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ABSTRACT 46 

Recent large genome-wide association studies (GWAS) have identified multiple confident risk 47 

loci linked to addiction-associated behavioral traits. Genetic variants linked to addiction-48 

associated traits lie largely in non-coding regions of the genome, likely disrupting cis-regulatory 49 

element (CRE) function. CREs tend to be highly cell type-specific and may contribute to the 50 

functional development of the neural circuits underlying addiction.  Yet, a systematic approach 51 

for predicting the impact of risk variants on the CREs of specific cell populations is lacking. To 52 

dissect the cell types and brain regions underlying addiction-associated traits, we applied LD 53 

score regression to compare GWAS to genomic regions collected from human and mouse assays 54 

for open chromatin, which is associated with CRE activity. We found enrichment of addiction-55 

associated variants in putative CREs marked by open chromatin in neuronal (NeuN+) nuclei 56 

collected from multiple prefrontal cortical areas and striatal regions known to play major roles in 57 

reward and addiction. To further dissect the cell type-specific basis of addiction-associated traits, 58 

we also identified enrichments in human orthologs of open chromatin regions of mouse 59 

neuronal subtypes: cortical excitatory, D1, D2, and PV. Lastly, we developed machine 60 

learning models from mouse cell type-specific regions of open chromatin to further dissect 61 

human NeuN+ open chromatin regions into cortical excitatory or striatal D1 and D2 neurons and 62 

predict the functional impact of addiction-associated genetic variants. Our results suggest that 63 

different neuronal subtypes within the reward system play distinct roles in the variety of traits 64 

that contribute to addiction.  65 

Significance Statement: 66 

We combine statistical genetic and machine learning techniques to find that the 67 

predisposition to for nicotine, alcohol, and cannabis use behaviors can be partially 68 
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explained by genetic variants in conserved regulatory elements within specific brain 69 

regions and neuronal subtypes of the reward system. This computational framework can 70 

flexibly integrate open chromatin data across species to screen for putative causal variants in a 71 

cell type- and tissue-specific manner across numerous complex traits.  72 
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INTRODUCTION  73 

Substance use disorders (SUD) have increased in prevalence over the last three decades, 74 

with an estimated 100 million cases worldwide (GBD 2016 Alcohol and Drug Use Collaborators, 75 

2018; Eddie et al., 2019). Pharmacological interventions are limited in their ability to cure 76 

addiction due to physiological and logistical barriers (Pullen and Oser, 2014; Pear et al., 2019). 77 

As the societal epidemic of substance use grows, there is a greater need to understand the 78 

neurobiology of substance use behaviors and addiction. 79 

The reward circuits co-opted in addiction as well as the associated neural cell types are 80 

highly conserved across primates and rodents (Monaco et al., 2015; Grillner and Robertson, 81 

2016; Scaplen and Kaun, 2016; Hodge et al., 2019). It is generally accepted that addictive 82 

substances promote impulsive and compulsive behavior by activating the mesolimbic dopamine 83 

system, in which dopaminergic inputs from the ventral tegmental area project to medium spiny 84 

neurons (MSN) of the nucleus accumbens (NAc) in the ventral striatum (STR) (Koob and 85 

Volkow, 2010). Glutamatergic inputs to the NAc from the amygdala, frontal cortex, and 86 

hippocampus contribute to motivational action through the extrapyramidal motor system (Koob 87 

and Volkow, 2010). Subsequently, the NAc sends outputs to nuclei of the ventral pallidum, 88 

which are critical for processing and modulating substance reward signal (Koob and Volkow, 89 

2010). The development of compulsive substance-seeking is hypothesized to be linked to 90 

recruitment of the dorsal STR, which together with the prefrontal cortical regions 91 

regulates a variety of reward and addiction-related phenotypes (Koob and Volkow, 2010; 92 

Goldstein and Volkow, 2011). These findings emphasize that substance abuse behavior 93 

involves the interplay of the brain regions and cell types that make up the reward system. 94 
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Increasing evidence reveals strong genetic links to substance use risk (Pasman et al., 95 

2018; Erzurumluoglu et al., 2019; Karlsson Linnér et al., 2019; Liu et al., 2019b) and SUD 96 

(Kendler and Prescott, 1998a, 1998b; Dick, 2016; Waaktaar et al., 2018). Genome-wide 97 

association studies (GWAS) report that genetic risk for substance use shares underlying 98 

architecture with other neuropsychiatric disorders (Pasman et al., 2018; Liu et al., 2019b), of 99 

which risk variants tend to lie in non-coding, functional regions of the human genome (Jensen, 100 

2016). These genetic variants, including single nucleotide polymorphisms (SNPs), can disrupt 101 

transcription factor binding in cis-regulatory elements (CREs) with varying impact on gene 102 

regulation and downstream neural circuitry. Many CREs have tissue- and cell type-specific 103 

activity (Roadmap Epigenomics Consortium et al., 2015), suggesting that cell types and tissues 104 

underlying addiction may be uniquely targeted by genetic variants at these CREs. GWAS for 105 

nicotine-, alcohol- (Liu et al., 2019b), and cannabis-use traits (Pasman et al., 2018) have 106 

identified multiple confident risk loci and SNPs linked to addiction-associated phenotypes with 107 

brain-specificity, yet their effects on the CREs of specific brain regions and cell types involved 108 

in addiction pathophysiology are an open area of inquiry.  109 

A comparison of GWAS to functional annotations of the human genome have 110 

yielded estimates that over 90% of SNPs associated with complex phenotypes lie within 111 

functional non-coding regions, which are marked by epigenetic features including open 112 

chromatin. (Maurano et al., 2012; Finucane et al., 2015). Linkage disequilibrium (LD) of 113 

significant SNPs complicates the identification of causal variants contributing to genetic risk 114 

(Bush and Moore, 2012). Regression of SNP LD scores against GWAS summary statistics 115 

(LDSC regression) is the dominant method for relating human genetics to functional 116 

annotations. LDSC regression partitions risk SNPs identified by GWAS into the tissues or 117 
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cell types in which genetic variation in CREs may contribute to heritability of complex 118 

traits (Finucane et al., 2015; Visscher et al., 2017). Yet, the functional consequences of risk 119 

SNPs in CRE sequences cannot be reliably inferred from DNA sequences alone (Shlyueva et al., 120 

2014). Recent developments in epigenomic assays (Buenrostro et al., 2013; Mo et al., 2015; Tak 121 

and Farnham, 2015) and machine learning (Ghandi et al., 2014; Zhou and Troyanskaya, 2015; 122 

Kelley et al., 2016, 2018; Lee, 2016) can predict cell types affected by addiction-associated 123 

genetic variation to propose cell type-specific hypotheses on the pathogenesis of addiction.  124 

Here, we implement a framework that links the genetic predisposition to addiction-125 

associated traits to specific brain regions and cell types within them by identifying which 126 

have open chromatin regions that are enriched for SNPs identified by GWAS. We first 127 

intersect SNPs measured by GWAS across human and mouse bulk tissue and cell type-specific 128 

open chromatin regions to identify putative region- and cell type-specific CREs that may be 129 

impacted by genetic variation associated with addiction-related traits. To overcome limits of 130 

cellular resolution in the human brain, we apply convolutional neural network models 131 

trained on transgenically-labelled neuron populations in the reward system of mice to 132 

predict the cell type-specificity of GWAS-associated SNPs in the human genome. We 133 

further apply these models to the problem of screening for putative causal SNPs within dense 134 

loci reported in GWAS for addiction-associated traits. This pipeline, to our knowledge, describes 135 

the first integrative analyses across species, brain regions and cell types to screen for candidate 136 

causal addiction-associated genetic risk variants in dense loci with numerous significant SNPs in 137 

LD.  138 
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RESULTS 139 

Genetic risk for substance use traits is associated with the neuronal epigenomes of reward 140 

areas 141 

Recent well-powered GWAS have identified dozens of candidate genetic risk loci 142 

associated with seven addiction-associated traits: age of smoking initiation 143 

(AgeOfInitiation), average number of cigarettes smoked per day 144 

(CigarettesPerDay), having ever regularly smoked (SmokingInitiation), being a 145 

former versus current smoker (SmokingCessation), the number of alcoholic drinks 146 

per week (DrinksPerWeek), and lifetime cannabis use (Cannabis), and risk tolerance 147 

(RiskyBehavior) (Pasman et al., 2018; Karlsson Linnér et al., 2019; Liu et al., 2019b). These 148 

GWAS measure reward, risk tolerance, and various substance use behaviors, thereby providing 149 

a means of studying genetic variation associated with addiction. We found that 72-98% of 150 

addiction-associated genetic variants lie in non-coding regions of the genome (Figure 1A). Of 151 

those risk variants, 47-85% lie in introns, which is a substantial over-representation in each 152 

GWAS (odds ratio, ORAgeOfInitiation =2.3, ORCannabis = 2.3, ORCigarettesPerDay = 1.4, ORDrinksPerWeek = 153 

1.6, ORRiskyBehavior = 1.4, ORSmokingCessation = 1.8, ORSmokingInitiation =1.3, Fisher’s Exact PBonferroni < 154 

8 x 10-79).  Furthermore, pairwise genetic correlations of risk alleles in these seven GWAS 155 

indicated shared and distinct genetic architecture across addiction-associated traits (rg, 156 

Supplemental Figure 1A). Although common genetic variants are shared between addiction-157 

associated traits on a genome-wide scale, the reported significant loci are often unique to a 158 

particular trait and are densely packed with SNPs in high LD (Supplemental Figure 1B). SNPs 159 

that are associated with the seven traits span 205 non-overlapping loci across the human 160 

genome and include on average 71 SNPs (minimum 1, median 22.5, maximum 1780) within 161 
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each locus that are either genome-wide significant (PGWAS  < 5 x 10-8) or in high LD with the 162 

lead SNPs (R2 > 0.8, Supplemental Table 1). 163 

We investigated whether genetic variants implicated by addiction-associated GWAS 164 

show a tendency to cluster at putative cis-regulatory elements (CREs) of the brain using a 165 

partitioned heritability LDSC regression approach, which looks for an enrichments of 166 

significant SNPs from GWAS in human annotations (Bulik-Sullivan et al., 2015b; Finucane 167 

et al., 2018). We applied LDSC to compare the seven addiction-associated GWAS to open 168 

chromatin region (OCR) annotations of sorted neuronal (NeuN+) and glial (NeuN-) nuclei across 169 

14 brain regions(Fullard et al., 2018) (Figure 1B). We found that genetic variants associated 170 

with SmokingInitiation, SmokingCessation, DrinksPerWeek, and Cannabis 171 

significantly enriched in NeuN+ OCRs of brain regions known and speculated to contribute to 172 

reward and addiction(Volkow and Morales, 2015) (FDR < 0.05). We found that genetic variants 173 

associated with SmokingInitiation and Cannabis shared enrichment in NeuN+ 174 

prefrontal cortical OCRs (from orbitofrontal cortex and dorsolateral prefrontal cortex) while 175 

those associated with SmokingCessation and DrinksPerWeek shared enrichment in 176 

NeuN+ striatal OCRs (both putamen and NAc). The enrichments of NeuN+ OCRs indicate that 177 

genetic variation in epigenomes of neuronal populations from frontal cortex and striatum 178 

contribute to addiction liability. The difference in NeuN+ enrichments between regions across 179 

addiction-associated traits can likely be explained by the difference in proportions and identities 180 

of neuronal subtypes of each area, so we sought to dissect the different neuronal subtypes 181 

contributing to these enrichments. 182 

Broad marker-gene based labeling approaches, such as using NeuN to label neurons, do 183 

not capture the rich diversity of neuronal subtypes; bulk NeuN+ open chromatin signal 184 
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represents an average signal from heterogeneous neuronal subtypes, each with distinct 185 

epigenomic landscapes, gene regulation, network connectivity. Hence, NeuN-labeled open 186 

chromatin profiles likely do not capture OCRs unique to less populous neuronal subtypes. The 187 

difference in proportions of neuronal subtypes between brain regions may also contribute to 188 

brain region-specific NeuN+ OCR enrichment for GWAS variants of addiction-associated traits. 189 

We therefore applied LDSC regression GWAS enrichment on single cell open chromatin profiles 190 

from human postmortem isocortical, striatal, hippocampal, nigral (Figure 1C) and occipital 191 

cortical cell types (Lake et al., 2018; Corces et al., 2020) (Figure 1D). We found that addiction-192 

associated genetic variants largely enriched in both excitatory and inhibitory neuronal OCRs. 193 

Genetic variants associated with SmokingInitiation, SmokingCessation, 194 

DrinksPerWeek, and Cannabis enriched in isocortical excitatory neuron OCRs 195 

(Figure 1C). We found enrichment of genetic variants associated with 196 

CigarettesPerDay, SmokingInitiation, SmokingCessation, 197 

DrinksPerWeek, Cannabis, and RiskyBehavior in striatal inhibitory neurons. 198 

Genetic variants associated with Cannabis also enriched in isocortical inhibitory neuron 199 

and unclassified neuron OCRs. Among the glial cell types, only oligodendrocyte precursor 200 

cell OCRs were enriched for an addiction-associated trait (SmokingInitiation). We 201 

found enrichment of genetic variants associated with AgeOfInitiation and 202 

SmokingCessation in OCRs of occipital cortical excitatory neurons. We found no 203 

enrichment of genetic variants associated with CigarettesPerDay for OCRs of occipital 204 

cortex cell types. Genetic variants associated with SmokingInitiation, which enriched in 205 

astrocyte, endothelial, inhibitory, and oligodendrocyte precursor cell OCRs from occipital 206 

cortex, shared enrichment in NeuN- OCRs of mediodorsal thalamus (Figure 1B). Interestingly, 207 
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genetic variants associated with SmokingCessation, which showed enrichment for striatal 208 

NeuN+ OCRs, enriched only for OCRs of occipital cortical excitatory neurons and not cortical 209 

inhibitory neurons. Sorted bulk ATAC-seq only showed enrichment of SmokingCessation 210 

associated genetic variants in OCRs of NeuN+ striatal regions, which are largely composed of 211 

inhibitory MSNs. We overall found that the enrichments of addiction-associated genetic 212 

variants in Corces et al. isocortex OCRs agreed with those in Lake et al. occipital cortex 213 

OCRs. Single-cell epigenomics of human postmortem brain can further dissect the genetic risk 214 

for substance-use traits into neuronal subtypes that otherwise would not be parsed with bulk 215 

tissue assays.  216 

We confirmed that our pipeline for LDSC regression on NeuN-sorted OCRs from 14 217 

brain regions is able to reproduce the GWAS enrichments published by Fullard et al. While our 218 

approach uses OCRs from reproducible ATAC-seq peaks rather than differentially accessible 219 

peaks, we found consistent enrichments of genetic variants associated with schizophrenia risk 220 

(Schizophrenia), highest level of educational attainment (EduAttain), and habitual 221 

sleep duration (SleepDuration) (Supplemental Figure 2B). We did not find enrichment in 222 

brain OCRs of genetic variants identified in several low-powered GWAS (cocaine dependence 223 

(CocaineDep) (Cabana-Domínguez et al., 2019), opioid dependence (OpioidDep) (Cheng 224 

et al., 2018), and obsessive-compulsive disorder (OCD) (International Obsessive Compulsive 225 

Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics 226 

Association Studies (OCGAS), 2018), each of which had included fewer than 5000 individuals 227 

with the trait (Supplemental Figure 2A). In addition, we found no enrichments in brain OCR 228 

for several well-powered studies of traits related to addiction behaviors, including multi-site 229 

chronic pain (ChronicPain) (Johnston et al., 2019) and cups of coffee per day 230 
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(CoffeePerDay) (Coffee and Caffeine Genetics Consortium et al., 2015). We also found no 231 

enrichment in brain OCRs for anthropometric traits, including coronary artery disease (CAD) 232 

(Howson et al., 2017), bone mineral density (BMD) (Kemp et al., 2017), and lean body mass 233 

(LBM) (Zillikens et al., 2017) (Supplemental Figure 2B, C). Lastly, we validated that human 234 

OCRs from non-brain tissues would not enrich for risk variants associated with brain traits. We 235 

gathered publicly available OCRs from stomach ATAC-seq, adipocyte ATAC-seq, preadipocyte 236 

ATAC-seq, liver DNase-seq, and lung DNase-seq profiles (ENCODE Project Consortium, 2012; 237 

Thurman et al., 2012; Davis et al., 2018; Cannon et al., 2019) (Supplemental Figure 4D) and 238 

performed LDSC regression on the total 18 GWAS from above. To our expectation, we did not 239 

find enrichments of stomach, liver, or lung OCRs for genetic variants associated with brain-240 

related traits. We did find enrichment of BMD in lung OCRs, a connection previously recognized 241 

(Lee et al., 2016; Kim et al., 2019; Zeng et al., 2019). The secondary GWAS enrichments in 242 

other traits and foregrounds demonstrate two trends: a GWAS trait would enrich if the GWAS 243 

was properly powered to detect genetic risk variants, and the foreground regions are from cell 244 

types or tissue of that trait’s potential etiological origin.  245 

 246 

Mouse-human conserved cell type-specific open chromatin enrich for addiction risk loci 247 

In order to further interrogate the different neuronal subtypes that comprise the 248 

enrichment of addiction-associated genetic variants in OCR sets measured by Fullard et al., 249 

Lake et al., and Corces et al. (Figure 1, Supplemental Figure 2), we performed targeted 250 

epigenomic experiments in mouse on isolated neuronal subtypes from key brain regions of 251 

the reward circuit: frontal cortex (CTX), caudoputamen (CPU), and the nucleus accumbens 252 

(NAc). We isolated nuclei from specific cell types for ATAC-seq using a modified version of 253 
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the INTACT approach (Mo et al., 2015) called cre-specific nuclei anchored independent labeling 254 

(cSNAIL). cSNAIL-INTACT was applied to isolate nuclei marked by Pvalb, Sst, Drd1, and 255 

Adora2a in cre-driver lines using a shortened form of the Sun1-Gfp fusion protein packaged 256 

with AAV-PHP.eb and delivered through retro-orbital injection (Figure 2A). We show that 257 

cell type-targeting provided markedly distinct genome-wide ATAC-seq profiles compared to 258 

bulk tissue ATAC-seq alone (Supplemental Figure 3A). cSNAIL ATAC-seq specifically 259 

captured nuclei with increased accessibility around the marker gene that was driving Cre 260 

recombinase expression (Supplemental Figure 3B). Accessibility around cSNAIL ATAC-seq 261 

transcription start sites (TSS) strongly correlated with matched pseudobulk gene expression in 262 

the same cell type and tissue (Methods, both Pearson and Spearman correlation Pbonf < 2 x 10-16
, 263 

Supplemental Figure 3C,D). We applied HALPER, an approach that leverages reference-264 

free multi-species genome alignments to produce 1-1 contiguous CRE orthologs (Zhang et 265 

al., 2020), to reliably map ~70% of mouse neuronal subtype OCRs to their human orthologs in 266 

the hg38 human reference genome (Methods) for LDSC regression GWAS analysis.  267 

Our GWAS enrichment analysis of human orthologs from mouse OCRs (mouse-human 268 

orthologs) measured in various neuronal subtypes and bulk tissue (Figure 2B) show that 269 

genetic variants associated with SmokingInitiation and Cannabis shared enrichment in 270 

cortical PV and EXC neuron OCRs from both Mo et al. and this study (Pfenning data, FDR < 271 

0.05). Genetic variants associated with Cannabis further enriched in CTX bulk tissue OCRs, 272 

which could be attributed to signal from cortical EXC and PV neuron populations. Cortical PV 273 

neuron OCRs further enriched with genetic variants associated with DrinksPerWeek. 274 

SmokingCessation associated genetic variants distinctly enriched in cortical VIP neuron 275 

OCRs. 276 
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Within neuronal subtypes from CPU and NAc, we found enrichment of genetic variants 277 

associated with all measured addiction-associated traits in CPU and NAc D2 MSN OCRs.  278 

Genetic variants associated with all measured traits excluding SmokingInitiation and 279 

RiskyBehavior all enriched in CPU and NAc D1 MSN OCRs. CPU D1 MSN OCRs were 280 

enriched with genetic variants associated with all measured traits excluding RiskyBehavior. 281 

We found that CPU bulk tissue OCRs were enriched with genetic variants associated with all 282 

measured addiction-associated traits excluding AgeOfInitiation and RiskyBehavior. 283 

Distinctly, CPU PV+ and SST+ neuron OCRs enriched with genetic variants associated with 284 

Cannabis.  285 

Corresponding to our analysis of human brain OCRs, we also confirmed the specificity of 286 

mouse-human orthologous CRE enrichments for genetic variants associated with addiction-287 

related, brain-related, and non-brain related traits (Supplemental Figure 4). We found 288 

enrichments of genetic variants associated with ChronicPain in cortical PV neuron OCRs 289 

from both Mo et al. and this study (Supplemental Figure 4A). Within striatal cell types, we 290 

found that CPU D2 and NAc D1 MSN OCRs were enriched for genetic variants associated with 291 

ChronicPain. In contrast, CPU D1 and NAc D2 MSN OCRs were enriched for genetic 292 

variants associated with OpioidDep. Genetic variants associated with OpioidDep also 293 

enriched in CPU D1 MSN and CPU PV OCRs. Schizophrenia, EduAttain, and 294 

SleepDuration associated genetic variants all enriched in OCRs of all measured cell types 295 

(Supplemental Figure 4B). None of these mouse-human orthologs enriched for genetic variants 296 

associated with non-brain-related traits: BMD, CAD, and LBM (Supplemental Figure 4C). We 297 

validated that our approach to map OCRs from mouse to human did not bias enrichment to brain 298 

traits by performing GWAS enrichment on OCRs from mouse non-brain tissues (kidney, liver, 299 
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and lung) (Supplemental Figure 4D). As expected, we did not find an enrichment for genetic 300 

variants associated with a brain-related trait. We did find that mouse-human orthologs of lung 301 

OCRs enrich for BMD, which concords with the enrichment of human lung OCRs.  302 

 303 

Convolutional Neural Network (CNN) models of mouse cell type-specific CRE activity 304 

refine human NeuN+ OCRs for GWAS enrichment 305 

The genetic tools available for mouse research allowed us to isolate the nuclei of 306 

specific neuronal subtypes and generate deep open chromatin profiles at greater cellular 307 

resolution. However, a lack of mouse-human conservation in the cell type-specificity of 308 

CREs could lead to false negatives and false positives at specific loci that add noise to 309 

GWAS comparisons. To leverage the strengths of the mouse and human approaches, we 310 

developed a procedure to predict the neuronal subtype-specificity of human OCRs using 311 

machine learning models trained in mouse. The OCR profile of each neuronal subtype is a 312 

result of a developmental cascade of transcription factors that cooperatively recognize and 313 

bind to specific sequence elements in the genome, resulting in a neuronal subtype-specific 314 

open chromatin profile (Spitz and Furlong, 2012). These complex combinations of sequence 315 

features comprise regulatory code that links genome sequence to neuronal subtype-specific 316 

open chromatin. This regulatory code can be effectively learned using convolutional neural 317 

networks (CNNs) and has been demonstrated to be highly conserved between mouse and 318 

human (Zhou and Troyanskaya, 2015; Chen et al., 2018) 319 

 The concordant pattern of enrichment for addiction associated genetic variants in human 320 

and mouse-human orthologous OCRs suggested that risk variants may affect the regulatory 321 

activity of neuronal subtypes conserved between human and mouse. We therefore devised 322 
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and trained a collection of CNN binary classification models to learn the genome sequence 323 

features that distinguish OCRs for cortical excitatory (EXC) neurons, striatal D1 MSNs, and 324 

striatal D2 MSNs (Zhou and Troyanskaya, 2015; Kelley et al., 2016, 2018; Chen et al., 2018). 325 

For each set of reproducible OCRs from mouse INTACT and cSNAIL group, we trained 5-fold 326 

cross-validated models to predict the reproducible peaks from ten times the number of 327 

nucleotide content-matched negative sequences (Methods). Our models made confident 328 

predictions on held-out test sequences as reported by high F1-scores, high area under the 329 

precision-recall curves (Supplemental Figure 5A), and low false positive rates at a blind 330 

threshold of 0.5 (Supplemental Figure 5B). These models reproducibly learned 331 

transcription factor motif families that are enriched in human neuronal subtypes of cortex 332 

(MEF2, JUN) and striatum (POU, NRF1, ZFHX3), as previously reported by Fullard et al. 333 

(Supplemental Figure 5F, Supplemental Table 2).  334 

We reasoned that NeuN+ OCR signal, which is comprised of OCR signals from 335 

several neuronal subtypes, can be parsed into its component cell types by CNNs that are 336 

trained to predict OCR activity in those component cell types. This enables the study of 337 

human addiction genetics at a cell type-level resolution from high-quality tissue-level open 338 

chromatin profiles. To discern whether NeuN+ OCR enrichments in addiction-associated 339 

genetic variants come from the same cell types observed in Figure 3, we applied our trained 340 

CNN models to predict whether bulk cortical or striatal NeuN+ OCRs have activity in either 341 

cortical EXC or striatal D1 and D2 neurons, respectively (Figure 3A). We did not conduct these 342 

analyses for PV neurons because they comprise a much lower percentage of cortical and striatal 343 

neurons than the other neuron types (Beaulieu, 1993; Lefort et al., 2009). We ran LDSC 344 

regression (Finucane et al., 2018) GWAS enrichments on the sets of NeuN+ OCRs predicted to 345 
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be specific to cortical EXC, striatal D1, and striatal D2 neurons. Genetic variants associated with 346 

SmokingInitiation, which initially enriched in OCRs of various NeuN+ frontal cortical 347 

areas (Figure 1B), enriched in NeuN+ OCRs predicted to be active in EXC neurons (Figure 348 

3B). Genetic variants associated with Cannabis, which enriched in NeuN+ cortical OCRs 349 

(Figure 1B), also enriched in NeuN+ OCRs predicted to be active in EXC neurons. The 350 

enrichments of excitatory cortical cell type-specific OCRs for SmokingInitiation and 351 

Cannabis associated genetic variants agree with the results from the analysis of the Fullard et 352 

al., Corces et al., and Lake et al. OCR datasets (Figure 1B, C). Genetic variants associated 353 

with SmokingCessation and DrinksPerWeek, which enriched in PUT and NAc NeuN+ 354 

OCRs (Figure 1B), shared enrichment in OCRs predicted active in both D1 and D2 MSNs of 355 

both PUT and NAc. The framework that we outline in Figure 3A refines addiction genetic risk 356 

signal to neuronal subtypes and maintains the brain region context of the source NeuN+ OCR. 357 

This framework can be applied to CREs from any tissue-cell type combination for which 358 

bulk tissue open chromatin measurements are available from human and cell type open 359 

chromatin measurements are available from another vertebrate (Chen et al., 2018; Minnoye 360 

et al., 2020).  361 

 362 

Convolutional Neural Network (CNN) models predict allele-specific activity of addiction-363 

associated GWAS SNPs in neuronal subtypes  364 

Lastly, we applied our convolutional neural network (CNN) models to screen addiction-365 

associated genetic variants for predicted functional activity in EXC, D1, and D2 neuronal 366 

subtypes. CNN-based approaches have been demonstrated to fine-map dense risk loci and select 367 

candidate causal genetic variants (Alipanahi et al., 2015; Zhou and Troyanskaya, 2015; Kelley et 368 
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al., 2016, 2018; Corces et al., 2020), yet none have been applied in the context of addiction-369 

associated genetic risk or in the cell types that we have assayed. We identified 14,790 unique 370 

SNPs that were collected across the seven addiction-associated GWAS to score for 371 

differential neuronal subtype OCR activity (Methods). We expect that many SNPs reported 372 

from GWAS are significantly associated with traits due to LD rather than being the true 373 

causal variant. When scored with our CNN models, the 96.2% of addiction-associated 374 

SNPs that either do not lie in any OCR or in only NeuN- OCR have low probability to be 375 

active in excitatory, D1, or D2 neuronal subtypes. We also found that these SNPs have 376 

significantly lower predicted probability of activity than the remaining 3.8% of addiction-377 

associated SNPs in any NeuN+ OCR (PBonferroni < 0.05, Figure 4A).  We then predicted the 378 

probability of activity for both the effect and non-effect allele and estimated the differential 379 

impact of the alleles in order to fine-map candidate causal effect SNP and target neuronal 380 

subtype and tissue. Most SNPs do not have predicted differential allelic activity in a 381 

neuronal subtype, while a handful of SNPs have larger differential activity that deviate 382 

from a normal distribution when visualized on quantile-quantile plots (Supplemental 383 

Figure 5C, Methods). We outline in Supplemental Figure 5D an approach to prioritize the 384 

candidate causal SNPs by two lines of evidence: 1) a predicted differential neuronal 385 

subtype OCR activity with large effect size that is controlled for false discovery (q-value < 386 

0.05, Methods) and 2) having physical overlap with measured human NeuN+ OCR in 387 

Fullard et al. (Supplemental Figure 5D). We are able to prioritize 55 SNPs spanning 37 loci 388 

to Tier A which have both significant predicted ∆SNP probability effect and overlaps a 389 

Fullard et al. NeuN+ OCR, 505 SNPs to Tier B that only have predicted ∆SNP probability 390 
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effect, and 502 SNPs to Tier C as overlapping NeuN+ open chromatin without a predicted 391 

significant ∆SNP probability effect (Supplemental Table 1).  392 

One such SNP from Tier A, rs7604640, lies in human NeuN+ open chromatin specific 393 

to striatum 46kb upstream of the SIX3 locus on chromosome 2. rs7604640 overlaps human 394 

orthologs of mouse OCRs in only D1 and D2 neurons and we predict the effect allele of 395 

rs7604640 has an increased probability of open chromatin activity in D1 OCRs of the 396 

striatum compared to the non-effect allele (Figure 4B). rs7604640 is one of many off-lead 397 

SNPs identified in the SmokingInitiation GWAS (PGWAS =3.04 x 10-12) and is in high LD 398 

with the SNP rs163522 (R2 = 0.856, PGWAS =1.11 x 10-11), which is independently significant 399 

from the lead SNP, rs1004787 (R2 = 0.630, PGWAS =5.27 x 10-17). rs7604640 was reported by 400 

HaploRegv4 to overlap a POU1F1 motif (Ward and Kellis, 2016), which our D1 models 401 

predict to contribute towards increased probability of being active in D1 MSNs (Figure 402 

4C). Furthermore, this SNP is a known cis-eQTL for the antisense SIX3-AS1 gene in striatal 403 

regions from the Genotype-Tissue Expression (GTEX) project (GTEx Consortium, 2013, 2015; 404 

Melé et al., 2015; GTEx Consortium et al., 2017). Anti-sense gene expression is one mechanism 405 

of regulating their sense gene (Pelechano and Steinmetz, 2013; Barman et al., 2019), and 406 

deletion of the gene SIX3 has been shown to inhibit development of D2 medium spiny neurons 407 

(Xu et al., 2018). Altogether, this evidence formulates the hypothesis that common genetic 408 

variant rs7604640 has D1 MSN-specific, allelic impact on open chromatin activity in a mouse-409 

human conserved putative CRE regulating the MSN regulator SIX3.  410 

In addition to rs7604640, we report four loci with 1-4 candidate SNPs each in Tier A that 411 

may be putative causal SNPs with cell type-specific activity in addiction-associated traits 412 

(Supplemental Figure 6). The SNPs in these loci all have reported eQTL in frontal cortex 413 
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or striatum tissues from GTEx, and they overlap corresponding NeuN+ OCRs and mouse-414 

human orthologous OCRs. In some cases, our prioritized Tier A SNPs were predicted to 415 

have ∆SNP effects (Methods) in only striatal MSNs, showcasing our framework’s ability to 416 

predict cell type-specific impact. These SNPs include rs11191352 (PSmokingInitiation=2.12 x 10-417 

7, Supplemental Figure 6A), rs9826458 (PRiskyBehavior= 4.36 x 10-21, PSmokingInitiation=1.21 x 10-418 

14, Supplemental Figure 6B), and rs9844736 (PRiskyBehavior= 3.04 x 10-7, PSmokingInitiation=3.58 x 419 

10-7, Supplemental Figure 6C). In a few cases, our models predicted SNPs to have strong 420 

∆SNP effects across both cortical excitatory and striatal cell types. These include two SNPs 421 

in the highly pleiotropic MAPT-CRHR1 locus that are 152bp apart and in perfect LD with 422 

each other, rs11575895 and rs62056779 (Supplemental Figure 6D). The prioritized SNPs in 423 

the MAPT-CRHR1 locus are genome-wide significant for 5 of the 7 addiction-associated 424 

traits (Supplemental Table 1) and the locus has been implicated in other neuropsychiatric 425 

traits such as Alzheimer’s Disease (Hoffman et al., 2019; Corces et al., 2020; Ramamurthy 426 

et al., 2020). We provide the summary of CNN predictions in these reported loci across all 427 

14,790 analyzed SNPs along with the accompanying annotations that we incorporated into 428 

our prioritization of candidate causal SNPs and their predicted cell types (Supplemental 429 

Table 1).  430 
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DISCUSSION 431 

In this study, we demonstrate the first analyses integrating neuronal subtype OCRs 432 

across human and mouse brain epigenomics using CNN models to select candidate addiction-433 

associated SNPs acting at putative neuronal subtype-specific CREs. We trained CNN models to 434 

predict neuronal subtype-specific activity of OCRs and used the models to predict whether 435 

addiction-associated genetic variants in risk loci impact putative CRE function. Our findings link 436 

the genetic heritability of addiction-associated behaviors to the OCR profiles of neuronal 437 

subtypes and brain regions and present specific hypotheses describing how genetic variants may 438 

impact gene regulation in addiction-associated behaviors. These analyses in conjunction suggest 439 

that genetic variation-associated nicotine, alcohol, and cannabis use behaviors may impact 440 

putative CREs in different combinations of excitatory (EXC), D1, and D2 neuronal subtypes. 441 

These findings provide a foundation for future investigations into the cell type-specific genetic 442 

mechanisms underlying addiction-related traits. More broadly, our cross-species integrative 443 

computational framework leverages high-resolution cell-type targeted epigenomics in model 444 

organisms to interpret the genetic risk variants of complex traits in humans. 445 

We initially found that addiction-associated genetic variants were enriched in human 446 

NeuN+ OCRs of the prefrontal cortex and striatum, known areas involved in addiction and 447 

reward circuitry (Volkow et al., 2013; Koob and Volkow, 2016) (Figure 5A). Genetic variants 448 

associated with SmokingInitiation and Cannabis, initiating behaviors of substance use, 449 

were enriched in NeuN+ OCRs of prefrontal areas including DLPFC, VLPFC, and OFC (Figure 450 

1B). These OCRs were predicted to be active in cortical excitatory neurons of these brain regions 451 

(Figure 3B). Addiction-associated genetic variants that enrich in OCRs of cortical excitatory 452 

neurons in these areas may reduce corticostriatal activation from prefrontal cortex to inhibit 453 
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behaviors predisposing the initiation of substance use (Koob and Volkow, 2010, 2016; Volkow 454 

et al., 2013; Volkow and Morales, 2015). These genetic variants may contribute to reduced 455 

prefrontal self-control reward, leading to behaviors observed in addiction such as impulsivity, 456 

reduced satiety, and enhanced motivation to procure drugs (Volkow et al., 2013; Volkow and 457 

Morales, 2015). In addition, we found enrichment of striatal NeuN+ OCRs for genetic variants 458 

associated with SmokingCessation and DrinksPerWeek (Figure 1B). In Figure 3B, we 459 

showed that these genetic variants are predicted to affect open chromatin in both D1 and D2 460 

MSNs, which are coordinators of mesocorticostriatal dopamine systems (Koob and Volkow, 461 

2010, 2016; Volkow et al., 2013). Genetic variants affecting open chromatin in these MSN 462 

subtypes may predispose individuals to increased alcohol use (DrinksPerWeek) or decreased 463 

nicotine use (SmokingCessation), perhaps driving the neuroplastic changes in D1 and D2 464 

MSNs observed in human and rodent drug dependence studies (Volkow et al., 1996, 1997, 2003; 465 

Wang et al., 1997; Fehr et al., 2008; Cheng et al., 2017; Wilar et al., 2019). While drug addiction 466 

has been attributed to various areas of the reward circuit, our investigations into heritable genetic 467 

risk for addiction-associated traits unravel how regulatory DNA sequence variation in OCRs of 468 

projection neurons in implicated areas link genetic risk to neural circuits to behavior.  469 

 Since key component cell types of the reward circuit such as D1 and D2 MSNs have 470 

not been profiled for high-quality open chromatin measurements in a human reference 471 

genome to our best knowledge, we leveraged high-quality mouse cell type open chromatin 472 

measurements using a cross-species OCR mapping framework. We first conducted ATAC-473 

seq of MSN and interneuron subtypes in mouse brain to identify neuronal subtype-specific 474 

OCRs. Then, we used a multiple genome sequence alignment framework to identify the 475 

orthologous regions of the human genome. By leveraging reference-genome free CRE 476 
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ortholog mapping tools, we retained high-quality cell type-specific measurements within relevant 477 

brain regions of the reward circuit, enabling analysis of cell populations from brain regions 478 

where we lack primary human open chromatin profiles. Across these brain regions, we found 479 

remarkably concordant enrichments of cell type OCRs between mouse and human profiles as 480 

well as shared enrichments between traits (Figure 5B). Genetic variants associated with both 481 

SmokingInitiation and Cannabis enriched in mouse-human orthologous OCRs of 482 

cortical EXC (Figure 3B), concordant with enrichments in human cortical NeuN+ OCRs 483 

(Figure 1B), which were predicted to include EXC neurons (Figure 4B). Genetic variants from 484 

these two traits showed replicable enrichment in human EXC neuron OCRs of isocortex and 485 

occipital cortex (Figure 1C-D), providing strong evidence that genetic variation in cortical 486 

excitatory neuron OCRs confers susceptibility to nicotine and cannabis use behaviors. The 487 

enrichments of genetic variants associated with Cannabis in isocortical IN neuron OCRs 488 

(Figure 1C) and mouse-human orthologous OCRs of cortical PV neurons (Figure 3B) 489 

suggest that genetic variation in cortical PV neuron OCRs also confer susceptibility of 490 

cannabis use behavior. Within striatal regions, D1 and D2 MSN mouse-human orthologous 491 

OCRs enriched for genetic variants of all measured addiction-associated traits (Figure 2B), with 492 

strongest concordance in human OCRs for genetic variants associated with 493 

SmokingCessation and DrinksPerWeek (Figure 3B, Figure 5B). The enrichments in 494 

conserved OCRs of MSN subtypes in the dorsal striatum and nucleus accumbens unsurprisingly 495 

emphasize known roles of MSNs of both areas to drive and maintain addiction behaviors 496 

(Ferguson et al., 2011; Ji et al., 2017). Our validations of enrichments both at the tissue and 497 

cell type level across human and human-orthologous OCRs agree with LDSC regression 498 

GWAS enrichments of non-coding regions around differentially expressed genes in DLPFC 499 
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and NAc measured from postmortem human subjects who were diagnosed with opioid use 500 

disorder vs. neuropsychiatric controls (Seney et al., 2020). Due to the conservation of 501 

reward circuit between mouse and human, our approach is able to unravel the cell types in 502 

which genetic variation at the epigenome level predisposes addiction-related traits even 503 

from measurements in organisms that have not been exposed to addictive substances. 504 

Further, this level of OCR conservation is present at the level of excitatory cell types in 505 

cortical brain regions (cite). This may explain why we found enriched cell types in occipital 506 

cortex (Figure 1D), which is not well-defined for its role in addiction-related traits.  507 

 In an orthogonal approach to mapping mouse-human orthologous OCRs, we devised and 508 

trained convolutional neural network (CNN) models to classify the neuronal subtype 509 

membership of mouse and human NeuN+ OCRs in order to refine GWAS enrichments of 510 

bulk tissue to the major neuronal subtypes of cortex and striatum. This approach can 511 

provide further validation for enrichments of human and mouse-human orthologous OCRs 512 

in cell types and tissues. Refinement of NeuN+ OCRs revealed that addiction-associated traits 513 

enriched for two clusters of cell types and brain regions.  The first group, which displays 514 

concordant cortical excitatory enrichments between human and mouse, consists of 515 

SmokingInitiation and Cannabis (Figure 3B), and the second group, which displays 516 

concordant D1 and D2 MSN enrichments, consists of SmokingCessation and 517 

DrinksPerWeek. A draw-back of assigning human NeuN+ OCR membership to individual 518 

cell types lies in the considerably low representation of interneurons in both cortical and striatal 519 

neuron populations - as low as 12% in neocortex (Beaulieu, 1993; Lefort et al., 2009) and ~5% 520 

in striatum (Tepper and Koós, 2017; Krienen et al., 2019). NeuN+ open chromatin profiles alone 521 

do not always capture OCRs unique to rare interneurons, some of which had OCRs identified by 522 
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human single-cell assays and mouse-human orthologs enriched for addiction GWAS variants 523 

(Figure 1C, Figure 2B). As a result, we did not train CNN models for PV, SST, or VIP 524 

interneurons. However, the striking enrichments of OCRs from certain interneuron populations 525 

for addiction GWAS variants begin to demonstrate these populations’ roles in the addiction 526 

neural circuits (Bracci et al., 2002; Lansink et al., 2010; Wiltschko et al., 2010; Ribeiro et al., 527 

2018; Jiang et al., 2019; Lee et al., 2020; Schall et al., 2020).  528 

The overall concordance of enrichments across human and mouse-human orthologous 529 

OCRs suggests a conserved regulatory code between mouse and human CREs. Correspondence 530 

in the neural circuitry has been well-appreciated between human studies and rodent models of 531 

addiction (Berke and Hyman, 2000; Koob and Volkow, 2016; Farrell et al., 2018), and our study 532 

further demonstrates that mouse-human conserved OCRs may explain considerable heritability 533 

of addiction-associated traits. This makes animal models suitable not only for studying the neural 534 

circuits of addiction but also cell-type-specific gene-regulatory mechanisms of addiction.  535 

 We used several selection criteria along with CNN models to predict the functional 536 

impact of genetic variants associated with addiction-related traits (Figure 5, Supplemental 537 

Figure 5, Supplemental Table 1). The fine-mapping pipeline described effectively narrows 538 

down a set of 14,790 SNPs to a putatively functional set of 55 Tier A candidate causal SNPs 539 

that can be experimentally tested to determine which brain regions and neuronal subtypes they 540 

would have function in. The candidate functional SNPs that our models prioritize demonstrate 541 

how a candidate SNP within a locus, such as rs7604640 (Figure 4B), might act in distinct 542 

neuronal subtypes and brain regions. Cell type-and brain region-specificity adds complexity 543 

to identifying how genetic variation may alter gene regulation to predispose individual to 544 

addiction-associated traits. Our approach often reported one to four candidates per loci, 545 
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even in stretches of SNPs in perfect LD such as the MAPT-CRHR1 locus (Supplemental 546 

Figure 5D). This reflects the idea that many SNPs in the same loci are significantly associated 547 

with addiction due to LD with only one or a few causal SNPs and are unlikely to influence 548 

addiction-associated genetic predisposition. We report many candidate SNPs that also overlap 549 

mouse-human orthologs from the same predicted cell type raise the idea that altering the 550 

conserved regulatory DNA sequence may be a mechanism of cell type-specific gene regulatory 551 

tuning in a population or even across species (Gjoneska et al., 2015). 552 

Our study depends solely on assays of open chromatin as a proxy for putative CREs. 553 

Epigenetic assays for chromatin conformation, histone modifications, and methylation would 554 

further inform how putative CREs regulate nearby gene expression. While eQTL studies do not 555 

control for inflated associations due to LD and report gene expression differences from bulk 556 

tissue, we do note that our approach prioritizes several SNPs known to be cis-eQTLs in relevant 557 

brain regions, which indirectly affirms our framework’s ability to select SNPs with functional 558 

impacts on gene regulation. Although cis-EQTLs are often not cell type- or tissue-specific, 559 

our findings of risk loci in brain regions implicated in addiction-related traits reflect a 560 

strength of our approach in discerning brain-specific signal. In order to validate our 561 

predictions, it will be necessary to further investigate candidate genetic variants such as 562 

rs7604640 (Figure 4B) in future studies using a fluorescence reporter assay or in situ 563 

hybridization studies. These methods can measure regulatory activity differences between 564 

risk and non-risk alleles to verify our predictions of SNP impact on putative CREs and 565 

indicate whether the reported differences in regulatory activity are cell type-specific. The 566 

candidate SNPs we identified provide possible mechanisms linking differences in genetic make-567 
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up with the genes, cell types, and brain regions that could influence addiction and substance use 568 

behaviors (Figure 4).  569 
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MATERIALS & METHODS 570 

ATAC-seq data processing pipeline: 571 

We processed raw FASTQ files of ATAC-seq experiments with the official ENCODE ATAC-572 

seq pipeline (Landt et al., 2012) accessed by https://github.com/ENCODE-DCC/atac-573 

seq-pipeline. We ran this pipeline using the mm10 genome assembly for mouse and the 574 

hg38 genome for human with the following settings: smooth_win = 150, multimapping 575 

= 0, idr_thresh = 0.1, cap_num_peak = 300,000, 576 

keep_irregular_chr_in_bfilt_peak = true. We grouped biological replicates 577 

when processing data to obtain individual de-duplicated, filtered bam files and reproducible 578 

(IDR) peaks for each condition. Unless otherwise stated, we used the optimal reproducible set of 579 

peaks for downstream analyses. We removed samples that had low periodicity indicated by 580 

ENCODE quality control metrics and reprocessed the remaining replicates with the pipeline.  581 

Publicly available datasets 582 

Fullard et al. NeuN-sorted ATAC-seq of human postmortem brain (Fullard et al., 2018): We 583 

identified OCRs overlapping addiction-related variants through analysis of human postmortem 584 

brain ATAC-seq in which cells were sorted into NeuN-positive and NeuN-negative groups via 585 

fluorescence activated nuclei sorting (FANS); the brain regions we used were dorsolateral 586 

prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (VLPFC), 587 

anterior cingulate cortex (ACC), superior temporal gyrus (STC), inferior temporal gyrus (ITC), 588 

primary motor cortex (PMC), insula (INS), primary visual cortex (PVC), amygdala (AMY), 589 

hippocampus (HIP), mediodorsal thalamus (MDT), nucleus accumbens (NAc), and putamen 590 

(PUT). We downloaded data from the Sequence Read Archive (SRA) through Gene Expression 591 

Omnibus (GEO) accession #GSE96949. We separated samples by cell type and reprocessed 592 
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them with the ENCODE pipeline as detailed above, aligning reads to hg38. We used the 593 

“optimal reproducible peaks” for each cell type and brain region as foregrounds in GWAS LDSC 594 

enrichment with the Honeybadger2 OCR set as the background set (see LDSC Regression 595 

GWAS Enrichment Backgrounds).  596 

Corces et al. human isocortex, striatum, hippocampus, and substantia nigra single cell 597 

chromatin accessibility profiling (Corces et al., 2020): We downloaded 24 clusters of IDR 598 

peaks in BED format through GEO accession #GSE147672. These clusters represent cell 599 

populations defined by Corces et al from the measured brain regions. We assigned clusters 600 

to cell populations as described in Corces et al: astrocyte (clusters 13, 17), hippocampal 601 

excitatory (clusters 3-4), isocortical astrocyte (cluster 15), isocortical excitatory (cluster 1), 602 

isocortical inhibitory (cluster 11), microglia (cluster 24), neuron (cluster 7), nigral astrocyte 603 

(cluster 14), nigral neurons (clusters 5-6), nigral oligodendrocyte precursor (cluster 10), 604 

oligodendrocyte (clusters 19-23), oligodendrocyte precursor (clusters 8-9), striatal astrocyte 605 

(cluster 16), and striatal inhibitory cells (clusters 2, 12). We did not include cluster 18, 606 

which corresponds to a doublet. We merged coordinates from clusters assigned to the same 607 

cell types to define foreground sets for LDSC regression GWAS enrichment. We merged 608 

the foreground sets with the Honeybadger2 OCR set to define the background set (LDSC 609 

regression GWAS Enrichment Backgrounds). 610 

Lake et al. human occipital cortex scTHS-seq (Lake et al., 2018): We downloaded BED-611 

formatted cell type-specific differential OCRs from occipital cortex scTHS-seq of excitatory 612 

neurons (EXC), inhibitory neurons (IN), astrocytes (AST), endothelial cells (END), 613 

oligodendrocyte precursor cells (OPC), oligodendrocytes (OLI), and microglia (MIC) from the 614 

GEO subseries #GSE97887. We used the hg38 OCR coordinates as foregrounds in LDSC 615 
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regression GWAS enrichment with the Honeybadger2 OCR set as the background set (LDSC 616 

regression GWAS Enrichment Backgrounds). 617 

Mo et al. mouse INTACT-sorted nuclei ATAC-seq (Mo et al., 2015): We downloaded FASTQ 618 

files of R26-CAG-LSL-Sun1-sfGFP-Myc transgenic mouse lines for cell type-specific ATAC-seq 619 

performed using the INTACT method from the accession #GSE63137. Mo et al. isolated 620 

INTACT-enriched nuclei from three cell types: excitatory neurons (EXC, Camk2a-cre), 621 

vasoactive intestinal peptide neurons (VIP, Vip-cre), and parvalbumin neurons (PV, Pvalb-cre). 622 

We reprocessed the data with the Kundaje Lab open chromatin pipeline using the mm10 genome 623 

(https://github.com/kundajelab/atac_dnase_pipelines). We mapped 624 

reproducible mouse ATAC-seq peaks for each cell type to hg38 using halLiftover with the 12-625 

mammals Cactus alignment (Paten et al., 2011; Hickey et al., 2013) followed by HALPER 626 

(Zhang et al., 2020) (Mapping mouse OCR orthologs) to produce a foreground set of orthologous 627 

human sequences for LDSC regression GWAS enrichment (Finucane et al., 2018). We mapped 628 

the ENCODE mm10 DNaseI-hypersensitive peak set (Yue et al., 2014) to hg38 (Mapping 629 

mouse OCR orthologs) and used successfully mapped hg38 orthologs of mm10 OCRs  a 630 

background set for mouse foreground enrichments. Furthermore, we used this dataset to evaluate 631 

differential accessibility in cSNAIL-INTACT PV and PV-negative ATAC-seq samples and 632 

develop convolutional neural network models of cell type-specific open chromatin (see 633 

Methods below). 634 

Human negative control foregrounds (ENCODE Project Consortium, 2012; Thurman et al., 635 

2012; Davis et al., 2018; Cannon et al., 2019): We downloaded raw ATAC-seq profiles of 636 

human adult female and male stomach ATAC-seq generated by Snyder et al. (ENCSR337UIU, 637 

ENCSR851SBY, respectively), female human embryonic liver DNase-seq generated by 638 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

30 

Stamatoyannopoulos et al. (ENCSR562FNN), and human embryonic lung DNase-seq generated 639 

by Stamatoyannopoulos et al. (ENCSR582IPV) from 640 

https://www.encodeproject.org/.  We processed these files using the ENCODE 641 

pipeline as detailed above to obtain optimal reproducible hg38 peaks. We also downloaded 642 

BED files of human adipocyte and preadipocyte ATAC-seq profiles generated by Cannon et al. 643 

from GEO accession number #GSE110734. We mapped these BED coordinates from hg19 to 644 

hg38 using liftOver to define negative control foregrounds for human LDSC regression GWAS 645 

enrichment. We merged the human negative control foregrounds and Fullard et al. foregrounds 646 

with the Honeybadger2 OCR set to define the background for human negative control 647 

foreground enrichments. 648 

Human-orthologous negative control foregrounds (Liu et al., 2019a): We also downloaded raw 649 

ATAC-seq data profiled in female mouse kidney, female mouse liver, and male mouse lung 650 

generated by Liu et al. from SRA accession #SRP167062 to define human-orthologous negative 651 

control foregrounds. We processed these files using the ENCODE pipeline as detailed above to 652 

get optimal reproducible peaks. We mapped optimal reproducible peaks from mm10 to hg38 653 

using halLiftover with the 12-mammals Cactus alignment followed by HALPER (Mapping 654 

mouse OCR orthologs) to define negative control foregrounds for human-orthologous LDSC 655 

GWAS enrichments. We merged all human orthologous foregrounds with the human orthologs 656 

of the ENCODE mm10 DNaseI-hypersensitive peak set to define a background for human-657 

orthologous LDSC GWAS enrichments. 658 

Mapping mouse open chromatin region (OCR) orthologs 659 

We employed halLiftover (Hickey et al., 2013) with the 12-mammals Cactus alignment (Paten et 660 

al., 2011) followed by HALPER 661 
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(https://github.com/pfenninglab/halLiftover-postprocessing) (Zhang et 662 

al., 2020) to map mm10 mouse reproducible OCRs to hg38 human orthologs in order to perform 663 

LDSC regression GWAS enrichment. The Cactus multiple sequence alignment file (Paten et al., 664 

2011) has 12 genomes, including mm10 and hg38, aligned in a reference-free manner, allowing 665 

us to leverage multi-species alignments to confidently identify orthologous regions across 666 

species. halLiftover uses a Cactus-format multiple species alignment to map BED coordinates 667 

from a query species to orthologous coordinates of a target species, and HALPER constructs 668 

contiguous orthologs from the outputs of halLiftover (Zhang et al., 2020). We ran the 669 

orthologFind.py function from HALPER on the outputs of halLiftover using the following 670 

parameters: -max_frac 5.0 -min_frac 0.05 -protect_dist 5 -narrowPeak 671 

-mult_keepone. In general, 70% of mouse brain ATAC-seq reproducible peaks were able to 672 

be mapped to confident human orthologs. To map the ENCODE mm10 mouse DHS background, 673 

which does not contain summit information, to hg38 we used the mouse coordinates of position 674 

with the most species aligned in a region to define the summit. Only for the mm10 mouse DHS 675 

background set, for which a significant proportion of regions could not be confidently mapped to 676 

hg38, we flanked the original assembly coordinates by 300 bp to increase OCR mapping from 677 

54% to 64%. 678 

LDSC Regression GWAS Enrichment Backgrounds: 679 

We found that LDSC regression GWAS enrichment analysis is sensitive to the selected 680 

background set of matched regions. To construct appropriate background sets for each GWAS 681 

enrichment, we used the ENCODE and RoadMap Honeybadger2(Roadmap Epigenomics 682 

Consortium et al., 2015) and Mouse DHS peak sets for the respective human and mouse-based 683 

open chromatin GWAS enrichment. The Honeybadger2 set, downloaded from 684 
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https://personal.broadinstitute.org/meuleman/reg2map/, consists of 685 

DNaseI-hypersensitive OCRs across 53 epigenomes consisting of promoter, enhancer, and 686 

dyadic regions. Honeybadger2 is an appropriate epigenetic reference for enrichment of cell type-687 

specific open chromatin from various foregrounds such as the Fullard et al. and Lake et al. 688 

Honeybadger2 regions allow the LDSC algorithm to properly account for the heritability from 689 

OCRs of a particular cell type or regions rather than because they tend to be more conserved, are 690 

enriched for ubiquitously active transcription factor motifs, or other factors distinguishing open 691 

chromatin from heterochromatin. The human orthologs of the ENCODE Mouse DHS peak set, 692 

downloaded through the ENCODE ATAC-seq pipeline at 693 

http://mitra.stanford.edu/kundaje/genome_data/mm10/ataqc/mm10_un694 

iv_dhs_ucsc.bed.gz, is a set of peaks combined from mouse DNaseI-hypersensitivity 695 

OCRs from ENCODE and provides a background for human orthologs of mouse OCRs. The 696 

mm10 mouse DHS regions were mapped to hg38 as described in Mapping mouse OCR 697 

orthologs. For each respective foreground-background pairing, the foreground regions were 698 

merged with the background reference to ensure the background always contained the 699 

foreground set. The mouse background was used to calculate the significance of the relationship 700 

between mouse OCRs and GWAS for addiction-associated traits to control for a possible 701 

association between the degree to which a region is conserved and its likelihood in influencing 702 

the predisposition to an addiction-associated trait.  703 

GWAS enrichment with partitioned LD score regression analysis 704 

We computed the partitioned heritability of CREs for GWAS variants using the LDSC 705 

regression pipeline for cell type-specific enrichment as outlined in 706 

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses 707 
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(Bulik-Sullivan et al., 2015b). We downloaded the GWAS summary statistics files and processed 708 

them with the LDSC munge_sumstats function to filter rare or poorly imputed SNPs with 709 

default parameters. We munged the summary statistics files for HapMap3 SNPs excluding the 710 

MHC regions downloaded at 711 

http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.712 

zip. We inspected GWAS file to ensure the effect allele, non-effect allele, sample size, p-value, 713 

and signed summary statistic for each SNP in each GWAS were included and appropriate for 714 

LDSC. The addiction-associated GWAS measure genetic predisposition for age of smoking 715 

initiation (AgeofInitiation) (Liu et al., 2019b), heaviness of smoking 716 

(CigarettesPerDay) (Liu et al., 2019b), having ever regularly smoked 717 

(SmokingInitiation) (Liu et al., 2019b), current versus former smokers 718 

(SmokingCessation) (Liu et al., 2019b) , alcoholic drinks per week (DrinksPerWeek) 719 

(Liu et al., 2019b), cannabis consumption (Cannabis) (Pasman et al., 2018), and risk tolerance 720 

(RiskyBehavior) (Karlsson Linnér et al., 2019). GWAS traits related to addiction include 721 

multisite chronic pain (ChronicPain) (Johnston et al., 2019) and number of coffee cups drank 722 

per data (CoffeePerDay) (Coffee and Caffeine Genetics Consortium et al., 2015).  Other 723 

addiction-related traits come from underpowered GWAS including opioid dependence 724 

(OpioidDep) (Cheng et al., 2018) , cocaine dependence (CocaineDep) (Cabana-Domínguez 725 

et al., 2019), and diagnosis of obsessive-compulsive disorder (OCD) (International Obsessive 726 

Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative 727 

Genetics Association Studies (OCGAS), 2018). GWAS from strong brain-related traits used are 728 

schizophrenia risk (Schizophrenia)(Schizophrenia Working Group of the Psychiatric Genomics 729 

Consortium, 2014), highest level of educational attainment (EduAttain) (Lee et al., 2018), and 730 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

34 

sleep duration (SleepDuration) (Dashti et al., 2019). The non-brain related traits measure 731 

genetic liability for lean body mass (LBM) (Zillikens et al., 2017), bone mineral density (BMD) 732 

(Kemp et al., 2017), and coronary artery disease (CAD) (Howson et al., 2017).  733 

We estimated LD scores for each foreground set and corresponding background set with 734 

the LDSC regression pipeline make_annot and ldsc functions using hg38 1000 Genomes 735 

European Phase 3 European super-population (1000G EUR) cohort plink files downloaded from 736 

https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/. An 737 

example of an ATAC-seq optimal set of reproducible peaks mapped to hg38 in narrowPeak 738 

format is annotated with 1000G EUR LD scores using the following call: 739 

python make_annot.py \ 740 

--bed-file optimal_peak.narrowPeak.gz \ 741 

--bimfile 1000G.EUR.hg38.${chr}.bim \ 742 

--annot-file foreground.${chr}.annot 743 

We downloaded the baseline v1.2 files for cell type-specific enrichment in hg38 744 

coordinates from the same link above as well as the corresponding weights 745 

`weights.hm3_noMHC’ file excluding the MHC region from 746 

https://data.broadinstitute.org/alkesgroup/LDSCORE/.  HapMap SNPs 747 

and corresponding weights file used in the LDSC analyses only refer to the SNP rsIDs, rather 748 

than genomic coordinates, so only the baseline and LD statistics used to annotate the foreground 749 

and background files must be in hg38 coordinates. In accordance with the LDSC regression 750 

script input format, we created an `enrichment.ldcts’ file listing the annotated 751 

foreground/background pair for each foreground set. We estimated the partitioned heritability 752 

using the ldsc function, which integrates the foreground and background LD score estimates, 753 
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munged GWAS SNP data, baseline variant data, and variants weights. The final function call to 754 

GWAS enrichment is as follows: 755 

python ldsc.py --h2-cts $Munged_GWAS \ 756 

 --ref-ld-chr baseline_v1.2/baseline. \ 757 

 --w-ld-chr weights.hm3_noMHC. \ 758 

 --ref-ld-chr-cts enrichment.ldcts \ 759 

 --out $Output_Label 760 

The pipeline produced LD score regression coefficient, coefficient error, and coefficient 761 

p-value estimates. We adjusted for multiple testing using the false discovery rate on p-values of 762 

the LD score regression coefficients (alpha = 0.05) on all 18 GWAS traits intersected on 763 

within the same foreground/background set. A significant FDR-value indicates enrichment of the 764 

foreground genomic regions for GWAS SNPs relative to the background. Lastly, we computed 765 

genetic correlations in Supplemental Figure 1A between GWAS of addiction-associated traits 766 

using the pre-munged summary statistics as described by Bulik-Sullivan et al. (Bulik-Sullivan et 767 

al., 2015a)  768 

Bulk tissue ATAC-seq 769 

To augment and compare to mouse cell type-specific ATAC-seq datasets generated in this study, 770 

we also performed bulk tissue ATAC-seq from cortex (CTX) and dorsal striatum/nucleus 771 

accumbens (CPU) of 7- and 12-week-old C57Bl/6J mice (N = 2 each age) as described in 772 

Buenrostro et al., 2015(Buenrostro et al., 2015) with the following minor differences in buffers 773 

and reagents. We euthanized mice with isoflurane, rapidly decapitated to extract the brain, and 774 

sectioned it in ice-cold oxygenated aCSF (119mM NaCl, 2.5 mM KCl, 1mM 775 

NaH2PO4(monobasic), 26.2mM NaHCO3, 11mM glucose) at 200-micron sections on a 776 

vibratome (Leica VT1200). We further micro-dissected sections for cortex and dorsal striatum 777 
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on a stereo microscope and transferred dissected regions into chilled lysis buffer (Buenrostro et 778 

al., 2015). We dounce homogenized the dissected brains in 5mL of lysis buffer with the loose 779 

pestle (pestle A) in a 15mL glass dounce homogenizer (Pyrex #7722-15). We washed nuclei 780 

lysate off the pestle with 5mL of lysis buffer and filtered the nuclei through a 70-micron cell 781 

strainer into a 50mL conical tube. We washed the dounce homogenizer again with 10mL of BL 782 

buffer and transferred the lysate through the 70-micron filter (Foxx 1170C02). We pelleted the 783 

20 mL of nuclei lysate at 2,000 x g for 10 minutes in a refrigerated centrifuge at 4°C. We 784 

discarded the supernatant and resuspended the nuclei in 100-300 microliters of water to 785 

approximate a concentration of 1-2 million nuclei/ mL. We filtered the nuclei suspension through 786 

a 40-micron cell strainer. We stained a sample of nuclei with DAPI (Invitrogen #D1206) and 787 

counted the sample to measure 50k nuclei per ATAC-seq transposition reaction. The remaining 788 

steps follow the Buenrostro et al., 2015 (Buenrostro et al., 2015) protocol for tagmentation and 789 

library amplification. We shallowly sequenced barcoded ATAC-seq libraries at 1-5 million reads 790 

per sample on an Illumina MiSeq and processed individual samples through the ENCODE 791 

pipeline for initial quality control. We used these QC measures (clear periodicity, library 792 

complexity, and minimal bottlenecking) to filter out low-quality samples and re-pooled a 793 

balanced library for paired-end deep sequencing on an Illumina NextSeq to target 30 million 794 

uniquely mapped fragments per sample after mitochondrial DNA and PCR duplicate removal. 795 

These raw sequencing files entered processing through the ENCODE ATAC-seq pipeline as 796 

above by merging technical replicates and grouping biological replicates by brain region for each 797 

pipeline run.  798 

Cre-Specific Nuclear-Anchored Independent Labeling (cSNAIL) virus procedures 799 
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The cSNAIL genome (pAAV-Ef1a-DIO-Sun1-Gfp-WPRE-pA) contains loxP sites to invert the 800 

Sun1-Gfp fusion gene and integrate into the nuclear membrane of cells expressing the Cre gene, 801 

allowing these cell populations to be profiled for various genomic assays (Lawler et al, 2020 in 802 

press J. Neuro).  We packaged the cSNAIL genome with AAV variant PHP.eB (pUCmini-iCAP-803 

PHP.eB) in AAVpro(R) 293T cells (Takara, cat #632273). Viviana Gradinaru provided us with 804 

the pUCmini-iCAP-PHP.eB (http://n2t.net/addgene:103005; RRID: Addgene 103005) (Chan et 805 

al., 2017). We precipitated viral particles with polyethylene glycol, isolated with 806 

ultracentrifugation on an iodixanol density gradient, and purified in PBS with centrifugation 807 

washes and 0.2µM syringe filtration. We injected each mouse with 4.0 x 1011vg into the retro-808 

orbital cavity under isoflurane anesthesia. We allowed the virus to incubate in the animal for 3-4 809 

weeks to reach peak expression. We closely monitored the health of the animals throughout the 810 

length of the virus incubation and did not note any concerns. 811 

cSNAIL nuclei isolation 812 

On the day of the ATAC-seq experiments, we dissected brain regions from fresh tissue and 813 

extracted nuclei in the same manner as described for bulk tissue experiments. Then, we sorted 814 

the nuclei suspension into Sun1GFP+ (Cre+) and Sun1GFP- (Cre-) fractions using affinity 815 

purification with Protein G Dynabeads (Thermo Fisher, cat. 10004D). A pre-clearing incubation 816 

with beads and nuclei for 10-15 minutes removes effects from non-specific binding events. Next, 817 

we incubated the remaining free nuclei with anti-GFP antibody (Invitrogen, #G10362) for 30 818 

minutes to bind Sun1GFP. Finally, we added new beads to the solution to conjugate with the 819 

antibody and incubated the reaction for an additional 20 minutes. The pre-clear step and all 820 

incubations took place in wash buffer (0.25M Sucrose, 25mM KCl, 5mM MgCl2, 20mM Tricine 821 

with KOH to pH 7.8, and 0.4% IGEPAL) at 4°C with end-to-end rotation. After the binding 822 
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process, we separated bead-bound nuclei on a magnet, washed three times with wash buffer, and 823 

filtered through a 20µM filter to ensure purity. We resuspended nuclei in nuclease-free water for 824 

input into the ATAC-seq tagmentation reaction. We performed nuclei quantification and 825 

tagmentation in the same manner described for bulk tissue ATAC-seq above. We list in the table 826 

below the number of animals, the genotypes, and which regions collected for ATAC-seq 827 

experiments in this study. N=2 Pvalb-cre samples from CPU/NAc region had received a sham 828 

surgery with saline injection into the external globus pallidus 5 days before they were sacrificed. 829 

The background for all transgenic mice is C57BL/6J. SST-Cre mice were homozygous for 830 

the transgene while PValb-2a-Cre, D1-Cre, and A2a-Cre mice were heterozygous for the 831 

transgene (Lawler et al., 2020). N=2 Drd1-cre samples from both CPU and NAc regions had 832 

received headcap surgeries 3 weeks before they were sacrificed. Both Pvalb-cre and Drd1-cre 833 

were overall healthy at time of sacrifice. 834 

Genotype Replicates Sex  
(Female /Male) 

Region and Replicate 
per region 

Cell 
type 

C57BL/6 WT N=4 2 F, 2 M CTX= 4, CPU/NAc = 4 bulk 
Pvalb-cre N=5  3 F (CTX) 

1 F, 1 M (CPU/NAc) 
CTX= 3, CPU/NAc = 2  PV 

Sst-cre N=2 1 F, 1 M CTX= 2, CPU/NAc = 2 SST 
Drd1-cre N=2 2 F CPU=2, NAc=2 D1 
Adora2a-cre N=2 2 F CPU=2, NAc=2 D2 
 835 

cSNAIL Cell Type Specificity 836 

We created a consensus set of non-overlapping IDR peaks from the ATAC-seq pipeline for 837 

cSNAIL ATAC-seq and Mo et al. INTACT samples (Tissue: Ctx, CPU, and NAc ; 838 

Celltype: EXC, PV, SST, VIP, D1, D2). We extended the peak set 200bp up- and down-839 

stream, count overlapping fragments with Rsubread v2.0.1 using the de-duplicated BAM 840 

files from the pipeline(Liao et al., 2014), and created with DESeq2 v1.26.0 a variance-841 
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stabilized count matrix aware of experimental Group (combination of Tissue and 842 

Celltype) with ~Group (Love et al., 2014). We plotted the principle component analysis in 843 

Supplemental Figure 3A for the first two components with this variance-stabilized count 844 

matrix. We used Deeptools v3.5.0 to convert the same BAM files to normalized bigWig 845 

files and average over replicates of the same Group (Ramírez et al., 2016). We plotted the 846 

tracks using pyGenomeTracks v3.5 around marker genes for each cell type (Slc17a7, Drd1, 847 

Adora2a, Pvalb, Sst, Vip) (Ramírez et al., 2018) Supplemental Figure 3B. We computed the 848 

mean accessibility for each Group 2kb up- and down-stream the transcription start sites (TSS) 849 

and correlated log10 (TSS accessibility + 1) with gene expression log10(meta gene counts + 1) of 850 

Drop-Seq annotated cell types from prefrontal cortex and striatum(Saunders et al., 2018). We 851 

used the Saunders et al. tissue subcluster metagene profiles (sum of gene expression in all cells) 852 

and summed subclusters to cluster-level metagene profiles. Most tissue cluster metagene profiles 853 

corresponded to cSNAIL ATAC-seq celltype and tissue profiles, with the exception of cSNAIL 854 

cortical PV+ samples were matched to Saunders et al. cortical MGE+ interneuron clusters. 855 

 856 

Convolutional Neural Network models for CRE cell type classification 857 

We trained a set of convolutional neural network (CNN) models to learn the regulatory code of a 858 

given cell type from the DNA sequences underlying the cell type’s OCRs. The models take in 859 

one-hot encoded 501bp genomic sequences to predict 1 for an OCR or 0 for non-OCR 860 

sequence. Positive sequences were centered on IDR peak summits that are annotated to be in 861 

introns and distal intergenic regions and negative sequences are approximately ten times the 862 

number of positives sequences that are G/C-matched and not overlapping IDR peaks. We 863 

excluded promoters (defined as within 5,000bp from the TSS) and exons because distal 864 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

40 

sequences have been shown to confer more cell type-specificity and be more predictive of 865 

expression levels of regulated genes (Roadmap Epigenomics Consortium et al., 2015). We 866 

constructed the negative set by first building a sequence repository $BGDIR according to 867 

https://bitbucket.org/CBGR/biasaway_background_construction/src/868 

master/ from the mouse mm10 genome using 501bp sequences. Then we used the biasaway 869 

(Worsley Hunt et al., 2014; Khan et al., 2020) command-line interface to generate negative 870 

sequences with the matching nucleotide distribution along a sliding window of the 501bp IDR 871 

peak sequence:  872 

biasaway c --foreground $FGFASTA --nfold 10 --deviation 2.6 --873 

step 50 --seed 1 –winlen 100 --bgdirectory $BGDIR 874 

We employed a 5-fold cross validation chromosome hold-out scheme to train 5 models per set of 875 

IDR peaks to ensure stable and consistently learned regulatory patterns. A model that was 876 

training a fold did not see sequences during training from the validation set for that fold, and no 877 

model saw the test set until final model performance evaluation. Sequences from these 878 

chromosomes were used as the validation set for each fold: 879 

fold1: {chr6, chr13, chr21} 880 

fold2: {chr7, chr14, chr18} 881 

fold3: {chr11, chr17, chrX} 882 

fold4: {chr9, chr12} 883 

fold5: {chr10, chr8}. 884 

We used sequences from chromosomes {chr1, ch2, chr19} for the test set.  885 

 We trained the models with Keras v2.3.0-tf (https://keras.io/) implemented 886 

through Tensorflow v2.2.0 and used stochastic gradient descent (SGD) with Nesterov 887 
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momentum to minimize the binary cross entropy loss and learn model parameters. All models 888 

used the same CNN architecture after a grid-search of hyperparameters found stable and 889 

high validation performance by area under the precision-recall curve (auPRC) in an 890 

architecture with five Conv1D layers (kernel_size = 11, filters = 200, 891 

activation= ‘relu’, kernel_regularizer=l2(1e-10)) sandwiched between 892 

four Dropout layers (rate = 0.25),  then one MaxPooling1D layer (pool_size = 893 

26, strides = 26), one Flatten layer, one Dense layer (units = 300, 894 

activation=`relu`, kernel_regularizer=l2(1e-10)), one Dropout layer 895 

(rate = 0.25), a final output Dense layer (units=1, activation = ‘sigmoid’, 896 

kernel_regularizer=l2(1e-10)), and a final Dropout layer (rate = 0.25) before 897 

the sigmoid output layer. We applied the One-Cycle-Policy (OCP) with linear cyclical learning 898 

rate and momentum between a base and max rates as described previously (Smith, 2018) to train 899 

each fold with batch_size= 1000, epochs = 23, num_cycles = 2.35, 900 

base_learning_rate = 1e-2, max_learning_rate = 1e-1, base_momentum 901 

= .85, max_momentum = 0.99. With these hyperparameters, we trained models across 902 

folds to predict positive OCRs of all measured cell types against an approximately 1:10 903 

positive:negative class ratio. We computed classifier performance metrics including weighted 904 

accuracy (using threshold = 0.5), weighted f1_score (using threshold = 0.5), area under receiver 905 

operating characteristic (auROC), and area under precision-recall curve (auPRC). Given the 906 

class imbalance, we selected the reported hyperparameters that maximize the validation 907 

auPRC at a threshold of 0.5. We report the test performance auPRC, F1 score, and false 908 

positive rate on 10X nucleotide-content matched negatives in Supplemental Figure 5A. We 909 
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provide both the scripts and trained Keras models at 910 

https://github.com/pfenninglab/addiction_gwas_enrichment.  911 

 912 

Interpretation of Convolutional Neural Network models  913 

To ensure that the classification task decisions relied on biological sequence signatures and 914 

not artifacts, we performed model interpretation using Deep SHAP v0.37.0 (Štrumbelj 915 

and Kononenko, 2014; Shrikumar et al., 2017) and TF-MoDISco (Shrikumar et al., 2018). For 916 

a random subsample of 2,000 true positive sequences from the validation set, we generated 917 

per base importance scores and hypothetical importance scores relative to a reference set 918 

of 500 true negative sequences from the validation set. These scores describe the 919 

contribution of each base toward a positive model classification, which is a predicted OCR 920 

in the given cell type. TF-MoDISco is an importance score-aware method that clusters 921 

commonly important subsequences, called “seqlets”, to define the learned motifs of the 922 

model. We ran TF-MoDISco v0.4.2.3 with the options sliding_window_size=11, 923 

flank_size=3, min_seqlets_per_task=3000, trim_to_window_size=11, 924 

initial_flank_to_add=3, final_flank_to_add=3, kmer_len=7, 925 

num_gaps=1, and num_mismatches=1. The resulting motifs were filtered to remove 926 

rare patterns with fewer than 100 supporting seqlets. Then, the motifs were visualized and 927 

associated with known motifs using Tomtom (Gupta et al., 2007) version 5.3.3 with the 928 

HOCOMOCO v11 FULL database and default parameters (Supplementary Table 2).  929 

 930 

Machine learning cell type-specific prioritization of Fullard et al. NeuN+ ATAC-seq peaks 931 
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We used CNN model scores to classify whether a peak from Fullard et al. NeuN+ open 932 

chromatin data is active in a neuronal subtype {EXC, D1, D2}. We took NeuN+ IDR 933 

“optimal peaks” from regions significantly enriched for addiction-associated traits {OFC, 934 

VLPFC, DLPFC, ACC, STC, PUT, NAc, Figure 1A}, extracted 501bp DNA sequences 935 

of each centered on the summit, and scored each peak with cell type-specific machine learning 936 

models trained with the appropriate tissue context (e.g., score cortical NeuN+ peaks with a 937 

model trained with cortical EXC cell type). We averaged scores across model folds from the 938 

same cell types and classified NeuN+ peaks with scores greater than 0.5 as active in that cell 939 

type, as this threshold was the most discriminative in classifying positive validation set 940 

sequences (Supplemental Figure 5B). We defined these CNN-prioritized peaks as foregrounds 941 

for LDSC regression GWAS enrichment analyses as described above. We created a consensus 942 

set of peaks merging all model-prioritized peaks and the Honeybadger2 set of OCRs to be the 943 

matched background, and we performed GWAS enrichment and computed FDR on all 18 944 

GWAS traits (only enrichments for addiction-associated GWAS shown, Figure 3).  945 

 946 

Addiction-associated GWAS processing and cell type-specific candidate selection 947 

We collected the addiction-associated SNPs by submitting the summary statistics files for the 948 

seven addiction-associated traits {AgeofInitiation (Liu et al., 2019b), 949 

CigarettesPerDay (Liu et al., 2019b), SmokingInitiation (Liu et al., 2019b), 950 

SmokingCessation (Liu et al., 2019b), DrinksPerWeek (Liu et al., 2019b), Cannabis 951 

(Pasman et al., 2018), RiskyBehavior (Karlsson Linnér et al., 2019)} to the FUMA 952 

webserver (Watanabe et al., 2017). FUMA computed LD R2 based on the 1000 Genomes 953 

European (1000G EUR) super-population reference (1000 Genomes Project Consortium et al., 954 
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2015) via PLINK (Purcell et al., 2007), linked GWAS-significant lead SNPs to off-lead SNPs in 955 

LD with the lead, and annotated functional consequences of genetic variants via ANNOVAR 956 

based on ENSEMBL build 85 human gene annotations (Wang et al., 2010) (Figure 1A). 957 

ANNOVAR functional gene annotations for a SNP are as defined in the primary publication and 958 

online: https://annovar.openbioinformatics.org/en/latest/user-959 

guide/gene/. We scored all effect and non-effect alleles with each set of CNN models, 960 

averaged predictions across folds, and calibrated CNN scores that predict activity using the 961 

set of validation positive OCRs. We computed the ΔSNP probability effect by taking the 962 

difference between the effect allele and the non-effect allele. Most SNPs reported by GWAS 963 

are not expected to be the causal variant for a trait, so the distribution of ΔSNP probability 964 

can be used to define a null distribution. We compute the p-value that an allele has a non-965 

zero ΔSNP probability by fitting a normal distribution of null ΔSNP probabilities. We 966 

correct for multiple testing using the method swfdr v1.12.0 to compute q-values to 967 

control for a false-discoveries conditioned on potentially informative covariates (Boca and 968 

Leek, 2018). Weighted FDR-correction methods, including swfdr, have been shown to be 969 

robust to uninformative covariates and increase power to detect real differences for 970 

informative covariates while controlling false discoveries (Korthauer et al., 2019). We 971 

conditioned the proportion of expected null p-values on the following covariates 972 

(Supplemental Figure 5E, step 4): the difference in GC content of the 501 surrounding the 973 

SNP compared to the average GC content of positive sequences used to train each model 974 

(GC content), the minor allele frequency (MAF) based on the European ancestry subjects 975 

in the 1000G reference panel, whether the SNP overlapped a Fullard et al. NeuN+ OCR 976 

(inNeuN peak), and whether a SNP was fine-mapped and predicted to be causal by 977 
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CAUSALdb using the European LD structure and an ensemble of statistical fine-mapping 978 

tools (isCausal) (FINEMAP, CAVIARBF, PAINTOR) (Chen et al., 2015; Benner et al., 979 

2016; Kichaev et al., 2017; Wang et al., 2020). We applied an alpha of 0.05 on the false-980 

discovery q-values for all 14,790 SNPs scored across 5 sets of CNNs to determine 981 

significantly large enough ΔSNP effects. 982 

 To accompany cell type-specific activity predictions, we downloaded SNPs that are 983 

reported cis expression quantitative trait loci (eQTL) in human cortex, frontal cortex (DLPFC), 984 

anterior cingulate cortex (ACC), caudate, putamen, and the nucleus accumbens (NAc) from the 985 

GTEX Consortium from https://www.gtexportal.org/home/datasets(GTEx 986 

Consortium, 2013, 2015). We identified genes for which at least one of the 170 SNPs is 987 

an eQTL and plotted them as arcs in Figure 4B and Supplemental Figure 4. Locus plots are 988 

generated with pyGenomeTracks v3.5  tools (Ramírez et al., 2018).  989 

For Figure 4A, we compared calibrated SNP probabilities of the either effect or non-990 

effect allele across each model and grouped them by whether they overlapped a cortical or 991 

striatal NeuN+ OCR, NeuN- OCR, both, or neither, depending on whether the model was for 992 

EXC or D1/D2 neuronal subtypes, respectively. We computed 2-tailed t-tests between groups and 993 

corrected for multiple comparisons with the family-wise Bonferroni method for N=18 tests from 994 

three models and (4 choose 2) six possible comparisons per model. * P < 0.05/N, ** P < 0.01/N, 995 

*** P < 0.001/N. 996 

 997 

DATA AVAILABILITY 998 
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Code used to run intermediate and final analyses reported in this paper are available on the 999 

GitHub page: https://github.com/pfenninglab/addiction_gwas_enrichment. Sequencing output 1000 

files for data generated in this study are deposited on the GEO at accession GSE161374 1001 

(Reviewer access token: cropkwsgnnyxhgh). Questions and comments about data and 1002 

analyses may be directed to the corresponding author.  1003 
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Figure 1. Substance use and risky behavior GWAS risk variants enrich within reward 1345 

region- and cell type-specific epigenomic profiles. 1346 

Partitioned LDSC regression (GWAS enrichment) finds enrichment of substance use and risky 1347 

behavior traits in region-specific and cell type-specific open chromatin profiles of human 1348 

postmortem brain. (A) Pie chart of ANNOVAR-annotated (Wang et al., 2010) SNP function of 1349 

addiction-associated trait lead and off-lead SNPs in LD R2 > 0.8. Dark colors indicate un-1350 

transcribed/non-coding annotations, light for transcribed/exonic annotations. SNP annotation 1351 

labels are according to ANNOVAR using ENSEMBL build 85 gene annotations (Methods). (B) 1352 

GWAS enrichment false-discovery rates in ATAC-seq of 14 postmortem human brain regions 1353 

coupled with NeuN-labeled fluorescence activated nuclei sorting (Fullard et al., 2018). Brain 1354 

regions are stratified by cortical and subcortical regions, with cortical regions ordered frontal to 1355 

caudal. Sorted cell types within each brain region are denoted by shape (blue triangle for 1356 

NeuN+/neuronal, red circle for NeuN-/glial). FDR-adjustment was performed across all 1357 

enrichments on the Fullard et al. dataset for Figure 1B and Figure 3: Cell type-specific 1358 

convolutional neural network (CNN) models refine human NeuN+ enrichments for 1359 

substance use genetic risk GWAS. 1360 

(A) Schematic to predict cell type-specific activity of NeuN+ ATAC-seq peaks enriched from 1361 

brain regions assayed in Fullard et al. (Fullard et al., 2018) using CNN models trained on mouse 1362 

cell-type specific ATAC-seq peaks. CNN-predicted OCRs are input into GWAS enrichment. (B) 1363 

Partitioned LD score regression of addiction associated traits in Fullard et al. NeuN+ OCRs 1364 

predicted to be cell type-specific by machine learning models of open chromatin. Cell types are 1365 

colored by the source mouse cell type-specific OCRs from Error! Reference source not 1366 
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found.A. Original enrichments from Figure 1A are reproduced in black. Larger, bolded points 1367 

are significant for FDR < 0.05 (red dotted line).  1368 

 1369 

Figure 4: Convolutional Neural Network (CNN) models for predicting cell type-specific 1370 

open chromatin predict activity of addiction GWAS SNPs 1371 

(A) Cell type-activity predicted probability active by each set of CNN models of cell type 1372 

activity for genome-wide significant SNPs and off-lead SNPs in LD R2
 > 0.8 with the lead 1373 

SNPs. Activity scores for SNPs are stratified by overlap with Fullard et al. (Fullard et al., 2018) 1374 

cortical or striatal NeuN+ (teal), NeuN- peaks (salmon), both (dark gray), or neither (light 1375 

gray). Significance symbols denote Bonferroni-adjusted p-values from 2-tailed t-tests for N=18 1376 

possible pairwise comparisons, N.S. not significant, * P < 0.05/N, ** P < 0.01/N, *** P < 1377 

0.001/N. (B) Locus plot candidate SNP with predicted function SNP impact in cortical 1378 

excitatory and striatal D1, and D2 MSN cell types. Genome tracks from top to bottom: human 1379 

(h)NeuN+ MACS2 ATAC-seq fold change signal of cortical and striatal brain regions 1380 

enriched in Figure 1A. SNP tracks show lead SNPs aggregated across seven addiction-1381 

associated GWAS and the SNPs either in LD with the lead SNPs (Lead SNPs) or 1382 

independently significant SNPs (LD/ Sig. SNPs). Each SNP is color by increasing red 1383 

intensity by the degree of LD with a lead SNP. Prioritized candidate causal SNPs by 1384 

predicted differential cell type activity and overlap with Fullard et al. NeuN+ OCRs are 1385 

plot as (red for Tier A, yellow for Tier B, and teal for Tier C, Methods). Tier A SNP 1386 

rs7604640 is predicted to have strong ΔSNP effect by CPU-D1 and NAc-D1 CNN models 1387 

and the bars are colored by the % change in probability active.  Gene annotation tracks plot 1388 

GENCODE genes from the GRCh38 build. eQTL link tracks of FDR-significant GTEX cis-1389 
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eQTL from cortical and striatal brain regions, and orthologs of mouse (m) putative CREs 1390 

mapped from excitatory or striatal neuronal subtypes measured by cSNAIL ATAC-seq. Cell 1391 

type colors label cortical excitatory neurons (EXC; red), D1 medium spiny neurons (D1; blue), 1392 

or D2 medium spiny neurons (D2; green). (C) Representative importance scores of 50bp 1393 

flanking either side of the SNP rs7604640 that measure relative contribution of that 1394 

sequence being active in D1 MSNs. CNN importance score interpretations are shown for 1395 

effect and non-effect alleles, and the difference in importance scores reveal the relatively 1396 

more important DNA motif in the effect allele that matches consensus POU1F1 motif 1397 

overlapping the rs7604640 SNP. The model interprets this POU1F1 motif and a nearby 1398 

NRF1 motif as contributing to the effect allele having more activity in D1 MSNs. 1399 

 1400 

Figure 5 Summary of LDSC GWAS enrichments in human and mouse-human orthologous 1401 

bulk tissue and cell type open chromatin 1402 

(A) Schematic of human NeuN-labeled bulk tissue and occipital cortex cell types from Figure 1 1403 

for which addiction-associated genetic variants were significantly enriched (FDR < 0.05) in 1404 

OCRs. Brain regions are labelled by the cell type that enriched (NeuN+: blue box/shading; 1405 

NeuN-: red box/shading) spatially along with the trait(s) for which OCRs were found 1406 

significantly enriched with risk variants. Occipital cortex cell types from Figure 1C (same color 1407 

scheme) are listed along with the trait(s) for which OCRs were found significantly enriched with 1408 

risk variants. (B) Schematic of addiction-associated genetic variants that share enrichments from 1409 

human brain regions and neuronal subtypes in both human and mouse-human orthologous open 1410 

chromatin. Brain graphic adapted from Fullard et al.(Fullard et al., 2018)  1411 

 1412 
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Supplemental Figure 1. Shared and unique genetic architecture of genetic risk variants of 1413 

addiction-associated traits. 1414 

(A) LDSC genetic correlation (rg) matrix of seven addiction-associated traits. FDR-significant 1415 

correlations at shown in bold, non-significant in gray (FDR < 0.05). (B) Upset plot of non-1416 

overlapping genomic loci shared or unique to each addiction-associated trait. Genomic loci are 1417 

clustered and identified by shared GWAS-significant SNPs and genomic region overlap. 1418 

 1419 

 1420 

Supplemental Figure . Brain regions reported to be significantly enriched (FDR <= 0.05) 1421 

are plotted with bolded bars, and the significance threshold is represented by a dashed red 1422 

line. (C) Barplot of GWAS enrichment false-discovery rates in single cell open chromatin 1423 

profiles of cell clusters in isocortex, hippocampus, and striatum (Corces et al., 2020).  Cell 1424 

types in brain regions that are significantly enriched (FDR <= 0.05) are plotted with bolded 1425 

bars, and the significance threshold is represented by a dashed red line. (D) Barplot of 1426 

GWAS enrichment false-discovery rates in single cell THS-seq OCRs of major cell clusters in 1427 

occipital cortex (Lake et al., 2018). Cell types in brain regions that are significantly enriched 1428 

(FDR <= 0.05) are plotted with bolded bars, and the significance threshold is represented by 1429 

a dashed red line. Traits assessed are age of smoking initiation (AgeofInitiation), average 1430 

number of cigarettes per day for ever smokers (CigarettesPerDay), having ever regularly 1431 

smoked (SmokingInitiation), current versus former smokers (SmokingCessation), number 1432 

of alcoholic drinks per week (DrinksPerWeek) (Liu et al., 2019b), lifetime cannabis use 1433 

(Cannabis) (Pasman et al., 2018), and risky behavior (RiskyBehavior) (Karlsson Linnér et 1434 

al., 2019). OFC: orbitofrontal cortex, VLPFC: ventrolateral prefrontal cortex, DLPFC: 1435 
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dorsolateral prefrontal cortex, ACC: anterior cingulate cortex, INS: insula, STC: superior 1436 

temporal gyrus, ITC: inferior temporal gyrus, PMC: primary motor cortex, PVC: primary visual 1437 

cortex, AMY: amygdala, HIPP: hippocampus, MDT: mediodorsal thalamus, NAc: nucleus 1438 

accumbens, PUT: putamen, Ast: astrocyte, End: endothelial, Ex: excitatory neuron, In: inhibitory 1439 

neuron, Mic: microglia, Oli: oligodendrocyte, Opc: oligodendrocyte precursor. 1440 

 1441 

Figure 2: Cell type-specific enrichment of substance use traits are conserved in mouse-1442 

human orthologous open chromatin regions. 1443 

(A) Experimental design to map human orthologous regions from mouse ATAC-seq of bulk 1444 

cortex (CTX), dorsal striatum (CPU), and nucleus accumbens (NAc) of cre-dependent Sun1-GFP 1445 

Nuclear Anchored Independent Labeled (cSNAIL) nuclei of D1-cre, D2-cre, PV-cre, and SST-1446 

cre mice. cSNAIL ATAC-seq experiments report enriched (+) nuclei populations. (B) Partitioned 1447 

LD score regression finds enrichment of substance use and risky behavior traits for brain region 1448 

and cell type specific ATAC-seq open chromatin profiles of mouse brain. Replication of 1449 

enrichment is shown using INTACT-enriched OCRs from Mo et al (Mo et al., 2015) of cortical 1450 

excitatory (EXC+), vasoactive intestinal peptide interneuron (VIP+), and parvalbumin 1451 

interneuron (PV+). Enrichments that are enriched at FDR < 0.05 are plotted with black outlines. 1452 

FDR-adjusted p-value was performed across all mouse-human ortholog GWAS enrichment 1453 

across Figure 2. 1454 

 1455 

Figure 3: Cell type-specific convolutional neural network (CNN) models refine human 1456 

NeuN+ enrichments for substance use genetic risk GWAS. 1457 
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(A) Schematic to predict cell type-specific activity of NeuN+ ATAC-seq peaks enriched from 1458 

brain regions assayed in Fullard et al. (Fullard et al., 2018) using CNN models trained on mouse 1459 

cell-type specific ATAC-seq peaks. CNN-predicted OCRs are input into GWAS enrichment. (B) 1460 

Partitioned LD score regression of addiction associated traits in Fullard et al. NeuN+ OCRs 1461 

predicted to be cell type-specific by machine learning models of open chromatin. Cell types are 1462 

colored by the source mouse cell type-specific OCRs from Error! Reference source not 1463 

found.A. Original enrichments from Figure 1A are reproduced in black. Larger, bolded points 1464 

are significant for FDR < 0.05 (red dotted line).  1465 

 1466 

Figure 4: Convolutional Neural Network (CNN) models for predicting cell type-specific 1467 

open chromatin predict activity of addiction GWAS SNPs 1468 

(A) Cell type-activity predicted probability active by each set of CNN models of cell type 1469 

activity for genome-wide significant SNPs and off-lead SNPs in LD R2
 > 0.8 with the lead 1470 

SNPs. Activity scores for SNPs are stratified by overlap with Fullard et al. (Fullard et al., 2018) 1471 

cortical or striatal NeuN+ (teal), NeuN- peaks (salmon), both (dark gray), or neither (light 1472 

gray). Significance symbols denote Bonferroni-adjusted p-values from 2-tailed t-tests for N=18 1473 

possible pairwise comparisons, N.S. not significant, * P < 0.05/N, ** P < 0.01/N, *** P < 1474 

0.001/N. (B) Locus plot candidate SNP with predicted function SNP impact in cortical 1475 

excitatory and striatal D1, and D2 MSN cell types. Genome tracks from top to bottom: human 1476 

(h)NeuN+ MACS2 ATAC-seq fold change signal of cortical and striatal brain regions 1477 

enriched in Figure 1A. SNP tracks show lead SNPs aggregated across seven addiction-1478 

associated GWAS and the SNPs either in LD with the lead SNPs (Lead SNPs) or 1479 

independently significant SNPs (LD/ Sig. SNPs). Each SNP is color by increasing red 1480 
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intensity by the degree of LD with a lead SNP. Prioritized candidate causal SNPs by 1481 

predicted differential cell type activity and overlap with Fullard et al. NeuN+ OCRs are 1482 

plot as (red for Tier A, yellow for Tier B, and teal for Tier C, Methods). Tier A SNP 1483 

rs7604640 is predicted to have strong ΔSNP effect by CPU-D1 and NAc-D1 CNN models 1484 

and the bars are colored by the % change in probability active.  Gene annotation tracks plot 1485 

GENCODE genes from the GRCh38 build. eQTL link tracks of FDR-significant GTEX cis-1486 

eQTL from cortical and striatal brain regions, and orthologs of mouse (m) putative CREs 1487 

mapped from excitatory or striatal neuronal subtypes measured by cSNAIL ATAC-seq. Cell 1488 

type colors label cortical excitatory neurons (EXC; red), D1 medium spiny neurons (D1; blue), 1489 

or D2 medium spiny neurons (D2; green). (C) Representative importance scores of 50bp 1490 

flanking either side of the SNP rs7604640 that measure relative contribution of that 1491 

sequence being active in D1 MSNs. CNN importance score interpretations are shown for 1492 

effect and non-effect alleles, and the difference in importance scores reveal the relatively 1493 

more important DNA motif in the effect allele that matches consensus POU1F1 motif 1494 

overlapping the rs7604640 SNP. The model interprets this POU1F1 motif and a nearby 1495 

NRF1 motif as contributing to the effect allele having more activity in D1 MSNs. 1496 

 1497 

Figure 5 Summary of LDSC GWAS enrichments in human and mouse-human orthologous 1498 

bulk tissue and cell type open chromatin 1499 

(A) Schematic of human NeuN-labeled bulk tissue and occipital cortex cell types from Figure 1 1500 

for which addiction-associated genetic variants were significantly enriched (FDR < 0.05) in 1501 

OCRs. Brain regions are labelled by the cell type that enriched (NeuN+: blue box/shading; 1502 

NeuN-: red box/shading) spatially along with the trait(s) for which OCRs were found 1503 
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significantly enriched with risk variants. Occipital cortex cell types from Figure 1C (same color 1504 

scheme) are listed along with the trait(s) for which OCRs were found significantly enriched with 1505 

risk variants. (B) Schematic of addiction-associated genetic variants that share enrichments from 1506 

human brain regions and neuronal subtypes in both human and mouse-human orthologous open 1507 

chromatin. Brain graphic adapted from Fullard et al.(Fullard et al., 2018)  1508 

 1509 

Supplemental Figure 1. Shared and unique genetic architecture of genetic risk variants of 1510 

addiction-associated traits. 1511 

(A) LDSC genetic correlation (rg) matrix of seven addiction-associated traits. FDR-significant 1512 

correlations at shown in bold, non-significant in gray (FDR < 0.05). (B) Upset plot of non-1513 

overlapping genomic loci shared or unique to each addiction-associated trait. Genomic loci are 1514 

clustered and identified by shared GWAS-significant SNPs and genomic region overlap. 1515 

 1516 

 1517 

Supplemental Figure 2. Sensitivity of partitioned LDSC regression for cell type- and 1518 

region-specific in the GWAS trait enrichment requires well-powered GWAS in relevant 1519 

cell types. 1520 

GWAS enrichment plots with false-discovery rates in ATAC-seq of 14 postmortem human brain 1521 

regions coupled with NeuN-labeled fluorescence activated nuclei sorting(Fullard et al., 2018). 1522 

Regions are stratified by cortical and subcortical regions, with cortical regions ordered frontal to 1523 

caudal. Sorted cell types within each brain region are denoted by shape (blue triangle for 1524 

NeuN+/neuronal, red circle for NeuN-/glial). Cell types in brain regions that are enriched at FDR 1525 

< 0.05 are plotted with bigger shapes and with black outlines. (A) GWAS enrichment of 1526 
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addiction- or substance use-associated traits: multi-site chronic pain (ChronicPain) (Johnston 1527 

et al., 2019), cocaine dependence (CocaineDep) (Cabana-Domínguez et al., 2019) , opioid 1528 

dependence (OpioidDep)(Cheng et al., 2018), diagnosis of obsessive-compulsive disorder 1529 

(OCD)  (International Obsessive Compulsive Disorder Foundation Genetics Collaborative 1530 

(IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS), 2018), and cups 1531 

of coffee drank per day (CoffeePerDay) (Coffee and Caffeine Genetics Consortium et al., 1532 

2015). The GWAS for OCD, opioid dependence, and cocaine dependence are reportedly 1533 

underpowered to detect genetic liability for these traits (Ncase< 5,000). (B) GWAS enrichment in 1534 

well-powered brain-related traits show cell type- and region-specific enrichment: educational 1535 

attainment (EduAttain) (Lee et al., 2018), schizophrenia risk (Schizophrenia) (Schizophrenia 1536 

Working Group of the Psychiatric Genomics Consortium, 2014), habitual sleep duration 1537 

(SleepDuration) (Dashti et al., 2019). (C) GWAS enrichment in non-brain associated traits 1538 

do not show cell type- or region-specific enrichment: heel bone-mineral density (BMD) (Kemp et 1539 

al., 2017), coronary artery disease (CAD) (Howson et al., 2017), and lean body mass (LBM) 1540 

(Zillikens et al., 2017).  1541 

 1542 

Supplemental Figure 3. Cell type specificity of cSNAIL ATAC-seq in mouse cortex and 1543 

striatum 1544 

(A) Principle component plots of chromatin accessibility counts from cre-dependent Sun1-GFP 1545 

Nuclear Anchored Independent Labeled (cSNAIL) ATAC-seq from cre-driver lines (Methods). 1546 

Major axes of variation separate cell types by tissue source (PC1) and cell type versus bulk 1547 

ATAC-seq (PC2). (B) Normalized coverage track plots around marker genes demarcating cell 1548 

type-specificity of cSNAIL ATAC-seq samples. (C) Density correlation plot of normalized 1549 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

64 

chromatin accessibility log counts around the transcription start site (TSS) correlated with 1550 

matched pseudo-bulk cell type log gene counts from Drop-seq of mouse cortex and 1551 

striatum(Saunders et al., 2018). Drop-seq cell types meta-gene profiles report sum gene counts 1552 

for cell clusters from frontal cortex and striatum. Pearson’s and Spearman’s correlation are 1553 

denoted with R and ρ, respectively. (D) Pairwise correlation matrix of TSS chromatin 1554 

accessibility log counts with Drop-seq pseudo-bulk log gene counts from cortical and striatal cell 1555 

clusters.  1556 

 1557 
 1558 

Supplemental Figure 4. GWAS enrichment in addiction- and non-addiction-related traits 1559 

using mapped mouse orthologs of tissue- and cell type-specific open chromatin regions. 1560 

GWAS enrichment plots with false-discovery rates in human orthologous regions mapped from 1561 

mouse ATAC-seq of bulk cortex (CTX), dorsal striatum (CPU), and nucleus accumbens (NAc) 1562 

or cre-dependent Sun1-GFP Nuclear Anchored Independent Labeled (cSNAIL) nuclei of D1-cre, 1563 

D2-cre, and PV-cre mice. cSNAIL ATAC-seq experiments report both enriched (+) and de-1564 

enriched (-) nuclei populations. Enrichments that are enriched at FDR < 0.05 are plot with black 1565 

outlines. Replication of enrichment is shown using INTACT-enriched OCRs from Mo et al(Mo 1566 

et al., 2015) of cortical excitatory (EXC+), vasoactive intestinal peptide interneuron (VIP+), and 1567 

parvalbumin interneuron (PV+). (A) GWAS enrichment of addiction- or substance use-1568 

associated traits: multi-site chronic pain (ChronicPain), cocaine dependence 1569 

(CocaineDep), opioid dependence (OpioidDep), diagnosis of obsessive-compulsive disorder 1570 

(OCD), and cups of coffee drank per day (CoffeePerDay). The GWAS for OCD, opioid 1571 

dependence, and cocaine dependence are reportedly underpowered to detect genetic liability for 1572 

these traits (Ncase< 5,000). (B) GWAS enrichment in well-powered brain-related traits show cell 1573 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

65 

type- and region-specific enrichment: educational attainment (EduAttain), schizophrenia risk 1574 

(Schizophrenia), habitual sleep duration (SleepDuration). (C) GWAS enrichment in 1575 

non-brain associated traits do not show cell type- or region-specific enrichment: heel bone-1576 

mineral density (BMD), coronary artery disease (CAD), and lean body mass (LBM). (D) Heatmap 1577 

of LDSC regression coefficients of GWAS enrichment for all measured GWAS in non-brain 1578 

OCRs from human or mouse-human mapped orthologs. Tissues for which OCRs are 1579 

significantly enriched (FDR < 0.05) with GWAS variants are outlined with a bolded box. 1580 

 1581 

Supplemental Figure 5. Convolutional Neural Network (CNN) model performance and 1582 

selection of candidate functional SNPs. 1583 

(A) Performance metrics for convolutional neural network (CNN) models show high 1584 

specificity on the test sets of positive peaks or 10x nucleotide-content matched negatives. 1585 

Test set performance metrics are reported for area under the precision-recall curve (auPRC), F1-1586 

score (using threshold = 0.5), and false positive rates across all possible thresholds 1587 

(Methods). Models were trained on IDR peaks of mouse cortical excitatory (Ctx-EXC) and D1 1588 

and D2 medium spiny neurons from caudoputamen (CPU) and the nucleus accumbens 1589 

(NAc).  (B) The models best discriminate the proportion of positives and negative sequences 1590 

at a threshold of 0.5. Plots show the proportion of positives (blue) or negatives (red) that 1591 

are called “positive” across CNN output thresholds from 0 to 1 averaged across folds for 1592 

each set of CNN models. (C) Quantile-quantile plots of p-values of calibrated ΔSNP 1593 

probability (Methods) from a normal distribution after centering by the mean and scaling 1594 

by the standard deviation of delta SNP probabilities across all SNPs (n=14,790 SNPs) for 1595 

each set of CNN models. A hexbin plot was used instead to better visualize over-plotting 1596 
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where every hexagon is color by the number of SNPs in that observed and expected p-1597 

value. The black dotted line denotes the equality line y = x. The number of significant SNPs 1598 

at false discovery q-value < 0.05 at Tier A or B are reported for each cell type and tissue 1599 

(Methods). (D) Schematic to select for predicted causal impact addiction-associated GWAS 1600 

SNPs. The pipeline begins with SNPs across addiction-associated GWAS aggregated to 205 1601 

non-overlapping GWAS loci across 14,790 SNPs after LD-expansion to include those in LD 1602 

R2 > 0.8. SNPs are further prioritized into three tiers. Tier C includes SNPs with only 1603 

overlap with Fullard et al. NeuN+ ATAC-seq peaks, Tier B includes SNPs with only 1604 

predicted significant differential allelic impact by on CNN-predicted CRE activity at q-1605 

value < 0.05, and Tier A include SNPs matching both criteria (Methods).  (E) Outline of 1606 

predicting differential CRE activity between alleles using calibrated CNN probabilities of 1607 

CRE activity while controlling for false discovery using informative covariates (Methods). 1608 

(F) Example motif matches from Supplemental Table 2 of TomTom known transcription 1609 

factor consensus motifs and the learned important features in CNN models for cortical 1610 

excitatory and striatal D1 and D2 MSNs. 1611 

 1612 

Supplemental Figure 6. Locus plots of addiction-associated SNPs predicted to act in striatal 1613 

and cortical cell types. 1614 

Locus plot across four additional loci with Tier A SNPs with predicted function SNP 1615 

impact in cortical excitatory and striatal D1 and D2 MSN cell types. Genome tracks from 1616 

top to bottom: human (h)NeuN+ MACS2 ATAC-seq fold change signal of cortical and 1617 

striatal brain regions enriched in Figure 1A. SNP tracks plot lead SNPs aggregated across 1618 

seven addiction-associated GWAS, the SNPs in LD with the lead SNPs (Lead SNPs) or 1619 
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independently significant SNPs (LD/ Sig. SNPs). Each SNP is colored by red increasing in 1620 

intensity by the degree of LD with a lead SNP. Prioritized candidate causal SNPs by 1621 

predicted differential cell type activity and overlap with Fullard et al. NeuN+ OCRs are 1622 

plot as (red for Tier A, yellow for Tier B, and teal for Tier C, Methods). Tier A SNP 1623 

rs7604640 is predicted to have strong ΔSNP effect by CPU-D1 and NAc-D1 CNN models 1624 

and the bars are colored by the % change in probability active.  Gene annotation tracks 1625 

plot GENCODE genes from the GRCh38 build. eQTL link tracks of FDR-significant 1626 

GTEX cis-eQTL from cortical and striatal brain regions, and orthologs of mouse (m) 1627 

putative CREs mapped from excitatory or striatal neuronal subtypes measured by cSNAIL 1628 

ATAC-seq. NeuN+ ATAC-seq tracks and eQTL links are colored by source brain region as 1629 

cortical (teal) or striatal (blue). Cell type colors label cortical excitatory neurons (EXC; 1630 

red), D1 medium spiny neurons (D1; blue), or D2 medium spiny neurons (D2; green). 1631 

Supplemental Table 1. Addiction-associated genetic variants annotated with cell type and 1632 

brain region functional markers 1633 

Addiction-associated genetic variants from the main seven GWAS (Figure 1) that were 1634 

scored by CNN models along with computed raw CNN scores, predicted probability active, 1635 

and ΔSNP probabilities, and tier of predicted candidate causal SNP. Each entry is recorded 1636 

for a distinct SNP, predicted CNN model, and GWAS trait. Additional columns reporting 1637 

are annotated by FUMA (Watanabe et al., 2017) and CAUSALdb (Wang et al., 2020). SNPs 1638 

are annotated in this study to overlap with human NeuN+ OCRs (Fullard et al., 2018). A 1639 

complete legend describing column headers is in the first sheet of the table. 1640 

 1641 
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Supplemental Table 2. TomTom matches with motifs learned by CNN models in each cell 1642 

type and fold to contribute to a strong positive prediction. Learned important features 1643 

were interpreted by DeepSHAP and clustered into unique seqlets by TF-Modisco 1644 

(Methods). 1645 

 1646 
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