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Abstract 

The p53/p21 pathway is activated in response to cell stress. However, its role in 

acute lung injury has not been elucidated. Acute lung injury is associated with 

disruption of the alveolo-capillary barrier leading to acute respiratory distress 

syndrome (ARDS). Mechanical ventilation may be necessary to support gas 

exchange in patients with ARDS, however, high positive airway pressures can 

cause regional overdistension of alveolar units and aggravate lung injury. Here, we 

report that acute lung injury and alveolar overstretching activate the p53/p21 

pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic 

pooling of transcriptomic data from animal models of lung injury demonstrates the 

enrichment of specific p53- and p21-dependent gene signatures and a validated 

senescence profile. In a clinically relevant, murine model of acid aspiration and 

mechanical ventilation, we observed changes in the nuclear envelope and the 

underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. 

Absence of Cdkn1a decreased the senescent response, but worsened lung injury 

due to increased cell apoptosis. Conversely, treatment with lopinavir/ritonavir led 

to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The 

activation of these mechanisms was associated with early markers of senescence, 

including expression of senescence-related genes and increases in senescence-

associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of 

patients with ARDS revealed increased senescence-associated heterochromatin 

foci. Collectively, these results suggest that acute lung injury activates p53/p21 as 

an anti-apoptotic mechanism to ameliorate damage, but with the side effect of 

induction of senescence. 

Keywords: Acute lung injury; Mechanical ventilation; Senescence; Apoptosis 
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Introduction 

The lungs have a stereotypic response to acute injury, which is preserved among 

species and many etiological agents. Once damage is inflicted, lung cells trigger a 

host response which can include inflammation, matrix remodeling and different 

forms of cell death, including apoptosis (Herold et al., 2013). Although a limited 

host response may help to clear the injurious agent and promote lung tissue repair 

(Blazquez-Prieto et al., 2018), an overexuberant host response can lead to severe 

injury and gas exchange worsening. Therefore, therapeutic strategies aimed to 

limit lung damage and interference with lung repair are important.  

Lungs are exposed to mechanical load during every breath. In pathologic 

conditions, generation of higher pressure gradients necessary for adequate 

ventilation may cause excessive cell stretch (Perlman and Bhattacharya, 2007). 

This is especially relevant during mechanical ventilation with high pressures, 

which can lead to the so-called ventilator-induced lung injury (VILI) (Corbridge et 

al., 1990; Slutsky and Ranieri, 2013). In mechanically ventilated patients, a strategy 

aimed to limit VILI decreased mortality in patients with the acute respiratory 

distress syndrome (ARDS)(The Acute Respiratory Distress Syndrome Network, 

2000) .  

Mechanotransduction is thought to regulate the molecular steps in VILI 

pathogenesis (Spieth et al., 2014). The nuclear envelope has been reported as an 

important cell mechanosensor and signal transducer (Swift et al., 2013). 

Mechanical stretch appears to increase Lamin-A in the nuclear envelope, leading to 

nuclear stiffening. These changes in the nuclear envelope can also activate p53-

dependent pathways. Wildtype p53 is a master regulator of cell homeostasis and 

fate, and its activation may lead to a variety of responses, ranging from apoptosis 
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to cell cycle arrest. Inhibition of this response has been shown to increase p21 

(Cdkn1a) expression and decrease VILI in an experimental model (López-Alonso et 

al., 2018). 

p53 and its downstream factor p21 are triggers of senescence (Varela et al., 2005), 

a cell response characterized by an stable arrest of the cell cycle and a switch 

towards a senescence-associated secretory phenotype (SASP). It has been 

proposed that senescence facilitates the clearance of damaged cells and is required 

for tissue repair (Muñoz-Espín and Serrano, 2014). Interestingly, some of the 

molecules have a significant overlap with the proinflammatory response 

associated with VILI.  

We hypothesized that p53-dependent pathways play a role in the maintenance of 

lung homeostasis during acute injury, and that senescence could be a side effect of 

their activation. To test this hypothesis, we developed a clinically relevant model of 

lung injury caused by acid aspiration and VILI to assess the activation of p53 and 

its downstream factors. 

 

Results 

Transcriptomic signatures of p53/p21 activation and senescence in lung injury  

To test the hypothesis that the p53/p21 pathway is activated during acute lung 

injury and to identify early markers of a switch towards a senescent phenotype, 

data from 11 datasets of mouse lung injury and mechanical ventilation 

(Supplementary Table 1) were pooled and gene expression analyzed (Figure 1A). 

Three different transcriptomic signatures related to p53-dependent upregulation 

(116 genes, 76 available in the pooled data), p21-dependent downregulation (14 

genes, 8 available) (Fischer, 2017) and senescence (Hernandez-Segura et al., 2017) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.03.24.005983doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005983
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

(55 genes, 44 available) were analyzed. A meta-score of expression of these genes 

was computed for each sample and compared to assess the effect of lung injury 

and mechanical ventilation.  

Animals subjected to acid aspiration lung injury and mechanical ventilation 

showed higher expression of p53-dependent genes (ANOVA p-value<0.001, Figure 

1B), lower expression of p21-downregulated genes (ANOVA p-value<0.001, Figure 

1C) and a higher metascore (Figure 1D) in the senescence signature than 

spontaneously breathing controls (ANOVA p-value<0.001, Figure 1D). The 

expression of each gene of these signatures is shown in Supplementary Figure 2. 

These results support the notion that lung injury and mechanical ventilation 

activate p53/p21 pathways and the molecular mechanisms of senescence in 

acutely injured lungs. 

 

Activation of the p53/p21 pathway in a clinically relevant model  

To explore the mechanisms involved in the activation of p53-dependent signals, an 

experimental model of acid aspiration- and mechanical ventilation induced lung 

injury was tested. Chlorhydric acid instillation and mechanical ventilation induced 

a significant increase in lung damage and inflammation, assessed by histological 

scores (Figure 2A), neutrophilic infiltrates (Figure 2B) and Il6 expression (Figure 

2C). Lung damage increased the proportion of both proliferating and apoptotic 

cells in lung parenchyma (Figures 2D-E and Supplementary Figure 3). In line with 

this, the abundance of cleaved caspase-9 in lung tissue was increased with lung 

injury (Figure 2F) 

We then explored the putative activators of this response to acute injury. Lamins in 

the nuclear envelope act as cell mechanosensors, regulating chromatin 
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organization in response to mechanical stress. We observed that Lamin-A/Lamin-

B ratio increased after mechanical stretch (Figure 2G). Immunofluorescence 

studies confirmed the increase in Lamin-A in the nuclear envelope after 

mechanical stretch, but not after hydrochloric acid instillation alone (Figure 2H). 

These changes in the nuclear envelope coexisted with an increase in γH2AX (Figure 

2I) and HP1α (Figure 2J), markers of DNA damage and chromatin remodeling 

respectively, in nuclear extracts from ventilated animals. Panel 2K shows 

representative Western blots of these parameters. 

The expression of the canonical responders to DNA damage Cdkn2a (p16) and 

Tp53 (p53) and their corresponding downstream factors Rb and Cdkn1a (p21) was 

also assessed. There were no differences in the levels of Cdkn2a (Figure 2L), 

whereas expression of Rb was significantly decreased (Figure 2M). However, we 

observed significant increases in Tp53 (Figure 2N) and Cdkn1a (Figure 2O) 

expression with lung injury.  

 

Increased lung damage in mice lacking p21 

To address the role of p53 and p21 in acute lung damage, Tp53-/-, Cdkn1a-/- mice 

and their wildtype counterparts were subjected to acid instillation followed by 

mechanical ventilation. In preliminary experiments, absence of Tp53 did not 

modify lung injury (histological score 2.4±1.6 vs 2.3±1.2, n=4/group, p=0.91, 

Supplementary figure 3), so we focused on the downstream factor p21. In absence 

of p21, the mice had worse lung injury (Figure 3A) and higher counts of apoptotic 

cells (Figure 3B) and cleaved caspase-9 abundance (Figure 3C) compared to their 

wildtype counterparts. There were no differences in Il6 or Tp53 expression nor in 

abundance of γH2AX or HP1α between genotypes (Figures 3D-G respectively). 
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Lopinavir increases p21 and decreases lung damage 

We have previously shown that HIV-protease inhibitors modify the nuclear 

response to mechanical stretch and protect against VILI (López-Alonso et al., 

2018), an effect that could be due to the inhibition of the Lamin-A protease 

ZMPSTE24 (Coffinier et al., 2007). In our double-hit model, treatment with 

lopinavir/ritonavir impaired the structure of the nuclear lamina, decreasing the 

abundance of Lamin-A (Figure 4A), and decreased lung injury (Figure 4B), 

apoptotic cell count (Figure 4C) and cleaved caspase-9 (Figure 4D). Although 

abundance of γH2Ax was not modified by this treatment (Figure 4E), there was a 

marked decrease in HP1α (Figure 4F). Panel 4G shows representative blots of 

these measurements. Finally, treatment with lopinavir/ritonavir caused an 

increase in Il6 expression (Figure 4H), with no changes in Tp53 expression (Figure 

4I) but an increase in Cdkn1a (p21, Figure 4J). 

 

Early markers of senescence in acute lung injury 

Then, we tried to identify early markers of senescence in our acute model. Acid 

aspiration and mechanical ventilation-induced lung injury was associated with an 

increase in the number of nuclei positive for Macro-H2A, a marker of senescence-

associated heterochromatin foci (SAHF, Figure 5A), and changes in Plk3 (Figure 

5B), Gdnf (Figure 5C), and Meis1 (Figure 5D), the genes from the senescence 

signature with the highest differential expression in the previous pooled analysis.  

These markers of senescence were modified by manipulation of the p21 pathway. 

Mutant animals lacking Cdkn1a exhibited a decreased number of SAHF after acid 

instillation and mechanical ventilation (Figure 5E) and in expression of the 
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senescence-related gene Plk3 (Figure 5F). In opposite, treatment with 

lopinavir/ritonavir (that increased Cdkn1a expression, Figure 4J) was related to 

lower counts of SAHF (Figure 5G), but increased Plk3 expression (Figure 5H)  

Finally, to confirm the incidence of SAHF in patients, lung tissue from autopsies of 

critically-ill patients with and without lung injury and mechanical ventilation 

(Supplementary Table 2) were stained with antibodies against Macro-H2A. There 

were no differences in age between the three groups of patients (62±6, 61±11 and 

54±10 years for patients without ARDS or mechanical ventilation, with ARDS but 

without mechanical ventilation and ARDS and ventilation respectively, p=0.17 in 

ANOVA). Similarly to the animal model, nuclear Macro-H2A increased in those 

with severe lung injury and mechanical ventilation (Figure 5I). 

Collectively, these findings suggest that lung injury and mechanical stretch trigger 

the appearance of early markers of senescence. The severity of lung injury and the 

abundance of senescence markers showed an inverse correlation after 

manipulation of p21 levels. 

 

Discussion 

We provide evidence that acute lung injury and its treatment with mechanical 

ventilation alters the nuclear envelope and causes DNA damage, activating the 

p53/p21 pathway. Activation of p21 plays a homeostatic role, limiting the extent of 

apoptosis in response to injury. Moreover, this effect can be pharmacologically 

activated to ameliorate lung injury in a clinical setting. In spite of this beneficial 

effect, this pathway also leads to the appearance of early markers of senescence in 

lung tissue. Figure 6 summarizes the findings of this work. 
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The p53/p21 axis in acute injury 

P53 and its downstream transcription factor p21 are major regulators of cell 

homeostasis. It has been shown that p53 regulates permeability in lung endothelial 

cells after an inflammatory insult (Barabutis et al., 2018). Similarly, activation of 

this pathway in response to hypertonic saline decreased lung injury and 

inflammation in human airway epithelial cells (Gamboni et al., 2016). However, 

our observations in Tp53-/- mice showed no differences in lung injury. Given the 

pleiotropic effects of p53 in cell homeostasis, this could be due to the existence of 

both protective and pathogenetic mechanisms.  

One of the main effects of the cyclin kinase inhibitor p21 is the blockade of 

apoptosis (Fielder et al., 2017). It has been proposed that caspase-9 is the 

downstream target responsible for the anti-apoptotic effects of p21 (Sohn et al., 

2006). Overexpression of p21 increases the resistance to apoptosis of alveolar 

epithelial cells (Inoshima et al., 2004), and the beneficial effects of 

lopinavir/ritonavir in VILI could represent the effects of the overexpression of this 

gene and the observed decrease in caspase-9. In contrast, absence of p21 was 

associated with more severe lung injury and increased numbers of apoptotic cells, 

as previously suggested (Yamasaki et al., 2008).  

 

The role of mechanical stretch 

Mechanical overstretch could be an important pathogenic factor involved in 

p53/p21 activation. Several mechanisms have linked the mechanical load to a lung 

biological response, including oxidative stress and MAPK activation (Correa-Meyer 

et al., 2002). We focused on the role of the nuclear envelope as a critical structure 

regulating both mechanosensing and senescence. The mechanical load is 
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transmitted from the extracellular matrix to the cytoskeleton and then to the 

nuclear membrane (Maurer and Lammerding, 2019). This causes a change in the 

nuclear lamina, reorganization of the underlying chromatin and DNA damage 

(Yang et al., 2017), either mediated by MAPK activation (Upadhyay et al., 2003) or 

by a direct mechanical effect (Nava et al., 2020). DNA damage is one of the triggers 

of the p53 pathway. In smooth muscle cells, stretch leads to p53 activation and 

upregulation of senescence markers (Mayr et al., 2002), resembling our findings. 

Similarly, HIV protease inhibitors, such as lopinavir/ritonavir, inhibit ZMPSTE-24, 

a protease responsible for Lamin-A maturation (Coffinier et al., 2007), preserving 

nuclear compliance, increasing p21 expression and decreasing stretch induced 

apoptosis and VILI (López-Alonso et al., 2018). 

 

Senescence in lung diseases 

One of the known consequences of p53 activation is the cell switch towards a 

senescent phenotype. Lipopolysaccharide or bleomycin-induced lung injury 

increases the number of SA-β-galactosidase-positive cells and leads to cell cycle 

arrest (Sagiv et al., 2018). It has been shown that this activation has no detrimental 

effects in acute inflammation. However, blockade of the cell cycle has been 

associated with increased collagen deposition (Waters et al., 2018) and SASP may 

perpetuate lung inflammation (Kumar et al., 2014). Therefore, main features of 

abnormal lung repair after acute injury (limited cell proliferation, chronic 

inflammation and fibrosis) could be explained by a persistent senescent response. 

Inhibition of this response by selective deletion of Tp53 in Club cells ameliorated 

lung damage related to chronic inflammation (Sagiv et al., 2018), suggesting a 

novel mechanism amenable to treatment of lung diseases. 
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The acute nature of our model and its short-term lethality does not allow the 

identification of canonical senescence markers such as Senescence-associated β-

galactosidase, as these require from days to weeks to be positive (Tominaga et al., 

2019). However, we identified a set of early markers including changes in 

chromatin structure and gene expression. In a model of repair after VILI, lung 

Cdkn1a expression remained elevated up to two days of spontaneous breathing 

after injury (López-Alonso et al., 2018). Although it is unclear if these mechanisms 

may precipitate a full-blown senescent response in the long term, our results 

highlight the involvement of this molecular machinery in the early phase, and 

could be a therapeutic target to avoid late consequences. 

 

Clinical implications 

Our findings have several implications regarding the pathogenesis of lung injury 

and its long-term consequences. First, the described p21 response may be 

beneficial in the acute phase, and could be pharmacologically manipulated using 

lopinavir. In a recent clinical trial in patients with lung disease caused by the SARS-

CoV-2 coronavirus, lopinavir did not reduce mortality, but decreased the risk of 

ARDS development (Cao et al., 2020). However, the associated senescent response 

could worsen lung repair and long-term outcomes. Survivors after a prolonged ICU 

stay may have deleterious and prolonged sequels, including respiratory 

impairment (Heyland et al., 2005), neuropsychological disturbances (Girard et al., 

2018) and muscle atrophy (Dos Santos et al., 2016), particularly the elderly 

(Heyland et al., 2015). The mechanisms responsible for these sequels are largely 

unknown and no effective therapies are currently available. Local activation of 

senescence and its paracrine/systemic spread could contribute to the 
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pathogenesis of these sequels. As previously discussed, senescence may contribute 

to disordered lung repair. The confirmation of this framework could lead to the use 

of senolytics (Paez-Ribes et al., 2019, p.) in critically ill patients. However, due to 

the protective nature of senescence in the early phase (Chu et al., 2020), these 

treatments should be time-coordinated and modulated to optimize their 

effectiveness. 

 

Conclusions 

We provide new evidence suggesting that acute lung damage activates p21 to limit 

apoptosis. This response appears to be trigged by the induction of DNA damage 

and linked to chromatin changes caused by mechanical overstretch. Interaction 

with the nuclear lamina may enhance this anti-apoptotic response. Although p21 

activation may be beneficial in the acute phase of lung injury, the long-term effects 

must be taken into consideration as they could explain some of the long term 

sequels of critically ill patients. 

 

Experimental procedures 

Meta-analysis of transcriptomic data 

To explore the main hypothesis, a pooled analysis of published transcriptomic data 

was performed, using a previously validated 55-gene expression signature of 

senescence (Hernandez-Segura et al., 2017) as main endpoint. Datasets reporting 

lung gene expression in animal models of acute lung injury and mechanical 

ventilation were obtained from public repositories (Gene Omnibus Expression -

https://www.ncbi.nlm.nih.gov/geo/- and ArrayExpress - 

https://www.ebi.ac.uk/arrayexpress/-) using the following terms: “Stretch”, 
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“Cyclic strain”, “Mechanical Ventilation”, “Lung”, and “Alveolar”. Fifty-one datasets 

were manually reviewed. Studies lacking a control group with intact, 

spontaneously breathing animals and those reporting less than 40 genes from the 

endpoint signature were excluded, so 11 datasets were finally used 

(Supplementary Table 1). When available, raw data was downloaded and 

normalized using the Robust Multiarray Average method (for Affymetrix 

microarrays) or normal-exponential background correction followed by quantile 

normalization (all the other platforms).  

Normalized datasets were pooled using the Combat-Co-normalization using 

controls (COCONUT) algorithm (Sweeney et al., 2016). This method normalizes 

gene expression of the different datasets using an empirical Bayes fitting, but 

applied only to control samples (in this case, spontaneously breathing animals 

with intact lungs). Then the obtained normalization parameters are applied to the 

cases (i.e., those with lung injury)(Supplementary Figure 1). Three different 

signatures were studied, corresponding to 116 genes upregulated by p53, 14 genes 

downregulated by p21 (Fischer, 2017) and a set of 50 genes consistently up- and 

down-regulated in senescence (Hernandez-Segura et al., 2017). A meta-score was 

computed for each sample as the geometric mean of the upregulated genes minus 

the geometric mean of the downregulated genes in the signature. Meta-scores 

were finally compared among controls and animals with lung injury and/or 

mechanical ventilation.  

 

Animal models 
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Male, 12 week old C57Bl/6 mice, kept under pathogen-free conditions with free 

access to food and water, were used in all experiments. The Animal Research 

Committee of the Universidad de Oviedo evaluated and approved the study. 

A two-hit lung injury model, based on chlorhydric acid instillation and mechanical 

ventilation, was studied. Animals were anesthetized with intraperitoneal ketamine 

and xylazine and orotracheally intubated using a 20G catheter, through which 

50μL of chlorhydric acid (0.1N, pH=1.5) were instilled. Two hours after instillation, 

mice were randomly assigned to receive mechanical ventilation or not. Mice were 

ventilated with a pressure-controlled mode (peak inspiratory pressure 17 cmH2O, 

PEEP 2 cmH2O, respiratory rate 100 breaths/min) for 120 minutes.  

Three additional series of experiments were performed. Mice lacking Tp53 or 

Cdkn1a (p21, an endogenous inhibitor of cyclin-dependent kinases involved in the 

senescent response triggered by Tp53) and their wildtype littermates were 

subjected to the same model of injury, including acid instillation and mechanical 

ventilation. Genotypes were confirmed by PCR. In separate experiments, wildtype 

animals were treated with a single dose (200/50 mg/Kg) of lopinavir/ritonavir (a 

protease inhibitor that inhibits Zmpste24 and disrupts Lamin-A nuclear 

scaffolding, activating senescence pathways) or saline, administered 

intraperitoneally immediately after acid instillation, and then ventilated with the 

parameters described above. 

 

Tissue harvest 

Mice were studied in three different conditions: baseline, 4 hours after chlorhydric 

acid instillation without mechanical ventilation and 4 hours after acid instillation 

including 2 hours of mechanical ventilation. Lungs were removed after 
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exsanguination of anesthetized animals. A laparotomy was performed, the renal 

artery sectioned, the thorax opened and the heart-lungs removed in bloc. The left 

lung was instilled with 250 microliters of 4% phosphate-buffered 

paraformaldehyde, immersed in the same fixative for 24 hours, and then stored in 

50% ethanol. The right lung was immediately frozen at -80°C for biochemical 

analyses. 

 

Patient samples 

Paraffin-embedded lung tissue from autopsies of patients were obtained from the 

tissue bank at Hospital Universitario Central de Asturias, after signed consent from 

patients’ next of kin. ARDS was defined using the Kigali modification of the Berlin 

definition (Riviello et al., 2016), to include patients with lung injury but without 

mechanical ventilation and those without an arterial line. 13 samples were 

recovered (Supplementary Table 2). 

 

Histological studies  

After fixation, tissues were embedded in paraffin and three slices with at least 

1mm of separation between them were cut and stained with hematoxylin and 

eosin. A pathologist blinded to the experimental settings evaluated the degree and 

extension of lung damage using a predefined histological score (Blazquez-Prieto et 

al., 2015). 

Additional lung sections were processed as previously described (Gonzalez-Lopez 

et al., 2011) for detection of myeloperoxidase- and Ki-67-positive cells, using 

specific antibodies (See Supplementary Table 3 for references). Images from three 

random fields (x200) were taken and then number of positive cells averaged. 
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For immunofluorescence studies, slides were deparaffinated and antigens 

retrieved in citrate buffer 0.1M (pH=9). The autofluorescence of the tissue was 

diminished using a Sudan black B solution and sections were permeabilized (0.1% 

Triton X-100 in PBS for 15 minutes), blocked (1% BSA in PBS) and incubated 

overnight at 4°C with the primary antibody (Supplementary Table 3). After 24 

hours, the slices were incubated with the corresponding secondary fluorescent 

antibody at room temperature for 1 hour. Images were taken using a confocal 

microscopy (Leica SP8) at 400x and 630x. The number of positive and negative 

nuclei were automatically quantified using ImageJ software (NIH, USA). 

Apoptotic cells in lung slices were detected by terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) as previously described (López-

Alonso et al., 2018). Images from three random fields were acquired in a LEICA 

SP8 confocal microscope and the positive nuclei were counted and expressed as 

percentage of the total nuclei count. 

 

Western blot 

Nuclei were extracted from fresh lung tissues and subsequently homogenized as 

described before (López-Alonso et al., 2018). The total amount of protein from 

nuclear extracts was quantified (BCA Protein Assay Kit, Pierce) and 15μg of each 

sample were loaded in SDS-polyacrylamide gels, electrophoresed at 120mV and 

electrotransferred onto PVDF membranes. After blockade with 5% non-fat dry 

milk, the membranes were incubated with primary antibodies against Caspase-9, 

Lamin-A/C, Lamin-B1, γH2AX, HP1α or H3 (Supplementary Table 3) in 3% non-fat 

dry milk overnight at 4°C. After 24 hours, the membranes were incubated with the 

corresponding peroxidase-conjugated secondary antibodies in 2.5% non-fat dry 
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milk. Proteins were detected by chemiluminescence in a LAS-4000 Imaging 

system. The intensity of each protein band was quantified using ImageJ software 

(NIH, USA). 

 

Quantitative PCR 

Lung fragments (2 mm x 2 mm) were homogenized with TRIZOL (Sigma, Poole, 

UK) and RNA precipitated by overnight incubation in isopropanol at -20°C. After 

24 hours, samples were washed with ethanol and the RNA resuspended in RNAse-

free water and quantified. One µg of total RNA was retrotranscribed into 

complementary cDNA using an RT-PCR kit (High capacity cDNA rt Kit, Applied 

Biosystems). Quantitative PCRs were carried out in triplicate of each sample using 

40 ng of cDNA per well. Expression of Plk3, Gdnf, Meis1, Il6, Tp53, Cdkn1a (p21), 

Cdkn2a (p16), Rb, and Gapdh was quantified using Sybr-green Power up, (Fisher 

Scientific) and 10uM of the corresponding primers (Supplementary Table 4). The 

relative expression of each gene was calculated as 2-ΔCT(gene of interest)–ΔCT(GAPDH). 

 

Statistical analysis 

Data are shown as mean ± standard error of the mean. Differences between two 

groups were studied using a T test. Differences among more than two groups were 

assessed using an analysis of the variance (ANOVA). For SAHF counts, three slides 

per animal were counted (considered as technical replicates) and analyzed using a 

mixed-effects ANOVA. When significant, pairwise comparisons were done using 

the Tukey’s Honest Significant Difference test. A p-value lower than 0.05 was 

considered significant. 
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Figure legends. 

Figure 1. Expression of gene signatures. A: Overview of the analysis. Eleven 

datasets (128 samples) reporting gene expression in animal models of lung injury 

were pooled and analyzed to calculate different Meta-scores summarizing the 

expression of genes included in specific signatures. B: Meta-score of a p53-

dependent signature for each experimental group (2nd hit refers to any model of 

lung injury other than mechanical ventilation). C: Meta-score of a transcriptomic 

signature including genes downregulated by p21. D: Meta-score of a senescence-

specific signature. Gray lines mark significant differences among groups (p<0.05 in 

Tukey’s post-hoc tests). 

 

Figure 2. Characterization of lung injury. A: Acid instillation and mechanical 

ventilation caused lung damage assessed using a histological score. B: 

Myeloperoxidase-positive cell counts in histological sections, showing an increase 

of neutrophils in the injured lung. C: Expression of Il6 in lung tissue. D: 

Quantification of Ki-67 positive cells in histological sections, as a marker of 

proliferation. E: TUNEL-positive cells in histological sections. F: Abundance of 

cleaved Caspase-9 in lung homogenates. G-H: Changes in Lamin-A/Lamin-B1 ratio 

in nuclei from lung tissue (G) and representative immunohistochemical sections 

(H). I-J: Abundance of γH2AX (I) and HP1α (J), markers of DNA damage and 

heterochromatin respectively, in nuclei from lung tissue. K: Representative 

western blots of the previous quantifications. L-O: Changes in expression of the 

canonical senescence inducers Cdkn2a (p16, L), Rb (M), Tp53 (N) and Cdkn1a (p21, 

O). N=4-6 animals per group. Gray lines mark significant differences among groups 

(p<0.05 in Tukey’s post-hoc tests) 
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E: Appearance of senescence-associated heterochromatin foci (SAHF), identified 

by their marker Macro-H2A, with lung injury and mechanical stretch. F-H: I: J: Gray 

lines mark significant differences among groups (p<0.05 in Tukey’s post-hoc tests) 

 

Figure 3. Lung injury in wildtype and Cdkn1a-/- animals. A: Histological score of 

lung damage in both genotypes. B: Percentage of apoptotic (TUNEL+) cells. C: 

Abundance of cleaved caspase-9 in lung homogenates from both genotypes. D-E: 

Expression of Il6 (D) and Tp53 (E) in wildtype and mutant mice. F-G: Abundance of 

γH2AX (F) and HP1α (G), with representative western blots, in lung homogenates. 

N=4-6 animals per group. Gray lines mark significant differences among groups 

(p<0.05 in T tests). 

 

Figure 4. Effects of Lopinavir/Ritonavir on lung injury. A: Lamin-A abundance and 

staining in vehicle- and lopinavir/ritonavir treated animals. B: Histological score of 

lung damage. C: Apoptotic (TUNEL+) cell counts in both groups. D-F: Abundance of 

Caspase-9 in tissue homogenates (D), γH2AX (E) and HP1α (F), with representative 

western blots (G) in lung homogenates. H-J: Expression of Il6 (H), Tp53 (I) and 

Cdkn1a (p21, J). N=7-10 animals per group.Gray lines mark significant differences 

among groups (p<0.05 in T tests). 

 

Figure 5. Identification of early senescence markers in experimental models and 

patients. A: Counts of Senescence-associated heterochromatin foci (SAHF) in the 

experimental model of lung injury of acid instillation and mechanical ventilation. 

B-D: Expression of Plk3, Gdnf, and Meis1 in lung tissue. These senescence-
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associated genes were identified in the genomic analysis as those with the largest 

differences between control and injured samples. E: SAHF counts (E) and Plk3 

expression (F) in wildtype and Cdkn1a-/- mice after lung injury. G-H: SAHF counts 

(G) and Plk3 expression (H) in vehicle and lopinavir/ritonavir (LPV)-treated mice 

after lung. I: Appearance of SAHF in autopsy samples from critically ill patients 

who died in the Intensive Care Unit with or without mechanical ventilation and 

acute respiratory distress syndrome (ARDS). N=4-7 animals per group, with three 

slides per animal as technical replicates in SAHF counts. Gray lines mark 

significant differences among groups (p<0.05 in Tukey’s post-hoc or in T tests). 

Figure 6. The role of p21 pathway on apoptosis and senescence after acute lung 

injury. A: In control mice, lung injury and mechanical stretch cause DNA damage 

and changes in the nuclear envelope, activating the cell senescence program. The 

amount of apoptotic cells depends on the equilibrium between the activation of 

pro-apoptotic responses triggered by injury itself and the anti-apoptotic effects of 

the senescence inducer Cdkn1a (p21). B: In mice lacking Cdkn1a, absence of this 

anti-apoptotic factor leads to an increase in apotosis and a more severe lung injury. 

C: Treatment with Lopinavir/ritonavir blocks the Lamin-A mediated chromatin 

remodeling, triggering a senescence-like response that increases p21 expression, 

thus decreasing apoptosis and lung damage. 
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