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Abstract 6 

The way people choose routes through unfamiliar environments provides clues about the underlying 7 

representation they use. One way to test the nature of observers’ representation is to manipulate the 8 

structure of the scene as they move through it and measure which aspects of performance are 9 

significantly affected and which are not. We recorded the routes that participants took in virtual mazes 10 

to reach previously-viewed targets. The mazes were either physically realizable or impossible (the latter 11 

contained ‘wormholes’ that altered the layout of the scene without any visible change at that moment). 12 

We found that participants could usually find the shortest route between remembered objects even in 13 

physically impossible environments, despite the gross failures in pointing that an earlier study showed 14 

are evident in the physically impossible environment. In the physically impossible conditions, the 15 

choice made at a junction was influenced to a greater extent by whether that choice had, in the past, led 16 

to the discovery of a target (compared to a shortest-distance prediction). In the physically realizable 17 

mazes, on the other hand, junction choices were determined more by the shortest distance to the target. 18 

This pattern of results is compatible with the idea of a graph-like representation of space that can include 19 

information about previous success or failure for traversing each edge and also information about the 20 

distance between nodes. Our results suggest that complexity of the maze may dictate which of these is 21 

more important in influencing navigational choices. 22 

Keywords: Human Navigation, Spatial Representation, Cognitive Map, Topological Model, Labelled 23 

Graph. 24 
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2 
1 Introduction 25 

In order to navigate successfully in a 3D environment, human participants have to develop a 26 

mental representation of the scene, locate themselves in the representation and plan optimal actions to 27 

reach a target. The exact form that such a mental spatial representation might take is still debatable. One 28 

view is that the spatial representation corresponds to a cognitive map [2–4], i.e. a stable 3D 29 

reconstruction of the environment (whether accurate or not). This provides the most complete 30 

description of the environment and can be used for versatile spatial tasks such as planning an optimal 31 

route, exploring novel shortcuts or pointing to unseen targets. It could be constructed by means of path 32 

integration [5] and fully working implementations of this model are now common in the computer 33 

vision and robotics literature based on visual SLAM (Simultaneous Localisation and Mapping) [6] 34 

which integrates information from views over multiple vantage points. It has been argued that in small 35 

and relatively simple environments such as ‘vista spaces’ participants have access to a relatively 36 

accurate cognitive map within a confined region [7,8] although even in the case of vista spaces there is 37 

dispute about whether the underlying representation in this case is Euclidean [9], i.e. corresponds to a 38 

rigid 3D reconstruction. However, in larger and more complex environments there is greater agreement 39 

that Euclidean reconstruction is a poor model. For instance, the perceived length of a route depends on 40 

the number of turns and decision points it contains [10–12], angular and directional judgments are 41 

highly inaccurate [8,13–15] and perceived angles between junctions are biased towards 90° [11,16]. 42 

Hence, while mental representations of small open environments can often appear to be consistent 43 

locally, participants typically have difficulties integrating local representations into a single global 44 

representation (as has been argued for other primates, too). In particular, performance in large 45 

environments is much more likely to be compatible with a distorted or globally inconsistent map 46 

[16,17]. This led Kuipers [18] to suggest that the concept of a global ‘Map in the Head’ should be 47 

replaced by an ‘Atlas in the Head’, with many local maps on separate sheets. Similar ideas of 48 

independent reference frames consisting of multiple vista spaces were also proposed in more recent 49 

studies [7,8]. It is not clear how these local representations are used by participants when they are 50 
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confronted by a spatial task (such as pointing) that forces them to integrate information across different 51 

local reference frames except that, as Meilinger and colleagues say [7], pointing appears effortful and 52 

performance depends on many factors such as the order in which the route was learned. Experimental 53 

evidence suggests that performance in this case relies on a representation (or a process of accessing 54 

information from a representation) that is not only distorted but also inconsistent with the idea of a 55 

single global map [1,19–21].  56 

In an early seminal paper, Siegel and White [22] suggested that, in large-scale environments, 57 

spatial representation develops gradually and goes through three main phases: landmark knowledge 58 

(salient features), route knowledge (‘place-goal-action associations’) and survey knowledge 59 

(construction of a cognitive map) [23]. Developing this type of idea, Kuipers [18] suggested that, as 60 

more information becomes available about an environment, ‘topological connections can be 61 

strengthened into relative-position vectors’ and then, ultimately, a representation uniting multiple 62 

frames of reference. He emphasized the co-existence of multiple strategies based on different levels of 63 

detail which he described as a cognitive map having ‘many states of partial knowledge’. Montello [24] 64 

criticized Siegel and White’s idea, pointing out that there can be gradual ‘quantitative accumulation and 65 

refinement of metric knowledge’. Ishikawa and Montello [15] set out to test the developmental 66 

progression of representations that Siegel and White and others have advocated and found very little 67 

learning across trials (although no feedback was given). They emphasised the fact that some individuals 68 

acquired ‘surprisingly accurate metric knowledge, even relatively quickly’ relating locations between 69 

which they had not travelled directly. In line with this finding, when Weisberg and colleagues [25–27] 70 

tested a large number of participants in virtual reality (VR),  they found that there was significant 71 

variation in the ability of people to integrate spatial information across routes: participants’ pointing 72 

performance within a familiar route was not necessarily a good predictor of their ability to point between 73 

targets on two different familiar routes. 74 

Warren [29] has drawn together much of the literature on navigation in Euclidean (physically 75 

possible) and non-Euclidean environments arguing that the evidence points to humans using a ‘labelled 76 

graph’ (Chrastil and Warren [28], Strickrodt et al [20], Warren et al [19]). This lies between a 77 
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topological graph and survey knowledge because each edge of the graph can include information about 78 

the length of the path connecting those two nodes and, as someone becomes more familiar with an 79 

environment, there can be information stored about the angle between edges. Warren [29] emphasizes 80 

that a labelled graph can become more and more accurate with experience: “One would expect edge 81 

weights and node labels to become more accurate and precise with repeated exposure to an 82 

environment,” (p4). In theory, the information about edges can become so accurate that tasks such as 83 

pointing from the current node to an object at another node can be as accurate as it would be based on 84 

a Euclidean map, making it impossible to distinguish between a graph and a map for such tasks. A very 85 

similar spectrum has been proposed for the processing of disparity information to guide judgements of 86 

ordinal depth, bas relief depth or Euclidean shape [30,31].  87 

There have been many studies that have explored the extent to which participants can encode 88 

actions that have led to a successful result in the past and incorporate this in their representation [32–89 

35]. Marchette et al [34] showed that in a navigational experiment when searching for targets some 90 

participants found novel shortcuts easily, while other participants preferred less efficient, but more 91 

familiar routes that they had experienced during the learning phase. fMRI analysis showed that 92 

participants who preferred shortcuts had a stronger activation in the hippocampal area, while 93 

participants who followed the more familiar route had a stronger activation in the caudate which 94 

encodes reward. Chrastil and Warren [28] review a hierarchy of tasks and corresponding representations 95 

that would support such tasks, where route knowledge (in our case, knowing whether to go left or right 96 

at a junction to get to a goal) is lower in the hierarchy than knowing a topological map of a maze which 97 

would allow observers to take topological shortcuts (i.e. routes traversing a smaller number of edges). 98 

Accurate pointing and reliable identification of novel shortcuts are higher in the hierarchy than route 99 

knowledge, as both require the observer to do more than simply follow previously rewarded routes. 100 

Interestingly, in the reinforcement learning literature there has been a recent focus on representations 101 

that are similar to the ‘response-like’ model in that they learn what action to carry out at each decision 102 

point (given a particular goal) rather than computing a global map  [36]. 103 
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5 
In this paper, we build on our previous study of human pointing errors in a virtual maze [1] which, 104 

like the current study, examined the consequences of exploring a physically impossible maze. The maze 105 

had long corridors with many turns in a way that could not be realized in the real world (‘wormholes’), 106 

similar to the manipulations many other researchers have used to explore spatial behaviours in non-107 

Euclidean environments ([9,19,37,38]). The conclusion of our previous paper was that the most likely 108 

explanation of the data in this type of condition was that participants relied on a representation that has 109 

no Euclidean interpretation. The current paper examines the performance of the same participants in 110 

the same experiment but instead of analysing the pointing responses we report the ability of participants 111 

to find the shortest distance through a maze to a target. This task is suited to finding out what information 112 

participants use to choose a path when they are at a junction, not to finding out whether they use a 113 

Euclidean reconstruction or a graph-like representation. Indeed, if observers have a Euclidean 114 

representation that includes the target and their current location, and the task is to choose the shortest 115 

route using their representation, then they should do that independent of any past experience of reward. 116 

A graph-based representation is more flexible. Initially, observers may only store information about 117 

whether or not they have travelled down a particular path and whether this led to the object that is their 118 

current goal (similar to ‘response-learning’, [34,39,40]). Later, they may add information about the 119 

distance between nodes. In the current experiment (to anticipate our results), we find that the more 120 

complex the maze, i.e. with wormholes, the more likely participants are to choose previously rewarded 121 

routes. In the Discussion, we consider how this relates to the idea that people may begin with a 122 

topological graph of connectivity and gradually add information about reward and distance along 123 

corridors (edges in the graph) once they gain more experience of the environment.  124 

2 Material and methods 125 

2.1 Participants 126 

The 14 participants (5 male and 9 female) who completed the experiment were students or 127 

members of the School of Psychology and Clinical Language Sciences. All participants had normal or 128 
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6 
corrected to normal vision (6/6 Snellen acuity or better), one participant wore glasses during the 129 

experiment, and all had good stereo-acuity (TNO stereo test, 60 arcsec or better). All participants were 130 

naïve to the purpose of the study. Participants were given a one-hour practice session in VR to 131 

familiarize them with our set-up using physically possible mazes. We called physically possible mazes 132 

‘Fixed’, for short, as they did not change as the participant moved around them. 10 potential participants 133 

(1 male, 9 female) either experienced motion sickness during the practice session or could not move 134 

confidently in VR and thus preferred not to continue at this stage (any participants who were excluded 135 

did so before data was collected for either ‘base layout’ used in the experiment). The higher-than-normal 136 

dropout rate is likely to be due to the overall scaling of the scene which results in a conflict between 137 

eyeheight and other cues to scale (discussed in Section 3). Altogether, there were 7 sessions (including 138 

the practice), each of about 1 hour, conducted on different days. Participants were advised not to stay 139 

in VR longer than 10 minutes between breaks. They received a reward of 12 pounds per hour. The study 140 

received approval of the Research Ethics Committee of the University of Reading. 141 

2.2 Experimental set-up 142 

The Virtual Reality laboratory was equipped with a Vicon tracking system with 12 infrared 143 

cameras (T20 and Bonitas). We used an nVision SX111 head mounted display with a large field of view 144 

(111° horizontally with a binocular overlap of 50°). The resolution of the LCD displays was 1280 by 145 

1024 pixels. The headset was calibrated using the method described in [41] in order to minimize optical 146 

distortions in the stimuli. We have measured the motion-to-photon latency of our VR system with the 147 

nVis SX111 display as 40ms [46]. The HMD was connected via a 4m-long video cable to a video 148 

controller unit on the ceiling. The Vicon tracking system (Tracker 3.1) provided an estimate of the 149 

position and orientation of the headset with a nominal accuracy of ±0.1 mm and 0.15° respectively at a 150 

frequency of 240Hz and relayed this information to a graphics PC with a GTX 1080 video card. The 151 

stimuli were designed in Unity 3D software [42] and rendered online at 60fps. Participants were allowed 152 

to walk freely and explore the virtual environment in a natural way, although they had to hold the HMD 153 

video cable behind them and had to take care that the cable did not become tangled as they walked. The 154 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.08.14.250621doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.250621
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
experimenter was always close by to ensure that the cable remained behind them. The physical size of 155 

the labyrinth was limited to a 3 by 3m region in the lab. The virtual labyrinth was originally a 5 by 5m 156 

environment with corridors in the maze 1m wide. In order to fit in the 3 by 3m space, the labyrinth was 157 

shrunk to 0.6 scale (e.g. 60cm wide corridors) which meant that the floor was displayed about 1m below 158 

eye height. Participants generally found this acceptable and did not notice that the room was not normal 159 

size, consistent with previous reports [9]. During the experiment, participants wore a virtual wristband 160 

that provided information about the task (shown, for illustrative purposes only, in the bottom-right 161 

corner of Fig. 1B). In the pointing phase of the experiment, participants used a hand-held 3D tracked 162 

pointing device to point at targets. In VR, the pointing device was rendered as a small sphere (R=5cm) 163 

with an infinitely long ray emanating from it in both directions, although the ray could not be seen 164 

beyond the corridor walls. Text was displayed on a panel attached to the ray providing instructions (e.g. 165 

‘point to Red’). The 6-degrees-of-freedom pose of the cyclopean point (a point midway between the 166 

eyes), together with the orientation of the headset was recorded on every frame (60 fps).  167 

 168 

 169 

 170 

[FIGURE 1] 171 

A B
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8 
Fig 1. Views of the labyrinth. A) View from above. B) First person view. The green target is visible inside a grey 172 

box. The target sequence is shown on the wrist-band in the bottom-right corner and the current target is 173 

highlighted (Green). A movie version is here:  174 

https://www.glennersterlab.com/muryy_glennerster/FirstPersonView_Fixed.mp4 175 

 176 

2.3 Stimuli  177 

We designed two general layouts of the virtual labyrinth (Layout 1, shown in Fig. 1 and 2, Layout 178 

2 shown in the S1 Fig). Each of these general layouts could be modified by the addition of wormholes. 179 

The virtual environment could be subdivided into 25 (5x5) elementary squares each having a size equal 180 

to the corridor’s width. Initially, the environment consisted only of a chequered floor and a green 181 

cylinder, indicating the start location. The participant walked into the green cylinder, faced in the 182 

direction of the red arrow (Fig. 1A) and then the green cylinder and red arrow disappeared, so that the 183 

starting location was not marked during the exploration phase. The labyrinth contained 4 target objects 184 

(red, green, blue and yellow spheres) hidden inside open grey boxes, so that they could be seen only 185 

from a short distance (Fig. 1B). Other empty grey boxes were added as distractors.  186 

For each labyrinth, we were able to increase the complexity of the environment by extending the 187 

length of the corridors with non-metric ‘wormholes’, see Fig. 2B and 2C (for details of three-wormhole 188 

condition and Layout 2 see Supplementary Material). There were three conditions per Layout: one 189 

‘Fixed’ (i.e. rigid and unchanging as the participant explored the maze), one containing one wormhole 190 

and another containing three wormholes. Colored circles in Fig. 2 show the location of the targets and 191 

‘S’ shows the Start. In the wormhole conditions, the dashed lines acted as invisible triggers: when a 192 

participant crossed this line, the environment changed as shown in the sub-plots although the changed 193 

regions were always out of sight at the moment the participant passed through the trigger so there was 194 

no visible indication that anything had changed. For instance, in the one-wormhole condition shown in 195 

Fig. 2B, if a participant were to cross the trigger indicated by the red dashed line, the environment would 196 

change to schematic W1(a); if the participant continued walking down the path through the wormhole 197 
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9 
(e.g. along the dashed black line) and crossed the green trigger line, the environment would change 198 

again to schematic W1(b), then if the participant crossed the blue trigger line he or she would exit the 199 

wormhole and the environment would change back to the original layout. Note that the same is true if 200 

the participant were to enter the wormhole the other way: they would then move from W1b scene to 201 

W1a scene and back to the original base layout. 202 

For both Layout 1 and Layout 2, the wormhole conditions were derived from the layout of the 203 

Fixed condition, as shown in Fig. 2. One way to think of the wormholes is as generating a new floor in 204 

a building and suddenly transporting the participant to a new floor. According to this analogy, for a 205 

given Layout (say, Layout 1) the ‘ground floor’, or base-level layout, of the environment was the same 206 

for Fixed, one-wormhole and three-wormhole conditions. The corridors through the wormholes did not 207 

have any junctions which meant that the topological connectivity of space was the same in all 3 208 

conditions (although the different coloured targets could be placed at different locations within the 209 

maze). The main difference between Fixed and wormhole conditions was the length and configuration 210 

of the corridors. The wormholes extended the corridors in a way that made a correct Euclidean 211 

representation impossible. For instance, the path through the wormhole in Fig. 2B has the shape of a 212 

figure of eight, i.e. it crosses itself, although there are no visible junctions along that path, which is 213 

physically impossible. 214 

 215 

 216 

 217 

[FIGURE 2] 218 

Fig. 2. ‘Fixed’ and wormhole conditions. The general layout (containing Start, which is marked as ‘S’) remained 219 

constant between conditions. A) ‘Fixed’ condition in Layout 1. B) One-wormhole condition in Layout 1; the green 220 

Fixed  1-wormhole, WH1A B 3-wormholes, WH3C

S S S

w1

w3 w2

w1
w1(a)

w1(b)
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10 
target is inside the wormhole and the red and blue dashed lines show the location of the triggers to change the 221 

virtual environment to one of the scenes indicated in the subplot w1(a) or w1(b). The only region in which a 222 

participant could walk once they entered a wormhole is shown by the black dashed line. See text for details. C) 223 

Three-wormhole condition for Layout 1; red, green and yellow targets are inside wormholes (for details of the 224 

three wormholes see S1 Fig).  For movies illustrating particpant trajectories in the Fixed, one-wormhole and 225 

three-wormhole conditions and for the layout of the maze in Layout 2,  see  Supplementary Material. 226 

 227 

 228 

 229 

 230 

[FIGURE 3] 231 

Fig. 3. Topological graphs corresponding to the schematics shown in Fig. 2A, B and C (Layout 1). Coloured 232 

circles represent targets; S, N1 and N2 are 3-way junctions; S is the start location. 233 

  234 

2.4 Procedure 235 

Participants followed the instructions they were given, finding the four targets shown on their 236 

wristband in the specified order. When they reached the fourth target, they pointed at the other targets 237 

and at the Start location but the results of this pointing task are reported in a separate paper [1] so ithey 238 

are not described further here, although see Fig 13 for a comparison of the pointing data and the 239 

navigational choice data. In the course of one experimental session, which took about 1 hour, 240 

participants were tested sequentially on the three types of maze, i.e. Fixed, one-wormhole and three-241 

wormhole conditions, all with the same general layout (i.e. all Layout 1 or Layout 2). This was designed 242 

WH1Fixed WH3

N1

S

N2

N1

S

N2

N1

S

N2
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11 
deliberately to help participants to navigate in the more complex environments. The tasks and 243 

instructions were identical for all three conditions. The instructions given to participants were to collect 244 

all four target objects in a specified order in the most efficient way. ‘Collect’ meant approach 245 

sufficiently close to the target (within a radius of 0.5m from the cyclopean point and within the field of 246 

view) which caused its colour to change from bright to dull and, at the same time, the colour of that ball 247 

changed in the same way on the wrist-mounted panel. The meaning of ‘efficient’ was not defined 248 

precisely for participants although it was emphasized to them that they should not hurry and that their 249 

performance was not being judged by their speed. ‘Efficient’ could mean choosing the shortest path, or 250 

the smallest number of turns or junctions (i.e. navigational decisions) – this was left to participants to 251 

decide.  252 

The first five rounds were a ‘learning’ phase in which participants always began at the Start 253 

location and ‘collected’ targets in the same sequence Start-Red-Green-Blue-Yellow (S-R-G-B-Y). The 254 

purpose of the learning phase was to allow participants to build up a spatial representation of the 255 

labyrinth gradually through multiple repetitions of the same navigational task. During the test phase 256 

(the last 3 rounds out of a total of 8 rounds), the navigational sequences were changed to three new 257 

sequences: Y-G-B-Y-R, R-B-R-Y-G and G-Y-G-R-B. Participants did not have to go to the Start 258 

locations at the beginning of a round but instead started at the location where the previous round ended.  259 

Excluding the practice session, each participant carried out 6 experimental sessions, each on a 260 

different day. We tested one Layout per session (Layout 1 or Layout 2), testing ‘Fixed’, ‘one-wormhole’ 261 

then ‘three-wormhole’ conditions in the session. On different days (sessions) participant was tested on 262 

alternating Layouts (Layout 1 then Layout 2 etc). Then participants repeated the sequence for two 263 

repetitions, hence 6 days (sessions). S2 Fig lists all 18 conditions that participants experienced (2 264 

Layouts, 3 room conditions (‘Fixed’, one-wormhole and three wormhole) and three repetitions). The 265 

repetitions were not identical because the colours of the targets were switched around, so that on 266 

repetition 2 the blue sphere might appear in the box where the red sphere had appeared in repetition 1. 267 

Importantly, the structure of the maze and the location of the grey boxes remained the same. This meant 268 

that while the instructions remained the same (e.g., in the learning phase, collect targets in sequence R-269 
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G-B-Y) the actual routes in the maze to complete those tasks were different on different repetitions. For 270 

all subsequent description and figures in the paper, however, in order to make it easier to follow, the 271 

colours of the target at each location in the maze or graph remain the same per Layout, independent of 272 

the repetition. We also used these labels for the nodes in the analysis. 273 

For the purposes of analysis, we divided participants’ movements into discrete steps, as follows. 274 

During the experiments, we recorded participants’ locations and orientations at 60 frames per second 275 

and then converted these trajectory data into topological steps through the maze. For instance, 276 

participant P5 made the following steps in Layout 1, Fixed condition (start locations and goal locations 277 

are shown in bold):  278 

 279 

Learning round 1, task Start-R-G-B-Y:  S  B  N1 N2  Y  N2  N1  R  S  G  N2  Y  N2  N1  B  N1  N2  Y 280 

Learning round 2, task Start-R-G-B-Y:  S  B  N1  R   N1 N2   G   S  B  N1  R  S  G  N2  Y 281 

Learning round 3, task Start-R-G-B-Y:  S  R  S  G  S  B  N1  N2  Y 282 

Learning round 4, task Start-R-G-B-Y:  S  R  S  G  S  B  N1  N2  Y 283 

Learning round 5, task Start-R-G-B-Y:  S  R  S  G  S  B  N1  N2  Y 284 

Test round 1, task Yellow-G-B-Y-R:     Y N2 G  S  B  N1  N2  Y  N2  G  S  R 285 

Test round 2, task Red-B-R-Y-G:          R  N1 B  N1  R  S  G  N2  Y  N2  G 286 

Test round 3, task Green-Y-G-R-B:       G  N2 Y  N2  G  S  R  S  B 287 

 288 

where S is Start and N1 and N2 are the 3-way junctions shown in Fig. 3. This labelling of the routes 289 

that participants made was a prerequisite to modelling their navigational decisions, as described in the 290 

next section. 291 

3 Results and modelling 292 

When participants are allowed to move freely through a maze, it can be challenging to aggregate 293 

their data in meaningful ways. Our principal solution to this problem was to compare the likelihood of 294 

their navigational decisions under rival models. Before presenting the results of this modelling, there 295 

are some general observations that can be made. First, participants’ trajectories demonstrate learning, 296 
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in the sense that trajectories became progressively closer to the shortest metric route during learning. 297 

Fig 4 illustrates this pattern for Layout 1. It also shows the increasing length that was required for 298 

participants to reach the targets, even by the shortest possible routes, as they go from ‘Fixed’ to one-299 

wormhole to three-wormhole conditions. Fig 5 illustrates this for a particular task (going from G to Y 300 

in this case). It shows how the paths between targets become increasingly convoluted in the wormhole 301 

environments even when, from a topological perspective, the task is similar. Fig 6 includes some of the 302 

sketches that participants made of the environment, illustrating the confusion that becomes apparent 303 

when they have to pinpoint the location of the target spheres on a map (see the coiled lines 304 

corresponding to wormhole corridors in Figs. 6B and 6C).  305 

 306 
 307 

 308 
 309 
 310 

[FIGURE 4] 311 

Fig. 4. Travelled distance per round. Bars show mean distances travelled by all participants (n=14) in Layout 1, 312 

repetition 1. Error bars indicate standard deviations. Horizontal black lines indicate lengths of the shortest path 313 

to the target, measured along the middle of the corridors. During the 5 rounds of the learning phase, the task was 314 

always the same. During the test phase, participants’ tasks were different on every round. The three panels show 315 

data from the Fixed, one-wormhole and three-wormhole conditions. Similar plots for all Layouts and all 316 

repetitions are shown in S2 Fig. 317 
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 319 

 320 

[FIGURE 5] 321 

Fig. 5. Examples of a participants’ paths. A) Trajectories of paths taken during one subset of the task, “go 322 

from G to Y” in Layout 1 for the Fixed, one-wormhole and three-wormhole conditions. The shortest path is 323 

marked in red, while green and blue lines represent alternative routes. Trajectories are drawn in the coordinate 324 

frame of the lab. B) Same data shown as a topological graph. Numbers in brackets indicate the number of times 325 

each route was taken (all participants, all runs). See Fig. 2 for details of the layout in the wormhole conditions. 326 
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 328 

 329 

[FIGURE 6] 330 

Fig. 6. Sketches drawn by participants. The black circle indicates the Start location, coloured circles are the 331 

targets (added to the sketches for clarity). A) Fixed condition, Layout 1. Notice that the schematic is very accurate 332 

except for scale (e.g. length of the corridor with the Yellow target). B) one-wormhole condition, Layout 1. The 333 

Green target was inside a wormhole and, from the squiggles connecting it to other targets, the participant appears 334 

to be confused about its location on the map and the shape of the corresponding corridor, while Red, Blue and 335 

Yellow targets are sketched correctly. C) Three-wormhole condition, Layout 2. The participant makes large errors 336 

in the locations of several targets but demonstrates knowledge of topological properties (connectivity between 337 

nodes) of the maze. A and B are from Layout 1, C is from Layout 2. More sketches are included S3 Fig. 338 

 339 

In the following section, we consider two models. One takes into account the participant’s 340 

previous experience and whether one path or another was successful in the sense that it led, ultimately, 341 

to the goal that the participant had at the time. If so, this model predicts that the path is more likely to 342 

be taken during the test phase. We call this a ‘Rewarded-choice model’. This approach is somewhat 343 

similar to the ‘Dual Solution Paradigm’ proposed by Marchette et al [34]. Even though in our 344 
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experiment participants were not restricted in their paths during the learning phase, as they were in 345 

Marchette’s experiment, it is still possible for us to evaluate the degree of familiarity of the routes that 346 

participants took in the test phase. The second model assumes that the participant knows the length of 347 

all paths to the goal. We call this the ‘shortest distance model’. 348 

3.1 Rewarded-choice model 349 

The rewarded-choice model takes into account all navigational decisions that participants took 350 

during the learning phase, and the success or otherwise of the choice that they took at any particular 351 

junction. It uses this information to predict how they might behave during the three test rounds for that 352 

condition. Consider the connectivity matrix for Layout 1 in the one-wormhole condition shown in Fig. 353 

7B. This shows which paths are possible between any two nodes in the graph (Fig. 7A). The rows 354 

represent ‘beginning’ nodes, i.e. places where the participant has a choice about which way to go. The 355 

columns represent ‘end’ nodes, i.e. where the participant arrives after having made that decision, and a 356 

‘1’ means it is possible to get directly between these two (i.e. there is an edge in the graph between 357 

these two nodes).  For instance, from the Start node (first row), possible steps are to Red, Green and N2 358 

(columns 2, 3 and 7). If we assume that at the beginning of the learning phase the participant does not 359 

have any prior knowledge about the structure of the maze, and thus all decisions about the route are 360 

equally probable, the connectivity matrix of Fig 7B can be converted to a matrix showing the likelihood 361 

of taking each path at any given junction as shown in Fig 7C. The probabilities on each row must sum 362 

to 1 so, at this default stage, 2-way junctions have a 50% probability for each path and 3-way junctions 363 

33%.  364 

 365 
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366 

[FIGURE 7] 367 

Fig. 7. Connectivity and default decision matrix. A) Topological graph for Layout 1.  ‘S’ indicates the Start 368 

location where participants entered the maze and ‘N1’ and ‘N2’ are nodes in the graph indicating 3-way junctions 369 

in the maze.  B) Corresponding connectivity matrix. C) Default likelihoods of steps, prior to the learning phase. 370 

 371 

In order to predict the choices that participants will make in the test phase, separate decision 372 

matrices are required per participant and per goal (because a participant might be expected to make a 373 

different choice at a given junction depending on what their goal was: R, G, B or Y). These were 374 

generated as follows. Starting with the default likelihood matrix (Fig 7C, i.e. random choices), the 375 

likelihoods associated with each choice were updated in a way that reflected the participant’s success 376 

whenever they found the target. We re-played all the participants’ trajectories during the learning phase. 377 

If the participant found the target at the end of a particular route then the next time the participant 378 

reached the same junction and had the same goal, the model assumed the participant was more likely to 379 

make the same choice again. To explain how this is done in detail, consider an example in which the 380 

participant’s path goal was R and their path was Start-G-B-N1-R. Since the Red target was found 381 

successfully, the decision matrix is updated by increasing the likelihood of all the decisions that made 382 

up that path according to the formula below. The update rule has one free parameter, 𝛼, that determines 383 

the learning rate. Specifically, the likelihood of the steps S-to-G, G-to-B, B-to-N1 and N1-to-R (i.e. 384 

steps that successfully led to the goal R) are all increased using the following updating rule: 385 
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𝑝!,# =

$!,#%&
∑ $!,$%&%
$&'

. This rule updates the likelihood, 𝑝!,#, of making a step from node i to node j, where 386 

𝛼 is the learning coefficient and n is the total number of nodes (where n = 3 at the Start, N1 or N2 387 

otherwise n = 2). All other elements of row i (𝑝!,(, 𝑚 ≠ 𝑗) should also be updated as 𝑝!,( = $!,(
∑ $!,$%&%
$&'

 388 

which ensures that elements in the row sum up to 1 (see Figure 8). This updating is repeated until all 389 

the participant’s trajectories for the learning phase have been used. 390 

There are choices to be made in deciding how one should build a learning model of this sort. In 391 

our implementation, we assumed that participants would notice when they encountered a target en route 392 

to their specified goal. This means that we update more than one learning matrix simultaneously. So, 393 

for example, in the above case of a participant going from Start to Red by the route Start-G-B-N1-R, 394 

the steps Start-G and G-B are both steps on the way to Blue (so we should update the Blue goal learning 395 

matrix) and on the way to Red (so we should also update the Red goal learning matrix). Likewise, we 396 

reward the step Start-G in the learning matrix that determines the paths to the Green target. When the 397 

participant travelled Start-G-B-N1-R, we made the choice that, in our model, the reverse route R-N1-398 

B-G-Start should be rewarded according to the same rules (i.e. we assumed that people noticed the route 399 

that would take them back from Red to Start). The likelihood matrices were filled in by using data from 400 

the learning phase only. Note that our model differs from the ‘response’ model of Marchette et al [34] 401 

because in their case the participant had no choice about the route taken during the training phase which 402 

meant that, in the test phase, the rewarded route was inevitably the same as the previously-chosen route. 403 

That is not the case in our experiment or model. 404 

 405 
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406 

[FIGURE 8] 407 

Fig. 8. Illustration of update rule in the rewarded-choice model. A) At node N1, the default likelihoods 408 

for the three potential choices are 1/3 each. Each time the participant chooses the (successful) path from N1 to R 409 

(arrows) the likelihoods for the chosen route is increased in the model according to the rule 𝑝!,# =
$!,#%&

∑ $!,$%&%
$&'

 (see 410 

text), where the learning coefficient, a, is 0.7 in these examples. The other two routes are updated according to 411 

the rule 𝑝!,( = $!,(
∑ $!,$%&%
$&'

	 (see text). This gives the likelihoods shown in B. When the participant chooses the 412 

route N1 to R again, the same rules give rise to the likelihoods shown in C. 413 

 414 
 415 

416 

[FIGURE 9] 417 

Fig. 9. Constructing a learning matrix. A) A topological graph for Layout 1 including, along each edge, the 418 

distance (in metres) between nodes. Red arrows show an example of the participant’s task during the test phase: 419 

‘go from Green to Red’. B) Likelihood matrices per target for one participant after they had completed the 420 
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learning phase. These matrices show the likelihoods according to the rewarded-route model as described in the 421 

text. The highlighted elements of the matrix show the likelihoods of the steps shown in A. 422 

 423 

Fig. 9B shows an example of the likelihood matrices calculated for one participant using all their 424 

data in the learning phase in the one-wormhole condition (Layout 1). Fig. 9A shows an example of a 425 

route that that participant took in the corresponding test phase. The task here was to go from Green to 426 

Red (notice that this task does not happen during the learning phase). There are 4 possible solutions to 427 

this task without loops: 1) G-B-N1-R, 2) G-S-R, 3) G-B-N1-N2-S-R, and 4) G-S-N2-N1-R. In this 428 

example, the participant chose the first path, shown in Fig. 9A and by the red outlines in Fig. 9B. Notice 429 

that steps along this path have the highest likelihood in the corresponding matrix (Fig. 9B), which 430 

illustrates that, in this example, the participant’s behaviour during the test phase is consistent with their 431 

experience during the learning phase. 432 

3.2 Shortest-distance model 433 

The other model is much simpler to describe. The likelihood of a decision under the shortest-434 

distance model can be calculated in the following way. For each binary decision point (i.e. 3-way 435 

junction) we found all paths to the goal via the left and right path from the current node (backward steps 436 

were not allowed). Then, we found the shortest metric path for each of the two (via left and via right) 437 

and calculated their lengths 𝐷) and 𝐷*. One option is to assign a probability of 1 in the model to the 438 

shortest of these choices (eg the left path) and a probability of zero to the other choice but our model 439 

assumed that there was noise on the estimate of lengths 𝐷) and 𝐷* so the probabilities were non-binary. 440 

Specifically, we assumed that estimates of the path length are subject to Gaussian noise whose standard 441 

deviation is proportional to overall route length (Weber’s law): 𝜎) = 𝛽 ∗ 𝐷), 𝜎* = 𝛽 ∗ 𝐷*, where 𝛽 <442 

1 is a free parameter. The likelihood of taking the shortest route can then be estimated according to the 443 

overlap of the two distance estimate distributions. This is 𝑝+,-./0+/ = 1 − 𝑆!1/0.+02/!-1/2, where 444 

𝑆!1/0.+02/!-1 is the area of the intersection of the two Gaussians and, since there are only two options, 445 

𝑝3-140+/ = 1 − 	𝑝+,-./0+/. 446 
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It is important to note that the perceived size of the maze for all participants was determined by 447 

eyeheight cues (i.e. participants assumed that their feet were at the level of the floor and that the rest of 448 

the scene was scaled accordingly). In fact, as described in the Methods, the virtual floor was 0.6 times 449 

the true distance below the eye and the whole scene 0.6 times the normal size so there is a conflict 450 

between idiothetic cues from proprioception (distance walked) and interocular separation (baseline 451 

cues, as discussed in the Introduction) about the size of the scene and, conversely, these two competing 452 

scales give conflicting information about the distance in metres that the participant has walked (see 453 

Svarverud et al [9] for discussion of combination of these cues). However, any effects of such conflict 454 

would be expected to be the same in the ‘Fixed’, one-wormhole and three-wormhole conditions.  455 

 456 

3.3 Model comparison 457 

We compare the performance of the two models in predicting the binary choices participants made 458 

during the test phase (the last 3 rounds of 8), i.e. at each 3-way junction (we assumed that they did not 459 

go backwards at a junction, which was extremely rare in practice). For each model, we evaluate the 460 

likelihood under that model of all the binary decisions participants made. For the rewarded-choice 461 

model, the learning coefficient, 𝛼, was chosen such that it maximized the likelihood of responses during 462 

the test phase per participant per condition. Mean parameter values across all participants for the Fixed 463 

condition were 𝛼 = 0.87, for one-wormhole 𝛼 = 0.70 and, for three-wormholes, 𝛼 = 0.73. We 464 

repeated the same exercise for the shortest-distance model. Parameter 𝛽 (Weber fraction) was also fitted 465 

per participant per condition. Mean parameter values over participants were: 𝛽 = 0.23 for the Fixed 466 

condition, 𝛽 = 0.22 for one-wormhole and 𝛽 = 0.33 for the three-wormhole condition. 467 

Fig. 10A shows the two models compared using the data for all participants taken together. In 468 

the ‘Fixed’ condition, the shortest-distance model provides a better account of the data than the 469 

rewarded-choice model (negative log likelihood of the shortest-distance model is 60 lower, equivalent 470 

to a Bayes Factor of 1026) whereas, for the three-wormhole condition, the reverse is true and the 471 

rewarded-choice model provides a better account than the shortest-distance model (negative log 472 
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likelihood of rewarded-choice model is 82 lower, equivalent to a Bayes Factor of 10-36). This change 473 

arises because the shortest-distance model becomes a progressively worse predictor of performance for 474 

more complex scenes (i.e. from the Fixed to one-wormhole to three-wormhole condition) while the 475 

likelihood of the rewarded-choice model changes much less across conditions. An ANOVA on 476 

likelihoods per condition per participant confirms that, for the shortest-distance model, condition has a 477 

significant effect (F(2,41) = 14.6, p<0.001),  whereas for the rewarded-choice model there is no 478 

significant effect of condition (F(2,41) = 0.67,  p=0.52). For the shortest-distance model, breaking this 479 

main effect of condition down into steps, there is a significant effect of changing from ‘Fixed’ to one-480 

wormhole condition (F(1,27) = 5.44,  p=0.036) and from one-wormhole to three-wormhole conditions 481 

(F(1,27) = 9.81,  p=0.008). 482 

 483 

Fig 10B illustrates the effect of condition for the shortest route model, shown here for the ‘Fixed’ 484 

and three-wormhole conditions. The negative log likelihood of the data for each participant under the 485 

shortest-distance model (plotted on the ordinate) is systematically greater in the three-wormhole (blue) 486 

condition: for all but one participant (down-going triangles), the negative log likelihood of the shortest-487 

distance model is greater for the three-wormhole condition than it is for the fixed condition (i.e. for all 488 

other pairs in this plot, the blue symbol is higher than the red symbol, paired t-test, t(13) = 5.4, p<0.001). 489 

  490 
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 491 

 492 

 493 

 494 

[FIGURE 10] 495 

Fig. 10. Model comparison. A) Likelihoods of combined participants’ data per condition per model. B) 496 

Comparison of the goodness-of-fit of the two models for each participant in the ‘Fixed’ and three-wormhole 497 

conditions. Different symbols indicate different participants. The same parameters were used for all participants 498 

(in both A and B). 499 

 500 

Another way to assess the significance of the difference in negative log likelihoods between the 501 

two models is to sample from each model and then to measure the likelihood of these samples under 502 

both models. Fig. 11 illustrates why this is an informative way of assessing data under two rival models. 503 

Essentially, this is illustrating the fact that data can have a quite high likelihood under two quite different 504 

models even when the models are different. In Fig. 11, looking only at likelihood of a data point under 505 

the red model (a Gaussian), it can be hard to tell whether a sample was drawn from the red model (which 506 

one would think should provide highly likely samples) or drawn from the blue model (which is a quite 507 

different Gaussian but gives rise to samples that have a high likelihood under the red model). By 508 

measuring the likelihood of samples drawn from each model and tested against each model, as shown 509 

in Fig. 11, it is possible to distinguish clearly between the models. A likelihood ratio of 1 corresponds 510 
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to the line of unity on this plot and a data point falling either side of this line favours one model or the 511 

other. But this method provides a visualization of whether the data are a typical sample of either model. 512 

 513 

514 

[FIGURE 11] 515 

Fig. 11. Illustration of model comparison. Reproduced from Gootjes-Dreesbach et al (2017), with 516 

permission. The left panel shows two Gaussians as two ‘toy’ models. Sampling from the red model and 517 

evaluating the likelihood (t) of the sample under the red model gives rise to a very similar distribution of 518 

likelihoods (shown on the y-axis) as the distribution of likelihoods of the same samples evaluated under the the 519 

blue model. The reverse is not the case: sampling from the blue model and evaluating the likelihood of these 520 

samples under both the blue and red model gives rise to quite distinct distributions of likelihoods (x-axis).  521 

 522 

Fig 12 shows this type of analysis applied to the shortest-distance and rewarded-choice models. 523 

To generate samples from the model, we have used the same number of decision points as there are in 524 

the experimental data. At each junction where a participant made a choice in the experiment, a discrete 525 

choice was generated from the model according to the probability of a L/R decision in that model for 526 

that junction. Hence, a different set of choices is generated for each simulated trial. These samples can 527 

then be assessed under each model in the same way as the data. Fig. 12 plots the negative log likelihood 528 

of each sample under both models for the Fixed, one-wormhole and three-wormhole conditions. 529 
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25 
Samples drawn from the shortest-distance model are shown in green and from the rewarded-choice 530 

model in orange. Unlike Fig. 11, the samples from the models in this case are much more likely under 531 

the model from which they were drawn, suggesting that the models do not overlap in the way that they 532 

do in Fig. 11. The likelihood of the experimental data (all participants, all Layouts, all repetitions 533 

combined) under both models is shown by the grey dot. This data point falls on opposite sides of the 534 

line of unity for the Fixed and three-wormhole conditions, which is simply a re-plot of the data from 535 

Figure 10A and reiterates the result that the shortest-distance model gives a better account of the data 536 

for the Fixed condition while the rewarded-choice model gives a better account for the three-wormhole 537 

condition. Data for individual participants is included in the plot (appropriately scaled, see Fig. 12 538 

legend), re-plotted from Figure 10B.  539 

 540 

541 

[FIGURE 12] 542 

Fig. 12. Comparing models by sampling. Panels A, B and C show data and models for the Fixed, one-wormhole 543 

and three-wormhole conditions respectively. As in Fig 10B, negative log likelihood under the shortest-distance 544 

model is plotted against negative log likelihood under the rewarded-choice model. The grey dot in each panel 545 

shows, for each condition, the likelihood of the data for all participants in both Layouts and all repeats under 546 

both models (with a and b parameters fitted individually per participant). Orange and green clouds indicate 547 

10000 synthetic data-samples generated from the rewarded-choice and shortest-distance models respectively. 548 

(likelihoods sampled from individual participant models and then combined). The negative log likelihood of the 549 

actual combined data is indicated by the grey circle and is the same as shown in Fig. 10A. Open symbols indicate 550 
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individual participants, where corresponding likelihoods were scaled by raising each to the power n=14 (number 551 

of participants. 552 

 553 

It is striking that the likelihood of the combined data (grey dot) is similar to the likelihood of samples 554 

taken from the either model (i.e. the likelihood of the data falls within the marginal distributions for 555 

both models) yet this is not true at all for the samples taken from the models (green or orange dots) 556 

which are quite likely under the model they were picked from but highly unlikely under the opposing 557 

model. This is because samples from each model include a small number of predictions of decisions 558 

that are highly unlikely according to the opposing model. Participants, on the other hand, largely avoid 559 

these cases.  560 

We also sampled from a chance model, i.e. where a model participant would choose options at 561 

any junction with equal probability. However, this is a highly unlikely model. The chance model gave 562 

rise to negative log likelihoods over 2000 for each condition, way outside the range both of participants’ 563 

data and of our two models. 564 

4 Discussion 565 

We have measured the ability of participants to find the shortest route to a previously-viewed 566 

target in a virtual labyrinth, especially in cases where the labyrinth has a non-Euclidean structure. 567 

Participants’ success in this task contrasted markedly with the drastic failures in pointing to previously-568 

viewed targets that we have described before [1] despite the fact that both measures were obtained 569 

contemporaneously from the same participants in the same experimental setup. Our main finding is that 570 

participants’ choices at junctions in the complex, non-physically-realisable, ‘wormhole’ conditions 571 

were predicted by a rewarded-choice model better than a shortest-distance model. In other words, in 572 

these wormhole environments, participants tended to make the same choices at junctions that had been 573 

successful before when searching for the same target. By contrast, in the simpler, physically-realisable 574 

environments participants’ choices at junctions were best predicted by a shortest-distance model. 575 

Marchette and colleagues [34] described these as ‘response’ and ‘place’ strategies respectively. They 576 
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found that participants spanned a wide range between the two extremes. We found that the relative 577 

dominance of the two different strategies changed depending on the complexity of the scene. Within 578 

participant, and tested over the same number of trials, we have found evidence that participants use 579 

different strategies or representations depending on the complexity of the scene. Hence, the variation in 580 

strategy cannot be due only to individual differences or the number of times an observer experiences an 581 

environment  [15,24–27]. Instead, the length of corridors and the number of twists and turns down each 582 

seems to have an important effect on the way people tackle the navigation task. This might also be true 583 

in a complex environment with many twists and turns that is Euclidean or ‘Fixed’, without wormholes.  584 

If observers use a graph-like representation, then this change in strategy with different degrees 585 

of complexity of the environment is easy to explain. Similar to Siegel and White [22] and others [14], 586 

our working hypothesis is that observers start with a representation of connectivity and gradually add 587 

information about the edges between nodes. This is a flexible notion. The information about edges could 588 

be quite crude (e.g. ‘shorter than average edge’ versus ‘longer distance’) but in theory it could include 589 

much more precise information. As we discussed in the Introduction, this could include sufficient 590 

information about the distance and angles between nodes of the graph representation for it to become 591 

impossible to distinguish the behaviour of an observer who relied on this ‘well-calibrated’ graph from 592 

a participant using a Euclidean map, if their tasks were to find shortcuts between (and point between) 593 

previously-viewed targets. A similar argument has been made about the representation of object shape 594 

[30,31].  The two types of information that we have explored in this paper, i.e. rewarded choice and 595 

shortest distance, can both be seen as part of this hierarchical progression. It makes sense that past 596 

success at a junction should be more basic and ranked lower in the hierarchy than distance along an 597 

edge (i.e. the latter is part of a more calibrated representation). Our results are compatible with that 598 

view: in the more complex, non-Euclidean mazes with longer corridors, observers seem to rely more 599 

on previously reward-choices at junctions whereas in the simpler, Euclidean mazes with short corridors 600 

observers show evidence that they take account of the lengths of corridors in their choices. 601 

Complexity and non-Euclidean structure co-varied in our experiment because the length of 602 

corridors in the maze, and the number of twists and turns (but not junctions) was greater in the non-603 
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Euclidean environment. It would take a much larger virtual environment than was available in our lab 604 

to disentangle these two. It is worth noting that the likelihoods of the metric model across participants 605 

were significantly worse for the three-wormhole condition than for the one-wormhole condition, 606 

suggesting that one cannot lump together both the wormhole environments and explain performance 607 

simply according to whether an environment has any non-Euclidean structure. The three-wormhole 608 

condition was more complex and more parts of it were non-Euclidean than the one-wormhole condition, 609 

so it is not surprising that the effects of the wormholes were more extreme. 610 

An alternative model, which we have not tested, is that participants take the shortest topological 611 

route to the goal (Chrastil and Warren [14]). The fact that wormholes do not affect the topological 612 

structure of the maze but radically alter the metric length of certain edges makes this quite a distinct 613 

hypothesis from the shortest metric route hypothesis. For example, the shortest topological distance and 614 

metric distance between any pair of nodes might correlate highly in the ‘Fixed’ condition but, assuming 615 

this to be the case, the correlation would inevitably be reduced by increasing the metric length of some 616 

edges and not others, as happens in the wormhole conditions. Anecdotally, participants in the three-617 

wormhole condition often tend to get lost and have ‘loops’ in their trajectories in which they return to 618 

the same node en route to a target. Despite the similar topological structure, this behaviour is uncommon 619 

in the ‘Fixed’ condition. 620 

A speculation that goes beyond our data, but which is testable, is that the same result would be 621 

observable in ‘fixed’ environments of different degrees of complexity even without introducing non-622 

Euclidean elements in the maze such as wormholes. If it were possible to let participants explore far 623 

more complex (but ‘fixed’, Euclidean) environments and, on other trials, wormhole environments then 624 

participants could carry out two tasks simultaneously: (i) search for targets, as in the current experiment, 625 

and (ii) judge, in a forced-choice paradigm, whether they believed they were in a complex ‘fixed’ 626 

environment or a ‘wormhole’ environment. Our prediction is that in a highly complex environment, just 627 

like a tourist arriving in a new city, participants would find the second of these tasks quite difficult. We 628 

also predict that the rewarded-choice model would be the best model of their navigation strategy for 629 

both types of environment during the period of learning when they are unable to discriminate between 630 
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‘Fixed’ and non-Euclidean environments.  Once participants have more experience with the 631 

environment, they should be able to store information about distances between nodes in their labeled 632 

graph. If so, this should enable them to make judgements about the shortest distance between two 633 

locations so, at this stage, the shortest-distance model should be the better model for predicting their 634 

navigation behaviour. Note that this prediction does not depend on whether or not the participants are 635 

able to determine whether the maze is ‘Fixed’ or non-Euclidean. Such an experiment would establish 636 

whether the Euclidean structure of the environment (and, by extension, a Euclidean representation) was 637 

important per se in determining performance, independent of complexity and familiarity. 638 

Finally, it is worth comparing the navigation data in the current paper to the pointing data in our 639 

previous paper collected in the same environment [1], because, unlike the navigation task, pointing is a 640 

direct way of testing whether participants can form a Euclidean representation of the scene. Muryy and 641 

Glennerster [1] applied different models to the pointing data and concluded that a Euclidean 642 

representation could not account for the pointing responses of participants in the three-wormhole 643 

condition as successfully as a non-Euclidean one. The non-Euclidean model in that case allowed both 644 

the perceived location and orientation of the observer to vary as they moved around the maze (yellow 645 

bars in Figure 13). The conclusion reached was similar to that in the current paper, i.e. that in the three-646 

wormhole environment participants use a cruder form of representation. In more familiar environments 647 

(the ‘fixed’ condition), participants add information to this representation so that, at its most extreme, 648 

the information about each edge in the graph is so rich that the representation is equivalent to full 649 

Euclidean structure.  650 

 651 
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 652 

[FIGURE 13] 653 

Fig. 13. Data replotted from Muryy and Glennerster [1]. Bayesian Information Criterion is used to compare 654 

performance of a metric and a non-metric model of pointing data in the same environment as the current 655 

experiment (plotted using data shown originally in Fig 9B in [1]). Unlike the models compared in the current 656 

paper, the two pointing models were nested with different numbers of parameters and hence BIC is an appropriate 657 

method of comparison. 658 

 659 

It is logically possible for observers to show excellent performance on the navigation task while 660 

making large errors in the pointing task provided one assumes that there is no common, Euclidean 661 

representation supporting both tasks. If the visual system relied on a common representation for both 662 

tasks, there should be a correlation between the two measures of performance.  In each case, we can 663 

take measures that indicate how ‘lost’ a participant is, one from their navigation and one from their 664 

pointing. For navigation, we take a ratio of travelled distance to the shortest distance for a full round 665 

(including all 4 targets). For participants who are very familiar with the environment, this ratio should 666 

be close to one. For pointing, we take the mean absolute pointing error measured for 8 pointing 667 

directions (4 targets) at the end of a round as a different measure of how lost they are. In the ‘Fixed’ 668 

condition, there is a significant positive correlation between these two measures, as one might expect 669 

(Pearson correlation 0.43, p < 10-9). On the other hand, for both wormhole conditions there is no 670 

significant correlation (0.02, p=0.70 and 0.07, p=0.35 for WH1 and WH3 respectively), see S4 Fig. 671 

This supports the contention that the two measures of ‘being lost’ are not necessarily linked, something 672 
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that is compatible with a graph-like representation, but one would not expect this if the observer relied 673 

on a Euclidean map for both tasks. There are many examples of such task-dependency in tests of  spatial 674 

performance: [9,31,43–45]. A recent example is the demonstration by Strickrodt et al [20] that 675 

participants can point in quite different directions to the same target depending on how they imagine 676 

arriving at it [29]. The authors conclude that local spatial information is not integrated into a coherent 677 

global map. The data we have presented here, especially when considered in conjunction with the 678 

pointing data from [1], support this view. 679 

 680 
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 684 

Supplementary Material. Supplementary Figures S1_fig.pdf, S2_fig.pdf, S3_fig.pdf and S4_fig.pdf 685 

attached. Also, below see links to movies illustrating figures the maze layout (like Fig 1 and Fig 2A,B,C 686 

but with a moving observer).  687 

 688 
For Fig. 1, see movie: 689 

https://www.glennersterlab.com/muryy_glennerster/FirstPersonView_Fixed.mp4 690 

which shows first-person view of the labyrinth-scene, Fixed condition. 691 

For Fig. 2a, see movie: https://www.glennersterlab.com/muryy_glennerster/Scene1_Fixed.mp4 692 

which shows trajectories of a participant in Fixed scene. 693 

For Fig. 2b, see movie: https://www.glennersterlab.com/muryy_glennerster/Scene1_WH1.mp4 694 

which shows trajectories in the one-wormhole condition, notice that global structure of the scene 695 

changes as the participant moves through the wormhole.  696 

For Fig. 2c, see movie: https://www.glennersterlab.com/muryy_glennerster/Scene1_WH3.mp4 697 

this shows trajectories in the three-wormhole condition. 698 

 699 
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32 
Raw data and code that reproduces S2 Fig in the supplementary information (distance travelled in all 700 

conditions by all participants) is at: 701 

http://glennersterlab.com/muryy_glennerster/muryy_glennerster_data.zip 702 

 703 
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Supplementary Material, Muryy and Glennerster 819 
 820 
Figure S1: Schematics of the labyrinths for Layout 1 (A,B,C) and Layout 2 (D,E,F). A) 821 
‘Fixed’ condition. B) One-wormhole condition; green target is inside wormhole W1. C) Three-822 
wormhole condition; red, green and yellow targets are inside wormholes. The general layout 823 
(containing Start, which is marked as ‘S’, described as the ‘ground floor’ in the text) remained 824 
constant between conditions. The wormholes are marked with letters W surrounded by red 825 
and blue triggers. As the participant crossed a trigger, the environment changed without the 826 
participant being able to detect this transition, leading to the changes shown in the sub-827 
schematics. Inside a wormhole, the participant could only walk along the route marked by the 828 
black dashed line. There were no junctions inside wormholes. D), E), F) show the same for 829 
Layout 2. Also see movies for A), B) and C). 830 
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38 
Figure S2: Travelled distance per round. Bars show mean distances (in metres) travelled 836 
by all participants (n=14) in each condition. Error bars indicate standard deviations. Horizontal 837 
black lines indicate lengths of the shortest solution, measured along the middle of the 838 
corridors. During the 5 rounds of the learning phase, the task was always the same (go from 839 
Start to Red-Green-Blue-Yellow). During the test phase (last 3 rounds), participants were 840 
asked to solve novel tasks, i.e. the routes were different on every test round.  841 
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Layout 2 848 
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40 
Figure S3. Sketches drawn by participants right after experimental session. The 856 
ground-truth schematics for both scenes in all conditions are shown in Fig. S1. 857 
 858 
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45 
Figure S4. Ability to point accurately against ability to find the shortest path. The x-axis 869 
shows a measure of the ability of participants to find shorter paths: it is a ratio of travelled 870 
distance during a full round to the shortest distance of that round. The y-axis shows the ability 871 
of participants to point accurately (from Muryy and Glennerster (2018)): this is a mean pointing 872 
error (degrees) per round (mean over 8 pointings, since at the end of a round participants 873 
pointed 8 times). Solid lines show fitted linear regression models. 874 
 875 
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Other supplementary material 878 

 879 
See links to movies illustrating figures the maze layout (like Fig 1 and Fig 2A,B,C but with a moving 880 

observer).  881 

 882 
For Fig. 1, see movie: 883 

https://www.glennersterlab.com/muryy_glennerster/FirstPersonView_Fixed.mp4 884 

which shows first-person view of the labyrinth-scene, Fixed condition. 885 

For Fig. 2a, see movie: https://www.glennersterlab.com/muryy_glennerster/Scene1_Fixed.mp4 886 

which shows trajectories of a participant in Fixed scene. 887 

For Fig. 2b, see movie: https://www.glennersterlab.com/muryy_glennerster/Scene1_WH1.mp4 888 

which shows trajectories in the one-wormhole condition, notice that global structure of the scene 889 

changes as the participant moves through the wormhole.  890 

For Fig. 2c, see movie: https://www.glennersterlab.com/muryy_glennerster/Scene1_WH3.mp4 891 

this shows trajectories in the three-wormhole condition. 892 

 893 

Raw data and code that reproduces S2 Fig in the supplementary information (distance travelled in all 894 

conditions by all participants) is at: 895 

http://glennersterlab.com/muryy_glennerster/muryy_glennerster_data.zip 896 

 897 
 898 
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