

1 **Comprehensive deletion landscape of CRISPR-Cas9 identifies**
2 **minimal RNA-guided DNA-binding modules**

3
4 Arik Shams^{1,*}, Sean A. Higgins^{1,2,3,*}, Christof Fellmann^{1,4,5}, Thomas G. Laughlin^{1,6}, Benjamin L.
5 Oakes^{1,2,3}, Rachel Lew⁴, Maria Lukarska^{1,2}, Madeline Arnold¹, Brett T. Staahl^{1,2,3}, Jennifer A.
6 Doudna^{1,2,4,7,8,9,10,11}, David F. Savage^{1,^}

7
8 Affiliations:

9 ¹Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA

10 ²Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA

11 ³Scribe Therapeutics, Alameda, CA 94501, USA

12 ⁴Gladstone Institutes, San Francisco, CA 94158, USA

13 ⁵Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San
14 Francisco, CA 94158, USA

15 ⁶Division of Biological Sciences, University of San Diego, San Diego, CA 92093, USA

16 ⁷Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA

17 ⁸Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA

18 ⁹Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA

19 ¹⁰Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory,
20 Berkeley, CA 94720, USA

21 ¹¹Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA

22

23 * These authors contributed equally to this work.

24 ^Correspondence: savage@berkeley.edu.

25 **Abstract**

26

27 Proteins evolve through the modular rearrangement of elements known as domains. It is
28 hypothesized that extant, multidomain proteins are the result of domain accretion, but there has
29 been limited experimental validation of this idea. Here, we introduce a technique for genetic
30 minimization by iterative size-exclusion and recombination (MISER) that comprehensively assays
31 all possible deletions of a protein. Using MISER, we generated a deletion landscape for the
32 CRISPR protein Cas9. We found that Cas9 can tolerate large single deletions to the REC2, REC3,
33 HNH, and RuvC domains, while still functioning *in vitro* and *in vivo*, and that these deletions can
34 be stacked together to engineer minimal, DNA-binding effector proteins. In total, our results
35 demonstrate that extant proteins retain significant modularity from the accretion process and,
36 as genetic size is a major limitation for viral delivery systems, establish a general technique to
37 improve genome editing and gene therapy-based therapeutics.

38 **Introduction**

39

40 Domains are the fundamental unit of protein structure ¹⁻³. Domains are also the unit of
41 evolution in proteins, accumulating incremental mutations that change their function and
42 stability, as well as being recombined within genomes to create new proteins via insertions,
43 fusions, or deletions ⁴⁻⁷. Extant multidomain proteins are thus thought to have evolved via the
44 continuous accretion of domains to gain new function ^{4 8,9}. Additionally, eukaryotic proteome
45 diversity is vastly increased by alternative splicing, which tends to insert or delete protein
46 domains ¹⁰. The phenomenon of domain modularity in proteins has been exploited synthetically
47 to rearrange and expand the architecture of a protein, enabling new functionality ^{11,12}. For
48 example, the programmable DNA nuclease Cas9 can be converted into a ligand-dependent
49 allosteric switch using advanced molecular cloning, similar to other domain insertions dictated
50 by allostery ¹³. Although there are several methods for comprehensively altering protein topology
51 ¹⁴⁻¹⁶, no method has been demonstrated for domain deletion.

52 Rationally constructed protein deletions have long been essential to elucidating
53 functional and biochemical properties but are generally limited to a handful of truncations.
54 Moreover, protein engineering can make use of deletions to alter enzyme substrate specificity
55 ¹⁷, enable screens for improved activity and thermostability ¹⁸, or minimize protein size ¹⁹. Early
56 approaches to protein deletion libraries resulted in the deletion of single amino acids using an
57 engineered transposon ^{20,21}. Other methods utilize direct PCR ²², random nuclease digestion ²³,
58 or random *in vitro* transposition followed by a complicated cloning scheme ²⁴ to achieve deletion
59 libraries containing a variety of lengths. These techniques are low in throughput and/or require
60 complex molecular techniques which poorly capture library diversity - in contrast to protein
61 insertions where library size grows linearly with target length, deletion libraries grow as the
62 square.

63 A simple and efficient method for building protein deletions coupled with a selection
64 strategy would provide the ability to comprehensively query and delineate the function of
65 domains or motifs in complex and multi-domain proteins. Such a technique could be used to
66 identify crucial functions within multidomain proteins or splicing variants in a manner akin to how
67 deep mutational scanning can be used to identify the effects of single nucleotide polymorphisms
68 on functionality ²⁵. Moreover, with sufficient modularity, the evolutionary path of domain
69 accretion could be explored through iterative combining, or ‘stacking,’ of domain deletions to
70 isolate a minimal, core protein for a defined function ⁹.

71 One attractive target for such a strategy is *Streptococcus pyogenes* Cas9 (SpCas9), the
72 prototypal RNA-guided DNA endonuclease used for genome editing ²⁶. SpCas9 is an excellent
73 model protein for a comprehensive deletion study because of its multi-domain architecture and
74 availability of high-throughput assays for either DNA cutting or binding ²⁷. Functionally, SpCas9
75 targets and cleaves DNA in a multi-step process. First, an apo Cas9 molecule forms a complex
76 with a guide RNA (gRNA), containing a 19-22 bp variable “spacer” sequence that is
77 complementary to a DNA target locus. The primed ribonucleoprotein (RNP) complex then
78 surveils genomic DNA for a protospacer-adjacent motif (PAM) - 5'-NGG-3' in the case of
79 SpCas9, where N is any nucleobase - that initiates a transient interaction with the protein to
80 search for an adjacent ~20-bp target sequence. If a target is present, the double-stranded DNA

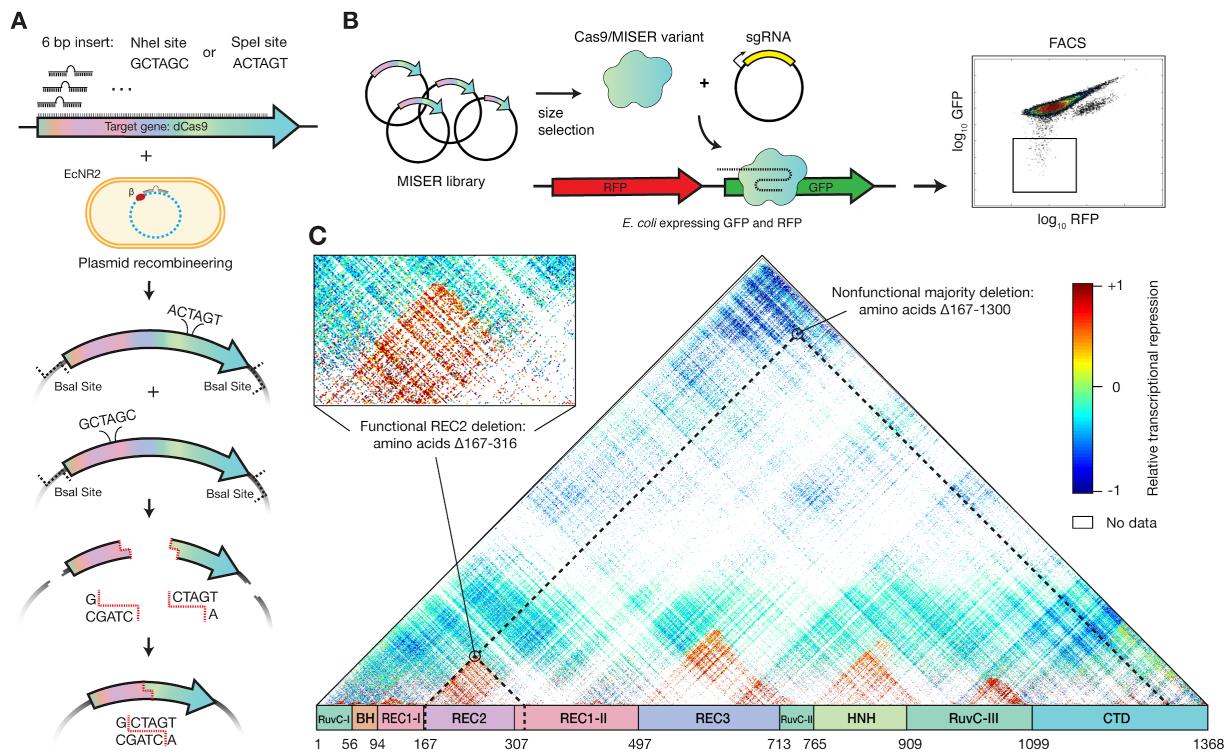
81 (dsDNA) helix is unwound, allowing the gRNA to anneal to the DNA and form a stable RNA-DNA
82 hybrid structure called an R-loop (see illustration in Fig S8). Formation of a complete 20-bp R-
83 loop triggers a conformational change in Cas9 to form the catalytically-active complex²⁸⁻³⁰.

84 SpCas9 has a bi-lobed architecture consisting of the REcognition lobe, responsible for
85 recognizing and binding DNA sequences, and the NUClease lobe, which possesses HNH and
86 RuvC domains that cut the target and non-target strands of DNA, respectively. Cas9 is
87 postulated to have evolved via domain accretion from a progenitor RuvC domain³¹⁻⁹. As a
88 consequence, Cas9 orthologs possess manifold architectures. For example, the SpCas9 REC
89 lobe possesses three domains (REC1, REC2 and REC3) while the *Staphylococcus aureus* Cas9
90 (SaCas9) has a contiguous REC domain without REC2^{32,33}. The function of REC2 is ambiguous
91 but is thought to act as a conformational switch to trigger DNA cleavage^{34,35}, raising the question
92 of how SaCas9 accomplishes the effect³⁶. Thus, the multi-domain, multi-functional nature of
93 Cas9s make them an excellent model system for exploring domain deletions. Relatedly, Cas9's
94 large size also complicates its delivery using viral vectors. Knowledge of functional deletions may
95 thus facilitate the delivery of genome editing therapeutics.

96 Here, we introduce genetic minimization by iterative size-exclusion and recombination
97 (MISER), a technique for systematically exploring deletions within a protein. Application of MISER
98 to SpCas9 identified regions of the protein which can be deleted with minimal consequence.
99 Furthermore, we stacked individual deletions to engineer novel CRISPR Effector (CE) proteins
100 that are less than 1000 amino acids in length. CRISPRi and biochemical assays demonstrated
101 that these variants remain competent for target DNA-binding but are less functional than single-
102 deletion variants. Finally, to understand the structural consequence of deletion, we used single-
103 particle cryo-electron microscopy to solve a 6.2 Å structure of the smallest, 874 amino acid CE.
104 This structure surprisingly revealed an overall conformation that preserves essential functions of
105 SpCas9—emphasizing the concept of domains as independent modules—even though the
106 quaternary structure is severely modified.

107 **Results**

108 **MISER reveals the comprehensive deletion landscape of SpCas9**


109

110 The general concept of MISER is to create a pool of all possible contiguous deletions of
111 a protein and analyze them in a high-throughput fitness assay. The process can then be iterated
112 to stack deletions together. We created such a library by: i) programmably introducing two
113 distinct restriction enzyme sites, each once, across a gene on an episomal plasmid, ii) excising
114 the intervening sequence using the restriction enzymes and iii) re-ligating the resulting fragments
115 (Fig. 1A). In the instantiation here, two separate restriction enzymes (NheI and Spel) with
116 compatible sticky ends are used. Cleavage, removal of intervening sequence, and ligation thus
117 results in a two-codon scar (encoding either Ala-Ser or Thr-Ser) site not recognized by either
118 enzyme, thereby increasing efficiency of cloning and enabling iteration of the entire process (Fig.
119 S1).

120 The MISER library was made for nuclease-dead Cas9 (dCas9) as follows. First single NheI
121 or Spel sites were systematically introduced into a dCas9 gene with flanking Bsal sites using a
122 targeted oligonucleotide library and recombineering (Fig. S1) ^{37,38}. Second, these plasmid
123 libraries were isolated, digested respectively with Bsal and either NheI or Spel, and then ligated
124 together (Fig. S1B). The resulting ligation of gene fragments produces deletions, as well as
125 duplications, such that a MISER library has a triangular distribution, with near-wildtype (WT)
126 length proteins most frequent and the largest deletions least frequent (Fig. 1C). To empirically
127 determine the size range of functional deletions, the dCas9 MISER library was separated on an
128 agarose gel and divided into six sublibrary slices of increasing deletion size. The sublibraries
129 were then independently cloned into expression vectors and assayed for bacterial CRISPRi GFP
130 repression via flow cytometry (Fig 1B, S2) ^{39,40}. Sublibrary Slice 4 (ranging 3.2-3.5 kbp) was the
131 most stringent (i.e. smallest) library with detectable repression, and functional variants became
132 more frequent in slices possessing smaller deletions, as expected.

133 Fluorescence-activated Cell Sorting (FACS) and sequencing of MISER variants identified
134 dCas9 deletion variants competent for DNA-binding. To focus sequencing on functional variants,
135 Slice 4 and Slice 5 were sequenced pre- and post-FACS sorting, and the enrichment or depletion
136 of individual variants was quantified (Fig S3). Four large deletion regions were independently
137 identified in both libraries. Although the libraries target different size regimes, their overlapping
138 data were significantly correlated (Fig S3). These data were normalized and combined to
139 generate a comprehensive landscape of functional dCas9 deletions (Fig. 1C). 80% of sequencing
140 depth was focused on deletions from 150 to 350 amino acids in length (Slice 4), and 51.4%
141 (115,530/224,718) of these deletions were detected. Overall, this landscape includes data for
142 27.5% of all possible dCas9 deletions (257,737/936,396). The four large deletion regions roughly
143 corresponded to the REC2, REC3, HNH, and RuvC-III domains. While larger deletions are
144 bounded between domain termini, small deletions and insertions (~10 amino acids) are tolerated
145 in much of the structure (Fig. S4), a finding that has been previously observed in other proteins
146 ^{17,22}. Two clear exceptions are the mechanistically essential ‘bridge helix’ ³⁵, which orders and
147 stabilizes the R-loop ^{41,42}, and the ‘phosphate lock loop’ ⁴³, which interacts with the PAM-
148 proximal target strand phosphate to enable gRNA strand invasion. It should be noted that the

149 enrichment data presented here is somewhat sparse and only a relative measurement of
150 CRISPRi function; the larger-scale features of acceptable domain and sub-domain level
151 deletions were therefore extensively validated with further *in vivo* and biochemical assays.
152

153
154 **Figure 1: Minimization by Iterative Size Exclusion and Recombination (MISER).** **A**) MISER library construction. A
155 6-bp NheI or Spel recognition site is inserted separately into a dCas9-encoding plasmid flanked by Bsal sites using
156 plasmid recombineering. The resultant libraries are digested with Bsal and either Spel or NheI, and the two fragment
157 pools are combined and ligated together to generate a library of dCas9 ORFs possessing all possible deletions. **B**) The
158 MISER library is cloned into a vector and co-transformed in *E. coli* expressing RFP and GFP with an sgRNA
159 targeting GFP. The library products are expressed, functional variants bind to the target, and repress the fluorophore.
160 Repression activity *in vivo* is measured by flow cytometry. **C**) Enrichment map of the MISER deletion landscape of *S.*
161 *pyogenes* dCas9. A single pixel within the map represents an individual variant that contains a deletion beginning
162 where it intersects with the horizontal axis moving to the left (N) and ends where it intersects with the axis moving to
163 the right (C). Larger deletions are at the top, with some deletions almost spanning the whole protein. The heatmap
164 shows relative repression activity of variants from two FACS sorts of a single replicate.

165

166

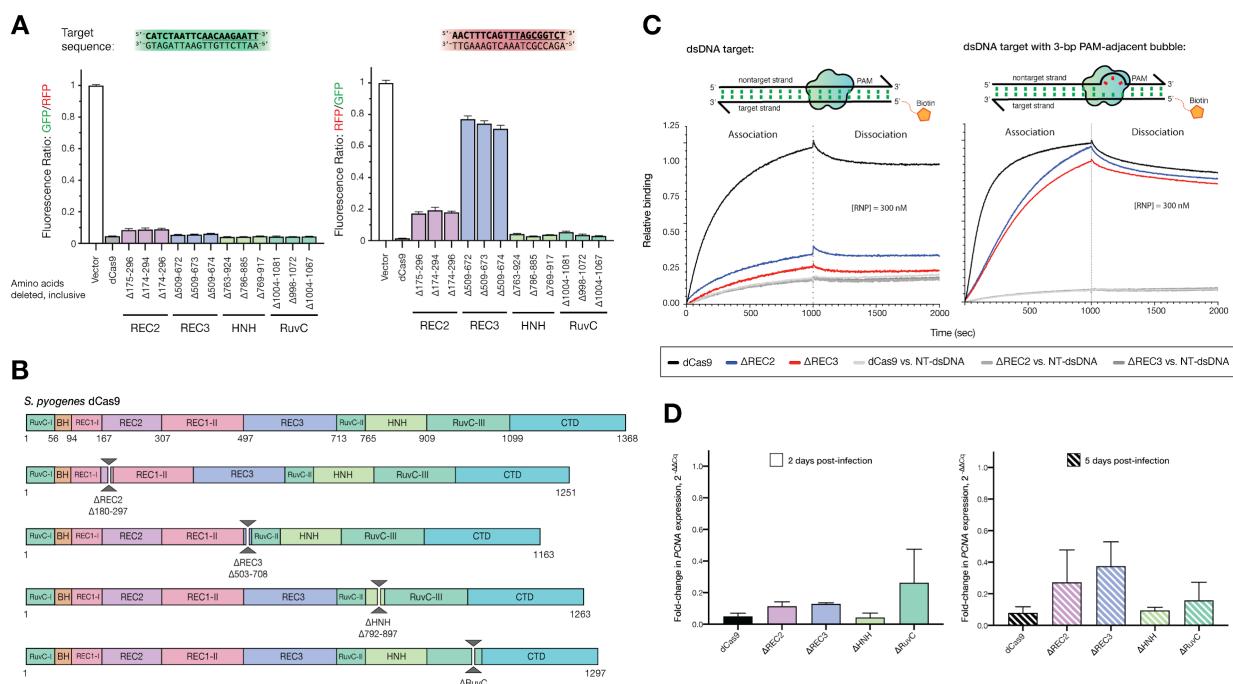
167 Cas9 tolerates large domain deletions while retaining DNA-binding function

168

169 To validate the deletion profile, individual variants from each of the four deletion regions
170 were either isolated from the library (Fig. S5) or constructed via PCR and assayed individually.
171 Representative variants from each of the four deletion regions could be identified that exhibited
172 bacterial CRISPRi nearly as effectively as full-length dCas9 (Fig. 2A, S6). Intriguingly, there are
173 regions within our identified deletions that have been previously tested based on rational design,
174 providing additional insight into the biochemical mechanisms lost with the removal of each

175 domain^{35,44}. The most obvious of the acceptable deletions is of the HNH domain that is
176 responsible for cleaving the target strand and gating cleavage by the RuvC domain; it is thus of
177 little surprise that deletions of HNH are tolerated in a molecule that is required to bind but not
178 cleave DNA. In fact Sternberg et al. previously demonstrated that a HNH-deleted (Δ 768-919)
179 Cas9 is competent for nearly WT levels of binding activity, but is unable to cleave⁴⁵. In contrast,
180 we also uncovered a deletion in the RuvC-III domain that has never been observed. Modeling
181 this deletion on the previously determined structure of SpCas9 bound to a DNA-target (PDB ID
182 5Y36)⁴⁶ revealed that it removes a large set of loops, an alpha helix and two antiparallel beta
183 sheets (Fig S7). This deletion does not seem to overlay with a known functional domain and thus
184 may serve as a module that further stabilizes the RuvC domain as a whole. Additionally, this
185 deletion abuts the nontarget and target strand DNA (~4-6 Å) and may provide a highly useful site
186 to replace with accessory fusions, such as deaminases suitable for base editing the non-target
187 strand.

188 Our observations for the REC2 and REC3 domains likewise expand upon two rationally
189 engineered deletions. Chen et al. previously demonstrated that the REC3 domain gates the
190 rearrangement of the HNH cleavage by sensing the extended RNA:DNA duplex⁴⁴. Deletion of
191 this domain (Δ 497-713) ablated cleavage activity while maintaining full binding affinity. Nishimasu
192 et. al. also previously deleted the REC2 domain because they postulated that it was unnecessary
193 for DNA cleavage, as it is poorly conserved across other Cas9 sequences and lacks significant
194 contact to the bound guide:target heteroduplex in the structure; however, the deletion mutant
195 was found to have reduced activity³⁵.


196 To further validate the function and potential deficits of these single whole-domain
197 deletions, we biochemically analyzed representative deletions of each of the REC2, REC3, HNH,
198 and RuvC domains (Fig 2B). These single-deletion constructs are henceforth referred to as
199 Δ REC2 (residues 180-297 deleted), Δ REC3 (Δ 503-708), Δ HNH (Δ 792-897), and Δ RuvC (Δ 1010-
200 1081) (Fig S9). Deletion variants were expressed, purified (see Supporting Information and Fig
201 S9 for purification data), and assayed for DNA binding activity using bio-layer interferometry (BLI)
202 (Fig 2C). Binding assays revealed that the REC2 deletion confers a defect in binding to a fully-
203 complementary double-stranded DNA target (dsDNA) when complexed with a single-guide RNA
204 (sgRNA). Interestingly, the defect is almost fully rescued upon the addition of a 3-bp mismatch
205 bubble between the target and nontarget DNA strands adjacent to the PAM. DNA unwinding is
206 initiated by Cas9 at the PAM-adjacent seed region, enabling the RNA-DNA R-loop hybrid to
207 form. Rescue via seed bubble therefore suggests a potential role for the REC2 domain in
208 unwinding dsDNA.

209 A similar phenomenon is observed with the Δ REC3 variant, although the binding defect
210 is less pronounced than in Δ REC2. Δ REC3 is also unable to bind fully-complementary dsDNA -
211 an effect that is rescued by the same PAM-adjacent 3-bp bubble in the dsDNA substrate,
212 implying a similar DNA unwinding function by the REC3 domain. These results suggest that both
213 the REC2 and REC3 domains are not essential for DNA binding by SpCas9, but may have
214 evolved as “enhancer” domains to allow SpCas9 to more efficiently bind DNA inside the cell.

215 When measuring the repression activity of the Δ REC3 constructs *in vivo*, we also
216 observed that the Δ REC3 appears to exhibit varying levels of repression between different
217 gRNAs sequences. Specifically, we found that a GFP-targeting gRNA repressed stronger than

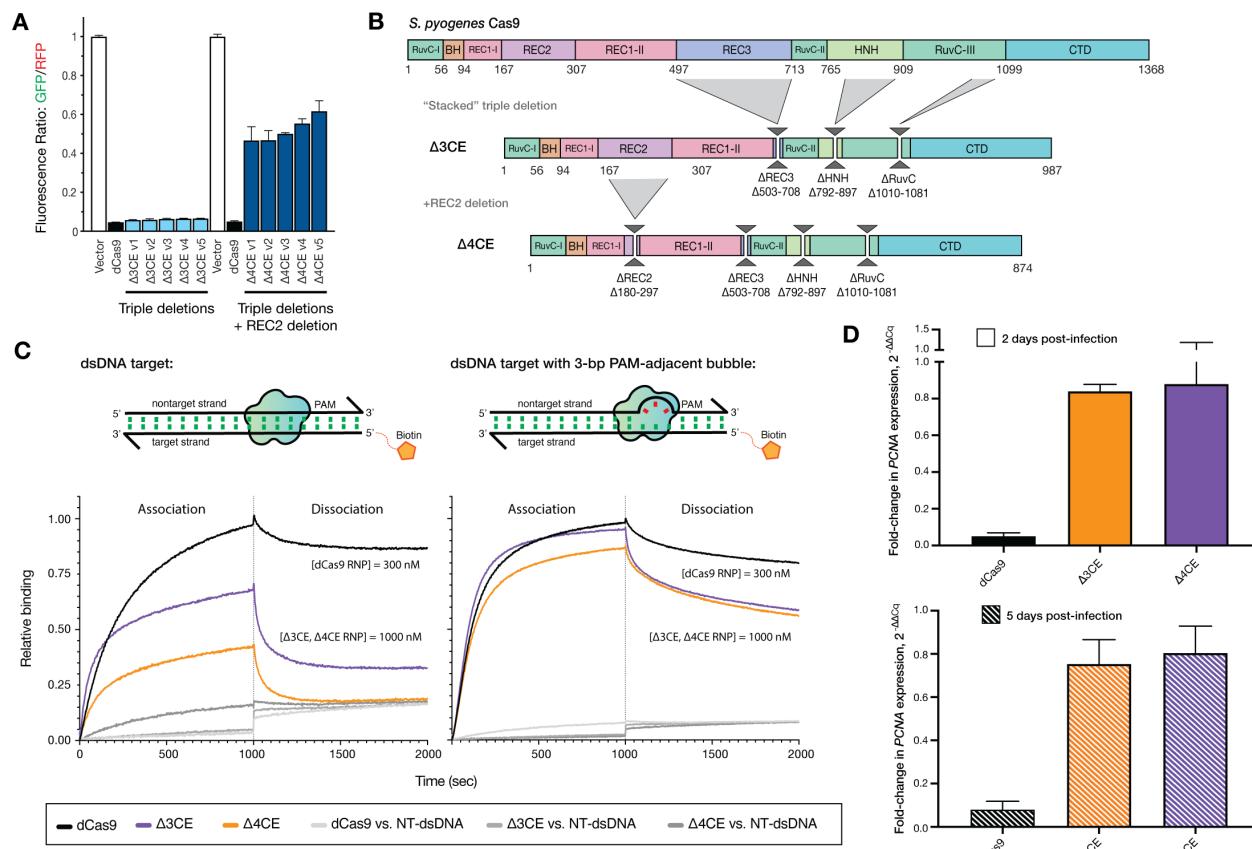
218 an RFP-targeting gRNA with Δ REC3, after controlling for cell growth and fluorophore maturity
219 (Fig. 2A). This was unexpected, since the binding of WT Cas9 is generally thought to be gRNA
220 sequence-agnostic⁴⁷. One possibility is that the GC content of the targets in GFP and RFP could
221 affect function, for example, a higher proportion of GC base-pairing in the “seed” region of a
222 DNA target could present a greater energetic cost of unwinding to a deletion variant like Δ REC3
223⁴⁸. Analysis of 16 additional spacer sequences and their repression activity relative to WT
224 suggests this mechanism only moderately ($R^2 = 0.2$) explains the variance (Fig S8). Further
225 comprehensive analysis of the sequence-dependent variability is required to identify the precise
226 energetic threshold the Δ REC3 construct overcomes to unwind DNA.

227 To test whether the MISER constructs retain DNA binding activity in mammalian systems,
228 we performed CRISPRi to knock down genes in a U-251 glioblastoma cell line. We transduced
229 target cells with lentiviral vectors expressing our single-deletion MISER constructs (Δ REC2,
230 Δ REC3, Δ HNH, and Δ RuvC) fused to the KRAB repressor domain, followed by selection on
231 puromycin. Stable cell lines were then transduced with a secondary lentiviral vector expressing
232 an sgRNA targeting PCNA. After harvesting cells 2- and 5-days post-transduction of the sgRNA
233 vector, we performed RT-qPCR to measure repression of the gene and assess efficacy of the
234 MISER constructs in U-251 cells (Fig. S11). RT-qPCR of PCNA showed that 2 days post-
235 transduction of the sgRNA the Δ REC2, Δ REC3, Δ HNH and Δ RuvC constructs repress PCNA
236 expression relative to a non-targeting gRNA (sgNT) (Fig 2D; all measurements are averages \pm
237 S.D. from biological duplicates), with a mean fold-change of 0.11 ± 0.03 , 0.13 ± 0.01 , 0.04 ± 0.03 ,
238 and 0.26 ± 0.21 in PCNA expression, respectively. At 5 days post-transfection, Δ REC2 and
239 Δ REC3 appear to lose some repression activity (0.3 ± 0.2 and 0.4 ± 0.2 fold-change relative to
240 sgNT, respectively), while the Δ HNH and Δ RuvC constructs are comparable to WT dCas9 at
241 Day 5 (0.10 ± 0.02 and 0.2 ± 0.1 respectively) (see Supporting Information and Fig. S11 for more
242 details on RT-qPCR).

Figure 2: Cas9 tolerates whole-domain deletions while maintaining target-binding activity. A) *In vivo* transcription repression activity of MISER-dCas9 variants with specified amino-acids deleted, targeting either GFP (left) or RFP (right). dCas9s with REC2, REC3, HNH, or RuvC domain deletions have near-WT binding activity when targeted to GFP. When targeted to RFP, Δ REC3 and Δ REC3 show less robust binding activity. Data are normalized to vector-only control representing maximum fluorescence. Data are plotted as mean \pm SD from biological triplicates. **B)** Schema showing cloned MISER constructs with individual domain deletions corresponding to tolerated regions found in MISER screen. **C)** Bio-layer interferometry (BLI) assay of MISER constructs. Δ REC2 and Δ REC3 exhibit weak binding against a fully-complementary dsDNA target. Binding is rescued to near-WT levels, although at a slower rate, when the dsDNA contains a 3-bp bubble in the PAM-proximal seed region. Data are normalized to dCas9 binding to fully-complementary dsDNA. **D)** Measurement of CRISPRi efficacy of single-deletion MISER constructs in mammalian U-251 cells using RT-qPCR. U-251 cells were stably transduced with lentiviral vectors encoding dCas9 or MISER constructs fused with a KRAB repressor, along with lentivirus expressing sgRNA targeting PCNA. Cells were harvested 2 (left panel) or 5 (right) days post-transduction of the sgRNA and assayed for PCNA expression. Bar graphs represent fold-change of PCNA expression relative to a non-targeting sgRNA. Error bars represent SD for at least 2 replicates.

Stacking MISER deletions results in minimal DNA-binding CRISPR proteins

Protein domains are accreted during the evolution of large proteins^{3,4,49}. In principle, accretion could be experimentally reversed provided sufficient modularity is present to offset evolutionary divergence, epistasis, and other deleterious effects in ‘stacked’ deletions. To emulate this process while also engineering a minimal Cas9-derived DNA-binding protein, we generated a library of constructs that consolidated the Δ REC2, Δ REC3, Δ HNH, and Δ RuvC deletions found by the MISER screen.


A library of multi-deletion variants, termed CRISPR Effectors (CE) due to their highly pared-down sequence relative to wild-type Cas9, were constructed as follows: individual sublibraries of deletions from REC2, REC3, and the HNH domains were isolated from the full

271 MISER library. This was done by selecting against the full-length dCas9 sequence by targeting
272 a pre-existing restriction site within each deleted region, so that only transformations of circular
273 plasmids that had the respective deletion would be favored (Fig. 3B, S5). The RuvC deletion was
274 an exception since it did not have a pre-existing restriction site; therefore a manually constructed
275 Δ RuvC variant (Δ 1010-1081) was amplified and used as a starting point for further stacking.

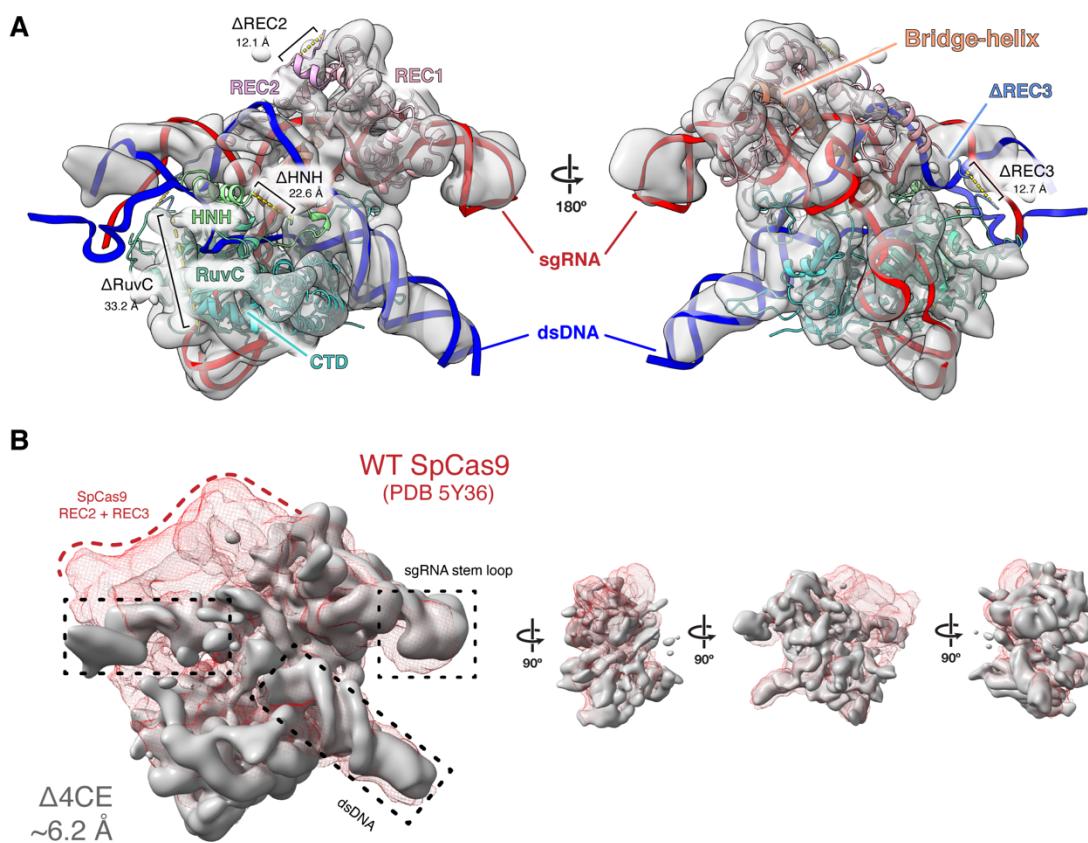
276 The dCas9 gene was divided into four fragments spanning the major deletions and
277 recombined using Golden Gate cloning (Fig. S6). The resulting library, CE Library 1, was assayed
278 using bacterial CRISPRi, and functional variants were isolated by FACS, as above. A variety of
279 functional CEs were obtained (Fig. 3A), although surprisingly, none of them possessed a REC2
280 deletion. We therefore generated a second library, CE Library 2, in which a library of triple-
281 deletion variants were cross-bred with REC2 deletion variants to ensure diversity in deletions
282 from this region (Fig. S6). Again, the most functional CE variants isolated by FACS did not contain
283 REC2 deletions. Finally, in an attempt to force a minimal CE, the most active CE variant from CE
284 Library 1 and 2, termed Δ 3CE, was directly combined with a library of REC2 deletions and
285 screened for activity. The resulting ‘hard-coded’ quadruple deletion CE variants all exhibited loss
286 of function (Fig. 3A), which explains why the REC2 deletion was lost in our functional variants.
287 The most active variant (Δ 4CE) possessed a deletion of Δ 180-297 and was confirmed upon re-
288 transformation to display ~50% the activity of WT dCas9 (Fig. 3A, 3C) in *E. coli*.

289 To validate the stacked deletion constructs biochemically, we expressed and purified the
290 Δ 3CE and Δ 4CE variants from *E. coli* (Fig. 3B, S10). BLI experiments revealed that compared to
291 the bacterial *in vivo* repression data, the DNA-binding abilities of both stacked deletion
292 constructs were attenuated relative to dCas9 (Fig 3C). To obtain reasonable kinetic profiles, the
293 concentration of RNP for Δ 3CE and Δ 4CE was increased to 1000 nM, but even under these
294 conditions both variants lag WT dCas9 at 300 nM. The PAM-interrogation ability of the two
295 constructs appeared to be intact, as evidenced by the sharp drop-off in signal during the
296 dissociation phase, but both Δ 3CE and Δ 4CE dissociated at a much higher rate compared to
297 dCas9. The k_{on} was restored upon addition of a 3-bp bubble, suggesting that these minimal
298 Cas9s possess the kinetic defect in dsDNA binding inherent to both Δ REC2 and Δ REC3. The
299 fact that these minimal constructs are still able to bind DNA in a sgRNA-targeted fashion is
300 surprising, considering that the Δ 3CE and Δ 4CE constructs retain only ~72% and ~63%,
301 respectively, of the original dCas9 protein primary sequence (Fig. 3B).

302 We assessed the DNA binding activity of the CE constructs in mammalian cells similarly
303 to the single-deletion variants described earlier. As before, we performed CRISPRi against PCNA
304 in U-251 cells, this time transducing the Δ 3CE and Δ 4CE KRAB fusions and sgRNA, followed by
305 harvesting and RT-qPCR 2- and 5-days post-transfection. Unlike the single-deletion variants,
306 Δ 3CE and Δ 4CE do not repress nearly as well as dCas9, exhibiting a fold-change in PCNA
307 expression relative to non-targeting sgRNA of 0.75 ± 0.11 and 0.80 ± 0.13 , respectively, after five
308 days post-transduction of the sgRNA (Fig. 3D). This result suggests that the Δ 3CE and Δ 4CE
309 constructs are functional but severely defective in DNA binding in a mammalian system.

310

311 **Figure 3: Stacking multiple domain deletions on Cas9 results in defective DNA-binding activity. A)** *In vivo*
312 transcription repression activity of MISER CRISPR effectors containing triple (Δ3CE) and quadruple (Δ4CE) deletion
313 variants. Sublibraries of REC2, REC3, HNH, and RuvC were combined to build a library of stacked deletions, and the
314 resulting library was assayed for high-performing variants using FACS (light blue bars). As none of the variants
315 contained a REC2 deletion (~Δ167-307), we named the highest-performing triple-deletion variant in this library (Library
316 2; see Fig S6) Δ3CE. To force a library containing REC2 deletions, a sublibrary of REC2 deletions was added to Δ3CE,
317 resulting in a library of quadruple deletion variants that contain Δ3CE and a REC2 deletion (dark blue bars). Data are
318 plotted as mean±SD from biological triplicates. **B)** Expression constructs for Δ3CE and Δ4CE, with specified deletions
319 manually cloned in. **C)** BLI assay of CE constructs. Δ3CE and Δ4CE exhibit almost no binding against a fully-
320 complementary dsDNA target at 300 nM RNP (see Fig. S10); and weak binding at 1000 nM RNP. Binding is rescued
321 to near-WT levels when RNP concentration is 3.3x that of dCas9 if the dsDNA contains a 3-bp bubble in the PAM-
322 proximal seed region. Data are normalized to 300 nM dCas9 binding to fully-complementary dsDNA. **D)** Measurement
323 of CRISPRi efficacy of Δ3CE and Δ4CE in U-251 cells using RT-qPCR. Fold-change in PCNA expression levels is
324 measured by RT-qPCR, 2- and 5-days after KRAB-Δ3CE and -Δ4CE expressing cell lines are transfected with a
325 sgRNA targeting PCNA. Δ3CE and Δ4CE exhibit weak DNA binding and transcriptional repression activity compared
326 to dCas9. Bars represent fold-change of PCNA expression relative to a non-targeting sgRNA. Error bars represent SD
327 for at least 2 replicates.


328

329 The minimal Δ4CE construct has a similar structure as an ablated wild-type SpCas9

330

331 To understand the structural rearrangement accompanying domain deletion, we used
332 single-particle cryo-EM to determine a reconstruction of the Δ4CE DNA-bound holocomplex
333 (Fig. 4), to a resolution of 6.2 Å (Fig. S12). Remarkably, overlaying the density of the Δ4CE
334 construct over the WT SpCas9 R-loop structure (PDB ID 5Y36)⁴³ as a rigid-body model shows

335 that the minimal complex, consisting primarily of the REC1, RuvC, and C-terminal domains,
336 possesses the same overall architecture as the WT holocomplex (Fig 4A, S12). The double-
337 helical dsDNA target and the stem-loop of the gRNA that are part of the R-loop can be resolved
338 from the density and overlays almost exactly over the WT SpCas9 R-loop. This observation
339 supports the hypothesis that the R-loop is a thermodynamically stable structure that drives the
340 formation of the primed Cas9 RNP-DNA complex^{50,51}. Although individual residues cannot be
341 resolved, the remaining RuvC domain in the construct is linked to the C-terminus of the REC1
342 domain via a TS linker (MISER scar), thereby maintaining a bi-lobed complex reminiscent of WT
343 SpCas9. The gRNA-interacting regions of the REC1 and CTD are also spatially conserved,
344 consistent with their observed indispensability on the MISER enrichment map. This raises the
345 question of how the minimal protein is able to form a stable R-loop despite lacking a large part
346 of the REC lobe.

347
348 **Figure 4: Density map of Δ4CE compared to WT SpCas9. A)** Single-particle cryo-electron microscopy was used to
349 obtain a density map of the dsDNA-bound RNP complex of the Δ4CE construct at an overall resolution of 6.2 Å (EMD-
350 22518). Light grey volume shows the Δ4CE density overlaid onto RNA-DNA hybrid R-loop (red and blue) and structure
351 of WT SpCas9 (PDB 5Y36). Cartoon model corresponds to the WT SpCas9 structure, showing only the remaining
352 residues and corresponding domains after the REC2, REC3, HNH, and RuvC deletions from the Δ4CE construct are
353 manually removed from the model. Deletion termini are labeled with the distances between termini. **B)** Density of Δ4CE
354 cryo-EM overlaid with the WT SpCas9 clearly shows volumes representing dsDNA target and the sgRNA stem-loop
355 (black boxes). The red mesh represents the total WT SpCas9 density from EMD-8236.

356 **Discussion**

357

358 Protein evolution takes large steps through sequence space using domain
359 rearrangements, duplications, and indels^{2,52}. While rearrangements, duplications, and insertions
360 have been widely studied, domain deletions are largely under-investigated, due to limited
361 experimental data and the difficulty in properly annotating deletions in protein sequence datasets
362⁵³. Although deletion studies in proteins have been performed, they are limited in their scope in
363 regard to the scale of deletions, complexity, and generalizability. In this work, we present a
364 technique that is versatile, comprehensive, and unbiased to probe the deletion landscape of
365 virtually any protein, limited only by the fidelity and efficiency of a functional screen.

366 We have used SpCas9 as proof-of-concept to demonstrate the utility of MISER because
367 it is a well-characterized, multi-domain protein, easy to assay, and its overall size poses a limit
368 for therapeutic delivery. The wild-type SpCas9 gene is too large to be packaged into an adeno-
369 associated viral vector (AAV), which has a maximum reported cargo size of <5 kb^{54,55} when
370 including the sgRNA sequence and necessary promoters. There are now smaller characterized
371 CRISPR-Cas effectors suitable for AAV delivery by themselves^{19,56}, but an important need in
372 both research and therapy is delivery of effectors fused to other domains, such as for base-
373 editing and transcriptional activation or repression⁵⁷. MISER may thus find utility in minimizing
374 these much larger constructs. Additionally, immunogenicity is emerging as a major issue when
375 developing SpCas9 as a therapeutic, and deleting antigenic surface residues can potentially
376 reduce the reactivity of the protein against the immune system^{58,59}.

377 We were surprised to discover the effect the deletion of the REC2 domain had on SpCas9
378 binding. Nishimasu et al. had previously reported that a REC2 deletion (Δ 175-307) retained ~50%
379 of editing activity, and suggested that the attenuated activity might be due to poor expression
380 or stability³⁵. In contrast, our data suggest that the Δ REC2 variant folds and retains target
381 recognition and binding function but loses DNA unwinding capability. The observation that
382 Δ REC2 binding is restored upon addition of a 3-bp bubble adjacent to the PAM suggests that
383 the poor binding is due to a kinetic defect. The specific nature of the defect requires further
384 study, although we speculate that the REC2 domain interacts nonspecifically and transiently with
385 the R-loop, perhaps stabilizing the DNA strands during hybridization (i.e. lowering the kinetic
386 barrier) or stabilizing the final R-loop complex (i.e., lowering the energetic cost of unwinding and
387 hybridization)⁴⁴.

388 We also note the observed difference in activity of the MISER constructs between
389 bacterial *in vivo* repression experiments and the *in vitro* binding activity using BLI. We speculate
390 that the MISER constructs are inherently defective for binding target DNA, but that sufficiently
391 perturbed dsDNA in bacteria—such as during replication, transcription, or other
392 rearrangements—presents enough opportunity in the form of dynamically un- and under-wound
393 dsDNA, or stretches of single-stranded DNA, to allow the gRNA to anneal to the spacer
394 sequence^{51,60}.

395 Finally, in our cryo-EM structure of Δ 4CE, we note the remarkable similarity of the protein
396 to WT SpCas9, which underscores the inherent stability of the Cas9 R-loop complex. Previous
397 studies have shown that formation and maintenance of the R-loop is the molecular “glue” that
398 holds the DNA-RNA-protein complex together⁵⁰. The similitude between the WT and Δ 4CE

399 structure also hints at the evolutionary history of SpCas9, suggesting that the “essential” function
400 of the protein was to enable the formation of an R-loop upon a RuvC scaffold for DNA binding
401 and cleavage, which was then tuned by accretion and interactions of other domains—such as
402 those that comprise the REC lobe and the HNH domains^{9,61}. Notably, this analysis ignores the
403 role of the gRNA; future iterations of MISER could also be used to evaluate the deletional
404 landscape of CRISPR-associated RNAs.

405 MISER facilitates the study of protein deletions with unprecedented versatility and
406 efficiency. In this study we have explored domain modularity and essentiality of CRISPR-Cas9
407 domains, but MISER can be adapted to any application requiring a reduction in genetic size.
408 AAV-based transgene delivery is subject to a < 5 kb payload limit and is a prime target for MISER.
409 Besides CRISPR proteins and their cognate gRNAs, there are numerous other therapeutic
410 proteins limited by their size, such as CFTR (cystic fibrosis) and dystrophin (muscular dystrophy)
411^{62,54}. Beyond threshold effects, even partially reducing the size of AAV genomes can provide a
412 large advantage in packaging efficiency by improving capsid formation⁵⁵. Finally, MISER also
413 reveals small deletions tolerated within proteins, which suggests that this approach could be
414 useful in the development of non-immunogenic biomolecules. Paring away antigenic residues
415 may remove antigenic epitopes on a protein surface, thus allowing the molecule to function
416 without eliciting an immune response^{63,64}.

417 **Acknowledgments**

418 This work was supported by NIH grants 1R01GM127463 (D.F.S.) and RM1HG009490 (J.A.D.,
419 D.F.S.). Additional support and reagents were provided by Agilent Technologies. A.S. was
420 supported by the NSF GRFP (grant no. 1752814), S.A.H. was supported by NIH Training Grant
421 5T32GM066698-10, and M.A. was supported by the ARCS Foundation. C.F. was supported by
422 a U.S. NIH K99/R00 Pathway to Independence Award (K99GM118909, R00GM118909) from the
423 NIGMS. J.A.D. is an Investigator of the Howard Hughes Medical Institute (HHMI), and this study
424 was supported in part by HHMI. This work used the Vincent J. Coates Genomics Sequencing
425 Laboratory at University of California, Berkeley, supported by NIH S10 instrumentation grants
426 (S10RR029668 and S10RR027303). We thank Mary West and the CIRM/QB3 Shared Stem Cell
427 Facility/High-Throughput Screening Facility for technical support, as well as Timothy Brown
428 (Thermo Fisher Scientific) for flow cytometry support. We thank Daniel Toso and Paul Tobias for
429 assistance with cryo-EM data collection at Bay Area Cryo-EM facility at the University of
430 California, Berkeley. We also thank Emeric Charles, Shin Kim, Rob Nichols, Luke Oltrogge, Avi
431 Flamholz, and Joshua Cofsky for technical support and productive discussions.

432

433 **Declaration of Interests**

434 UC Regents have filed a patent related to this work. S.A.H. is an employee of Scribe
435 Therapeutics. B.L.O. and B.T.S. are co-founders and employees of Scribe Therapeutics. C.F. is
436 a co-founder of Mirimus, Inc.. J.A.D. is a co-founder of Caribou Biosciences, Editas Medicine,
437 Intellia Therapeutics, Scribe Therapeutics, and Mammoth Biosciences. J.A.D. is a scientific
438 advisory board member of Caribous Biosciences, Intellia Therapeutics, eFFECTOR
439 Therapeutics, Scribe Therapeutics, Synthego, Metagenomi, Mammoth Biosciences, and Inari.
440 J.A.D is a member of the board of directors at Driver and Johnson & Johnson. D.F.S. is a co-
441 founder of Scribe Therapeutics and a scientific advisory board member of Scribe Therapeutics
442 and Mammoth Biosciences. All other authors declare no competing interests.

443

444 **Data Availability Statement**

445 All custom scripts are available at <https://github.com/savagelab>. All sequencing data that support
446 the findings of this study are available from the authors upon reasonable request. Cryo-EM data
447 are available at the Electron Microscopy DataBank (EMDB); accession code 22518. All other
448 relevant data are available from the corresponding author on request.

449 **References**

- 451 1. Teichmann, S. A., Park, J. & Chothia, C. Structural assignments to the Mycoplasma genitalium proteins show
452 extensive gene duplications and domain rearrangements. *Proc. Natl. Acad. Sci. USA* **95**, 14658–14663 (1998).
- 453 2. Apic, G., Gough, J. & Teichmann, S. A. Domain combinations in archaeal, eubacterial and eukaryotic proteomes.
454 *J. Mol. Biol.* **310**, 311–325 (2001).
- 455 3. Chothia, C., Gough, J., Vogel, C. & Teichmann, S. A. Evolution of the protein repertoire. *Science* **300**, 1701–1703
456 (2003).
- 457 4. Koonin, E. V., Aravind, L. & Kondrashov, A. S. The impact of comparative genomics on our understanding of
458 evolution. *Cell* **101**, 573–576 (2000).
- 459 5. Vogel, C., Bashton, M., Kerrison, N. D., Chothia, C. & Teichmann, S. A. Structure, function and evolution of
460 multidomain proteins. *Curr. Opin. Struct. Biol.* **14**, 208–216 (2004).
- 461 6. Han, J.-H., Batey, S., Nickson, A. A., Teichmann, S. A. & Clarke, J. The folding and evolution of multidomain
462 proteins. *Nat. Rev. Mol. Cell Biol.* **8**, 319–330 (2007).
- 463 7. Weiner, J., Beaussart, F. & Bornberg-Bauer, E. Domain deletions and substitutions in the modular protein
464 evolution. *FEBS J.* **273**, 2037–2047 (2006).
- 465 8. Basu, M. K., Carmel, L., Rogozin, I. B. & Koonin, E. V. Evolution of protein domain promiscuity in eukaryotes.
466 *Genome Res.* **18**, 449–461 (2008).
- 467 9. Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. *Curr.*
468 *Opin. Microbiol.* **37**, 67–78 (2017).
- 469 10. Kriventseva, E. V. *et al.* Increase of functional diversity by alternative splicing. *Trends Genet.* **19**, 124–128 (2003).
- 470 11. Dueber, J. E., Yeh, B. J., Bhattacharyya, R. P. & Lim, W. A. Rewiring cell signaling: the logic and plasticity of
471 eukaryotic protein circuitry. *Curr. Opin. Struct. Biol.* **14**, 690–699 (2004).
- 472 12. Guntas, G. & Ostermeier, M. Creation of an allosteric enzyme by domain insertion. *J. Mol. Biol.* **336**, 263–273
473 (2004).
- 474 13. Reynolds, K. A., McLaughlin, R. N. & Ranganathan, R. Hot spots for allosteric regulation on protein surfaces.
475 *Cell* **147**, 1564–1575 (2011).
- 476 14. Oakes, B. L. *et al.* Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. *Nat. Biotechnol.*
477 **34**, 646–651 (2016).
- 478 15. Atkinson, J. T., Jones, A. M., Zhou, Q. & Silberg, J. J. Circular permutation profiling by deep sequencing libraries
479 created using transposon mutagenesis. *Nucleic Acids Res.* **46**, e76 (2018).
- 480 16. Oakes, B. L. *et al.* CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. *Cell*
481 **176**, 254–267.e16 (2019).
- 482 17. Simm, A. M., Baldwin, A. J., Busse, K. & Jones, D. D. Investigating protein structural plasticity by surveying the
483 consequence of an amino acid deletion from TEM-1 beta-lactamase. *FEBS Lett.* **581**, 3904–3908 (2007).
- 484 18. Hecky, J. & Müller, K. M. Structural perturbation and compensation by directed evolution at physiological
485 temperature leads to thermostabilization of beta-lactamase. *Biochemistry* **44**, 12640–12654 (2005).
- 486 19. Ma, D., Peng, S., Huang, W., Cai, Z. & Xie, Z. Rational Design of Mini-Cas9 for Transcriptional Activation. *ACS*
487 *Synth. Biol.* **7**, 978–985 (2018).
- 488 20. Jones, D. D. Triplet nucleotide removal at random positions in a target gene: the tolerance of TEM-1 beta-
489 lactamase to an amino acid deletion. *Nucleic Acids Res.* **33**, e80 (2005).
- 490 21. Arpino, J. A. J., Reddington, S. C., Halliwell, L. M., Rizkallah, P. J. & Jones, D. D. Random single amino acid
491 deletion sampling unveils structural tolerance and the benefits of helical registry shift on GFP folding and
492 structure. *Structure* **22**, 889–898 (2014).
- 493 22. Pisarchik, A., Petri, R. & Schmidt-Dannert, C. Probing the structural plasticity of an archaeal primordial
494 cobaltochelatase CbiX(S). *Protein Eng Des Sel* **20**, 257–265 (2007).
- 495 23. Ostermeier, M., Shim, J. H. & Benkovic, S. J. A combinatorial approach to hybrid enzymes independent of DNA
496 homology. *Nat. Biotechnol.* **17**, 1205–1209 (1999).
- 497 24. Morelli, A., Cabezas, Y., Mills, L. J. & Seelig, B. Extensive libraries of gene truncation variants generated by in
498 vitro transposition. *Nucleic Acids Res.* **45**, e78 (2017).
- 499 25. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. *Nat. Methods* **11**, 801–807

500 (2014).

501 26. Jinek, M. *et al.* A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* **337**, 816–821 (2012).

502 27. Oakes, B. L., Nadler, D. C. & Savage, D. F. Protein engineering of Cas9 for enhanced function. *Meth. Enzymol.* **546**, 491–511 (2014).

503 28. Jiang, F. & Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. *Annu. Rev. Biophys.* **46**, 505–529 (2017).

504 29. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-
507 guided endonuclease Cas9. *Nature* **507**, 62–67 (2014).

508 30. O'Connell, M. R. *et al.* Programmable RNA recognition and cleavage by CRISPR/Cas9. *Nature* **516**, 263–266
509 (2014).

510 31. Koonin, E. V. & Makarova, K. S. Origins and evolution of CRISPR-Cas systems. *Philos. Trans. R. Soc. Lond. B,
511 Biol. Sci.* **374**, 20180087 (2019).

512 32. Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J. A. A Cas9-guide RNA complex preorganized for target DNA
513 recognition. *Science* **348**, 1477–1481 (2015).

514 33. Jiang, F. *et al.* Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. *Science* **351**, 867–871
515 (2016).

516 34. Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A. & Yildiz, A. A conformational checkpoint between
517 DNA binding and cleavage by CRISPR-Cas9. *Sci. Adv.* **3**, eaao0027 (2017).

518 35. Nishimasu, H. *et al.* Crystal structure of Cas9 in complex with guide RNA and target DNA. *Cell* **156**, 935–949
519 (2014).

520 36. Nishimasu, H. *et al.* Crystal Structure of *Staphylococcus aureus* Cas9. *Cell* **162**, 1113–1126 (2015).

521 37. Thomason, L. C., Costantino, N., Shaw, D. V. & Court, D. L. Multicopy plasmid modification with phage lambda
522 Red recombinering. *Plasmid* **58**, 148–158 (2007).

523 38. Higgins, S. A., Ouonkap, S. V. Y. & Savage, D. F. Rapid and programmable protein mutagenesis using plasmid
524 recombinering. *ACS Synth. Biol.* **6**, 1825–1833 (2017).

525 39. Qi, L. S. *et al.* Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene
526 expression. *Cell* **152**, 1173–1183 (2013).

527 40. Larson, M. H. *et al.* CRISPR interference (CRISPRi) for sequence-specific control of gene expression. *Nat. Protoc.* **8**, 2180–2196 (2013).

528 41. Babu, K. *et al.* Bridge helix of cas9 modulates target DNA cleavage and mismatch tolerance. *Biochemistry* **58**,
529 1905–1917 (2019).

530 42. Bratović, M. *et al.* Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. *Nat. Chem. Biol.* **16**,
531 587–595 (2020).

532 43. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition
533 by the Cas9 endonuclease. *Nature* **513**, 569–573 (2014).

534 44. Chen, J. S. *et al.* Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. *Nature* **550**, 407–410 (2017).

535 45. Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by
536 CRISPR-Cas9. *Nature* **527**, 110–113 (2015).

537 46. Huai, C. *et al.* Structural insights into DNA cleavage activation of CRISPR-Cas9 system. *Nat. Commun.* **8**, 1375
538 (2017).

539 47. Xu, H. *et al.* Sequence determinants of improved CRISPR sgRNA design. *Genome Res.* **25**, 1147–1157 (2015).

540 48. Semenova, E. *et al.* Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is
541 governed by a seed sequence. *Proc. Natl. Acad. Sci. USA* **108**, 10098–10103 (2011).

542 49. Grishin, N. V. Fold change in evolution of protein structures. *J. Struct. Biol.* **134**, 167–185 (2001).

543 50. Wright, A. V. *et al.* Rational design of a split-Cas9 enzyme complex. *Proc. Natl. Acad. Sci. USA* **112**, 2984–2989
544 (2015).

545 51. Klein, M., Eslami-Mossallam, B., Arroyo, D. G. & Depken, M. Hybridization Kinetics Explains CRISPR-Cas Off-
546 Targeting Rules. *Cell Rep.* **22**, 1413–1423 (2018).

547 52. Fong, J. H., Geer, L. Y., Panchenko, A. R. & Bryant, S. H. Modeling the evolution of protein domain architectures
548 using maximum parsimony. *J. Mol. Biol.* **366**, 307–315 (2007).

549 53. Prakash, A. & Bateman, A. Domain atrophy creates rare cases of functional partial protein domains. *Genome*
550

551 *Biol.* **16**, 88 (2015).

552 54. Grieger, J. C. & Samulski, R. J. Packaging capacity of adeno-associated virus serotypes: impact of larger
553 genomes on infectivity and postentry steps. *J. Virol.* **79**, 9933–9944 (2005).

554 55. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. *Mol. Ther.* **18**, 80–86 (2010).

555 56. Ran, F. A. *et al.* In vivo genome editing using *Staphylococcus aureus* Cas9. *Nature* **520**, 186–191 (2015).

556 57. van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the
557 promise of therapeutic genome editing. *Nat. Biotechnol.* **38**, 845–855 (2020).

558 58. Crudele, J. M. & Chamberlain, J. S. Cas9 immunity creates challenges for CRISPR gene editing therapies. *Nat.*
559 *Commun.* **9**, 3497 (2018).

560 59. Mehta, A. & Merkel, O. M. Immunogenicity of cas9 protein. *J. Pharm. Sci.* **109**, 62–67 (2020).

561 60. Wang, A. S. *et al.* The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome
562 Manipulation in Human Cells. *Mol. Cell* **79**, 221–233.e5 (2020).

563 61. Chylinski, K., Makarova, K. S., Charpentier, E. & Koonin, E. V. Classification and evolution of type II CRISPR-
564 Cas systems. *Nucleic Acids Res.* **42**, 6091–6105 (2014).

565 62. Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-Associated Virus (AAV) as a Vector for Gene
566 Therapy. *BioDrugs* **31**, 317–334 (2017).

567 63. Onda, M. Reducing the immunogenicity of protein therapeutics. *Curr Drug Targets* **10**, 131–139 (2009).

568 64. Baker, M. P., Reynolds, H. M., Lumicisi, B. & Bryson, C. J. Immunogenicity of protein therapeutics: The key
569 causes, consequences and challenges. *Self Nonself* **1**, 314–322 (2010).

570