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Abstract

The way people choose routes through unfamiliar environments provides clues about the underlying
representation they use. One way to test the nature of observers’ representation is to manipulate the
structure of the scene as they move through it and measure which aspects of performance are
significantly affected and which are not. We recorded the routes that participants took in virtual mazes
to reach previously-viewed targets. The mazes were either physically realizable or impossible (the latter
contained ‘wormholes’ that altered the layout of the scene without any visible change at that moment).
We found that participants could usually find the shortest route between remembered objects even in
physically impossible environments, despite the gross failures in pointing that an earlier study showed
are evident in the physically impossible environment. In the physically impossible conditions, the
choice made at a junction was influenced to a greater extent by whether that choice had, in the past, led
to the discovery of a target (compared to a shortest-distance prediction). In the physically realizable
mazes, on the other hand, junction choices were determined more by the shortest distance to the target.
This pattern of results is compatible with the idea of a graph-like representation of space that can include
information about previous success or failure for traversing each edge and also information about the
distance between nodes. Our results suggest that complexity of the maze may dictate which of these is

more important in influencing navigational choices.

Keywords: Human Navigation, Spatial Representation, Cognitive Map, Topological Model, Labelled

Graph.
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1 Introduction

In order to navigate successfully in a 3D environment, human participants have to develop a
mental representation of the scene, locate themselves in the representation and plan optimal actions to
reach a target. The exact form that such a mental spatial representation might take is still debatable. One
view is that the spatial representation corresponds to a cognitive map [2-4], i.e. a stable 3D
reconstruction of the environment (whether accurate or not). This provides the most complete
description of the environment and can be used for versatile spatial tasks such as planning an optimal
route, exploring novel shortcuts or pointing to unseen targets. It could be constructed by means of path
integration [5] and fully working implementations of this model are now common in the computer
vision and robotics literature based on visual SLAM (Simultaneous Localisation and Mapping) [6]
which integrates information from views over multiple vantage points. It has been argued that in small
and relatively simple environments such as ‘vista spaces’ participants have access to a relatively
accurate cognitive map within a confined region [7,8] although even in the case of vista spaces there is
dispute about whether the underlying representation in this case is Euclidean [9], i.e. corresponds to a
rigid 3D reconstruction. However, in larger and more complex environments there is greater agreement
that Euclidean reconstruction is a poor model. For instance, the perceived length of a route depends on
the number of turns and decision points it contains [10-12], angular and directional judgments are
highly inaccurate [8,13—15] and perceived angles between junctions are biased towards 90° [11,16].
Hence, while mental representations of small open environments can often appear to be consistent
locally, participants typically have difficulties integrating local representations into a single global
representation (as has been argued for other primates, too). In particular, performance in large
environments is much more likely to be compatible with a distorted or globally inconsistent map
[16,17]. This led Kuipers [18] to suggest that the concept of a global ‘Map in the Head” should be
replaced by an ‘Atlas in the Head’, with many local maps on separate sheets. Similar ideas of
independent reference frames consisting of multiple vista spaces were also proposed in more recent

studies [7,8]. It is not clear how these local representations are used by participants when they are
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confronted by a spatial task (such as pointing) that forces them to integrate information across different
local reference frames except that, as Meilinger and colleagues say [7], pointing appears effortful and
performance depends on many factors such as the order in which the route was learned. Experimental
evidence suggests that performance in this case relies on a representation (or a process of accessing
information from a representation) that is not only distorted but also inconsistent with the idea of a
single global map [1,19-21].

In an early seminal paper, Siegel and White [22] suggested that, in large-scale environments,
spatial representation develops gradually and goes through three main phases: landmark knowledge
(salient features), route knowledge (‘place-goal-action associations’) and survey knowledge
(construction of a cognitive map) [23]. Developing this type of idea, Kuipers [18] suggested that, as
more information becomes available about an environment, ‘topological connections can be
strengthened into relative-position vectors’ and then, ultimately, a representation uniting multiple
frames of reference. He emphasized the co-existence of multiple strategies based on different levels of
detail which he described as a cognitive map having ‘many states of partial knowledge’. Montello [24]
criticized Siegel and White’s idea, pointing out that there can be gradual ‘quantitative accumulation and
refinement of metric knowledge’. Ishikawa and Montello [15] set out to test the developmental
progression of representations that Siegel and White and others have advocated and found very little
learning across trials (although no feedback was given). They emphasised the fact that some individuals
acquired ‘surprisingly accurate metric knowledge, even relatively quickly’ relating locations between
which they had not travelled directly. In line with this finding, when Weisberg and colleagues [25-27]
tested a large number of participants in virtual reality (VR), they found that there was significant
variation in the ability of people to integrate spatial information across routes: participants’ pointing
performance within a familiar route was not necessarily a good predictor of their ability to point between
targets on two different familiar routes.

Warren [29] has drawn together much of the literature on navigation in Euclidean (physically
possible) and non-Euclidean environments arguing that the evidence points to humans using a ‘labelled

graph’ (Chrastil and Warren [28], Strickrodt et al [20], Warren et al [19]). This lies between a
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78  topological graph and survey knowledge because each edge of the graph can include information about
79  the length of the path connecting those two nodes and, as someone becomes more familiar with an
80  environment, there can be information stored about the angle between edges. Warren [29] emphasizes
81  that a labelled graph can become more and more accurate with experience: “One would expect edge
82  weights and node labels to become more accurate and precise with repeated exposure to an
83  environment,” (p4). In theory, the information about edges can become so accurate that tasks such as
84  pointing from the current node to an object at another node can be as accurate as it would be based on
85  aEuclidean map, making it impossible to distinguish between a graph and a map for such tasks. A very
86  similar spectrum has been proposed for the processing of disparity information to guide judgements of
87  ordinal depth, bas relief depth or Euclidean shape [30,31].
88 There have been many studies that have explored the extent to which participants can encode
89  actions that have led to a successful result in the past and incorporate this in their representation [32—
90  35]. Marchette et al [34] showed that in a navigational experiment when searching for targets some
91  participants found novel shortcuts easily, while other participants preferred less efficient, but more
92  familiar routes that they had experienced during the learning phase. fMRI analysis showed that
93  participants who preferred shortcuts had a stronger activation in the hippocampal area, while
94  participants who followed the more familiar route had a stronger activation in the caudate which
95  encodes reward. Chrastil and Warren [28] review a hierarchy of tasks and corresponding representations
96  that would support such tasks, where route knowledge (in our case, knowing whether to go left or right
97  atajunction to get to a goal) is lower in the hierarchy than knowing a topological map of a maze which
98  would allow observers to take topological shortcuts (i.e. routes traversing a smaller number of edges).
99  Accurate pointing and reliable identification of novel shortcuts are higher in the hierarchy than route
100  knowledge, as both require the observer to do more than simply follow previously rewarded routes.
101  Interestingly, in the reinforcement learning literature there has been a recent focus on representations
102 that are similar to the ‘response-like’ model in that they learn what action to carry out at each decision

103 point (given a particular goal) rather than computing a global map [36].
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104 In this paper, we build on our previous study of human pointing errors in a virtual maze [1] which,
105 like the current study, examined the consequences of exploring a physically impossible maze. The maze
106  had long corridors with many turns in a way that could not be realized in the real world (‘wormholes’),
107  similar to the manipulations many other researchers have used to explore spatial behaviours in non-
108  Euclidean environments ([9,19,37,38]). The conclusion of our previous paper was that the most likely
109  explanation of the data in this type of condition was that participants relied on a representation that has
110 no Euclidean interpretation. The current paper examines the performance of the same participants in
111  the same experiment but instead of analysing the pointing responses we report the ability of participants
112 to find the shortest distance through a maze to a target. This task is suited to finding out what information
113 participants use to choose a path when they are at a junction, not to finding out whether they use a
114  Euclidean reconstruction or a graph-like representation. Indeed, if observers have a Euclidean
115  representation that includes the target and their current location, and the task is to choose the shortest
116  route using their representation, then they should do that independent of any past experience of reward.
117 A graph-based representation is more flexible. Initially, observers may only store information about
118  whether or not they have travelled down a particular path and whether this led to the object that is their
119  current goal (similar to ‘response-learning’, [34,39,40]). Later, they may add information about the
120 distance between nodes. In the current experiment (to anticipate our results), we find that the more
121 complex the maze, i.e. with wormholes, the more likely participants are to choose previously rewarded
122 routes. In the Discussion, we consider how this relates to the idea that people may begin with a
123 topological graph of connectivity and gradually add information about reward and distance along

124 corridors (edges in the graph) once they gain more experience of the environment.

125 2 Material and methods

126 2.1 Participants

127 The 14 participants (5 male and 9 female) who completed the experiment were students or

128  members of the School of Psychology and Clinical Language Sciences. All participants had normal or
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129  corrected to normal vision (6/6 Snellen acuity or better), one participant wore glasses during the
130 experiment, and all had good stereo-acuity (TNO stereo test, 60 arcsec or better). All participants were
131  naive to the purpose of the study. Participants were given a one-hour practice session in VR to
132 familiarize them with our set-up using physically possible mazes. We called physically possible mazes
133 ‘Fixed’, for short, as they did not change as the participant moved around them. 10 potential participants
134 (1 male, 9 female) either experienced motion sickness during the practice session or could not move
135  confidently in VR and thus preferred not to continue at this stage (any participants who were excluded
136  did so before data was collected for either ‘base layout’ used in the experiment). The higher-than-normal
137  dropout rate is likely to be due to the overall scaling of the scene which results in a conflict between
138  eyeheight and other cues to scale (discussed in Section 3). Altogether, there were 7 sessions (including
139 the practice), each of about 1 hour, conducted on different days. Participants were advised not to stay
140  in VR longer than 10 minutes between breaks. They received a reward of 12 pounds per hour. The study

141  received approval of the Research Ethics Committee of the University of Reading.

142 2.2 Experimental set-up

143 The Virtual Reality laboratory was equipped with a Vicon tracking system with 12 infrared
144 cameras (T20 and Bonitas). We used an nVision SX111 head mounted display with a large field of view
145  (111° horizontally with a binocular overlap of 50°). The resolution of the LCD displays was 1280 by
146 1024 pixels. The headset was calibrated using the method described in [41] in order to minimize optical
147  distortions in the stimuli. We have measured the motion-to-photon latency of our VR system with the
148  nVis SX111 display as 40ms [46]. The HMD was connected via a 4m-long video cable to a video
149 controller unit on the ceiling. The Vicon tracking system (Tracker 3.1) provided an estimate of the
150  position and orientation of the headset with a nominal accuracy of £0.1 mm and 0.15° respectively at a
151  frequency of 240Hz and relayed this information to a graphics PC with a GTX 1080 video card. The
152 stimuli were designed in Unity 3D software [42] and rendered online at 60fps. Participants were allowed
153  to walk freely and explore the virtual environment in a natural way, although they had to hold the HMD

154  video cable behind them and had to take care that the cable did not become tangled as they walked. The
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155  experimenter was always close by to ensure that the cable remained behind them. The physical size of
156  the labyrinth was limited to a 3 by 3m region in the lab. The virtual labyrinth was originally a 5 by 5m
157  environment with corridors in the maze 1m wide. In order to fit in the 3 by 3m space, the labyrinth was
158  shrunk to 0.6 scale (e.g. 60cm wide corridors) which meant that the floor was displayed about Im below
159  eye height. Participants generally found this acceptable and did not notice that the room was not normal
160  size, consistent with previous reports [9]. During the experiment, participants wore a virtual wristband
161  that provided information about the task (shown, for illustrative purposes only, in the bottom-right
162 corner of Fig. 1B). In the pointing phase of the experiment, participants used a hand-held 3D tracked
163  pointing device to point at targets. In VR, the pointing device was rendered as a small sphere (R=5cm)
164  with an infinitely long ray emanating from it in both directions, although the ray could not be seen
165  beyond the corridor walls. Text was displayed on a panel attached to the ray providing instructions (e.g.
166  ‘point to Red’). The 6-degrees-of-freedom pose of the cyclopean point (a point midway between the
167  eyes), together with the orientation of the headset was recorded on every frame (60 fps).

168

169

170

171 [FIGURE 1]
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172 Fig 1. Views of the labyrinth. A) View from above. B) First person view. The green target is visible inside a grey

173 box. The target sequence is shown on the wrist-band in the bottom-right corner and the current target is
174  highlighted (Green). A movie version is here:

175 https://www.glennersterlab.com/muryy glennerster/FirstPersonView Fixed.mp4

176

177 2.3 Stimuli

178 We designed two general layouts of the virtual labyrinth (Layout 1, shown in Fig. 1 and 2, Layout
179 2 shown in the S1 Fig). Each of these general layouts could be modified by the addition of wormholes.
180  The virtual environment could be subdivided into 25 (5x5) elementary squares each having a size equal
181  to the corridor’s width. Initially, the environment consisted only of a chequered floor and a green
182  cylinder, indicating the start location. The participant walked into the green cylinder, faced in the
183  direction of the red arrow (Fig. 1A) and then the green cylinder and red arrow disappeared, so that the
184  starting location was not marked during the exploration phase. The labyrinth contained 4 target objects
185  (red, green, blue and yellow spheres) hidden inside open grey boxes, so that they could be seen only
186  from a short distance (Fig. 1B). Other empty grey boxes were added as distractors.

187 For each labyrinth, we were able to increase the complexity of the environment by extending the
188  length of the corridors with non-metric ‘wormholes’, see Fig. 2B and 2C (for details of three-wormhole
189  condition and Layout 2 see Supplementary Material). There were three conditions per Layout: one
190  ‘Fixed’ (i.e. rigid and unchanging as the participant explored the maze), one containing one wormhole
191 and another containing three wormholes. Colored circles in Fig. 2 show the location of the targets and
192 “S’ shows the Start. In the wormhole conditions, the dashed lines acted as invisible triggers: when a
193 participant crossed this line, the environment changed as shown in the sub-plots although the changed
194  regions were always out of sight at the moment the participant passed through the trigger so there was
195  no visible indication that anything had changed. For instance, in the one-wormhole condition shown in
196  Fig. 2B, if a participant were to cross the trigger indicated by the red dashed line, the environment would

197  change to schematic W1(a); if the participant continued walking down the path through the wormhole
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198  (e.g. along the dashed black line) and crossed the green trigger line, the environment would change
199  again to schematic W1(b), then if the participant crossed the blue trigger line he or she would exit the
200  wormhole and the environment would change back to the original layout. Note that the same is true if
201  the participant were to enter the wormhole the other way: they would then move from W1b scene to
202  Wla scene and back to the original base layout.

203 For both Layout 1 and Layout 2, the wormhole conditions were derived from the layout of the
204  Fixed condition, as shown in Fig. 2. One way to think of the wormholes is as generating a new floor in
205  a building and suddenly transporting the participant to a new floor. According to this analogy, for a
206  given Layout (say, Layout 1) the ‘ground floor’, or base-level layout, of the environment was the same
207 for Fixed, one-wormhole and three-wormhole conditions. The corridors through the wormholes did not
208  have any junctions which meant that the topological connectivity of space was the same in all 3
209  conditions (although the different coloured targets could be placed at different locations within the
210  maze). The main difference between Fixed and wormhole conditions was the length and configuration
211 of the corridors. The wormholes extended the corridors in a way that made a correct Euclidean
212 representation impossible. For instance, the path through the wormhole in Fig. 2B has the shape of a
213 figure of eight, i.c. it crosses itself, although there are no visible junctions along that path, which is

214 physically impossible.

215
A Fixed B 1-wormhole, WH1 C  3wormholes, WH3
@ © [= w3 E @ §w2
O §W1§ i::::. EWE: Ty
° © ° ﬂ(az O @)
ol o| |2
216 W1(b)
217
218 [FIGURE 2]

219 Fig. 2. ‘Fixed’ and wormhole conditions. The general layout (containing Start, which is marked as ‘S’) remained

220  constant between conditions. A) ‘Fixed’ condition in Layout 1. B) One-wormhole condition in Layout 1, the green
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221 target is inside the wormhole and the red and blue dashed lines show the location of the triggers to change the

222 virtual environment to one of the scenes indicated in the subplot wi(a) or wi(b). The only region in which a
223 participant could walk once they entered a wormhole is shown by the black dashed line. See text for details. C)
224 Three-wormhole condition for Layout 1; red, green and yellow targets are inside wormholes (for details of the
225 three wormholes see S1 Fig). For movies illustrating particpant trajectories in the Fixed, one-wormhole and

226 three-wormhole conditions and for the layout of the maze in Layout 2, see Supplementary Material.

227
228
229
Fixed WH1 WH3
230
231 [FIGURE 3]

232 Fig. 3. Topological graphs corresponding to the schematics shown in Fig. 24, B and C (Layout 1). Coloured

233 circles represent targets; S, NI and N2 are 3-way junctions; S is the start location.

234

235 2.4 Procedure

236 Participants followed the instructions they were given, finding the four targets shown on their
237  wristband in the specified order. When they reached the fourth target, they pointed at the other targets
238  and at the Start location but the results of this pointing task are reported in a separate paper [1] so ithey
239  are not described further here, although see Fig 13 for a comparison of the pointing data and the
240  navigational choice data. In the course of one experimental session, which took about 1 hour,
241  participants were tested sequentially on the three types of maze, i.e. Fixed, one-wormhole and three-

242 wormbhole conditions, all with the same general layout (i.e. all Layout 1 or Layout 2). This was designed
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243 deliberately to help participants to navigate in the more complex environments. The tasks and
244 instructions were identical for all three conditions. The instructions given to participants were to collect
245  all four target objects in a specified order in the most efficient way. ‘Collect’ meant approach
246  sufficiently close to the target (within a radius of 0.5m from the cyclopean point and within the field of
247  view) which caused its colour to change from bright to dull and, at the same time, the colour of that ball
248  changed in the same way on the wrist-mounted panel. The meaning of ‘efficient’ was not defined
249  precisely for participants although it was emphasized to them that they should not hurry and that their
250  performance was not being judged by their speed. ‘Efficient’ could mean choosing the shortest path, or
251  the smallest number of turns or junctions (i.e. navigational decisions) — this was left to participants to
252 decide.

253 The first five rounds were a ‘learning’ phase in which participants always began at the Start
254 location and ‘collected’ targets in the same sequence Start-Red-Green-Blue-Yellow (S-R-G-B-Y). The
255  purpose of the learning phase was to allow participants to build up a spatial representation of the
256  labyrinth gradually through multiple repetitions of the same navigational task. During the test phase
257  (the last 3 rounds out of a total of 8 rounds), the navigational sequences were changed to three new
258  sequences: Y-G-B-Y-R, R-B-R-Y-G and G-Y-G-R-B. Participants did not have to go to the Start
259  locations at the beginning of a round but instead started at the location where the previous round ended.
260 Excluding the practice session, each participant carried out 6 experimental sessions, each on a
261  different day. We tested one Layout per session (Layout 1 or Layout 2), testing ‘Fixed’, ‘one-wormhole’
262  then ‘three-wormhole’ conditions in the session. On different days (sessions) participant was tested on
263  alternating Layouts (Layout 1 then Layout 2 etc). Then participants repeated the sequence for two
264  repetitions, hence 6 days (sessions). S2 Fig lists all 18 conditions that participants experienced (2
265  Layouts, 3 room conditions (‘Fixed’, one-wormhole and three wormhole) and three repetitions). The
266  repetitions were not identical because the colours of the targets were switched around, so that on
267  repetition 2 the blue sphere might appear in the box where the red sphere had appeared in repetition 1.
268  Importantly, the structure of the maze and the location of the grey boxes remained the same. This meant

269  that while the instructions remained the same (e.g., in the learning phase, collect targets in sequence R-


https://doi.org/10.1101/2020.08.14.250621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.250621; this version posted December 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

12

270  G-B-Y) the actual routes in the maze to complete those tasks were different on different repetitions. For
271 all subsequent description and figures in the paper, however, in order to make it easier to follow, the
272 colours of the target at each location in the maze or graph remain the same per Layout, independent of
273 the repetition. We also used these labels for the nodes in the analysis.

274 For the purposes of analysis, we divided participants’ movements into discrete steps, as follows.
275  During the experiments, we recorded participants’ locations and orientations at 60 frames per second
276  and then converted these trajectory data into topological steps through the maze. For instance,
277  participant P5 made the following steps in Layout 1, Fixed condition (start locations and goal locations

278  are shown in bold):

279

280 Learning round 1, task Start-R-G-B-Y: S B NIN2 Y N2 NI RS G N2 Y N2 NI BNI N2 Y
281 Learning round 2, task Start-R-G-B-Y: S BNI R NIN2 G SBNIRSGN2Y

282 Learning round 3, task Start-R-G-B-Y: SR S G S B NI N2 Y

283 Learning round 4, task Start-R-G-B-Y: SR S G S B NI N2 Y

284 Learning round 5, task Start-R-G-B-Y: SR S G S B NI N2 Y

285 Test round 1, task Yellow-G-B-Y-R: YN2G S B NI N2 YN2 G S R

286 Test round 2, task Red-B-R-Y-G: RNIBNIRSGN2YN2G

287 Test round 3, task Green-Y-G-R-B: G N2Y N2 G SR S B

288

289  where S is Start and N1 and N2 are the 3-way junctions shown in Fig. 3. This labelling of the routes
290  that participants made was a prerequisite to modelling their navigational decisions, as described in the

291 next section.

292 3 Results and modelling

293 When participants are allowed to move freely through a maze, it can be challenging to aggregate
294 their data in meaningful ways. Our principal solution to this problem was to compare the likelihood of
295  their navigational decisions under rival models. Before presenting the results of this modelling, there

296  are some general observations that can be made. First, participants’ trajectories demonstrate learning,


https://doi.org/10.1101/2020.08.14.250621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.250621; this version posted December 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

13

297  in the sense that trajectories became progressively closer to the shortest metric route during learning.
298  Fig 4 illustrates this pattern for Layout 1. It also shows the increasing length that was required for
299  participants to reach the targets, even by the shortest possible routes, as they go from ‘Fixed’ to one-
300  wormhole to three-wormhole conditions. Fig 5 illustrates this for a particular task (going from G to Y
301 in this case). It shows how the paths between targets become increasingly convoluted in the wormhole
302  environments even when, from a topological perspective, the task is similar. Fig 6 includes some of the
303  sketches that participants made of the environment, illustrating the confusion that becomes apparent
304  when they have to pinpoint the location of the target spheres on a map (see the coiled lines

305  corresponding to wormhole corridors in Figs. 6B and 6C).

306
307
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—~ 60 —~ 60 — 60
E E E
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12 345 12 3 123 45 12 3 123 45 12 3
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309
310
311 [FIGURE 4]

312 Fig. 4. Travelled distance per round. Bars show mean distances travelled by all participants (n=14) in Layout 1,
313 repetition 1. Error bars indicate standard deviations. Horizontal black lines indicate lengths of the shortest path
314 to the target, measured along the middle of the corridors. During the 5 rounds of the learning phase, the task was
315 always the same. During the test phase, participants’ tasks were different on every round. The three panels show
316 data from the Fixed, one-wormhole and three-wormhole conditions. Similar plots for all Layouts and all
317  repetitions are shown in S2 Fig.

318
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322 Fig. 5. Examples of a participants’ paths. A) Trajectories of paths taken during one subset of the task, “go
323 from Gto Y” in Layout 1 for the Fixed, one-wormhole and three-wormhole conditions. The shortest path is
324 marked in red, while green and blue lines represent alternative routes. Trajectories are drawn in the coordinate
325  frame of the lab. B) Same data shown as a topological graph. Numbers in brackets indicate the number of times

326 each route was taken (all participants, all runs). See Fig. 2 for details of the layout in the wormhole conditions.

327
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331 Fig. 6. Sketches drawn by participants. The black circle indicates the Start location, coloured circles are the
332 targets (added to the sketches for clarity). A) Fixed condition, Layout 1. Notice that the schematic is very accurate
333 except for scale (e.g. length of the corridor with the Yellow target). B) one-wormhole condition, Layout 1. The
334 Green target was inside a wormhole and, from the squiggles connecting it to other targets, the participant appears
335 to be confused about its location on the map and the shape of the corresponding corridor, while Red, Blue and
336 Yellow targets are sketched correctly. C) Three-wormhole condition, Layout 2. The participant makes large errors
337 in the locations of several targets but demonstrates knowledge of topological properties (connectivity between

338 nodes) of the maze. A and B are from Layout 1, C is from Layout 2. More sketches are included S3 Fig.

339

340 In the following section, we consider two models. One takes into account the participant’s
341  previous experience and whether one path or another was successful in the sense that it led, ultimately,
342 to the goal that the participant had at the time. If so, this model predicts that the path is more likely to
343 be taken during the test phase. We call this a ‘Rewarded-choice model’. This approach is somewhat

344  similar to the ‘Dual Solution Paradigm’ proposed by Marchette et al [34]. Even though in our
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345  experiment participants were not restricted in their paths during the learning phase, as they were in
346  Marchette’s experiment, it is still possible for us to evaluate the degree of familiarity of the routes that
347  participants took in the test phase. The second model assumes that the participant knows the length of

348  all paths to the goal. We call this the ‘shortest distance model’.

349 3.1 Rewarded-choice model

350 The rewarded-choice model takes into account all navigational decisions that participants took
351  during the learning phase, and the success or otherwise of the choice that they took at any particular
352 junction. It uses this information to predict how they might behave during the three test rounds for that
353  condition. Consider the connectivity matrix for Layout 1 in the one-wormhole condition shown in Fig.
354  7B. This shows which paths are possible between any two nodes in the graph (Fig. 7A). The rows
355  represent ‘beginning’ nodes, i.e. places where the participant has a choice about which way to go. The
356  columns represent ‘end’ nodes, i.e. where the participant arrives after having made that decision, and a
357 ‘1’ means it is possible to get directly between these two (i.c. there is an edge in the graph between
358  these two nodes). For instance, from the Start node (first row), possible steps are to Red, Green and N2
359  (columns 2, 3 and 7). If we assume that at the beginning of the learning phase the participant does not
360  have any prior knowledge about the structure of the maze, and thus all decisions about the route are
361 equally probable, the connectivity matrix of Fig 7B can be converted to a matrix showing the likelihood
362  of taking each path at any given junction as shown in Fig 7C. The probabilities on each row must sum
363  to 1 so, at this default stage, 2-way junctions have a 50% probability for each path and 3-way junctions
364 33%.

365
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368  Fig. 7. Connectivity and default decision matrix. A) Topological graph for Layout 1. S’ indicates the Start

369 location where participants entered the maze and ‘N1’ and ‘N2’ are nodes in the graph indicating 3-way junctions
370 in the maze. B) Corresponding connectivity matrix. C) Default likelihoods of steps, prior to the learning phase.

371

372 In order to predict the choices that participants will make in the test phase, separate decision
373  matrices are required per participant and per goal (because a participant might be expected to make a
374  different choice at a given junction depending on what their goal was: R, G, B or Y). These were
375  generated as follows. Starting with the default likelihood matrix (Fig 7C, i.e. random choices), the
376  likelihoods associated with each choice were updated in a way that reflected the participant’s success
377  whenever they found the target. We re-played all the participants’ trajectories during the learning phase.
378  If the participant found the target at the end of a particular route then the next time the participant
379  reached the same junction and had the same goal, the model assumed the participant was more likely to
380  make the same choice again. To explain how this is done in detail, consider an example in which the
381  participant’s path goal was R and their path was Start-G-B-N1-R. Since the Red target was found
382  successfully, the decision matrix is updated by increasing the likelihood of all the decisions that made
383  up that path according to the formula below. The update rule has one free parameter, a, that determines
384  the learning rate. Specifically, the likelihood of the steps S-to-G, G-to-B, B-to-N1 and N1-to-R (i.e.

385  steps that successfully led to the goal R) are all increased using the following updating rule:
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386 p;j= %. This rule updates the likelihood, p; j, of making a step from node i to node j, where

387  a is the learning coefficient and # is the total number of nodes (where n = 3 at the Start, N1 or N2

Pim
n
k=1Pikta

388  otherwise n =2). All other elements of row i (p; ,n, m # j) should also be updated as p; ,,, =
389  which ensures that elements in the row sum up to 1 (see Figure 8). This updating is repeated until all
390  the participant’s trajectories for the learning phase have been used.

391 There are choices to be made in deciding how one should build a learning model of this sort. In
392 our implementation, we assumed that participants would notice when they encountered a target en route
393  to their specified goal. This means that we update more than one learning matrix simultaneously. So,
394  for example, in the above case of a participant going from Start to Red by the route Start-G-B-N1-R,
395  the steps Start-G and G-B are both steps on the way to Blue (so we should update the Blue goal learning
396  matrix) and on the way to Red (so we should also update the Red goal learning matrix). Likewise, we
397  reward the step Start-G in the learning matrix that determines the paths to the Green target. When the
398  participant travelled Start-G-B-N1-R, we made the choice that, in our model, the reverse route R-N1-
399  B-G-Start should be rewarded according to the same rules (i.e. we assumed that people noticed the route
400  that would take them back from Red to Start). The likelihood matrices were filled in by using data from
401  the learning phase only. Note that our model differs from the ‘response’ model of Marchette et al [34]
402  because in their case the participant had no choice about the route taken during the training phase which

403  meant that, in the test phase, the rewarded route was inevitably the same as the previously-chosen route.

404  That is not the case in our experiment or model.

405
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Fig. 8. Illustration of update rule in the rewarded-choice model. A) At node N1, the default likelihoods

for the three potential choices are 1/3 each. Each time the participant chooses the (successful) path from N1 to R

(arrows) the likelihoods for the chosen route is increased in the model according to the rule p; ; = T prora
k=1Pik

text), where the learning coefficient, a, is 0.7 in these examples. The other two routes are updated according to

Pim

CEp—— (see text). This gives the likelihoods shown in B. When the participant chooses the
k=1Pik

the rule p; ;m =

route NI to R again, the same rules give rise to the likelihoods shown in C.
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Fig. 9. Constructing a learning matrix. A) A topological graph for Layout 1 including, along each edge, the
distance (in metres) between nodes. Red arrows show an example of the participant’s task during the test phase:

‘go from Green to Red’. B) Likelihood matrices per target for one participant after they had completed the
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421 learning phase. These matrices show the likelihoods according to the rewarded-route model as described in the
422 text. The highlighted elements of the matrix show the likelihoods of the steps shown in A.

423

424 Fig. 9B shows an example of the likelihood matrices calculated for one participant using all their
425  data in the learning phase in the one-wormhole condition (Layout 1). Fig. 9A shows an example of a
426  route that that participant took in the corresponding test phase. The task here was to go from Green to
427  Red (notice that this task does not happen during the learning phase). There are 4 possible solutions to
428  this task without loops: 1) G-B-N1-R, 2) G-S-R, 3) G-B-N1-N2-S-R, and 4) G-S-N2-N1-R. In this
429  example, the participant chose the first path, shown in Fig. 9A and by the red outlines in Fig. 9B. Notice
430  that steps along this path have the highest likelihood in the corresponding matrix (Fig. 9B), which
431  illustrates that, in this example, the participant’s behaviour during the test phase is consistent with their

432 experience during the learning phase.

433 3.2 Shortest-distance model

434 The other model is much simpler to describe. The likelihood of a decision under the shortest-
435  distance model can be calculated in the following way. For each binary decision point (i.e. 3-way
436  junction) we found all paths to the goal via the left and right path from the current node (backward steps
437  were not allowed). Then, we found the shortest metric path for each of the two (via left and via right)
438  and calculated their lengths D; and Dg. One option is to assign a probability of 1 in the model to the
439  shortest of these choices (eg the left path) and a probability of zero to the other choice but our model
440  assumed that there was noise on the estimate of lengths D; and Dy so the probabilities were non-binary.
441  Specifically, we assumed that estimates of the path length are subject to Gaussian noise whose standard
442  deviation is proportional to overall route length (Weber’s law): a, = 8 * D;, og = B * D, where 8 <
443 1 is a free parameter. The likelihood of taking the shortest route can then be estimated according to the
444  overlap of the two distance estimate distributions. This iS Psportest = 1 — Sintersection/2, Where

445  Sintersection 1S the area of the intersection of the two Gaussians and, since there are only two options,

446 DPiongest = 1 — Pshortest-
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447 It is important to note that the perceived size of the maze for all participants was determined by
448  eyeheight cues (i.e. participants assumed that their feet were at the level of the floor and that the rest of
449  the scene was scaled accordingly). In fact, as described in the Methods, the virtual floor was 0.6 times
450  the true distance below the eye and the whole scene 0.6 times the normal size so there is a conflict
451  between idiothetic cues from proprioception (distance walked) and interocular separation (baseline
452 cues, as discussed in the Introduction) about the size of the scene and, conversely, these two competing
453  scales give conflicting information about the distance in metres that the participant has walked (see
454 Svarverud et al [9] for discussion of combination of these cues). However, any effects of such conflict
455 would be expected to be the same in the ‘Fixed’, one-wormhole and three-wormhole conditions.

456

457 3.3 Model comparison

458  We compare the performance of the two models in predicting the binary choices participants made
459  during the test phase (the last 3 rounds of 8), i.e. at each 3-way junction (we assumed that they did not
460  go backwards at a junction, which was extremely rare in practice). For each model, we evaluate the
461  likelihood under that model of all the binary decisions participants made. For the rewarded-choice
462  model, the learning coefficient, &, was chosen such that it maximized the likelihood of responses during
463  the test phase per participant per condition. Mean parameter values across all participants for the Fixed
464  condition were a = 0.87, for one-wormhole a = 0.70 and, for three-wormholes, a = 0.73. We
465  repeated the same exercise for the shortest-distance model. Parameter 8 (Weber fraction) was also fitted
466  per participant per condition. Mean parameter values over participants were: § = 0.23 for the Fixed
467  condition, 8 = 0.22 for one-wormhole and § = 0.33 for the three-wormhole condition.

468 Fig. 10A shows the two models compared using the data for all participants taken together. In
469  the ‘Fixed’ condition, the shortest-distance model provides a better account of the data than the
470  rewarded-choice model (negative log likelihood of the shortest-distance model is 60 lower, equivalent
471  to a Bayes Factor of 10%®) whereas, for the three-wormhole condition, the reverse is true and the

472  rewarded-choice model provides a better account than the shortest-distance model (negative log
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473 likelihood of rewarded-choice model is 82 lower, equivalent to a Bayes Factor of 10°°). This change
474  arises because the shortest-distance model becomes a progressively worse predictor of performance for
475  more complex scenes (i.e. from the Fixed to one-wormhole to three-wormhole condition) while the
476  likelihood of the rewarded-choice model changes much less across conditions. An ANOVA on
477  likelihoods per condition per participant confirms that, for the shortest-distance model, condition has a
478  significant effect (F(2,41) = 14.6, p<0.001), whereas for the rewarded-choice model there is no
479  significant effect of condition (F(2,41) = 0.67, p=0.52). For the shortest-distance model, breaking this
480  main effect of condition down into steps, there is a significant effect of changing from ‘Fixed’ to one-
481  wormbhole condition (F(1,27) = 5.44, p=0.036) and from one-wormhole to three-wormhole conditions
482  (F(1,27) =9.81, p=0.008).

483

484 Fig 10B illustrates the effect of condition for the shortest route model, shown here for the ‘Fixed’
485  and three-wormhole conditions. The negative log likelihood of the data for each participant under the
486  shortest-distance model (plotted on the ordinate) is systematically greater in the three-wormhole (blue)
487  condition: for all but one participant (down-going triangles), the negative log likelihood of the shortest-
488  distance model is greater for the three-wormhole condition than it is for the fixed condition (i.e. for all
489  other pairs in this plot, the blue symbol is higher than the red symbol, paired t-test, t(13) = 5.4, p<0.001).

490
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496 Fig. 10. Model comparison. A) Likelihoods of combined participants’ data per condition per model. B)
497 Comparison of the goodness-of-fit of the two models for each participant in the ‘Fixed’ and three-wormhole
498 conditions. Different symbols indicate different participants. The same parameters were used for all participants
499  (in both A and B).

500

501 Another way to assess the significance of the difference in negative log likelihoods between the
502  two models is to sample from each model and then to measure the likelihood of these samples under
503  both models. Fig. 11 illustrates why this is an informative way of assessing data under two rival models.
504  Essentially, this is illustrating the fact that data can have a quite high likelihood under two quite different
505  models even when the models are different. In Fig. 11, looking only at likelihood of a data point under
506  the red model (a Gaussian), it can be hard to tell whether a sample was drawn from the red model (which
507  one would think should provide highly likely samples) or drawn from the blue model (which is a quite
508  different Gaussian but gives rise to samples that have a high likelihood under the red model). By
509  measuring the likelihood of samples drawn from each model and tested against each model, as shown

510  inFig. 11, it is possible to distinguish clearly between the models. A likelihood ratio of 1 corresponds
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to the line of unity on this plot and a data point falling either side of this line favours one model or the

other. But this method provides a visualization of whether the data are a typical sample of either model.
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[FIGURE 11]

Fig. 11. Illustration of model comparison. Reproduced from Gootjes-Dreesbach et al (2017), with
permission. The left panel shows two Gaussians as two ‘toy’ models. Sampling from the red model and
evaluating the likelihood (t) of the sample under the red model gives rise to a very similar distribution of
likelihoods (shown on the y-axis) as the distribution of likelihoods of the same samples evaluated under the the
blue model. The reverse is not the case: sampling from the blue model and evaluating the likelihood of these

samples under both the blue and red model gives rise to quite distinct distributions of likelihoods (x-axis).

Fig 12 shows this type of analysis applied to the shortest-distance and rewarded-choice models.
To generate samples from the model, we have used the same number of decision points as there are in
the experimental data. At each junction where a participant made a choice in the experiment, a discrete
choice was generated from the model according to the probability of a L/R decision in that model for
that junction. Hence, a different set of choices is generated for each simulated trial. These samples can
then be assessed under each model in the same way as the data. Fig. 12 plots the negative log likelihood

of each sample under both models for the Fixed, one-wormhole and three-wormhole conditions.
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Samples drawn from the shortest-distance model are shown in green and from the rewarded-choice
model in orange. Unlike Fig. 11, the samples from the models in this case are much more likely under
the model from which they were drawn, suggesting that the models do not overlap in the way that they
do in Fig. 11. The likelihood of the experimental data (all participants, all Layouts, all repetitions
combined) under both models is shown by the grey dot. This data point falls on opposite sides of the
line of unity for the Fixed and three-wormhole conditions, which is simply a re-plot of the data from
Figure 10A and reiterates the result that the shortest-distance model gives a better account of the data
for the Fixed condition while the rewarded-choice model gives a better account for the three-wormhole
condition. Data for individual participants is included in the plot (appropriately scaled, see Fig. 12

legend), re-plotted from Figure 10B.

—_— ] — — _ L\,
7] i . ) 5 1 P
el ! el ©
S 800 ! / S 800, © 800 i /
> H s 3 i
0 ' « 4 o o 1
= w / = = !
) i p 3 Z 1
= 600 = 600 = 600 1
2 4 e o
2 9 2 2
© ! el ©
S 400 Y 5 400 S 400
Q | Q Q
Q /o o 3]
s ~ @ IS
= s Osggg—-—--------—------ = )
5 200 4 ° » > 5 200 §200
a x4 - * =2
200 400 600 800 200 400 600 800 200 400 600 800

-log(lkl) for Rewarded-Route Model -log(lkl) for Rewarded-Route Model -log(Ikl) for Rewarded-Route Model

O Combined data likelihood
A Per participant

Sampled from Rewarded-Route Model
® Sampled from Metric Model

[FIGURE 12]

Fig. 12. Comparing models by sampling. Panels A, B and C show data and models for the Fixed, one-wormhole
and three-wormhole conditions respectively. As in Fig 10B, negative log likelihood under the shortest-distance
model is plotted against negative log likelihood under the rewarded-choice model. The grey dot in each panel
shows, for each condition, the likelihood of the data for all participants in both Layouts and all repeats under
both models (with a and B parameters fitted individually per participant). Orange and green clouds indicate
10000 synthetic data-samples generated from the rewarded-choice and shortest-distance models respectively.
(likelihoods sampled from individual participant models and then combined). The negative log likelihood of the

actual combined data is indicated by the grey circle and is the same as shown in Fig. 104. Open symbols indicate
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551 individual participants, where corresponding likelihoods were scaled by raising each to the power n=14 (number
552  ofparticipants.

553

554 1t is striking that the likelihood of the combined data (grey dot) is similar to the likelihood of samples
555  taken from the either model (i.e. the likelihood of the data falls within the marginal distributions for
556  both models) yet this is not true at all for the samples taken from the models (green or orange dots)
557  which are quite likely under the model they were picked from but highly unlikely under the opposing
558  model. This is because samples from each model include a small number of predictions of decisions
559  that are highly unlikely according to the opposing model. Participants, on the other hand, largely avoid
560 these cases.

561 We also sampled from a chance model, i.e. where a model participant would choose options at
562 any junction with equal probability. However, this is a highly unlikely model. The chance model gave
563  rise to negative log likelihoods over 2000 for each condition, way outside the range both of participants’

564  data and of our two models.

565 4 Discussion

566 We have measured the ability of participants to find the shortest route to a previously-viewed
567  target in a virtual labyrinth, especially in cases where the labyrinth has a non-Euclidean structure.
568  Participants’ success in this task contrasted markedly with the drastic failures in pointing to previously-
569  viewed targets that we have described before [1] despite the fact that both measures were obtained
570  contemporaneously from the same participants in the same experimental setup. Our main finding is that
571  participants’ choices at junctions in the complex, non-physically-realisable, ‘wormhole’ conditions
572  were predicted by a rewarded-choice model better than a shortest-distance model. In other words, in
573  these wormhole environments, participants tended to make the same choices at junctions that had been
574  successful before when searching for the same target. By contrast, in the simpler, physically-realisable
575  environments participants’ choices at junctions were best predicted by a shortest-distance model.

576  Marchette and colleagues [34] described these as ‘response’ and ‘place’ strategies respectively. They
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577  found that participants spanned a wide range between the two extremes. We found that the relative
578  dominance of the two different strategies changed depending on the complexity of the scene. Within
579  participant, and tested over the same number of trials, we have found evidence that participants use
580  different strategies or representations depending on the complexity of the scene. Hence, the variation in
581  strategy cannot be due only to individual differences or the number of times an observer experiences an
582  environment [15,24-27]. Instead, the length of corridors and the number of twists and turns down each
583  seems to have an important effect on the way people tackle the navigation task. This might also be true
584  inacomplex environment with many twists and turns that is Euclidean or ‘Fixed’, without wormholes.
585 If observers use a graph-like representation, then this change in strategy with different degrees
586  of complexity of the environment is easy to explain. Similar to Siegel and White [22] and others [14],
587  our working hypothesis is that observers start with a representation of connectivity and gradually add
588  information about the edges between nodes. This is a flexible notion. The information about edges could
589  be quite crude (e.g. ‘shorter than average edge’ versus ‘longer distance”) but in theory it could include
590  much more precise information. As we discussed in the Introduction, this could include sufficient
591  information about the distance and angles between nodes of the graph representation for it to become
592 impossible to distinguish the behaviour of an observer who relied on this ‘well-calibrated’ graph from
593  aparticipant using a Euclidean map, if their tasks were to find shortcuts between (and point between)
594  previously-viewed targets. A similar argument has been made about the representation of object shape
595 [30,31]. The two types of information that we have explored in this paper, i.e. rewarded choice and
596  shortest distance, can both be seen as part of this hierarchical progression. It makes sense that past
597  success at a junction should be more basic and ranked lower in the hierarchy than distance along an
598  edge (i.e. the latter is part of a more calibrated representation). Our results are compatible with that
599  view: in the more complex, non-Euclidean mazes with longer corridors, observers seem to rely more
600  on previously reward-choices at junctions whereas in the simpler, Euclidean mazes with short corridors
601  observers show evidence that they take account of the lengths of corridors in their choices.

602 Complexity and non-Euclidean structure co-varied in our experiment because the length of

603  corridors in the maze, and the number of twists and turns (but not junctions) was greater in the non-
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604  Euclidean environment. It would take a much larger virtual environment than was available in our lab
605  to disentangle these two. It is worth noting that the likelihoods of the metric model across participants
606  were significantly worse for the three-wormhole condition than for the one-wormhole condition,
607  suggesting that one cannot lump together both the wormhole environments and explain performance
608  simply according to whether an environment has any non-Euclidean structure. The three-wormhole
609  condition was more complex and more parts of it were non-Euclidean than the one-wormhole condition,
610  soitis not surprising that the effects of the wormholes were more extreme.

611 An alternative model, which we have not tested, is that participants take the shortest topological
612  route to the goal (Chrastil and Warren [14]). The fact that wormholes do not affect the topological
613  structure of the maze but radically alter the metric length of certain edges makes this quite a distinct
614  hypothesis from the shortest metric route hypothesis. For example, the shortest topological distance and
615  metric distance between any pair of nodes might correlate highly in the ‘Fixed’ condition but, assuming
616  this to be the case, the correlation would inevitably be reduced by increasing the metric length of some
617  edges and not others, as happens in the wormhole conditions. Anecdotally, participants in the three-
618  wormhole condition often tend to get lost and have ‘loops’ in their trajectories in which they return to
619  the same node en route to a target. Despite the similar topological structure, this behaviour is uncommon
620  inthe ‘Fixed’ condition.

621 A speculation that goes beyond our data, but which is testable, is that the same result would be
622  observable in ‘fixed’ environments of different degrees of complexity even without introducing non-
623  Euclidean elements in the maze such as wormholes. If it were possible to let participants explore far
624  more complex (but ‘fixed’, Euclidean) environments and, on other trials, wormhole environments then
625  participants could carry out two tasks simultaneously: (i) search for targets, as in the current experiment,
626  and (ii) judge, in a forced-choice paradigm, whether they believed they were in a complex ‘fixed’
627  environment or a ‘wormhole’ environment. Our prediction is that in a highly complex environment, just
628  like a tourist arriving in a new city, participants would find the second of these tasks quite difficult. We
629  also predict that the rewarded-choice model would be the best model of their navigation strategy for

630  both types of environment during the period of learning when they are unable to discriminate between
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631 ‘Fixed’ and non-Euclidean environments. Once participants have more experience with the
632  environment, they should be able to store information about distances between nodes in their labeled
633  graph. If so, this should enable them to make judgements about the shortest distance between two
634  locations so, at this stage, the shortest-distance model should be the better model for predicting their
635  navigation behaviour. Note that this prediction does not depend on whether or not the participants are
636  able to determine whether the maze is ‘Fixed’ or non-Euclidean. Such an experiment would establish
637  whether the Euclidean structure of the environment (and, by extension, a Euclidean representation) was
638  important per se in determining performance, independent of complexity and familiarity.

639 Finally, it is worth comparing the navigation data in the current paper to the pointing data in our
640  previous paper collected in the same environment [1], because, unlike the navigation task, pointing is a
641  direct way of testing whether participants can form a Euclidean representation of the scene. Muryy and
642  Glennerster [1] applied different models to the pointing data and concluded that a Euclidean
643  representation could not account for the pointing responses of participants in the three-wormhole
644  condition as successfully as a non-Euclidean one. The non-Euclidean model in that case allowed both
645  the perceived location and orientation of the observer to vary as they moved around the maze (yellow
646  bars in Figure 13). The conclusion reached was similar to that in the current paper, i.e. that in the three-
647  wormhole environment participants use a cruder form of representation. In more familiar environments
648  (the ‘fixed’ condition), participants add information to this representation so that, at its most extreme,
649  the information about each edge in the graph is so rich that the representation is equivalent to full

650  Euclidean structure.

651
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653 [FIGURE 13]

654 Fig. 13. Data replotted from Muryy and Glennerster [1]. Bayesian Information Criterion is used to compare
655  performance of a metric and a non-metric model of pointing data in the same environment as the current
656 experiment (plotted using data shown originally in Fig 9B in [1]). Unlike the models compared in the current
657  paper, the two pointing models were nested with different numbers of parameters and hence BIC is an appropriate
658  method of comparison.

659

660 It is logically possible for observers to show excellent performance on the navigation task while
661  making large errors in the pointing task provided one assumes that there is no common, Euclidean
662  representation supporting both tasks. If the visual system relied on a common representation for both
663  tasks, there should be a correlation between the two measures of performance. In each case, we can
664  take measures that indicate how ‘lost’ a participant is, one from their navigation and one from their
665  pointing. For navigation, we take a ratio of travelled distance to the shortest distance for a full round
666  (including all 4 targets). For participants who are very familiar with the environment, this ratio should
667  be close to one. For pointing, we take the mean absolute pointing error measured for 8 pointing
668  directions (4 targets) at the end of a round as a different measure of how lost they are. In the ‘Fixed’
669  condition, there is a significant positive correlation between these two measures, as one might expect
670  (Pearson correlation 0.43, p < 10). On the other hand, for both wormhole conditions there is no
671  significant correlation (0.02, p=0.70 and 0.07, p=0.35 for WH1 and WH3 respectively), see S4 Fig.

672  This supports the contention that the two measures of ‘being lost’ are not necessarily linked, something
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673  that is compatible with a graph-like representation, but one would not expect this if the observer relied
674  onaEuclidean map for both tasks. There are many examples of such task-dependency in tests of spatial
675  performance: [9,31,43-45]. A recent example is the demonstration by Strickrodt et al [20] that
676  participants can point in quite different directions to the same target depending on how they imagine
677  arriving at it [29]. The authors conclude that local spatial information is not integrated into a coherent
678  global map. The data we have presented here, especially when considered in conjunction with the
679  pointing data from [1], support this view.

680
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684

685  Supplementary Material. Supplementary Figures S1 fig.pdf, S2 fig.pdf, S3 fig.pdf and S4 fig.pdf
686  attached. Also, below see links to movies illustrating figures the maze layout (like Fig 1 and Fig 2A,B,C
687  but with a moving observer).

688
689  For Fig. 1, sce movie:

690 https://www.glennersterlab.com/muryy glennerster/FirstPersonView Fixed.mp4

691  which shows first-person view of the labyrinth-scene, Fixed condition.

692  For Fig. 2a, see movie: https://www.glennersterlab.com/muryy glennerster/Scenel Fixed.mp4

693  which shows trajectories of a participant in Fixed scene.

694  For Fig. 2b, see movie: https://www.glennersterlab.com/muryy glennerster/Scenel WH1.mp4

695  which shows trajectories in the one-wormhole condition, notice that global structure of the scene
696  changes as the participant moves through the wormhole.

697  For Fig. 2¢, see movie: https://www.glennersterlab.com/muryy glennerster/Scenel WH3.mp4

698  this shows trajectories in the three-wormhole condition.

699
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Raw data and code that reproduces S2 Fig in the supplementary information (distance travelled in all

conditions by all participants) is at:

http://glennersterlab.com/muryy_glennerster/muryy_glennerster data.zip
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Supplementary Material, Muryy and Glennerster

Figure S1: Schematics of the labyrinths for Layout 1 (A,B,C) and Layout 2 (D,E,F). A)
‘Fixed’ condition. B) One-wormhole condition; green target is inside wormhole W1. C) Three-
wormhole condition; red, green and yellow targets are inside wormholes. The general layout
(containing Start, which is marked as ‘S’, described as the ‘ground floor’ in the text) remained
constant between conditions. The wormholes are marked with letters W surrounded by red
and blue triggers. As the participant crossed a trigger, the environment changed without the
participant being able to detect this transition, leading to the changes shown in the sub-
schematics. Inside a wormhole, the participant could only walk along the route marked by the
black dashed line. There were no junctions inside wormholes. D), E), F) show the same for
Layout 2. Also see movies for A), B) and C).
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Figure S2: Travelled distance per round. Bars show mean distances (in metres) travelled
by all participants (n=14) in each condition. Error bars indicate standard deviations. Horizontal
black lines indicate lengths of the shortest solution, measured along the middle of the
corridors. During the 5 rounds of the learning phase, the task was always the same (go from
Start to Red-Green-Blue-Yellow). During the test phase (last 3 rounds), participants were
asked to solve novel tasks, i.e. the routes were different on every test round.
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856  Figure S3. Sketches drawn by participants right after experimental session. The
857  ground-truth schematics for both scenes in all conditions are shown in Fig. S1.
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Original drawing Reoriented to match Fig2
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Figure S4. Ability to point accurately against ability to find the shortest path. The x-axis
shows a measure of the ability of participants to find shorter paths: it is a ratio of travelled
distance during a full round to the shortest distance of that round. The y-axis shows the ability
of participants to point accurately (from Muryy and Glennerster (2018)): this is a mean pointing
error (degrees) per round (mean over 8 pointings, since at the end of a round participants
pointed 8 times). Solid lines show fitted linear regression models.

Pointing errors vs travelled distance

o ¢ .
140 | — Fixed
WHA1
— WHS3
120 o
- o ©
o o

g |,

o
5 100¢ ¢ o0 ? o
s |1 :
= o o M ¢ o o ©
) o o o
(@)) 80_ o M ° o ()<> °
'-E 3 °° OOO::» ° 0 ° ’
c % o0 o °
8_ 60 - RS o 00 ° °

o g 3 o
§ 8 8 00 o C0°

& o
= =t %
40*8 :o @ “o0 ©
R ;
§ c o
(o3 ° o
o
08 | 1 1 1 1 1 ]
1 1.2 1.4 1.6 1.8 2 2.2 2.4

Ratio of travelled distance to shortest


https://doi.org/10.1101/2020.08.14.250621
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.250621; this version posted December 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

46
878  Other supplementary material

879
880  See links to movies illustrating figures the maze layout (like Fig 1 and Fig 2A,B,C but with a moving

881  observer).

882

883  For Fig. 1, see movie:

884 https://www.glennersterlab.com/muryy glennerster/FirstPersonView Fixed.mp4

885  which shows first-person view of the labyrinth-scene, Fixed condition.

886  For Fig. 2a, see movie: https://www.glennersterlab.com/muryy glennerster/Scenel Fixed.mp4

887  which shows trajectories of a participant in Fixed scene.

888  For Fig. 2b, see movie: https://www.glennersterlab.com/muryy glennerster/Scenel WH1.mp4

889  which shows trajectories in the one-wormhole condition, notice that global structure of the scene
890  changes as the participant moves through the wormhole.

891  For Fig. 2c, see movie: https://www.glennersterlab.com/muryy glennerster/Scenel WH3.mp4

892  this shows trajectories in the three-wormhole condition.

893

894  Raw data and code that reproduces S2 Fig in the supplementary information (distance travelled in all
895  conditions by all participants) is at:

896  http://glennersterlab.com/muryy glennerster/muryy glennerster data.zip

897
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