

1 **Gene expression evolution in pattern-triggered immunity within *Arabidopsis thaliana* and**
2 **across Brassicaceae species**

3

4 Thomas M. Winkelmüller^{2,#}, Frederickson Entila^{2,#}, Shahajan Anver^{2,#,‡}, Anna Piasecka³,
5 Baoxing Song⁴, Eik Dahms¹, Hitoshi Sakakibara⁵, Xiangchao Gan⁴, Karolina Kułak^{3,§}, Aneta
6 Sawikowska⁶, Paweł Krajewski⁷, Miltos Tsiantis⁴, Ruben Garrido-Oter², Kenji Fukushima⁸, Paul
7 Schulze-Lefert², Stefan Laurent⁴, Paweł Bednarek³ and Kenichi Tsuda^{1,2,*}

8

9 ¹State Key Laboratory of Agricultural Microbiology, Interdisciplinary Sciences Research
10 Institute, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan,
11 China.

12 ²Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research,
13 50829 Cologne, Germany

14 ³Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland

15 ⁴Department of Comparative Development and Genetics, Max Planck Institute for Plant
16 Breeding Research, 50829 Cologne, Germany

17 ⁵Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science,
18 230-0045 Yokohama, Japan

19 ⁶Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-
20 628 Poznań, Poland

21 ⁷Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland

22 ⁸Institute for Molecular Plant Physiology and Biophysics, University of Würzburg

23 [‡]Present address: Department of Genetics, Evolution and Environment, University College
24 London, London, United Kingdom

25 [§]Present address: Department of Computational Biology, Adam Mickiewicz University, 61-614
26 Poznań, Poland

27

28 #These authors equally contributed to the work.

29

30 *For correspondence

31 Kenichi Tsuda

32 E-mail: tsuda@mail.hzau.edu.cn

33 **Abstract**

34 Plants recognize surrounding microbes by sensing microbe-associated molecular patterns
35 (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial
36 control, the evolution of PTI responses remains largely uncharacterized. Employing comparative
37 transcriptomics of six *Arabidopsis thaliana* accessions and three additional Brassicaceae species
38 for PTI responses to the MAMP flg22, we identified a set of genes with expression changes
39 under purifying selection in the Brassicaceae species and genes exhibiting species-specific
40 expression signatures. Variation in flg22-triggered transcriptome and metabolome responses
41 across Brassicaceae species was incongruent with their phylogeny while expression changes
42 were strongly conserved within *A. thaliana*, suggesting directional selection for some species-
43 specific gene expression. We found the enrichment of WRKY transcription factor binding sites
44 in 5'-regulatory regions in conserved and species-specific responsive genes, linking the
45 emergence of WRKY-binding sites with the evolution of gene responses in PTI. Our findings
46 advance our understanding of transcriptome evolution during biotic stress.

47 **Introduction**

48 The evolution of biological traits is determined both by variation in coding sequence as well as
49 gene expression (Das Gupta and Tsiantis, 2018; Necsulea and Kaessmann, 2014). However, our
50 understanding of heritable gene expression variation remains fragmented. The conservation of
51 gene expression patterns over million years of evolution across species suggests a general
52 importance of such expression patterns and indicates that they were subjected to stabilizing
53 selection. Conversely, diversified gene expression patterns across different species may reflect
54 neutral or adaptive evolution (Harrison et al., 2012). For example, species-specific gene
55 expression signatures observed in human and primate neuronal tissues suggest that cognitive
56 differences between these species might be connected to diversified expression patterns in their
57 brains (Enard et al., 2002). However, the immanent noise in expression data complicates to
58 distinguish between environmental and heritable effects on gene expression variation (Voelckel
59 et al., 2017). Interpretation of gene expression evolution in samples taken from different
60 environments can be confounded by the action of various environmental factors, such as diet,
61 abiotic stresses and disease status, that affect gene expression (Harrison et al., 2012). Thus, the
62 detection of heritable gene expression variation requires comparison under the same
63 experimental conditions (Voelckel et al., 2017).

64 Distinguishing between different modes of evolution is crucial to understand the
65 evolution of a given biological process. Although powerful statistical frameworks have been
66 developed to distinguish adaptive from neutral evolution in coding sequences (Delport et al.,
67 2009), differentiating these two modes of evolution vis-à-vis gene expression remains
68 challenging. Attempts have been made to define a null model of neutral gene expression
69 evolution, albeit we still lack both a consensus neutral model as well as a generally accepted
70 statistical framework for gene expression evolution (Rohlf et al., 2014; Khaitovich et al., 2004).
71 An alternative way to distinguish between different modes of gene expression evolution is to
72 employ empirical approaches to identify gene expression patterns both within and across species.
73 For instance, if gene regulation evolves under stabilizing selection, a conserved gene expression
74 pattern is expected both within and among species. By contrast, if gene regulation is under
75 directional selection in a species, a distinct, highly conserved gene expression pattern within the
76 species is expected (Romero et al., 2012; Harrison et al., 2012).

77 In previous comparative transcriptome studies in plants, it was noted that variation in
78 gene expression between or within species was substantially enriched for stress-responsive
79 genes, suggesting an important role for stress-responsive gene expression changes in adaptation
80 to the environment (Koenig et al., 2013; Voelckel et al., 2017; Groen et al., 2020). Despite this
81 notion, we poorly understand how stress-induced transcriptomic changes evolved in plants.
82 However, studies comparing expression variation within and across species in unified
83 experimental setups are rare in general and have not been described for plants.

84 In recent years, several close and distant relatives of the model plant *Arabidopsis*
85 *thaliana*, belonging to the Brassicaceae plant family, have been genome-sequenced and used as
86 model systems to understand the evolution of various biological traits. For instance, the
87 comparison of the recently sequenced *Cardamine hirsuta* genome with that of *A. thaliana* has
88 advanced our understanding of the molecular mechanisms that mediate the evolution of leaf
89 shapes and pod shattering (Vlad et al., 2014; Gan et al., 2016; Das Gupta and Tsiantis, 2018).
90 The genome sequences of other Brassicaceae species including *Capsella rubella* and *Eutrema*
91 *salsugineum* have been used to analyse the mechanisms underlying selfing and abiotic stress-
92 tolerance, respectively (Wu et al., 2012; Yang et al., 2013; Slotte et al., 2013). Availability of the
93 rich genomic resources, the different degrees of phylogenetic distance to *A. thaliana*, and the
94 feasibility to grow these Brassicaceae species in the same experimental conditions make them an
95 excellent system for comparative genomics, transcriptomics and metabolomics.

96 In nature, plants are surrounded by microbes which can be potentially beneficial or
97 pathogenic (Fitzpatrick et al., 2020). To properly respond to the presence of these microbes,
98 plants have evolved cell-surface localized pattern recognition receptors (PRRs) that sense
99 conserved microbe-associated molecular patterns (MAMPs) leading to activation of pattern-
100 triggered immunity (PTI) (Albert et al., 2020; Zhou and Zhang, 2020). The two best
101 characterized MAMPs are the bacteria-derived oligopeptides flg22 and elf18, which are sensed
102 by their corresponding leucine-rich repeat PRRs FLAGELLIN SENSING 2 (FLS2) and EF-TU
103 RECEPTOR (EFR), respectively, in *A. thaliana*. Treatment of plants with flg22 or elf18 elicits a
104 set of temporally coordinated responses including rapid MAP kinase (MAPK) phosphorylation,
105 genome-wide transcriptional reprogramming, phytohormone and secondary metabolite
106 production, followed by inhibition of plant growth and increased resistance against pathogens
107 (Albert et al., 2020). Although it has been mainly studied in the context of plant-pathogen

108 interactions, PTI has recently also been implicated in the assembly of the plant microbiota, a
109 diverse set of microbes that colonize the healthy plant (Hacquard et al., 2017; Chen et al., 2020).
110 Thus, PTI serves as the key mechanism that allows plants to adapt to different environments
111 characterized by different microbial communities.

112 Despite the significance of PTI for plant adaptation to the environment, our
113 understanding of PTI evolution is limited to the evolution of PRRs. For instance, *FLS2* is
114 conserved throughout many plant lineages including Brassicaceae, Solanaceae and Poaceae
115 families, whereas *EFR* appears to be restricted to the Brassicaceae family (Boutrot and Zipfel,
116 2017). However, conservation of PTI responses among different species and how PTI responses
117 evolve remain poorly understood. Here, we took a comparative transcriptomic and metabolomic
118 approach using *A. thaliana* (six accessions), *C. rubella*, *C. hirsuta*, and *E. salsugineum* in a
119 unified experimental setup with multiple time points to address the evolution of flg22-triggered
120 responses in plants.

121

122 **RESULTS**

123 **The tested Brassicaceae plants respond to the MAMP flg22**

124 Based on our analysis using TIMETREE (see Methods), the Brassicaceae species *C. rubella*, *C.*
125 *hirsuta*, and *E. salsugineum* diverged from *A. thaliana* approximately 9, 17 and 26 Mya ago,
126 respectively (Figure 1A). We first investigated whether flg22 treatment induces rapid
127 phosphorylation of MPK3 and MPK6, a typical early event during PTI, in these four
128 Brassicaceae plants. Although protein extracts from *C. hirsuta*, including those from the Oxford
129 accession, were described to not bind flg22 (implying that *C. hirsuta* does not sense flg22)
130 (Vetter et al., 2012), we observed a clear phosphorylation of MPK3 and MPK6 upon flg22
131 treatment in all tested Brassicaceae plants including *C. hirsuta* Oxford, which was absent in the
132 *A. thaliana* *fls2* mutant (Figure 1B). We also observed induction of *WKRY29*, a widely used
133 immune marker gene in *A. thaliana* (Asai et al., 2002), in all tested species at 1, 9, and 24 h after
134 flg22 application (Figure 1C). Thus, all four tested Brassicaceae species sense flg22 to trigger
135 typical early PTI responses as observed in *A. thaliana*.

136 PTI activation reduces plant growth, a late PTI response detectable days after MAMP
137 perception, which is another common measure of PTI outputs in *A. thaliana* (Gómez-Gómez et
138 al., 1999). With the exception of the *fls2* mutant, chronic flg22 exposure reduced seedling growth
139 in all tested species, but the extent of flg22-triggered growth reduction varied and was
140 significantly weaker in *E. salsugineum* compared to the other three species (Figure 1D).

141 Another PTI output is enhanced pathogen resistance that is induced by MAMP pre-
142 treatment of plants. For example, flg22 pre-treatment reduces proliferation of the foliar bacterial
143 pathogen *Pseudomonas syringae* pv. *tomato* DC3000 (*Pto* DC3000) in *A. thaliana* leaves (Zipfel
144 et al., 2004; Tsuda et al., 2008). We found that flg22 pre-treatment reduced bacterial
145 proliferation in *A. thaliana* and *C. rubella* (Figure 1E). In contrast, *Pto* DC3000 growth was only
146 slightly reduced in *C. hirsuta* and not altered in *E. salsugineum* by flg22 treatment (Figure 1E).
147 Thus, the robust induction of early PTI responses by flg22 observed in all tested Brassicaceae
148 does not necessarily lead to heightened immunity against this bacterial pathogen (Figure 1B, C).
149 We noticed that the *Pto* DC3000 titre was much lower in *E. salsugineum* compared to the other
150 species (Figure 1E) and speculated that type III effector(s) from *Pto* DC3000 may be recognized
151 in *E. salsugineum*, triggering ETI and masking the flg22-triggered PTI effect. However, flg22
152 pre-treatment followed by inoculation with a *Pto* DC3000 mutant strain lacking the functional

153 type III secretion system (*Pto hrcC*) revealed reduced bacterial growth in *A. thaliana* but not in
154 *E. salsugineum* (Supplemental Figure 1). Thus, flg22 pre-treatment was ineffective against this
155 bacterial pathogen in *E. salsugineum*. Interestingly, *Pto hrcC* did not grow in *C. rubella*
156 (Supplemental Figure 1), suggesting that *Pto hrcC*-triggered PTI responses sufficiently limited
157 *Pto hrcC* growth in *C. rubella*. In summary, while flg22 triggers typical PTI responses in all
158 tested Brassicaceae plants, the physiological consequences, such as plant growth inhibition and
159 bacterial resistance, vary across species.

160

161 **Flg22 triggers extensive transcriptional reprogramming in all tested Brassicaceae species**

162 To study the transcriptome evolution of PTI responses, we generated RNA-sequencing (RNA-
163 seq) data for early (1 h), intermediate (9 h), and late (24 h) transcriptome responses after flg22 or
164 mock treatment of the four Brassicaceae species (Figure 2A). In total, this dataset comprised 72
165 samples with 33.3 million 100-bp strand-specific reads per sample on average. Normalised and
166 log₂-transformed count data were used for statistical analysis using a linear model (see Methods).

167 We determined differentially expressed genes (DEGs) upon flg22 treatment compared to
168 the mock samples based on an adjusted P-value below 0.01 and a minimum fold-change of two
169 for each species at each time point. We observed massive transcriptional reprogramming in all
170 species with 4,349, 4,964, 4,038, and 2,861 DEGs in *A. thaliana* (Ath), *C. rubella* (Cru), *C.*
171 *hirsuta* (Chi), and *E. salsugineum* (Esa), respectively (Figure 2B). The number of upregulated
172 genes at 1 h was comparable among species, while the number of downregulated genes at 1 h
173 was more variable, with *C. rubella* downregulating approximately three times as many genes as
174 *E. salsugineum*. Interestingly, the number of DEGs at later time-points differed markedly among
175 these species: the expression of about 2,000 genes was altered in *A. thaliana* and *C. rubella*,
176 whereas only 300 to 500 genes were differentially regulated in *C. hirsuta* and *E. salsugineum* 24
177 h after flg22 treatment (Figure 2B).

178 To allow comparison of expression changes of individual gene between species, we used
179 Best Reciprocal BLAST to determine 1:1 orthologues between *A. thaliana* and the other
180 Brassicaceae species. Subsequently, we only selected genes showing a 1:1 orthologue
181 relationship between *A. thaliana* and each of the Brassicaceae species, resulting in a set of
182 17,856 orthologous genes (Supplemental Data Set 7). From the total of 6,106 genes, which were
183 differentially expressed at least at one time point in at least one of the species, 868 DEGs

184 (14.2%) were shared among all Brassicaceae species (Figure 2C and Supplemental Figure 2).
185 These 868 DEGs represent a core set of flg22-responsive genes in these Brassicaceae species as
186 their responses to flg22 were maintained over 26 million years of evolution. We also found that a
187 substantial number of DEGs were species-specific (Figure 2C). The specific up- or down-
188 regulation of 460 to 1,102 DEGs suggests substantial diversification of flg22-triggered
189 transcriptional responses during Brassicaceae evolution. Comparisons between *A. thaliana* and
190 each of the species revealed that about one third of flg22-induced transcriptional changes (35.5%
191 with *C. rubella*, 35.6% with *C. hirsuta* and 31.7% with *E. salsugineum*) are shared between *A.*
192 *thaliana* and each of the respective species (Figure 2D). Taken together, flg22 triggers
193 overlapping but distinct massive transcriptional reprogramming patterns in these Brassicaceae
194 species.

195

196 **Conserved flg22-responsive genes during Brassicaceae evolution**

197 Next, we examined the expression dynamics of the shared 868 DEGs (Figure 3A). These shared
198 DEGs exhibit similar expression patterns among all four species: genes induced in one species
199 were also induced in the other species. Comparisons with publicly available datasets revealed
200 that these shared genes are commonly responsive to MAMPs (flg22, elf18, and
201 oligogalacturonides (OGs)) and Damage-associated molecular patterns (DAMPs; Pep2) in *A.*
202 *thaliana* (Figure 3A). Many well-known genes involved in different aspects of plant immunity
203 such as MAMP perception (*CERK1*, *BAK1*, *BIK1*, and *SOBIR1*), production of reactive oxygen
204 species (*RBOHD*), MAPK cascades (*MKK4* and *MPK3*), salicylic acid (SA) signalling
205 (*CBP60G*, *NPR1*, and *NPR3*), and immune-related transcription factors (*WRKY13/33/40/62*,
206 *ERF6/104*, and *MYB51/122*) were among the conserved flg22-responsive genes (Figure 3B). In
207 addition, a large number of genes, i.e., approximately 50% of the top 25 induced genes, whose
208 high induction by flg22 was conserved among all tested Brassicaceae are either functionally
209 unannotated or were not previously associated with immunity (Figure 3B; red boxes). Thus,
210 various genes with potentially important and conserved functions in plant immunity remain to be
211 characterized. Taken together, our data define a core set of genes with conserved flg22
212 responsiveness over 26 million years of Brassicaceae evolution, suggesting that the regulation of
213 these genes is under purifying selection and therefore might be broadly relevant for plant-
214 bacterial interactions.

215

216 **Differences in flg22-triggered transcriptomic responses among Brassicaceae species**

217 While in general a similar number of genes were differentially expressed after flg22 treatment in
218 the tested Brassicaceae plants, there were substantial differences in temporal dynamics. For
219 instance, transcriptional reprogramming was more transient in *E. salsugineum* compared to *A.*
220 *thaliana*, and *C. rubella* showed a peculiar pattern characterized by a decrease in the number of
221 DEGs at 9 h and an increase at 24 h (Supplemental Figure 3A). Rapid and sustained
222 transcriptional responses were previously associated with effective bacterial resistance (Lu et al.,
223 2009; Tsuda et al., 2013; Mine et al., 2018). Thus, the lack of flg22-triggered growth restriction
224 of *Pto* DC3000 in *E. salsugineum* (Figure 1E and Supplemental Figure 1) might be explained by
225 the transient nature of the transcriptional response in this species. To gain insights into biological
226 processes associated with this expression pattern, we extracted genes that were induced at 1 h in
227 both *A. thaliana* and *E. salsugineum* and were induced at 24 h in *A. thaliana* but not in *E.*
228 *salsugineum* (Supplemental Figure 3B). By investigating publicly available gene expression
229 datasets, we found that most of these genes were induced by SA in *A. thaliana* (Supplemental
230 Figure 3C). Consistent with this analysis, flg22 treatment increased SA levels in *A. thaliana* but
231 not in *E. salsugineum* (Supplemental Figure 3D). These results suggest that activated SA
232 signalling is responsible for sustained transcriptional reprogramming in *A. thaliana*. However,
233 flg22-induced transcriptome responses were comparable between wild-type *A. thaliana* Col-0
234 and the mutant deficient in *SID2*, encoding an SA biosynthesis gene responsible for increased
235 SA accumulation in response to flg22 (Supplemental Figure 3E-H) (Hillmer et al., 2017). Thus,
236 SA accumulation alone does not explain the distinct temporal dynamics of transcriptional
237 reprogramming in these Brassicaceae plants.

238 A considerable number of genes were only differentially expressed in one of the
239 Brassicaceae species (Figure 2C). To understand the degree of specificity in gene expression
240 patterns in these Brassicaceae plants, we clustered and visualized expression changes of all 6,106
241 DEGs (Supplemental Figure 4). This analysis revealed that although most of the DEGs showed
242 similar expression patterns, four gene clusters exhibited species-specific signatures (Figure 3C
243 and Supplemental Figure 4). These four clusters contained 1,086 genes, representing about 18%
244 of all DEGs. Although GO term analysis of the shared DEGs revealed a strong enrichment of
245 defence-associated biological processes including “immune/defence response”, “response to

246 bacterium”, and “response to ethylene/SA/JA stimulus”, there was almost a complete lack of GO
247 term enrichment within the four gene clusters showing species-specific expression signatures
248 (Figure 3D). We entertain the possibility that genes showing species-specific patterns are
249 involved in a collection of biological processes. Indeed, species-specific clusters contained genes
250 associated with stress- and/or immunity-associated GO terms (Figure 3D). In *A. thaliana*- and *C.*
251 *hirsuta*-specific flg22-inducible genes, GO terms connected to secondary metabolism including
252 “phenylpropanoid metabolic process”, “lignin metabolic process” and “coumarin metabolic
253 process” were significantly enriched (Figure 3D and Supplemental Data Set 3). Distinct changes
254 in the expression of these genes could result in differences in secondary metabolite production,
255 which could in turn directly impact microbial growth and behaviour in plants (Piasecka et al.,
256 2015; Stringlis et al., 2019).

257

258 **Flg22 transcriptome responses are highly conserved among genetically and geographically
259 diverse *A. thaliana* accessions**

260 The observed differences in gene expression patterns indicate diversification processes that
261 might have occurred over 26 million years of Brassicaceae evolution. Alternatively, such
262 variation in transcriptome responses can be generated within a single species. To address this
263 question, we analysed the variation in flg22 responses among *A. thaliana* accessions. First, we
264 tested the responsiveness of 24 *A. thaliana* accessions to flg22 using a MAPK phosphorylation
265 assay. Flg22 treatment induced MAPK phosphorylation in all accessions except Cvi-0, which
266 lacks a functional FLS2 receptor, therefore representing a natural negative control (Dunning et
267 al., 2007) (Figure 4A). To avoid underestimation of diversity in flg22 responses within *A.*
268 *thaliana*, we selected 12 out of the 24 accessions, which belong to distinct genetic groups (based
269 on admixture groups from 1001genomes.org) and are geographically distributed over the USA,
270 Europe, and Asia (Figure 4B). We found that all the 12 accessions induced *PROPEP3* expression
271 1 h after flg22 treatment (Figure 4C). We further generated and analysed the transcriptomes of
272 five of these accessions 1 h after flg22 or mock treatment using RNA-seq. Importantly, these
273 accessions were collected from geographically distant regions, were genetically diverse, and
274 showed variable growth phenotypes (Figure 4B and D). We mapped the RNA-seq reads on the
275 *A. thaliana* Col-0 reference genome and used the same set of 17,856 1:1 orthologous genes as in

276 the comparison between Brassicaceae species to avoid overestimation of conservation, which
277 may result from a larger number of shared genes in the comparison within *A. thaliana*.

278 The transcriptome responses of *A. thaliana* accessions to 1 h-flg22 treatment were similar
279 in magnitude to those of other Brassicaceae plants and the *A. thaliana* Col-0 accession (4,964 to
280 2,861 DEGs), ranging from 4,372 (Kon) to 2,443 (Kn-0) DEGs (Figure 4E). However, the
281 overlap of DEGs among the five *A. thaliana* accessions was greater than that of the four
282 Brassicaceae species, as 1,232 DEGs, 26% of the total, were shared among these five accessions
283 while 764 DEGs, 15.7% of the total at 1 h, were shared among the four Brassicaceae species
284 (Figure 4F and Supplemental Figure 2). Consistent with this, expression patterns of all 4,733
285 DEGs (differentially expressed in at least one accession) were highly conserved among the five
286 accessions, and we did not find accession-specific expression clusters with the same clustering
287 threshold used in the interspecies comparisons (Figure 4G). Mapping the RNA-seq reads on the
288 Col-0 reference genome potentially biased the analysis toward similar expression patterns among
289 *A. thaliana* accessions. To test for this possibility, we generated SNP-corrected genomes for each
290 accession and re-mapped the RNA-seq reads from *A. thaliana* accessions to their own genomes.
291 These two mapping procedures yielded comparable results (Supplemental Figure 5). Therefore,
292 we used the initial mapping procedure to the Col-0 reference genome for the following analyses.

293 Variable transcriptome responses to flg22 were associated with distinct effects of flg22
294 pre-treatment on *Pto* DC3000 growth in Brassicaceae plants (Figure 1E and Supplemental Figure
295 1). Therefore, we speculated that the high similarity in flg22-induced transcriptional
296 reprogramming observed in *A. thaliana* accessions would lead to similar flg22 effects on flg22-
297 triggered immunity against this bacterial pathogen. Indeed, flg22 significantly reduced *Pto*
298 DC3000 titres in all accessions, although the bacterial growth in mock conditions differed among
299 accessions with lower bacterial titres in Gy-0 and Kon and higher titres in No-0 compared to the
300 Col-0 accession (Figure 4H). Taken together, these results indicate that evolution rates within *A.*
301 *thaliana* were insufficient to diversify early flg22-induced gene expression changes and bacterial
302 resistance.

303

304 **Inter-species variation in transcriptome responses to flg22 exceeds intra-species variation**
305 **and is incongruent with the phylogeny**

306 To directly compare variation in transcriptome responses to flg22 between the Brassicaceae
307 species and within *A. thaliana*, we re-analysed the data from all 1 h samples together. We
308 normalised, determined DEGs, and clustered \log_2 expression changes of all 5,961 DEGs. Similar
309 to the previous analyses, the heatmap revealed gene clusters with species-specific signatures for
310 each species but no gene cluster with *A. thaliana* accession-specific signatures (Figure 5A, B).
311 Wrongly-assigned orthologous pairs could lead to spurious identification of species-specific
312 expression patterns. Defining true orthologous genes between different species is challenging
313 especially for gene families with many homologous genes. We reasoned that if the identification
314 of genes with species-specific expression signatures resulted from the incorrect assignment of
315 orthologues, the species-specific gene clusters should be associated with larger gene families
316 compared to other gene clusters. However, we did not observe such a relationship (Supplemental
317 Figure 6A). Therefore, the incorrect assignment of orthologous gene pairs unlikely explains the
318 majority of the species-specific gene expression patterns. Another possibility is that distinct
319 expression changes for genes showing species-specific patterns might be caused by differences
320 in the basal expression level (in mock) among different Brassicaceae plants. Nevertheless, we
321 did not find any consistent patterns in the basal expression levels of genes which would explain
322 species-specific induction by flg22 (Supplemental Figure 6B). Thus, inter-species variation in
323 transcriptome responses to flg22 among the selected Brassicaceae species clearly exceeds intra-
324 species variation among *A. thaliana* accessions.

325 To provide statistical support for this conclusion, we determined the number of genes that
326 responded differently to flg22 between the Brassicaceae plants including *A. thaliana* Col-0 or
327 between the five *A. thaliana* accessions. We detected 1,992 DEGs in the inter-species
328 comparison and only 131 DEGs in the comparison within *A. thaliana* (Figure 5C). From these
329 131 genes, only the Can-0 accession harboured one gene responding differently compared to all
330 other accessions. Among Brassicaceae plants, a considerable number of genes were specifically
331 differentially expressed in only one of the species (Figure 5D). Consistent with *C. rubella* having
332 the largest number of genes in the species-specific gene cluster (Figure 5A, B; Cluster 7), flg22
333 specifically triggered induction of the largest number of genes in *C. rubella* among the tested
334 Brassicaceae species (Figure 5D).

335 The observed divergent gene expression between different species together with the low
336 variation within species could be interpreted as evidence of species-specific directional natural

337 selection. In other words, the species-specific gene expression signatures could be associated
338 with adaptive evolution (Harrison et al., 2012; Romero et al., 2012). Alternatively, if the
339 transcriptome variation among Brassicaceae species was caused by stochastic processes and was
340 thus selectively neutral, such variation should correlate with the phylogenetic distance between
341 the species (Broadley et al., 2008). We performed a principal component analysis (PCA) with
342 genes that are differentially expressed 1 h after flg22 treatment in at least one plant genotype
343 (Figure 5E). In the PCA plot, all *A. thaliana* accessions were clustered together, whereas other
344 Brassicaceae plants were separated from *A. thaliana*. Importantly, *C. rubella*, the closest relative
345 to *A. thaliana* among the tested species, was the most distant species from *A. thaliana* (Figure
346 5E). In addition, *C. hirsuta* and *E. salsugineum*, which separated 26 Mya, were clustered together
347 (Figure 5E). Thus, the variation in flg22-induced gene expression changes across the tested
348 Brassicaceae species was incongruent with the Brassicaceae phylogeny. These results suggest
349 that at least some species-specific transcriptome responses to flg22 might reflect adaptive traits
350 during Brassicaceae evolution.

351 The conservation of gene induction across six *A. thaliana* accessions (Figure 5A, B;
352 Cluster 1) suggests that the observed species-specific expression signatures in Brassicaceae
353 species might represent novel inventions in the respective species. To test this idea, we
354 determined expression changes of selected genes showing species-specific expression signatures
355 in different accessions or sister species of *C. rubella*, *C. hirsuta*, and *E. salsugineum* by RT-
356 qPCR. For this, we selected *Capsella grandiflora* (Cgr, a sister species of *C. rubella*), two
357 additional *C. hirsuta* accessions (Wa and GR2), and one additional *E. salsugineum* accession
358 (YT). We selected *PR4*, *CYP79B2*, and *NAC32* as *C. rubella*-specific genes. *PR4* and *NAC32*
359 were specifically induced both in *C. rubella* and *C. grandiflora*, while *CYP79B2* was induced in
360 these two species as well as in *A. thaliana* Col-0 (Figure 6). The two *C. hirsuta*-specific genes
361 *RAC7* and *AT3G60966* (as there is no common name for *AT3G60966*, we used the *A. thaliana*
362 gene code) were specifically induced in all three *C. hirsuta* accessions, with the exception of
363 *AT3G60966*, which was additionally induced in *C. grandiflora*. All three *E. salsugineum*-specific
364 genes (*APK4*, *bZip TF*, and *CYP77A4*) were induced only in *E. salsugineum* accessions (Figure
365 6). Together, these findings demonstrate that the specific patterns of gene regulation observed in
366 each of the tested Brassicaceae are conserved features in the respective species or lineage.

367

368 **WRKY TFs are central for flg22-triggered gene induction and may be responsible for**
369 **emergence of species-specific gene induction**

370 Changes in gene transcription are often mediated by the binding of specific transcription factors
371 (TFs) to 5'-regulatory regions (Baxter et al., 2012). However, our understanding of how gene
372 expression is regulated during PTI, whether gene regulatory mechanisms differ in different
373 species, and how a given species acquires a new mode of gene regulation is far from complete.
374 Together with genomic resources, we reasoned that our datasets, which reveal both conserved
375 and diversified gene expression patterns in the Brassicaceae species, may provide valuable
376 insights into these questions. To this end, we searched the 5'-regulatory regions (500 bp upstream
377 of the transcriptional start site) of the genes in each of the 15 gene clusters (Figure 5) for known
378 TF-binding motifs in each Brassicaceae species. Our analysis revealed that multiple motifs,
379 which are typically bound by WRKY TFs, are highly enriched in the 5'-regulatory regions of
380 genes in common flg22-induced clusters such as Clusters 2, 5, 13, and 14 (Figure 7A and
381 Supplemental Figure 7). In *A. thaliana*, WRKY TFs are well known to regulate transcriptional
382 reprogramming during plant immunity including response to flg22 (Birkenbihl et al., 2017;
383 Tsuda and Somssich, 2015). Also, the WRKY gene family has significantly expanded in land
384 plants, likely required for adaptation to the terrestrial environment (One Thousand Plant
385 Transcriptomes Initiative, 2019). Our results suggest that transcriptional induction mediated by
386 WRKY TFs is a conserved mechanism in response to flg22 across these Brassicaceae species. In
387 addition, *A. thaliana*, *C. rubella*, and *C. hirsuta* 5'-gene regulatory regions of flg22-induced
388 expression clusters (Clusters 13, 6, and 14, respectively) were significantly enriched for CAMTA
389 TF-binding motifs (Figure 7 – source data 1), which play an important role in early immune
390 transcriptional reprogramming (Jacob et al., 2018).

391 Interestingly, we found that WRKY TFs are associated with the 5'-regulatory regions of
392 genes showing species-specific induction only in the species that are highly flg22-responsive.
393 For instance, in Clusters 1, 3, and 10, WRKY TF-binding motifs were only enriched in 5'-
394 regulatory regions of flg22-induced genes in *A. thaliana*, *C. rubella*, and *E. salsugineum*,
395 respectively (Figure 7B). In addition, in the *C. rubella*-specific expression cluster (Cluster 7),
396 AHL TF-motifs were enriched only in *C. rubella* 5'-regulatory regions (Figure 7B). AHL TFs
397 have been associated with plant developmental processes but some AHL TFs are involved in
398 MAMP-induced gene expression (Lou et al., 2014; Mine et al., 2018). These results suggest that

399 in these Brassicaceae plants the emergence of cis-regulatory sequences that are bound by specific
400 TFs such as WRKY TFs facilitated the evolution of distinct gene induction patterns.

401

402 **Variation in coding sequences show no strong correlation with transcriptome variation**

403 Previous studies reported a positive correlation between gene expression and coding sequence
404 evolution and suggested that similar selective forces might have acted on both modes of
405 evolution (Hunt et al., 2013; Khaitovich et al., 2005), although it should be noted that in some
406 studies, this correlation was organ-dependent or not detected at all (Whittle et al., 2014; Tirosh
407 and Barkai, 2008). Thus, the relationship between gene expression and coding sequence
408 evolution appears to be species- or condition-dependent. Therefore, we asked whether the
409 variation in basal or flg22-triggered expression changes is correlated with variation in amino acid
410 sequences among the tested Brassicaceae species. We compared the standard deviation divided
411 by the mean of the expression levels in mock-treated RNA-seq samples (1 h) of *A. thaliana* Col-
412 0 and other Brassicaceae plants with the mean amino acid sequence identities between *A. thaliana* Col-0
413 and each of the other species. We found no correlation in variation between
414 amino acid sequence and basal gene expression (Figure 8A). Similarly, we compared flg22-
415 induced expression changes of all expressed genes or DEGs (1 h) with amino acid sequence
416 identities and found no correlation (Figure 8B, C). Finally, we tested whether pairwise
417 differences in flg22-induced expression changes between *A. thaliana* and individual
418 Brassicaceae species were linked to amino acid sequence diversification. Again, we did not find
419 any strong correlation (Figure 8D-I). Thus, variation in gene expression both at basal levels and
420 in response to flg22 does not correlate with variation in amino acid sequences, suggesting that
421 different selective forces drove gene expression and coding sequence evolution in these
422 Brassicaceae species.

423

424 **The genetic divergence and allele frequencies of coding or regulatory regions of immediate- 425 flg22-responsive genes implicate neutral ascendancy in *A. thaliana***

426 To test whether genes displaying a specific response in *A. thaliana* (clusters 1 and 12) may have
427 been subjected to recent adaptive pressures, we compared their patterns of polymorphism and
428 divergence at upstream and coding regions with other gene clusters displaying no *A. thaliana*-
429 specific expression (clusters 2,5,7,9). If recent and recurrent regulatory adaptive mutations in *A.*

430 *thaliana* were the ultimate cause of the expression specificity observed in clusters 1 and 12, we
431 should observe an elevated divergence between *A. thaliana* and *A. lyrata* at regulatory regions
432 compared to the other clusters and potentially a distribution of allele frequencies skewed towards
433 higher frequency classes compared to neutral expectations (Nielsen, 2005). Our results, rather
434 indicate that the genetic variation observed at genes with *A. thaliana* -specific responses are
435 overall in line with the variation observed at other clusters regardless of species-specificity
436 (Supplemental Figure 8). However, cluster 5 (highly induced in all species) showed the lowest
437 genetic divergence on its upstream regions while the neutral synonymous variation for the same
438 cluster was the highest (Supplemental Figure 8). This suggests that this lower divergence at
439 upstream regions is not the result of a lower mutation rate but rather the result of stronger
440 purifying selection acting on the regulatory regions of those genes with conserved expression
441 patterns in this cluster.

442 The allelic distributions at the upstream and coding sequences of these clusters in *A.*
443 *thaliana* were also determined to assess negative and positive selection. We did not observe clear
444 differences in evolutionary selection among six clusters examined (Supplemental Figure 9).
445 Long-term balancing selection has been identified as an important process shaping the genetic
446 variation of immunity related genes in plant (Koenig et al., 2019). One of the signatures of
447 balancing selection in polymorphism and divergence data is the increase of the ratio of non-
448 synonymous to synonymous divergence and polymorphism (Ka/Ks and pi_a/pi_s, respectively).
449 A number of genes under balancing selection was observed in each cluster (Supplemental Figure
450 10), indicating that balancing selection acts on flg22-responsive genes in *A. thaliana* independent
451 of the species-specificity.

452

453 **Differences in metabolome profiles in response to flg22 among the Brassicaceae species**

454 Some genes showing species-specific expression patterns were associated with GO terms
455 connected to secondary metabolism (Supplemental Data Set 8). This prompted us to investigate
456 whether flg22 treatment differentially affects metabolite profiles of Brassicaceae plants. In
457 unbiased HPLC-MS analysis, we detected various differentially accumulating metabolites
458 (DAMs; q-value < 0.05, minimum fold change of 1.5) in response to flg22 among the four
459 Brassicaceae plants (Figure 9A). Interestingly, most flg22-induced changes in metabolite
460 accumulation were species-specific and only 19 out of 360 DAM signals were commonly

461 affected by flg22 in all tested Brassicaceae species, indicating a strong diversification of the
462 native metabolome and its reprogramming in response to flg22 (Figure 9B). This notion was
463 further supported by the clustering of \log_2 fold changes for all DAMs, which showed only
464 limited number of overlaps between metabolome alterations (Figure 9D). In line with the flg22-
465 triggered transcriptional activation, the variation in metabolome changes was incongruent with
466 the Brassicaceae phylogeny as *A. thaliana* and *E. salsugineum*, which are the most distantly
467 related tested species, clustered together in the PCA based on all DAMs (Figure 9C).

468

469

470

471

472 **DISCUSSION**

473 Although current knowledge suggests that stabilizing selection and neutral fluctuation largely
474 shape the evolution of transcriptomic variation, directional selection also appears to considerably
475 shape the regulation of gene expression (Rifkin et al., 2003; Nuzhdin et al., 2004; Lemos et al.,
476 2005; Whitehead and Crawford, 2006; Romero et al., 2012; Chen et al., 2019; Brawand et al.,
477 2011). Our comparison of transcriptome responses within *A. thaliana* accessions and among four
478 Brassicaceae species reveals fundamental features of transcriptome evolution: we have identified
479 conserved core genes and species-specific responsive genes across Brassicaceae plants during
480 flg22-induced PTI. A core set of responsive genes conserved across Brassicaceae likely reflect
481 stabilizing selection to keep important gene regulatory processes in PTI whereas each species
482 evolved their specific responses for species-specific arms. Our unified experimental setup for all
483 transcriptome comparisons has allowed us to detect heritable gene expression variation among
484 these species.

485 We have shown that transcriptome responses to flg22 are remarkably conserved within *A.*
486 *thaliana*. A previous study found that variation in the expression of stress-responsive genes
487 accounted for the majority of divergence in expression among *A. thaliana* accessions
488 (Kawakatsu et al., 2016), and many studies have described the strong plasticity of immune-
489 responsive gene expression in the face of other environmental perturbations such as abiotic
490 stresses (Berens et al., 2019; Singh et al., 2014; Ueno et al., 2015; Coolen et al., 2016). Since the
491 tested *A. thaliana* accessions were collected from habitats with distinct climatic conditions such
492 as the Canary Islands and Lithuania and have diverse genetic backgrounds, these highly
493 conserved early transcriptome responses to flg22 were surprising. This finding indicates that
494 short-term evolution in divergent environments is insufficient to introduce major variation in
495 early transcriptional responses during PTI and reflects the importance of a rapid transcriptome
496 response in *A. thaliana* across diverse environments.

497 We have found that the expression changes of large numbers of genes are conserved
498 among different Brassicaceae species during flg22-induced PTI. Many of these genes have not
499 been previously characterized or linked to plant defence. Thus, our dataset provides the basis and
500 rationale for future studies. In addition, the conservation of transcriptome responses to flg22 over
501 26 million years of Brassicaceae evolution indicates that these responses evolved under
502 stabilizing selection (Whitehead and Crawford, 2006). Many studies have demonstrated the

503 importance of transcription factors that regulate the expression of specific genes during PTI
504 (Birkenbihl et al., 2017; Jacob et al., 2018). However, the lack of a method to efficiently and
505 specifically block transcriptional reprogramming during PTI means that it remains obscure
506 whether genome-wide transcriptional reprogramming during PTI is required for plant defence
507 against pathogens and/or for adaptation to their environments. The stabilizing selection observed
508 in the transcriptome responses strongly suggests that the massive transcriptional reprogramming
509 during PTI is advantageous for Brassicaceae plants in nature.

510 While all tested Brassicaceae species deployed rapid, massive transcriptional
511 reprogramming as well as MAPK activation, they exhibited different PTI outputs. For instance,
512 in *C. hirsuta* and *E. salsugineum*, the flg22-elicited transcriptional response was not associated
513 with flg22-induced resistance against *Pto* DC3000. This seems counterintuitive for species not
514 benefitting from costly transcriptional reprogramming. Maintaining the PTI transcriptional
515 reprogramming is analogous with the retention of susceptible alleles for *Rps2*, a resistance gene
516 for the pathogen virulence effector AvrRpt2 (MacQueen et al., 2016). One of the explanations is
517 that susceptible *Rps2* alleles encode recognition specificities for pathogen effectors that have yet
518 to be identified (MacQueen et al., 2016). Similarly, transcriptional reprogramming induced by
519 flg22 may be associated with effective resistance against different bacterial pathogens or the
520 control of plant microbiota in *C. hirsuta* and *E. salsugineum* (Hacquard et al., 2017; Chen et al.,
521 2020). Understanding of how diversity in PTI responses across plant species is linked to plant
522 adaptation would be key to comprehend the role of PTI.

523 In addition to the conserved transcriptome responses, we have also revealed that each of
524 the tested Brassicaceae species exhibits heritable species/lineage-specific expression signatures
525 during flg22-induced PTI. This can be explained by genetic drift in which case changes might be
526 selectively neutral. Alternatively, the species-specific expression patterns might be selective.
527 Evolutionary theory suggests that if expression changes in a species are adaptive, little variation
528 is expected within that species. We have shown that species-specific expression patterns are
529 conserved among multiple accessions or sister species in the respective species. Moreover,
530 variation in transcriptome responses during flg22-induced PTI was incongruent with the
531 Brassicaceae phylogeny, which is inconsistent with the variation being caused solely by genetic
532 drift. Thus, some of the species-specific expression signatures observed in this study during
533 flg22-induced PTI appear to be selectively driven expression shifts. As similar incongruence was

534 observed for the flg22-induced changes in metabolomes of the investigated species these
535 expression signatures likely include genes linked with specialized metabolism.

536 We have also shown that interspecific differences are larger than intraspecific variations
537 in the early transcriptome response. This expression divergence could be explained by variation
538 in expression and function of transcription factors and/or in 5'-gene regulatory regions *cis*-
539 regulatory elements that coincides in a lineage-specific manner. It has been thought that most of
540 the intraspecific variations could be attributed to *cis*-associated differences which are tightly in
541 constraint by linkage disequilibrium while interspecific differences are largely due to trans-
542 associated alterations being a larger mutational target (Signor and Nuzhdin, 2018). However,
543 disentangling the contributions of *trans*- and *cis*- components of transcriptional control remains
544 challenging. A recent finding revealed that transcriptome variation is disposed to strong selection
545 pressure under perturbed environments, in particular, genes with low expression and
546 stochasticity, and with high plasticity (Groen et al., 2020). In line with the important role of
547 WRKY TFs in gene induction during immunity (Tsuda and Somssich, 2015; Birkenbihl et al.,
548 2017), we have revealed that WRKY-TF binding motifs are highly enriched in the 5'-gene
549 regulatory sequences of species in which the genes are induced. This suggests that some specific
550 gains of TF-binding motifs in the 5'-gene regulatory regions account for the evolution of some
551 species-specific flg22-responsive expression changes. It might also be possible that duplicated
552 genes could be responsible for species-specific differences that we may have missed in this study
553 as we entirely omitted lineage-specific duplicates. However, this would not introduce a very
554 serious bias as a large proportion of genes in the genomes (17,856) were successfully analysed in
555 this study.

556 Whether gene expression evolution correlates with coding sequence evolution remains
557 under debate (Tirosh and Barkai, 2008). Some studies found a positive correlation between gene
558 expression and coding sequence evolution and argued that similar selection pressures act on both
559 modes of evolution (Hunt et al., 2013; Whittle et al., 2014). In contrast, others have concluded
560 that gene expression evolution may provide additional evolutionary capacity if the sequence of
561 the respective gene is under evolutionary constraint (Shapiro et al., 2004; Harrison et al., 2012;
562 Dean et al., 2015). In this scenario, gene expression variation would not be correlated with
563 coding sequence evolution (Tirosh and Barkai, 2008; Renaut et al., 2012; Uebbing et al., 2016).
564 In this study, we found almost no correlation between variation in basal gene expression or

565 flg22-induced gene expression changes and variation in their amino acid sequences. The
566 connection between gene expression and coding sequence variation might depend on species and
567 conditions (Whittle et al., 2014). Future studies, especially in the plant field, are needed to better
568 define the relationship between these two modes of evolution.

569 In summary, we have shown that variation in biotic stress-induced gene expression is
570 under purifying selection and is also likely to be under directional selection among Brassicaceae
571 species. Overall, our findings provide considerable insight into the evolution of transcriptome
572 responses during stress responses in plants and constitute a basis for future research.

573 **Material and Methods**

574 **Plant materials**

575 **Table 1: Brassicaceae species and accessions used in this study**

576 Bold entries indicate species used for RNAseq and metabolome analyses.

Species	Accession	Abbreviation	Reference
<i>Arabidopsis thaliana</i>	Col-0	Ath	Kenichi Tsuda lab
<i>Capsella rubella</i>	N22697	Cru	(Slotte et al., 2013)
<i>Capsella grandiflora</i>	unknown	Cgr	(Slotte et al., 2013)
<i>Cardamine hirsuta</i>	Oxford	Chi	(Hay and Tsiantis, 2006)
<i>Cardamine hirsuta</i>	Wa	Wa	(Cartolano et al., 2015)
<i>Cardamine hirsuta</i>	GR2	GR	Miltos Tsiantis lab
<i>Eutrema salsugineum</i>	Shandong	Esa	Miltos Tsiantis lab
<i>Eutrema salsugineum</i>	Yukon	Eyt	Miltos Tsiantis lab

577

578 **Table 2: *A. thaliana* accessions used in this study**

579 Bold entries indicate accessions used for RNAseq. ¹Admixture group (1001 Genomes Consortium, 2016)

Accession	Cs number	Country	Admixture group	Reference
An-1	CS76435	BEL	admixed	(1001 Genomes Consortium, 2016)
Bla-1	CS76451	ESP	spain	(1001 Genomes Consortium, 2016)
Can-0	CS76740	ESP	relict	(1001 Genomes Consortium, 2016)
Col-0	CS76778	USA	germany	(1001 Genomes Consortium, 2016)
CVI-0	CS76789	CPV	relict	(1001 Genomes Consortium, 2016)
Edi-0	CS76831	UK	admixed	(1001 Genomes Consortium, 2016)
Gy-0	CS78901	FRA	western_europe	(1001 Genomes Consortium, 2016)
HR10	CS76940	UK	western_europe	(1001 Genomes Consortium, 2016)
Kas-2	CS78905	IND	asia	(1001 Genomes Consortium, 2016)
Kn-0	CS76969	LTU	central_europe	(1001 Genomes Consortium, 2016)
Kondara	CS76532	TJK	asia	(1001 Genomes Consortium, 2016)
Ms-0	CS76555	RUS	asia	(1001 Genomes Consortium, 2016)
No-0	CS77128	GER	central_europe	(1001 Genomes Consortium, 2016)
Pna-17	CS76575	USA	germany	(1001 Genomes Consortium, 2016)
Rsch4	CS77222	RUS	germany	(1001 Genomes Consortium, 2016)
Se-0	CS76597	ESP	spain	(1001 Genomes Consortium, 2016)
Sf-2	CS77247	ESP	spain	(1001 Genomes Consortium, 2016)
Sorbo	CS78917	TJK	asia	(1001 Genomes Consortium, 2016)
Tamm-27	CS77341	FIN	north_sweden	(1001 Genomes Consortium, 2016)
Ts-1	CS76615	ESP	spain	(1001 Genomes Consortium, 2016)
Tsu-0	CS77389	JPN	admixed	(1001 Genomes Consortium, 2016)
Van-0	CS76623	CAN	western_europe	(1001 Genomes Consortium, 2016)
Wil-2	CS78856	LTU	central_europe	(1001 Genomes Consortium, 2016)
Wu-0	CS78858	GER	germany	(1001 Genomes Consortium, 2016)

580

581 **Table 3: *A. thaliana* mutants used in this study**

Species	Mutant allele	Locus	Source
<i>Arabidopsis thaliana</i>	<i>sid2-2</i>	AT1G74710	Tsuda et al., 2008
<i>Arabidopsis thaliana</i>	<i>fls2</i> (SAIL_691C4)	AT5G46330	Zipfel et al., 2004

582

583 **Plant growth**

584 Plant seeds were sterilized by vortexing in 70% ethanol for 5 min and then 6% NaClO for 10
585 min, washed five times with sterile water, and stratified in sterile water at 4°C for five to seven
586 days. Sterilized seeds were grown on ½ Murashige and Skoog (MS)-Agar (2.45 g/L
587 M&S+Vitamins+MES (Duchefa, Netherlands), 1% sucrose, 0.5% plant agar, pH 5.8) plates in a
588 Percival plant growth chamber (CU-36LX5D, Percival, USA) at 22°C with 10 h of light for
589 eleven days if not stated otherwise. Eleven-day-old seedlings were transferred to liquid ½ MS-
590 Medium (2.45 g/L M&S+Vitamins+MES (Duchefa, Netherlands), 1% sucrose) one day before
591 *flg22* treatment. Alternatively, 12-day-old seedlings were transferred to soil (Stender,
592 Schermbeck Germany) and grown at 23°C/20 °C with 10 h/14 h (light/dark) and 60% relative
593 humidity. Soil-grown plants were transferred to another chamber at 22°C with a 12 h
594 photoperiod and 60% relative humidity three days before bacterial inoculation.

595

596 **Flg22 treatment**

597 Eleven-day-old seedlings were transferred from ½ MS-Agar to 24-well plates each with 1.6 ml
598 of ½ MS-Medium 24 h prior to treatments. If not otherwise stated, five to ten seedlings per
599 sample were transferred to each well. For the *flg22* treatment, 800 µl of 3 µM *flg22* (EZBiolab
600 Inc., USA) solution was added to the medium containing the seedlings resulting in a final
601 concentration of 1 µM *flg22*. Seedlings were harvested in liquid nitrogen at the indicated time
602 points and three wells were combined into one biological sample. The samples were stored at -
603 80°C until use.

604

605 **Seedling growth inhibition assay**

606 Seven-day-old seedlings grown on ½ MS-Agar were transferred to 1.6 ml of ½-MS-Medium
607 with or without 1 µM *flg22* and grown for another 12 days in these conditions. Then, the fresh
608 weight of 12 pooled seedlings was measured. The experiment was carried out three independent
609 times, and statistical analysis was performed with log₂-transformed fresh weight values.

610

611 **Bacterial growth assay**

612 For preparation of bacterial inoculum, *Pseudomonas syringae* pv. *tomato* DC3000 (*Pto* DC3000)
613 or the T3SS deficient *Pto* DC3000 mutant *Pto hrcC* (Tsuda et al., 2008) was grown on NYGA
614 agar (2% glycerol, 0.5% Bacto Peptone, 0.3% yeast extract, 1% Bacto Agar, pH 7.0) plates
615 containing 25 µg/ml rifampicin for three days at 28°C. Then, bacterial strains were transferred to
616 liquid NYGA medium containing 25 µg/ml rifampicin and incubated overnight at 28°C with
617 shaking at 200 rpm to a final OD₆₀₀ between 0.8 and 1. The bacteria were pelleted by
618 centrifugation at 5,000 rpm and washed twice with sterile 5 mM MgSO₄ before dilution to an
619 OD600 of 0.0002 (*Pto* DC3000) or 0.001 (*Pto hrcC*).

620 Four to five-week-old plants were used. Two leaves per plant were infiltrated with 1
621 µM flg22 or sterile water (mock) using a needleless syringe. One day later, leaves treated with
622 flg22 or mock solution were infiltrated in the early afternoon with the bacterial suspension. Two
623 days after bacterial infiltration, two leaf disks (0.565 cm²) per sample from two leaves were
624 crushed in 400 µl sterile MgSO₄ using a Retsch mixer mill. Dilution series were made and
625 streaked on NYGY agar plates containing 25 µg/ml rifampicin. The plates were incubated for
626 two days at 28°C before colony forming units (cfu) were counted.

627 Alternatively, bacterial growth was quantified using a qPCR-based method as previously
628 described (Ross and Somssich, 2016). In brief, DNA of bacteria-infiltrated leaves was extracted
629 using the FastDNATM Spin Kit (MP Biomedicals). Extracted DNA was quantified and adjusted
630 to 8.75 µg/µl to achieve a final concentration of 35 µg DNA in a qPCR reaction. Bacterial DNA
631 was quantified using the levels of the *Pto*-specific *oprF* gene relative to plant *ACTIN2* (*ACT2*)
632 DNA. ΔCt values were calculated by subtracting the Ct value of the target gene from that of
633 *ACT2*. These ΔCt values were considered log₂ values and used for statistical analysis. Used
634 primers are listed in Supplemental Data Set 9.

635

636 **MAP kinase phosphorylation assay**

637 The MAPK phosphorylation assay was performed as previously described (Tsuda et al., 2009).
638 In short, 12-day-old seedlings were treated with 1 µM flg22 or mock for 15 min, frozen in liquid
639 nitrogen and ground with four metal beads in a Retsch MM 400 mixing mill (Retsch, Germany).
640 Then, 150 µl of MAPK extraction buffer (50 mM Tris-HCL [pH 7.5], 5 mM EDTA, 5 mM

641 EGTA, 2 mM DTT, 10 mM NaF, 50 mM β -glycerolphosphate, 10% glycerol, complete
642 proteinase inhibitor and PhosSTOP phosphatase inhibitor [both from Roche, Germany]) were
643 added to the sample and protein was extracted by centrifugation (4°C, 12,000 rpm). Protein
644 concentration was determined using the Coomassie Protein Assay Kit (ThermoFisher Scientific,
645 USA), and 25 μ g of protein were separated by SDS-PAGE for 1 h at 100V. MAPK
646 phosphorylation was detected via immunoblotting using an antiphospho-p44/42 MAPK antibody
647 (dilution 1:5000 in TBST, Cell Signaling Technology, USA) as primary and HRP-conjugated
648 anti-rabbit IgG (1:10000 in TBST, Sigma-Aldrich, USA) as secondary antibody. Luminescence
649 was detected using SuperSignal West Femto Chemiluminescent Reagent (Thermo Fisher
650 Scientific) and a ChemiDoc MP imaging system (Biorad, USA).

651

652 **RNA extraction, cDNA synthesis, and RT-qPCR**

653 Seedling samples were ground in 2-mL reaction tubes with four metal beads using a Retsch MM
654 400 mixing mill (Retsch, Germany). RNA was extracted using peqGOLD TriFastTM with an
655 additional DNA digestion step using DNase I (Roche, Germany). Further, RNA was precipitated
656 overnight at 4°C in 100% ethanol containing 115 mM Na-Ac (pH 5.2; Sigma Aldrich, Germany)
657 to further clean up and increase RNA yield. RNA quality and quantity was determined using a
658 NanoDrop photometer (Thermo Fisher Scientific). Subsequently, cDNA was synthesized from 4
659 μ g DNase-treated total RNA using Superscript II or IV Reverse Transcriptase (Thermo Fisher
660 Scientific) according to the manufacturer's instructions. qPCR was performed on a CFX Connect
661 Real-Time PCR Detection System (Biorad) using EvaGreen (Biotium, USA). The target gene
662 was quantified relative to the expression of *ACTIN2* (*ACT2*) from *A. thaliana* or other
663 Brassicaceae plants. Δ Ct values were calculated by subtracting the Ct value of the target gene
664 from that of *ACT2*. These Δ Ct values were considered \log_2 values and were further used for
665 statistical analysis. Primers used are listed in Supplemental Data Set 9.

666

667 **Statistical analysis**

668 Statistical analysis for the seedling growth inhibition assay, bacterial growth assay and RT-qPCR
669 was performed using a mixed linear model with the function lmer implemented in the lme4
670 package within the R environment. To meet the assumptions of the mixed linear model, we log-
671 transformed raw data when needed. The following model was fit to the data: measurement_{gyr} ~

672 $GY_{gy} + R_r + \epsilon_{gyr}$, with GY denoting the genotype:treatment interaction effect; R , biological
673 replicate effect; ϵ , residual. The p-values calculated in two-tailed t-tests were corrected for
674 multiple hypothesis testing using the qvalue package when samples were compared with each
675 other in a given figure panel.

676

677 **RNA-seq**

678 RNA quality was checked with the Agilent 2100 Bioanalyzer or Caliper LabChip GX device.
679 PolyA enrichment and library preparation were performed with the NEBNext Ultra Directional
680 RNA Library Prep Kit for Illumina (New England Biolabs). Libraries were quantified by
681 fluorometry, immobilized and processed onto a flow cell with a cBot (Illumina), followed by
682 sequencing-by-synthesis with HiSeq v3 chemistry. Library construction and RNA sequencing
683 were performed by the Max Planck-Genome-centre Cologne (<http://mpgc.mpiipz.mpg.de/home/>)
684 with single 100 bp (*A. thaliana* Col-0, *C. rubella*, *C. hirsuta*, and *E. salsugineum*) or 150 bp
685 reads (all other *A. thaliana* accessions) using the Illumina HiSeq2500 or HiSeq3000 platforms,
686 respectively. After quality control, raw sequencing reads were mapped to respective reference
687 genomes (Table 4) using TopHat2 (v2.1.1) with default parameters except for the parameters
688 described in Table 5. The resulting bam files were used to count the number of reads per gene
689 using HtSeq (v 0.6.0) software with default parameters. To exclude biases caused by mapping
690 sequence reads of different *A. thaliana* accessions to the Col-0 genome, we created mapping
691 genome files for each *A. thaliana* accession by correcting the Col-0 reference genome with SNP
692 data available for these accessions. We downloaded the variants table for each accession from
693 the website of the 1001 Genomes Project (intersection_snp_short_indel_vcf V3.1 dataset). The
694 pseudo-genome sequence of each accession was inferred by replacing the reference allele with
695 the corresponding alternative allele using the getGenomeSequence function implemented in
696 AnnotationLiftOver software (<https://github.com/baoxingsong/AnnotationLiftOver>). Further we
697 created general feature format files (GFF) by projecting the coordinates of the TAIR10 gene
698 annotations onto the coordinates of each accession with the gffCoordinateLiftOver function of
699 AnnotationLiftOver. With these files, we performed a second mapping as described above. The
700 RNA-seq data used in this study are deposited in the National Center for Biotechnology
701 Information Gene Expression Omnibus database (accession no. GSE115991).

702

703 **Table 4: Reference genomes used for RNAseq analysis**

Species	Reference genome	publication	Source
<i>Arabidopsis thaliana</i>	TAIR 10	(Lamesch et al., 2012)	Phytozome 10
<i>Ath</i> accessions	SNP corrected TAIR10		This study
<i>Capsella rubella</i>	v1.0	(Slotte et al., 2013)	Phytozome 10
<i>Cardamine hirsuta</i>	v1.0	(Gan et al., 2016)	http://chi.mipiz.mpg.de/
<i>Eutrema salsugineum</i>	v1.0	(Yang et al., 2013)	Phytozome 10

704

705 **Table 5: TopHat2 parameters used for mapping RNAseq reads**

TopHat2 parameter	Value
--read mismatches	10
-- read-gap-length	10
-- read-edit-dist	20
--min-anchor-length	5
--splice-mismatches	2
--min-intron-length	30
--max-intron-length	1000
--max-insertion-length	20
--max-deletion-length	20
--max-multihits	10
--segment-mismatches	3
--min-coverage-intron	30
--max-coverage-intron	10000
--library-type	fr-firststrand
--b2	very sensitive

706

707 The read counts determined by HTSeq were analysed in the R environment (v.3.3.1)
708 using the edgeR (version 3.14.0) and limma (version 3.28.14) packages. Lowly expressed genes
709 were excluded from analysis by filtering out genes with a mean read count below 10 counts per
710 sample. Then, read counts were normalized using TMM normalization embedded in the edge R
711 package and the data were \log_2 -transformed using the voom function within the limma package
712 to yield \log_2 counts per million. For individual analysis of Brassicaceae species and *A. thaliana*
713 accession data, a linear model was fit to each gene using the lmFit function of limma with the
714 following terms: $S_{gyr} = GY_{gy} + R_r + \varepsilon_{gyr}$, where S denotes \log_2 expression value, GY ,

715 genotype:treatment interaction, and random factors are R, biological replicate; ε , residual. For
716 the combined analysis of Brassicaceae species and *A. thaliana* accession data the replicate effect
717 was removed from the linear model resulting in the following terms: $S_{gy} = GY_{gy} + \varepsilon_{gy}$. For
718 variance shrinkage of calculated p-values, the eBayes function of limma was used. The resulting
719 p-values were corrected for multiple testing by calculating the false discovery rate (or q-value)
720 using the qvalue (v.2.4.2) package.

721 Normalization and determination of DEGs were performed separately for each
722 Brassicaceae species and each *A. thaliana* accession. To compare expression changes mediated
723 by flg22 between Brassicaceae plants, we used Best Reciprocal BLAST to determine genes
724 which show a 1:1 orthologue with a corresponding *A. thaliana* gene and only kept the genes with
725 1:1 orthologues in every Brassicaceae species. This resulted in a set of 17,856 1:1 ortholog
726 genes. We restricted the analysis of *A. thaliana* accessions to the same set of 17,856 genes to
727 enable a direct comparison of results obtained from Brassicaceae and *A. thaliana* accession
728 analysis. To directly compare Brassicaceae plants with *A. thaliana* accessions, we further
729 normalized and determined DEGs for all 1-h samples together using the set of 17,856
730 orthologous genes. This approach enabled us to compare basal expression levels between
731 Brassicaceae and *A. thaliana* accessions.

732 The R packages and software used for further analysis of the sequencing data are listed in
733 Table 6. Heatmaps and k-mean clustering of DEGs were generated using the Genesis software
734 with default parameters.

735 The expression clusters of DEGs determined for the combined RNAseq analysis of
736 *A. thaliana* accessions together with Brassicaceae species were investigated for enrichment of
737 GO terms corresponding to biological processes using the BinGO plugin within the Cytoscape
738 environment. GO term enrichment was calculated using a hypergeometric test followed by
739 Benjamini and Hochberg False Discovery Rate correction implemented in the BinGO plugin.
740 The whole genome annotation was used as a background.

741 Known TF motifs enriched in individual expression clusters of DEGs determined in the
742 combined RNAseq analysis of *A. thaliana* accessions together with Brassicaceae species were
743 identified using the AME tool within the MEME suite. For this purpose, 5'- gene regulatory
744 regions (500 bp upstream of the transcription start site) were extracted for each tested
745 Brassicaceae species. Enrichment of TF motifs was determined in each of the 15 k-means

746 clusters for all tested Brassicaceae species using the 5' regulatory-regions of all expressed genes
747 having clear 1:1 orthologues (16,100 genes) as a background. Known TF motifs were retrieved
748 from the JASPAR CORE (2018) plants database that is implemented in AME.

749 To compare amino acid sequence conservation with expression variation, all amino acid
750 sequences of expressed genes with 1:1 orthologues in all species were extracted for each
751 Brassicaceae species. The sequences were aligned using Clustal Omega and percent identity
752 matrices were extracted. The amino acid sequence identity output of Clustal Omega was used to
753 calculate the mean amino acid identity across *C. rubella*, *C. hirsuta* and *E. salsugineum*
754 compared to *A. thaliana* as a proxy of sequence conservation. The mean amino acid sequence
755 identities were subsequently plotted against the SD/mean of flg22-expression changes across all
756 four Brassicaceae species, which served as a proxy for expression variation among the tested
757 Brassicaceae species. Similarly, the mean amino acid sequence identity was also plotted against
758 the SD/mean of the normalized expression value in control samples. In addition, pairwise amino
759 acid sequence identities between *A. thaliana* and each Brassicaceae species were plotted against
760 the absolute difference in flg22-induced expression changes between the compared species. This
761 analysis was performed for all expressed genes or only for DEGs.

762

763 **Table 6: Software and packages used in this study**

Software/Package	Version	Citation	Use
AME	4.12.0	(McLeay and Bailey, 2010)	TF motif enrichment
BinGO	3.0.3	(Maere et al., 2005)	GO enrichment
Clustal Omega	1.2.4	(Sievers et al., 2011)	Multiple sequence alignment
Cytoscape	3.3.0	(Shannon et al., 2003)	Run BinGO
EdgeR	3.14.0	(Robinson et al., 2010)	Analysing DEGs
Genevestigator		(Hruz et al., 2008)	public transcriptome data
Genesis	1.7.7	(Sturn et al., 2002)	Heatmaps, clustering
Htseq	0.6.0	(Anders et al., 2015)	Count RNAseq reads
limma	3.28.14	(Ritchie et al., 2015)	Analysing DEGs
MixOmics	6.0	(Rohart et al., 2017)	PCA
TopHat	2.1.1	(Trapnell et al., 2009)	Map RNAseq reads
VennDiagramm	1.6.17	(Chen and Boutros, 2011)	Venn Diagrams

764

765 **Phylogeny analysis**

766 Various dates have been reported for the divergence of Brassicaceae species (Franzke et al.,
767 2016). For instance, Beilstein et al. dated the Brassicaceae crown node age to 54 million years
768 ago (Mya) whereas more recent publications dated this event 31 to 37 Mya ago (Beilstein et al.,
769 2010; Edger et al., 2015; Hohmann et al., 2015; Huang et al., 2016; Franzke et al., 2016).
770 Therefore, in this study, we used TIMETREE (www.timetree.org) which synthesizes divergence
771 times based on the available literature to estimate the timescale of Brassicaceae species evolution
772 (Hedges et al., 2015). Phylogenetic trees were retrieved from timetree.org based on divergence
773 time estimates from 15 studies (Arakaki et al., 2011; Artyukova et al., 2014; Beilstein et al.,
774 2010; Couvreur et al., 2010; Franzke et al., 2009; Heenan et al., 2002; Hermant et al., 2012;
775 Hohmann et al., 2015; Huang et al., 2016; Koch et al., 2000; Mandáková et al., 2010; Naumann
776 et al., 2013; Parkinson et al., 2005; Vanneste et al., 2014; Yue et al., 2009).

777

778 **Genevestigator analysis**

779 The following datasets were used for Genevestigator analysis: AT-00106 (*Pto* DC3000); AT-
780 00110 (ABA or MeJA); AT-00113 (SA); AT-00147 (*B. cinerea*); AT-00253 (flg22 or OG); AT-
781 00493 (hypoxia); AT-00553 (*Hyaloperonospora arabidopsisidis*); AT-00560 (drought); AT-00597
782 (Pep2 and elf18); AT-00645 (heatstress)

783

784 **SA analysis**

785 SA levels were analysed as described previously with an ultra-high performance liquid
786 chromatography/Q-Exactive™ system (Thermo Fisher Scientific) using an ODS column
787 (AQUITY UPLC BEH C18, 1.7 µm, 2.1 × 100 mm; Waters) (Kojima and Sakakibara, 2012;
788 Kojima et al., 2009)(Yasuda et al., 2016).

789

790 **Secondary metabolite extraction, acquisition and processing of data**

791 Control and flg22-treated seedlings were collected and extracted as described before (Bednarek
792 et al., 2011). The obtained extracts were subjected to LC-MS analyses performed using the
793 Acquity UPLC system (Waters, USA) hyphenated to a micrOTOF-Q mass spectrometer (Bruker
794 Daltonics, Germany). Chromatographic separations were carried out on a BEH C18 column
795 (2.1×150 mm, 1.7 µm particle size) at 22°C with a mobile phase flow rate of 0.35 ml/min. The
796 elution was conducted using water containing 0.1% formic acid (Sigma Aldrich, Germany)

797 (solvent A) and acetonitrile (VWR Chemicals; France) containing 1.9% of water and 0.1% of
798 formic acid (solvent B) in the following gradient: 0–10 min from 0% to 25% B, 10–15 min to
799 30% B, 20–24 min maintained at 100% B, and up to 24.5 min the system was returned to starting
800 conditions and re-equilibrated for 8 min. Calibration of the spectrometer with sodium formate
801 salt clusters was done prior to each analysis. MS was operated using the following settings: ion
802 source voltage of -4.5 kV or 4.5 kV, nebulization of nitrogen at a pressure of 1.2 bar and a gas
803 flow rate of 8 l/min. Ion source temperature was 220°C. The spectra were scanned in positive
804 and negative ion mode at the range of 50–1000 *m/z* at a resolution higher than 15,000 FWHM
805 (full width at half maximum). Data acquisition was supervised by HyStar 3.2 software (Bruker
806 Daltonics, Germany).

807 Obtained LC-MS data were converted to the *mzXML* format by MSConvert Version:
808 3.0.11781 tool available in Proteowizard software prior to further processing by MZmine 2.31
809 software (Pluskal et al., 2010). Data from each experiment were processed separately for
810 negative and positive ionization. In first step, lists of masses were generated by the mass detector
811 module in each scan in the raw data files. Then, chromatograms for each mass detected
812 continuously over the scans were built using a chromatogram builder algorithm. These
813 chromatograms were deconvoluted by the deconvolution module using the wavelets algorithm
814 based on Bioconductor's XCMS package for R (Tautenhahn et al., 2008). An isotopic peaks
815 grouper was used for isotope elimination followed by adduct and complex searching. Deviation
816 of retention times between peak lists was reduced by a retention time normalizer. Such
817 transformed peaks were aligned in all samples through a match score by a join aligner module.
818 The resulting peaks list was completed by supplemental peak detection with a peak finder
819 algorithm prior to missing value imputation (gap filling). The generated data table was
820 subsequently exported in *csv* format for further statistical analysis.

821 Observations equal to zero (below the detection level) were substituted by half of the
822 minimum non-zero observation for each metabolite. Then observations were transformed by
823 $\log_2(10^3x)$. Two-way analysis of variance (ANOVA) was done with experiment as a block
824 (random effects) and treatment, species as 2 fixed factors; analysis was done together for positive
825 and negative ionization. Differentially Accumulated Metabolite (DAM) was indicated for each
826 species if all of three conditions hold: i) treatment effect or interaction treatment x species was
827 significant with *q*-value < 0.05 (fdr – false discovery rate, (Benjamini and Hochberg, 1995)), ii)

828 individual tests for each fungi $p < 0.05$ (significant test for the difference between treatment and
829 control was done for each species), iii) $|\text{fold change}| > 1.5$, where fold change is flg22
830 treatment/control. Statistical analysis was performed in Genstat 19. Visualizations including
831 barplot, PCA, heatmap and Venn diagram were created in R.

832

833

834

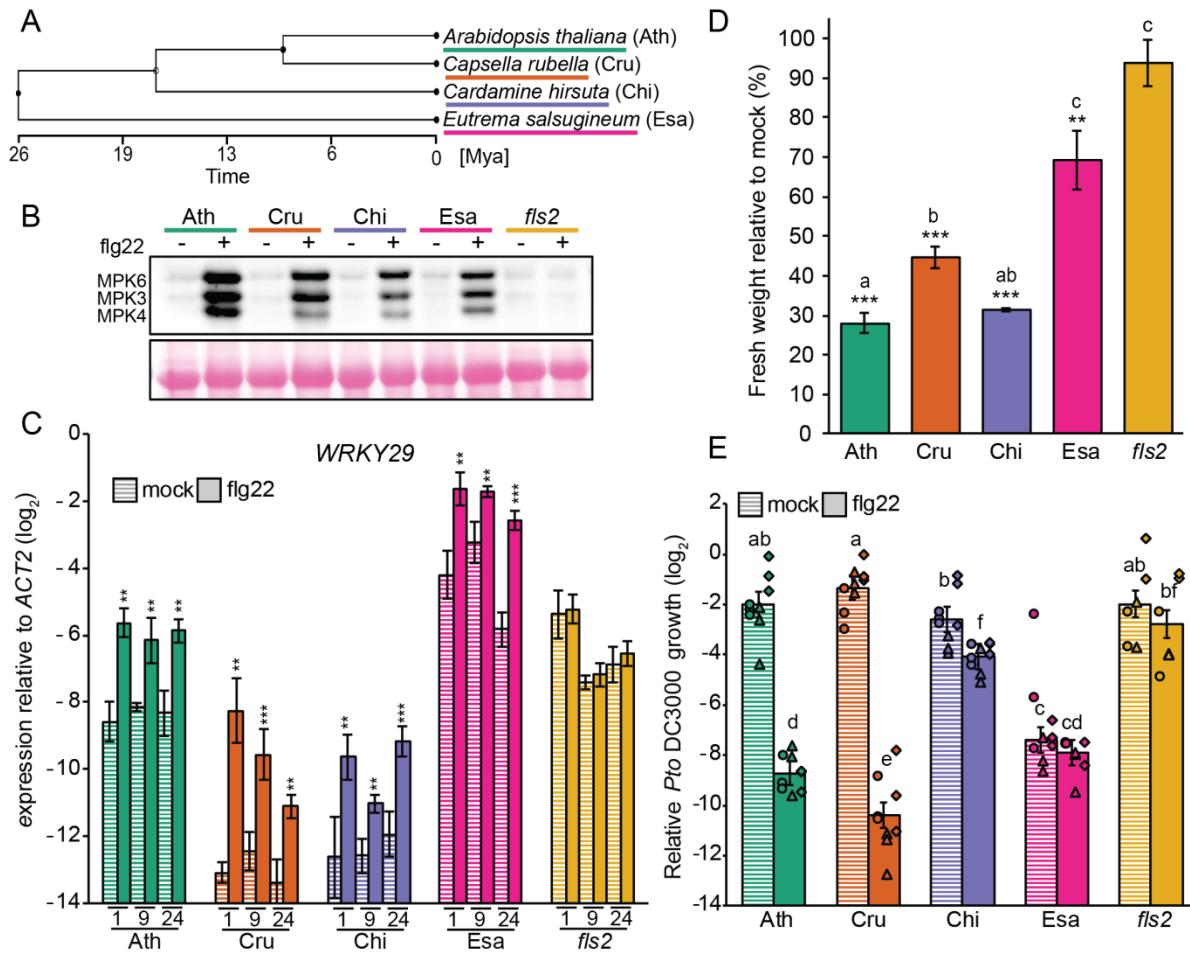
835 **Acknowledgements**

836 We thank the members of the Tsuda lab for critical reading of the manuscript, the Max-Planck
837 Genome Centre for sequencing support, and Neysan Donnelly and Tsuda lab members for
838 critical comments on the manuscript. This work was supported by the Huazhong Agricultural
839 University Scientific & Technological Self-innovation Foundation, the Max Planck Society, a
840 German Research Foundation grant (SPP2125) (to K.T.), IMPRS Cologne (T.M.W) and National
841 Science Center OPUS (UMO-2015/17/B/NZ1/00871) (to P.B) and PRELUDIUM (UMO-
842 2013/09/N/NZ2/02080) (to K.K) grants.

843

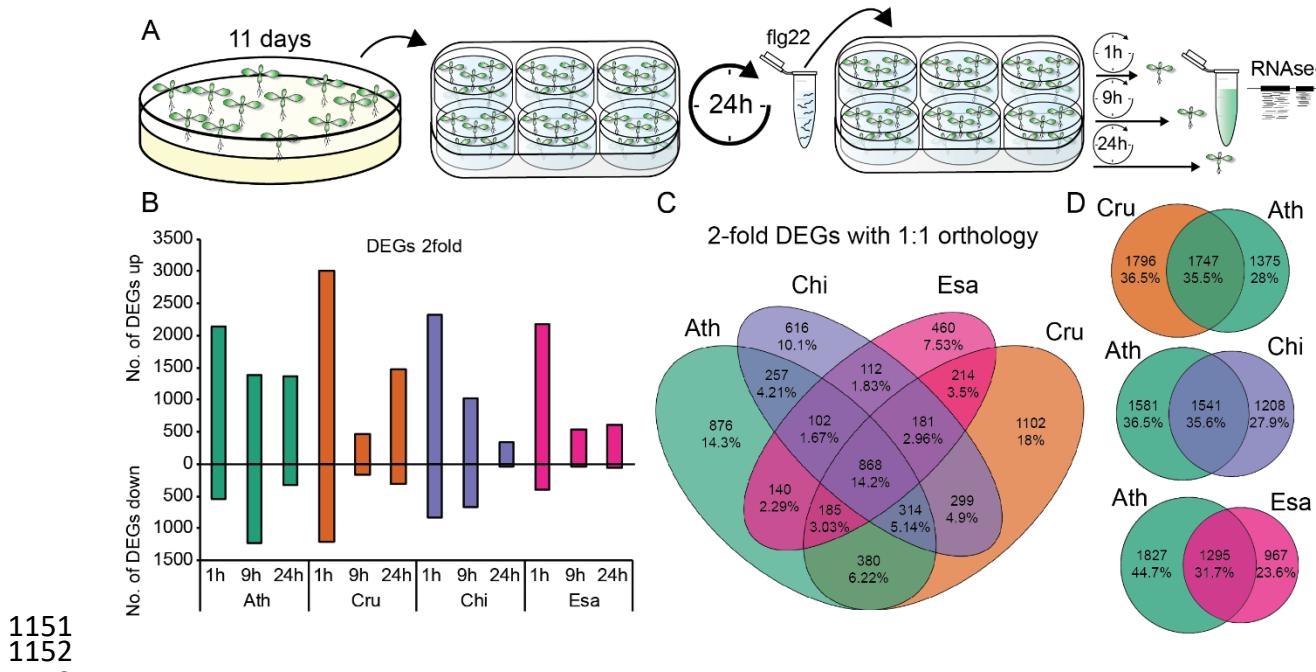
844 **Author contributions**

845 T.M.W., S.A., P.S.-L., P.B. and K.T. designed the research. T.M.W., F.E., S.A., P.A., A.P., and
846 K.K. performed research. H.S., X.G., M.T., H.S., and R.G.-O. contributed new reagent/analytic
847 tools. T.M.W., S. A., F.E., A.P., B.S., E.D., A.S., K.F., S.L., P.B., and K.T. analyzed data.
848 T.M.W., F.E., and K.T. wrote the paper with input from all authors.

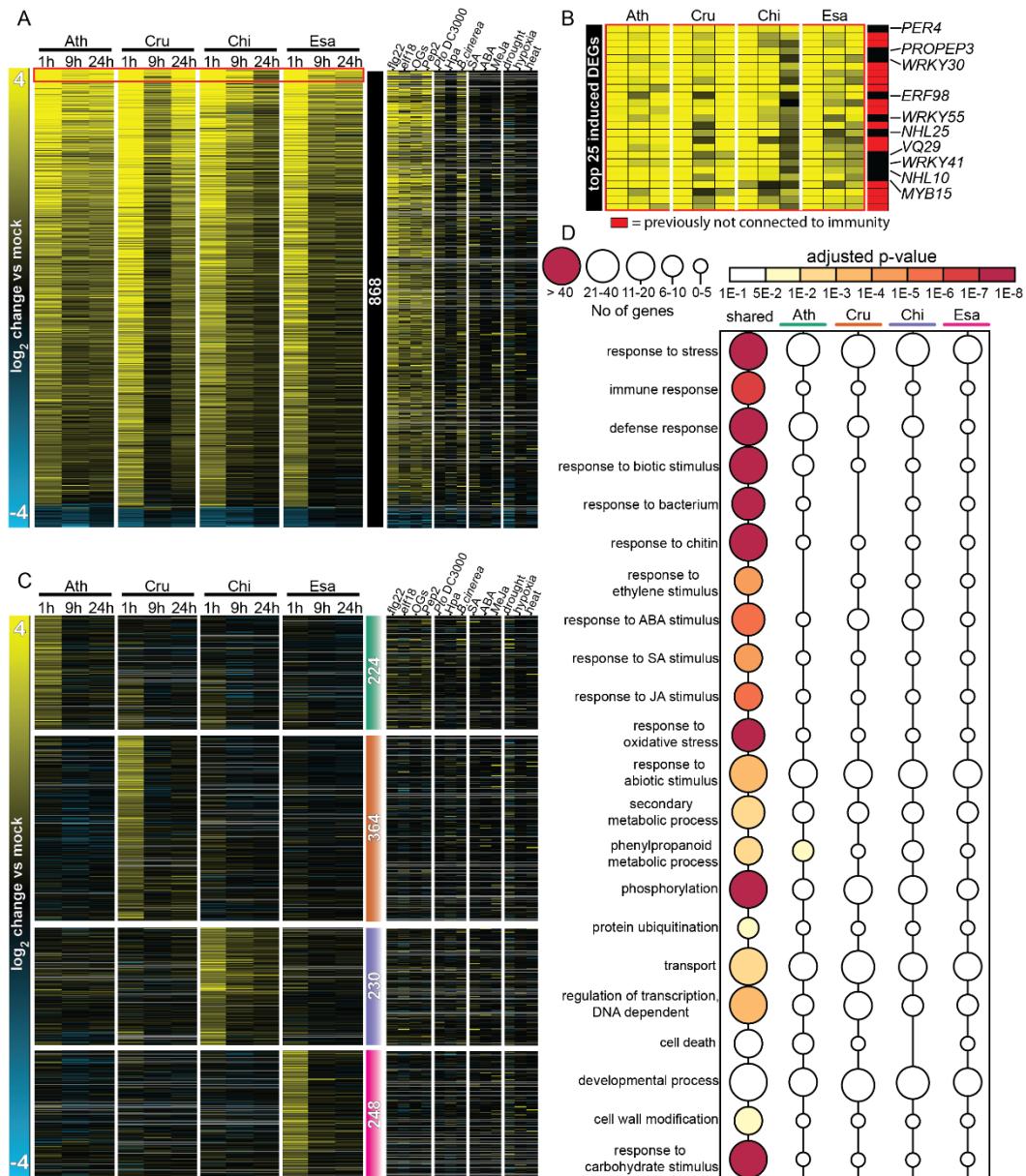

849

850 **Competing interests**

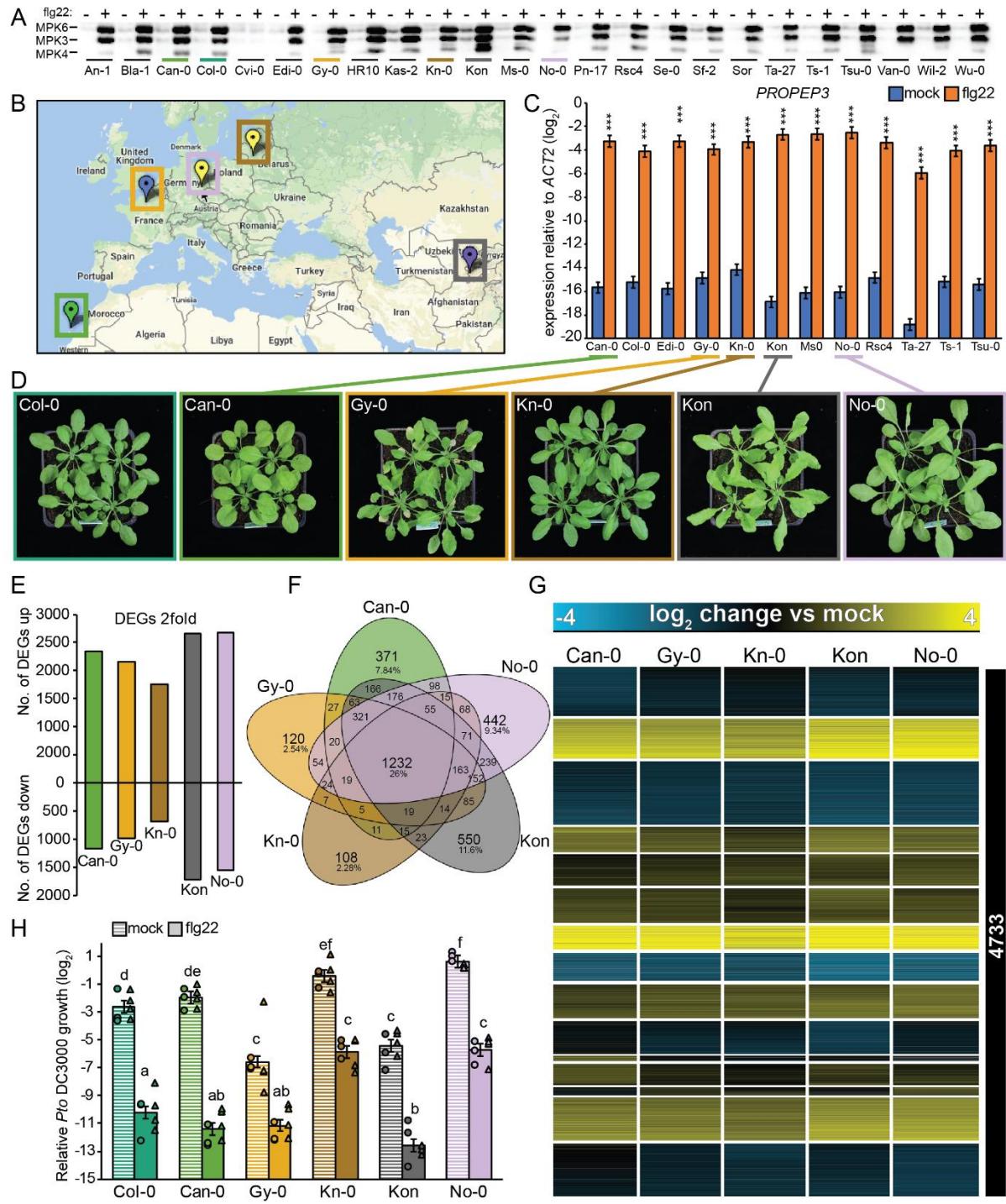
851 The authors declare no competing interest.


852

853

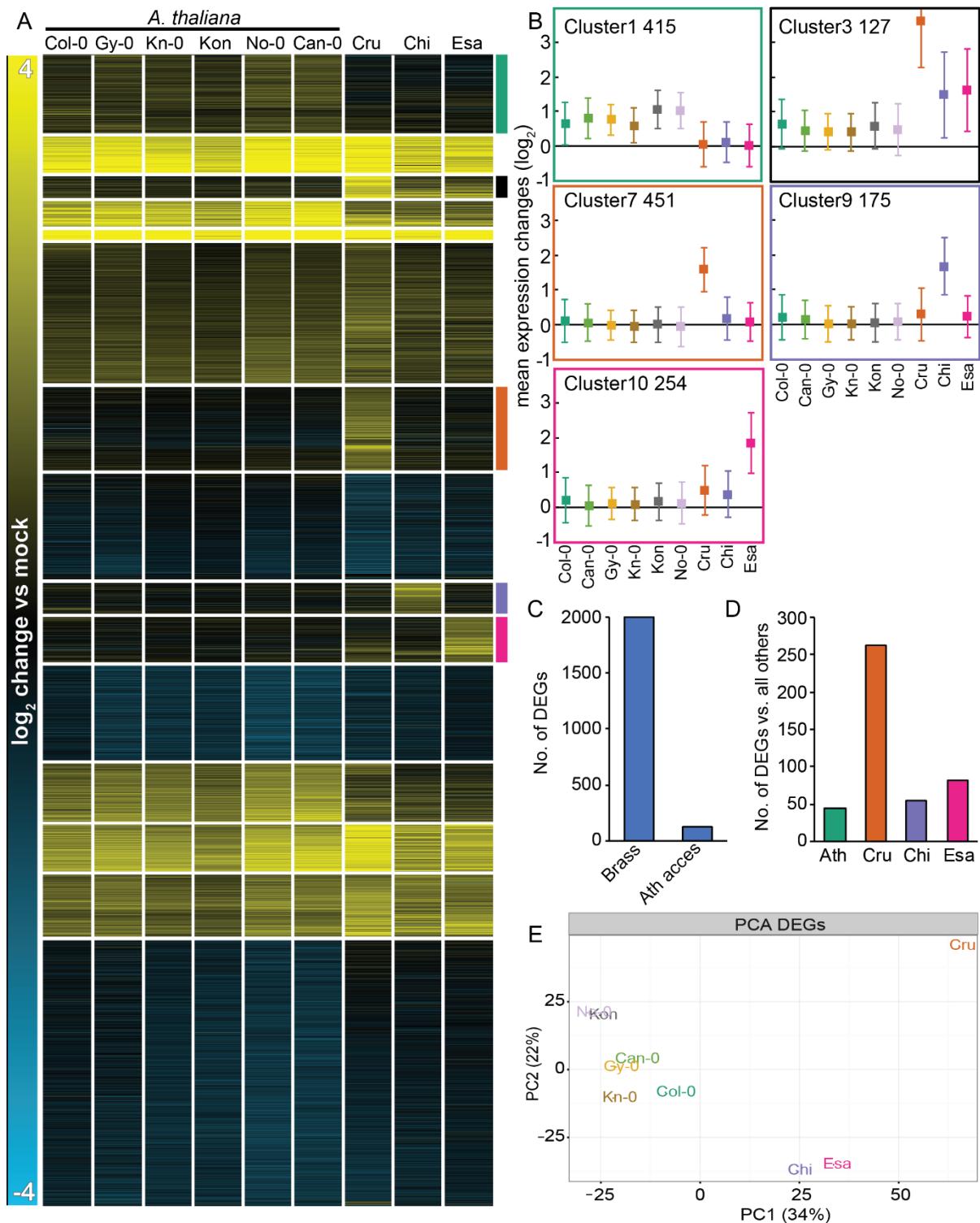

1126
1127

1128 **Figure 1. All tested Brassicaceae species sense flg22.** (A) Phylogenetic tree generated with TimeTree (www.timetree.org) indicating the evolutionary distances between the 4 Brassicaceae species used in this study. Mya, million years ago. Ath, *A. thaliana* (Col-0); Cru, *C. rubella* (N22697); Chi, *C. hirsuta* (Oxford); Esa, *E. salsugineum* (Shandong). (B) 12-day-old seedlings were treated with mock or 1 μ M flg22 for 15 min, and MAPK phosphorylation was measured by immunoblotting using an antiP42/44 antibody. Ponceau staining is shown as a loading control. Experiments were repeated at least three times with similar results. (C) Expression of WRKY29 was determined by RT-qPCR at 1, 9, and 24 h after mock or 1 μ M flg22 treatment of 12-day-old seedlings. Bars represent means and SEs of \log_2 expression levels relative to *ACTIN2* calculated from 3 independent experiments. Asterisks indicate significant difference to mock (mixed linear model followed by Student's t-test, **, $p < 0.01$; ***, $p < 0.001$). (D) 7-day-old seedlings were transferred into liquid medium containing mock or 1 μ M flg22 for 12 days. The fresh weight of 12 pooled seedlings was measured. The bars represent means and SEs from 3 independent experiments. Relative fresh weight (%) of flg22-treated seedlings compared to mock seedlings is shown. Statistical analysis was performed with \log_2 -transformed raw fresh weight values. Asterisks indicate significant flg22 effects in each genotype (mixed linear model followed by Student's t-test, **, $p < 0.01$; ***, $p < 0.001$). Different letters indicate significant differences in flg22 effects between different genotypes (mixed linear model, adjusted $p < 0.01$). (E) 5-week-old plants were syringe-infiltrated with 1 μ M flg22 or mock 24 h prior to infiltration with *Pto* DC3000 ($OD_{600} = 0.0002$). The bacterial titre was determined 48 h after bacterial infiltration. The \log_2 ratio of copy numbers of a bacterial gene (*oprF*) and a plant gene (*ACTIN2*) was determined by qPCR and used as the relative *Pto* DC3000 growth. Bars represent means and SEs from 3 independent experiments each with 3 biological replicates ($n = 9$). The biological replicates from 3 independent experiments are represented by dots, triangles and squares. Different letters indicate statistically significant differences (mixed linear model, adjusted $p < 0.01$).

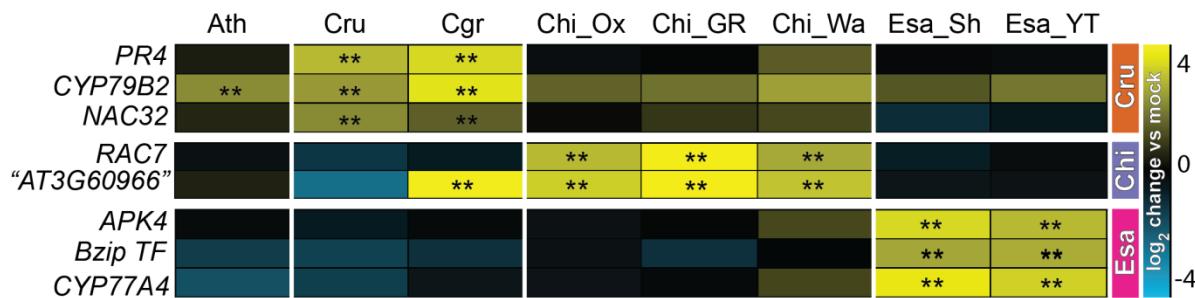


1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

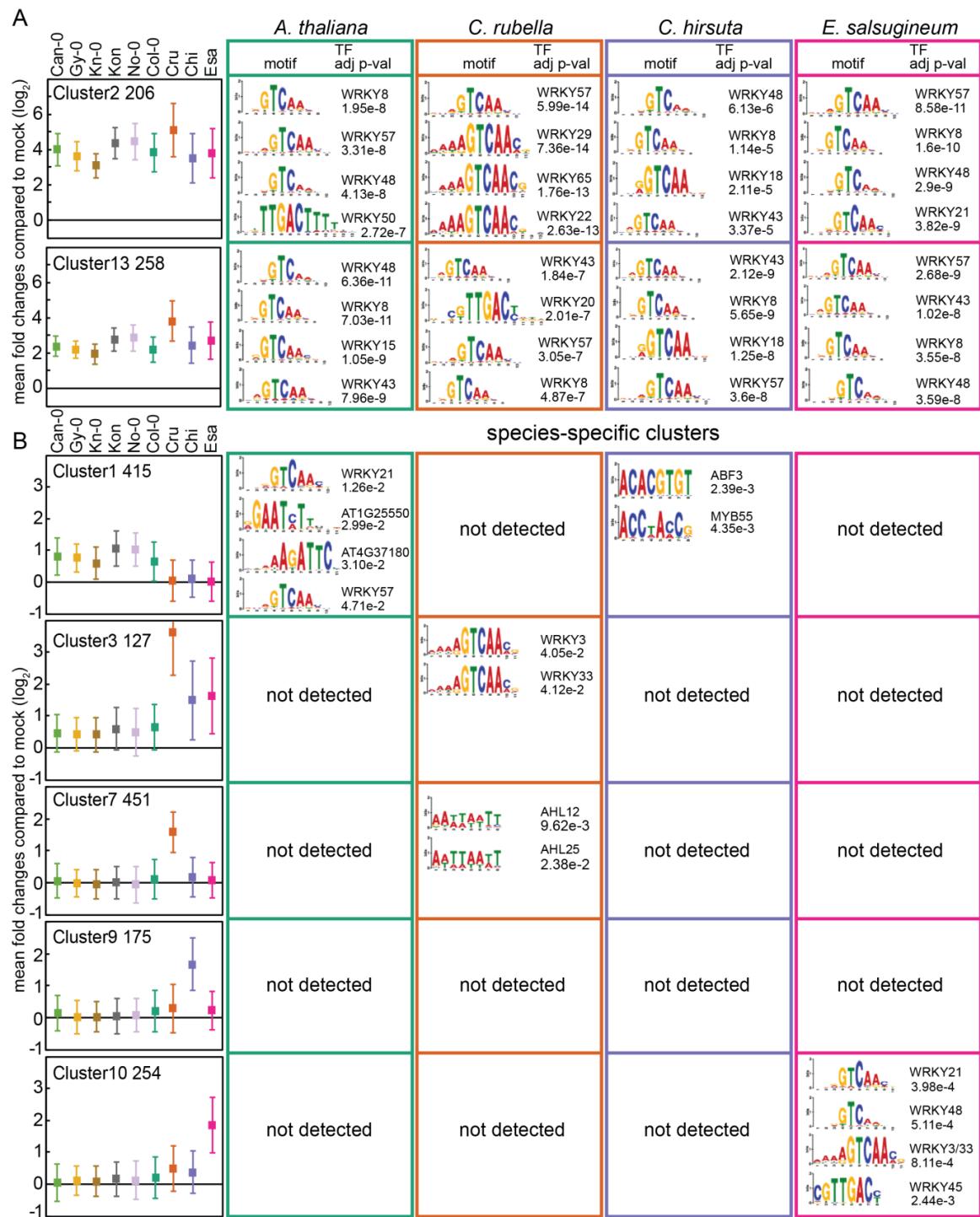
Figure 2. All tested Brassicaceae species trigger massive transcriptional reprogramming upon flg22 perception. (A) Schematic representation of the experimental design. (B) The number of differentially expressed genes (DEGs, q -value < 0.01 and $|\log_2 \text{fold change}| > 1$) for up- or down-regulated genes was plotted at the indicated time points for each species. (C) A Venn diagram showing shared and specific DEGs between species. All DEGs differentially expressed at least at one time point in 1 species and which showed 1:1 orthology were used. (D) Venn diagrams showing shared DEGs between *A. thaliana* and the indicated species. Ath, *A. thaliana* (Col-0); Cru, *C. rubella* (N22697); Chi, *C. hirsuta* (Oxford); Esa, *E. salsugineum* (Shandong).


Figure 3. Conserved yet distinct transcriptomic responses to flg22 in Brassicaceae species. (A) Heatmap of 868 DEGs shared among the four tested Brassicaceae species (see Figure 2C) sorted by mean expression values. The heatmap on the right displays expression changes of the 868 DEGs under indicated stress conditions in publicly available *A. thaliana* datasets (Genevestigator). Ath, *A. thaliana* (Col-0); Cru, *C. rubella* (N22697); Chi, *C. hirsuta* (Oxford); Esa, *E. salsugineum* (Shandong). See Supplemental Data Set 1 for list of individual genes. **(B)** Heatmap of top 25 flg22-induced genes based on the mean induction of all samples. Red indicates DEGs that previously have not been implicated in plant immunity. **(C)** All 6,106 DEGs were clustered by k-means ($k = 15$) and 4 clusters exhibiting species-specific expression signatures are shown (see Supplemental Data Set 2). Coloured bars with the number of genes indicate Ath- (green), Cru- (orange), Chi- (purple), and Esa- (magenta) specific clusters. The right heatmap displays expression changes of these genes under indicated stress conditions in publicly available *A. thaliana* datasets (Genevestigator). See Supplemental Data Set 2 for list of individual genes. **(D)** Enrichment of selected GO terms among common DEGs and species-specific expression clusters (generated with BinGO). Circle sizes indicate the number of genes within each GO term and the colour of the circle indicates the adjusted p-values for the enrichment of respective GO terms. See Supplemental Data Set 3 for the full GO terms.

1177
1178


Figure 4. Flg22-triggered transcriptional responses show a high degree of conservation among *A. thaliana* accessions with diverse genetic backgrounds. (A) 12-day-old seedlings were treated with mock or 1 μ M flg22 for 15 min, and MAPK phosphorylation was measured in the indicated *A. thaliana* accessions by immunoblotting using an anti-p42/44 antibody. (B) Geographic origins of the 5 accessions chosen for RNA-seq analysis are shown on the map created at 1001genomes.org. The colours of the markers indicate different genetic groups determined by The 1001 Genomes Consortium (1001 Genomes Consortium, 2016). (C) 12-day-old *A. thaliana* seedlings were treated with mock or 1 μ M flg22 for 1 h, and expression of *PROPEP3* was determined by RT-qPCR. The accessions highlighted in colour were used for

1187 the RNA-seq experiments. Bars represent means and SEs of \log_2 expression levels relative to *ACTIN2*
1188 from 3 independent experiments. Asterisks indicate significant differences of flg22 compared to mock
1189 samples (Student's t-test, ***, $p < 0.001$). (D) Representative pictures of the 4-week-old *A. thaliana*
1190 accessions chosen for RNA-seq. (E-G) 12-day-old *A. thaliana* seedlings were treated with mock or 1 μM
1191 flg22 for 1 h and extracted RNA was subjected to RNA-seq. The analysis was limited to the list of 17,856
1192 genes showing 1:1 orthology in all tested Brassicaceae species to directly compare inter- and intra-species
1193 variation in transcriptome responses. DEGs were defined using the following criteria: $q\text{-value} < 0.01$ and
1194 $|\log_2 \text{fold change}| > 1$. (E) Bars represent the number of up- or down-regulated DEGs in each *A. thaliana*
1195 accession. (F) A Venn diagram showing shared and specific DEGs in *A. thaliana* accessions. (G) Heatmap
1196 of DEGs in at least 1 accession clustered by k-means ($k = 15$). \log_2 expression changes compared to mock
1197 are shown. See Supplemental Data Set 4 for list of individual genes. (H) 5-week-old plants were syringe-
1198 infiltrated with mock or 1 μM flg22 24 h prior to infiltration with *Pto* DC3000 ($\text{OD}_{600} = 0.0002$). The \log_2 ratio
1199 of copy numbers of a bacterial gene (*oprF*) and a plant gene (*ACTIN2*) was determined by qPCR and used
1200 as the relative *Pto* DC3000 growth. Bars represent means and SEs from 2 independent experiments each
1201 with 3 biological replicates ($n = 6$). The biological replicates from 2 independent experiments are
1202 represented by dots and triangles. Different letters indicate significant differences (mixed linear model,
1203 adjusted $p < 0.01$).


Figure 5. Inter-species variation exceeds intra-species variation in transcriptome responses to flg22 and is incongruent with the phylogeny. (A) Log₂ expression changes of all 5,961 DEGs 1 h after 1 μ M flg22 treatment were clustered using k-mean clustering (k = 15). 1:1 orthologous genes that are differentially expressed (q-value < 0.01; |log₂ fold change| > 1) in at least 1 species or accession were used. Species-specific expression clusters are highlighted by coloured bars on the right side of the heatmap (Ath (green), non-Ath (black), Cru (orange), Chi (purple), Esa (magenta)). Cru, *C. rubella* (N22697); Chi, *C. hirsuta*

1212 (Oxford); Esa, *E. salsugineum* (Shandong). See Supplemental Data Set 5 for list of individual genes. **(B)**
1213 Mean expression changes \pm SD of species-specific expression clusters in **(A)**. The number of genes within
1214 each cluster is represented by the numbers on the top left side of each plot. **(C)** The total number of genes
1215 that respond to flg22 significantly differently across Brassicaceae species including *A. thaliana* Col-0
1216 (Brass) or across *A. thaliana* accessions (Ath access). q-value < 0.01 ; $|\log_2 \text{fold change}| > 1$ criteria were
1217 used. **(D)** The number of genes that respond to flg22 significantly differently in each Brassicaceae species
1218 compared to the other 3 Brassicaceae species. q-value < 0.01 ; $|\log_2 \text{fold change}| > 1$ criteria were used.
1219 Ath, *A. thaliana* (Col-0). **(E)** Principal component analysis (PCA) of \log_2 expression changes used in **(A)**.

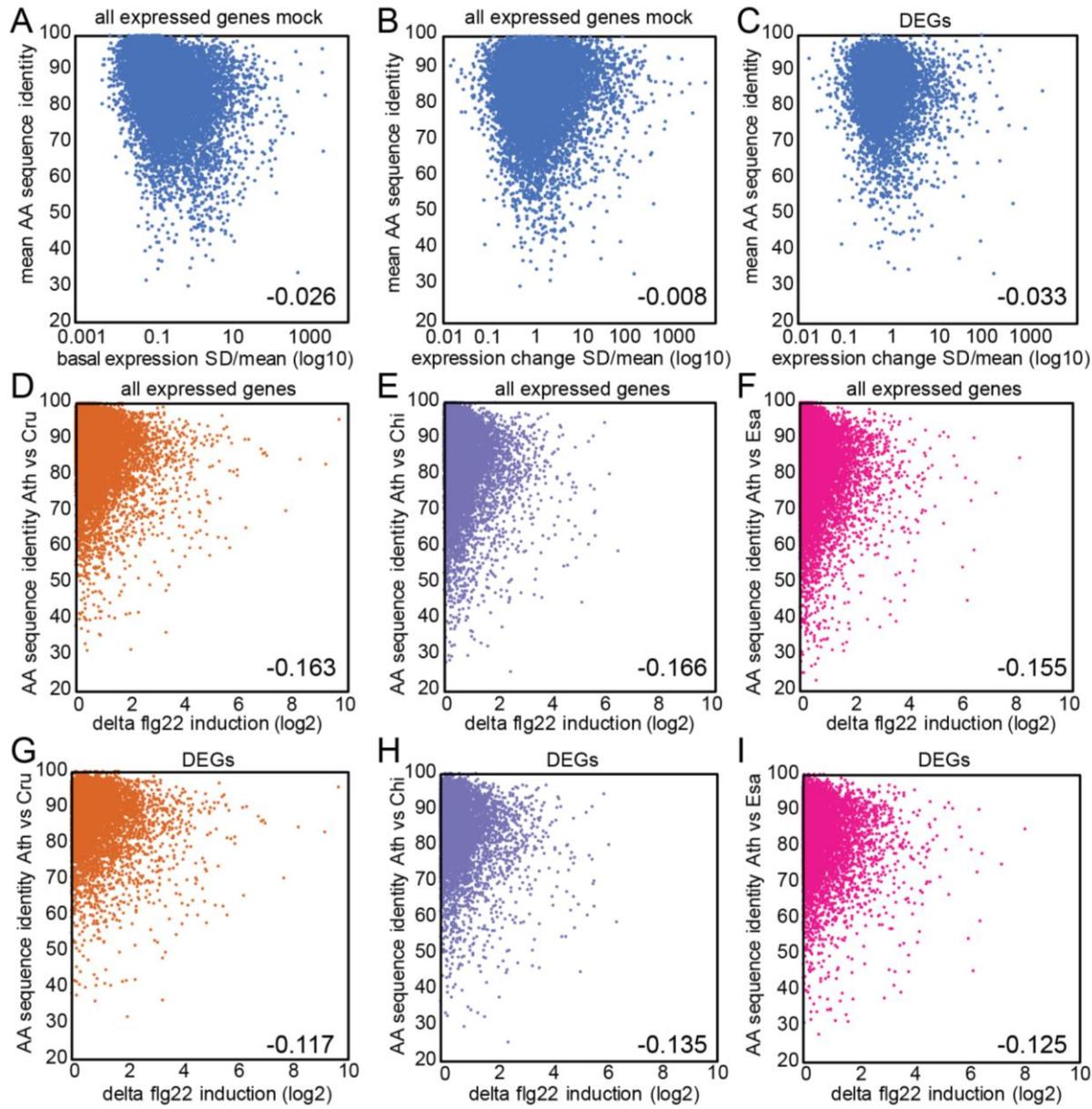
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

Figure 6. Species-specific expression signatures are conserved in sister species and accessions.
Expression of selected genes showing species-specific expression signatures in Figure 5A was determined in available sister species and accessions by RT-qPCR. Gene expression was normalized to *ACTIN2*. The coloured bars on the right indicate genes showing Cru- (orange), Chi- (purple) or Esa- (magenta) specific expression signatures. The heatmap represents mean \log_2 changes of flg22 samples compared to mock from 3 independent experiments each with 2 biological replicates ($n = 6$). Asterisks indicate significant flg22 effects (mixed linear model, $p < 0.01$). Ath, *A. thaliana* Col-0; Cru, *C. rubella*; Cgr, *Capsella grandiflora*; Chi_Ox, Chi_GR, Chi_Wa, different *C. hirsuta* accessions; Esa_Sh, *E. salsugineum* Shandong; Esa_YT, Esa Yukon.

1231
1232

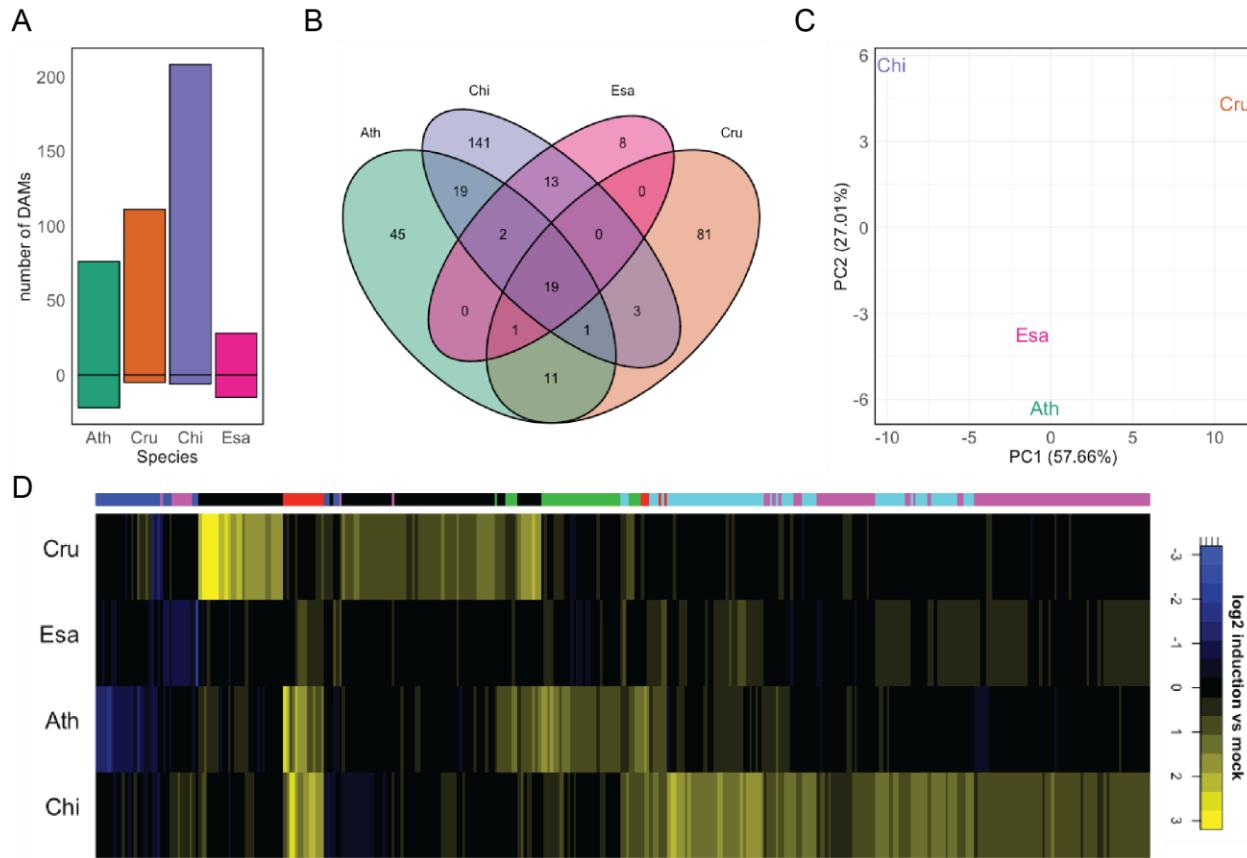
1233 **Figure 7. Enrichment of known TF-binding motifs in the 5'-regulatory regions of genes in shared**
1234 **and species-specific clusters.** The 500 bp upstream sequences of the transcription start sites of the

1235 genes in the individual clusters were tested for enrichment of known TF binding motifs. Names of


1236 transcription factors, sequence logos, and adjusted p-values (up to the top 4) of motifs are shown for each

1237 Brassicaceae species. The names of clusters, the number of DEGs, and mean \log_2 fold changes \pm SD

1238 compared to mock are shown on the left side. See Supplemental Data Set 6 for the other clusters. For the


1239 complete list of all enriched TF binding motifs, please see Supplemental Data Set 6. Ath, *A. thaliana* (Col-)

1240 *E. salsugineum* (Shandong).

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

Figure 8. Gene expression variation does not correlate with coding sequence variation. (A) Mean amino acid (AA) sequence identities of *C. rubella*, *C. hirsuta* and *E. salsugineum* to *A. thaliana* (y axis) were plotted against the SD/mean of the expression values in mock samples of all four Brassicaceae plants for all expressed genes (x axis). (B, C) Mean AA identities of *C. rubella*, *C. hirsuta*, and *E. salsugineum* to *A. thaliana* were plotted against the SD/mean of flg22-induced expression changes in all four Brassicaceae plants for all expressed genes with 1:1 orthologs (16,100 genes) (B) or 5,961 DEGs (C). (D–I) Pairwise AA sequence identities of *C. rubella* (D, G), *C. hirsuta* (E, H) and *E. salsugineum* (F, I) to *A. thaliana* were plotted against the flg22-induced expression changes between the compared species for all expressed genes (D–F) or DEGs (G–I).

1253 **Figure 9. Flg22 triggers unique metabolome changes in tested Brassicaceae.** Metabolite profiles were
1254 analysed with HPLC-MS 24 h after mock or flg22 treatment in 12-day-old Brassicaceae seedlings. (A)
1255 Differentially accumulated metabolites (DAMs) were determined using the following criteria: treatment effect
1256 or interaction treatment x species was significant with $q\text{-value} < 0.05$, $|\log_2 \text{fold change}| > 0.585$ and
1257 significance of the difference between treatment and control with $p < 0.05$. The bars represent the number
1258 of up- or down-regulated DAMs in each species. Ath, *A. thaliana* (Col-0); Cru, *C. rubella* (N22697); Chi,
1259 *C. hirsuta* (Oxford); Esa, *E. salsugineum* (Shandong). (B) A Venn diagram showing shared and unique DAMs
1260 between species. All DAMs present in at least 1 species were used. (C) Principal component analysis of
1261 DAMs in at least 1 species. (D) Heatmap of \log_2 fold changes for DAMs in at least 1 species clustered by
1262 k-means clustering ($k = 6$; clusters marked in the color bar on top of the heatmap).

Parsed Citations

Albert, I., Hua, C., Nürnberg, T., Pruitt, R.N., and Zhang, L. (2020). Surface Sensor Systems in Plant Immunity. *Plant Physiol.* 182: 1582–1596.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinformatics* 31: 166–169.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Arakaki, M., Christin, P.-A., Nyffeler, R., Lendel, A., Eggli, U., Ogburn, R.M., Spriggs, E., Moore, M.J., and Edwards, E.J. (2011). Contemporaneous and recent radiations of the world's major succulent plant lineages. *Proc. Natl. Acad. Sci. U.S.A.* 108: 8379–8384.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Artyukova, E.V., Kozyrenko, M.M., Boltenkov, E.V., and Gorovoy, P.G. (2014). One or three species in *Megadenia* (Brassicaceae): insight from molecular studies. *Genetica* 142: 337–350.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in *Arabidopsis* innate immunity. *Nature* 415: 977–983.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Baxter, L., Jironkin, A., Hickman, R., Moore, J., Barrington, C., Krusche, P., Dyer, N.P., Buchanan-Wollaston, V., Tiskin, A., Beynon, J., Denby, K., and Ott, S. (2012). Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants. *Plant Cell* 24: 3949–3965.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bednarek, P., Piślewska-Bednarek, M., Ver Loren van Themaat, E., Maddula, R.K., Svatoš, A., and Schulze-Lefert, P. (2011). Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in *Arabidopsis thaliana* relatives. *New Phytol.* 192: 713–726.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Beilstein, M.A., Nagalingum, N.S., Clements, M.D., Manchester, S.R., and Mathews, S. (2010). Dated molecular phylogenies indicate a Miocene origin for *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. U.S.A.* 107: 18724–18728.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)* 57: 289–300.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Berens, M.L. et al. (2019). Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. *Proc Natl Acad Sci USA* 116: 2364–2373.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Birkenbihl, R.P., Kracher, B., Roccato, M., and Somssich, I.E. (2017). Induced Genome-Wide Binding of Three *Arabidopsis* WRKY Transcription Factors during Early MAMP-Triggered Immunity. *Plant Cell* 29: 20–38.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Boutrot, F. and Zipfel, C. (2017). Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. *Annu. Rev. Phytopathol.* 55: 257–286.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Brawand, D. et al. (2011). The evolution of gene expression levels in mammalian organs. *Nature* 478: 343–348.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Broadley, M.R., White, P.J., Hammond, J.P., Graham, N.S., Bowen, H.C., Emmerson, Z.F., Fray, R.G., Iannetta, P.P.M., McNicol, J.W., and May, S.T. (2008). Evidence of neutral transcriptome evolution in plants. *New Phytol.* 180: 587–593.
PubMed: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cartolano, M., Pieper, B., Lempe, J., Tattersall, A., Huijser, P., Tresch, A., Darrah, P.R., Hay, A., and Tsiantis, M. (2015). Heterochrony

underpins natural variation in *Cardamine hirsuta* leaf form. Proc. Natl. Acad. Sci. U.S.A. 112: 10539–10544.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chen, H. and Boutros, P.C. (2011). VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12: 35.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chen, J., Swofford, R., Johnson, J., Cummings, B.B., Rogel, N., Lindblad-Toh, K., Haerty, W., Palma, F. di, and Regev, A. (2019). A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res. 29: 53–63.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chen, T. et al. (2020). A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580: 653–657.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Coolen, S. et al. (2016). Transcriptome dynamics of *Arabidopsis* during sequential biotic and abiotic stresses. The Plant Journal 86: 249–267.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Couvreur, T.L.P., Franzke, A., Al-Shehbaz, I.A., Bakker, F.T., Koch, M.A., and Mummenhoff, K. (2010). Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol. Biol. Evol. 27: 55–71.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Das Gupta, M. and Tsiantis, M. (2018). Gene networks and the evolution of plant morphology. Current Opinion in Plant Biology 45: 82–87.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Dean, R., Harrison, P.W., Wright, A.E., Zimmer, F., and Mank, J.E. (2015). Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds. Molecular Biology and Evolution 32: 2646–2656.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Delport, W., Scheffler, K., and Seoighe, C. (2009). Models of coding sequence evolution. Brief. Bioinformatics 10: 97–109.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Dunning, F.M., Sun, W., Jansen, K.L., Helft, L., and Bent, A.F. (2007). Identification and Mutational Analysis of *Arabidopsis* FLS2 Leucine-Rich Repeat Domain Residues That Contribute to Flagellin Perception. The Plant Cell 19: 3297–3313.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Edger, P.P. et al. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl. Acad. Sci. U.S.A 112: 8362–8366.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Enard, W. et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science 296: 340–343.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Fitzpatrick, C.R., Salas-González, I., Conway, J.M., Finkel, O.M., Gilbert, S., Russ, D., Teixeira, P.J.P.L., and Dangl, J.L. (2020). The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu. Rev. Microbiol. 74: annurev-micro-022620-014327.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Franzke, A., German, D., Al-Shehbaz, I.A., and Mummenhoff, K. (2009). *Arabidopsis* family ties: molecular phylogeny and age estimates in Brassicaceae. Taxon 58: 425–437.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Franzke, A., Koch, M.A., and Mummenhoff, K. (2016). Turnip Time Travels: Age Estimates in Brassicaceae. Trends Plant Sci. 21: 554–561.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Gan, X. et al. (2016). The *Cardamine hirsuta* genome offers insight into the evolution of morphological diversity. Nat Plants 2: 16167.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Gómez-Gómez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in *Arabidopsis thaliana*: Sensitivity of *A. thaliana* to bacterial flagellin. The Plant Journal 18: 277–284.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Groen, S.C. et al. (2020). The strength and pattern of natural selection on gene expression in rice. Nature 578: 572–576.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hacquard, S., Spaepen, S., Garrido-Oter, R., and Schulze-Lefert, P. (2017). Interplay Between Innate Immunity and the Plant Microbiota. Annu. Rev. Phytopathol. 55: 565–589.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Harrison, P.W., Wright, A.E., and Mank, J.E. (2012). The evolution of gene expression and the transcriptome–phenotype relationship. Seminars in Cell & Developmental Biology 23: 222–229.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hay, A and Tsiantis, M. (2006). The genetic basis for differences in leaf form between *Arabidopsis thaliana* and its wild relative *Cardamine hirsuta*. Nat. Genet. 38: 942–947.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hedges, S.B., Marin, J., Suleski, M., Paymer, M., and Kumar, S. (2015). Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32: 835–845.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Heenan, P.B., Mitchell, A.D., and Koch, M. (2002). Molecular systematics of the New Zealand Pachycladon (Brassicaceae) complex: Generic circumscription and relationships to *Arabidopsis* sens. lat. and *Arabis* sens. lat. New Zealand Journal of Botany 40: 543–562.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hermant, M., Hennion, F., Bartish, I.V., Yguel, B., and Prinzing, A. (2012). Disparate relatives: Life histories vary more in genera occupying intermediate environments. Perspectives in Plant Ecology, Evolution and Systematics 14: 283–301.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hillmer, R.A., Tsuda, K., Rallapalli, G., Asai, S., Truman, W., Papke, M.D., Sakakibara, H., Jones, J.D.G., Myers, C.L., and Katagiri, F. (2017). The highly buffered *Arabidopsis* immune signalling network conceals the functions of its components. PLoS Genet 13: e1006639.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hohmann, N., Wolf, E.M., Lysak, M.A., and Koch, M.A. (2015). A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History. Plant Cell 27: 2770–2784.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W., and Zimmermann, P. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008: 420747.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Huang, C.-H. et al. (2016). Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution. Mol. Biol. Evol. 33: 394–412.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hunt, B.G., Ometto, L., Keller, L., and Goodisman, M.A.D. (2013). Evolution at Two Levels in Fire Ants: The Relationship between Patterns of Gene Expression and Protein Sequence Evolution. Molecular Biology and Evolution 30: 263–271.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Jacob, F., Kracher, B., Mine, A., Seyfferth, C., Blanvillain-Baufumé, S., Parker, J.E., Tsuda, K., Schulze-Lefert, P., and Maekawa, T. (2018). A dominant-interfering *camta3* mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in *Arabidopsis thaliana*. New Phytol. 217: 1667–1680.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kawakatsu, T. et al. (2016). Epigenomic Diversity in a Global Collection of *Arabidopsis thaliana* Accessions. Cell 166: 492–505.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Khaitovich, P., Hellmann, I., Enard, W., Nowick, K., Leinweber, M., Franz, H., Weiss, G., Lachmann, M., and Pääbo, S. (2005). Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. *Science* 309: 1850–1854.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Khaitovich, P., Weiss, G., Lachmann, M., Hellmann, I., Enard, W., Muetzel, B., Wirkner, U., Ansorge, W., and Pääbo, S. (2004). A neutral model of transcriptome evolution. *PLoS Biol.* 2: E132.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Koch, M.A., Haubold, B., and Mitchell-Olds, T. (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in *Arabidopsis*, *Arabis*, and related genera (Brassicaceae). *Mol. Biol. Evol.* 17: 1483–1498.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Koenig, D. et al. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. *Proc. Natl. Acad. Sci. U.S.A.* 110: E2655-2662.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Koenig, D., Hagmann, J., Li, R., Bemm, F., Slotte, T., Neuffer, B., Wright, S.I., and Weigel, D. (2019). Long-term balancing selection drives evolution of immunity genes in *Capsella*. *Elife* 8.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kojima, M., Kamada-Nobusada, T., Komatsu, H., Takei, K., Kuroha, T., Mizutani, M., Ashikari, M., Ueguchi-Tanaka, M., Matsuoka, M., Suzuki, K., and Sakakibara, H. (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in *Oryza sativa*. *Plant Cell Physiol.* 50: 1201–1214.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kojima, M. and Sakakibara, H. (2012). Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography-tandem mass spectrometry. *Methods Mol. Biol.* 918: 151–164.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lamesch, P. et al. (2012). The *Arabidopsis* Information Resource (TAIR): improved gene annotation and new tools. *Nucleic Acids Res.* 40: D1202-1210.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lemos, B., Meiklejohn, C.D., Cáceres, M., and Hartl, D.L. (2005). Rates of divergence in gene expression profiles of primates, mice, and flies: stabilizing selection and variability among functional categories. *Evolution* 59: 126–137.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lou, Y., Xu, X.-F., Zhu, J., Gu, J.-N., Blackmore, S., and Yang, Z.-N. (2014). The tapetal AHL family protein TEK determines nexine formation in the pollen wall. *Nat Commun* 5: 3855.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lu, X., Tintor, N., Mentzel, T., Kombrink, E., Boller, T., Robatzek, S., Schulze-Lefert, P., and Saijo, Y. (2009). Uncoupling of sustained MAMP receptor signaling from early outputs in an *Arabidopsis* endoplasmic reticulum glucosidase II allele. *PNAS* 106: 22522–22527.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

MacQueen, A., Sun, X., and Bergelson, J. (2016). Genetic architecture and pleiotropy shape costs of *Rps2*-mediated resistance in *Arabidopsis thaliana*. *Nat Plants* 2: 16110.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. *Bioinformatics* 21: 3448–3449.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Mandáková, T., Joly, S., Krzywinski, M., Mummenhoff, K., and Lysak, M.A. (2010). Fast diploidization in close mesopolyploid relatives of *Arabidopsis*. *Plant Cell* 22: 2277–2290.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

McLeay, R.C. and Bailey, T.L. (2010). Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. *BMC Bioinformatics* 11: 165.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Mine, A., Seyfferth, C., Kracher, B., Berens, M.L., Becker, D., and Tsuda, K. (2018). The Defense Phytohormone Signaling Network Enables Rapid, High-Amplitude Transcriptional Reprogramming during Effector-Triggered Immunity. *Plant Cell* 30: 1199–1219.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Naumann, J., Salomo, K., Der, J.P., Wafula, E.K., Bolin, J.F., Maass, E., Frenzke, L., Samain, M.-S., Neinhuis, C., dePamphilis, C.W., and Wanke, S. (2013). Single-copy nuclear genes place haustorial Hydnoraceae within piperales and reveal a cretaceous origin of multiple parasitic angiosperm lineages. *PLoS ONE* 8: e79204.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Necsulea, A. and Kaessmann, H. (2014). Evolutionary dynamics of coding and non-coding transcriptomes. *Nat Rev Genet* 15: 734–748.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Nielsen, R. (2005). Molecular signatures of natural selection. *Annu. Rev. Genet.* 39: 197–218.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Nuzhdin, S.V., Wayne, M.L., Harmon, K.L., and McIntyre, L.M. (2004). Common pattern of evolution of gene expression level and protein sequence in *Drosophila*. *Mol. Biol. Evol.* 21: 1308–1317.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. *Nature* 574: 679–685.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Parkinson, C.L., Mower, J.P., Qiu, Y.-L., Shirk, A.J., Song, K., Young, N.D., DePamphilis, C.W., and Palmer, J.D. (2005). Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. *BMC Evol. Biol.* 5: 73.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Piasecka, A., Jedrzejczak-Rey, N., and Bednarek, P. (2015). Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. *New Phytol.* 206: 948–964.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Pluskal, T., Castillo, S., Villar-Briones, A., and Oresic, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. *BMC Bioinformatics* 11: 395.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Renaut, S., Maillet, N., Normandeau, E., Sauvage, C., Derome, N., Rogers, S.M., and Bernatchez, L. (2012). Genome-wide patterns of divergence during speciation: the lake whitefish case study. *Philosophical Transactions of the Royal Society B: Biological Sciences* 367: 354–363.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Rifkin, S.A., Kim, J., and White, K.P. (2003). Evolution of gene expression in the *Drosophila melanogaster* subgroup. *Nat. Genet.* 33: 138–144.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.* 43: e47.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26: 139–140.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Rohart, F., Gautier, B., Singh, A., and Lê Cao, K.-A (2017). mixOmics: An R package for 'omics feature selection and multiple data integration. *PLoS Comput. Biol.* 13: e1005752.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Rohlf, R.V., Harrigan, P., and Nielsen, R. (2014). Modeling gene expression evolution with an extended Ornstein-Uhlenbeck process accounting for within-species variation. *Mol. Biol. Evol.* 31: 201–211.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Romero, I.G., Ruvinsky, I., and Gilad, Y. (2012). Comparative studies of gene expression and the evolution of gene regulation. *Nat. Rev. Genet.* 13: 505–516.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ross, A and Somssich, I.E. (2016). A DNA-based real-time PCR assay for robust growth quantification of the bacterial pathogen *Pseudomonas syringae* on *Arabidopsis thaliana*. *Plant Methods* 12: 48.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 13: 2498–2504.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shapiro, M.D., Marks, M.E., Peichel, C.L., Blackman, B.K., Nereng, K.S., Jónsson, B., Schluter, D., and Kingsley, D.M. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. *Nature* 428: 717–723.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* 7: 539.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Signor, S.A and Nuzhdin, S.V. (2018). The Evolution of Gene Expression in cis and trans. *Trends Genet.* 34: 532–544.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Singh, P., Yekondi, S., Chen, P.-W., Tsai, C.-H., Yu, C.-W., Wu, K., and Zimmerli, L. (2014). Environmental History Modulates *Arabidopsis* Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner. *The Plant cell* 26: 2676–2688.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Slotte, T. et al. (2013). The *Capsella rubella* genome and the genomic consequences of rapid mating system evolution. *Nat. Genet.* 45: 831–835.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Stringlis, I.A., de Jonge, R., and Pieterse, C.M.J. (2019). The Age of Coumarins in Plant–Microbe Interactions. *Plant and Cell Physiology* 60: 1405–1419.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Sturn, A., Quackenbush, J., and Trajanoski, Z (2002). Genesis: cluster analysis of microarray data. *Bioinformatics* 18: 207–208.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tautenhahn, R., Böttcher, C., and Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. *BMC Bioinformatics* 9: 504.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tirosh, I. and Barkai, N. (2008). Evolution of gene sequence and gene expression are not correlated in yeast. *Trends in Genetics* 24: 109–113.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* 25: 1105–1111.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tsuda, K., Mine, A., Bethke, G., Igarashi, D., Botanga, C.J., Tsuda, Y., Glazebrook, J., Sato, M., and Katagiri, F. (2013). Dual Regulation of Gene Expression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in *Arabidopsis thaliana*. *PLoS Genet* 9: e1004015.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tsuda, K., Sato, M., Glazebrook, J., Cohen, J.D., and Katagiri, F. (2008). Interplay between MAMP-triggered and SA-mediated defense responses. *The Plant Journal* 53: 763–775.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., and Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS genetics 5: e1000772.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tsuda, K. and Somssich, I.E. (2015). Transcriptional networks in plant immunity. New Phytologist 206: 932–947.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Uebbing, S. et al. (2016). Divergence in gene expression within and between two closely related flycatcher species. Molecular Ecology 25: 2015–2028.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ueno, Y., Yoshida, R., Kishi-Kaboshi, M., Matsushita, A., Jiang, C.-J., Goto, S., Takahashi, A., Hirochika, H., and Takatsuj, H. (2015). Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6. PLoS pathogens 11: e1005231.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vanneste, K., Baele, G., Maere, S., and Van de Peer, Y. (2014). Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 24: 1334–1347.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vetter, M.M., Kronholm, I., He, F., Häweker, H., Reymond, M., Bergelson, J., Robatzek, S., and de Meaux, J. (2012). Flagellin perception varies quantitatively in *Arabidopsis thaliana* and its relatives. Mol. Biol. Evol. 29: 1655–1667.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vlad, D. et al. (2014). Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343: 780–783.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Voelckel, C., Gruenheit, N., and Lockhart, P. (2017). Evolutionary Transcriptomics and Proteomics: Insight into Plant Adaptation. Trends Plant Sci. 22: 462–471.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Whitehead, A. and Crawford, D.L. (2006). Neutral and adaptive variation in gene expression. Proc. Natl. Acad. Sci. U.S.A. 103: 5425–5430.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Whittle, C.A., Sun, Y., and Johannesson, H. (2014). Dynamics of transcriptome evolution in the model eukaryote *Neurospora*. J. Evol. Biol. 27: 1125–1135.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu, H.-J. et al. (2012). Insights into salt tolerance from the genome of *Thellungiella salsuginea*. Proc. Natl. Acad. Sci. U.S.A. 109: 12219–12224.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang, R. et al. (2013). The Reference Genome of the Halophytic Plant *Eutrema salsugineum*. Front Plant Sci 4: 46.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yasuda, M., Miwa, H., Masuda, S., Takebayashi, Y., Sakakibara, H., and Okazaki, S. (2016). Effector-triggered immunity determines host genotype-specific incompatibility in legume-rhizobium symbiosis. Plant and Cell Physiology 57: 1791–1800.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yue, J.-P., Sun, H., Baum, D.A., Li, J.-H., Al-Shehbaz, I.A., and Ree, R. (2009). Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. Journal of Systematics and Evolution 47: 402–415.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhou, J.-M. and Zhang, Y. (2020). Plant Immunity: Danger Perception and Signaling. Cell 181: 978–989.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D.G., Felix, G., and Boller, T. (2004). Bacterial disease resistance in *Arabidopsis* through flagellin perception. *Nature* 428: 764–767.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

1001 Genomes Consortium (2016). 1,135 Genomes Reveal the Global Pattern of Polymorphism in *Arabidopsis thaliana*. *Cell* 166: 481–491.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)