
 1

ARTICLE 

 

Meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights 

novel differentially methylated loci across cortex 

 

Rebecca G. Smith1,ф, Ehsan Pishva1,2,ф, Gemma Shireby1, Adam R. Smith1, Janou A.Y. 

Roubroeks1,2, Eilis Hannon1, Gregory Wheildon1, Diego Mastroeni3, Gilles Gasparoni4, 

Matthias Riemenschneider5, Armin Giese6, Andrew J. Sharp7, Leonard Schalkwyk8, Vahram 

Haroutunian9,10,11, Wolfgang Viechtbauer2, Daniel L.A. van den Hove2,12,  Michael Weedon1, 

Danielle Brokaw3, Paul T. Francis1, Alan J Thomas13, Seth Love14, Kevin Morgan15 Jörn 

Walter4, Paul D. Coleman3,  David A. Bennett16, Philip L. De Jager17,18, Jonathan Mill1, Katie 

Lunnon1,* 

 
1 University of Exeter Medical School, College of Medicine and Health, University of Exeter, 

Exeter, UK. 
2 Department of Psychiatry and Neuropsychology, School for Mental Health and 

Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.  

3 Banner ASU Neurodegenerative Research Center, Biodesign Institute, Arizona State 

University, Tempe, Arizona, USA. 
4 Department of Genetics, University of Saarland (UdS), Saarbruecken, Germany 
5 Department of Psychiatry and Psychotherapy, Saarland University Hospital (UKS), 

Homburg, Germany 
6 Center for Neuropathology and Prion Research, Ludwig-Maximilians-University (LMU), 

Munich, Germany 
7 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 

New York, USA. 
8 School of Biological Sciences, University of Essex, Colchester, UK.  
9 Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, USA. 
10 Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, 

USA. 
11 JJ Peters VA Medical Center, Bronx, New York, USA. 
12 Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and 

Psychotherapy, University of Wuerzburg, Würzburg, Germany. 
13 Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2020. ; https://doi.org/10.1101/2020.02.28.957894doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.957894
http://creativecommons.org/licenses/by/4.0/


 2

14 Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical 

Sciences, University of Bristol, Bristol, UK 
15 Human Genetics Group, University of Nottingham, Nottingham, UK 
16 Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA 
17 Center for Translational and Computational Neuroimmunology, Department of Neurology 

and Taub Institute, Columbia University Medical Center, New York, USA. 
18 The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. 

 
Ф These authors contributed equally to the study 

* Corresponding author: Katie Lunnon, University of Exeter Medical School, RILD Building 

Level 3 South, Royal Devon and Exeter Hospital, Barrack Rd, Exeter. EX2 5DW. UK. E-

mail: k.lunnon@exeter.ac.uk  

 

 

ABSTRACT 

Epigenome-wide association studies of Alzheimer’s disease have highlighted 

neuropathology-associated DNA methylation differences, although existing studies have been 

limited in sample size and utilized different brain regions. Here, we combine data from six 

DNA methylomic studies of Alzheimer’s disease (N=1,453 unique individuals) to identify 

differential methylation associated with Braak stage in different brain regions and across 

cortex. We identified 236 CpGs in the prefrontal cortex, 95 CpGs in the temporal gyrus and 

ten CpGs in the entorhinal cortex at Bonferroni significance, with none in the cerebellum. 

Our cross-cortex meta-analysis (N=1,408 donors) identified 220 CpGs associated with 

neuropathology, annotated to 121 genes, of which 84 genes had not been previously reported 

at this significance threshold. We have replicated our findings using two further DNA 

methylomic datasets consisting of a > 600 further unique donors. The meta-analysis summary 

statistics are available in our online data resource (www.epigenomicslab.com/ad-meta-

analysis/). 
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INTRODUCTION 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that is accompanied by 

memory problems, confusion and changes in mood, behavior and personality. AD accounts 

for ~60% of dementia cases, which affected 43.8 million people worldwide in 20161. The 

disease is defined by two key pathological hallmarks in the brain: extracellular plaques 

comprised of amyloid-beta protein and intracellular neurofibrillary tangles of 

hyperphosphorylated tau protein2-4. These neuropathological changes are thought to occur 

perhaps decades before clinical symptoms manifest and the disease is diagnosed4. AD is a 

multi-factorial and complex disease, with the risk of developing disease still largely unknown 

despite numerous genetic and epidemiological studies over recent years.  

 

Several studies have suggested that epigenetic mechanisms may play a role in disease 

etiology. In recent years a number of epigenome-wide association studies (EWAS) have been 

performed in AD brain samples, which have predominantly utilized the Illumina Infinium 

HumanMethylation450K BeadChip (450K array) in conjunction with bisulfite-treated DNA 

to assess levels of DNA methylation in cortical brain tissue from donors with varying degrees 

of AD pathology5-12. Independently these studies have identified a number of loci that show 

robust differential DNA methylation in disease, and many of these overlap between studies, 

for example loci annotated to ANK1, RHBDF2, HOXA3, CDH23 and RPL13 have been 

consistently reported. Here we have performed a meta-analysis of six independent existing 

EWAS of AD brain5-8,10,12, totalling 1,453 independent donors, to identify robust and 

consistent differentially methylated loci associated with Braak stage, used as a measure of 

neurofibrillary tangle spread through the brain, before replicating these signatures in two 

further independent DNA methylation datasets. Our meta-analysis approach provides 

additional power to detect DNA methylomic variation associated with AD pathology at novel 

loci, in addition to providing further replication of loci that have been previously identified in 

the smaller independent EWAS. 

 

RESULTS 

Pathology-associated DNA methylation signatures in discrete cortical brain regions 

We identified six EWAS of DNA methylation in AD that had been generated using the 450K 

array and had a cohort size of > 50 unique donors. All had data on Braak stage available, 

which we used as a standardized measure of tau pathology spread through the brain (Table 
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1). We were interested in identifying epigenomic profiles associated with Braak stage in 

specific brain regions, leveraging additional power by meta-analysing multiple studies to 

identify novel loci. To this end, we performed an EWAS in each available tissue and cohort 

separately, looking for an association between DNA methylation and Braak stage, whilst 

controlling for age and sex (all tissues) and neuron/glia proportion (cortical bulk tissues 

only), with surrogate variables added as appropriate to reduce inflation. For discovery, we 

then used the estimated effect size (ES) and standard errors (SEs) from these six studies (N = 

1,453 unique donors) for a fixed-effect inverse variance weighted meta-analysis separately 

for each tissue (prefrontal cortex: three cohorts, N = 959; temporal gyrus: four cohorts, N = 

608, entorhinal cortex: two cohorts, N = 189 cerebellum: four cohorts, N = 533) 

(Supplementary Figure 1).  

 

The prefrontal cortex represented our largest dataset (N = 959 samples) and we identified 236 

Bonferroni significant differentially methylated positions (DMPs), of which 193 were 

annotated to 137 genes, with 43 unannotated loci based on Illumina UCSC annotation 

(Figure 1a, Supplementary Figure 2, Supplementary Table 1). Previous EWAS of the 

prefrontal cortex have consistently reported the HOXA gene cluster as a region that is 

hypermethylated in AD6,7, with a cell-type specific EWAS demonstrating this is neuronal-

derived11. Indeed, the most significant DMP in the prefrontal cortex in our meta-analysis 

resided in HOXA3 (cg22962123: ES [defined as the methylation difference between Braak 0 

and Braak VI] = 0.042, P = 5.97 x 10-15), with a further 16 of the Bonferroni significant 

DMPs also annotated to this gene. This locus appeared to be particularly hypermethylated 

with higher Braak stage in the prefrontal cortex, and to a slightly lesser extent in the temporal 

gyrus (Supplementary Figure 3). There was no significant difference in methylation at this 

locus in the entorhinal cortex (P = 0.864), which is interesting given that the entorhinal cortex 

may succumb to pathology early in the disease process (Braak stage III). Of the 236 

prefrontal cortex DMPs, 92% (217 probes) were nominally significant (P < 0.05) in the 

temporal gyrus, of which 12% (28 probes) were Bonferroni significant, whilst 9% (22 

probes) were nominally significant in the entorhinal cortex, with 1% (3 probes) reaching 

Bonferroni significance (Figure 1b). The effect sizes for the 236 Bonferroni significant 

prefrontal cortex DMPs were correlated with the effect sizes for the same probes in both the 

temporal gyrus (Pearson’s correlation coefficient (r) = 0.94, P = 6.17 x 10-112) and entorhinal 

cortex (r = 0.58, P = 1.80 x 10-22) and  were enriched for probes with the same direction of 

effect (sign test: temporal gyrus P = 5.07 x 10-67, entorhinal cortex P = 6.88 x 10-26) 
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(Supplementary Figure 4). For the 236 Bonferroni significant prefrontal cortex DMPs these 

had the largest effect sizes in the prefrontal cortex, with a smaller effect size in the temporal 

gyrus and entorhinal cortex (Figure 1c). Of these 236 DMPs, 29 of these had being 

previously reported at Bonferroni significance in previous publications on the individual 

cohorts5-7,12, including one probe annotated to ANK1, one probe annotated to HOXA3, one 

probe annotated to PPT2/PRRT1 and two probes annotated to RHBDF2, amongst others. 

However, our approach has identified 207 novel Bonferroni significant DMPs (although 

several had been reported in previous studies at a more relaxed significance threshold, or in 

regional analyses). This included several additional probes residing in genes already 

identified (from another probe) in earlier studies, for example a further 16 probes in HOXA3 

and two probes in PPT2/PRRT1. Interestingly, we also identified a number of novel genes, 

including some which featured multiple Bonferroni significant DMPs including for example 

seven probes in AGAP2 and five probes in SLC44A2, amongst others. One other noteworthy 

novel Bonferroni significant DMP in the prefrontal cortex was cg08898775 (ES = 0.019, P = 

4.03 x 10-9), annotated to ADAM10, which encodes for α-secretase which cleaves APP in the 

non-amyloidogenic pathway. A differentially methylated region (DMR) analysis, which 

allowed us to identify areas of the genome consisting of  ≥ 2 DMPs, revealed 262 significant 

DMRs in the prefrontal cortex (Supplementary Table 2), the most significant containing 20 

probes and located in HOXA3 (chr7:27,153,212-27,155,234: Sidak-corrected p = 8.21 x 10-50, 

Supplementary Figure 5), as well as several other DMRs in the HOXA gene cluster. 

 

A meta-analysis of temporal gyrus EWAS datasets (N = 608 samples) identified 95 

Bonferroni significant probes, of which 75 were annotated to 53 genes, with 20 unannotated 

probes using Illumina UCSC annotation (Figure 1a, Supplementary Figure 6, 

Supplementary Table 3). The most significant probe was cg11823178 (ES = 0.029, P = 3.97 

x 10-16, Supplementary Figure 7), which is annotated to the ANK1 gene, with the fifth 

(cg05066959: ES = 0.042, P = 4.58 x 10-13) and 82nd (cg16140558: ES = 0.013, P = 8.44 x 

10-8) most significant probes in the temporal gyrus also being annotated to nearby CpGs in 

that gene. This locus has been widely reported to be hypermethylated in AD from prior 

EWAS5,6,8,12, as well as in other neurodegenerative diseases such as Huntington’s disease and 

Parkinson’s disease13. Another noteworthy gene is RHBDF2, where five Bonferroni 

significant DMPs in the temporal gyrus were annotated to (cg05810363: ES = 0.029, P = 2.25 

x 10-11; cg13076843: ES = 0.031, P = 2.97 x 10-11; cg09123026: ES = 0.012, P = 3.46 x 10-9; 

cg12163800: ES = 0.025, P = 5.85 x 10-9; cg12309456: ES = 0.016, P = 1.33 x 10-8); and 
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which has been highlighted in previous EWAS in AD in the individual cohorts5,6,12. Of the 95 

Bonferroni significant DMPs in the temporal gyrus, 88% (84 probes) were nominally 

significant in the prefrontal cortex, of which 29% (28 probes) were Bonferroni significant, 

whilst 54% (51 probes) were nominally significant in the entorhinal cortex, of which 6% (6 

probes) were Bonferroni significant (Figure 1b). Given the high degree of overlapping 

significant loci between the temporal gyrus and other cortical regions, it was not surprising 

that the ES of the 95 Bonferroni significant temporal gyrus probes were highly correlated 

with the ES of the same loci in both the prefrontal cortex (r = 0.91, P = 5.09 x 10-38) and 

entorhinal cortex (r = 0.77, P = 4.02 x 10-20) and were enriched for the same direction of 

effect (sign test: prefrontal cortex P = 5.05 x 10-29, entorhinal cortex = 2.30 x 10-25) 

(Supplementary Figure 8). The majority of the 95 Bonferroni significant DMPs in the 

temporal gyrus were hypermethylated, and the mean ES was greater in the temporal gyrus 

than the prefrontal cortex or entorhinal cortex (Figure 1c). Thirty-two of the 95 Bonferroni 

significant DMPs in the temporal gyrus have been previously reported to be significantly 

differentially methylated in published EWAS, including for example three probes in ANK1 

and the five probes in RHBDF2. Our meta-analysis approach in the temporal gyrus has 

identified 63 novel DMPs (at Bonferroni significance), including some novel genes with 

multiple DMPs, for example four probes in RGMA and two probes in CCND1, amongst 

others. Finally, our regional analysis highlighted 104 DMRs (Supplementary Table 4); the 

top DMR resided in the ANK1 gene (chr8:41,519,308-41,519,399) and contained two probes 

(Sidak-corrected P = 1.72 x 10-21) (Supplementary Figure 9). The five DMPs in RHBDF2 

that we already highlighted also represented a significant DMR (Sidak-corrected P = 8.47 x 

10-21), with three other genomic regions containing large, significant  DMRs consisting of  ≥ 

10 probes, such as MCF2L (chr13:113698408-113699016 [10 probes], Sidak-corrected P = 

1.16 x 10-19), PRRT1/PPT2 (chr6:32120773-32121261 [17 probes],  Sidak-corrected P = 4.90 

x 10-15) and HOXA5 (chr7:27184264-27184521 [10 probes], Sidak-corrected P = 1.60 x 10-7). 

 

The final cortical region we had available was the entorhinal cortex (N = 189), where we 

identified ten Bonferroni significant probes in our meta-analysis, all of which were 

hypermethylated with higher Braak stage (Figure 1a, Supplementary Figure 10, 

Supplementary Table 5). These ten probes were annotated to eight genes (Illumina UCSC 

annotation), with two Bonferroni significant probes residing in each of the ANK1 and 

SLC15A4 genes. As with the temporal gyrus, the most significant DMP was cg11823178 (ES 

= 0.045, P = 5.22 x 10-10, Supplementary Figure 7), located within the ANK1 gene, with the 
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fourth most significant DMP being located within 100bp of that CpG (cg05066959: ES = 

0.062, P = 2.93 x 10-9). In total, eight of the ten DMPs in the entorhinal cortex had been 

reported previously at Bonferroni significance, including the two probes in ANK1. Two of the 

Bonferroni significant DMPs we identified in the entorhinal cortex were novel CpGs 

(cg11563844: STARD13, cg04523589: CAMP), having not been reported as Bonferroni 

significant in previous EWAS. Of the ten entorhinal cortex probes, 90% (9 probes) were 

nominally significant in the temporal gyrus, of which 60% (6 probes) were Bonferroni 

significant, whilst 70% (7 probes) were nominally significant in the prefrontal cortex, of 

which 30% (3 probes) were Bonferroni significant (Figure 1b). Of the four DMPs that were 

Bonferroni significant in only the entorhinal cortex, three of these were nominally significant 

in at least one other tissue, with just one probe unique to the entorhinal cortex, annotated to 

STARD13 (cg11563844, ES = 0.027, P = 1.07 x 10-8). The effect sizes of the ten Bonferroni 

significant DMPs in the entorhinal cortex were significantly correlated with the effect size of 

the same probes in the prefrontal cortex (r = 0.74, P = 0.01) and temporal gyrus (r = 0.85, P = 

1.52 x 10-3) and were enriched for the same direction of effect (sign test: prefrontal cortex P = 

0.021, temporal gyrus P = 1.95 x 10-3) (Supplementary Figure 11). The ten DMPs were 

hypermethylated in all three cortical regions, with the greatest Braak-associated ES in the 

entorhinal cortex (Figure 1c). A regional analysis identified seven DMRs (Supplementary 

Table 6); the top three DMRs (RHBDF2: chr17:74,475,240-74,475,402 [five probes], P = 

7.68 x 10-14, Supplementary Figure 12; ANK1: chr8:41519308-41519399 [two probes], P = 

4.89 x 10-13; SLC15A4: chr12:129281444-129281546 [three probes], P = 5.24 x 10-12) were 

significant in at least one of the other cortical regions we meta-analyzed.  

 

To date, a few independent EWAS in AD have been undertaken in the cerebellum and none 

of these have reported any Bonferroni significant DMPs. In our meta-analysis we identified 

no Bonferroni significant DMPs, nor any DMRs in the cerebellum (Supplementary Figure 

13), despite this analysis including 533 independent samples. There was no correlation of the 

ES for the Bonferroni significant DMPs we had identified in the meta-analyses of the three 

cortical regions with the ES of the same probes in the cerebellum (prefrontal cortex: r = 0.11, 

P = 0.08; temporal gyrus: r = 0.14, P = 0.17; entorhinal cortex: r = 0.48, P = 0.16; 

Supplementary Figure 14).  

 

220 CpGs are differentially methylated across the cortex in AD 
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We were interested in combining data from across the different cortical tissues to identify 

common differentially methylated loci across the cortex and also to provide more power by 

utilizing data from 1,408 unique individuals with cortical EWAS data available. As multiple 

cortical tissues were available for some cohorts, a mixed-effects model was utilized.  In this 

analysis we controlled for age, sex and neuron/glia proportion, with surrogate variables added 

as appropriate to reduce inflation. Using this approach, we identified 220 Bonferroni 

significant probes, of which 168 were annotated to 121 genes, with 52 DMPs unannotated 

using Illumina UCSC annotation. Figure 2a, Figure 2b, Table 2, Supplementary Table 7, 

Supplementary Figure 15). All of the 220 probes were nominally significant (P < 0.05) in ≥ 

two cohorts, with ten of these probes being nominally significant in all six cohorts 

(Supplementary Figure 16), which included single probes annotated to ANK1, ABR, SPG7 

and WDR81, two probes in DUSP27, three probes in RHBDF2 and one unannotated probe. 

We observed similar DNA methylation patterns across all cortical cohorts and tissues for the 

220 probes with 219 of the 220 DMPs showing the same direction of effect in at least five 

cohorts. In total, 154 of the DMPs were hypermethylated, with 66 hypomethylated, 

representing an enrichment for hypermethylation (P = 4.85 x 10-10). This pattern of 

methylation  was evident across all cortical tissues but was not seen in the cerebellum 

(Supplementary Figure 17). Of the 220 DMPs we identified, 46 of these have been 

previously reported at Bonferroni significance in published EWAS, including multiple 

previously identified probes in ANK1 (cg05066959, cg11823178), MCF2L (cg07883124, 

cg09448088), PCNT (cg00621289, cg04147621, cg23449541) and RHBDF2 (cg05810363, 

cg12163800, cg12309456, cg13076843). The most significant probe we identified in our 

cross-cortex analysis was cg12307200 (Table 2, ES = -0.015, P = 4.48 x 10-16), which is 

intergenic and found at chr3:188664632, located between the TPRG1 and LPP genes and had 

been previously reported at Bonferroni significance by De Jager and colleagues with respect 

to neuritic plaque burden6 and by Brokaw and colleagues with respect to post-mortem 

diagnosis12. Our cross-cortex meta-analysis approach has identified 174 novel DMPs (at 

Bonferroni significance), annotated to 102 genes. Although 11 of these genes had previously 

been reported at Bonferroni significance (another probe within that gene), the remaining 96 

genes represent robust novel loci in AD. Many of these novel differentially methylated genes 

had multiple Bonferroni significant probes, for example five probes in AGAP2, three probes 

in HOXB3 and SLC44A2, and two probes in CDH9, CPEB4, DUSP27, GCNT2, MAMSTR, 

PTK6, RGMA, RHOB, SMURF1, THBS1, ZNF238 and ZNF385A (Supplementary Table 7). 
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Although some of these loci may have been reported in earlier AD EWAS, none of these 

were at Bonferroni significance and so here represent robust novel loci.  

 

We were interested to investigate whether specific functional pathways were differentially 

methylated in AD cortex and so performed a gene ontology pathway analysis of the 121 

genes annotated to the 220 Bonferroni significant cross-cortex DMPs. We highlighted 

epigenetic dysfunction in numerous pathways, interestingly including a number of 

developmental pathways, mainly featuring the HOXA and HOXB gene clusters 

(Supplementary Table 8). Given that we identified multiple DMPs in some genes, we were 

interested to investigate the correlation structure between probes in close proximity to each 

other to establish how many independent signals we had identified. Using a method 

developed to identify single nucleotide polymorphisms (SNPs) in linkage disequilibrium 

(LD)14, we collapsed the 220 Bonferroni significant loci into 198 independent (non-highly 

correlated [r < 0.8]) signals. We found that the 18 DMPs in the HOXA region represented 

only seven independent signals, whilst the four DMPs in the RHBDF2 gene and the three 

DMPs in the SLC44A2 gene represented just one signal each. Similarly, the two DMPs in 

each of the DUSP27, CPEB4, GCNT2, ANK1 and MAMSTR genes represented a single 

independent signal each, whilst the five DMPs in AGAP2 was reduced to four independent 

signals. Next we undertook a formal regional analysis to identify genomic regions of multiple 

adjacent DMPs and identified 221 DMRs, with the top DMR containing 11 probes and 

covering the HOXA region (chr7:27,153,212-27,154,305: P = 3.84 x 10-35) (Figure 2c, 

Supplementary Table 9). The HOXA gene cluster further featured a number of times in our 

DMR analysis; four of the ten most significant DMRs fell in this genomic region, including 

DMRs spanning four probes (chr7:27146237-27146445: P = 4.11 x 10-27), 33 probes 

(chr7:27183133-27184667: P = 2.22 x 10-20) and ten probes (chr7:27143235-27143806: P = 

1.75 x 10-18).  

 

Replication of pathology associated DMPs in the cortex  

To replicate our findings and to determine the cellular origin of DNA methylomic differences 

we used the estimated coefficients and SEs for these 220 probes generated in a seventh 

independent (“Munich”) cohort, which consisted of 450K data generated in the prefrontal 

cortex (N = 45) and sorted neuronal and non-neuronal nuclei from the occipital cortex (N = 

26) (Table 1). This cohort had not been used in our discovery analyses as < 50 samples were 

available. Notably, we identified a similar pattern of Braak-associated DNA methylation 
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changes for the 220 Bonferroni significant cross-cortex probes in this replication cohort, with 

a significantly correlated effect size between the discovery dataset and the replication 

prefrontal cortex (r = 0.64, P = 5.24 x 10-27), neuronal (r = 0.45, P = 1.56 x 10-12) and non-

neuronal datasets (r = 0.79, P= 1.43 x 10-47) with a similar enrichment for the same direction 

of effect (sign test: prefrontal cortex P = 4.59 x 10-28, neuronal P = 6.13 x 10-15, non-neuronal  

P = 1.06 x 10-42) (Figure 3a). The most significant probe from the cross-cortex meta-analysis 

(cg12307200) showed consistent hypomethylation in disease in all cohorts in all cortical 

brain regions, with this direction of effect replicated in the prefrontal cortex and non-neuronal 

nuclei samples, but not the neuronal nuclei samples, suggesting that this is primarily driven 

by non-neuronal cell types, which are likely to be glia (Figure 3b). We have developed an 

online database (www.epigenomicslab.com/ad-meta-analysis/), which can generate a forest 

plot showing the ES and SE across any of the discovery cohorts and the Munich sample types 

for any of the 403,763 probes that passed our quality control. This allows researchers to 

determine the consistency of effects across cohorts for a given CpG site as well as the likely 

cellular origin of the signature. In addition, our tool can generate mini-Manhattan plots to 

show DMRs utilizing the summary statistics from the cross-cortex meta-analysis. 

 

Finally, we had access to DNA methylation data generated in an eighth independent (“Brains 

for Dementia Research [BDR]”) cohort. This consisted of Illumina Infinium 

HumanMethylation EPIC BeadChip (EPIC array) data in the prefrontal cortex in 590 

individuals15. As this is the successor to the 450K array (which had been used for the other 

seven cohorts), there are some differences in genome coverage, and for the 220 Bonferroni 

significant cross-cortex DMPs we had identified in the discovery cohorts, only 208 probes 

are also present on the EPIC array. For these overlapping 208 probes, we observed a 

significantly correlated effect size between the discovery dataset and the BDR dataset (r = 

0.53, P = 4.13 x 10-16) (Figure 3c), with all 208 probes showing the same direction of effect 

(sign test P = 4.86 x 10-63).  

 

Cross-cortex AD-associated DMPs are enriched in specific genomic features 

To identify if the cross-cortex DMPs reside in specific genomic features, we used a Fisher’s 

exact test to look for an enrichment of the 220 DMPs using Slieker annotations16 

(Supplementary Table 10, Supplementary Figure 18). We observed a significant over 

representation of Bonferroni significant DMPs in CpG islands of gene bodies (odds ratio 

[OR] = 3.199, P = 4.76 x 10-10), and in CpG island shelves and non-CpG island areas of 
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proximal promoters (OR = 3.571, P = 9.09 x 10-3 and OR = 1.641, P = 0.03, respectively). 

However, DMPs located in CpG islands in the proximal promoter were under-represented 

(OR = 0.353, P = 2.08 x 10-6). There was a significant over representation of the 220 cross-

cortex DMPs in the first exon (OR = 1.80, P = 0.02), with an under enrichment within 

1500bp of the transcription start site (OR = 0.49, P = 3.82 x 10-3) (Supplementary Table 11, 

Supplementary Figure 19).  

 

 

DNA methylomic signatures in the cortex can explain variance in the degree of pathology 

We were interested to investigate whether the Braak-associated DNA methylation patterns 

we had identified across the cortex could accurately predict the pathological load of a brain 

sample and how much variance this explained. To this end we took samples with either low 

pathology (Braak 0-II “controls”: N = 386), or high pathology (Braak V-VI “AD”: N = 543) 

and divided these in to 75% “training” and 25% “testing datasets. We then used elastic net 

regression to identify 95 probes in the 220 cross-cortex Bonferroni significant loci 

(Supplementary Table 12) that were able to explain the most variance between post-mortem 

low pathology “control” from high pathology “AD” status in our training dataset (N = 696) 

(Supplementary Table 13, Figure 4). In our training data, we achieved an Area Under the 

Curve (AUC) of the Receiver Operating Characteristic (ROC) of 94.36% (CI = 92.67-

95.88%, variance explained = 71.52%). When this was tested in the testing dataset (N = 233) 

it achieved an AUC of 87.63% (CI = 82.73-91.89%) and explained 52.39% of the variance. 

We then tested its performance further in the Munich replication samples (N = 38) and the 

BDR replication samples (N = 454), where it achieved an AUC of 75.1% (CI = 55.56-

90.81%, variance explained = 25.47%) and 70.33% (CI = 65.32-74.93%, variance explained 

= 15.44%), respectively (Supplementary Table 13, Figure 4).  

 

DNA methylation signatures in AD cortex are largely independent of genetic effects 

DNA methylomic variation can be driven by genetic variation via methylation quantitative 

trait loci (mQTLs). To explore whether SNPs may be driving the methylation differences we 

observed (in cis) we used the xQTL resource to identify cis-mQTLs associated with the 220 

Bonferroni significant cross-cortex DMPs17. We identified 200 Bonferroni corrected mQTLs, 

which were associated with DNA methylation at 18 of the 220 cross-cortex DMPs 

(Supplementary Table 14). This suggests that the majority of Braak-associated DMPs are 

not the result of genetic variation in cis. None of these mQTLs overlapped with lead SNPs (or 
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SNPs in LD) identified in the most recent genome-wide association study (GWAS) of 

diagnosed late-onset AD from Kunkle et al18. Next, we were interested in exploring whether 

DNA methylation is enriched in genes known to harbor AD-associated genomic risk variants. 

Using the AD variants from Kunkle et al18 we examined the enrichment of Braak-associated 

DNA methylation in 24 LD blocks harboring risk variants. Twenty of these LD blocks 

contained > 1 CpG site on the 450K array and using Brown’s method we combined P values 

within each of these 20 genomic regions. We observed Bonferroni-adjusted significant 

enrichment in the cross-cortex data in the HLADRB1 (Chr6: 32395036-32636434: adjusted P 

= 1.20 x 10-3), SPI1 (Chr11: 47372377- 47466790, adjusted P = 5.76 x 10-3), SORL1 (Chr11: 

121433926- 121461593, adjusted P = 0.019), ABCA7 (Chr19: 1050130- 1075979, adjusted P 

= 0.022) and ADAM10 (Chr15: 58873555- 59120077, adjusted P = 0.022) LD regions 

(Supplementary Table 15).   

 

 

DISCUSSION 

This study represents the first meta-analysis of AD EWAS utilizing six published 

independent sample cohorts with a range of cortical brain regions and cerebellum available as 

a discovery dataset. Two further independent cortical datasets where then used for 

replication, including data from sorted nuclei populations. Our data can be explored as part of 

an online searchable database, which can be found on our website 

(https://www.epigenomicslab.com/ad-meta-analysis). By performing a meta-analysis within 

each tissue, we have been able to identify 236, 95 and ten Bonferroni significant DMPs in the 

prefrontal cortex, temporal gyrus and entorhinal cortex, respectively. Although far fewer loci 

were identified in the entorhinal cortex compared to the other cortical regions, this is likely 

due to the reduced sample size in this tissue. In the cerebellum despite meta-analyzing > 500 

unique samples, we identified no Braak-associated DNA methylation changes. Furthermore, 

there was no correlation of the ES of Bonferroni significant DMPs identified in any of the 

cortical regions with the ES of the same probes in the cerebellum. Taken together, this 

suggests that DNA methylomic changes in AD are cortex cell type specific. This observation 

is interesting as the cerebellum is said to be “spared” from AD pathology, with an absence of 

neurofibrillary tangles, although some diffuse amyloid-beta plaques are reported19. 

Interestingly, a recent spatial proteomics study of AD reported a large number of protein 

changes in the cerebellum in AD; however, the proteins identified were distinct from other 

regions examined and thus the authors suggested a potential protective role20. 
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Although many loci showed similar patterns of Braak-associated DNA methylation across the 

different cortical regions, some loci did show some regional specificity. In order to identify 

CpG sites that showed common DNA methylation changes in disease we performed a cross-

cortex meta-analysis. Using this approach we identified 220 Bonferroni significant probes 

associated with Braak stage of which 46 probes had been previously reported at Bonferroni 

significance in the individual cohort studies that we had used for our meta-analysis, for 

example two probes in ANK1, four probes in RHBDF2 and one probe in HOXA3, amongst 

others. Interestingly, our approach did identify 174 novel CpGs, corresponding to 102 unique 

genes, of which 84 genes had not been previously reported at Bonferroni significance in any 

of the previously published AD brain EWAS, highlighting the power of our meta-analysis 

approach for nominating new loci. This included 15 novel genes with at least two Bonferroni 

significant DMPs each, including five probes in AGAP2, three probes in SLC44A2 and two 

probes each in CDH9, CPEB4, DUSP27, GCNT2, MAMSTR, PTK6, RGMA, RHOB, 

SMURF1, THBS1, ZNF238 and ZNF385A. These genes had not been identified previously in 

an AD EWAS at this significance threshold, although a number of these genes had been 

previously identified from DMR analyses, which have a less stringent threshold. However, 

we did identify one novel gene (HOXB3) with three Bonferroni significant DMPs, which had 

not been identified at this significance threshold in previous EWAS DMP or DMR analyses 

in AD brain. The nomination of loci in the HOXB gene cluster is interesting; a recent study of 

human Huntington’s disease brain samples also highlighted significantly increased HOXB3 

gene expression in the prefrontal cortex21, an interesting observation given that both AD and 

Huntington’s disease are disorders that feature dementia. Furthermore, we have recently 

reported AD-associated hypermethylation of the HOXB6 gene in AD blood samples22. Our 

pathway analysis highlighted differential methylation in a number of developmental 

pathways, mainly featuring the HOXA and HOXB gene clusters. Although it is unclear why 

developmental genes may be changed in a disease that primarily affects the elderly, it has 

been implied that genes such as these may be involved in neuroprotection after 

development23. A number of the other novel genes with multiple DMPs are also biologically 

relevant in the context of AD, for example GCNT2 was recently shown to be differentially 

expressed in the Putamen between males and females with AD24. Interestingly, some of the 

protein products of genes we identified have also been previously linked with AD; PTK6 is a 

protein kinase whose activity has been shown to be altered in post-mortem AD brain25. 
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Similarly, RGMA has been shown to be increased in AD brain, where it accumulated in 

amyloid-beta plaques26.  

 

 

Our genomic enrichment analyses identified an over representation of hypermethylated loci 

in AD and methylation in specific genomic features, for example CpG islands in gene bodies, 

and shelves and non-CpG island regions in proximal promoters. We demonstrated that the 

majority of DMPs we identified (N = 202) were not driven by genetic variation as only 18 of 

the 220 CpG sites have reported mQTLs. However, we did observe a significant enrichment 

of cross-cortex loci in the LD regions surrounding the AD-associated genetic variants 

HLADRB1, SPI1, SORL1, ABCA7 and ADAM10 after controlling for multiple testing Finally, 

we have developed a classifier that could accurately predict control samples with low 

pathology, from those with a post-mortem AD diagnosis due to high pathology using 

methylation values for 95 of the 220 Bonferroni significant probes, further highlighting that 

distinct genomic loci reproducibly show epigenetic dysfunction in AD cortex. Although the 

clinical utility of such a classifier is limited as it is developed in post-mortem cortical brain 

tissue, it does illustrate that specific robust patterns of DNA methylation differences occur as 

the disease progresses. These signatures require further investigation as they could represent 

novel therapeutic targets, particularly given the classifier had an AUC > 70% in all testing, 

training and replication datasets. However, it is worth noting that the variance explained by 

the 95 CpG signature was lower in the replication datasets than the discovery samples, which 

could be due to a low sample number (Munich) or the different Illumina array platform 

(BDR). 

 

There are some limitations with our study. First, as we have largely utilized methylation data 

generated in bulk tissue, this will contain a mixture of different cell types. Furthermore, it is 

known that the proportions of the major brain cell types are altered in AD, with reduced 

numbers of neurons and increased glia. As such, it is possible that the identified DNA 

methylation changes represent a change in cell proportions. To address this, we have included 

neuron/glia proportions as a co-variate in our models to minimize bias and used data from 

sorted cell populations as part of our replication. Although this is the optimal strategy for the 

current study given the EWAS data had already been generated, future EWAS should be 

undertaken on sorted cell populations with larger sample numbers than the Munich 

replication cohort, or ideally at the level of the single cell. It is important to note that the data 
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from the sorted nuclei populations in the Munich replication cohort were generated in the 

occipital cortex, which was not a bulk tissue used for any of the discovery cohorts. In the 

future it would be interesting to explore whether different disease-associated DNA 

methylation signatures were observed in neurons and glia isolated from different cortical 

brain regions. Second, our study has utilized previously generated EWAS data generated on 

the 450K array or EPIC array. Although the Illumina array platform has been the most widely 

used platform for EWAS to date, it is limited to only analyzing a relatively small proportion 

of the potential methylation sites in the genome (~400,000 on the 450K array) and given the 

falling cost of sequencing, future studies could exploit this by performing reduced 

representation bisulfite sequencing to substantially increase the coverage. In our study we 

have primarily used the UCSC annotation provided by Illumina to identify the gene relating 

to each DMP. However, this can lead to the annotation of overlapping genes, or no gene 

annotation, which can make it difficult to establish the gene of interest in the absence of 

functional studies. Our study has primarily focused on the results of a fixed-effects meta-

analysis, as the majority of Bonferroni-significant DMPs do not display a high degree of 

heterogeneity. However, ~15% of the cross-cortex DMPs did have a significant heterogeneity 

P value and in this instance, it is worthwhile also considering the results of the random-

effects meta-analysis. Although this heterogeneity could be driven by differences between 

cohorts, it is also plausible that it may be driven by tissue-specific effects as we used different 

cortical brain regions in the model. For example cg22962123 annotated to the HOXA3 gene 

has a significant heterogeneity P value in the cross-cortex meta-analysis, but we had already 

shown this loci to be differentially methylated in the prefrontal cortex and temporal gyrus, 

but not the entorhinal cortex in our intra-tissue meta-analysis. Another limitation of our study 

is that we have focused our analyses on Braak (neurofibrillary tangle)-associated methylation 

changes, as this measure was available in all cohorts. Given that amyloid-beta is another 

neuropathological hallmark of AD, it would also be of interest to identify neuritic plaque-

associated DMPs. Unfortunately, this was not feasible in the current study as this measure 

was not available in all samples. In a similar vein, we did not exclude individuals with mixed 

pathology, or protein hallmarks of other neurodegenerative diseases, such as the presence of 

lewy bodies, or TDP-43 pathology. In the future, larger meta-analyses should stratify by the 

presence of these protein aggregates, particularly given that very few EWAS have been 

undertaken in other dementias. Indeed, only three DNA methylomic studies have been 

undertaken in cortical samples of individuals with other dementias to date27-30, with none of 

these studies utilizing > 15 individuals for EWAS. Further studies exploring common and 
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unique DNA methylation signatures and our classifier in other diseases characterized by 

dementia will be vital for identifying disease-specific epigenetic signatures that could 

represent novel therapeutic targets. Finally, one key issue for epigenetic studies in post-

mortem tissue is the issue of causality, where it is not possible to determine whether disease-

associated epigenetic loci are driving disease pathogenesis, or are a consequence of the 

disease, or even the medication used for treatment. One method that can be used to address 

this is Mendelian Randomization31 however, this does require the CpG site to have a strong 

association with a SNP. Given that we only identified mQTLs at 18 of the 220 Bonferroni 

significant cross-cortex DMPs, this approach is not suitable for most of the loci we identified. 

At an experimental level establishing causality is difficult to address in post-mortem human 

studies, and therefore longitudinal studies in animal models, or modelling methylomic 

dysfunction through epigenetic editing in vitro will be useful approaches to address these 

issues.  In addition, examining DNA methylation signatures in brain samples in pre-clinical 

individuals (i.e. during midlife) will be important for establishing the temporal pattern of 

epigenetic changes relative to the pathology.  

 

In summary we present the first meta-analyses of AD EWAS, highlighting numerous 

Bonferroni significant DMPs in the individual cortical regions and across the cortex, but not 

in the cerebellum, which were replicated in two independent cohorts. A number of these loci 

are novel and warrant further study to explore their role in disease etiology. We highlight that 

the nominated epigenetic changes are largely independent of genetic effects, with only 18 of 

the 220 Bonferroni significant DMPs showing a mQTL. We provide the first evidence that 

robust epigenomic changes in the cortex can predict the level of pathology in a sample. 

Looking to the future it will be important to explore the relationship between DNA 

methylation and gene expression in AD brain. 

 

 

METHODS 

Cohorts 

Six sample cohorts were used for “discovery” in this study as they all had DNA methylation 

data generated on the 450K array for > 50 donors, enabling us to take a powerful meta-

analysis approach to identify DNA methylation differences in AD. As our analyses focused 

specifically on neuropathology (tau)-associated differential methylation, inclusion criteria for 

all samples used in the “discovery” or “replication” cohorts was having post-mortem 
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neurofibrillary tangle Braak stage available. For each discovery sample cohort DNA 

methylation was quantified using the 450K array. The “London 1” cohort comprised of 

prefrontal cortex, superior temporal gyrus, entorhinal cortex, and cerebellum tissue obtained 

from 113 individuals archived in the MRC London Neurodegenerative Disease Brain Bank 

and published by Lunnon et al.5. The “London 2” cohort comprised entorhinal cortex and 

cerebellum  samples obtained from an additional 95 individuals from the MRC London 

Neurodegenerative Disease Brain Bank published by Smith and colleagues8. The “Mount 

Sinai” cohort comprised of prefrontal cortex and superior temporal gyrus tissue obtained 

from 146 individuals archived in the Mount Sinai Alzheimer's Disease and Schizophrenia 

Brain Bank published by Smith and colleagues7. The “Arizona 1” cohort consisted of 302 

middle temporal gyrus and cerebellum samples from The Sun Health Research Institute Brain 

Donation Program32 published by Brokaw et al.12. The “Arizona 2” cohort consisted of an 

additional 88 temporal gyrus and cerebellum samples from Lardonije et al.10. The 

“ROSMAP” cohort consisted of 709 samples from the Rush University Medical Center: 

Religious Order Study (ROS) and the Memory and Aging Project (MAP), which were 

previously published by De Jager and colleagues6. For replication purposes we used two 

further replication datasets. The “Munich” cohort” from Neurobiobank Munich (NBM), 

which had bulk prefrontal cortex  450K array data from 45 donors, and 450K array data from 

fluorescence-activated cell sorted  neuronal and non-neuronal (glial) populations from the 

occipital cortex from 26 donors as described by Gasparoni et al.11. The “Brains for Dementia 

Research (BDR)” cohort consisted of bulk prefrontal cortex Illumina Infinium EPIC array 

data from 590 donors, as described by Shireby et al15. Demographic information for all eight 

cohorts is available in Table 1. 

 

Data quality control and harmonization 

All computations and statistical analyses were performed using R 3.5.233 and Bioconductor 

3.834. A MethylumiSet object was created from iDATs using the methylumi package35 and 

RGChannelSet object was created using the minfi package36. Samples were excluded from 

further steps if (a) the mean background intensity of negative probes < 1,000, (b) the mean 

detection P values > 0.005, (c) the mean intensity of methylated or unmethylated signals were 

three standard deviations above or below the mean, (d) the bisulfite conversion efficiency < 

80%, (e) there was a mismatch between reported and predicted sex, or (f) the 65 SNP probes 

on the array show a modest level of correlation (using a cut-off of 0.65) between two samples 

(whereby the sample with the higher Braak score was retained). Sample and probe exclusion 
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was performed using the pfilter function within the wateRmelon package37, with the 

following criteria used for exclusion: samples with a detection  P > 0.05 in more than 5% of 

probes, probes with < three beadcount in 5% of samples and  probes having 1% of samples 

with a detection P value > 0.05. Finally, probes with common (minor allele frequency > 5%) 

SNPs in the single base extension position or probes that are nonspecific or mis-mapped were 

excluded38,39, leaving 403,763 probes for analysis. Samples numbers after quality control are 

those shown in Table 1. 

 

Quantile normalization was applied using the dasen function in the wateRmelon package37. 

For the discovery cohorts, DNA methylation data was corrected by regressing out the effects 

of age and sex in all samples in each cohort and tissue separately, with neuron/glia 

proportions included as an additional covariate in cortical regions. The neuron/glia 

proportions were calculated using the CETS package40, and were not included as a co-variate 

for the cerebellum as the neuronal nuclear protein (NeuN) that was used to generate the 

neuron/glia algorithm is not expressed by some cerebellar neurons41. These three variables 

(age, sex, neuron/glia proportions) were regressed out of the data as we found that they 

strongly correlated with either of the first two principal components of the DNA methylation 

data in most of the datasets. Other potential sources of technical and biological variation 

(post-mortem interval, ancestry, plate, chip, study and bisulfite treatment batch) did not 

correlate as strongly with methylation in most datasets. We opted to use surrogate variables 

as a consistent method to control for variation derived from these measured and other 

unknown variables across all datasets. Surrogate variables were calculated using the sva 

function in the SVA package42. Linear regression analyses were then performed with respect 

to Braak stage (modelled as a continuous variable) using residuals and a variable number of 

surrogate variables for each study until the inflation index (lambda) fell below 1.2 (see 

Supplementary Table 16). The surrogate variables included for each cohort correlated with 

the technical and biological variables that we had not regressed out earlier, demonstrating 

that this method appropriately controlled for variation not driven by Braak stage. Quantile-

quantile plots for the four intra-tissue and the cross-cortex meta-analyses are shown in 

Supplementary Figure 20. Although it appears from these plots that there is P value 

inflation, it is worth noting that (a) lambda for all meta-analyses < 1.2 and (b) P value 

inflation is commonly observed in many DNA methylation studies and standard methods to 

control for this in GWAS are not suitable for EWAS data43.  
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Intra-tissue meta-analysis  

We used the estimated coefficients and SEs from the six “discovery” cohorts to undertake an 

inverse variance intra-tissue meta-analysis independently in each available tissue using the 

metagen function within the Meta package44, which applies inverse variance weighting. The 

estimates and SEs from individual cohort Braak linear regression analyses were added to the 

model for each tissue. The prefrontal cortex analyses included three cohorts (N = 959: 

London 1, Mount Sinai, ROS/MAP), the temporal gyrus analyses included four cohorts (N = 

608: London 1, Mount Sinai, Arizona 1, Arizona 2) and the entorhinal cortex analyses 

included two cohorts (N = 189: London 1, London 2). The cerebellum analyses included data 

from four cohorts (N = 533: London 1, London 2, Arizona 1 and Arizona 2) although the 

cerebellum data for the Arizona 1 and 2 cohorts was generated in the same experiment, and 

so these were combined together as a single dataset. The ESs and corresponding SEs reported 

in this study correspond to the corrected DNA methylation (beta) difference between Braak 0 

and Braak VI individuals. Bonferroni significance was defined as P < 1.238 x 10-7 to account 

for 403,763 tests. A fixed effects meta-analysis are the results primarily reported as it is the 

most appropriate model for our study as it can more reliably estimate the pooled effect and 

therefore the standard error and P value. However, in the supplementary tables we do also 

report the results of the random effects meta-analysis as ~10% of Bonferroni significant 

DMPs in the intra-tissue meta-analysis had high heterogeneity and in which case the results 

from the random-effects model should also be considered. 

 

Cross-cortex meta-analysis 

As multiple cortical brain regions were available for the “London 1” and “Mount Sinai” 

cohorts, a mixed model was performed using the lme function within the nlme package45. 

Estimate coefficients and SEs from each EWAS were extracted and were subjected to 

bacon43 to control for bias and inflation, after which a fixed-effect inverse variance meta-

analysis was performed across all discovery cohorts using the metagen function. A fixed 

effects model was selected in this instance for consistency with the intra-tissue meta-analysis, 

although the random effects meta-analysis results also shown in the supplementary tables. 

 

Replication analyses 

For the Munich replication cohort, we extracted the beta values for the 220 cross-cortex 

Bonferroni significant DMPs. This DNA methylation data was then corrected for age, sex 

and neuron/glia proportions (bulk tissue only) prior to performing a linear regression analysis 
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with respect to Braak stage. For the BDR replication cohort, we were provided with beta 

values for the 208 cross-cortex Bonferroni significant DMPs that were present on the EPIC 

array. This data had been corrected for age, sex, neuron/glia proportions, batch and principal 

component 1, before the linear regression analysis was performed with respect to Braak 

stage, with Bacon used to control for inflation. Additional information on the BDR dataset 

can be found in Shireby et al15. 

 

Annotations, pathway and regional analyses  

Probes were annotated for tables using both the Illumina (UCSC) gene annotation (which is 

derived from the genomic overlap of probes with RefSeq genes or up to 1500bp from the 

transcription start site of a gene) and “Genomic Regions Enrichment of Annotations Tool” 

(GREAT)46 annotation (which annotates a DMP to genes with a transcription start site within 

5kb upstream, or 1kb downstream). Pathway analyses were performed on the Illumina 

(UCSC) annotated genes corresponding to the 220 Bonferroni significant cross-cortex DMPs 

(N = 121 genes). A logistic regression approach, which we have previously described47,48, 

was used to test if genes in this list predicted pathway membership, while controlling for the 

number of probes that passed quality control annotated to each gene. Pathways were 

downloaded from the Gene Ontology website (http://geneontology.org/) and mapped to 

genes, including all parent ontology terms. All genes with at least one 450K probe annotated 

and mapped to at least one Gene Ontology pathway were considered. Pathways were filtered 

to those containing between 10 and 2,000 genes. After applying this method to all pathways, 

significant pathways (unadjusted P < 0.05) were taken and grouped where overlapping genes 

explained the signal. This was achieved by taking the most significant pathway and retesting 

all remaining significant pathways while controlling additionally for the best term. If the test 

genes no longer predicted the pathway, the term was said to be explained by the more 

significant pathway, and hence these pathways were grouped together. This algorithm was 

repeated, taking the next most significant term, until all pathways were considered as the 

most significant or found to be explained by a more significant term. To identify DMRs 

consisting of multiple DMPs we used comb-p49 with a distance of 500bp and a seeded P 

value of 1.0 x 10-4.  

 

Genomic enrichment analyses 

To test for an enrichment of DMPs in specific genomic features (i.e. CpG islands, shelves, 

shores, non-CpG island regions) in certain genomic regions (i.e. intergenic, distal promoter, 
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proximal promoter, gene body, downstream) we annotated all DMPs with Slieker 

annotation16 and performed a two-sided Fisher's exact test comparing to all probes analyzed 

(N = 403,763). We also used a Fisher’s exact test to test for an enrichment of DMPs in 

genomic regions related to transcription based on the Illumina annotation (TSS1500, TSS200, 

5’ UTR, 1st exon, gene body, 3’ UTR). To investigate whether any of the 220 Bonferroni 

significant cross-cortex DMPs were driven by genetic variation we used the xQTL resource 

to identify which of these DMPs are established cis-mQTLs17. To explore whether Braak-

associated methylation was enriched in known AD GWAS variants we used Brown’s method 

to combine together P values from our meta-analyses for probes residing in the LD blocks 

around the genome-wide significant (P� <�5.0�×�10-8) GWAS variants identified by the 

stage one meta-analysis of Kunkle et al.18 Of the 24 LD blocks reported by Kunkle and 

colleagues, 20 contained  > 1 CpG site on the 450K array and the P values for each CpG in a 

given block were combined using Brown’s method, which accounts for the correlation 

structure between probes, with the regional P values adjusted to correct for multiple testing. 

 

Quantifying variance in Braak pathology explained by DNA methylation signatures 

For this analysis training and testing datasets were randomly assigned in the cross-cortex 

discovery dataset using control samples (Braak low [0-II]: training N = 283 and testing N = 

103) and AD cases (Braak high [V-VI]: training N = 413 and testing N = 130). A penalized 

regression model was used to select the optimum (N = 95) CpG probes from the 220 cross-

cortex Bonferroni significant  DMPs that determined case-control status in the training 

dataset using the R package GLMnet50. Elastic net uses a combination of ridge and lasso 

regression, in which alpha (α) = 0 corresponds to ridge, whilst α = 1 corresponds to lasso, the 

elastic net α parameter used was 0.5. The lambda value was derived when using 10-fold cross 

validation on the training dataset. The model was then tested for AUC ROC value, 

confidence intervals (CI) and variance explained in the testing dataset as well as the 

independent replication Munich (Braak 0-II: N = 9, Braak V-VI: N = 29) and BDR (Braak 0-

II: N = 196, Braak V-VI: N = 258) prefrontal cortex datasets. 
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Figure 1: Intra-tissue meta-analyses of AD methylomic studies highlights Bonferroni significant differentially

methylated positions (DMPs) in all cortical tissues. (a) A Manhattan plot for the prefrontal cortex (red), temporal gyrus

(green) and entorhinal cortex (blue) meta-analyses, with the ten most significant DMPs circled on the plot and Illumina

UCSC gene name shown if annotated, or CpG ID if unannotated. The X-axis shows chromosomes 1-22 and the Y-axis shows

-log10(p), with the horizontal red line denoting Bonferroni significance (P < 1.238 x 10-7). (b) A Venn diagram highlighting

overlapping DMPs at Bonferroni significance across the cortical tissues. (c) In each cortical brain region the Bonferroni

significant DMPs identified in that region usually had a greater effect size (ES) there, than in any of the other cortical regions.

The X-axis represents the methylation (beta) ES between individuals that are Braak stage 0 and VI. Data is separated on the

Y-axis by tissue analysis (large text) with the corresponding data at these probes in other tissues (small text). The white dot in

the centre represents the median, the dark box represents the interquartile range (IQR), whilst the whisker lines represent the

“minimum” (quartile 1 – 1.5 x IQR) and the “maximum” (quartile 3 + 1.5 x IQR). The coloured violin represents all samples

including outliers, meaning that the “minimum” and “maximum” may not extend to the end of the violin.
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Figure 2: A cross-cortex meta-analysis identifies 220 Bonferroni significant differentially methylated positions

(DMPs) associated with Braak stage. (a) A Miami plot of the cross-cortex meta-analyses. Probes shown above the X-

axis indicate hypermethylation with higher Braak stage, whilst probes shown below the X-axis indicate hypomethylation

with higher Braak stage. The chromosome and genomic position are shown on the X-axis. The Y-axis shows –log10(p).

The red horizontal lines indicate the Bonferroni significance level of P < 1.238 x 10-7. Probes with a methylation (beta)

effect size (ES: difference between Braak 0- Braak VI) ≥ 0.01 and P < 1.238 x 10-7 are shown in blue. The 20 most

significant DMPs are circled on the plot and Illumina UCSC gene name is shown if annotated, or CpG ID if unannotated.

(b) A volcano plot showing the ES (X-axis) and –log10(p) (Y-axis) for the cross-cortical meta-analysis results. Gray

probes indicate an ES between ≥ 0.01, whilst blue probes indicate an ES ≥ 0.01 and P < 1.238 x 10-7. (c) The most

significant cross-cortex differentially methylated region (DMR) (chr7:27153212-27154305) contained 11 probes and

resided in the HOXA region. The horizontal red line denotes the Bonferroni significance level of P < 1.238 x 10-7. Red

probes represent a positive ES ≥ 0.01, blue probes represent a negative ES ≥ 0.01. Underneath the gene tracks are shown

in black with CpG islands in green.
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Figure 3: Independent replication of the Bonferroni significant cross-cortex differentially methylated loci. (a) The 

methylation (beta) effect size (ES) of the 220 cross-cortex differentially methylated positions (DMPs) identified in the 

discovery cohorts (X-axis) were significantly correlated with the ES in the Munich replication cohort in the prefrontal cortex 

(red, r = 0.64, P = 5.24 x 10-27), sorted neuronal cells (light blue, r = 0.45, P = 1.56 x 10-12) and non-neuronal cells (purple, r = 

0.79, P = 1.43 x 10-47) (Y-axis). (b) A forest plot of the most significant cross-cortex DMP (cg12307200, chr3:188664632, P = 

4.48 x 10-16). The effect size is shown in the prefrontal cortex (red), temporal gyrus (green) and entorhinal cortex (blue) for 

the different discovery cohorts. The X-axis shows the beta ES, with dots representing ES and arms indicating standard error 

(SE). ES from the intra-tissue meta-analysis using all available individual cohorts are represented by polygons in the 

corresponding tissue color. The black polygon represents the cross-cortex data. Shown in purple on the plot is the ES in the 

Munich replication cohort in the prefrontal cortex and sorted neuronal cells and non-neuronal cells, with the direction of 

effect suggesting the hypomethylation seen in the discovery cohorts is driven by changes in non-neuronal cells. (c) In the 

BDR replication cohort DNA methylation data was available in the prefrontal cortex for 208 of the 220 Bonferroni significant 

cross-cortex DMPs. The ES of these 208 cross-cortex DMPs in the discovery cohorts (X-axis) were significantly correlated 

with the ES in the BDR replication cohort (r = 0.53, P = 4.13 x 10-16) (Y-axis).
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Figure 4: Receiver Operating Characteristic (ROC) graphs highlighting the Area Under the Curve (AUC) for the 95

cross-cortex probes that can best explain the variance in Braak pathology. An elastic net penalized regression model was

used to identify a subset of 95 of the Bonferroni significant cross-cortex probes that could best predict whether a sample has

low pathology (Braak 0-II: “control”) compared to high pathology (Braak V-VI: “AD”) in a training dataset of 696

(discovery) samples (Braak 0-II: N = 283, Braak V-VI: N = 413). This model had an Area Under the ROC Curve (AUC) of

94.36% (confidence interval [CI] = 92.67-95.88%) and explained 71.52% of the pathological variance (black line). This was

then tested in a testing dataset of 233 (discovery) samples (Braak 0-II: N = 103, Braak V-VI: N = 130), where it had an AUC

= 87.63% (CI = 82.73-91.89%) and explained 52.39% of the variance (red line). The 95 probe signature was then tested in

two independent replication cohorts. In the Munich prefrontal cortex samples (Braak 0-II: N = 9, Braak V-VI: N = 29) the

model had an AUC of 75.1% (CI = 55.56-90.81%), explaining 25.47% of the variance (blue line). In the BDR prefrontal

cortex samples (Braak 0-II: N = 196, Braak V-VI: N = 258) the model had an AUC = 70.33% (CI = 65.32-74.93%),

explaining 15.44% of the variance. A list of the 95 probes and their performance characteristics can be found in

Supplementary Tables 12 and 13, respectively.
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Table 1: Demographic information for cohorts included in the meta-analyses. Sample numbers, split of males (M)/females 

(F) and mean age at death in years (± standard deviation [SD]) are shown for individuals with low pathology (Braak 0-II), mid-

stage pathology (Braak III-IV) and severe pathology (Braak V-VI) in each cohort. Shown are the bulk tissues available from each 

cohort, which included the cerebellum, entorhinal cortex, middle temporal gyrus, prefrontal cortex and superior temporal gyrus. In 

the discovery meta-analyses, we used data from six EWAS using the 450K array, which all had > 50 unique donors. For 

replication we used two cohorts. The Munich cohort had 450K data from bulk prefrontal cortex tissue, as well as data available 

from sorted neuronal and non-neuronal cell populations from the occipital cortex. The BDR cohort had EPIC array data available 

from bulk prefrontal cortex samples. For the meta-analyses, superior temporal gyrus and middle temporal gyrus samples were 

both classed as temporal gyrus samples. Shown are final numbers for all cohorts after data quality control. Ancestry is reported for 

the discovery cohorts and is the number of unique individuals that had the following inferred ethnicities from the 1000 genomes 

reference panel: European (Eu), African (Af), American (Am), East Asian (As). 

Stage Cohort Unique 

individuals 

Ancestry 

(Eu/Af/Am/As) 

Braak Number Sex 

(M/F) 

Age at 

death in 

(± SD) 

Tissues analysed 

 

D
IS

C
O

V
E

R
Y

 

 

London 1 113 

 

112/0/1/0 

0-II 29 13/16 77.6 (12.8) Prefrontal cortex, entorhinal 

cortex, superior temporal 

gyrus, cerebellum (Bulk) 
III-IV 18 7/11 88.5 (5.2) 

V-VI 66 26/40 85.4 (8.1) 

 

London 2 95 

 

92/1/2/0 

0-II 23 12/11 76.1 (10.0)  

Entorhinal cortex, 

cerebellum (Bulk) 
III-IV 16 3/13 87.6 (6.4) 

V-VI 56 26/30 81.5 (8.6) 

 

Mount 

Sinai 
146 

 

113/20/11/2 

0-II 60 32/28 82 (7.6)  

Prefrontal cortex, superior 

temporal gyrus (Bulk) 
III-IV 42 12/30 88.8 (6.6) 

V-VI 44 12/32 88.0 (7.5) 

 

Arizona 1 302 

 

302/0/0/0 

0-II 61 40/21 80.3 (8.2)  

Middle temporal gyrus, 

cerebellum (Bulk) 
III-IV 97 50/47 86.9 (6.9) 

V-VI 144 63/81 82.3 (8.5) 

 

Arizona 2 88 

 

88/0/0/0 

0-II 16 10/6 82.5 ( 5.0)  

Middle temporal gyrus, 

cerebellum (Bulk) 
III-IV 45 21/24 86.7 (5.1) 

V-VI 27 12/15 84.6 (7.1) 

 

ROS/MAP 709 

 

709/0/0/0 

0-II 143 70/73 83.2 (6.0)  

Prefrontal cortex (Bulk) III-IV 409 144/266 86.9 (4.1) 

V-VI 157 45/113 87.8 (3.5) 

 

R
E

P
L

IC
A

T
IO

N
 

 

 

 

Munich 

45 

 

- 

0-II 9 5/4 76.7 (10.9)  

Prefrontal cortex 

(Bulk)  
III-IV 7 1/6 82.1 (5.2) 

V-VI 29 12/17 79.2 (8.5) 

26 

 

- 

0-II 11 7/4 75.9 (8.5)  

Occipital cortex 

(Sorted cells) 
III-IV 5 1/4 85.0 (6.5) 

V-VI 10 4/6 77.9 (6.6) 

 

BDR 

 

590 

 

- 

0-II 196 100/96 83.6 (10.6)  

Prefrontal cortex (Bulk) III-IV 136 91/65 85.1 (7.45) 

V-VI 258 128/130 82.5 (8.5) 
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Table 2: The 25 most significant differentially methylated positions (DMPs) associated with Braak stage from the cross-cortex meta-analysis. Probe information is 

provided corresponding to chromosomal location (hg19/GRCh37 genomic annotation), Illumina gene annotation, closest genes with a transcription start site upstream or 

downstream (from GREAT annotation). Shown for each DMP is the methylation (beta) effect size (ES), standard error (SE) and corresponding unadjusted P value from the 

inverse variance fixed effects meta-analysis model in the cross-cortex data. All ES and SE have been multiplied by six to demonstrate the difference between Braak stage 0 

and Braak stage VI samples. A more comprehensive table is provided in Supplementary Table 7. 

 

Probe Position 
Illumina Gene 

Annotation 

GREAT annotation - closest genes with 

transcription start site upstream (distance to site) 

GREAT annotation - closest genes 

with transcription start site 

downstream (distance to site) 

ES SE P 

cg12307200 chr3:188664632   TPRG1 (-225131) LPP (+733912) -0.015 0.002 4.48E-16 

cg01419713 chr8:42038135 PLAT   PLAT (+27107), AP3M2 (+27672) 0.022 0.003 2.20E-14 

cg04874795 chr16:86477638   FOXF1 (-66495) IRF8 (+545230) -0.022 0.003 3.95E-14 

cg11823178 chr8:41519399 ANK1;MIR486 NKX6-3 (-14522) ANK1 (+234881) 0.016 0.002 3.24E-13 

cg07061298 chr7:27153847 HOXA3 HOXA2 (-11418) HOXA3 (+5367) 0.018 0.002 4.57E-13 

cg13076843 chr17:74475294 RHBDF2   RHBDF2 (+22195), AANAT (+25862) 0.021 0.003 7.57E-13 

cg25018458 chr17:980014 ABR   TIMM22 (+79658), ABR (+103154) 0.008 0.001 7.87E-13 

cg07883124 chr13:113634042 MCF2L F7 (-126079) MCF2L (+10508) 0.017 0.002 9.10E-13 

cg03223072 chr10:116398913 ABLIM1 AFAP1L2 (-234670) ABLIM1 (+19144) -0.014 0.002 1.10E-12 

cg05066959 chr8:41519308 ANK1;MIR486 NKX6-3 (-14431) ANK1 (+234972) 0.024 0.003 1.45E-12 

cg17881200 chr7:27138850   HOXA1 (-3258)   0.017 0.002 1.83E-12 

cg19240213 chr7:27163095 HOXA3 HOXA3 (-3882)   0.020 0.003 2.29E-12 

cg10045881 chr1:111770291 CHI3L2 CHIA (-63247) CHI3L2 (+26899) -0.015 0.002 2.38E-12 

cg02674693 chr11:45109122   TP53I11 (-137412), PRDM11 (-59772)   0.018 0.003 3.57E-12 

cg06800235 chr1:7692367 CAMTA1 VAMP3 (-138962) CAMTA1 (+846984) -0.017 0.002 3.71E-12 

cg18264562 chr1:26253412   STMN1 (-20456) PAFAH2 (+71236) 0.014 0.002 5.46E-12 

cg01964852 chr7:27146262 HOXA3 HOXA2 (-3833)   0.016 0.002 5.96E-12 

cg01111041 chr6:32121055 PPT2;PRRT1 PRRT1 (-1327), PPT2-EGFL8 (-944), PPT2 (-245)   0.009 0.001 6.83E-12 

cg15974867 chr11:69464012 CCND1   CCND1 (+8158), ORAOV1 (+26103) 0.018 0.003 7.46E-12 

cg17907520 chr15:31680189     KLF13 (+61132), OTUD7A (+267353) 0.011 0.002 9.65E-12 

cg16988611 chr10:82224946 TSPAN14   TSPAN14 (+11025) 0.011 0.002 9.98E-12 

cg13579486 chr20:39314091     MAFB (+3789) -0.012 0.002 1.01E-11 

cg01681367 chr16:29676071 SPN QPRT (-14287) SPN (+1492) -0.015 0.002 1.25E-11 

cg01301319 chr7:27153580 HOXA3 HOXA2 (-11151) HOXA3 (+5634) 0.017 0.003 1.54E-11 

cg02317313 chr12:122235206 LOC338799 RHOF (-3039)   0.017 0.003 1.69E-11 
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