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15  Abstract

16  Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) is currently the
17  gold-standard technique to determine the full chemical diversity in biological samples. This approach
18  still has many limitations, however; notably, the difficulty of estimating accurately the number of
19  unique metabolites being profiled among the thousands of MS ion signals arising from
20  chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-
21 FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that
22 implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of
23 unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked with
24 respect to database chosen by the user, which improves identification accuracy. Application of MS-
25 CleanR to the analysis of Arabidopsis thaliana grown in three different conditions improved class
26 separation resulting from multivariate data analysis and lead to annotation of 75% of the final features.
27  The full workflow was applied to metabolomic profiles from three strains of the leguminous plant

28  Medicago truncatula that have different susceptibilities to the oomycete pathogen Aphanomyces
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29  euteiches; a group of glycosylated triterpenoids overrepresented in resistant lines were identified as
30 candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny

31 interface for intuitive use by end-users (available at: https://github.com/eMetaboHUB/MS-CleanR).

32 Keywords: Untargeted metabolomics, LC-MS, annotation, Arabidopsis thaliana, Medicago
33 truncatula, MS-DIAL, MS-FINDER.

34  Untargeted, or discovery-based metabolomics has become an essential tool in all biological sciences
35 including clinical research? plant science® and natural product mining*, among many other
36  applications. Living organisms are estimated to contain more than one million distinct compounds”.
37  According to the MetaboLights database (DB), 80% of untargeted metabolomics workflows rely on
38  liquid chromatography-mass spectrometry (LC-MS) (https://www.ebi.ac.uk/metabolights/). Due to its
39  broad coverage of metabolites, LC-MS based metabolomics has become the preferred tool to detect
40  several hundreds of compounds encountered in a complex biological material. Many software
41  programs have been developed to turn features (m/z x retention time (RT) pairs) extracted from LC-
42  MS raw data into chromatographic peak lists, including web-based interfaces such as XCMS®,
43 Workflow4Metabolomics’, local GUI with MZmine® and MS-DIAL®. Despite significant progress in
44  feature extraction, it remains a challenge to estimate accurately the number of unique metabolites in a
45  crude extract from the profile of one LC-MS experiment'®. On average, untargeted LC-MS profiling
46  yields hundred to thousands of features, which include isotopes, contaminants, adducts, dimers,
47  multimers and heteromeric complexes, and artifacts. Patti and colleagues™ used the term ‘degenerate
48  features’ to describe multiple signals derived from the same metabolite; they demonstrated that feature
49  inflation is highly underestimated and insufficiently addressed in untargeted LC-MS based
50  metabolomics. This may have important consequences by increasing both the false annotation rate and
51  the number of ‘unknown’ features arising from wrongly attributed signals. This is especially true when
52 the annotation process is based on in silico modeling of fragmentation patterns, as are Sirius'?, MS-
53  FINDER®, MetFrag™ or CFM-ID", since tandem mass spectrometry (MS/MS) spectra are processed
54  without taking into account feature relationships. Thus, most untargeted metabolomics studies focus
55 on a subset of identified metabolites for which spectral data are easily accessible from public

56  repositories or in-house DBs.

57 A few packages have been developed to deal with feature degeneracy: CAMERA is based on adduct
58 relationships; RAMCIlust'’ correlates features in multiple samples; MS-FLO uses Pearson’s
59  correlation and peak height similarity to identify adducts, duplicate peaks and isotope features of the
60  main monoisotopic ion, and MZunity®® which confronts adducts or neutral loss index to decipher
61 relationship among the acquired high resolution pseudo-molecular ions list. Deep-learning approaches
62  have also been developed based on LC-MS spectral peak shape filtering?®®!. All these packages focus

63  onasingle type of degeneracy, however, and they are difficult to implement in a unified workflow.
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64  Among the most advanced and versatile methods developed recently for untargeted metabolomics is
65  the tandem MS-DIAL-MS-FINDER suite. MS-DIAL is an all-in-one program for metabolomics and
66 lipidomics that relies on mass spectral libraries such as NIST 14 and MassBank of North America
67 (MoNA) for metabolite annotation. MS-FINDER is a partner program of MS-DIAL, in which
68  unknown structures can be elucidated from MS/MS spectra by the hydrogen rearrangement rules-
69 based scoring system. Here, we describe a third tool in this suite, called MS-CleanR, to remove
70  degenerate features and improve annotation rates from untargeted LC-MS-based metabolomics data.
71  Starting from the aligned peak list files determined by the MS-DIAL deconvolution process, our R
72  package firstly removes noise signals by using generic filters. In the second step, the package groups
73 the ion features based on the results of the MS-DIAL peak character estimation algorithm? providing
74  the ion linkages of adducts, correlated chromatograms, putative ion source fragments candidates and
75  similar metabolite profiles among samples. In the third step, clustered ion features are merged between
76  positive ionization (PI) and negative ionization (NI) modes and the adduct relationships are corrected
77  accordingly. The cleaned-up feature list can be exported to MS-FINDER for annotation purposes.
78  Finally, the package merges the MS-FINDER annotation output with the cleaned-up peak list and
79  includes the possibility to prioritize identification according to the DBs used for MS-FINDER
80 interrogation. The whole MS-CleanR workflow is easily accessible through a Shiny user interface

81  (Figure 1) and it is available as open source code.

82
83 METHODS
84 Standards

85 Individual solutions of natural products (NPs) compounds (Metasci, Toronto, Canada) were prepared
86  at 100 pg/mL in H,O or MeOH according to the supplier’s recommendations. Mixes of 10 compounds
87  were prepared by pooling 10 pL of each individual solution to a final concentration of 10 ug/mL. We

88  selected 51 NPs eluting from 2-18 minutes as a first test mixture to construct DB-level 1 annotation.

89 IROA Mass Spectrometry Library of Standards (Sigma-Aldrich, Darmstadt, Germany) in 96-well
90 plate format (5 pug per well) were used. The contents of each well were dissolved in 50 pL of solvent
91 (5% MeOH or MeOH/CH;CI/H,O 1:1:0.3), as recommended by the manufacturer, to obtain a
92  concentration of 100 pg/mL. Each plate was then sonicated for 5 minutes. Mixes of up to 12
93  compounds with distinct exact masses were obtained by pooling 20 pL from each well. The final
94  concentration in each mix was 8 pg/mL. We selected 167 standards eluting from 2-18 minutes as a

95  second test mixture.
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96 Plant material

97 A thaliana (wild-type Col-O) were grown either in hydroponic culture, in plastic pots (high density),

98  or in Jiffy® pots. For hydroponic culture, seeds were sown in 96 plates in MS liquid medium + 1%

99  sucrose. After 11 days, the medium was replaced by MS medium. After 14 days, seedlings were
100  collected and gently dried on absorbent paper. For culture in plastic pots, seeds were sown densely on
101  soil in plastic pots and cultivated in a growth chamber with a cycle of 16h light-8h dark, at 22°C in the
102 light and 20°C in the dark, and at 80% relative humidity. After 21 days, the aerial parts of the plants
103 were collected. For culture in Jiffy® pots, three seeds were sown per pot and cultivated in a growth
104  chamber, as for the plants in plastic pots. After 32 days, rosette leaves were harvested. For each
105  growing condition 200 mg of plant material per sample were collected, placed in a FastPrep tube (MP
106  Biomedicals Lysing Matrix D, Illkirch, France) and frozen in liquid nitrogen. For extraction, each
107  sample was ground with a Mixer Mill MM 400 grinder (Retsh, Eragny sur Oise, France) by applying
108  two cycles of 30 seconds at 30 m/sec. Biphasic sample extraction was adapted from Salem et al.
109  2016% by adding two cycles of 20 seconds at 6 m/sec. in the FastPrep-24™ benchtop homogenizer
110  (MP Biomedicals™, Illkirch, France) in 1 mL M1 (methyl tert-butyl ether/methanol, 3:1, v:v)
111 extraction solution. After grinding, FastPrep tube was transfered in glass tube and 5.7 mL of M1 was
112 added with 4.3 mL of M2 (water:methanol, 3:1, v:v) and vortexed for 1 min. The phases were
113 separated by centrifugation at 4°C and 4000 rpm for 5 minutes. The aqueous phases (400 uL) were
114  evaporated under nitrogen and the extracts were resuspended in 750 pL MeOH:H,O (1:1). Samples
115  were filtered through 0.2 pum PTFE filters (Thermo Scientific™) and transferred to vials. An
116  extraction blank (without plant material) and a QC (Quality Control) sample (aliquot of all samples)

117  were also prepared to validate the LC-MS profiles.

118  Seeds of Medicago truncatula strains Al7, DZA45.5 and F83005.5 (called F83 hereafter) were
119  scarified with sand paper, sterilized in 3.2% bleach for 2 min then rinsed in water four times before
120  soaking in water for 20 min. Seeds were placed on water agar and placed at 4°C for 4 days then for
121 one night at 25°C to germinate. Germinated seedlings were transferred onto M medium?* then placed
122 in a growth chamber at 22°C and 50% humidity with cycles of 16h light-8h dark for 14 days. The
123 roots were ground with a Mixer Mill MM 400 grinder by applying two cycles of 30 seconds at 300 Hz.
124 One hundred milligrams of ground tissue were placed in 2 mL FastPrep tubes containing 1.4 mm
125  ceramic spheres (Lysing Matrix D) and extracted with 1 mL of acidified aqueous solution of methanol
126  (MeOH/H,0/HCOOH, 80:19:1). After two cycles of 20 seconds at 6 m/sec. in the FastPrep-24™ (MP
127  Biomedicals™), the samples were centrifuged at 4°C and 10 000 rpm for 10 minutes. The supernatants
128  were transferred into vials. An extraction blank and QC (Quality Control) were also done for

129  extraction and analytical validation.
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130 UHPLC-HRMS profiling

131  Ultra High Performance Liquid Chromatography-High Resolution MS (UHPLC-HRMS) analyses
132 were performed on a Q Exactive Plus quadrupole mass spectrometer, equipped with a heated
133 electrospray probe (HESI I1) coupled to an U-HPLC Ultimate 3000 RSLC system (Thermo Fisher
134  Scientific, Hemel Hempstead, UK). Samples were separated on a Luna Omega Polar C18 column
135  (150%2.1mm i.d., 1.6um, Phenomenex, Sartrouville, France) equipped with a guard column. The
136  mobile phase A (MPA) was water with 0.05% formic acid (FA) and mobile phase B (MPB) was
137  acetonitrile with 0.05% FA. The solvent gradient was: 0 min, 100% MPA; 1 min 100% MPA; 22 min,
138 100% MPB; 25 min, 100% MPB, 25.5 min, 100% MPA; 28 min, 100% MPA. The flow rate was
139 0.3 mL/min, the column temperature was set to 40°C, the autosampler temperature was set to 10°C
140  and injection volume fixed to 2 pL for standard mixes and plant extracts. Mass detection was
141 performed in positive ionization (Pl) and negative ionization (NI) modes at 30 000 resolving power
142 [full width at half maximum (FWHM) at 400 m/z] for MS1 and 17 500 for MS2 with an automatic
143 gain control (AGC) target of 1e5. lonization spray voltages were set to 3.5 kV (for PI) and 2.5 kV (for
144  NI) and the capillary temperature was set to 256°C for both modes. The mass scanning range was m/z
145  70-1050 Da for standards and m/z 100-1500 Da for plant extracts. Each full MS scan was followed by

146  data-dependent acquisition of MS/MS data for the six most intense ions.

147 Data processing

148  LC-MS data were first processed with MS-DIAL version 4.12. MS1 and MS2 tolerances were set to
149  0.01 and 0.05 Da, respectively, in centroid mode for each dataset. Peaks were aligned on a quality
150  control (QC) reference file with a RT tolerance of 0.1 min and a mass tolerance of 0.015 Da.
151 Minimum peak height was set to 70% below the observed total ion chromatogram (TIC) baseline for a
152 blank injection. MS-DIAL data was cleaned with MS-CleanR by selecting all filters with a minimum
153  blank ratio set to 0.8, a maximum relative standard deviation (RSD) set to 30 and a relative mass
154  defect (RMD) ranging from 50-3 000. The maximum mass difference for feature relationships
155  detection was set to 0.005 Da and maximum RT difference was set to 0.025 min. The Pearson
156  correlation links were considered only for biological datasets with correlation >0.8 and statistically
157  significant o = 0.05. Two peaks were kept in each cluster: the most intense and the most connected.
158  The kept features were annotated with MS-FINDER version 3.26. The MS1 and MS2 tolerances were
159  setto 5 and 15 ppm, respectively. Formula finder were exclusively processed with C, H, O, N, P and S
160 atoms. DBs based on the genus and the family of the plant species (Table S3, Table S4, Table S7,
161  Table S8) being investigated were constituted with the dictionary of natural product (DNP-CRC press,
162 DNP on DVD v. 28.2) and the internal generic databases used were KNApSAcK, PlantCyc, HMDB,
163  LipidMaps, NANPDB and UNPD. Annotation prioritization was done by ranking genus DB followed
164 by Family DB and then generic DB (internal DB from MS-FINDER).
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165 Statistical analysis

166  Statistical analyses were done by using SIMCA-P+ (version 15.0.2, Umerics, Umea, Sweden). All
167  data were scaled by unit variance (UV) scaling before multivariate analysis. The orthogonal projection
168  to latent structure using discriminant analysis (OPLS-DA) was used to separate data according to A.
169 thaliana growing conditions. The OPLS regression model used for the Medicago datasets was tuned
170  with line resistance as the Y input: the following resistance indices 0, 1 and 2 were respectively
171  indicated for the F83, Al7 and DZA45.5 strains. Coefficient scores were used to rank variables
172 according to their class biomarker: a high coefficient indicating a strong correlation with resistance
173 traits.

174 Mass spectral similarity network

175  The .msp NI and metadata files generated at the end of the MS-CleanR workflow were imported into
176  MetGem?® (version 1.2.2). A mass spectral similarity network was created with a cosine score cut off
177  fixed at 0.65, a maximum of ten connections between nodes and at least four matched peaks. The
178  resulting network was then imported into Cytoscape® (version 3.7.2) to tune visualization. Nodes
179  were thus colored according to their annotated chemical classes and their sizes were indicated relative

180  to the OPLS coefficient score. Edge width was deepened according to their cosine value.

181 RESULTS AND DISCUSSION

182  MS-CleanR Workflow and Implementation

183 Insert Figure 1

184  Step 1: generic filters. We first applied several generic filters to pre-clean the feature table of noise.
185  Starting from the alignment result file exported from MS-DIAL, the ratio between the mean of blank
186  samples and quality control (QC) samples (pool of all extracts) was calculated. All features exceeding
187  the user-defined threshold for this ‘blank ratio” were removed. The ratio was calculated by using the
188  height of each feature because the normalized height can produce an increase in some blank signals.
189  This filter is also available in MS-DIAL, but MS-CleanR provides additional options for filtering ion
190  features. A second filter, called ‘ghost blank peaks’, is based on the high background ion drift we
191  observed in blank injections and in other samples that had a significant retention time (RT) shift
192  (Figure S1). These peaks had a low ratio of blank to sample class that excluded them from the usual
193  blank filtering approach. A third generic filter is based on an ‘unusual mass decimal’. When singly
194  charged ions of basic organic molecules containing carbon, hydrogen, oxygen, and nitrogen are
195  considered, ion features with a value of more than eight at the first decimal place of m/z (mass to
196  charge ratio) are generally considered to be artifacts: this filter option can be disabled when working

197  with exceptions (e.g., phosphorylated compounds). A fourth generic filtering approach is the ‘relative
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198  standard deviation’ (RSD) among sample classes. A high RSD value highlights poor ionization
199  repeatability. In our implementation, the RSD value was computed for each sample class and features
200  were removed if the RSD values in all sample classes exceeded a user-defined threshold. This
201  approach avoids incorrect feature deletions: in the case of large sample cohorts, for example, repeated
202  QC injections usually result in large RSDs because of a high dilution effect in the samples. Finally, we
203  introduced a fifth filter based on the ‘relative mass defect’ (RMD) calculation. The RMD is calculated
204 in ppm as [(mass defect/measured monoisotopic mass) x 10°]. It can be used to filter compound
205  classes® and it should also be useful to remove artifactual signals. Based on all compounds exported
206  from the Dictionary of Natural Products (DNP; available on DVD v.28.2 from CRC Press), we found
207  that 95% of natural products (NP)s had RMD values of 156.5-969.6 ppm. When this window was
208  extended to 99% of NPs, the range of RMD values was 52.05-2902.9 ppm.

209  Step 2: Feature clustering. To improve further the filtering process, we implemented a features
210  clustering function to be applied to those features remaining after the generic-based filtering described
211  above. The main goal of this step is to select the features arising from a unique metabolite signal
212 among each cluster by using the multi-level optimization of modularity algorithm?. Feature clustering
213 s first based on the peak character estimation algorithm computed by MS-DIAL, which aggregates
214 several possible relationships at the same RT range: ion correlation among samples, MS/MS fragments
215 in higher mVz, possible adducts and chromatogram correlations?. Additionally, we also implemented
216  an index of possible neutral loss and a calculation of dimers/heteromers to tag clustered feature
217  relationships. Optionally, Pearson’s correlation between features located in the same RT window
218  (typically of 0.025 minutes) can be computed, the strong correlation links being then considered
219  during the clustering process. If the study involves the same set of samples acquired both in Pl and NI
220  mode, the MScombine® tool, incorporated into MS-CleanR, can be used to detect possible links
221  between positive and negative features appearing in the same RT window. This process corrects
222 misidentified relationships to consider observed m/z differences acquired between both ion modes.
223 The package can only treat Pl or NI data independently, however. We observed that a unique
224  metabolite signal in each cluster can be selected by: a PI/NI adduct link (e.g. [M+H]"/[M-H],
225  [M+Na]"/[M+FA-H]’; the most intense peak of the cluster, and the peak with the most relationships to
226 other features (i.e. the highest ‘degree’ of connection). Among each cluster, one to n features (tunable
227 by the user) can be selected for further annotation: the most intense, the most connected or both. The

228  other features are removed from consideration.

229  Step 3: Feature annotation. After the above filtering steps, only a portion of the original features are
230  exported to MS-FINDER, which greatly accelerate the processing time. This software computes

231  feature annotations by querying internal DBs or imported DBs. Several DBs can be used to annotate a
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232 single set of features by exporting the results for each DB used. Additionally, a “compound level”

233 column can be added into external DBs to further prioritize annotation within each DB used.

234 Step 4: Annotated peak list. This final step selects for each feature the best annotation among match
235  possibilities exported from MS-FINDER. In the case of multiple DB interrogation, the workflow
236  allows compound annotations to be ranked based on MS-FINDER score only or by prioritizing certain
237  DBs, depending on user choices. This latter function can greatly improve the annotation accuracy
238  particularly when dealing with taxonomically defined extracts®. MS-CleanR can also prioritize
239  compounds based on “Compound_level” column tuned by the user in external DBs used for MS-
240  FINDER annotation. Finally, the resulting annotated peaks list can be converted into an .msp format
241  for mass spectral similarity networking as in GNPS®" or MetGem? (for the detailed mathematics of the

242 workflow, see Supporting Information Text 1).

243 Workflow benchmarking on pooled standards

244  To validate our approach, we benchmarked the MS-CleanR workflow by using a mixture of 51 NPs
245  standards profiled in NI and Pl modes with a reverse phase column and a 25 minutes gradient. The
246  resulting data were compiled in an in-house DB comprising RT, HRMS and MS/MS fragmentation
247  patterns (DB-level 1 annotation according to the Metabolomics Standards Initiative-MSI®?). To test
248  whether the workflow retained features arising from unique metabolites and removed useless signals,
249  we compared the results obtained by using a combination of MS-DIAL and MS-FINDER and DB-
250 level 1 annotation to those obtained by using MS-CleanR. For the latter, we created another DB of the
251  same metabolite set encompassing accurate mass, molecular formula and SMILES strings (DB-level 2
252 annotation according to the MSI) to reproduce real-case annotation processing. All five generic filters
253  were used and the two most intense and two most connected features within each cluster were
254  exported for annotation by using the ‘formula prediction and structure elucidation by in silico
255  fragmentation tool” in MS-FINDER (Table S1).

256 Insert figure 2

257  As anticipated, we observed significant feature inflation in this mixture of 51 NP standards: 869
258  signals from Pl and NI acquisition modes were detected (Figure 2). This approximately 95% feature
259 inflation is consistent with a previous report of 10 000-30 000 features detected after injection of 900
260  unique metabolites®® and with a study that used isotope labeling as a feature filtering approach. Blank
261  ratio filtering deleted 50% of the features and the other generic filters described above removed 15%
262  of the remaining ones. Feature clustering resulted in a further reduction of 18%, resulting in a total of
263 115 features retained. Overall, the workflow filtered out 80% of all detected signals. By using this

264  approach, there was a remarkable improvement in the annotation rate (unique metabolites/detected
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265  features) from 5% to 45% (Figure 2). Consequently, 21 metabolites displayed an isolated mz-RT
266  signal whereas the others were grouped in clusters of two to eleven features (Figure 3A). Overall, 50
267  metabolites were annotated, 44 of which matched perfectly with level 1 annotation DB (Table S1).
268  The remaining ones were annotated as an isobaric/isomeric match because of prioritization of highest
269  MS-FINDER scoring value (e.g., 4-Aminosalicylic acid and 5-Aminosalicylic acid). In the case of
270  gramine, for example, the major pseudo-molecular ion had an nvz value of 130.06493 at RT 7.75
271 minutes (Figure 3B). By applying feature clustering, we detected an in-source fragment corresponding
272 to the neutral loss of the dimethylamine group at m/z 130.0649. This feature was removed and only the
273 signal at m/z 103.054 and nvVz 175.1228 were exported for annotation. Since m/z 175.1228 was the
274  most intense peak, it was retained and annotated as gramine (Appm=0.4) with a perfect match. The
275  peak detected at RT 11.47 minutes was grouped in a cluster of 11 features, mainly related to similar
276  MS/MS spectra. In this case, the Pl and NI clusters were merged according to their detected adduct
277 ([M+H]" and [M-H]’, respectively) and the feature with highest MS-Finder annotation score was
278  retained in the final peak list and identified as neohesperidin dihydrochalcone (Appm=0.4).
279  Formononetin displayed complex adduct relationships in Pl and NI modes and successive features
280  with higher mz’s MS/MS fragment of formononetin in Pl mode. The merging of Pl and NI modes
281  allowed the main feature in this complex cluster to be selected and provided a perfect match with level
282 1 annotation DB. The only mismatch was encountered for phloridzin due to the neutral loss of a
283  glucose moiety in both in Pl and NI modes. Only genine was detected in Pl mode, resulting in

284  selection of this signal in the final peak list.
285 Insert Figure 3

286  To model more closely a real biological sample, we standardized our workflow by using a mixture of
287 167 standard compounds from the IROA Mass Spectrometry library (Table S2). As above, we found
288  significant feature inflation: 6732 signals after concatenation of Pl and NI datasets (Figure S2). Unlike
289  the standardization with NPs, above, the generic filters removed only 15% of features. The most
290  important improvement was obtained by feature clustering, which filtered out 90% of the detected
291  features leaving 611 signals. Among these, 127 features were identified with a perfect match
292  compared to Level-1 annotation DB and 21 were annotated as an isomeric match (Table S2). Twelve
293  features were removed due to their co-elution with other compounds and four had a significant RT
294  shift due to their poor peak shapes. The final three compounds were not annotated because of neutral
295  loss of the same moiety in Pl and NI modes, which led to their misidentification. Overall, the

296  annotation rate with this workflow was 27% (Figure S2) and 90% of unique metabolites were retained.
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297  Evaluation of MS-CleanR on biological samples

298  To evaluate the utility of the workflow on a real dataset, we set up an experiment to compare
299  metabolome changes in Arabidopsis thaliana plants due to different culture conditions and age of the
300 plants. Three cultural conditions were assessed (low density growth in Jiffy® pots for 32 days, high
301  density growth in plastic pots for 21 days and hydroponic culture in liquid MS medium for 14 days)
302 and 10 biological replicates were analyzed per culture condition. At harvest time, 4 leaves (2
303  cotyledons and 2 leaves) were observed for hydroponic plants, the densely seeding plants showed not
304  more than two small, but completed, developed leaves, while the jiffy growing plants harbored large
305 and well developed rosette leaves. Extracts were made from the aerial parts of the plants grown in pots
306 and from the roots and green tissues of plants in hydroponic culture, and the extracts were profiled by
307 LC-MS. The datasets acquired in Pl and NI modes were treated by using the MS-CleanR workflow
308  with default parameters (see Methods). Sequential principal component analysis (PCA) was used to
309 provide an unsupervised overview of the LC-MS fingerprints resulting from the generic filters and
310  feature clustering (Figure 4). The PCA score plot of raw Pl and NI mode data displayed 51% of total
311  explained variance using the first two principal components. QC samples appeared in the center of the
312  PCA score plot, demonstrating the reproducibility of the LC-MS analysis. As expected, the youngest
313  plants growing hydroponically were completely separate on the first principal component (PC1) axis
314  from the older plants growing in pots. The plants growing in Jiffy pots and plastic pots could not be
315  distinguished in the raw dataset. After the generic filter step, the data from these latter two conditions
316  formed more distinct clusters, the total explained variance was slightly improved at 58% and the
317  number of features decreased by 35% (Figure 4). After the feature clustering step, the number of
318  features was reduced by 80%. All datasets were annotated with in-lab DB (level 1) and with MS-
319 FINDER (level 2) by reference to external DBs of Arabidopsis (Table S3) and Brassicaceae
320 compounds (Table S4) and an internal MS-FINDER plant-related DB (comprising PlantCyc,
321  KNApSAcK, HMDB, LIPID MAPS and UNPD). In the raw Pl and NI dataset exported from MS-
322  DIAL (1163 features), 42% of all features were annotated, 26% of them appeared in the Arabidopsis
323 DB, 2% in the Brassicaceae DB,7% in the internal MS-FINDER DBs and 6% with in-lab DB (Figure
324  4); 58% of all features were unidentified. The generic filters removed 15% of all features and
325  increased the annotation rate to 59%. Feature clustering drastically reduced the number of features
326 (254 m/z x RT pairs) and increased the annotation rate to 73%. Using annotation DB prioritization,
327  53% of retained features were annotated in Arabidopsis genus and 13% at level 1 with in-lab DB, only
328  27% remained unidentified. Orthogonal projections to latent structures discriminant analysis (OPLS-
329 DA) of the most highly ranked features identified three amino acids (oxoproline, citrulline and
330  glutamine) that discriminate between growth in pots and hydroponic growth (Table S5). This may be
331 related to differences in nitrogen availability in the hydroponics medium and in potting soil.

332 Insert Figure 4
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333

334  Metabolic profiling with MS-CleanR

335  Untargeted metabolomic profiling has emerged as a method of choice to identify metabolic markers
336  associated with beneficial traits in plants, such as resistance to biotic stresses. In this context, the MS-
337  CleanR workflow could greatly improve the results of untargeted metabolomics. To illustrate this
338 point, we used as a model the legume Medicago truncatula and the pathogenic oomycete
339  Aphanomyces euteiches, a major pathogen of several legume species®. Genome-wide association
340  studies of 179 lines of M. truncatula have identified major loci involved in the resistance of the plant
341 to A. euteiches. Moreover, genes encoding enzymes involved in the synthesis of antimicrobial
342  metabolites are expressed in uninfected plants®. This suggests that antimicrobial metabolites in
343  uninfected plants may be useful biomarkers with which to select legumes lines resistant to A.
344  euteiches. To identify these metabolites, we applied the MS-CleanR workflow to analyze the
345  metabolomes of roots from three different strains of M. truncatula that have different levels of
346  resistance to A. euteiches infection: strain DZA45.5 has the highest level of resistance, Al7 an
347  intermediate level, and F83 is the most susceptible®®. These three strains were analyzed by LC-MS in
348 NI mode and potential biomarkers were highlighted by multivariate data analysis (Table S6). The
349  metabolites that were differentially produced in the two most resistant strains (A17 and DZA45.5)

350  when compared to the more sensitive one (F83) were identified by OPLS regression.

351 Insert Figure 5

352  After application of the MS-CleanR workflow, the PCA score plot showed a net clustering of the
353  samples from each strain of M. truncatula. QC samples were centered on the PCA plot demonstrating
354  very good reproducibility (Figure 5). When annotated by reference to DBs from Medicago or the
355  legume family Fabaceae, 60% of the dataset was annotated (Figure 5) and an additional 9% with MS-
356 FINDER DBs. A molecular spectral similarity network was built to highlight common chemical class
357  related to resistance traits (Figure 6). Among all annotated features, flavonoids and terpene glycosides
358  compounds were prevalent. This latter class encompass mostly triterpene sapogenins which appeared
359  to be highly correlated to the resistance traits according to the OPLS regression model. In particular,
360 the four top ranked compounds belonged to two clusters related to sapogenins and one to flavonoids.
361  Our untargeted approach revealed the presence of Apigenin-7-O-glucuronopyranoside (best MS-
362  FINDER score among several possible match in flavonoid class) only in the resistant DZ45.5 strain.
363  This result corroborated a previous study by our group which demonstrated the implication of
364  flavonoid pathway in resistance®. However, other detected flavonoids were not correlated to the
365  resistance contrary to sapogenins class. Among the 151 terpene glycosides annotated in this study, 36
366  were also identified by a large-scale sapogenin profiling study in various ecotypes of M. truncaltula®
367 (Table S6). Interestingly, the three-top ranked sapogenins by OPLS model (Azukisaponin IlI,
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368  Arjunolic acid 3-glucoside and Soyasaponin I) displayed an isobaric match with tow hederagenin
369  glycoside and a bayogenin derivatives respectively annotated by Sumner and colleagues. These
370  sapogenins accumulates preferentially in roots than in leaves. These organs, however, have distinct
371  profiles of specific saponins, which may be explained by the adaptation of each ecotype to its biotic
372 environment. A previous study, for example, showed that saponins derived from hederagenin
373 glycoside in M. truncatula have antifungal activity®. Our study confirmed a higher level of these
374  compounds in the strains resistant to A. euteiches (DZA45.5 and A17) than it is in the sensitive strain
375  F83. Although the relevance of saponins to resistance of M. truncatula to A. euteiches remains to be
376  confirmed, these findings demonstrate the potential value of applying metabolomics tools to identify

377  biomarkers of plant resistance.

378 Insert Figure 6

379 CONCLUSIONS

380  The main goal of LC-MS-based untargeted metabolomics is to convert chromatographic profiles of
381  complex biological extracts into a comprehensive metabolite list. Professor lan Wilson summarized
382  the challenge thus: “LC-MS includes everything, which means you see everything. Thus, the challenge
383 s to take oceans of data, and make rivers of information, and finally puddles of knowledge.” (NIH
384  Metabolomics symposium, August 2013). We demonstrate here that feature degeneracy - the ocean of
385 data - has a great impact on the final annotated peak list information, thus impacting the biological
386  knowledge mined from untargeted metabolomic studies. We estimate, based on analysis of standard
387  mixtures, that feature inflation is close to 95%, in agreement with other studies®***. Our package MS-
388  CleanR, with its a point-and-click software on a Shiny interface, is a new component in the suite of
389  tools comprising the GUI software MS-DIAL and the annotation capabilities of MS-FINDER which
390  altogether provide a comprehensive workflow, from raw data to final annotated peaklist. MS-CleanR
391  can reduce the number of features by 80-90% and keep most unique metabolite signals without
392  compromising the final data structure. The opportunity to rank the annotation results with reference to
393  in-house databases narrows down the final identification possibilities. Additionally, the package is
394  able to combine both Pl and NI mode (A. thaliana experiment) or to treat only one mode (M.
395  truncatula study) depending of the study objectives. We demonstrate the utility of this workflow by
396  analyzing secondary metabolites levels in three M. truncatula strains with different susceptibilities to a
397  pathogenic oomycete. We could annotate 70% of the dataset with 60% at the genus or family level
398 using DBs prioritization. The resulting mass spectral similarity network further supports annotation
399  results since most clusters gathered the same metabolite chemical class. Still, our approach was unable
400  to keep only unique metabolite features regarding the annotation rate comprising between 24 and 45%

401  for standard mixtures. A limitation of our filtering process is its dependence to chromatographic
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resolution, which can seriously impair the final results by clustering several unique metabolites
together. In the present study, we chose a twenty minutes gradient, like those generally applied in most
untargeted metabolomics studies. Extending the elution time might improve the chromatographic
resolution but is difficult to apply in day-to-day work, especially for high-throughput experiments.

These challenges will be addressed in future developments of MS-CleanR.
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Figure 2. Feature filtering of the LC-MS dataset from 51 NPs standards.
Generic filters and the feature clustering algorithm were applied to the
initial Pl + NI mode dataset. The bar plot displays feature counts after
successive filters. The line plot displays annotation rate (unique
metabolites/feature counts in %).
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Figure 3. MS-CleanR feature clustering of 51 NPs. Clustering was based on the peak character estimation
and multi-level optimization of modularity algorithms. A) Cluster plot of the whole dataset excluding size
one clusters. B) UHPLC-HRMS base peak intensity (BPI) chromatogram of the standards mixture
containing 51 NPs. Three representative compounds and their respective clusters are indicated.
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Figure 4. LC-MS dataset processing of the metabolomes of A. thaliana plants growing in different
conditions. Top: Sequential PCA score plots of raw Pl and NI mode data and the data after applying
generic filters and feature clustering. Dotted circles indicate biological sample type distribution
(vellow, QC injections; green, plants growing in Jiffy pots at low density; blue, plants growing in
plastic pots at high density; red plants in hydroponic culture). Bottom: The bar plot shows the
feature counts after successive filtering steps. The line plot displays the annotation rate (unique
metabolites/feature counts expressed as %) after successive filtering steps using annotation DBs
prioritization.
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Figure 5. LC-MS NI dataset processing of the metabolome of roots from three strains of M. truncatula. Left:
PCA score plot after applying the MS-CleanR workflow. Dotted circles enclose samples from each plant
strain. Right: Circular plot of the proportions of features annotated with reference to the indicated databases
(DB).
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Figure 6. Mass spectral similarity network of M. truncatula NI dataset (cosine > 0.8). Nodes are colored
according to their chemical classes and sized relative to their OPLS regression coefficient score (See text for
details). Edge width is proportional to cosine value. Pie chart display annotated chemical class ratio in LC-MS
NI dataset (Others include coumarins derivatives, tanins and saccharides chemical classes). Bar plots display
normalized mean peak areas for the four most highly ranked structures by OPLS-regression modeling (Table
S6). One-way ANOVA and Dunnett’s post-hoc test (p<0.05) were used to assess differences between the
sensitive (F83) and resistant (A17 and DZA45.5) M. truncatula strains (p<0.05: *; p<0.01: **; p<0.001: ***).
Compound names with asterisk indicate an isobaric annotation match with ref 37. (Glc: Glucoside, GIcA:
Glucuronopyranoside)
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