NaHCOs;, 11mM glucose) at 200-micron sections on a

777  vibratome (Leica VT1200). We further micro-dissected sections for cortex and dorsal striatum
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778  on a stereo microscope and transferred dissected regions into chilled lysis buffer (Buenrostro et
779  al., 2015). We dounce homogenized the dissected brains in SmL of lysis buffer with the loose
780  pestle (pestle A) in a 15mL glass dounce homogenizer (Pyrex #7722-15). We washed nuclei
781  lysate off the pestle with SmL of lysis buffer and filtered the nuclei through a 70-micron cell
782  strainer into a 50mL conical tube. We washed the dounce homogenizer again with 10mL of BL
783  buffer and transferred the lysate through the 70-micron filter (Foxx 1170C02). We pelleted the
784 20 mL of nuclei lysate at 2,000 x g for 10 minutes in a refrigerated centrifuge at 4°C. We
785  discarded the supernatant and resuspended the nuclei in 100-300 microliters of water to
786  approximate a concentration of 1-2 million nuclei/ mL. We filtered the nuclei suspension through
787  a 40-micron cell strainer. We stained a sample of nuclei with DAPI (Invitrogen #D1206) and
788  counted the sample to measure 50k nuclei per ATAC-seq transposition reaction. The remaining
789  steps follow the Buenrostro et al., 2015 (Buenrostro et al., 2015) protocol for tagmentation and
790  library amplification. We shallowly sequenced barcoded ATAC-seq libraries at 1-5 million reads
791  per sample on an Illumina MiSeq and processed individual samples through the ENCODE
792  pipeline for initial quality control. We used these QC measures (clear periodicity, library
793  complexity, and minimal bottlenecking) to filter out low-quality samples and re-pooled a
794  balanced library for paired-end deep sequencing on an Illumina NextSeq to target 30 million
795  uniquely mapped fragments per sample after mitochondrial DNA and PCR duplicate removal.
796  These raw sequencing files entered processing through the ENCODE ATAC-seq pipeline as
797  above by merging technical replicates and grouping biological replicates by brain region for each
798  pipeline run.

799 Cre-Specific Nuclear-Anchored Independent Labeling (cSNAIL) virus procedures
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800  The cSNAIL genome (pAAV-Efla-DIO-Sunl-Gfp-WPRE-pA) contains loxP sites to invert the
801  Sunl-Gfp fusion gene and integrate into the nuclear membrane of cells expressing the Cre gene,
802  allowing these cell populations to be profiled for various genomic assays (Lawler et al, 2020 in
803  press J. Neuro). We packaged the cSNAIL genome with AAV variant PHP.eB (pUCmini-iCAP-
804 PHP.eB) in AAVpro(R) 293T cells (Takara, cat #632273). Viviana Gradinaru provided us with
805  the pUCmini-iCAP-PHP.eB (http://n2t.net/addgene:103005; RRID: Addgene 103005) (Chan et
806 al, 2017). We precipitated viral particles with polyethylene glycol, isolated with
807  ultracentrifugation on an iodixanol density gradient, and purified in PBS with centrifugation
808  washes and 0.2uM syringe filtration. We injected each mouse with 4.0 x 10''vg into the retro-
809  orbital cavity under isoflurane anesthesia. We allowed the virus to incubate in the animal for 3-4
810  weeks to reach peak expression. We closely monitored the health of the animals throughout the
811  length of the virus incubation and did not note any concerns.

812 ¢SNAIL nuclei isolation

813  On the day of the ATAC-seq experiments, we dissected brain regions from fresh tissue and
814  extracted nuclei in the same manner as described for bulk tissue experiments. Then, we sorted
815  the nuclei suspension into SunlGFP+ (Cre+) and SunlGFP- (Cre-) fractions using affinity
816  purification with Protein G Dynabeads (Thermo Fisher, cat. 10004D). A pre-clearing incubation
817  with beads and nuclei for 10-15 minutes removes effects from non-specific binding events. Next,
818  we incubated the remaining free nuclei with anti-GFP antibody (Invitrogen, #G10362) for 30
819  minutes to bind SunlGFP. Finally, we added new beads to the solution to conjugate with the
820 antibody and incubated the reaction for an additional 20 minutes. The pre-clear step and all
821  incubations took place in wash buffer (0.25M Sucrose, 25mM KCl, SmM MgCl,, 20mM Tricine

822  with KOH to pH 7.8, and 0.4% IGEPAL) at 4°C with end-to-end rotation. After the binding
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823  process, we separated bead-bound nuclei on a magnet, washed three times with wash buffer, and
824  filtered through a 20uM filter to ensure purity. We resuspended nuclei in nuclease-free water for
825 input into the ATAC-seq tagmentation reaction. We performed nuclei quantification and
826  tagmentation in the same manner described for bulk tissue ATAC-seq above. We list in the table
827  below the number of animals, the genotypes, and which regions collected for ATAC-seq
828  experiments in this study. N=2 Pvalb-cre samples from CPU/NAc region had received a sham
829  surgery with saline injection into the external globus pallidus 5 days before they were sacrificed.
830  The background for all transgenic mice is C57BL/6J. SST-Cre mice were homozygous for
831  the transgene while PValb-2a-Cre, D1-Cre, and A2a-Cre mice were heterozygous for the
832  transgene (Lawler et al., 2020). N=2 DrdI-cre samples from both CPU and NAc regions had
833  received headcap surgeries 3 weeks before they were sacrificed. Both Pvalb-cre and Drdl-cre

834  were overall healthy at time of sacrifice.

Genotype Replicates Sex Region and Replicate | Cell
(Female /Male) per region type

C57BL/6 WT N=4 2F,2M CTX=4, CPU/NAc=4 | bulk

Pvalb-cre N=5 3F (CTX) CTX=3,CPU/NAc=2 PV
1 F, 1 M (CPU/NAc)

Sst-cre N=2 IF,1M CTX=2,CPU/NAc=2 | SST

Drdl-cre N=2 2F CPU=2, NAc=2 DI

AdoraZa-cre N=2 2F CPU=2, NAc=2 D2

835

836  ¢SNAIL Cell Type Specificity

837  We created a consensus set of non-overlapping IDR peaks from the ATAC-seq pipeline for
838 cSNAIL ATAC-seq and Mo et al. INTACT samples (Tissue: Ctx, CPU, and NAc ;
839 Celltype: EXC, PV, SST, VIP, DI, D2). We extended the peak set 200bp up- and down-
840  stream, count overlapping fragments with Rsubread v2.0.1 using the de-duplicated BAM
841 files from the pipeline(Liao et al., 2014), and created with DESeq2 wv1.26.0 a variance-
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842  stabilized count matrix aware of experimental Group (combination of Tissue and
843 Celltype) with ~Group (Love et al., 2014). We plotted the principle component analysis in
844  Supplemental Figure 3A for the first two components with this variance-stabilized count
845  matrix. We used Deeptools v3.5.0 to convert the same BAM files to normalized bigWig
846  files and average over replicates of the same Group (Ramirez et al., 2016). We plotted the
847  tracks using pyGenomeTracks v3.5 around marker genes for each cell type (Sic/7a7, Drdl,
848  Adorala, Pvalb, Sst, Vip) (Ramirez et al., 2018) Supplemental Figure 3B. We computed the
849  mean accessibility for each Group 2kb up- and down-stream the transcription start sites (TSS)
850  and correlated logo (TSS accessibility + 1) with gene expression log;o(meta gene counts + 1) of
851  Drop-Seq annotated cell types from prefrontal cortex and striatum(Saunders et al., 2018). We
852  used the Saunders et al. tissue subcluster metagene profiles (sum of gene expression in all cells)
853  and summed subclusters to cluster-level metagene profiles. Most tissue cluster metagene profiles
854  corresponded to cSNAIL ATAC-seq celltype and tissue profiles, with the exception of cSNAIL
855  cortical PV+ samples were matched to Saunders et al. cortical MGE+ interneuron clusters.

856

857 Convolutional Neural Network models for CRE cell type classification

858  We trained a set of convolutional neural network (CNN) models to learn the regulatory code of a
859  given cell type from the DNA sequences underlying the cell type’s OCRs. The models take in
860  one-hot encoded 501bp genomic sequences to predict 1 for an OCR or 0 for non-OCR
861  sequence. Positive sequences were centered on IDR peak summits that are annotated to be in
862 introns and distal intergenic regions and negative sequences are approximately ten times the
863  number of positives sequences that are G/C-matched and not overlapping IDR peaks. We

864  excluded promoters (defined as within 5,000bp from the TSS) and exons because distal
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865  sequences have been shown to confer more cell type-specificity and be more predictive of
866  expression levels of regulated genes (Roadmap Epigenomics Consortium et al., 2015). We
867  constructed the negative set by first building a sequence repository $BGDIR according to

868 https://bitbucket.org/CBGR/biasaway background construction/src/

869 master/ from the mouse mm10 genome using 501bp sequences. Then we used the biasaway
870  (Worsley Hunt et al., 2014; Khan et al., 2020) command-line interface to generate negative
871  sequences with the matching nucleotide distribution along a sliding window of the 501bp IDR
872  peak sequence:

873 biasaway c¢ --foreground S$FGFASTA --nfold 10 --deviation 2.6 --
874 step 50 --seed 1 -winlen 100 --bgdirectory $BGDIR

875  We employed a 5-fold cross validation chromosome hold-out scheme to train 5 models per set of
876 IDR peaks to ensure stable and consistently learned regulatory patterns. A model that was
877  training a fold did not see sequences during training from the validation set for that fold, and no
878 model saw the test set until final model performance evaluation. Sequences from these

879  chromosomes were used as the validation set for each fold:

880 foldl: {chr6, chrl3, chr2l}
881 fold2: {chr7, chrl4, chrl8}
882 fold3: {chr11l, chrl7, chrX}
883 fold4: {chr9, chrl2}
884 fold5: {chr10, chr8}.

885  We used sequences from chromosomes {chrl, ch2, chr19} for the test set.

886 We trained the models with Keras v2.3.0-tf (https://keras.io/) implemented

887  through Tensorflow v2.2.0 and used stochastic gradient descent (SGD) with Nesterov

40


https://bitbucket.org/CBGR/biasaway_background_construction/src/master/
https://keras.io/
https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318329; this version posted April 19, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

888  momentum to minimize the binary cross entropy loss and learn model parameters. All models
889  used the same CNN architecture after a grid-search of hyperparameters found stable and
890  high validation performance by area under the precision-recall curve (auPRC) in an
891  architecture with five ConvlD layers (kernel size = 11, filters = 200,
892 activation= ‘relu’, kernel regularizer=12(le-10)) sandwiched between
893  four Dropout layers (rate = 0.25), then one MaxPoolinglD layer (pool_size =
894 26, strides = 26), one Flatten layer, one Dense layer (units = 300,
895 activation="relu’, kernel regularizer=12(le-10)), one Dropout layer
896 (rate = 0.25), a final output Dense layer (units=1, activation = ‘sigmoid’,
897 kernel regularizer=12(le-10)), and a final Dropout layer (rate = 0.25) before
898  the sigmoid output layer. We applied the One-Cycle-Policy (OCP) with linear cyclical learning

899  rate and momentum between a base and max rates as described previously (Smith, 2018) to train

900 each fold with batch size= 1000, epochs = 23, num cycles = 2.35,
901 Dbase learning rate = le-2, max learning rate = le-1, base momentum
902 = .85, max momentum = 0.99. With these hyperparameters, we trained models across

903  folds to predict positive OCRs of all measured cell types against an approximately 1:10
904  positive:negative class ratio. We computed classifier performance metrics including weighted
905  accuracy (using threshold = 0.5), weighted f1_score (using threshold = 0.5), area under receiver
906  operating characteristic (auROC), and area under precision-recall curve (auPRC). Given the
907 class imbalance, we selected the reported hyperparameters that maximize the validation
908 auPRC at a threshold of 0.5. We report the test performance auPRC, F1 score, and false

909  positive rate on 10X nucleotide-content matched negatives in Supplemental Figure SA. We
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910 provide both the scripts and trained Keras models at

911 https://github.com/pfenninglab/addiction gwas enrichment

912

913 Interpretation of Convolutional Neural Network models

914  To ensure that the classification task decisions relied on biological sequence signatures and
915 ot artifacts, we performed model interpretation using Deep SHAP v0.37.0 (Strumbelj
916  and Kononenko, 2014; Shrikumar et al., 2017) and TF-MoDISco (Shrikumar et al., 2018). For
917 arandom subsample of 2,000 true positive sequences from the validation set, we generated
918  per base importance scores and hypothetical importance scores relative to a reference set
919 of 500 true negative sequences from the validation set. These scores describe the
920  contribution of each base toward a positive model classification, which is a predicted OCR
921 in the given cell type. TF-MoDISco is an importance score-aware method that clusters
922  commonly important subsequences, called “seqlets”, to define the learned motifs of the
923 model. We ran TF-MoDISco v0.4.2.3 with the options sliding window_size=11,
924 flank size=3, min seqlets per task=3000, trim to window size=1l1,
925 initial flank to_add=3, final flank to_add=3, kmer len=7,
926 num gaps=1, and num mismatches=1. The resulting motifs were filtered to remove
927  rare patterns with fewer than 100 supporting seqlets. Then, the motifs were visualized and
928  associated with known motifs using Tomtom (Gupta et al., 2007) version 5.3.3 with the
929 HOCOMOCO v11 FULL database and default parameters (Supplementary Table 2).

930

931 Machine learning cell type-specific prioritization of Fullard et al. NeuN+ ATAC-seq peaks
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932  We used CNN model scores to classify whether a peak from Fullard et al. NeuN+ open
933  chromatin data is active in a neuronal subtype {EXC, D1, D2}. We took NeuN+ IDR
934  “optimal peaks” from regions significantly enriched for addiction-associated traits {OFC,
935 VLPFC, DLPFC, ACC, STC, PUT, NAc, Figure 1A}, extracted 501bp DNA sequences
936  of each centered on the summit, and scored each peak with cell type-specific machine learning
937  models trained with the appropriate tissue context (e.g., score cortical NeuN+ peaks with a
938  model trained with cortical EXC cell type). We averaged scores across model folds from the
939  same cell types and classified NeuN+ peaks with scores greater than 0.5 as active in that cell
940  type, as this threshold was the most discriminative in classifying positive validation set
941  sequences (Supplemental Figure 5B). We defined these CNN-prioritized peaks as foregrounds
942  for LDSC regression GWAS enrichment analyses as described above. We created a consensus
943  set of peaks merging all model-prioritized peaks and the Honeybadger2 set of OCRs to be the
944  matched background, and we performed GWAS enrichment and computed FDR on all 18
945  GWAS traits (only enrichments for addiction-associated GWAS shown, Figure 3).

946

947  Addiction-associated GWAS processing and cell type-specific candidate selection

948  We collected the addiction-associated SNPs by submitting the summary statistics files for the
949  seven addiction-associated traits {AgeofInitiation (Liu et al, 2019b),
950 CigarettesPerDay (Liu et al., 2019b), SmokingInitiation (Liu et al., 2019b),
951 SmokingCessation (Liuetal, 2019b), DrinksPerWeek (Liuetal., 2019b), Cannabis
952  (Pasman et al.,, 2018), RiskyBehavior (Karlsson Linnér et al., 2019)} to the FUMA
953  webserver (Watanabe et al., 2017). FUMA computed LD R* based on the 1000 Genomes

954  European (1000G EUR) super-population reference (1000 Genomes Project Consortium et al.,
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955  2015) via PLINK (Purcell et al., 2007), linked GWAS-significant lead SNPs to off-lead SNPs in
956 LD with the lead, and annotated functional consequences of genetic variants via ANNOVAR
957 based on ENSEMBL build 85 human gene annotations (Wang et al., 2010) (Figure 1A).
958  ANNOVAR functional gene annotations for a SNP are as defined in the primary publication and

959  online: https://annovar.openbioinformatics.org/en/latest/user-

960 guide/gene/. We scored all effect and non-effect alleles with each set of CNN models,

961 averaged predictions across folds, and calibrated CNN scores that predict activity using the
962  set of validation positive OCRs. We computed the ASNP probability effect by taking the
963 difference between the effect allele and the non-effect allele. Most SNPs reported by GWAS
964  are not expected to be the causal variant for a trait, so the distribution of ASNP probability
965  can be used to define a null distribution. We compute the p-value that an allele has a non-
966 zero ASNP probability by fitting a normal distribution of null ASNP probabilities. We
967  correct for multiple testing using the method swfdr v1.12.0 to compute g-values to
968  control for a false-discoveries conditioned on potentially informative covariates (Boca and
969  Leek, 2018). Weighted FDR-correction methods, including swfdr, have been shown to be
970  robust to uninformative covariates and increase power to detect real differences for
971 informative covariates while controlling false discoveries (Korthauer et al., 2019). We
972  conditioned the proportion of expected null p-values on the following covariates
973  (Supplemental Figure 5E, step 4): the difference in GC content of the 501 surrounding the
974  SNP compared to the average GC content of positive sequences used to train each model
975  (GC content), the minor allele frequency (MAF) based on the European ancestry subjects
976  in the 1000G reference panel, whether the SNP overlapped a Fullard et al. NeuN+ OCR

977  (inNeuN peak), and whether a SNP was fine-mapped and predicted to be causal by
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978  CAUSALGdD using the European LD structure and an ensemble of statistical fine-mapping
979  tools (isCausal) (FINEMAP, CAVIARBF, PAINTOR) (Chen et al., 2015; Benner et al.,
980 20165 Kichaev et al., 2017; Wang et al., 2020). We applied an alpha of 0.05 on the false-
981  discovery q-values for all 14,790 SNPs scored across 5 sets of CNNs to determine

982  significantly large enough ASNP effects.

983 To accompany cell type-specific activity predictions, we downloaded SNPs that are
984  reported cis expression quantitative trait loci (eQTL) in human cortex, frontal cortex (DLPFC),
985 anterior cingulate cortex (ACC), caudate, putamen, and the nucleus accumbens (NAc) from the
986 GTEX Consortium from https://www.gtexportal.org/home/datasets (GTEx
987 Consortium, 2013, 2015).We identified genes for which at least one of the 170 SNPs is
988 an eQTL and plotted them as arcs in Figure 4B and Supplemental Figure 4. Locus plots are

989  generated with pyGenomeTracks v3.5 tools (Ramirez et al., 2018).

990 For Figure 4A, we compared calibrated SNP probabilities of the either effect or non-
991  effect allele across each model and grouped them by whether they overlapped a cortical or
992  striatal NeuN+ OCR, NeuN- OCR, both, or neither, depending on whether the model was for
993  EXC or D1/D2 neuronal subtypes, respectively. We computed 2-tailed t-tests between groups and
994  corrected for multiple comparisons with the family-wise Bonferroni method for N=18 tests from
995  three models and (4 choose 2) six possible comparisons per model. * P < 0.05/N, ** P < 0.01/N,

996  *** P <0.001/N.

997

998 DATA AVAILABILITY
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999  Code used to run intermediate and final analyses reported in this paper are available on the

1000  GitHub page: https://github.com/pfenninglab/addiction_gwas enrichment. Sequencing output

1001  files for data generated in this study are deposited on the GEO at accession GSE161374
1002  (Reviewer access token: cropkwsgnnyxhgh). Questions and comments about data and

1003  analyses may be directed to the corresponding author.
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1345  Figure 1. Substance use and risky behavior GWAS risk variants enrich within reward
1346  region- and cell type-specific epigenomic profiles.

1347  Partitioned LDSC regression (GWAS enrichment) finds enrichment of substance use and risky
1348  behavior traits in region-specific and cell type-specific open chromatin profiles of human
1349  postmortem brain. (A) Pie chart of ANNOVAR-annotated (Wang et al., 2010) SNP function of
1350  addiction-associated trait lead and off-lead SNPs in LD R* > 0.8. Dark colors indicate un-
1351  transcribed/non-coding annotations, light for transcribed/exonic annotations. SNP annotation
1352 labels are according to ANNOVAR using ENSEMBL build 85 gene annotations (Methods). (B)
1353  GWAS enrichment false-discovery rates in ATAC-seq of 14 postmortem human brain regions
1354  coupled with NeuN-labeled fluorescence activated nuclei sorting (Fullard et al., 2018). Brain
1355  regions are stratified by cortical and subcortical regions, with cortical regions ordered frontal to
1356  caudal. Sorted cell types within each brain region are denoted by shape (blue triangle for
1357  NeuN+/neuronal, red circle for NeuN-/glial). FDR-adjustment was performed across all
1358  enrichments on the Fullard et al. dataset for Figure 1B and Figure 3: Cell type-specific
1359  convolutional neural network (CNN) models refine human NeuN+ enrichments for
1360  substance use genetic risk GWAS.

1361  (A) Schematic to predict cell type-specific activity of NeuN+ ATAC-seq peaks enriched from
1362  brain regions assayed in Fullard et al. (Fullard et al., 2018) using CNN models trained on mouse
1363  cell-type specific ATAC-seq peaks. CNN-predicted OCRs are input into GWAS enrichment. (B)
1364  Partitioned LD score regression of addiction associated traits in Fullard et al. NeuN+ OCRs
1365  predicted to be cell type-specific by machine learning models of open chromatin. Cell types are

1366  colored by the source mouse cell type-specific OCRs from Error! Reference source not
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1367  found.A. Original enrichments from Figure 1A are reproduced in black. Larger, bolded points

1368  are significant for FDR < 0.05 (red dotted line).

1369

1370  Figure 4: Convolutional Neural Network (CNN) models for predicting cell type-specific
1371  open chromatin predict activity of addiction GWAS SNPs

1372 (A) Cell type-activity predicted probability active by each set of CNN models of cell type
1373 activity for genome-wide significant SNPs and off-lead SNPs in LD R’ > 0.8 with the lead
1374  SNPs. Activity scores for SNPs are stratified by overlap with Fullard et al. (Fullard et al., 2018)
1375  cortical or striatal NeuN+ (teal), NeuN- peaks (salmon), both (dark gray), or neither (light
1376  gray). Significance symbols denote Bonferroni-adjusted p-values from 2-tailed t-tests for N=18
1377  possible pairwise comparisons, N.S. not significant, * P < 0.05/N, ** P < 0.01/N, *** P <
1378  0.001/N. (B) Locus plot candidate SNP with predicted function SNP impact in cortical
1379  excitatory and striatal D1, and D2 MSN cell types. Genome tracks from top to bottom: human
1380  (h)NeuN+ MACS2 ATAC-seq fold change signal of cortical and striatal brain regions
1381  enriched in Figure 1A. SNP tracks show lead SNPs aggregated across seven addiction-
1382  associated GWAS and the SNPs either in LD with the lead SNPs (Lead SNPs) or
1383  independently significant SNPs (LD/ Sig. SNPs). Each SNP is color by increasing red
1384  intensity by the degree of LD with a lead SNP. Prioritized candidate causal SNPs by
1385  predicted differential cell type activity and overlap with Fullard ef al. NeuN+ OCRs are
1386  plot as (red for Tier A, yellow for Tier B, and teal for Tier C, Methods). Tier A SNP
1387  rs7604640 is predicted to have strong ASNP effect by CPU-D1 and NAc-D1 CNN models
1388  and the bars are colored by the % change in probability active. Gene annotation tracks plot

1389  GENCODE genes from the GRCh38 build. eQTL link tracks of FDR-significant GTEX cis-
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1390  eQTL from cortical and striatal brain regions, and orthologs of mouse (m) putative CREs
1391  mapped from excitatory or striatal neuronal subtypes measured by cSNAIL ATAC-seq. Cell
1392 type colors label cortical excitatory neurons (EXC; red), D1 medium spiny neurons (D1; blue),
1393  or D2 medium spiny neurons (D2; green). (C) Representative importance scores of 50bp
1394  flanking either side of the SNP rs7604640 that measure relative contribution of that
1395  sequence being active in D1 MSNs. CNN importance score interpretations are shown for
1396  effect and non-effect alleles, and the difference in importance scores reveal the relatively
1397 more important DNA motif in the effect allele that matches consensus POU1F1 motif
1398  overlapping the rs7604640 SNP. The model interprets this POU1F1 motif and a nearby

1399  NRF1 motif as contributing to the effect allele having more activity in D1 MSNs.

1400

1401  Figure 5 Summary of LDSC GWAS enrichments in human and mouse-human orthologous
1402  bulk tissue and cell type open chromatin

1403  (A) Schematic of human NeuN-labeled bulk tissue and occipital cortex cell types from Figure 1
1404  for which addiction-associated genetic variants were significantly enriched (FDR < 0.05) in
1405  OCRs. Brain regions are labelled by the cell type that enriched (NeuN+: blue box/shading;
1406  NeuN-: red box/shading) spatially along with the trait(s) for which OCRs were found
1407  significantly enriched with risk variants. Occipital cortex cell types from Figure 1C (same color
1408  scheme) are listed along with the trait(s) for which OCRs were found significantly enriched with
1409  risk variants. (B) Schematic of addiction-associated genetic variants that share enrichments from
1410  human brain regions and neuronal subtypes in both human and mouse-human orthologous open
1411  chromatin. Brain graphic adapted from Fullard et a/.(Fullard et al., 2018)

1412
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1413  Supplemental Figure 1. Shared and unique genetic architecture of genetic risk variants of
1414  addiction-associated traits.

1415  (A) LDSC genetic correlation (r,) matrix of seven addiction-associated traits. FDR-significant
1416  correlations at shown in bold, non-significant in gray (FDR < 0.05). (B) Upset plot of non-
1417  overlapping genomic loci shared or unique to each addiction-associated trait. Genomic loci are
1418  clustered and identified by shared GWAS-significant SNPs and genomic region overlap.

1419

1420

1421  Supplemental Figure . Brain regions reported to be significantly enriched (FDR <= 0.05)
1422 are plotted with bolded bars, and the significance threshold is represented by a dashed red
1423 line. (C) Barplot of GWAS enrichment false-discovery rates in single cell open chromatin
1424  profiles of cell clusters in isocortex, hippocampus, and striatum (Corces et al., 2020). Cell
1425  types in brain regions that are significantly enriched (FDR <= 0.05) are plotted with bolded
1426  bars, and the significance threshold is represented by a dashed red line. (D) Barplot of
1427  GWAS enrichment false-discovery rates in single cell THS-seq OCRs of major cell clusters in
1428  occipital cortex (Lake et al., 2018). Cell types in brain regions that are significantly enriched
1429  (FDR <= 0.05) are plotted with bolded bars, and the significance threshold is represented by
1430  a dashed red line. Traits assessed are age of smoking initiation (AgeofInitiation), average
1431  number of cigarettes per day for ever smokers (CigarettesPerDay), having ever regularly
1432 smoked (SmokingInitiation), current versus former smokers (SmokingCessation), number
1433 of alcoholic drinks per week (DrinksPerWeek) (Liu et al.,, 2019b), lifetime cannabis use
1434  (Cannabis) (Pasman et al., 2018), and risky behavior (RiskyBehavior) (Karlsson Linnér et

1435 al., 2019). OFC: orbitofrontal cortex, VLPFC: ventrolateral prefrontal cortex, DLPFC:
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1436  dorsolateral prefrontal cortex, ACC: anterior cingulate cortex, INS: insula, STC: superior
1437  temporal gyrus, ITC: inferior temporal gyrus, PMC: primary motor cortex, PVC: primary visual
1438  cortex, AMY: amygdala, HIPP: hippocampus, MDT: mediodorsal thalamus, NAc: nucleus
1439  accumbens, PUT: putamen, Ast: astrocyte, End: endothelial, Ex: excitatory neuron, In: inhibitory
1440  neuron, Mic: microglia, Oli: oligodendrocyte, Opc: oligodendrocyte precursor.

1441

1442 Figure 2: Cell type-specific enrichment of substance use traits are conserved in mouse-
1443 human orthologous open chromatin regions.

1444  (A) Experimental design to map human orthologous regions from mouse ATAC-seq of bulk
1445  cortex (CTX), dorsal striatum (CPU), and nucleus accumbens (NAc) of cre-dependent Sun1-GFP
1446  Nuclear Anchored Independent Labeled (¢cSNAIL) nuclei of D1-cre, D2-cre, PV-cre, and SST-
1447  cre mice. cSNAIL ATAC-seq experiments report enriched (+) nuclei populations. (B) Partitioned
1448 LD score regression finds enrichment of substance use and risky behavior traits for brain region
1449  and cell type specific ATAC-seq open chromatin profiles of mouse brain. Replication of
1450  enrichment is shown using INTACT-enriched OCRs from Mo et a/ (Mo et al., 2015) of cortical
1451  excitatory (EXC+), vasoactive intestinal peptide interneuron (VIP+), and parvalbumin
1452  interneuron (PV+). Enrichments that are enriched at FDR < 0.05 are plotted with black outlines.
1453  FDR-adjusted p-value was performed across all mouse-human ortholog GWAS enrichment
1454  across Figure 2.

1455

1456  Figure 3: Cell type-specific convolutional neural network (CNN) models refine human

1457  NeuN+ enrichments for substance use genetic risk GWAS.
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1458  (A) Schematic to predict cell type-specific activity of NeuN+ ATAC-seq peaks enriched from
1459  brain regions assayed in Fullard et al. (Fullard et al., 2018) using CNN models trained on mouse
1460  cell-type specific ATAC-seq peaks. CNN-predicted OCRs are input into GWAS enrichment. (B)
1461  Partitioned LD score regression of addiction associated traits in Fullard et al. NeuN+ OCRs
1462  predicted to be cell type-specific by machine learning models of open chromatin. Cell types are
1463  colored by the source mouse cell type-specific OCRs from Error! Reference source not
1464  found.A. Original enrichments from Figure 1A are reproduced in black. Larger, bolded points

1465  are significant for FDR < 0.05 (red dotted line).

1466

1467  Figure 4: Convolutional Neural Network (CNN) models for predicting cell type-specific
1468  open chromatin predict activity of addiction GWAS SNPs

1469  (A) Cell type-activity predicted probability active by each set of CNN models of cell type
1470  activity for genome-wide significant SNPs and off-lead SNPs in LD R*> 0.8 with the lead
1471  SNPs. Activity scores for SNPs are stratified by overlap with Fullard et al. (Fullard et al., 2018)
1472 cortical or striatal NeuN+ (teal), NeuN- peaks (salmon), both (dark gray), or neither (light
1473  gray). Significance symbols denote Bonferroni-adjusted p-values from 2-tailed t-tests for N=18
1474  possible pairwise comparisons, N.S. not significant, * P < 0.05/N, ** P < 0.01/N, *** P <
1475  0.001/N. (B) Locus plot candidate SNP with predicted function SNP impact in cortical
1476  excitatory and striatal D1, and D2 MSN cell types. Genome tracks from top to bottom: human
1477  (h)NeuN+ MACS2 ATAC-seq fold change signal of cortical and striatal brain regions
1478  enriched in Figure 1A. SNP tracks show lead SNPs aggregated across seven addiction-
1479  associated GWAS and the SNPs either in LD with the lead SNPs (Lead SNPs) or

1480 independently significant SNPs (LD/ Sig. SNPs). Each SNP is color by increasing red

60


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318329; this version posted April 19, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1481 intensity by the degree of LD with a lead SNP. Prioritized candidate causal SNPs by
1482  predicted differential cell type activity and overlap with Fullard ef al. NeuN+ OCRs are
1483  plot as (red for Tier A, yellow for Tier B, and teal for Tier C, Methods). Tier A SNP
1484  rs7604640 is predicted to have strong ASNP effect by CPU-D1 and NAc-D1 CNN models
1485 and the bars are colored by the % change in probability active. Gene annotation tracks plot
1486  GENCODE genes from the GRCh38 build. eQTL link tracks of FDR-significant GTEX cis-
1487  eQTL from cortical and striatal brain regions, and orthologs of mouse (m) putative CREs
1488  mapped from excitatory or striatal neuronal subtypes measured by cSNAIL ATAC-seq. Cell
1489  type colors label cortical excitatory neurons (EXC; red), D1 medium spiny neurons (D1; blue),
1490  or D2 medium spiny neurons (D2; green). (C) Representative importance scores of 50bp
1491  flanking either side of the SNP rs7604640 that measure relative contribution of that
1492  sequence being active in D1 MSNs. CNN importance score interpretations are shown for
1493  effect and non-effect alleles, and the difference in importance scores reveal the relatively
1494  more important DNA motif in the effect allele that matches consensus POU1F1 motif
1495  overlapping the rs7604640 SNP. The model interprets this POU1F1 motif and a nearby

1496  NRF1 motif as contributing to the effect allele having more activity in D1 MSNs.

1497

1498  Figure 5 Summary of LDSC GWAS enrichments in human and mouse-human orthologous
1499  bulk tissue and cell type open chromatin

1500  (A) Schematic of human NeuN-labeled bulk tissue and occipital cortex cell types from Figure 1
1501  for which addiction-associated genetic variants were significantly enriched (FDR < 0.05) in
1502  OCRs. Brain regions are labelled by the cell type that enriched (NeuN+: blue box/shading;

1503  NeuN-: red box/shading) spatially along with the trait(s) for which OCRs were found
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1504  significantly enriched with risk variants. Occipital cortex cell types from Figure 1C (same color
1505  scheme) are listed along with the trait(s) for which OCRs were found significantly enriched with
1506  risk variants. (B) Schematic of addiction-associated genetic variants that share enrichments from
1507  human brain regions and neuronal subtypes in both human and mouse-human orthologous open
1508  chromatin. Brain graphic adapted from Fullard ef a/.(Fullard et al., 2018)

1509

1510  Supplemental Figure 1. Shared and unique genetic architecture of genetic risk variants of
1511 addiction-associated traits.

1512 (A) LDSC genetic correlation (r,) matrix of seven addiction-associated traits. FDR-significant
1513  correlations at shown in bold, non-significant in gray (FDR < 0.05). (B) Upset plot of non-
1514  overlapping genomic loci shared or unique to each addiction-associated trait. Genomic loci are
1515  clustered and identified by shared GWAS-significant SNPs and genomic region overlap.

1516

1517

1518  Supplemental Figure 2. Sensitivity of partitioned LDSC regression for cell type- and
1519  region-specific in the GWAS trait enrichment requires well-powered GWAS in relevant
1520  cell types.

1521  GWAS enrichment plots with false-discovery rates in ATAC-seq of 14 postmortem human brain
1522 regions coupled with NeuN-labeled fluorescence activated nuclei sorting(Fullard et al., 2018).
1523  Regions are stratified by cortical and subcortical regions, with cortical regions ordered frontal to
1524  caudal. Sorted cell types within each brain region are denoted by shape (blue triangle for
1525  NeuN+/neuronal, red circle for NeuN-/glial). Cell types in brain regions that are enriched at FDR

1526 < 0.05 are plotted with bigger shapes and with black outlines. (A) GWAS enrichment of
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1527  addiction- or substance use-associated traits: multi-site chronic pain (ChronicPain) (Johnston
1528 et al., 2019), cocaine dependence (CocaineDep) (Cabana-Dominguez et al., 2019) , opioid
1529  dependence (OpioidDep)(Cheng et al., 2018), diagnosis of obsessive-compulsive disorder
1530 (0CD) (International Obsessive Compulsive Disorder Foundation Genetics Collaborative
1531 (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS), 2018), and cups
1532 of coffee drank per day (CoffeePerDay) (Coffee and Caffeine Genetics Consortium et al.,
1533  2015). The GWAS for OCD, opioid dependence, and cocaine dependence are reportedly
1534  underpowered to detect genetic liability for these traits (Neuse< 5,000). (B) GWAS enrichment in
1535  well-powered brain-related traits show cell type- and region-specific enrichment: educational
1536  attainment (EduAttain) (Lee et al., 2018), schizophrenia risk (Schizophrenia) (Schizophrenia
1537  Working Group of the Psychiatric Genomics Consortium, 2014), habitual sleep duration
1538 (SleepDuration) (Dashti et al., 2019). (C) GWAS enrichment in non-brain associated traits
1539  do not show cell type- or region-specific enrichment: heel bone-mineral density (BMD) (Kemp et
1540 al., 2017), coronary artery disease (CAD) (Howson et al., 2017), and lean body mass (LBM)

1541  (Zillikens et al., 2017).

1542

1543  Supplemental Figure 3. Cell type specificity of cSNAIL ATAC-seq in mouse cortex and
1544  striatum

1545  (A) Principle component plots of chromatin accessibility counts from cre-dependent Sunl-GFP
1546  Nuclear Anchored Independent Labeled (cSNAIL) ATAC-seq from cre-driver lines (Methods).
1547  Major axes of variation separate cell types by tissue source (PC1) and cell type versus bulk
1548  ATAC-seq (PC2). (B) Normalized coverage track plots around marker genes demarcating cell

1549  type-specificity of cSNAIL ATAC-seq samples. (C) Density correlation plot of normalized
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1550  chromatin accessibility log counts around the transcription start site (TSS) correlated with
1551 matched pseudo-bulk cell type log gene counts from Drop-seq of mouse cortex and
1552 striatum(Saunders et al., 2018). Drop-seq cell types meta-gene profiles report sum gene counts
1553 for cell clusters from frontal cortex and striatum. Pearson’s and Spearman’s correlation are
1554  denoted with R and p, respectively. (D) Pairwise correlation matrix of TSS chromatin
1555  accessibility log counts with Drop-seq pseudo-bulk log gene counts from cortical and striatal cell
1556  clusters.

1557
1558

1559  Supplemental Figure 4. GWAS enrichment in addiction- and non-addiction-related traits
1560  using mapped mouse orthologs of tissue- and cell type-specific open chromatin regions.

1561 GWAS enrichment plots with false-discovery rates in human orthologous regions mapped from
1562  mouse ATAC-seq of bulk cortex (CTX), dorsal striatum (CPU), and nucleus accumbens (NAc)
1563  or cre-dependent Sun1-GFP Nuclear Anchored Independent Labeled (cSNAIL) nuclei of D1-cre,
1564  D2-cre, and PV-cre mice. cSNAIL ATAC-seq experiments report both enriched (+) and de-
1565  enriched (-) nuclei populations. Enrichments that are enriched at FDR < 0.05 are plot with black
1566  outlines. Replication of enrichment is shown using INTACT-enriched OCRs from Mo et al(Mo
1567  etal., 2015) of cortical excitatory (EXC+), vasoactive intestinal peptide interneuron (VIP+), and
1568  parvalbumin interneuron (PV+). (A) GWAS enrichment of addiction- or substance use-
1569  associated traits: multi-site chronic pain (ChronicPain), cocaine dependence
1570  (CocaineDep), opioid dependence (OpioidDep), diagnosis of obsessive-compulsive disorder
1571  (OCD), and cups of coffee drank per day (CoffeePerDay). The GWAS for OCD, opioid
1572 dependence, and cocaine dependence are reportedly underpowered to detect genetic liability for

1573  these traits (Ngue< 5,000). (B) GWAS enrichment in well-powered brain-related traits show cell
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1574  type- and region-specific enrichment: educational attainment (EduAttain), schizophrenia risk
1575 (Schizophrenia), habitual sleep duration (SleepDuration). (C) GWAS enrichment in
1576  non-brain associated traits do not show cell type- or region-specific enrichment: heel bone-
1577  mineral density (BMD), coronary artery disease (CAD), and lean body mass (LBM). (D) Heatmap
1578  of LDSC regression coefficients of GWAS enrichment for all measured GWAS in non-brain
1579  OCRs from human or mouse-human mapped orthologs. Tissues for which OCRs are

1580  significantly enriched (FDR < 0.05) with GWAS variants are outlined with a bolded box.

1581

1582  Supplemental Figure 5. Convolutional Neural Network (CNN) model performance and
1583  selection of candidate functional SNPs.

1584  (A) Performance metrics for convolutional neural network (CNN) models show high
1585  specificity on the test sets of positive peaks or 10x nucleotide-content matched negatives.
1586  Test set performance metrics are reported for area under the precision-recall curve (auPRC), F1-
1587  score (using threshold = 0.5), and false positive rates across all possible thresholds
1588  (Methods). Models were trained on IDR peaks of mouse cortical excitatory (Ctx-EXC) and D1
1589 and D2 medium spiny neurons from caudoputamen (CPU) and the nucleus accumbens
1590  (NAc). (B) The models best discriminate the proportion of positives and negative sequences
1591 at a threshold of 0.5. Plots show the proportion of positives (blue) or negatives (red) that
1592  are called “positive” across CNN output thresholds from 0 to 1 averaged across folds for
1593  each set of CNN models. (C) Quantile-quantile plots of p-values of calibrated ASNP
1594  probability (Methods) from a normal distribution after centering by the mean and scaling
1595 by the standard deviation of delta SNP probabilities across all SNPs (n=14,790 SNPs) for

1596  each set of CNN models. A hexbin plot was used instead to better visualize over-plotting
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1597  where every hexagon is color by the number of SNPs in that observed and expected p-
1598  value. The black dotted line denotes the equality line y = x. The number of significant SNPs
1599  at false discovery (-value < 0.05 at Tier A or B are reported for each cell type and tissue
1600  (Methods). (D) Schematic to select for predicted causal impact addiction-associated GWAS
1601  SNPs. The pipeline begins with SNPs across addiction-associated GWAS aggregated to 205
1602  non-overlapping GWAS loci across 14,790 SNPs after LD-expansion to include those in LD
1603 R?> 0.8. SNPs are further prioritized into three tiers. Tier C includes SNPs with only
1604  overlap with Fullard er al. NeuN+ ATAC-seq peaks, Tier B includes SNPs with only
1605  predicted significant differential allelic impact by on CNN-predicted CRE activity at -
1606  value < 0.05, and Tier A include SNPs matching both criteria (Methods). (E) Outline of
1607  predicting differential CRE activity between alleles using calibrated CNN probabilities of
1608  CRE activity while controlling for false discovery using informative covariates (Methods).
1609  (F) Example motif matches from Supplemental Table 2 of TomTom known transcription
1610  factor consensus motifs and the learned important features in CNN models for cortical

1611  excitatory and striatal D1 and D2 MSNs.

1612

1613  Supplemental Figure 6. Locus plots of addiction-associated SNPs predicted to act in striatal
1614  and cortical cell types.

1615  Locus plot across four additional loci with Tier A SNPs with predicted function SNP
1616 impact in cortical excitatory and striatal D1 and D2 MSN cell types. Genome tracks from
1617  top to bottom: human (h)NeuN+ MACS2 ATAC-seq fold change signal of cortical and
1618  striatal brain regions enriched in Figure 1A. SNP tracks plot lead SNPs aggregated across

1619  seven addiction-associated GWAS, the SNPs in LD with the lead SNPs (Lead SNPs) or
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1620  independently significant SNPs (LD/ Sig. SNPs). Each SNP is colored by red increasing in
1621  intensity by the degree of LD with a lead SNP. Prioritized candidate causal SNPs by
1622  predicted differential cell type activity and overlap with Fullard ef al. NeuN+ OCRs are
1623  plot as (red for Tier A, yellow for Tier B, and teal for Tier C, Methods). Tier A SNP
1624  rs7604640 is predicted to have strong ASNP effect by CPU-D1 and NAc-D1 CNN models
1625  and the bars are colored by the % change in probability active. Gene annotation tracks
1626  plot GENCODE genes from the GRCh38 build. eQTL link tracks of FDR-significant
1627  GTEX cis-eQTL from cortical and striatal brain regions, and orthologs of mouse (m)
1628  putative CREs mapped from excitatory or striatal neuronal subtypes measured by cSNAIL
1629  ATAC-seq. NeuN+ ATAC-seq tracks and eQTL links are colored by source brain region as
1630  cortical (teal) or striatal (blue). Cell type colors label cortical excitatory neurons (EXC;

1631  red), D1 medium spiny neurons (D1; blue), or D2 medium spiny neurons (D2; green).

1632  Supplemental Table 1. Addiction-associated genetic variants annotated with cell type and
1633  brain region functional markers

1634  Addiction-associated genetic variants from the main seven GWAS (Figure 1) that were
1635  scored by CNN models along with computed raw CNN scores, predicted probability active,
1636  and ASNP probabilities, and tier of predicted candidate causal SNP. Each entry is recorded
1637  for a distinct SNP, predicted CNN model, and GWAS trait. Additional columns reporting
1638  are annotated by FUMA (Watanabe et al., 2017) and CAUSALdb (Wang et al., 2020). SNPs
1639  are annotated in this study to overlap with human NeuN+ OCRs (Fullard et al., 2018). A

1640  complete legend describing column headers is in the first sheet of the table.

1641
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1642  Supplemental Table 2. TomTom matches with motifs learned by CNN models in each cell
1643  type and fold to contribute to a strong positive prediction. Learned important features
1644  were interpreted by DeepSHAP and clustered into unique seqlets by TF-Modisco
1645  (Methods).

1646

68


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

A
n
u
u
u
u

B

Region

(@)

[0]

Q

>
=
©
&)

O

©
Q
>
=
©
o

upstream AgeOfinitiation CigarettesPerDay Smokinglnitiation SmokingCessation DrinksPerWeek Cannabis RiskyBehavior
downstream
upstream:downstream
intergenic €
. @
intronic s
exonic jol
splicing o
UTR5
UTR3
unknown
AgeOfinitiation CigarettesPerDay | | Smokinglnitiation | |SmokingCessation| | DrinksPerWeek Cannabis RiskyBehavior
OFC - oA 1 Ao 1 ° 1 A oh 1 oA 1 ° 1 A oA 1
1 1 1 1 1 1 1
B A 1 » 1 1 Al e ] A 1 a A 1
VLPFC I 1 1 ° 1 1 ° 1 1 1 * 1
DLPFCHe ' A ° | ° | A ° | o a 1 ° A e A |
1 1 1 1 1 1 1
ACC q e+ 1 ae | ° A o | oa | oA | oa ' o
INS {o l - : - . ! . i o . I 2
STC e : s ! 4 Alle ! a0 ! ° . 0a ; 2
ITCHe : s0 : ° A: ° : » : o A : o :
PMC q 4¢ : Y : ° : ° : o : ° a : ° :
PVC -~ 1 Ao I A oI - 1 0 1 oA 1 Ao 1
1 L L L L L L
AMY - o . o . Ao » . ‘e . Ao NN
HIPP{o: | . S U | O - o . -t g
MDT o o= : a0 : A :. oa : ae : o 4 : a0 : 8
NACHe =+ I o oa | o 1 Ao LA e i o a i P
1 1 1 1 1 1 1
PUT H e+ 1 Ao 1 » | ° A ° 1A » 1 ° Al o
1 L L L L L L

— T T T T
0.0 0.5 1.0 1.5 2.0

— T T T T
0.0 0.5 1.0 1.5 2.0

T T T T T
0.0 05 1.0 1.5 20

Celltype

070 075 1TO 1?5 2?0
-log10(FDR)
NeuN-

— T T
0.0 0.5 1.0 1.5 2.

A NeuN+

T T T T T
0.0 05 1.0 1.5 20

e B e
0.0 05 1.0 1.5 20

Cortical_Excitatory o
Cortical_Inhibitory

AgeOfinitiation

CigarettesPerDay

Initiation | |Si

DrinksPerWeek

Cannabis

RiskyBehavior

| [ § = -

Hippocampal_Excitatory I ! ! ! l | . ) 3

Stratal_inivtory {| . ] ¥ I . ] 5
Nigral Neurons ] | [ I I | ¥ | K I
Unclassified_Neurons 4 | ! | ! | ! | ! | ! ! | !

. Astrocyte | ! | ! l: | . .: i | I |
Cortical_Astrocyte - 1 1 1 1 1 1 1
Nigral_Astrocyte 4| | - : — — — :
Striatal_Astrocyte 4 ! |- | |- | B | ! o)

Microglia A 1 ' 1 1 1 1 1 )
oligo{| 1 | | I | 1
opcH| | I E===0 i n I B
Nigral OPC{ ! ! | ! | | | |
T T T T T T T T T T T T T T T T T T T T
0 2 4 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 4
-log10(FDR)
Smokinglnitiation | | SmokingCessation DrinksPerWeek Cannabis RiskyBehavior
Cortical_Inhibitory - ! ! ! §

Astrocyte l l
Endothelia I .

Microglia ;GT)_)'

_._
N
-
~-



https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

Celltype

Mouse cohort

C57BL/6 wild-type
D1-cre

PV-cre

D2-cre

Bulk nuclei

0200

ATAC-seq

G2

Epigenomic profiling

Bulk tissue

cSNAIL-INTACT

Ortholog mapping

’ Peak
.0 .'0 Summit

o 0 )
GFP+ nuclei
Vs

mm10f\_‘
E———

LDSC GWAS
Enrichment

AgeOfinitiation CigarettesPerDay | | Smokinglnitiation | [SmokingC ti DrinksPerWeek Cannabis RiskyBehavior
I |W I |
ve [l B | B ] | i 3|
1 1 1
el L ([ I .
][ l; [ [;
SST+ T i : ' ' 3|3
: : : ' : 2|2
ba{] [] | | B B i
ore | N .
oz« | . [ |
o|%
rve I | m g
! : : : S
SST+ : i i i <
1 1
oorc| I I ]
i |7
>3
D2+ g'
2 1

o
—_
w -

w -

0

1 2 (IS
~log10(FDR)

o

N -

w -

o


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Enriched NeuN+ regions Predict cell type activity of
e NeuN+ ATAC-seq peaks

L_EXC ) .m .
/_1\‘ > LDSG GWAS
é Ip1

Enrichment

mouseAtrained L‘*‘

Fullard et al., Genome Res. 2018 ML models
B AgeOfinitiation CigarettesPerDay | | Smokinglnitiation | [SmokingCessation DrinksPerWeek Cannabis RiskyBehavior
I 1 1 I 1 1 1
A
oFc{4 ! A ! ¥ . +— SR
1 1 1 1 1 1 I
1 A 1 1 1 1 1 1
1 1 1 A 1 1 1 1
VLPFC-{ A4 . DA s A A A
1 1 1 I 1 f I
I 1 1 I 1 1 1
A 1 1 1 1 1 1 A =
1 A A S
PLPFCI8 1 ;A | | AT, o A |
- 1 1 1 I 1 1 1
A
S accia roR 7 SN S AL T 2
g 1 1 1 I 1 1 I
o I 1 1 I 1 1 1
1 A 1 1 1 1 1
STC 14 1 R 1 1 AA AA 1 A 1 ﬂ i 1
1 1 1 1 1 1 I
1 1 1 1 1 1 1
1 1 1 ] 1 1 ]
1 | B 1 1 1 1 |
PUT{ 4 a 1 *I |‘. |‘ ‘ 1 * o
* 1 1 I 1 1 =3
I 1 1 I 1 .‘ 1 1 3
1 ® ! 1 1 1 A 1 1 =
NAC - 1 A" 1 1 1 1 e
A: 1 1 ‘I 1 .ﬂ 1 < « 1 n I =
T T - T T T - T T T - T T T - T T T - T T T - T T T - T
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 2

—-log10(FDR)

Celltype A EXC ® D1 ¢ D2 A NeuN+


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

>

-
i
*
X
*
*
*
b
*
b
*
*
*
¥
*
¥
3

o
2y
1

0.0

Calibrated Pr(active CRE)
o
AT

Ctx-EXC Cpu-D1 Cpu-D2 Nac-D1 Nac-D2

SNP in peak

i i i i — none
N o
NeuN-
NeuN+
Both

SNP in a NeuN + or - peak

0] L hOFC NeuN+
o | L. NVLPFC NeuN+

3.3

0] L hDLPFC NeuN+
3.6

o]m R Bl At i i aak L i abiade Antatiend ‘“MAMAM hACC NeuN+
4.6

: ] | hSTC NeuN+
(U] P TR UG T W TR WHIRTEPIFV AT Y T WV
0] b b heUTNeuns

} J hNAC NeuN+
SN Y USSP VO SOOIy N TSI Y DO

Lead SNPs

| I LI
| 1 1 n | 1 LD/ Sig. SNPs

Prioritization

l30%

0%
. -30%

|||S'X3'A51 Tier B SNP

Tier C SNP
in NeuN+ OCR

Gene

HS|X3 Annotation

GTEX eQTL

rs7604640, Cpu-D1

rs7604640, NAc-D1

ASNP Probability
LD R?w/ lead SNP

0

mCtx-EXC
mCpu-D1

I II I I mCpu-D2
mNAc-D1
mNAc-D2
1 1 1

(@

Importance Scores

@
© 0.0075
c
& oomso
S ooms

E

£ oo
a

Effect Allele: G, Cpu-D1 55% active, NAc-D1 42%
o

44,890 | 44,900 44,910 44,920 44,930 44,940 44,950 44,960 Kb 44,970
chr2

—_—— ar_cGC LG TOATCA . o —_.__ﬁ_m‘ A‘C___C__TICLLATg..

, Non-effect Allele: A, Cpu-D1 45%, NAc-D1 30%

C_AAMA KC___C_T&{_AT_ _

————m— aT_cGC Ca G oo o

ASNP: Cpu-D1 +10%, NAc-D1 +12% ———— > POUTF1

NRF1€¢————1 AAT( l \
- SR SRl ¢ e 0 O 7Y N S VY VN



https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

Smoknntla

N\ 4 “\ N\

OFC, DLPF
Smokinglnitiation
HIPP
Smoklnlnltlatlon

Cannabls

NAc, PUT
SmoklngCessatlon
DrinksPerWeek
Y LPF
O)' Smoklnlnltlatlon
&

AST END EXC INH OPC
|————— Smokinglnitiation ~————————|
- AgeOfinitiation -
|- DrinksPerWeek -|
|—— Cannabis —]
—RiskyBehavior—|
SmokCess.

‘ concordant hDLPEC
p|enrichments
™,
hVLPFC

hOFC

Enriched NeuN+
Enriched NeuN-| |

hDLPFC, hVLPFC, hOFC & mCTX
A Smokinglnitiation
Cannabis
hPUT & mCPU
m }SmokingCessation
@ DrinksPerWeek

hNAc & mNAc

hOFC m SmokingCessation
@ DrinksPerWeek



https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Shared genetic architecture

RiskyBehavior
Cannabis
AgeOfinitiation
DrinksPerWeek
Smokinglnitiation

SmokingCessation

CigarettesPerDay

B Shared & Unique Trait Loci

6

0
40
0 II-__IlI-____

Smokinglnitiation @ I I
RiskyBehavior =~ @ I I I I l
DrinksPerWeek o I
CigarettesPerDay o I [
°
°
°

count

SmokingCessation

AgeOfinitiation

Cannabis
Phenotype


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cortex Subcortex Cortex Subcortex
.............................. o
W -2 W i +
2 - - rS =
(1 4 >
o [0
3 0 © 9 3 2 ° o 2 ¢ *||° o s ¢ oo z
- = o
- o 4
e | | | ! ! ! 1ttt llT e ==m===—F-S-——F-—S-——Fd [FF===-—=—F===-=-F4 —
o o
« 3 ) 2
o o 3 & 4 S s alle @ ¢ 6 3|0 o w S
S} < o O m
c I0.1
)}
|||||||||||||||||||||||||||||| 1 Ko} °
6 6 o 8 © ¢ o o a 9 8 & 3 o 9T
L@ o o)
B I e s e Q
a Lo =
(3] e =
o 0 m (G
Lw© o
o o Fo
1 ! 1 T e 9 9 % 9 2 o o ¢ 2 ¢ o ¢ e|©
T < e 6 <« o © a ° < u o « °|O T T T T T T T T T T T T T — o
=) 0O 0O OO ®!Ww O OL OO > o =k O E
L L LQOZ2ZFFTZS > S aoao0o<g >
.............................. cgax=o aa I ET==za
> 0
o O uoiboe w
o
[} -0 ooy
9 L
2 5 o
4 ~— c
o A oY o k<
o i °9 |= <
] ] © 4 q4 4
< = Fom
1 4 < =) 4
Lo e o i e e, o0 =] < o
o Q d
o -----=--- D Il === = —-——— 4 -----4
Q@ 1 iyl I "
llllllllllllllllllllllllllllll [ ° ° ® - - b4
o < < o =]
e o ) < o ° ° Fo D
g -2 2
(=} - ] Lo .
[} —_
£ = -4m _
@®© 0 — d
Lw© © z
M (=] |l 4 < 4 rolt >
(8] < < 4 o [}
° .w o q 4 “ Loy — z
)}
S 3 g 6 9 19 e o|le 2 s ilo wi---° 9 ______ -9 [FF=4=<=%=-4=-= 4 O °
o ° o o 8 1 e F 1
° ¥ $ o g
.............................. s
4 F 0 =
£ Lo q 2
T ° L o [+~ m 4 4 4 4 4 F < (@)
o ° (] 4
Q S
= ° c 4 Fo
S . 1 . Lo & <
= o ° o N d S\
o ° ° ¢ o e e S L S e e e [ e 4 _____ ]
[*] ko
i < T o ) e 1
< 1 4« < < |M ° 1 1 . . ° s . b ° ° . b4 Lo
— T — — T 77— —
OCOLVLOLOMNMOLOLOOL >akFE0k 0O 0O O O0O®!Ww O OL OO > o k- O kF
LLLOZFFESS> Sa0<g>2 L L LOQOZ2FFTZS > S ao0o<g >
ocoog=w~—-—fga I FTsSZ0o ocaoaog=on oo T FT==z1n
R | R |
> 0 > 0

uoibay m uoibay


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

A cSNAIL variability & marker accessibility C

® Tissue
' - O Citx
Q ¢ : O Cpu
&P om ¥
8 <& NAc
04 o = (]
‘ (]
=
o ) Celltype
O
o @ EXC
° - e PV
o) ]
O SST
107 e VP
(@]
@ D1
@ D2
u @ bulk
T T T
-30 0 30 60
PC1
I—Hl-l-l—l5|c17a7 -—IDrdl HAdoraZa
I T % % Ctx, EXC
=T e el N ., CpuD1
Soh. oo LW A % . . i NAc,D1
ek o %] Mebasddeanem ) Cpu, D2
Oy . . . e ) A b | NAC, D2
§ T R Ctx, PV
=l . o SR B __. Cpu,PV
£ K K Ctx, SST
% K K| Cpu, SST
Zy, | ™ Ctx, VIP
D’“’ILL.L } IO SR U _Ctx, bulk
Loy, % U B | Cpu, bulk
o Ctx, EXC
R e I EU—
E szAi SO S 0_____.‘._.0L4._A,,k_ S, A.NAC’ D1
3 dh A% o —_Cpu, D2
20 20}
Of o L. % o . _NAc,D2
8 I* e o I Ctx, PV
o E— 0 O ~— - —~Cpu, PV
€. K ; Ctx, SST
O o Cpu, SST
Z. a a7 m|*____.“_.ctx, VIP
12 I W W VU ol i Y Ctx, bulk
<y N ) N .. . . _.Cpu,bulk

cSNAIL ATAC Samples

cSNAIL correlation with scRNA-seq

Ctx_EXC Ctx_PV
%6{R=069 " . 0
C C
2 |p=07 3
O 44 o
() ()
5 | 5
S, e
2 |3 2
—8) 04 ?tmnm 8
o 1 2 3 4
log10(TSS counts)
Ctx_VIP
2 2
c 44 c
> >
[e] o
O 34 o
() ()
C C
@ 2+ [
) )
O {]e o
o |2 =
9042 9
0 1 2 3 4
log10(TSS counts) log10(TSS counts)
Cpu_D2 Cpu_PV
2°1R=0.74 @
C C
> >
8 4- 8
() ()
C C
[0 [0
R )
o o
B 2
-— O- -—
o 1 2 3 4
log10(TSS counts) log10(TSS counts)
Cpu_SST
3 5
é 3 w? AARRR :g R=0.6 ¢
o WS =07
o A 8
X 34
Q () .
g AAAAA OC,) 2_ .
8 S| .
Q11 A ¥
o .
O () ]2 sensassssssasescisosssssssss

0o 1
log10(TSS counts)

Correlation Cell_type Tissue

I 0.75 M D1 M cpu
0.7 B b2 Ctx

0.65 W EXC INAC

0.6 & MGE Cell_type

055 = g\S/T B bulk
Tissue VIP B D1
Ctx u B D2

M str W EXC
= pv

SST


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

A ChronicPain CocaineDep OpioidDep ocD CoffeePerDay
: || : 0 | _ : NE
! i : | I | 2|8
- | . U . >
: N : I o2
: : : : I E
1 1 1 1 =]
1 1 1 1 «Q
g : | : : .
= 1 1 I
3 : I ] | |
© - = 0 . - 2
|| i I
1 I 1 . 1 g 3.
1 1 1 1 3
1 1 1 1 «
= I | = -
U
! I i | N z(2
: B : ] : 5|5
&O:O 0:5 1.0 1.5 2:0 0:0 0:5 1:0 1:5 2:0 00 05 10 15 20 0:0 0:5 1:0 1:5 2:0 0:0 0:5 1:0 1:5 2:0
' —-log10(FDR)
B Schizophrenia EduAttain SleepDuration C BMD CAD LBM
EXC+1 i = EXC+1 : : : =
Ol9 1 1 1O ]9
VIP+ - B 3|8 VIP+ . Nl | 128
x|= 1 1 1 x| =
PV+ o] @ PV+ - | | e
PV+- [ 7 PV ! IE]
Ol|S \ ' lol®
SST++ L] ME SST++ i | 1523
o bulk [l 8| o bulk- | I 1 |é
Q_ Q_ 1 1 1
g‘ D :>‘ D 1 1 1
o] 1+ 2 1+ : : :
o D2+ A ) o D2+ 1 I | | ]
o o 1 1 1 o o
PV 2|3 PV il : !
SST+ H 8|  ssT+ : ; | |@
1 1 1
bulk ] ] bulk - . . .
°J U
D1+ B z|8 D1+ : i 1z|8
D2+ ! &2 D2+ | | 5|2
0O 4 8 120 4 8 12 00 05 10 00 05 10 00 05 10
D —log10(FDR) -log10(FDR)
| Addiction traits | | Addiction-related traits | | Brain traits ‘ | Non-brain traits
preadipocyte -
adipocyte - z
stomach - E
® . =
=3 liver-
] |
kidney - 3
liver- 2
3
lung - @
OF o 0 = “~ \9 Fot “ Q Q 0 ‘! NG\ AT\ © O A\
o ?e‘o \ax\O 2 ‘\x.xae o W (% O% ¢°° o® oc O (@ @ O oW oW \®
R o 2% o % <o c,o\ o° o 0% ¢ ¥
geo @‘e(" \‘:(\ *\(\g ‘\(\ S $\ \(ﬂ o c° (o) 00’(‘ 60‘(\\1' e\ee(’
Lo C Sl ° Y

phenotype

LDSC Coefficient _

-1e-06 -5e-07 0e+00 5e-07

I FDR < 0.05



https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mo2015

Ctx
===

Pfenning Pfenning

Nac
=C00=

Cpu

0.8
0.6 1
0.4 4
0.2
0.0

Oddne

eo
0.751

(]
2 0,501
g
0.25
0.004

B
B
B

21005 |}

0.20
0.15 4
0.10 4
0.05
0.00

idy

EXC

D2
celltype

D1

D Addiction SNP Prioritization Pipeline
[AgeOfinitiation 15 SNPs——)

[CigarettesPerDay 216 SNPs{—
[Smokinglnitiation 299 SNPs|—
[smokingCessation 40 SNPs|

205 Genome-wide
significant loci

LD-expansion

14,790 SNPs
w/ R?>0.8 *

celltype

B Cix-EXC. Cpu-D1 Cpu-D2 Nac-D1 Nac-D2
[ prr— .| |t = oy ooy,
*, e, 0, 0y, ',
3 L Ly (" " |
£ 075 . h ' ‘ I
211 ! . ) ) \ [
< 050 ! ! L I "
5 \ ' ' [ '
£ W \ | ) ' “ \ |
L
gUZE "l. '. ", ‘ "v i h N Ii l
& 000 M s vl i LR e T i,

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Prediction Probabilitv Threshold

Validation set group pos neg

EXC C
PV Ctx-EXC Cpu-D1 ‘ Cpu-D2 Nac-D1 Nac-D2
. count
VIP T |TierA=32 TierA =28 TierA=27 = || TierA=28 TierA=23 |
E— 751TierB = 233 TierB = 221 TierB =206, | (TierB = 20§ TierB = 202 1000
z ] . ! *
< 50 . 'n' " :‘ .‘ 100
@
S { ! !
S 25 10
1 - - - - -
0 il =~ [oomli— = . [ omli— = . !
012345001 234501 234501234501 2345
—log1o(Exp A SNP pval)
E Predicting SNP impact with CNNs
Tier A:

Predicted CNN impact 1) Score alleles of SNP w/ CNNs

& in NeuN+ peaks

2) ASNP probability =
Pr(score___) - Pr(score

effect non-eﬁecl)

3) compute pvalue for allele effect
p-value = Pr(ASNP ~ N(u,0))

55 SNPs
37 loci

4) Multiple testing correction with
covariate-weighted g-value
ASNP p-value ~ GC content + MAF
+ inNeuN peak + isCausal

[DrinksPerWeek 188 SNPs{— Tier C: Tier B:
[Cannabis 6 SNPsj . ";%L;N;Npsaks Cl\g\(l):rse'\c::tion _
S
[RiskyBehavior 277 SNPs{— 121 loci 118 loci |NAc—D2 23 SNPsl
F
TomTom MEF2C NRF1
Match T T i
:‘:;;%fi ?%‘.;é.!.l: ,-%"?—— S.za
Motifs o
EXC _ D2
learned by
CNN Models

NR4A1



https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

6’ 2.8
o]; RO TR 1 e Sttt Lt l g i | OFC NeuN+ 0]'* i i bbbt idiial s el NOFC NeuN+
3.7 2.7
o) i ol Ju i b bt [t L | NVLPFC NeuN+ ] e s b cmnbabdboi sl ko i s by VLPFC NeuN+
3.5 2.6
o i i alld it Lot L it L, WDLPFC NeuN+ . Lk ittt s e st "OLPFC NN+
3.5 2.5
o) il JIPY OTIR SO A O Leiantanm L, NACC NeuN+ o]lm s s ks, b hntabai oot il sl sy " CC NEUN+
2.9
e el Ll it Ll Lo | hSTC Neun+ 0]. SRV TSRV U VIR STV WP ) L Ll s hSTC NeuN+
4.3 3.0
o] kbbb il adis bbbk L Loald dia o |, NPUT NeuN+ 0] el bl bl . i Lol i b gl Ll b s galga iy MPUT NeuN+
3.7 3.2
o]“u O RO VRO N TV PP YO TV V0 Y DO ST YO O O e | hNAC NeuN+ 0 it A il & stk e sisdali b s Uit NNAC NeuN+
T T T T TT1TT0 T Lead SNPs T T OIT1 I BT W T Tl TT T Lead snPs
I mim NITHD DN 1IN | OO MMM LD/ Sig. SNPs EEINE N | | Y I (M| L0/ Sig. SNPs
I Prioritization I I Prioritization
; 2% S 3 >Pg30% %
Ctx-EXC | 14331020 Z F Ctx-EXC 513099750 12122042, Ctx-EXC I 2
‘ kS g Cpu-D1[rs9826458 2 !
i & 3 rs1248859, Cpu-D2 | Cpu-D2|rs9826458 2 o é
i o 2
rs11191352, NAc-D1 5. g NAc-D1 rs9826458 < &
; <My 4 0 NAc-D2 159826458 Gl 50w 8
ARMH3 aNFKB2 WTRIM8  WBORCS7 ~ @—+NT5C2
alLDB1 aPSD #HARL3 H———HmCNNM2 LINCO0971 CADM2-AS1 _
WPPRC1 WFBXL15 HDSFXN2 TorBSNP Tier B SNP
WNOLC1 #CUEDC2 —+WBP1L o, Tier C SNP
JELOVE3  BRPARP-AS1 aCYP17A1 B in NeuN+ OCR
#PITX3  4C100rf95 #HAS3MT
H—— HIGBF1 Gene Gene
#MFSD13A . | | | | | || I"ADMZ Annotation
@ACTRIA Annotation | | | I | || I
#SUFU "
@ \:ﬁ GTEX eQTL GTEX eQTL
I I II mCtx-EXC mCtx-EXC
I mCpu-D1 mCpu-D1
I I I mCpu-D2 mCpu-D2
I mNAc-D1 mNAc-D1
I I l I mNAc-D2 mNAc-D2
. i .
C 102.0 102.2 102.4 102;6 102.8 103.0 103.2 Mbp 86.2 Mbp
chrl0 |
2.9
Ll . " hOFC NeuN+ o ke | . ) hOFC NeuN+
Lol L Aol R 4 NVLPFC NeuN+ A T TR T ¢ i NVLPFC Neun+
Lol L o R L., NDLPFC NeuN+ “ PRI " | hDLPFC NeuN+
Lol I\ il . NACC NeuN+ 2.2 A " e i I . hACC NeuN+
L1 | e . | hSTC NeuN+ 4 VT I, oL sty NSTC Neun+
31
L i n hPUT NeuN+ o) it n i m o \ “ I Lo e hPUT NeuN+
Lo i ) hNAC NeuN+ = [ PP VY PO [ T B ) hNAC NeuN+
[ [ Lead SNPs 1 I rmr iy 1 | ] IIT 1 Lead SNPs
IR0 T W N MR 0 W00 W Lo/ Sig. SNPs [ ciammmiy 0§ 1 InNgmm|§ LD/ Sig. SNPs
Prioritization Prioritization
- i -
;-_?l”’“ H | r$62056779, rs11675895  CHx-EXC, rs2435204 lm—g 1
E E] rs62056779, rs11575895 = Cpu-D1 3 e
2 3 l s S
2 3 1$62056779, rs11575895 | Cpu-D2, rs2435204 S oy 2
L, 2 =
rs9844736, NAc-D1 =~ & & 1s11575895  NAc-D1, rs2435204 Y ;
9l 2 o rs11575895  NAc-D2 a9 o
EWSTABL BGNL3  WITIHL WHH#-H————SFMBT1 (HARHGAP27 HHICRHR1 JKANSL1-AS1  (FAM215B
#HNT5DC2 W$IGLT8D1  (MITIHA S JAC003070.1 H—H|-||MAPT H-HARL17B [
tor; i Tier C SNP
fHSMIMa PSPCS1  EITIH3 Tier C SNP HHHPLEKHM1 | HHHKANsLL HILRRC37A2 [ TIEFCSNR
W HHBHE-HPBRM IMUSTN1 R InNsUNEOCR ILRRC37A4P | JCR936218.1 WHARLIZA  Gene
ene i Annotation
—HHIINEK4 Annotation #LNC02210 | HILRRC37A
H——{STIMATE J——HILINC02210-CRHR1 HHHHHINSF
= === GTEX eQTL GTEX eQTL
I I I mCtx-EXC I mCtx-EXC
I mCpu-D1 I I mCpu-D1
mCpu-D2 I mCpu-D2
I I mNAc-D1 I mNAc-D1
mNAc-D2 I I mNAc-D2
. . . . . AT TN . .
52.5 52.6 52.7 52.8 52.9 53.0 Mbp 45.4 45.6 45.8 i‘ 46.0 46.2 46.4 46.6 Mbp
chr3 i chr17

0


https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Cover Page
	Article_with_bold_edits
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Supplemental Figure 1
	Supplemental Figure 2
	Supplemental Figure 3
	Supplemental Figure 4
	Supplemental Figure 5
	Supplemental Figure 6

