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The antibody repertoires of different individuals ought to
exhibit significant functional commonality, given that most
pathogens trigger a successful immune response in most people.
Sequence-based approaches have so far offered little evidence
for this phenomenon. For example, a recent study estimated the
number of shared (‘public’) antibody clonotypes in circulating
baseline repertoires to be around 0.02% across ten unrelated
individuals. However, to engage the same epitope, antibodies
only require a similar binding site structure and the presence
of key paratope interactions, which can occur even when their
sequences are dissimilar. Here, we investigate functional con-
vergence in human antibody repertoires by comparing the anti-
body structures they contain. We first structurally profile base-
line antibody diversity (using snapshots from 41 unrelated in-
dividuals), predicting all modellable distinct structures within
each repertoire. This analysis uncovers a high degree of struc-
tural commonality. For instance, around 3% of distinct struc-
tures are common to the ten most diverse individual samples
(‘Public Baseline’ structures). Our approach is the first com-
putational method to provide support for the long-assumed lev-
els of baseline repertoire functional commonality. We then ap-
ply the same structural profiling approach to repertoire snap-
shots from three individuals before and after flu vaccination,
detecting a convergent structural drift indicative of recognis-
ing similar epitopes (‘Public Response’ structures). Antibody
Model Libraries (AMLSs) derived from Public Baseline and Pub-
lic Response structures represent a powerful geometric basis
set of low-immunogenicity candidates exploitable for general or
target-focused therapeutic antibody screening.
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Introduction

A key component of the human immune system is the
antibody/B-cell receptor (BCR) repertoire, a diverse array
of immunoglobulins tasked with identifying pathogens and
initiating the adaptive immune response. Broad pathogenic
recognition is achieved through enormous variable domain
sequence diversity, with an estimated 10'° unique heavy vari-
able domains (VH) circulating at any one time from a theoret-
ical set of 10'% (or 10'°-10'® full antibodies if light variable
domain (VL) combinations are considered (1)).

On antigenic exposure, ‘baseline’ (resting-state) antibodies
with sufficiently complementary binding sites to an antigen

surface epitope are positively selected. The corresponding
parent B cells subsequently migrate to the marginal zone of
the lymph nodes, where intentional mutations are introduced
to their sequence and only the highest-affinity binders survive
in the competition for cognate T-helper cells (2).

Therefore, sequencing antibody repertoires before and dur-
ing an immune response (e.g. vaccination) can reveal how
different people respond to the same antigenic challenge, and
can both improve our understanding of immunology and in-
form future vaccine or therapeutic design (3-5). Similarly,
comparing the repertoires of healthy individuals against im-
munosuppressed (e.g. HIV) patients may also make known
the origins of increased disease susceptibility (6-8).
However, sequencing an entire antibody repertoire is chal-
lenging; they are so large that conventional sequencing tech-
niques, such as Sanger sequencing, do not capture enough
of the diversity to be informative. Instead, high-throughput
immunoglobulin gene sequencing (Ig-seq) technologies (e.g.
Illumina MiSeq) are used. These methods create snapshots
that are typically on the order of 10°-107 VH and/or VL (un-
paired) chains, up to a recent upper bound of around 10°
(1, 9, 10). Single-cell sequencing methods, capable of pre-
serving VH-VL chain pairings, are now emerging, however
their current throughput yields datasets that are too small to
study entire repertoire diversity (11-13).

Since most publicly-available Ig-seq data covers only the VH
domain, the vast majority of whole-repertoire analysis has
been performed over this region alone. The primary analyti-
cal method is currently ‘clonotyping” (14—16). Clonotyping
is a computational technique used to sort sequencing datasets
into sets of functionally similar chains based on sequence fea-
tures, and can be performed in several ways. The most com-
mon implementation groups sequences with the same pre-
dicted V and J gene transcript origins and above a certain
percentage (same length) Complementarity-Determining Re-
gion H3 (CDRH3) sequence identity.

Such sequence-based approaches have contributed signifi-
cantly to our knowledge of core immunology. For example,
to estimate the true level of sequence similarity that exists
across individuals, Briney et al. performed deep sequencing
and clonotyping of the circulating baseline VH repertoires of
ten volunteers (1). They found that just 0.022% of observed
clonotypes were ‘public’ (seen in everyone). In a comple-
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mentary approach, Greiff ef al. trained a Support Vector Ma-
chine on public and private clonal sequences to identify their
high-dimensional features, proving that they have distinct im-
munogenomic properties (17).

Clonotyping can also be used to detect antigen-specific im-
munoglobulins, through the identification of expanded clones
after vaccination, or those present in unusually high propor-
tions in individuals immune to certain diseases. Explorations
of expanded lineages have yielded high-affinity antibodies
and T cells against numerous pharmacologically interesting
antigens, such as HIV proteins (6), cluster of differentiation
proteins (18), botulinum neurotoxin serotype A (19), proteins
implicated in type-1 diabetes (20), and many more.

However, clonotyping is only likely to identify a small subset
of the true number of functionally equivalent antibodies. This
is because it assumes that antibodies require a similar genetic
background and high CDRH3 sequence identity to achieve
complementarity to the same epitope. In reality, similar bind-
ing site structures and paratopes can be achieved from differ-
ent genetic origins (21) and with surprisingly low CDRH3
sequence identity (22). It is also the case that not every epi-
tope is naturally suited to CDRH3-dominated binding, in-
stead preferring broader engagement by multiple CDRs (23).
It is difficult to capture these functionally equivalent antibod-
ies by sequence alone. An alternative approach would be to
compare the three-dimensional structures of the antibodies,
as binders to a given epitope are likely to adopt a similar ge-
ometry with residues capable of recapitulating key binding
interactions at equivalent topological locations.

Experimental structure determination (e.g. by X-ray crystal-
lography) remains too slow to solve representative portions
of antibody repertoires (24). However, structural annotation
approaches are now fast enough to geometrically characterise
the individual CDRs of millions of sequences a day with in-
creasing accuracy (25, 26). So far, these analyses have fo-
cussed solely on the VH chain, and none have considered
the impact of VL on binding site configuration. This can
most accurately be captured through variable domain (Fv)
modelling, and recent developments have afforded homology
approaches with sufficient throughput to analyse meaningful
portions of the repertoire (27, 28). For example, a recent pro-
totype structural profiling method that creates representative
Fv model libraries from large repertoire snapshots, with ap-
plications in developability issue prediction (29).

In this paper, we further refine this repertoire structural pro-
filer, and apply the optimised pipeline to the task of repertoire
functional screening. We first analyse 41 baseline antibody
repertoires from unrelated individuals, and find that the same
representative (‘distinct’) binding site structures are predicted
to appear across many individuals (‘Public Baseline’ struc-
tures). We also show, through the construction of ‘Random
Repertoires’, that this level of structural sharing is far greater
than would be expected by chance. Our data therefore rep-
resents the first computational evidence that sizeable func-
tional commonality could exist in the baseline repertoires of
different people. We then implement the same pipeline on
pre- and post-vaccination datasets from three unrelated in-
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dividuals, detecting a significant increase in structural com-
monality, and identifying all convergent response structures
that may recognise similar epitopes (‘Public Response’ struc-
tures). We built Antibody Model Libraries (AMLs) by ho-
mology modelling a VH-VL sequence pairing predicted to
adopt each Public Baseline or Public Response structure. In
silico analysis of these AMLs shows that they represent a
powerful geometric basis set of low-immunogenicity candi-
dates exploitable for general or target-focused therapeutic an-
tibody screening.

Results

This study comprises two main investigations. First, we use
data from an immunoglobulin gene sequencing (Ig-seq) study
by Gidoni et al. (30) to investigate the degree of structural
overlap in the circulating baseline repertoires of many unre-
lated individuals. We then use data from a longitudinal Ig-seq
flu vaccination study by Gupta et al. (5) to measure three in-
dividuals’ structural responses to exposure to a common anti-
gen. Both translated Ig-seq datasets were downloaded from
the Observed Antibody Space (OAS) database (9), retaining
only the 41 Gidoni volunteers with sufficiently deep reads
(see Methods).

We used an updated version of our repertoire structural pro-
filing pipeline (29) for improved accuracy in CDR structure
and VH-VL interface orientation prediction (see Methods, SI
Fig. 4). Briefly, repertoire structural profiling takes as input
an antibody/BCR repertoire snapshot containing heavy (VH)
and light (VL) chain reads. It eliminates VH and VL chains
for which not every CDR is modellable. All modellable VH
and VL chains are then sequence clustered to reduce compu-
tational complexity. Surviving cluster centres are then paired
together and the resulting Fvs that are likely to be success-
fully modelled are retained. Finally, predicted modellable
Fvs with the same combinations of CDR lengths are struc-
turally clustered based on the orientation and CDR loop tem-
plates forecast to be used during homology modelling. Anti-
body Model Libraries (‘AMLs’) can then be built from these
representative Fv sequences.

Structurally Profiling the Baseline Inmune Repertoire.
We first investigated the structural diversity present in the 41
selected Gidoni baseline repertoire datasets. Separately, each
dataset was fed through our structural profiling pipeline to
identify the set of sequence diverse modellable VH and VL
domains, then the number of predicted modellable Fvs, and
finally the number of distinct structures in each dataset (Table
1, full table available as SI Table 2).

The most structurally diverse dataset was ‘S64° (209,394 dis-
tinct structures from ~6.4M Fvs), and the least was ‘S4’
(78,588 distinct structures, from ~750K Fvs). Datasets with
a larger number of modellable sequence diverse VHs tended
to result in a larger number of distinct structures. Datasets
with a moderate/low number of modellable sequence diverse
VHs but very large numbers of modellable sequence diverse
VLs were amongst the least structurally diverse (e.g. ‘S95°).
This is consistent with our understanding of both length and
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Table 1. Structurally profiling the baseline repertoire snapshots (30). A full table containing the values for all 41 baseline datasets is available in the Supporting Information
(SI Table 2). In order, the columns show: the dataset label, the number of VH and VL reads within each snapshot, the number of FREAD-modellable VH and VL reads (once
clustered at 90% sequence identity), the number of predicted modellable Fvs resulting from these VH-VL pairings, and the number of distinct structures (cluster centres)

identified in each dataset. SIC = Sequence Identity Clustered.

Dataset All VH All VL Modellable VH | Modellable VL Predicted Distinct Structures
[90% SIC] [90% SIC] Modellable Fvs

1 (S64) 177,603 | 123,934 | 10,087 6,779 6,420,211 209,394
2 (S57) 169,805 | 118,020 | 9,860 7,922 7,225,630 201,039
3 (S5) 159,544 | 139,845 | 8,999 8,526 6,827,419 200,708
4 (S56) 162,446 | 136,874 | 9,309 7,168 6,628,683 195,061
5 (S83) 152,299 | 112,733 | 9,048 8,076 6,170,373 193,384
6 (S67) 173,722 | 120,237 | 9,349 6,424 5,544,952 193,061
7 (S84) 164,017 | 138,874 | 8,702 8,232 5,634,598 191,617
8 (S76) 148,180 | 126,713 | 8,778 7,047 5,856,150 191,162
9 (S54) 121,993 | 133,921 | 7,581 9,066 5,074,822 181,290
10 (S89) | 152,710 | 144,340 | 8,923 9,293 5,414,820 177,829
39 (S95) | 118,576 | 162,377 | 5,412 11,748 5,901,443 91,855
40 (S17) | 102,405 | 111,669 | 5,310 7,945 2,690,081 91,229
41 (S4) 100,689 | 128,986 | 4,688 1,761 745,977 78,588

structural variability in VH (particularly in CDRH3) relative
to VL (31-33).

Expected Numbers of Distinct Structures (via. ‘Ran-
dom Repertoires’). To contextualise the numbers of distinct
structures observed for each baseline repertoire, we gener-
ated ‘Random Repertoires’ to obtain expected numbers of
distinct structures assuming each genuine repertoire sampled
randomly from modellable, accessible structure space. To
achieve this, we derived:

(a) The Modellable Repertoire Structures: a sample of over
180 million structures built from a random combination of
any orientation template, a CDR3 template, and a pair of
CDR1/CDR2 templates from the same SAbDab entry (mim-
icking V gene-encoded predetermination).

(b) The Length-Accessible Repertoire Structures for each
baseline snapshot: the subset of the MRS with a CDR length
combination observed in that individual.

(¢) A ‘Random Repertoire’ for each baseline snapshot: the
appropriate LARS dataset was sampled the same number of
times as that individual’s number of predicted modellable
Fvs. Clustering these RRs then provided a reference number
for the expected number of distinct structures per repertoire,
given the depth of sampling in each dataset and assuming
random sampling.

To derive a set of Modellable Repertoire Structures, we took
the same number of samples as the number of Fvs derived
from all baseline repertoire snapshots (183,544,740, SI Ta-
ble 2). Upon structurally clustering, these samples yielded
~28.7M distinct structures over ~61.2K distinct combina-
tions of CDR lengths, roughly 100x as many distinct struc-
tures as seen in any baseline repertoire sample. However,
as each repertoire snapshot typically only contained between
2,000-3,500 different CDR length combinations, many of
these 28.7M distinct structures would never be observed in
the real data. Therefore, 41 ‘Length-Accessible Repertoire
Structures’ datasets were created, limiting the Modellable

Raybould et al.

| Antibody Repertoire Functional Convergence through Public Baseline and Shared Response Structures

Repertoire Structures to the CDR length combinations seen
in each snapshot. For example, considering only the 3,468
CDR length combinations observed in our most structurally
diverse individual (‘S64°) reduced the Modellable Reper-
toire Structures to a Length-Accessible Repertoire Strucutres
dataset of ~154.8M structures. This clustered into ~20.8M
distinct structures (a 27.5% reduction from the Modellable
Repertoire Structures, while the number of CDR length com-
binations dropped ~94%), implying we have good struc-
tural sampling over the CDR length combinations typically
seen in humans. Every Length-Accessible Repertoire Struc-
tures dataset contained a number of randomly-selected struc-
tures roughly 20-30 times larger than the number of predicted
modellable Fvs observed in the corresponding baseline reper-
toire.

Finally, 41 separate ‘Random Repertoires’ were created to
determine the expected number of distinct structures assum-
ing random structural sampling and given the observed struc-
tural sampling depth (see Methods). To do this, each individ-
ual’s Length-Accessible Repertoire Structures were sampled
randomly, without replacement, the same number of times as
the number of predicted modellable Fvs (Table 2).

Again taking ‘S64’ as an example, the 6,420,211 samples
comprising ‘Random Repertoire S64° yielded 2,187,257 dis-
tinct structures, equating to an average of 2.94 Fvs per dis-
tinct structure, compared to 30.66 (10.45x more) Fvs per dis-
tinct structure in the genuine repertoire. This provides strong
evidence that the modellable portions of antibody repertoires
occupy a highly focused region of modellable structure space
- roughly 10% of the expected number given the sample size
(Fig. 1), and 1% of a theoretical maximum estimate, across
the same CDR length combinations.

‘Public Baseline’ Structures in Unrelated Individuals.
We next investigated whether structural commonality exists
between baseline repertoire snapshots. This phenomenon
would be statistically extremely unlikely by chance, given the
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Fig. 1. Comparing genuine repertoire snapshot to synthetic ‘Random Repertoires’ (RRs). Each dot represents a distinct structure mapped onto a two-dimensional represen-
tation of ‘Length-Accessible Repertoire Structure’ space. The genuine repertoire snapshots of all three individuals (red = repertoire 1, blue = repertoire 2, green = repertoire
3) exhibit focused structural sampling, covering ~10% of the space as the corresponding RRs. Overlap analysis shows a high proportion of genuine repertoire distinct
structures can characterise an Fv in all three individuals (‘public structures’, represented by black circles). When the same overlap analysis is performed on the equivalent

‘Random Repertoires’, far fewer public structures are observed.
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Fig. 2. Structural overlap analysis. Datasets are arranged in order of their internal structural diversity (most diverse first). Distinct baseline structures from individual 1 are
clustered sequentially with all other repertoire snapshots. Distinct structures present in every tested dataset are classed as ‘public structures’, whereas those that are absent

in at least one individual are termed ‘private structures’.

focused structural sampling observed in each repertoire. To
do this, we performed structural clustering on pairs of reper-
toire snapshots, looking for evidence of structural overlap
(i.e. distinct structures assigned to a predicted modellable
Fv seen in both datasets, see Methods and Fig. 2).

Repertoire snapshots were ordered by their internal structural
diversity (‘S64’ first, through to ‘S4’). The 209,394 distinct
structures of S64 act as a reference set of cluster centres.
The 7,225,630 Fvs from snapshot S57 were then compared to
these S64 cluster centres. Structures present in both S57 and
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S64 were termed public across two individuals, while S64
and S57 distinct structures unique to their own dataset were
termed private. Next, the 6,827,419 Fvs from S5 were com-
pared to all public and private distinct structures observed in
S64 and S57. We again evaluated the number of public struc-
tures, this time present in all three datasets. We repeated this
analysis for all remaining baseline repertoire snapshots (first
ten results in Table 2, all 41 results in SI Table 3).

To date, all in silico analysis of antibody repertoires has sug-
gested that this number should drop rapidly towards 0. For
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Table 2. Public structure analysis across the ten most structurally diverse baseline repertoire snapshots. A table tracking the public structures across all datasets is available
as Sl Table 3. A statistical estimate for the number of public structures was derived by randomly sub-sampling each Random Repertoire to the yield the same number of
distinct structures as its equivalent baseline repertoire snapshot. The ‘Public Baseline’ Antibody Model Library was derived from the 27,389 shared structures up to volunteer

S89.

# of Repertoires Predicted Modellable | Cumulative Public Distinct Structures | Expected Public

(Dataset Added) Fvs Added Public & Private (Overall % Public) Distinct Structures
Distinct Structures (Overall % Public)

1 (S64) 6,420,211 209,394 209,394 209,394

2 (+S57) 7,225,630 340,915 100,824 (29.57%) 10,455 (3.07%)

3 (4S5) 6,827,419 445,045 71,743 (16.12%) 1,351 (0.30%)

4 (+S56) 6,628,683 527,668 58,043 (11.00%) 293 (0.06%)

5 (+S83) 6,170,373 604,124 48,703 (8.06%) 78 (0.01%)

6 (+S67) 5,544,952 670,833 42,277 (6.30%) 32 (< 0.01%)

7 (+S84) 5,624,598 734,374 37,151 (5.06%) 16 (< 0.01%)

8 (+576) 5,856,150 793,831 33,572 (4.23%) 9(<0.01%)

9 (+554) 5,074,822 846,670 30,474 (3.60%) 5(<0.01%)

10 (+S89) 5,414,820 896,328 27,389 (3.06%) 4 (< 0.01%)

example, a recent clonotype analysis of the baseline circu-
lating repertoire estimated that only around 0.022% of clono-
types were public across ten unrelated individuals (30). How-
ever, using our methodology, we found that the number of
public distinct structures decreased at a far slower rate, still
totalling 27,389 structures after ten unrelated individuals (Ta-
ble 2). This represents 3.06% of all distinct structures ob-
served up to that point, over 100 times the number of public
clonotypes found by Briney et al. in their much deeper reper-
toire samples. Clonotyping our baseline snapshots by the
same method, we observed just 26 public clonotypes across
the first two repertoires (S64 and S57), and no public clono-
types across the first three repertoires (S64, S57, and S5).

To provide a statistical estimate for how many distinct struc-
tures would be expected to be shared across these ten baseline
repertoires, the Random Repertoire distinct structures were
subsampled to match the corresponding number of baseline
repertoire distinct structures (see Methods). In contrast to the
genuine repertoires, the RRs overlapped sparsely, reaching
single digits of public structures by just the seventh volunteer
(Table 2).

We also tracked the cumulative number of public and private
structures over all 41 baseline repertoire snapshots (SI Table
4). Even after the first few most diverse datasets, the devi-
ation from an expected number of distinct structures (given
the same ratio of distinct structures:modellable Fvs observed
in S64) is quite substantial. This suggests that we might not
expect much deviation from our observed fraction of public
baseline distinct structures upon deeper repertoire sampling.
The existence of such a large number of ‘Public Baseline’
structures would be statistically extremely unlikely without
the presence of underlying functional commonality. Clono-
typing is fundamentally unable to capture the same depth of
signal, even on much deeper sequencing samples, as func-
tional selection is occuring at the level of structural and
paratopic similarity, which may not correspond with conser-
vation of gene transcript origin or high CDRH3 sequence
identity. Our structural profiling approach is therefore the
first computational method to provide supporting evidence
for the levels of baseline functional equivalence long hypoth-
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esised by immunologists.

The ‘Public Baseline’ Antibody Model Library. Predicted
structures shared between many individuals might represent
good starting points for therapeutic development. Their
widespread nature could point to their binding versatility, and
also to broad immune system tolerance across many individ-
uals, lowering the risk of drug immunogenicity.

We used ABodyBuilder (27) to construct an Antibody Model
Library (AML) based on the 27,389 ‘S64’ pairings predicted
to adopt a ‘Public Baseline’ structure (as defined by the ten
most structurally diverse repertoire snapshots). Some Fvs
failed to be entirely homology modelled. For example, oc-
casionally the CDRH3 template clashes irreparably with the
CDRL3 template during construction of the full Fv model,
necessitating ab initio treatment. Overall, 23,700 (86.53%)
of 27,389 pairings were entirely homology modelled and
comprise our ‘Public Baseline AML’ (SI Dataset 1).

We then investigated the reported species origin of the tem-
plates used to model the loops within our ‘Public Baseline
AML’ (Table 3). While this is only an approximate mea-
sure, as most PDB antibody structures are engineered to
some extent, human-origin templates were used considerably
more often to model the ‘Public Baseline’ Fvs than would
be expected from their abundance in the modelling database
(36.47% - 47.07% abundance; 72.63% - 95.69% usage). This

Table 3. The percentage of each Complementarity-Determining Region’s (CDR’s)
templates in the database with reported human origin, against the percentage us-
age of human-derived templates for CDRs in the ‘Public Baseline’ Antibody Model
Library (AML).

CDR Human Templates, Human Templates,
Database (%) Public Baseline AML
(%)
H1 37.99 93.46
H2 37.85 89.08
H3 36.47 72.63
L1 46.85 95.69
L2 47.00 92.56
L3 47.07 89.51
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Fig. 3. Venn diagrams showing the structural overlap between each individual’s ‘Before Vaccination’ dataset (a), ‘After Vaccination’ dataset (b), and ‘Pure After Vaccination’
dataset ((c), distinct structures arising only after vaccination). Total distinct structures: Before Vaccination - 1,444,597; After Vaccination - 1,823,628; Pure After Vaccination -

1,419,904. V1-V3 = Volunteer 1-3.

further emphasises the value added by starting with human
antibody repertoire data, and could indicate that our ‘Pub-
lic Baseline AML structures possess a lower risk of intrinsic
immunogenicity to humans.

To test whether our ‘Public Baseline AML’ already contains
antibodies proximal to known therapeutics, we mined Thera-
SAbDab (34) for all 100% sequence identical structures of
WHO-recognised therapeutics, selecting one per therapeutic
(see Methods). Of the 66 therapeutics with known structures
that had at least one antibody in our ‘Public Baseline AML’
with identical CDR lengths, all had a structural partner in
the AML within a C,, Fv RMSD of 1.84A, and 37 (56.1%)
had a structural partner within 1 .00A Fv RMSD. Eleven ther-
apeutic structures lay within 0.75A Fv RMSD of a ‘Pub-
lic Baseline AML’ structure (SI Table 5); these therapeutics
spanned a wide range of targets and were primarily success-
ful or promising drugs (4 approved, 5 active in Phase III, 1
active in Phase II, and 2 discontinued).

This result demonstrates that the antibody models within our
‘Public Baseline AML’, without any explicit design, can dis-
play high levels of geometric similarity to known therapeu-
tics. Screening libraries based on these commonly shared
structures holds significant promise for finding novel low-
immunogenicity therapeutics.

Structurally Profiling a Flu Vaccine Response. Clono-
typing is commonly used in antibody drug discovery to iden-
tify ‘expanded clones’ - novel genetic lineages present after
vaccination/infection but that were absent, or low concentra-
tion, beforehand (14). Here, we applied our repertoire char-
acterisation method to investigate whether we could identify
an analogous structural response to vaccination.

To this end, we used a longitudinal 2009 seasonal flu vaccina-
tion study by Gupta et al. (5), in which three unrelated indi-
viduals (‘V1-3”) were sequenced at many time-points before
and after vaccination. Sequences were again downloaded
from the OAS database, yielding ‘Before Vaccination’ and
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‘After Vaccination’ datasets for each individual, according to
the protocol described in the Methods. Using the same reper-
toire structural profiling protocol as above, we calculated the
number of distinct structures observed in each individual be-
fore and after vaccination (SI Table 4).

To obtain an estimate for the degree of structural commonal-
ity pre- and post-vaccination, we again used a greedy cluster-
ing approach to evaluate the structural overlap between the
‘Before Vaccination’ datasets, and between the ‘After Vacci-
nation’ datasets, separately (Fig. 3a, 3b). The first dataset
in each overlap assessment was the most structurally diverse
(i.e. the ‘V3’ individual before vaccination, and ‘V1’ after
vaccination).

Again, a significant number of public distinct structures were
observed in ‘V1°,V2’, and ‘V3’ (‘Public Before Vaccina-
tion’ structures, 17.78% (236,792/1,444,597) of all ‘Before
Vaccination’ distinct structures). This indicates that the
identification of ‘Public Baseline’ structures in the previous
section was unlikely due to serendipitous Ig-seq amplifica-
tion bias. Interestingly, 17.78% is a similar percentage of
sharing as that seen after three baseline snapshots (16.12%;
71,743/445,045).

The degree of structural sharing appears to increase after vac-
cination, with 19.23% (350,710/1,823,648) public structures
across the three volunteers. This is consistent with a degree
of repertoire structural convergence driven by exposure to the
same pathogenic epitopes.

To derive these convergent structures, the structural over-
lap between each individual’s ‘Before Vaccination’ and ‘Af-
ter Vaccination’ datasets was measured, only retaining ‘Af-
ter Vaccination’ pairings that could not be clustered into the
same individual’s ‘Before Vaccination’ distinct structures.
‘V1’ remained the most structurally diverse dataset, with
628,072 ‘Pure After Vaccination’ distinct structures. The
overlap between these ‘Pure After Vaccination’ pairings (Fig.
3c) was then compared. This yielded a mixed picture of con-
vergent and private vaccination response structures - 27.7%
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(393,187/1,419,904) of distinct structures were shared with
at least one other individual, and 6.18% (87,793/1,419,904)
were shared across all three individuals - which we term
‘Public Response’ structures.

There are two potential causes of overlap in the ‘Pure After’
vaccination set. One is a genuine common structural response
to vaccination, while the other is that the initial baseline
repertoire was under-sampled - i.e. the overlap reflects resid-
ual shared baseline structures. As a second test for baseline
deviation, beyond absence before vaccination, we compared
how many of the 27,389 ‘Public Baseline’ distinct structures
were within 1A of a ‘Public Before Vaccination’ binding site,
versus the number within 1A of a ‘Public Response’ Struc-
ture binding site. We observed that 80.0% (21,922/27,389)
of ‘Public Baseline’ structures were within 1A of a ‘Pub-
lic Before Vaccination’ structure, compared to just 24.2%
(6,621/27,389) proximal to a ‘Public Response’ structure.
This provides further evidence that a proportion of these con-
vergent ‘Public Response’ structures reside in a distinct re-
gion of structural space and could harbour epitope-specific
binding geometries. We have built a ‘Public Response AML’
based on these 87,793 shared structures, with 74,181 Fvs
(84.4%) successfully homology modelled (SI Dataset 2).

Discussion

In this work, we have structurally profiled antibody reper-
toires to capture new insights into the baseline and antigen-
responding immune system, and to create novel libraries of
antibody model structures that could be exploited for im-
munotherapeutic discovery.

All of the structural analysis in this paper is limited to the
antibody chains that are currently predicted to be modellable,
and so there remain regions of natural structural space unin-
vestigated. Nevertheless, we show that antibody repertoires
tend only to explore highly focused regions of currently-
modellable structural space (~10% of the diversity expected
if templates were explored randomly across the same combi-
nations of CDR lengths). This suggests that the current de-
gree of structural commonality would remain across the (as
yet) unmodellable regions of structural space.

The enormous sequence diversity exhibited across baseline
antibody repertoires has long appeared to run contrary to the
theory of baseline functional commonality. Here we have
shown that, at least from a structural perspective, there is
considerable opportunity for functional commonality across
the circulating resting-state repertoires of unrelated individ-
uals (~3% of observed distinct structures are public across
10 individuals). The theoretical chemical diversity that could
be displayed on each of these scaffolds is large, so many of
these grouped binding sites will not be complementary to the
same antigen epitope. However, there is good reason to be-
lieve that a certain proportion are, as geometric similarity
is a likely prerequisite of functional commonality, and our
structural clustering approach offers a route to detecting and
analysing these antibodies. This knowledge could then be
harnessed in vaccinology - for example, identifying an epi-
tope targetable by a ‘Public Baseline’ structure may lead to a
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more reliable and convergent response.

We hypothesise that human ‘Public Baseline’ structures are
more likely to display low levels of human immunogenic-
ity and be versatile binders. Building full three-dimensional
variable domain models of these distinct structures (an An-
tibody Model Library) produced geometries that were very
close to several approved and late-stage active therapeutic an-
tibodies targeting diverse antigens. To chemically elaborate
this ‘Public Baseline’ structural basis set, a phage display li-
brary on the order of 10°-107 sequence-unique human anti-
bodies could be created from the many different Fv sequences
predicted to adopt each public distinct structure.
Target-focused screening libraries against immunodominant
epitopes are commonly derived through sequence analysis of
longitudinal Ig-seq studies that track the immune response of
many individuals to the same antigen. We show that when
our methodology is applied to a longitudinal flu vaccina-
tion case study, we detect a higher level of structural con-
vergence, commensurate with response to similar epitopes
on the same antigen. We can also derive a large number of
‘Public Response’ structures, with divergent structural char-
acteristics from the baseline repertoire. These could contain
useful binding site structures exploitable for antigen-specific
library design.

There are inevitable biases in structurally profiling human
antibody repertoire data to suggest antibody leads for drug
discovery. One such biased property is CDRH3 length:
very short CDRH3 lengths will be under-sampled through
their sparsity in natural human sequences (29), while very
long CDRH3 lengths will be under-sampled because they are
more difficult to homology model accurately. While inher-
ent immunogenicity should be diminished by virtue of us-
ing naturally-expressed sequences, other developability is-
sues are still possible, as not every human antibody has the
biophysical properties ideal for large-scale manufacture and
long-term storage (29).

Nevertheless, we believe that our approach should find im-
mediate applicability in both in silico and in vitro screening.
We have made available the ‘Public Baseline’ and ‘Public
Response’ Antibody Model Libraries for further investiga-
tion, and will continue to build and share the Antibody Model
Libraries derived from other unpaired and paired VH+VL
datasets in the Observed Antibody Space database (9).

Methods

Immunoglobulin  Gene Sequencing Datasets. The
cleaned and translated antibody repertoire datasets (5, 30)
were downloaded directly from the Observed Antibody
Space (OAS) database (9). For the Gidoni data (30), only
individuals for whom > 100,000 IgM VH and >100,000 VL
sequences were recorded were analysed. In our analysis of
Gupta et al. (5), we used all three individuals (‘V1’ = ‘FV’,
‘V2’ = ‘GMC’, and ‘V3’ = ‘IB’). The ‘Before Vaccination’
data was defined as all VH and VL sequences recorded at
8 days, 2 days and 1 hour before vaccination. The ‘After
Vaccination’ data was defined as all VH and VL sequences
recorded at 1 week, 2 weeks, 3 weeks, and 4 weeks after
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vaccination. Sequences recorded 1 hour and 1 day after vac-
cination were discarded to avoid ambiguity. The ‘Pure After
Vaccination’ data contained ‘After Vaccination’ sequences
that did not fall into the structural clusters defined by each
individual’s ‘Before Vaccination’ repertoires. The seminal
work in which ‘FV’, ‘GMC’, and ‘IB’ were vaccinated is
detailed in Laserson et al. (4), however the data we use
derives from Gupta et al. (5), who re-analysed each antibody
repertoire snapshot with Illumina sequencing.

Repertoire Structural Profiling Pipeline. The described
structural profiling pipeline was optimised from the protocol
reported in the Supporting Information of Proc. Natl. Acad.
Sci. (2019) 110(6):4025-4030 (29).

CDR modellability analysis. Each sequence was first num-
bered using ANARCI (35) according to the IMGT numbering
scheme (36), and the closest framework region (variable do-
main with North-defined CDRs (31) excised) in the SAbDab
(23) database (12t February 2019) was identified. In the
IMGT numbering scheme, the North CDRs lie between the
following residue numbers - CDRH1: 24-40; CDRH2: 55-
66; CDRH3: 105-117; CDRL1: 24-40; CDRL2: 55-69;
CDRL3: 105-117.

FREAD (37, 38) was then used to attempt to map each Ig-
seq sequence to a length-matched North CDR template. The
FREAD CDR databases were timestamped to 12" February
2019, and contained the following numbers of templates -
CDRHI1: 2,526; CDRH2: 2,575; CDRH3: 2,502; CDRLI:
2,355; CDRL2: 2,373; CDRL3: 2,376. All loop templates
contain the North-defined CDR loop and 5 ‘anchor residues’
before and after the loop. Selection of CDRH3 templates
was performed according to a bespoke set of Environment-
Specific Substitution Score (ESS) thresholds established us-
ing Ig-seq data: Lengths 5-8, ESS > 25; Lengths 9-10, ESS
> 35; Lengths 11+, ESS > 40 (see SI Methods). Each tem-
plate surpassing the threshold was subsequently grafted onto
the corresponding framework anchor residues. The loop tem-
plate with the lowest calculated C, anchor RMSD was se-
lected. Any sequences for which at least one loop could not
be modelled were removed from the dataset.

Sequence clustering. The modellable chains were then se-
quence clustered using CD-HIT (39) at a 90% sequence iden-
tity threshold, to reduce the number of VH-VL pairing com-
parisons to a computationally-tractable number.

Predicting modellable VH-VL orientations. The 20 most im-
portant VH-VL interface residues for orientation prediction
were derived; a sequence identity of 85% over these 20
residues resulted in an orientation RMSD of < 1.5A ~ 80%
of the time (see SI Methods).

All remaining VH and VL domains after sequence clustering
were paired together, and their 20 key interface residues were
recorded. If the sequence identity over these residues was >
85% to at least one of 1,129 reference Fvs, the interface was
classed as modellable - otherwise the VH-VL pairing was
discarded. If multiple reference Fvs shared > 85% identity,
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the predicted modellable VH-VL pairing inherited the orien-
tation parameters of the Fv reference with highest sequence
identity.

Identifying distinct structures. At this stage, each predicted
modellable VH-VL pairing (Fv) has eight associated param-
eters: its orientation template, its six CDR templates, and
a length vector recording the combination of North CDR
lengths (31) present in its binding site. Fvs were then struc-
turally clustered to identify ‘distinct structures’ according
to the following process. First, identically-predicted bind-
ing sites (for which the eight predicted parameters were the
same) were identified. The retained pairing was randomly
chosen, except in the overlap studies - if one of the pairings
was present as a distinct structure of the first dataset, this pair-
ing was selected and recorded as a shared structure across
both repertoires.

Next, singleton length clusters were identified and assigned
as separate distinct structures, avoiding inaccurate RMSD
comparisons between loops of differing length. The remain-
ing interfaces were split by their CDR length combinations,
and were greedily clustered with all other pairings sharing
the same length vector as follows:

1. Select the first pairing as a distinct structure (cluster cen-
tre).

2. Select the next pairing. If the orientation RMSD to all
existing cluster centre orientation templates exceeds 1.5 A,
classify the new pairing as a distinct structure. Otherwise:

3. Calculate the RMSD between the CDR templates of the
new pairing with those of all existing cluster centres using
the formula:

(H1—H3,L1-L3) 12
2x D, Ix

Z&HI—HS,LI—LS) Lx

where the sum over X refers to each of the six CDRs, Lx is
the length of North CDRX, and Dy, is the C, RMSD be-
tween the CDRX in Fv 1 and Fv 2. If this value exceeds
1 A to all existing structural cluster centres, the pairing is
assigned as a distinct structure. Otherwise the pairing is
stripped from the dataset.

4. Return to step 2 until all pairings have been analysed.

Overlap Comparison. To identify shared structures be-
tween two Ig-seq repertoire snapshots, the distinct structures
from the first snapshot were listed followed by all predicted
modellable Fvs of the second repertoire snapshot, as an in-
put file to the clustering algorithm. The greedy clustering
ensured that all distinct structures from the first dataset re-
mained as cluster centres, and allowed for the identification
of pairings in the second dataset that were also predicted to
occupy the same structural neighbourhood.

‘Random Repertoires’. To contextualise the structural di-
versity displayed in human antibody repertoires, we de-
rived ‘Random Repertoires’ (RRs) according to the follow-
ing method. First, a set of Modellable Repertoire Struc-
tures (MRS) was generated. When generating a structure,
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one of any of the 1,129 orientation templates, 2,502 FREAD
CDRH3 templates, and 2,376 FREAD CDRL3 templates
were available for selection. To mirror the genetics of the
immune system (as they would be encoded on the same V
gene transcript), CDR1 and CDR2 templates were restricted
to being selected from the same SAbDab structure, limiting
our choice to one of 2,519 CDRH1/2 templates and 2,345
CDRLI1/2 templates. Each of these five sets was randomly
sampled over 180 million times to create the MRS dataset.
This was then filtered to create 41 Length-Accessible Reper-
toire Structure (LARS) datasets, containing only the combi-
nations of CDR lengths observed in each baseline repertoire
snapshot. Finally, RRs were created by sampling each LARS
set the same number of times as the number of predicted
modellable Fvs in the corresponding baseline repertoire snap-
shot.

To obtain statistically expected values for structural over-
lap across individuals, the distinct structures from ‘RR_S64’
were randomly subsampled the same number of times as the
number of distinct structures seen in ‘S64’ itself, yielding
random distinct structure samples occupying the same pro-
portion of LARS-space. The process was repeated for each
RR dataset, normalising to each respective baseline reper-
toire snapshot. Overlap comparison was then performed as
described above, starting from the ‘RR_S64’ distinct struc-
tures, followed by all the pairings that fell into the selected
‘RR_S57’ distinct structures, etc.

Clonotyping. Clonotyping was performed to group antibod-
ies with the same closest V and J gene, and identical CDRH3
sequences, as in Briney et. al. (1).

Antibody Model Library Construction. Antibody model
libraries (AMLs) were constructed with a parallel implemen-
tation of ABodyBuilder (27), using the FREAD (37, 38) En-
vironment Specific Substitution Scores derived from Ig-seq
benchmarking (see CDR Modellability Analysis). Some pre-
dicted modellable Fvs are not entirely homology modellable,
as loop modellability is considered on a per-chain basis and
does not take into account inter-chain loop clashes that be-
come evident only upon full Fv homology modeling. Fvs
that required any degree of ab initio modelling to fix such
issues were trimmed out of the dataset.

Comparison to Antibody Therapeutics. The set of 89
therapeutics with 100% sequence identical structures (as of
November 2019) were retrieved from Thera-SAbDab (34).
A single structure was chosen for each therapeutic for the
RMSD analysis; if multiple structures were available, we se-
lected unbound structures with the best resolution. RMSD
comparisons were only made between therapeutics and AML
structures with matching combinations of CDR lengths. Fv
RMSD was calculated over all C,, atoms after alignment of
backbone atoms, using an in-house script.
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