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1 Abstract

3 High co-morbidity and substantial overlap across psychiatric disorders encourage a transition
4 in psychiatry research from categorical to dimensional approaches that integrate neuroscience
5 and psychopathology. Cerebellum is involved in a wide range of nonmotor cognitive
6  functions and mental disorders. An important question thus centers on the extent to which
7 cerebellar function can be linked to transdiagnostic dimensions of psychopathology. Here, this
8 question is investigated using partial least squares to identify latent dimensions linking
9  cerebellar connectome properties as assessed by macroscale spatial gradients of connectivity
10 to a large set of clinical and behavioral measures in 198 participants across diagnostic
11  categories. This analysis reveals significant correlated patterns of cerebellar connectivity
12 gradients and behavioral measures that could be represented into four latent dimensions:
13 general psychopathology, general lack of attention regulation, internalizing symptoms, and
14  dysfunctional memory. Each dimension is associated with a distinct spatial pattern of
15  cerebellar connectivity gradients. These findings highlight the relevance of cerebellar
16  connectivity as a necessity for the study and classification of transdiagnostic dimensions of
17  psychopathology .

18

19 Introduction

20

21  Our understanding of cerebellar contributions to neurological function has changed from a
22  traditional view focused on motor coordination, to a modern understanding that also
23 implicates the cerebellum in a broad range of high-level cognitive and affective processes.
24 An increasing body of evidence also supports cerebellar involvement in a wide range of
25  psychiatric disorders.>® Up to now, most psychiatric studies investigating the role of the

26  cerebellum have been conducted based on categorical diagnostic criteria that view psychiatric
2
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1 disorders as independent entities.* It is increasingly recognized that existing clinical
2  diagnostic categories might be suboptimal, as there is substantial overlap in symptoms,
3 cognitive dysfunction and genetic factors across multiple psychiatric disorders.*® These
4 overlaps can be reflected by shared neurobiological structure and function, and polymorphism
5  abnormalities across psychiatric syndromes."® The high rates of comorbidity between
6  psychiatric disorders and heterogeneity within one diagnostic group further exacerbates this
7  problem.’®*? This context has motivated transdiagnostic initiatives, such as the National
8 Institute of Mental Health’s Research Domain Criteria,** which encourages a transition in
9  psychiatry research from categorical to dimensional approaches that integrate neuroscience
10  and psychopathology.*®

11 Recent clinical neuroscience studies have begun to adopt transdiagnostic approaches to
12 highlight the importance of altered cerebellar structure in broad risk for psychopathology.**™°
13 Previous animal and human neuroimaging studies have provided converging evidence for the
14 involvement of cerebellar function in a wide range of behaviors that are dependent on circuits
15  connecting the cerebellum with multiple cerebral cortical regions.**™ Accumulating
16  evidence supports dysfunctional cerebellar connectivity in many psychiatric disorders, such as
17  schizophrenia,® bipolar disorder,”> major depression,” attention-deficit/hyperactivity
18  disorder® and autism.”* Moreover, study of clinical high-risk subjects demonstrate that
19  dysconnectivity of cerebellar circuits can serve as a state-independent neural signature for
20  psychosis prediction and characterization.”® Within this context, an understudied area of
21  investigation is the extent to which cerebellar function can be linked to transdiagnostic
22 dimensions of psychopathology.

23 Resting-state functional connectivity has been widely used to characterize disconnection

24 mechanisms in many psychiatric disorders,?**’

and is a promising tool for deepening our
25  understanding of transdiagnostic dimensions.”®° However, previous studies investigating

26  functional connectivity-informed dimensions of psychopathology often ignore the importance
3
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1  of the cerebellum, e.g., by using a coarse delineation of the cerebellum with only a few

2930 Recent developments in

2  regions of interest to represent the whole cerebellar information.
3 cerebellar functional mapping indicate that cerebellar functional organization can be
4  characterized using macroscale spatial gradients of connectivity, a low dimensional
5 continuous space that reflects the overarching spatial patterns that underpin the observed
6 neural data.** The principal connectivity gradient of cerebellar cortex captures a progression
7 from sensorimotor to cognitive processing areas,*! similar to the organization of the cerebral
8  cortex.***® This low-dimensional representation of the principal axis of cerebellar macroscale
9 functional organization thus provides a useful tool to characterize cerebellar function at the
10  single-subject level which can then be correlated with single-subject behavioral measures.
11  This approach offers an unprecedented opportunity to interrogate the relationship between
12 cerebellar functional organization and behavioral measures of clinical phenomena, cognitive
13 ability, and personality traits in mental health and disease.
14 In this study, we analyzed UCLA Consortium for Neuropsychiatric Phenomics open access
15  dataset, a large resting-state fMRI and behavioral dataset®® using gradient-based and partial
16 least squares, a multivariate data-driven statistical techniques with the objective to discover
17  the latent dimensions that link cerebellar functional organization to behavioral measures
18  spanning clinical, cognitive, and personality trait domains (Table S1 and Table S2) across
19  healthy controls (HC, n=92) and patients with attention-deficit/hyperactivity disorder (ADHD,
20  n=35), bipolar disorder (BD, n=36) and schizophrenia (SZ, n=35). Table 1 shows a summary
21  of demographic and clinical information of each group. This approach yielded dimensions
22  that optimally linked co-varying cerebellar connectivity gradients and behavior in individuals
23 across traditional diagnostic categories, in accordance with a transdiagnostic dimensional
24 approach. Multiple control analyses were used to optimize the robustness of these latent
25 dimensions. Furthermore, we performed 10-fold cross-validation to assess the generalization

26  performance of latent dimensions to unseen test data. Importantly, cross-validation
4
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approaches can help guard against overfitting that arises from high dimensional

neurobiological data.®

Results

Patter n of the principal functional connectivity gradient in cerebellum

The principal gradient (or principal gradient) explains as much of the variance in the data as
possible (~30%, Figure 1), represents a well-understood motor-to-supramodal organizational
principle in the cerebellar connectivity. The principal connectivity gradient of cerebellar
cortex captureed a progression from sensorimotor to cognitive processing areas. Specifically,
it extended bilaterally from lobules 1\VV/V/V1 and lobule V111 to posterior aspects of Crus | and
Crus Il as well as medial regions of lobule 1X. This observed spatial distribution was similar
to previous reports of the principal functional conectivity gradient of the cerebellar cortex in
healthy humans.**

A. The principal cerebellar gradient B. Variance explained by gradient

0.3075

0.25-

=
[y
=

Variance
=
o

010"

0 20 30 40 5 60 70 80
Gradient number

Figure 1. (A) The principal cerebellar connectivity gradient. (B) Covariance explained by
each gradient. Red circles correspond to the gradients that explained at least a variance of 1%.

Four Robust LVsLinking Cerebellar Gradients and Behavior
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1  PLS correlation analysis revealed five significant latent variables (LVs) that reflect the direct
2  covariant mapping between cerebellar connectivity gradients and behavioral measures. Since
3 the fifth LV did not show robustness in control analyses as detailed in Table S3, we only
4  focused on the first four LVs (LV1: r=0.62, permuted p=2.0x10% LV2: r=0.56, permuted
5  p=2.0x10%; LV3: r=0.61, permuted p=3.0x10%; LV4: r=0.60, permuted p=1.2x10"%; Figures 2,
6 3, 4, 5A). The variance explained by each LV was 19.5%, 13.7%, 8.8% and 6.0%,
7  respectively (Figure S1). Importantly, 10-fold cross-validation confirmed generalizability (i.e.
8  robustness of results in new data) of the first four LVs, as indicated by significant correlation
9  between cerebellar gradient and behavioral composite scores in the test folds (LV1, r=0.21,
10  p=2.5x10" LV2, r=0.27, p=2.1x10>% LV3, r=0.22, p=2.3x10"% LV4, r=0.16, p=2.5x10").
11 Furthermore, the four LVs were robust to GSR and total cerebellar grey matter volume
12 regression, as indicated by the high correlation (r>0.83) between saliences of original PLS
13 and PLS with GSR or total cerebellar grey matter volume regression. In addition, each
14  diagnostic group contributed similarly to the overall composite correlations of these four LVs
15 (FDR g > 0.05 for all pairwise comparisons, see Table S4). We also found that age, sex,
16  education, site, or FD were not associated with any LV (Table S5).

17 LV1: general psychopathology

18 The main contributors of behavior to LV1 were overall associated with greater
19  psychopathology, e.g., higher impulsiveness, mood lability, dysfunctional impulsivity,
20 anxiety, depression, somatization, social/physical anhedonia (Figure 2B) and psychotic
21  symptoms (Table S6) including mania, delusions and hallucinations; in addition to worse
22 high-order cognitive control (e.g., working memory). LV1 included positive weight in
23 cerebellar lobules V, VI, VIIIA and VIIIB and negative weight in Crus | and Il (Figure 2C).
24 Notably, both cerebellar gradient and behavioral composite scores were higher in all
25  diagnostic groups when compared with HCs (Figure 2D; all differences were statistically

26  significant except for ADHD). Exploratory analyses indicated that higher cerebellar gradient
6
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1 and behavioral composite scores in LV1 were associated with greater medication load. There
2 was no significant association between LV1 composite scores and substance use (Table S5).
3 Our interpretation is that LV1 is associated mainly with general psychopathology and high-

4 order cognitive control deficits (see discussion).

C. Significant gradient features
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6 Figure 2. Latent variable 1: general psychopathology. (A) Correlation between cerebellar

7  connectivity gradient and behavioral composite scores of participants. (B) Significant
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1 behavioral features associated with LV1. The contribution of each behavior is measured by
2 correlations between participants’ behavioral scores and the corresponding behavioral
3 composite scores. Error bars indicate bootstrapped standard deviations. (C) Significant
4  gradient pattern associated with LV1. The contribution of each voxel is measured by
5 correlation between participants’ cerebellar gradient scores and the corresponding cerebellar
6 gradient composite scores (FDR correction, g<0.05). Gradient pattern displayed on cerebellar
7 flat maps were generated using the SUIT toolbox
8  (http://www.diedrichsenlab.org/imaging/suit.htm). (D) Group differences in cerebellar
9  connectivity gradient and behavioral composite scores. Significant differences are indicated
10 by asterisks (FDR correction, q < 0.05).
11  LV2: general lack of attention regulation
12 The main contributors of behavior to LV2 were mainly involved in a general lack of attention
13  regulation, e.g., higher ADHD symptoms, attention impulsivity, depression, mood lability,
14 interpersonal sensitivity, daydreaming and social anxiety, and lower control ability and
15  persistence (Figure 3B). LV2 included positive weight in cerebellar Crus I, Il and lobule IX
16  and negative weight in lobules VI, VIIB and VIIA (Figure 3C). Notably, patients with
17 ADHD had the highest cerebellar gradient scores for LV2 (Figure 3D). Behavioral composite
18  scores were significantly higher in patients with ADHD or BD than in HC and patients with
19 SZ. There was no significant association between composite scores and medication load or
20  substance use (Table S5). Our interpretation is that LV2 is associated mainly with inadequate

21  attention regulation (see discussion).
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2  Figure 3. Latent variable 2: general lack of attention regulation. (A) Correlation between
3 cerebellar connectivity gradient and behavioral composite scores of participants. (B)
4  Significant behavioral features associated with LV2. The contribution of each behavior is
5 measured by correlations between participants’ behavioral scores and the corresponding
6 behavioral composite scores. Error bars indicate bootstrapped standard deviations. (C)
7 Significant gradient pattern associated with LV2. The contribution of each voxel is measured

8 by correlations between participants’ cerebellar gradient scores and the corresponding
9
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1  cerebellar gradient composite scores (FDR correction, g<0.05). (D) Group differences in
2  cerebellar connectivity gradient and behavioral composite scores. Significant differences are
3 indicated by asterisks (FDR correction, g < 0.05).

4  LV3:internalizing symptoms

5  The main contributors of behavior to LV3 were mainly correlated with behavioral measures
6 related to internalizing symptoms, e.g., higher harm avoidance, social anxiety, control,
7  anhedonia, and somatization, and less externalizing symptoms, e.g., functional and motor
8 impulsivity as well as novelty seeking (Figure 4B). LV3 included positive weight in
9  cerebellar anterior vermis (I-VI) and negative weight in left Crus I, Il, as well as lobules
10 VIIA and VIIIB (Figure 4C). Cerebellar gradient and behavioral composite scores were
11  significantly higher in patients with BD or SZ when compared with patients with ADHD
12 (Figure 4D). Higher cerebellar gradient and behavioral composite scores were associated with
13  greater medication load (Table S5). There was no significant association between LV3
14  composite scores and substance use (Table S5). Our interpretation is that LV3 is associated

15  mainly with higher internalizing symptoms and lower externalizing behavior (see discussion).

10
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2  Figure 4. Latent variable 3: internalizing symptoms. (A) Correlation between cerebellar
3 connectivity gradient and behavioral composite scores of participants. (B) Significant
4 Dbehavioral features associated with LV3. The contribution of each behavior is measured by
5 correlations between participants’ behavioral scores and the corresponding behavioral
6 composite scores. Error bars indicate bootstrapped standard deviations. (C) Significant

7  gradient pattern associated with LV3. The contribution of each voxel is measured by

11
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1  correlations between participants’ cerebellar gradient scores and the corresponding cerebellar
2 gradient composite scores (FDR correction, g<0.05). (D) Group differences in cerebellar
3 connectivity gradient and behavioral composite scores. Significant differences are indicated
4 Dy asterisks (FDR correction, q < 0.05).

5 LV4: dysfunctional memory

6  The main contributors of behavior to LV4 included worse performance in multiple memory
7  domains, as well as with less somatization, interpersonal sensitivity and depression (Figure
8 5B). LV4 included positive weight in Crus I, Il and lobules IX and negative weight in lobule
9 VI (Figure 5C). There was no significant difference among diagnostic groups (Figure 5D).
10 There was no significant association between composite scores and medication load or
11  substance use (Table S5). Our interpretation is that LV4 is associated mainly with

12 dysfunctional memory (see discussion).

12
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2 Figure 5. Latent variable 4: dysfunctional memory. (A) Correlation between cerebellar
3 connectivity gradient and behavioral composite scores of participants. (B) Significant
4 behavioral features associated with LV4. The contribution of each behavior is measured by
5 correlations between participants’ behavioral scores and the corresponding behavioral
6 composite scores. Error bars indicate bootstrapped standard deviations. (C) Significant

7 gradient pattern associated with LV4. The contribution of each voxel is measured by
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1  correlations between participants’ cerebellar gradient scores and the corresponding cerebellar
2 gradient composite scores (FDR correction, q<0.05). (D) Group differences in cerebellar
3 connectivity gradient and behavioral composite scores. There were no significant differences
4 among diagnostic groups in LV4 (FDR correction, g<0.05).
5 Control Analyses
6  Additional control analyses ensured the robustness of the first four LVs to cerebellar gradients
7  based on cerebellar-cerebral FC, confounding variables, non-Gaussian distributions of the
8 behavioral data, diagnostic factors (HCs and patients separately), and site factors (each site
9  separately) (see Supporting Information and Table S3). Results of PLS using only control
10 individuals or only patients demonstrated moderate to high correlations with original saliences
11  for the first four LVs. However, correlations dropped to 0.14 and 0.22 for LV5 (Table S3);
12 hence we did not describe LV5.
13
14  Discussion
15
16  Although the importance of cerebellar function in mental health and disease is increasingly
17  recognized, the degree to which cerebellar connectivity is associated with transdiagnostic
18  behavioral dimensions of psychopathology remains largely unknown. Leveraging a unique
19  dataset including resting-state fMRI and behavioral assessments spanning clinical, cognitive,
20  and personality traits, we found robust correlated patterns of cerebellar connectivity gradients
21  and behavioral measures that could be represented in four transdiagnostic dimensions. Each
22 dimension was associated with a unique spatial pattern of cerebellar connectivity gradients,
23 and linked to different clusters of behavioral measures, supporting that individual variability
24 in cerebellar functional connectivity can capture variability along multiple behavioral
25 dimensions across psychiatric diagnoses. Our findings highlight the relevance of cerebellar

26  neuroscience as a central piece for the study and classification of transdiagnostic dimensions
14
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1  of psychopathology — and ultimately for the diagnosis, prognosis, treatment, and prevention of
2 mental illness.

3 A large body of literature has shown cerebellar functional abnormalities in mental disorders.?*
4 New trends in psychiatry focus on transdiagnostic dimensions of psychopathology.**® The
5  present study is the first to link both approaches. Adopting a transdiagnostic approach, three
6 influential studies analyzing brain structure showed that alterations in cerebellar structure is
7 associated with broad risk for psychopathology.*™® However, these studies focused on
8 clinical symptoms or cognitive function. The broader set of behavioral phenotypes in the
9  present study allowed us to explore other dimensions of psychopathology, not constrained
10  within the limits of clinical symptoms commonly investigated in many transdiagnostic
11 studies.’>'®#39373% prior cerebellar structure studies using factor analyses suggested the
12 presence of latent dimensions of psychopathology such as internalizing symptoms,
13 externalizing symptoms, and psychosis symptoms,* as well as a general psychopathology (or
14  p) factor.** While these dimensions are reliable and reproducible, they are entirely derived
15 from clinical assessments, not informed by brain-based data such as fMRI functional
16  connectivity. More broadly, previous studies investigating functional connectivity-informed
17  dimensions of psychopathology often ignore the importance of the cerebellum, e.g., by using
18 a coarse delineation of the cerebellum with only a few regions of interest to represent the
19 whole cerebellar information.®®® These limitations were overcome in the present
20  investigation. Further, compared to methods that focus on a single view (such as factor
21  analysis applied on clinical data), the present study derived behavioral dimensions from co-
22 varying individual differences in connectivity gradients and behavioral measures. This
23 approach resonates with the Research Domain Criteria research framework that encourages
24 the integration of many levels of information.*
25  Our study indicates that individual variability in cerebellar functional connectivity gradient

26  organization captures variability along multiple behavioral dimensions across mental health
15
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1 and disease. The associations with diverse dimensions of psychopathology were expected
2  based on the consensus that the cerebellum is involved in virtually all aspects of behavior in
3 health and disease.' In 1998, Mesulam proposed that brain regions can be organized along a
4 gradient ranging from sensory-motor to higher-order brain processes.® In line with Mesulam,
5 most of the variance of cerebellar RSFC resembles a gradient that spans from primary
6  sensory-motor cortices to high—order transmodal regions of the default-mode network.*! This
7  principal gradient may thus represent one fundamental principle driving a hierarchical
8 organization of cerebellar motor, cognitive, and affective functions. Here we show for the first
9 time that there is a link between this principal gradient of cerebellar organization and
10  behavioral measures across individuals with and without diagnoses of cognitive or affective
11  disease.
12 Functional gradient organizations in the brain have been proposed to reflect an architecture
13  that optimizes the balance of externally and internally oriented functioning, which is critical
14  for flexibility of human cognition.® In this gradient organization, association areas are located
15 at maximal distance from regions of primary areas that are functionally specialized for
16  perceiving and acting in the here and now, supporting cognition and behavior not constrained

17 by the immediate environment.***** The

intricate neuronal circuitry of the cerebellum has
18  been hypothesized to function as a “forward controller,” creating internal models of how a
19  given behavioral output will dynamically fit with contextual information,*> which is critical
20 for monitoring and coordinating information processing in the service of mental
21 processes."***" Thus, information processing in cerebellar circuits associated with multiple
22 transdiagnostic dimensions of psychopathology shown here may reflect impaired monitoring
23 and coordination of information—including one’s own thoughts and emotions—necessary to

24 guide behavior, reflecting an imbalance of externally and internally oriented functioning,

25  which may serve as possible intermediate phenotypes across mental health and diseases.

16
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1  The most significant finding of the present investigation is the demonstration of an association
2  between individual variations in cerebellar functional gradient values and multiple behavioral
3 measures across mental health and diseases. Most behavior indicators were related to more
4 than one dimension (Figure 2-5C). However, we noticed that the loadings of each behavior to
5 each dimension can vary greatly, which highlighted the unique and different clusters of
6 behavioral measures contributing to each dimension. As other brain-behavior association
7 studies using multivariate analysis based on machine learnig,*® while it is not possible to
8 provide a definitive characterization of the functional significance of each LV based on the
9 analyses presented here, we here present one possible line of interpretation.
10 In LV1, greater behavioral composite score was associated with greater behavioral measures
11  that we interpreted as general psychopathology and higher-cognitive control disabilities
12 (including impulsiveness, mood lability, dysfunctional impulsivity, anxiety, depression,
13 somatization, social/physical anhedonia and psychotic symptoms including mania, delusions
14 and hallucinations). In line with the interpretation of LV1 as general psychopathology, both
15  cerebellar gradient and behavioral composite scores were higher in all diagnostic groups when
16  compared with HCs. Factor-analytic studies of multiple symptoms and diagnoses suggest that
17  the structure of mental disorders can be summarized by three factors: internalizing,
18  externalizing, and thought disorders.”> The empirical observation that even these three
19  transdiagnostic latent factors are positively correlated® has given rise to a more radical
20  hypothesis, which is that there is the general psychopathology (or p) factor,* which is thought
21 to reflect individuals’ susceptibility to develop “any and all forms of common
22 psychopathologies”®® The p factor has been extended to index functional impairment,
23 negative affect, emotion dysregulation, and cognitive deficits (e.g., attention and memory
24 problems) (for a review see’). LV1 may thus reflect the p factor widely discussed in

25  transdiagnostic cohorts.**

17
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1 In LV2, greater behavioral composite scores were predominantly correlated with greater
2  scores in areas related to a general lack of attention regulation including ADHD symptoms
3 and attention impulsivity. Importantly, patients with ADHD had the highest gradient
4 composite scores. LV2 might thus capture inattention and impulsivity/hyperactivity
5 symptoms which characterize ADHD. However, other dimensions such as depression and
6  schizoid personality were also included in LV2, arguing against a purely inattention-related
7  nature of LV2.
8 In LV3, greater behavioral composite scores were dominantly correlated with greater
9  behavioral measures related to internalizing symptoms (including harm avoidance, social
10  anxiety, control, and anhedonia) and lower externalizing symptoms (including functional and
11 motor impulsivity, novelty seeking, and hypomanic personality). LV3 may thus reflect an
12 internalizing vs. externalizing factor.***
13 LV4 was predominantly associated with negative correlations with behavioral measures, most
14  strongly in the memory domain (long delay free recall, short delay cued recall, long delay
15  cued recall, short delay free recall, and visual reproduction delayed recall). LV4 might thus
16  dominantly reflect dysfunctional memory, although other behavioral domains also played a
17  significant role in the behavioral composition of LV4 including restlessness, somatization,
18  and persistence.
19  Notably, Kebets and colleagues investigated RSFC-informed dimensions of psychopathology
20 in the CNP dataset,” focusing on connectivity within and between cerebral and subcortical
21 areas and derived a general psychopathology variable similar to LV1 in our study (other LVs
22 were different), indicating that cerebral and cerebellar analyses might offer complementary
23 information regarding the relationship between brain activity and behavioral measures. Future
24 studies analyzing both cerebral and cerebellar data might determine whether cerebellar data
25  offers similar or distinct information regarding the relationship between brain activity and

26  behavioral measures when compared to analyses of cerebral data.
18
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1 While providing novel evidence for associations between cerebellar hierarchical organization
2 shown by fMRI and different dimensions of psychopathology, our analyses can provide only
3 correlational — not causal — inferences between cerebellar function and behavior; future
4 interventional experiments such as brain stimulation studies may be able to demonstrate not
5 only an association but also a causal link between cerebellar function as indexed by functional
6 gradients and behavioral measures. Another limitation that can be addressed in future research
7 includes the relatively limited range of diagnostic categories in the patient population (ADHD,
8 Sz, and BD); future research may extend our analyses to include additional patient
9 populations. The analyses on the impact of medication and substance use were exploratory in

10 our study; future studies with higher statistical power might adopt stronger statistical

11  thresholds to study medication and substance use effects.

12 In summary, our results support an association between cerebellar functional connectivity

13 gradients and multiple behavioral dimensions of psychopathology (general psychopathology,

14  general lack of attention regulation, internalizing symptoms and dysfunctional memory)

15 across healthy subjects and patients diagnosed with a variety of mental disorders. These

16  findings highlight the importance of cerebellar function in transdiagnostic behavioral

17  dimensions of psychopathology, and contribute to the development of cerebellar neuroscience

18 as a tool that may significantly contribute to the diagnosis, prognosis, treatment, and

19  prevention of cognitive and affective illness.

20

21  Methods

22  Participants

23 Data from the UCLA Consortium for Neuropsychiatric Phenomics (CNP) dataset ** were

24 downloaded from OpenNeuro (https://openneuro.org/datasets/ds000030/versions/00001). This

25 dataset consists of neuroimaging and behavioral data from 272 right-handed participants,

26  including both HC (n=130) and individuals with neuropsychiatric disorders including SZ
19
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1 (n=50), BD (n=49), and ADHD (n=43). Details about participant recruitment can be found in

2 the original publication.®* Written informed consent was obtained from all participants and

3 related procedures were approved by the Institutional Review Boards at UCLA and the Los

4 Angeles County Department of Mental Health. Table 1 shows a summary of demographic and

5 clinical information of the 198 participants who survived image preprocessing quality controls

6  (see below).

7  Behavioral assessment

8 The CNP behavioral measures encompass an extensive set of clinical, personality traits,

9 neurocognitive and neuropsychological scores (Table S1). Behavioral measures were
10  excluded from the partial least squares (PLS) analysis when data was missing for at least 1
11  participant among the 198 participants. As a result, we included a set of 55 behavioral and
12 self-report measures from 19 clinical, personality traits, neurocognitive and
13 neuropsychological tests in the PLS analysis. Table S2 summarized the behavioral measures
14  for each group. Excluded behavioral measures were considered in post-hoc analyses (Table
15  S6).
16  Data Acquisition and | mage Prepr ocessing
17  Resting-state functional and structural MRI data were collected on two 3T Siemens Trio
18  scanners at UCLA using the same acquisition parameters. Resting-state functional MRI data
19  were collected using a T2*-weighted echoplanar imaging sequence with the following scan
20  parameters: TR/TE=2000ms/30 ms, flip angle = 90°, matrix 64 x 64, field of view (FOV)
21  =192*192 mm?, 34 interleaved slices, slice thickness =4 mm, and oblique slice orientation.
22 The resting fMRI scan lasted 304 s for each participant, and 157 volumes were acquired.
23 During scanning, all participants were instructed to keep relaxed and keep their eyes open.
24 Additionally, T1-weighted high-resolution anatomical data were acquired for each participant

25 using an MPRAGE sequence (scan parameters: TR/TE= 1900 ms/2.26 ms, matrix=256 x 256,

20
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1 FOV=250*250 mm?, sagittal plane, slice thickness =1 mm, 176 slices). The anatomical data
2 were used to normalize functional data. See Supporting Information for details.
3 Among the 272 participants, there were seven participants with missing T1 weighted scans,
4 four participants were missing resting-state functional MRI data scans, and 1 participant had
5  signal dropout in the cerebellum,® thus only data from 260 participants were preprocessed.
6 All preprocessing steps were consistent with our previous study.’**® In brief, the
7  preprocessing steps included slice timing, realignment, normalization, wavelet despiking of
8 head motion artifacts, regression of linear trend, Friston 24 head motion parameters, white
9 matter and CSF signal, and filtering (0.01-0.1 Hz) (see Supporting Information for details).
10  Because global signal may be an important neuroimaging feature in clinical populations,* we
11  did not conduct global signal regression (GSR) in our main analyses, but GSR was considered
12 in control analysis. In addition, we excluded 42 participants due to head motion exceeding 1.5
13 mm or 1.5° rotation or with >10% images showing framewise displacements>0.5mm> or
14 mean FD>0.20mm during MRI acquisition. Further, we further excluded 20 participants
15  Dbecause of incomplete coverage of the cerebellum. This process left 198 participants as a final
16  sample for our study, among which there were 35 ADHD, 36 BD, 92 HC and 35 SZ
17  participants.
18 Cerebdlar connectivity gradient extraction
19  We used diffusion map embedding *° to identify a low-dimensional embedding gradient from
20  ahigh-dimensional intra-cerebellar cortex connectivity matrix. Diffusion embedding results in
21  multiple, continuous maps (“gradients”), which capture the similarity of each voxel’s
22 functional connections along a continuous space. In other words, this data-driven analysis
23 results in connectivity gradients that provide a description of the connectome where each
24 voxel is located along a gradient according to its connectivity pattern. In order to maximize
25  reliability, reproducibility, and interpretability, we only used the first gradient component in

26  our analyses. The first gradient (or principal gradient) explains as much of the variance in the
21
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1 data as possible (~30%, Figure 1), represents a well-understood motor-to-supramodal

2 organizational principle in the cerebellar and cerebro-cerebral connections, and has been

3 shown to be reproducible at the single subject level.®! (Guell et al., 2018; note that gradient 2

4 could not be reproduced as successfully as the principal gradient at the single-subject level)

5 See Supporting Information for more details. We reported the intra-cerebellar FC gradient

6 (6242 voxels) as the main result, but also included cerebellar-cerebral FC gradients in control

7  analyses.

8 Partial Least Squaresanalysis

9  We applied PLS to investigate the relationship between cerebellar connectivity gradient and
10  behavioral measures across diagnostic categories. PLS is a multivariate statistical technique
11  that derives latent variables (LVs), by finding weighted patterns of variables from two given
12 data sets that maximally covary with each other.>”® Each LV is comprised of a cerebellar
13 connectivity gradient pattern at voxel level (“gradient saliences”) and a behavioral profile
14 (“behavioral saliences”). Individual-specific cerebellar gradient and behavioral composite
15  scores for each LV were obtained by linearly projecting the gradient and behavioral measures
16 of each participant onto their respective saliences. See Supporting Information for
17 mathematical details. Because mean framewise displacement (FD) was negatively correlated
18  with several behavioral measures and there were significant differences in age, sex, education,
19  site, and mean FD across groups (Table 1), we regressed out these confounding effects from
20  both behavioral and cerebellar gradient data before PLS analysis.
21  In order to evaluate the significance of the LVs, we applied permutation testing using 1000
22 permutations to determine the null distribution of the singular values. Considering significant
23 group differences in various behavioral measures (Table S2), the permutation procedure was
24 performed within each primary diagnostic group. Our results of interest were the top five LVs

25 which explained at least 5% of covariance between cerebellar gradients and behavioral

22
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1  measures (see below). We applied a false discovery rate (FDR) correction of q < 0.05 on the
2  permuted p-values of the five LVs to control for multiple comparisons.
3 To assess the contribution of a given gradient voxel or behavior to a given LV, we computed
4  correlations between the original measure (gradient voxel or behavior) and the corresponding
5  composite scores *>®°. A large correlation (i.e., large weight, positive or negative) for a given
6 measure (behavioral or gradient voxel) for a given LV indicates greater contribution of the
7  behavior or gradient voxel to the LV. Then, the confidence intervals for these correlations
8  were determined a by bootstrapping procedure that generated 500 samples with replacement
9 from the original gradient and behavioral data. Considering significant diagnostic differences
10  in many behavioral measures (Table S2), we took diagnostic groups into account within each
11  bootstrap sample. To identify variables (gradient voxels or clinical measures) that make a
12 significant contribution to the overall pattern, we calculated Bootstrapped Z scores as the ratio
13 of each variable’s correlation coefficient (i.e., weight) to its bootstrap-estimated standard error.
14 Then, we converted the Z scores to p values, which were FDR corrected (g<0.05).
15  To test the generalizability of each LV, we used a 10-fold cross-validation of the PLS analysis
16  with 200 repetitions. Importantly, the cross-validation approach can help to guard against
17  overfitting that arises from high dimensional neurobiological data.* Specifically, first, we
18  assigned 90% of the participants (within each primary diagnostic group) to the training set
19  and the remaining 10% of participants (within each primary diagnostic group) to the test set.
20  For each training set, PLS was used to estimate gradient and behavioral saliences (i.e., Uyain
21  and Viain). Next, the test data were projected onto the gradient and behavioral patterns derived
22 from the training set. This allowed us to estimate individual-specific gradient and behavior
23 composite scores and their correlation for the test sample (i.e. corr(XestUtrain, YitestVirain)) for
24 LVs 1-4. This procedure was repeated 200 times to make sure the results are not biased by the
25 initial split. Finally, we used a permutation test (behavioral data shuffled 1000 times within

26  each diagnostic group) to assess the significance of these correlation coefficients.
23
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1  Considering significant group differences in many behavioral measures (Table S2), we took
2  diagnostic groups into account for the permutation procedure, bootstrapping procedure and
3  cross-validation in the main text. However, when ignoring diagnostic groups (regarding all
4 participants as one group), the results remained almost unchanged. See supplementary results
5 for details.
6 If a given LV was statistically significant, we performed one-way ANOVA to test whether
7  cerebellar gradient and behavioral composite scores of this LV were different among different
8  diagnoses, if significant, least significant difference (LSD, in SPSS) post hoc tests were
9 performed, which would help interpret the significant function of this LV. In addition, we
10  furthermore tested whether the composite scores for significant LVs were correlated with
11 confounding factors including age, sex, years of education, head motion, acquisition site,
12 medication load (number of medications current use) and substance use(number of substances
13  use, including nicotine, alcohol, cannabis and other psychotropic substances). T tests were
14  performed for categorical variables, and Pearson’s correlations were performed for continuous
15 measures. Given the exploratory nature of medication and substance use effect analysis in our
16  study, we only consider the number of medications or substance current use, it should keep
17  caution when interpreting these results. For binary measures, we used T tests, and for
18  continuous measures, we used Pearson’s correlations.
19  False discovery rate (FDR) correction (g<0.05) was applied to all analyses.
20  Control Analyses
21  We tested whether LVs were robust to global signal regression, total cerebellar grey matter
22 volume regression, cerebellar gradients based on cerebellar-cerebral FC, adding confounding
23 variables (age, sex, education, site, and head motion) into the behavioral data for the PLS
24 analysis, non-Gaussian distributions of the behavioral data, diagnostic factors (HCs and
25  patients separately), and site factors (each site separately). To assess the robustness of each

26 LV, we computed Pearson’s correlations between cerebellar gradient (or behavioral) saliences
24
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1 obtained in each control analysis and cerebellar gradient (or behavioral) saliences from the
2 original PLS analysis. Finally, to confirm that each diagnostic group contributed the same
3 amount to the overall composite correlations, we used the Fisher r-to-z transformation to
4  compare the pairwise r-values.®* See Supporting Information for details.

5 Dataand code availability

6  All data are freely provided by from the UCLA Consortium for Neuropsychiatric Phenomics
7 (CNP) 4 available from OpenNeuro
8  (https://openneuro.org/datasets/ds000030/versions/00001). Cerebellar connectivity gradients
9  were constructed by BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace).®? We

8 and

10 used the Matlab code from https://github.com/danizoeller/myPLS
11 https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Kebe
12 ts2019_TransdiagnosticComponents,®® based on Krishnan et al. (2011)*® to implement the
13 PLS calculating.
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1 Table 1. Demographic characteristics of the each diagnostic group

Variables ADHD BD HC SZ onr P value
X

Sample size 35 36 92 35
Age (years, 31.40(10.50) 34.44(8.91) 30.50(8.50) 35.54(8.97) 351 1.6 X10*
mean(SD))
Male sex, n(%) 18(51.4) 19(52.8) 51(55.4) 27(77.1) 654 8.8X10*°
Education (years, 14.43(1.79)  14.64(1.94) 15.26(1.62) 12.71(1.64) 18.75 1.0X10™
mean(SD))
Site 1, n(%) 17(48.6) 18(50) 73(79.3) 14(40) 23.72 29X10°
Head motion, mean 0.069(0.04)  0.083(0.05) 0.066(0.03) 0.096(0.04) 6.16 5.1 X10™*
FD, mean(SD)
Number of current 0.57(1.14) 2.50(1.93) 0(0) 2.20(157) 57.19 1.6X10%
medication use
(mean(SD))
Number of substance  1.31(1.68) 2.58(2.09) 0.62(1.10) 2.46(2.23) 17.89 2.7X10™

use (mean(SD))

2 . . . . . .
Notes: Group differences were determined by either one-way ANOVA for continuous variables or chi-
quare tests for categorical variables. FD, framewise displacement; Number of substances use,

including nicotine, alcohol, cannabis and other psychotropic substances
4
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1 Supporting Information

g Linking Cerebédllar Functional Gradientsto Transdiagnostic Behavioral
4 Dimensions of Psychopathology

5 Debo Dong, Xavier Guell, Sarah Genon, Yulin Wang, Ji Chen, Simon B. Eickhoff, Cheng
6 Luo*, Dezhong Yao

7 Supplemental Methods

8 Dataacquisition and image preprocessing

9 MRI data were acquired two 3T Siemens Trio scanners, located at the Ahmanson-Lovelace
10  Brain Mapping Center (Siemens version syngo MR B15) and the Staglin Center for Cognitive
11 Neuroscience (Siemens version syngo MR B17) at UCLA. Resting-state functional MRI data
12 were collected using a T2*-weighted echoplanar imaging (EPI) sequence with the following
13  parameters: TR/TE=2000ms/30 ms, flip angle = 90°, matrix 64 x 64, field of view =192*192
14  mm?, 34 interleaved slices, slice thickness =4 mm, and oblique slice orientation. The resting
15 fMRI scan lasted 304 s for each participant, and 157 volumes were acquired. Participants
16  were asked to remain relaxed and keep their eyes open; they were not presented any stimuli or
17  asked to respond during the scan. Additionally, T1-weighted high-resolution anatomical data
18  were acquired for each participant using an MPRAGE sequence (scan parameters: TR/TE=
19 1900 ms/2.26 ms, matrix=256 x 256, FOV=250*250 mm? sagittal plane, slice thickness =1
20  mm, 176 slices). The anatomical data were used to normalize functional data.
21  Among the 272 participants, there were seven participants with missing T1 weighted scans,
22 four participants were missing resting-state functional MRI data scans, and 1 participant had
23 signal dropout in the cerebellum,™ thus only data from 260 participants were preprocessed.
24 All preprocessing steps were carried out using the Data Processing & Analysis for (Resting-
25  State) Brain Imaging (DPABI v4.1%) and Matlab scripts. Consistent with our previous study,
26 B4 functional images were (1) discarded in the first five volumes, (2) slice-time corrected, (3)
27  realigned, (4) co-registered to the high-resolution 3D anatomic volume, (5) warped into
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1 MNI152 standard space (resampling the voxel size into 3x3x3 mm?®), (6) underwent wavelet
2 despiking of head motion artifacts®™), (7) underwent regression of motion and non-relevant
3 signals, including linear trend, Friston 24 head motion parameters,’®” white matter (CompCor,
4 5 principal components), and CSF signal (CompCor, 5 principal components®), and (8) were
5 filtered using a band-pass filter (0.01-0.1 Hz). Because global signal may be an important
6  neuroimaging feature in clinical populations,’™ and global signal regression has been shown to
7 induce anticorrelations in resting-state data,*” we did not conduct global signal regression in
8 our main analyses. Because the topic of global signal regression (GSR) is still controversial,
9 we considered GSR in a separate control analysis. In addition, we excluded 48 participants
10  due to head motion exceeding 1.5 mm or 1.5° rotation or with >10% frame-to-frame motion
11  quantified by framewise displacements (FD>0.5mm, ™)) or mean FD > 0.20 mm during MRI
12 acquisition. Further, we excluded 20 participants because of not full coverage of cerebellum.
13 This process left 198 participants as a final sample of our study.
14  Connectivity gradient analyses
15 In detail, the voxel-level connectivity matrix within cerebellar cortex for each subject was
16  computed using Fisher Z-transformed Pearson correlations. Based on previous studies,™ ™!
17 we thresholded the rsFC matrix with the top 10% of connections per row retained, whereas all
18  others were zeroed. The negative connections were zeroed as well. Then, we used cosine
19  distance to generate a similarity matrix that reflected the similarity of connectivity profiles
20  between each pair of voxels.
21
22 Then, we used diffusion map embedding™ to identify a low-dimensional embedding from a
23 high-dimensional connectivity matrix. This methodological strategy has been able to
24 successfully identify relevant aspects of functional organization in cerebral cortex and
25  cerebellum in previous studies.'*™ Similar to Principal Component Analysis (PCA),

26  diffusion map embedding can identify principal gradient components accounting for the
36
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1 variance in descending order. If we applied PCA to the connectivity matrix, each voxel in
2  cerebellar cortex would be assigned to a particular network with discrete borders. In contrast,
3  diffusion map embedding allowed us to identify gradients of connectivity patterns from the
4 similarity matrix. In this way, the result of diffusion embedding is not one single mosaic of
5 discrete networks, but multiple, continuous maps (gradients), which capture the similarity of
6  each voxel’s functional connections along a continuous space. In other words, this data-driven
7 analysis results in connectivity gradients that provide a description of the connectome where
8 each voxel is located along a gradient according to its connectivity pattern. Voxels with
9 similar connectivity patterns are located close to one another along a given connectivity
10 gradient. All gradients are orthogonal to each other and capture a portion of data variability in
11  descending order.
12
13 There is a single parameter ato control how the density of sampling points affects the
14 underlying manifold (o = 0, the maximal influence of sampling density; o = 1, no influence of
15  sampling density) in the diffusion map embedding algorithm. Following previous studies,™*
16 ) we set a = 0.5, which can help retain the global relations between data points in the
17 embedded space. Then, we used an average connectivity matrix calculated from all
18  participants to produce a group-level gradient component template. We then performed
19  Procrustes rotation to align the gradients of each participant to this template, following the
20  strategy of previous analyses.' In order to maximize reliability, reproducibility, and
21  interpretability, we only used the first gradient component in our analyses. The first gradient
22 (or principal gradient) explains as much of the variance in the data as possible (~30%, Figure
23 1), represents a well-understood motor-to-supramodal organizational principle in the
24 cerebellar and cerebro-cerebral connections!™ and has been shown to be reproducible at the
25  single subject level in the cerebellum (Guell et al., 2018; note that gradient 2 could not be

26  reproduced as successfully as the principal gradient at the single-subject level). The explained
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1 variance of principle gradient (30%) was similar to recent reports using diffusion map

2 embedding analyses in functional connectivity."2#*

4 We reported the intra-cerebellar FC gradient (6242 voxels) as the main results, but also we

5 included the cerebellar-cerebral FC gradients in control analyses. The same calculation

6  procedures used in intra-cerebellar functional connectivity gradient analysis were performed

7  for cerebellar-cerebral cortical gradient analysis (cerebellar-cerebral cortical FC matrix).

8 Partial least squares analysis

9 PLS is a multivariate procedure that seeks maximal correlations between two matrices by
10  deriving LVs, which are optimal linear combinations of the original matrices.***! We applied
11  PLS to the cerebellar gradient and behavioral measures across diagnostic categories. Given
12 two matrices, Xm« and Ynxg, Where n is the number of observations (e.g., participants, here
13 n=198), p and g are the number of variables (e.g., cerebellar gradient (p=6242) and behavioral
14  features (g=55), respectively), after z-scoring X and Y (across participants), we calculated the
15  covariance matrix R=Y"X. Then, singular value decomposition (SVD) of R=USV" produced
16 in three low-dimensional latent variables: U and V are the singular vectors (called behavioral
17  and cerebellar gradient saliences, similar to loadings in principal components analysis), while
18 S is a diagonal matrix containing the singular values. After that, by linearly projecting the
19  cerebellar gradient and behavioral measures of each participant onto their respective saliences,
20  we obtained individual-specific cerebellar gradient and behavioral composite scores for each
21 LV, which reflect the participants’ individual cerebellar gradient and behavioral contribution
22 to each LV (similar to factor scores in principal components analysis). PLS seeks to find
23 saliences that maximize the covariance between cerebellar gradient and behavioral composite
24 scores. The covariance explained by each LV is estimated by dividing the squared singular
25  value by the sum of all squared singular values. Because FD was negatively correlated with

26  several behavioral measures mainly involving memory function (false discovery rate (FDR),
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1 @<0.05, including long delay free recall, visual reproduction immediate recall, delayed recall
2  and recognition, matrix reasoning, and letter fluency) and there were significant differences in
3 age, sex, education, site, and head motion (mean FD) across groups (Table 1), we regressed

4 them out from both the behavioral and cerebellar gradient data before PLS analysis.

6 Control Analyses

7  Global signal regression

9  Given global signal regression is still the controversial issue in the rsfMRI field, in control
10  analysis, we conducted global signal regression in the rsfMRI preprocessing to check whether
11  the GSR significantly affects the four LVs.

12

13  Regressing out cerebellar grey matter volume

14

15  To test whether the total cerebellar grey matter volume significantly affect the robustness of
16  the four LVs, we re-computed PLS after regressing out total cerebellar grey matter volume
17  from gradient features. We used the SUIT to calculate the total cerebellar grey matter
18  volume.*! Briefly, SUIT isolates the cerebellum and brainstem, then segments images into
19 grey matter maps and normalizes these maps to a cerebellar template, ensuring superior
20  cerebellar alignment across subjects. Normalized cerebellar grey matter maps were modulated
21 by the Jacobian of the transformation matrix to preserve absolute grey matter volume. We
22 extracted the summed modulated grey matter value (i.e., a measure of regional volume) for 28
23 cerebellar lobules defined in the probabilistic SUIT Atlas, and regarded resulting value as
24 total cerebellar grey matter volume.®!

25

26  Cerebdlar gradient based on cerebellar-cerebral FC
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Given the cerebellar functional gradients can be similarly constructed based on intra-
cerebellar FC or cerebellar-cerebral FC in the literature, we also tested cerebellar gradient
based on cerebellar-cerebral FC. Intra-cerebellar connectivity gradient analysis focuses on
exploring the intrinsic organization of the cerebellum without involving its connectivity
profiles with the cerebral hemispheres or other brain structures. The cerebellar-cerebral

cortical gradients emphasize the communication between cerebellar and cerebral cortex ™.

I ncluding confounds

Instead of regressing age, sex, education, site, and head motion (mean FD) out from the data

prior to PLS analysis, we added them to the behavioral data for the new PLS analysis.

Quantile normalization

Because many behavioral measures included in the PLS analysis were non-Gaussian
distribution, to exclude the potential effect on the robustness of LVs, we used quantile
normalization to improve the Gaussian distributions of the behavioral data and re-computed

PLS between the normalized behavioral and cerebellar gradient data.

Patients and sites factor

Furthermore, to ensure that our results were not separately driven by the HCs or by patients,
we recomputed PLS using only control individuals or only patients. Finally, to ensure that
results were not mainly driven by a single site, we recomputed PLS using data of each site

separately.
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2  Contribution of each diagnostic group to the overall composite correlations

4 To confirm each diagnostic group contributes the same amount to the overall composite
5 correlations, we used the Fisher r-to-z transformation to compare the pairwise r-values, i.e.,
6 correlation value between behavioral and gradient composite scores within each diagnostic
7 group.”®

8 Supplemental Results

9  When ignoring diagnostic groups, i.e., regarding all participants as one group, the results
10 remained almost unchanged. Specifically, the first four LVs were still significant (LV1:
11 r=0.62, permuted p=0.008; LV2: r=0.56, permuted p=0.005; LV3: r=0.61, permuted p=0.038;
12 LV4: r=0.60, permuted p=0.01). The significant behavioral and cerebral connectivity gradient
13  features associated with each LV remained almost unchanged, see figure S2-S5. The 10-fold
14  cross-validation for the first four LVs was still successful as indicated by significant
15  correlation between cerebellar gradient and behavioral composite scores in the test folds (LV1,
16  r=0.12, p=0.0029 ; LV?2, r=0.16, p=0.0027; LV3, r=0.11, p=0.0029; LV4, r=0.07, p=0.0032).
17  Control Analyses
18  Global signal regression
19
20  Results were similar to the original PLS. Correlations between the saliences of the new and
21  the original PLS analysis for the first four LVs ranged from 0.87 to 0.96 (Table S3),
22 suggesting high correlation.

23
24  Regressing out total cerebellar grey matter volume

25
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Results were similar to the original PLS. Correlations between the saliences of the new and
the original PLS analysis for the first four LVs ranged from 0.97 to 1 (Table S3), suggesting

high correlation.

Cerebellar gradient based on cerebellar-cerebral FC

When using cerebellar gradient based on cerebellar-cerebral FC, results were similar to the

original PLS using the cerebellar gradient based on intra-cerebellar FC. Correlations between

the saliences of the new and the original PLS analysis for the first four LVs ranged from 0.77

to 0.99, suggesting high correlation (Table S3).

I ncluding confounds

Results were similar to the original PLS, with moderate to high correlations between the

saliences of the new and the original PLS analysis ranging from 0.61 to 0.93 for LVs 1-4

(Table S3).

Quantile normalization

Results were similar to the original PLS, with high correlations between the saliences of the

new and the original PLS analysis ranging from 0.95 to 0.99 for LVs 1-4 (Table S3).

Patients and sites factor

When using healthy participants separately in the new PLS analysis, correlations between the

saliences of the new and the original PLS analysis ranged between 0.46-0.83 for the first four
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LVs, suggesting moderate to high correlation. However, correlations dropped to 0.14 and 0.22
for LV5; hence we did not describe LV5 further. When considering only patients, correlations
between the saliences of the new and the original PLS analysis ranged between 0.55-0.93 for

the first four LVs, suggesting moderate to high correlation (Table S3).

When using only participants from site 1 in the new PLS analysis, correlations between the
saliences of the new and the original PLS analysis ranged between 0.66-0.96 for the first four
LVs, suggesting high correlation. When considering only participants from site 2, correlations
between the saliences of the new and the original PLS analysis ranged between 0.49-0.97 for

the first four LVs, suggesting moderate to high correlation (Table S3).

Contribution of each diagnostic group to the overall composite correlations

There was no significant difference between pairs of correlation coefficients (Table S4, FDR

g > 0.05 for all pairwise comparisons), suggesting that each diagnostic group contributed

similarly to the overall composite correlations of these four LVs.
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Table S1. Behavior measures used in the present study

Scale Subscale Number of subjects
available
Young Mania Rating Scale-C  Total score 106
Hamilton Psychiatric Rating ~ Total score (items 1-17) 106
Scale for Depression
Scale for the Assessment of Delusions 72
Positive Symptoms
Hallucinations 72
Bizarre behavior 72
Positive formal thought 71
disorder
Scale for the Assessment of Alogia 72
Negative Symptoms
Anhedonia 72
Attention 72
Avolition 72
Blunt affect 72
Brief Psychiatric Rating Scale Positive symptoms 106
Negative symptoms 106
Mania/disorganization 106
Depression/anxiety 106
Hopkins Symptom Checklist ~ Anxiety 198*
Depression 198*
Obsessive compulsiveness 198*
Somatization 198*
Interpersonal sensitivity 198*
Adult ADHD clinical Inattention 106
diagnosis scale
Hyperactivity 106
Adult Self-Report Scale v.1.1 ADHD symptoms (total score) 198*
Screener
Chapman Psychosis- Perceptual aberrations 198*
Proneness Scales
Social anhedonia 198*
Physical anhedonia 198*
Infrequency 198*
Scale for Traits that Increase ~ Mood lability 198*
Risk for Bipolar 1l Disorder
Daydreaming 198*
Energy/activity 198*
Social anxiety 198*
Golden & Meehl's Seven Schizoid-type personality 198*
MMPI Items Selected by
Taxonomic Method
Eckblad and Chapman's Hypomanic personality 198*
Hypomanic Personality Scale
Temperament and Character ~ Reward dependence 198*
Inventory
Persistence 198*
Novelty seeking 198*
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Barratt Impulsiveness Scale
(BIS-11)

Dickman Functional and
Dysfunctional Impulsivity
Scale

Impulsiveness,
Venturesomeness and
Empathy Scale

Multidimensional Personality
Questionnaire (MPQ)—
Control subscale

Delay Discounting Task

Balloon Analog Risk Task
California Verbal Learning
Test (CVLT-II)

Scene Recognition Task

Remember-Know Task

Wechsler Memory Scale
(WMS-1V)

Harm avoidance
Attentional impulsivity

Motor impulsivity
Nonplanning
Functional impulsivity

Dysfunctional impulsivity
Impulsiveness

Venturesomeness
Empathy
Control

Small rewards
Medium rewards
Large rewards

Total

Total pumps

Short delay free recall

Short delay cued recall
Long delay free recall
Long delay cued recall
Long delay recognition
Encoding accuracy
Encoding RT

Recall accuracy

Recall RT

Remember words accuracy
Remember colors accuracy
Remember forced recognition
1 feature

Remember forced recognition
2 features

Remember mean RT
Know words accuracy
Know colors accuracy
Know forced recognition 1
feature

Know forced recognition 2
features

Know mean RT

Symbol span

Visual reproduction immediate
recall
Visual reproduction delayed

47

198*
198*

198*
198*
198*

198*
198*

198*
198*
198*

196
196
196
196
189
198*

198*
198*
198*
198*
196
196
196
196
168
168
168

168
165
168
168
168
168

161
198*

198*

198*
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Spatial Maintenance and
Manipulation Task

Verbal Maintenance and
Manipulation Task

Spatial Capacity Task

Verbal Capacity Task

Wechsler Adult Intelligence
Scale (WAIS-1V)

Delis-Kaplan Executive
Function System
Stroop Color Word Task
Color Trails Test

Stop Signal Task
Task Switching Task

Attention Network Task
Continuous Performance

recall

Visual reproduction
recognition

Digit span forward

Digit span backward

Digit span sequencing
Maintenance mean accuracy

Maintenance median RT
Manipulation mean accuracy
Manipulation median RT
Maintenance mean accuracy

Maintenance median RT
Manipulation mean accuracy
Manipulation median RT
Load 1 accuracy

Load 1 mean RT

Load 3 accuracy

Load 3 mean RT

Load 5 accuracy

Load 5 mean RT

Load 7 accuracy

Load 7 mean RT
Maximum capacity
Load 3 accuracy

Load 3 mean RT

Load 5 accuracy

Load 5 mean RT

Load 7 accuracy

Load 7 mean RT

Load 9 accuracy

Load 9 mean RT
Maximum capacity
Matrix reasoning

Letter/number sequencing
Vocabulary
English verbal fluency

Spanish verbal fluency
Interference accuracy
Interference RT
Interference index
Quantile RT

Accuracy

Interference

Switching cost
Residual switching cost
Interference RT

Hit rate
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198*

198*
198*
198*
190

190
190
190
189

189
189
189
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
198*

198*
198*
198*
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198*
198*
198*
196
198*
198*
198*
198*
197
198*
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Go/No Go Task
Hits median RT 198*
B False alarm rate 198* -
1 Notes: This table lists both behavior measures used in the PLS analysis and measures only
2  considered in posthoc analyses (Table S3). Behavior measures used in the PLS analysis were
3 marked with *.
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1 Table S2. Group differences among the Fifty-five Behavioral measures in
2 thePLSanalysis

Scale Variables ADHD BD HC SZ F  Pvalue
Adult Self ADHD symptoms 1551(3.86) 13.11(4.98) 8.89(2.81)  9.34(4.36) 325 4.41E-
Report Scale 4 17
Hopkins D . 0.67(0.48)  0.91(0.63) 0.39(0.37) 0.72(0.59) 114 5.89E-7

epression

Symptom 7

Checklist Obsessive 1.21(0.74)  1.10(0.75) 0.52(0.44) 0.95(0.61) 159 2.68E-9
compulsiveness 3
Anxiety 0.47(0.41)  0.71(0.62) 0.22(0.30)  0.71(0.65) 15.2 6.28E-9
Somatization 0.35(0.28)  0.63(0.65) 0.22(0.24)  0.57(0.48) 22.7 1.22E-7
Interpersonal 0.76(0.55)  1.00(0.71) 0.40(0.37) 0.85(0.61) 143 1.83E-8
sensitivity 2

Chapman Infrequency 0.74(0.95)  0.89(1.21) 0.67(1.12) 1.57(1.50) 5.04 0.002

Psychosis- (Careless response)

Proneness Perceptual 4.11(3.81) 5.08(4.75) 2.16(2.67) 9.51(8.23) 21.3 5.70E-

Scales aberrations 0 12
Social anhedonia 14.09(8.87) 15.53(7.63)  10.15(7.15) 15.37(6.24) 7.27 1.21E-4
Physical anhedonia  13.03(7.94) 15.47(9.66)  11.54(6.63) 15.71(6.72) 3.90 0.01

Scale for Traits Mood lability 3.66(2.45)  5.14(2.97) 2.13(1.71) 397(2.66) 16.9 7.84E-

that Increase 8 10

Risk for Bipolar  Energy(Restless) 3.74(2.06)  3.86(2.58) 3.05(2.15) 4.11(2.14) 2.60 0.05

I Disorder Daydreaming 3.91(1.42) 3.47(1.87) 3.14(1.82) 3.11(2.07) 178 0.15
Social anxiety 3.09(1.63)  3.56(1.99) 3.01(1.90) 3.77(2.73) 187 0.14

Barratt Attention 22.00(3.91) 19.06(5.52)  14.59(3.33) 17.00(4.63) 30.3 4.08E-

Impulsiveness impulsivity 1 16

Scale Motor impulsivity 26.91(4.01) 24.61(551) 21.98(3.74) 22.71(4.43) :1%2.5 1.61E-7
Nonplanning 28.60(4.39) 28.33(5.58)  23.05(4.38) 26.74(5.40) E137.6 i.o46E-

Multidimension 10.74(4.97) 11.72(7.30)  18.04(5.06) 16.23(5.09) 20.8 9.12E-

al Personality MPQ control 8 12

Questionnaire

Golden & . 3.00(1.37)  3.83(1.63) 242(1.28) 3.43(1.63) 10.0 3.40E-6

, Schizoid

Meehl’s Seven personality 6

MMPI

Eckblad and 24.71(6.85) 23.25(11.58) 16.14(7.76) 19.80(8.73) 11.2 7.76E-7

Chapman's H . 5

Hypomanic ypom?_nlc

Personality personality

Scale

Dickman Functional 7.03(2.93) 5.50(3.21) 6.60(2.72) 5.66(2.80) 2.61 0.05

Functionaland  impulsivity

Dysfun_ct_lonal dysfunctional 4.83(2.82) 5.36(4.28) 1.91(2.43)  4.06(3.46) 149 8.59E-9

Impulsivity imoulsivit 5

Scale P y

Impulsiveness,  Eysenck 9.11(3.22)  9.08(4.54) 6.24(3.01) 9.23(3.49) 116 4.95E-7
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Venturesomenes
s and Empathy
Scale

Temperament
and Character
Inventory
Harm

California
Verbal Learning
Test

Wechsler
Memory Scale

Wechsler Adult
Intelligence
Scale

Color Trails
Test

English Verbal
fluency

Task Switching

impulsiveness
Eysenck
venturesomeness
Eysenck empathy
Persistence

Harm avoidance
Reward
dependence

Novelty seeking

Short delay free
recall

Short delay cued
recall

Long delay free
recall

Long delay cued
recall

Long delay
recognition
Visual
reproduction
immediate recall
Visual
reproduction
delayed recall
Visual
reproduction
recognition

Symbol span

Digit span forward

Digit span
backward
Digit span
sequencing
Letter/Number
sequencing

Vocabulary

Matrix reasoning

ColorTrail
interference

Letter Fluency

Taskswitch total
accuracy
Taskswitch
interference

9.51(1.90)

11.17(2.77)
21.97(7.81)
11.97(6.41)
14.86(4.88)
25.37(4.90)
11.60(2.81)
12.29(2.23)
12.20(2.42)
12.71(2.22)
3.29(0.65)

37.80(5.37)

30.57(8.79)

6.54(0.85)

23.09(6.84)
11.09(1.92)
9.11(2.26)

9.03(1.95)

19.97(2.79)
42.97(9.18)
20.71(3.88)
1.08(0.65)

41.03(10.44
2).96(0.027)

57.77(88
49)

7.78(2.61)

11.14(3.50)
19.11(9.37)
18.06(9.18)
14.25(5.11)
22.64(7.81)
10.69(3.58)
11.81(3.23)
11.11(3.50)
12.11(3.47)
3.32(0.86)

35.72(4.96)

26.81(10.80)

6.11(1.24)

21.31(6.47)
10.56(2.24)
8.92(2.39)
8.61(2.77)
19.75(2.71)
42.69(10.38)
19.28(4.74)
1.10(0.59)
40.03(13.80)
0.96(0.0350)

68.13(74.78)
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8.76(2.46)

10.63(3.13)
23.57(7.21)
11.91(6.50)
15.96(4.44)
19.09(5.94)
12.86(2.32)
13.33(2.10)
13.27(2.32)
13.28(2.13)
3.37(0.80)

38.40(4.55)

32.95(8.46)

6.51(0.75)

25.63(6.05)
11.11(2.34)
9.72(2.41)

9.78(2.39)

21.14(2.89)
43.58(8.59)
20.87(3.83)
1.10(0.55)

41.79(12.02
2).97(0.027)

42.76(63.76
)

8.29(2.67)
11.17(2.63)
22.14(6.28)
15.23(7.50)
14.69(3.86)
18.60(5.56)
8.95(3.56)
10.26(2.73)
9.57(3.10)
10.23(3.15)
2.61(0.95)

32.74(8.27)

23.54(11.00
)

5.46(1.75)

17.26(6.88)
8.74(2.15)
7.26(2.23)
7.29(1.90)
17.83(3.49)
31.29(9.91)
15.69(4.98)
1.09(0.62)
30.37(8.14)
0.94(0.074)

57.76(147.7
6)

3.32
0.49
2.98
7.44
1.58
115
16.6
135
17.2
14.1
7.75

9.51

9.79

8.83

15.3

10.3

9.32

10.2

10.8

16.0

13.6

0.13

8.75

5.49

0.77

0.02
0.69
0.03
9.66E-5
0.20
5.16E-7
1.13E-9
4.65E-8
5.81E-
10
2.20E-8
6.48E-5

6.88E-6

4.83E-6

1.62E-5

5.63E-9

2.39E-6

8.70E-6

2.74E-6

1.21E-6

2.27E-9

4.25E-8

0.99

1.81E-5

0.001

0.52
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Continuous
Performance

Go/NoGo Task

Stroop Color
Word Task

Taskswitch switch

cost
Taskswitch

residual switch cost

Total go hit

Total false alarms
Hits median RT

Conflict effect

Conflict effect RT

274.16(120.
28)
79.01(121.1
3)
321.17(6.59
)
13.91(8.20)
360.36(54.7
4)

0.042(0.064
)
141.20(69.9
0)

259.64(137.1
0)
54.58(108.74

)
319.44(8.61)

12.78(7.21)
387.50(60.31

)
-0.020(0.041)

128.87(60.23
)

available under aCC-BY-NC-ND 4.0 International license.

262.40(145.
15)
54.69(105.1
9)
322.88(1.64
)
12.78(6.71)
350.75(43.1
8)

0.035(0.056
)
122.97(70.6
7)

278.56(202.
63)
126.77(164.
35)
317.91(12.2
0)
13.29(6.54)
386.59(51.0
9)

0.051(0.062
)
122.55(75.5
4)

0.15

3.30

5.14

0.25
7.15

1.89

0.64

0.93

0.02

0.002

0.86
1.40E-4

0.13

0.59

1 Notes: Mean (standard deviation) values are shown for each group. RT=reaction time.
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1 Table S3. Absolute correlations between cerebellar gradient (or behavioral)
2 saliences obtained in control analyses and cerebelar gradient (or
3 behavioral) saliencesfrom theoriginal PL S analysis.
4
Latent GS Regressing Cerebella Confounds Behavior Contro Patients Site Site
dimensi R out r- included normalize Is only #1 #2
on cerebellar cerebral d Only
grey matter  Gradient
volume
Correlations LV #1 09 1 0.83 0.77 0.99 0.46 0.61 0.76 0.68
with 1
original Lv#2 09 0097 0.85 0.85 0.98 0.70 0.55 0.79 0.76
gradient 2
saliences LV #3 0.8 0.98 0.77 0.89 0.97 0.66 0.77 0.75 0.49
7
LV#4 09 0.99 0.81 0.62 0.97 0.57 0.67 0.66 0.69
1
LV# 08 1 0.82 0.58 0.95 0.14 0.55 0.52 0.45
3
Correlations LV #1 09 1 0.99 0.93 1 0.83 0.82 0.96 0.97
with 8
original Lv#2 09 098 0.96 0.84 0.97 0.80 0.59 0.90 0.89
behavioral 5
saliences LV#3 0.9 0.99 0.93 0.93 0.97 0.87 0.93 0.89 0.70
6
LV#4 09 0.99 0.92 0.61 0.95 0.71 0.64 0.74 0.76
4
LV# 08 1 0.94 0.63 0.95 0.22 0.69 0.63 0.61
7
5
6
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1 Table $4. Comparisons between pairs of correlation coefficients between

2 gradient composite scores and behavioral composite scores

3
L V1(separated L V2(separated group-1) LV3(separated group-1) L V4(separated group-1)
group-1)
r_hc=0.6099; r_hc=0.5415;r_patients=0.5943 r_hc=0.5548;r_patients r_hc=0.5466;r_patients=0.6667

r_patients=0.5696
z=0.4272, p =0.6692

z =-0.5390, p = 0.5899

=0.6571
z=-1.1222,p =0.2618

z=-1.3216,p =0.1863

L V1(separated L V2(separ ated group-2) LV3(separated group-2) L V4(separated group-2)
group-2)

r_hc=0.6099; r_hc=0.5415; r _sz=0.7511 r_hc=0.5548; r_hc=0.5466; r_sz=0.5607

r sz=0.4539 r_bd=0.5103; r_adhd=0.6037  r_sz=0.6782 r_bd=0.8036; r_adhd=0.4845
r bd=0.7114; r _bd=0.7275;

r_adhd=0.5740

hc-sz: z =1.0633,p =

0.2877;

hc-bd: z=-0.8893, p =

0.3738

hc-adhd: z = 0.2683, p

=0.7885

sz-bd: z =-1.6139, p =

0.1065

sz-adhd: z = -0.6555, p

=0.5122

bd-adhd: z = 0.9534, p
= 0.3404

hc-sz: z =-1.7912, p = 0.0733
hc-bd: z=0.2117, p = 0.8324
hc-adhd: z = -0.4496, p =
0.6530

sz-bd: z = 1.6620, p = 0.0965
sz-adhd: z=1.1061, p =
0.2687

bd-adhd: z =-0.5474, p =
0.5841

r_adhd=0.4116

hc-sz: z =-0.9727,p =
0.3307

hc-bd: z =-1.4627, p =
0.1436

hc-adhd: z =0.9109, p =
0.3624

sz-bd: z=-0.3935,p =
0.6940

sz-adhd: z = 1.5529, p =
0.1204

bd-adhd: z = 1.9583, p =

0.0502

hc-sz: z =-0.0986, p = 0.9214
hc-bd: z =-2.4296, p = 0.0151
hc-adhd: z =0.4108, p =
0.6812

sz-bd: z =-1.9139, p = 0.0556
sz-adhd: z =0.4200, p =
0.6745

bd-adhd: z =2.3372,p =
0.0194

4 Notes: There was no significant difference between pairs of correlation coefficients (FDR g >
5 0.05 for all pairwise comparisons)

6
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1 Table S5. Associations between cerebellar gradient or behavior composite scores and
2 confounding factors

LV1 LV2 LV3 LV4

Gradient Behavioral Gradient Behavioral Gradient Behavioral Gradient Behavioral

composite composite scores | composite composite composite composite composite composite

scores scores scores scores scores scores scores

rit p r/t p r/t p rit p rit p rit p rit p rit p

Age 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Sex 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Education 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Site 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Motion 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Total brain | -0.04 | 0.59 -0.08 0.26 -0.03 | 0.63 | 0.05 | 0.48 A -0.05 | 0.44 | -0.07 0.31 0.02 | 0.80 | 0.04 | 0.62
volume

Cerebellar | -0.10 | 0.20 -0.04 0.55 0.15 | 0.03 | 0.17 | 0.02 | -0.06 | 0.38 | -0.10 0.18 0.07 | 0.32 | 0.02 | 0.73
volume

Medication | 0.35 | 4.7E-7 | 0.39 12E-8 | -0.09 | 0.19 | 0.07 | 0.30 | 0.18 | 0.01 | 0.28 | 6.2E-5 | -0.07 | 0.30 | 0.06 | 0.43
load

Substance | 0.12 0.08 0.10 0.16 0.07 | 0.35 | 0.15 | 0.03 | -0.13 | 0.06 | -0.10 0.15 -0.03 | 0.65 | -0.07 | 0.35
use

3 Notes: T tests were performed for binary measures, and Pearson’s correlations were
4  performed for continuous measures. Bold refers to significant associations that survived FDR
5  correction (q < 0.05).
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Table S6. Correlations between subjects’ behavioral measuresand their

behavioral composite scores

LV#1 LV#2
r SD r SD
Eysenck impulsiveness 0.70 0.04 ADHD symptoms 0.60 0.04
Dysfunctional impulsivity 0.66 0.04 Attention impulsivity 0.57 0.05
M ood lability 0.60 0.04 Depression 0.55 0.05
Nonplanning 0.56 0.04 Mood lability 0.53 0.05
Per ceptual aberrations 0.56 0.06 Interpersonal sensitivity 0.53 0.05
Attention impulsivity 0.54 0.05 Attention severity* 052 0.09
Obsessive compulsiveness 0.54 0.05 Obsessive compulsiveness 052 0.05
Anxiety 0.53 0.06 Daydreaming 0.52 0.05
I nter personal sensitivity 0.52 0.05 Vocabulary 049 0.05
Hypomanic peronality 0.52  0.05 Schizoid personality 047 0.05
Depression 047 0.05 Harm avoidance 047 0.05
ADHD symptoms 045 0.05 Motor impulsivity 047 0.05
Somatization 042 0.07 Social anxiety 046 0.06
Social anhedonia 0.39 0.06 Dysfunctional impulsivity 046 0.05
Motor impulsivity 0.39 0.05 Nonplanning 045 0.05
Energy(Restless) 0.37 0.06 Anxiety 043 0.06
I nfrequency(careless HAM D_depression*
r esponse) 0.37  0.07 042 0.09
Physical anhedonia 0.37  0.07 Hyperactivity severity* 0.39 0.09
YMRC_mania* 0.36 0.10 Matrix reasoning 0.39 0.07
Depr ession/anxiety* 0.35 0.10 Letter fluency 0.39 0.06
Schizoid per sonality 0.34 0.06 Digit span backward 0.38 0.06
HAMD_ depression* 0.33 0.10 Somatization 0.37 0.07
Delusions* 0.32  0.13 Depression/anxiety* 0.36 0.09
Remember words
Novelty seeking 0.31 0.06 accuracy* 0.36 0.07
Eysenck empathy 0.30 0.05 Longdeay recognition 0.36 0.07
Total falsealarms 0.28 0.06 Digit span forward 0.34 0.06
M ania/disor ganization* 0.27 0.10 Eysenck impulsiveness 0.34 0.05
Positive formal thought* 0.25 0.13 Novelty seeking 0.33 0.06
Social anxiety 0.25 0.06 Social anhedonia 0.32 0.06
Positive symptoms* 0.25 0.10 Longdeay cued recall 0.32 0.07
Visual reproduction
Hallucinations* 024 0.13 immediaterecall 031 0.07
Harm avoidance 0.24 0.06 Digit span sequencing 031 0.05
Verbal manipulation
Attention* 024  0.12 accuracy* 0.29 0.06
Daydreaming 022 0.06 Symbol span 0.28 0.05
Attention severity* 0.18 0.10 Hypomanic peronality 0.28 0.06
Anhedonia* 0.17  0.12 Mania/disorganization* 0.27 0.10
Hyperactivity severity* 0.17 0.10 Short delay cued recall 0.27 0.08
Avolition* 0.16 0.12 Longdeday freerecall 0.26 0.07
Spatial capacity load 3 Visual reproduction
RT* 0.14  0.07 recognition 0.25 0.08
Bizarre behavior* 0.12 0.12 Taskswitch total accuracy 0.24 0.07
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Visual reproduction

ANT _Interference RT* 0.10 0.07 delayed recall 0.24 0.08

Verbal capacity load 5 RT* 0.09 0.07 Short delay freerecall 0.23 0.07
Know forced recognition 2

Vpatial capacity load 3 RT* 0.09 0.06 features* 0.23 0.07

Delay discounting medium Scener ecognition encoding

rewards* 0.09 0.07 accuracy* 0.23 0.06

Taskswitch interference 0.09 0.07 Letter/Number sequencing 0.22  0.06

Delay discounting small Scene recognition recall

rewards* 0.09 0.07 accuracy* 022 0.06

Alogia* 0.08 0.12 BART_total pumps* 021 0.07

Delay discounting total Verbal maintenance

rewards* 0.08 0.07 accuracy* 0.21 0.06
Remember forced

Spatial maintenance RT* 0.08 0.07 recognition 2 features* 0.20 0.07

Scene recognition encoding Spatial capacity load 7

RT* 0.08  0.07 accuracy* 0.20 0.06

Delay discounting large YMRC_mania*

rewards* 0.07 0.07 0.19 0.10
Spatial maintenance

Blunt affect* 0.07 0.12 accuracy* 0.19 0.07

Know forced recognition 1 Know wor ds accuracy*

feature™ 0.07 0.07 0.19 0.07

Negative symptoms™ 0.07 0.10 Eysenck empathy 0.18 0.06

Taskswitch residSwitchCost ~ 0.07  0.08 Physical anhedonia 0.15 0.08
Verbal capacity load 7

ColorTrail interference 0.06  0.07 accuracy* 0.15 0.07

Spatial capacity load 1 RT* 0.05 0.07 Know colors accuracy* 0.14 0.07
Verbal maximum

Spatial capacity load 5 RT* 0.05 0.07 capacity* 0.13 0.06
Spatial maximum

Scene recognition recall RT*  0.04  0.07 capacity* 0.13 0.07

Spatial capacity load 7 RT* 0.02  0.07 Verbal capacity load 9 RT* 0.12 0.07

Verbal maintenance RT* 0.02 0.07 Perceptual aberrations 0.12 0.06
Verbal capacity load 3

Stop signal quantile RT* 0.01  0.07 accuracy* 0.12 0.07

Verbal manipulation RT* 0.01 0.07 Go hit median RT 0.11 0.08

Functional impulsivity 0.01 0.07 Remember mean RT* 0.11 0.07

Remember forced Remember colors accuracy™

recognition 1 feature* 0.00 0.07 0.10 0.07
Spatial capacity load 3

Remember mean RT* 0.00 0.07 accuracy™ 0.10 0.07

Spatial manipulation RT* -0.02  0.06 Bizarre behavior* 0.10 0.10

Eysenck venturesomeness -0.02  0.07 Taskswitch interference 0.10 0.07

Know colors accuracy™ -0.03 0.07 Conflict effect RT 0.10 0.07
Spatial manipulation

Verbal capacity load 7 RT*  -0.03  0.07 accuracy™ 0.09 0.06

Taskswitch switch cost -0.05 0.07 Anhedonia* 009 0.11
Know forced recognition 1

Conflict effect RT -0.07 0.06 feature* 0.09 0.07
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Verbal capacity load 9

Persistence -0.08 0.07 accuracy™ 0.08 0.07

Go hit median RT -0.09  0.07 Delusions* 0.08 0.09

Know mean RT* -0.10  0.08 Verbal capacity load 7 RT* 0.08 0.06

Remember forced Spatial capacity load 1

recognition 2 features* -0.12  0.06 accuracy* 0.04 0.07
Remember forced

Total go hit -0.12  0.06 recognition 1 feature* 0.04 0.07
Spatial capacity load 5

Conflict effect -0.13  0.09 accuracy* 0.03 0.07

Know words accuracy™ -0.13  0.07 Vpatial capacity load 3 RT* 0.03 0.06

Verbal capacity load 9 Spatial manipulation RT*

RT* -0.13  0.07 0.03 0.07
Verbal capacity load 5

BART _total pumps* -0.13  0.06 accuracy* 0.03 0.07

Spatial manipulation Conflict effect

accuracy* -0.16  0.06 0.01 0.06

Rewar d dependence -0.18  0.06 ColorTrail interference -0.01 0.08

Spatial capacity load 7 Verbal manipulation RT*

accuracy* -0.18 0.06 -0.02 0.07

Remember colors Verbal capacity load 5 RT*

accuracy* -0.23 0.07 -0.02 0.07

Verbal capacity load 3 ANT _Interference RT*

accuracy* -0.24  0.07 -0.02  0.06

Verbal capacity load 7 Hallucinations*

accuracy* -0.25 0.07 -0.03 0.10

Verbal capacity load 9 Positive symptoms*

accuracy* -0.26 0.06 -0.03 0.08

Scenerecognition encoding Taskswitch residSwitchCost

accuracy* -0.26  0.09 -0.03 0.07

Spatial maximum Energy(Restless)

capacity* -0.27  0.06 -0.03 0.06

Spatial capacity load 1 Scene recognition recall RT*

accuracy* -0.28 0.07 -0.04 0.07
Scene recognition encoding

Digit span forward -0.29 0.08 RT* -0.04  0.07

Remember words Delay discounting small

accuracy* -0.29  0.07 rewards* -0.04  0.06

Spatial maintenance Taskswitch switch cost

accuracy* -0.30 0.07 -0.05 0.06

Taskswitch total accuracy  -0.30  0.08 Spatial maintenance RT* -0.05 0.07

Verbal maximum Stop signal quantile RT*

capacity* -0.31  0.07 -0.06 0.07

L etter fluency -0.31  0.07 Know mean RT* -0.06 0.07

Know for ced recognition 2 Spatial capacity load 3 RT*

features* -0.32  0.07 -0.08  0.07

Verbal capacity load 5 Delay discounting medium

accuracy* -0.32  0.07 rewards* -0.08 0.07

Spatial capacity load 5 Positive formal thought*

accuracy* -0.34 0.06 -0.08 0.11
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Verbal manipulation Attention*
accuracy* -0.34  0.06 -0.08 0.11
Spatial capacity load 3 Avolition*
accuracy* -0.35  0.07 -0.10 0.10
Delay discounting total
Matrix reasoning -0.35  0.06 rewards* -0.11  0.06
Digit span sequencing -0.37  0.06 Spatial capacity load 1 RT*  -0.11  0.07
Digit span backward -0.37  0.07 Reward dependence -0.12  0.06
Vocabulary -0.38  0.06 Functional impulsivity -0.12  0.06
Verbal maintenance Eysenck venturesomeness
accuracy* -0.41 0.07 -0.12  0.08
Visual reproduction Negative symptoms*
recognition -0.43  0.07 -0.13  0.09
Letter/Number sequencing -0.44  0.05 Total falsealarms -0.13  0.07
L ong delay recognition -0.46  0.06 Verbal maintenance RT* -0.13  0.07
Visual reproduction Infrequency(careless
delayed recall -0.47  0.06 response) -0.14  0.08
Symbol span -0.49  0.05 Total go hit -0.14  0.08
Scene recognition recall Spatial capacity load 5
accuracy* -049 0.07 RT* -0.14  0.07
Visual reproduction Delay discounting large
immediate recall -0.51 0.06 rewards* -0.15 0.06
Spatial capacity load 7
M PQ control -0.57 0.05 RT* -0.17  0.07
Short delay cued recall -0.61  0.05 Alogia* -0.18 0.10
Short delay free recall -0.61  0.05 Blunt affect* -0.21  0.10
Long delay freerecall -0.62 0.05 Persistence -0.37  0.06
L ong delay cued recall -0.62  0.05 MPQ control -0.44  0.05
LV #3 LV#
r SD r SD
Harm avoidance 0.68 0.04 Total falsealarms 0.28 0.07
Social anxiety 0.56 0.04 Nonplanning 020 0.07
Negative symptoms* 049 0.09 ColorTrail interference 0.17 0.06
M PQ control 0.45 0.06 Spatial capacity load 3 RT* 0.13 0.07
Alogia* 041 0.10 ANT_Interference RT* 0.13 0.07
Physical anhedonia 0.39 0.06 Total go hit 0.12 0.09
Blunt affect* Scene recognition recall
039 0.11 RT* 012 0.07
Social anhedonia 0.39 0.06 Taskswitch interference 0.11  0.07
Anhedonia* 0.38 0.12 Spatial maintenance RT* 0.11 0.07
Positive symptoms* 0.33  0.08 Spatial manipulation RT* 0.11  0.07
Somatization 0.33 0.06 Attention* 011 0.11
Depr ession/anxiety* 0.31 0.09 Spatial capacity load 5RT*  0.10 0.07
Avalition* 0.30 0.11 Spatial capacity load 1RT*  0.10  0.07
Attention* Taskswitch
0.25 0.11 residSwitchCost 0.10 0.06
Hallucinations* 0.25 0.11 Delay discounting medium 0.10 0.07
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rewards*

Anxiety 0.23  0.08 Spatial capacity load 7 RT* 0.08 0.07
Depression 0.23 0.08 Know mean RT* 0.08 0.08
Schizoid personality Delay discounting small

0.21 0.06 rewards* 0.07 0.07
HAMD depression* 0.21 0.09 Verbal capacity load 5 RT* 0.07 0.08
I nter personal sensitivity 0.19 0.09 Taskswitch switch cost 0.07  0.06
Mood lability Delay discounting total

0.18 0.07 rewards* 0.07 0.07
Per ceptual aberrations Scene recognition encoding

0.18 0.07 RT* 0.07 0.07
Obsessive compulsiveness 0.17 0.08 Verbal maintenance RT* 0.06 0.07
Delusions* Delay discounting large

0.16 0.11 rewards* 0.06 0.07
Go hit median RT Remember colors

0.14  0.07 accuracy* 0.06 0.07
Scene recognition encoding Vpatial capacity load 3 RT*
RT* 0.14 0.07 0.05 0.07
Infrequency(careless Daydreaming
response) 0.11 0.08 0.05 0.07
Know mean RT* 0.09 0.07 Digit span forward 0.03 0.07
Stop signal quantile RT* 0.08 0.07 Avolition* 0.03 0.12
Scene recognition recall RT* 0.08 0.07 Verbal manipulation RT* 0.03 0.07
Remember mean RT* 0.07 0.07 Verbal capacity load 9 RT* 0.02 0.07
Vpatial capacity load 3 RT* 0.07  0.07 Verbal capacity load 7 RT* 0.02 0.07
Spatial maintenance RT* 0.07 0.07 Conflict effect 0.01 0.06
Spatial manipulation RT* 0.07 0.07 Eysenck venturesomeness 0.01 0.09
Spatial capacity load 1 RT* 0.07 0.07 Bluntaffect* 0.00 0.11
Verbal capacity load 9 RT* Know forced recognition 2

0.06 0.07 features* 0.00 0.08
Spatial capacity load 3 RT* 0.05 0.07 Alogia* 0.00 0.11
Verbal capacity load 5 RT* 0.05 0.07 Stop signal quantile RT* 0.00 0.07
BART _total pumps* 0.04 0.07 Conflict effect RT 0.00 0.07
Delay discounting large MPQ control
rewards* 0.04 0.06 -0.01  0.07
Spatial capacity load 5 RT* 0.04 0.06 Attention impulsivity -0.01  0.07
Daydreaming 0.04 0.06 BART_total pumps* -0.01  0.07
Spatial capacity load 7 RT* 0.03 0.07 Kbnow colors accuracy* -0.01  0.08
Eysenck empathy Verbal capacity load 9

0.03 0.06 accuracy* -0.02  0.07
Taskswitch residSwitchCost Verbal maintenance

0.03 0.07 accuracy™ -0.02 0.07
Verbal maintenance RT* Remember forced

0.02  0.07 recognition 2 features* -0.02 0.08
Remember forced Know forced recognition 1
recognition 1 feature* 0.02 0.08 feature* -0.03  0.08
Verbal capacity load 7 RT* 0.02 0.07 Vocabulary -0.03  0.06
ANT _Interference RT* 0.02 0.07 Motor impulsivity -0.03 0.08
Delay discounting total 0.02 0.07 Verbal capacity load 5 -0.03 0.07

60


https://doi.org/10.1101/2020.06.15.153254
http://creativecommons.org/licenses/by-nc-nd/4.0/

available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153254; this version posted July 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

rewards*

accuracy*

Know forced recognition 1

Hyperactivity severity*

feature* 0.02 0.07 -0.03 0.10
Delay discounting medium Digit span backward
rewards* 0.01 0.06 -0.04  0.07
Long delay cued recall 0.00 0.07 Attention severity* -0.04 0.10
Remember words accuracy™ 0.00 0.07 Harm avoidance -0.04  0.07
Long delay free recall Remember forced

0.00 0.07 recognition 1 feature* -0.04  0.08
Short delay cued recall 0.00 0.07 Letter fluency -0.05 0.07
Bizarre behavior* -0.01  0.11 Hallucinations* -0.05 0.10
Long delay recognition Spatial manipulation

-0.02  0.06 accuracy* -0.05 0.07
Total go hit -0.03  0.07 Know words accuracy* -0.06  0.08
Know forced recognition 2 ADHD symptoms
features* -0.03  0.07 -0.06  0.07
Taskswitch interference Remember words

-0.03  0.08 accuracy* -0.07 0.08
Delay discounting small Novelty seeking
rewards* -0.03  0.07 -0.07 0.08
Short delay free recall -0.04  0.08 Verbal maximum capacity* -0.08  0.07
Remember colors accuracy* Spatial capacity load 1

-0.05  0.07 accuracy* -0.09 0.07
Visual reproduction delayed Dysfunctional impulsivity
recall -0.07  0.07 -0.09  0.06
Nonplanning -0.07  0.07 Social anhedonia -0.10 0.07
Verbal manipulation RT* -0.07  0.07 Positive formal thought* -0.10 0.11
ADHD symptoms Verbal manipulation

-0.07  0.07 accuracy* -0.11  0.07
Attention impulsivity Spatial capacity load 5

-0.08  0.07 accuracy* -0.11  0.07
Taskswitch switch cost Scene recognition recall

-0.09  0.08 accuracy* -0.12  0.07
YMRC_mania* -0.10  0.10 Reward dependence -0.12  0.08
Spatial maintenance Infrequency(careless
accuracy™ -0.10  0.07 response) -0.13  0.07
Know words accuracy™ -0.10  0.08 Letter/Number sequencing -0.13  0.07
Scene recognition encoding Delusions*
accuracy™ -0.11  0.07 -0.13  0.10
Conflict effect RT Spatial maintenance

-0.11  0.06 accuracy* -0.13  0.07
Spatial capacity load 1 Remember mean RT*
accuracy* -0.11  0.07 -0.14  0.07
Visual reproduction Verbal capacity load 7
immediate recall -0.12  0.07 accuracy* -0.14  0.07
Vocabulary -0.12  0.06 Physical anhedonia -0.15 0.08
Taskswitch total accuracy Scene recognition encoding

-0.12  0.07 accuracy* -0.15  0.07
Total false alarms -0.12  0.07 Negative symptoms* -0.15 0.10
Know colors accuracy* -0.13  0.07 Eysenck impulsiveness -0.17  0.07
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Verbal maximum capacity* -0.13  0.07 Mania/disorganization* -0.17  0.10
Scene recognition recall Perceptual aberrations
accuracy* -0.14  0.07 -0.18 0.06
Verbal capacity load 5 Social anxiety
accuracy* -0.14  0.07 -0.18  0.07
ColorTrail interference Spatial maximum

-0.16  0.07 capacity* -0.19  0.07
Remember forced Verbal capacity load 3
recognition 2 features* -0.16  0.07 accuracy* -0.19  0.07
Conflict effect Spatial capacity load 7

-0.16  0.07 accuracy* -0.20  0.07
Spatial capacity load 3 Spatial capacity load 3
accur acy* -0.16  0.07 accuracy* -0.20  0.07
Spatial capacity load 7 Symbol span
accuracy* -0.16  0.07 -0.21  0.06
Verbal capacity load 7 Mood lability
accuracy* -0.17  0.07 -0.22  0.07
Spatial maximum capacity* -0.17 0.07 Positive symptoms* -0.23  0.09
Verbal capacity load 9 Anhedonia*
accuracy* -0.17  0.07 -0.24  0.12
Spatial capacity load 5 Schizoid personality
accuracy* -0.18  0.07 -0.24  0.08
Eysenck impulsiveness -0.18 0.06 Eysenck empathy -0.24  0.07
Verbal maintenance Taskswitch total accuracy
accuracy* -0.18  0.06 -0.25 0.07
Verbal capacity load 3 Functional impulsivity
accuracy* -0.19  0.07 -0.25  0.07
Positive formal thought* -0.19 0.12 YMRC_mania* -0.27 0.11
Symbol span -0.21  0.07 Obsessive compulsiveness -0.27  0.06
Spatial manipulation Digit span sequencing
accuracy* -0.22  0.07 -0.27 0.08
Digit span backward -0.23  0.07 Go hit median RT -0.28  0.07
Dysfunctional impulsivity Visual reproduction

-0.23  0.07 recognition -0.29  0.07
Verbal manipulation Depr ession/anxiety*
accuracy* -0.23  0.07 -0.30 0.10
Rewar d dependence -0.24  0.06 Matrix reasoning -0.31 0.06
Visual reproduction Anxiety
recognition -0.26  0.06 -0.32  0.07
Letter/Number sequencing -0.26 0.06 HAMD_depression* -0.33  0.10
L etter fluency -0.27  0.07 Bizarrebehavior* -0.33  0.12
Digit span forward -0.27 0.06 Hypomanic peronality -0.34  0.06
Matrix reasoning -0.29  0.06 Longdéay recognition -0.34  0.06
M ania/disor ganization* Visual reproduction

-0.29  0.09 immediaterecall -0.35 0.05
Digit span sequencing -0.29  0.06 Interpersonal sensitivity -0.36 0.06
Attention severity* -0.30  0.09 Depression -0.37  0.06
Eysenck ventur esomeness -0.35 0.06 Persistence -0.37  0.07
Hyperactivity severity* -0.43  0.09 Somatization -0.39 0.06
Motor impulsivity -0.45 0.06 Energy(Restless) -0.40 0.05
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Energy(Restless) Visual reproduction

-0.49 0.05 delayed recall -0.42 0.06
Hypomanic peronality -0.50 0.05 Short delay freerecall -0.44  0.05
Persistence -0.50 0.05 Longdeay cued recall -0.48  0.05
Novelty seeking -0.62 0.05 Short delay cued recall -0.49 0.05
Functional impulsivity -0.71  0.03 Longdeay freerecall -0.49 0.05

Notes: The contribution of each behavioral measure to LV 1-4 (correlation values) was shown
as decreasing order, along with their bootstrap-estimated standard deviations (SD). This table
lists both behavior measures that included in the PLS analysis and behavior measures that
were considered in post hoc analyses due to missing data (*). Correlations with significant
bootstrapped Z scores that survived FDR correction (g < 0.05) are shown in bold.
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Figure S2. Significant behavioral and cerebral connectivity gradient features associated with
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