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Abstract
Many intracellular signaling pathways are composed of molecular
switches, proteins that transition between two states—on and off. Typ-
ically, signaling is initiated when an external stimulus activates its cog-
nate receptor that in turn causes downstream switches to transition from
off to on using one of the following mechanisms: activation, in which the
transition rate from the off state to the on state increases; derepression,
in which the transition rate from the on state to the off state decreases;
and concerted, in which activation and derepression operate simulta-
neously. We use mathematical modeling to compare these signaling
mechanisms in terms of their dose-response curves, response times,
and abilities to process upstream fluctuations. Our analysis elucidates
several general principles. First, activation increases the sensitivity of
the pathway, whereas derepression decreases sensitivity. Second, ac-
tivation generates response times that decrease with signal strength,
whereas derepression causes response times to increase with signal
strength. These opposing features allow the concerted mechanism to
not only show dose-response alignment, but also to decouple the re-
sponse time from stimulus strength. However, these potentially bene-
ficial properties come at the expense of increased susceptibility to up-
stream fluctuations. In addition to above response metrics, we also ex-
amine the effect of receptor removal on switches governed by activation
and derepression. We find that if inactive (active) receptors are prefer-
entially removed then activation (derepression) exhibits a sustained re-
sponse whereas derepression (activation) adapts. In total, we show how
the architecture of molecular switches govern their response properties.
We also discuss the biological implications of our findings.

Introduction
Several molecules involved in intracellular signaling pathways act
as molecular switches. These are proteins that can be temporar-
ily modified to transition between two conformations, one cor-
responding to an on (active) state and another to an off (inac-
tive) state. Two prominent examples of such switches are pro-
teins that are modified by phosphorylation and dephosphoryla-
tion and GTPases that bind nucleotides. For phosphorylation-
dephosphorylation cycles, it is common for the covalent addi-
tion of a phosphate by a kinase to cause activation of the mod-
ified protein. A phosphatase removes the phosphate to turn
the protein off. In the GTPase cycle, the protein is on when
bound to Guanosine triphosphate (GTP) and off when bound
to Guanosine diphosphate (GDP). The transition from the GDP
bound state to the GTP bound state requires nucleotide ex-
change, whereas the transition from GTP bound to GDP bound
state is achieved via hydrolysis of the γ phosphate on GTP.

The basal rates of nucleotide exchange and hydrolysis are often
small. These reaction rates are increased several fold by Gua-
nine Exchange Factors (GEFs) and GTPase Accelerating Pro-
teins (GAPs), respectively [1,2].

A signaling pathway is often initiated upon recognition of a
stimulus by its cognate receptor, which then activates a down-
stream switch. In principle, a switch may be turned on by at
least two mechanisms: a) by increasing the transition rate from
the off state to the on state, and b) by decreasing the transition
rate from the on state to the off state. We term these mech-
anisms activation and derepression, respectively. Examples of
both these mechanisms are found in the GTPase cycle. In an-
imals, signaling through many pathways is initiated by G pro-
tein coupled receptors (GPCRs) that respond to a diverse set
of external stimuli. These receptors act as GEFs to activate
heterotrimeric G proteins [3–6]. Thus, pathway activation relies
upon increasing the transition rate from the off state to the on
state. There are no GPCRs in plants and other bikonts; the nu-
cleotide exchange occurs spontaneously, without requiring GEF
activity [7–9]. G proteins are kept in the off state by a repressor
such as a GAP or some other protein that holds the self-activating
G protein in its inactive state. In this scenario, the presence of
a stimulus results in derepression, i.e., removal of the repressing
activity [10–12]. These two mechanisms for initiating signaling,
activation and derepression, are not mutually exclusive. For ex-
ample, a concerted signal initiation, whereby both activation and
dererpression are used, is employed in the GTPase cycle of the
yeast mating response pathway [13,14]. In this example, inactive
GPCRs recruit a GAP protein and act to repress, whereas active
receptors have GEF activity and act to activate. Thus, perception
of a stimulus leads to concerted activation and derepression by
increasing GEF activity while decreasing GAP activity.

These three mechanisms are not limited to GTPase cycles.
The activation mechanism described here in fact is a simpler
abstraction of a linear signaling cascade, a classical framework
used to study general properties of signaling pathways [15–19]
as well as to model specific signaling pathways [20–22]. While
derepression may seem like an unusual mechanism, it occurs
in numerous important signaling pathways in plants (e.g., auxin,
ethylene, gibberellin, phytochrome), as well as gene regulation
[23–27]. In many of these cases, derepression occurs through
decrease in the degradation rate of a component instead of its
deactivation rate. Concerted mechanisms are found in bacterial
two component systems, wherein the same component acts as
kinase and phosphatase [28–35].

Mathematical modeling has proven to be a useful tool for un-
derstanding the design principles of signaling pathways, and,
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Figure 1: Mechanisms for signaling through molecular switches. Presentation of a stimulus activates a receptor (X → X∗). The reverse
reaction causes deactivation of the receptor (X∗ → X ). These transitions govern the activity of a molecular switch downstream. (a) In the activation
mechanism, X∗ increases the rate at which the inactive switch (Y ) becomes active (Y∗). The opposite reaction Y∗ → Y has a constant rate. (b) In
the derepression mechanism, the transition Y → Y∗ occurs at a constant rate. Activity of the switch is controlled through X : the stimulus decreases X
and consequently increases Y∗. (c) In the concerted paradigm, both activation and derepression simultaneously control the downstream component.

not surprisingly, mathematical models of activation, derepression
and concerted mechanisms have been studied previously. For
example, the classical Goldbeter-Koshland model studied zero-
order ultrasensitivity of an activation mechanism [15]. Further
analyses have examined the effect of receptor numbers [36–38],
feedback mechanisms [39, 40], removal of active receptors via
endocytosis and degradation [41, 42], etc. Similarly, important
properties of the concerted mechanism, such as its ability to do
ratiometric signaling [13, 14], to align dose responses at differ-
ent stages of the signaling pathway [43], as well as its robust-
ness [29, 44] are well-known. The derepression model is rela-
tively less studied. Although there are models of G-signaling in
Arabidopsis thaliana [45–47], these models have a large number
of states and parameters and do not specifically look at proper-
ties of derepression mechanism.

Despite these efforts, a systematic comparison of various
properties of activation, derepression, and concerted mecha-
nisms of signaling has been lacking. Comparing these mech-
anisms should enable our understanding of why different organ-
isms have chosen different mechanisms. To this end, we specifi-
cally choose four metrics for the comparison: a) dose-response,
b) response time, c) ability to suppress or filter stochastic fluc-
tuations in upstream components, and d) effect of receptor re-
moval. The rationale behind comparing dose response curves
is that they provide information about the input sensitivity range
and the output dynamic range, both of which are of pharmacolog-
ical importance. We supplement this comparison with response
times, which provide information about the dynamics of the sig-
naling activity. The third metric of comparison is motivated from
the fact that signaling pathways are subject to inherent stochastic
nature of biochemical reactions, further compounded by fluctua-
tions in the number of components [48–53]. Lastly, we study
the effect of receptor removal on the response of these signaling
mechanisms because many signaling pathways evince receptor
removal [11,42,54–56]. We study these properties by construct-
ing both deterministic ordinary differential equation models and
stochastic models based on continuous-time Markov chains.

Our results show that activation has the following two effects:
it makes the switch response more sensitive than that of the re-
ceptor, and it speeds up the response with the stimulus strength.
In contrast, derepression makes the switch response less sensi-

tive than the receptor occupancy and slows down the response
speed as stimulus strength increases. These counteracting be-
haviors of activation and derepression lead to intermediate sen-
sitivity and intermediate response time for the concerted mech-
anism. In the special case of a perfect concerted mechanism
(equal activation and repression), the dose-response curve of the
pathway aligns with the receptor occupancy and the response
time does not depend upon the stimulus level. The noise com-
parison reveals that the concerted mechanism is more suscep-
tible to fluctuations than the activation and derepression mecha-
nisms, which perform similarly. Finally, our analysis of the effect
of receptor removal highlights another important difference be-
tween activation and derepression. Removal of active (inactive)
receptors at a faster rate than inactive (active) receptors results in
an adaptive response for activation (derepression) and sustained
response for derepression (activation). We finally compare our
findings with experimental observations, suggesting reasons that
might have led biological systems to choose one of these mech-
anisms over the others.

Model formulation
We consider a two-tier model for each of three mechanisms of
signaling through a molecular switch (Fig. 1). The first tier is com-
mon for all mechanisms, where an inactive receptor (X ) becomes
active (X∗) when its corresponding input (stimulus) is presented.
The second tier is the molecular switch that transitions between
off (Y ) and on (Y ∗) states. In the activation mechanism, the
transition rate from the off state to the on state increases as the
number of active receptor molecules increases (Fig. 1(a)). In the
derepression mechanism, the transition rate from the on state
to the off decreases with decrease in the number of inactive re-
ceptor molecules (Fig. 1(b)). In the concerted mechanism, both
activation and derepression occur simultaneously (Fig. 1(c)). We
model these mechanisms using ordinary differential equations
(ODEs), assuming mass-action kinetics. To this end, we denote
the time by t , stimulus level by S, the total number of receptors
by XT , and the total number of switches by YT . We use X∗ and
Y ∗ to denote the number of active receptors and the number of
active switches, respectively. The rate constants are as follows:
k1 is the rate of receptor activation per unit stimulus, k2 is the
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rate of receptor deactivation, k3 is the basal rate of activation of
the switch, k4 is the basal rate of deactivation of the switch, k5

is the strength of activation of an individual active receptor, and
k6 is the strength of repression of an individual inactive receptor.
Thus, the (total) activation strength is k5XT and (total) repres-
sion strength is k6XT . Lastly, we assume that XT and YT are
conserved, and that each model is in steady state before pre-
sentation of the stimulus at t = 0.

Note that the concerted mechanism encompasses both activa-
tion and derepression. Therefore, writing ODEs for the concerted
mechanism is sufficient to capture all three mechanisms. The
number of active receptors and the number of active switches
evolve over time according to the ODEs:

dX∗

dt
= k1SXT − (k1S + k2)X∗, (1a)

dY ∗

dt
= k3YT + k5YT X∗ − (k3 + k4 + k6XT ) Y ∗

− (k5 − k6)X∗Y ∗. (1b)

The activation and derepression mechanisms represent limiting
cases in which k6 = 0 and k5 = 0, respectively. Solving (1)
requires rate constants and initial conditions to be specified. We
assume that initial conditions are given by the pre-stimulus (S =
0) steady state:

X∗0 = 0, Y ∗0 =
k3

k3 + k4 + k6XT
YT . (1c)

With the models described by (1), we next compare the three
signaling mechanisms in terms of their dose responses and re-
sponse times.

Dose responses
We begin our analysis by examining the steady-state dose re-
sponses of activation, derepression, and concerted mechanisms.
The steady-state solution to (1) is

X∗ =
SXT

S + k2
k1

, (2a)

Y ∗ =
k2k3

k1(k3+k4+k5XT ) + k3+k5XT
k3+k4+k5XT

S
k2(k3+k4+k6XT )
k1(k3+k4+k5XT ) + S

YT . (2b)

Here X∗ and Y ∗ are the number of active (occupied) receptors
and the number of active switches long time after the stimulus is
presented (t →∞), respectively. Notably, both X∗ and Y ∗ have
the form

R =
R0ΘR + R∞S

ΘR + S
, (3)

where R0 is the minimum response corresponding to S = 0, R∞
is the maximum response corresponding to S � ΘR , and ΘR is
the stimulus concentration that produces half-maximal response
R0+R∞

2 . The dynamic range of the response is given by R∞−R0,
signifying the maximum the output can change in response to the
input. (3) shows that shapes of dose response curves are same
for the three signaling mechanisms. Hence comparison between
them can be carried out in terms of R0, R∞, and ΘR .

At the receptor level, X∗0 = 0 and X∗∞ = XT , notwithstanding
the rate parameters. The half-maximal stimulus ΘX∗ is equal to

k2
k1

, which is the binding affinity of the stimulus with the recep-

tor. Furthermore, the fractional receptor occupancy (X∗/XT ) for
a given stimulus (S) is determined by k1S/k2. As for the switch,
the response (Y ∗) is specified by:

Y ∗0 =
k3YT

k3 + k4 + k6XT
, (4a)

Y ∗∞ =
(k3 + k5XT )YT

k3 + k4 + k5XT
, (4b)

ΘY∗ = ΘX∗
k3 + k4 + k6XT

k3 + k4 + k5XT
. (4c)

These expressions show that the dose-response of the switch
depends upon the the basal rates as well as activation strength
(k5XT ) and repression strength (k6XT ). A careful examination of
(4) provides the following insights:

(i) The activation strength (k5XT ) does not affect the minimum
response (Y ∗0 ), but affects the maximum response (Y ∗∞). In
particular, increasing k5XT increases Y ∗∞. The repression
strength (k6XT ) decreases Y ∗0 and does not affect Y ∗∞.

(ii) Relative values of the repression and activation strengths
dictate the relationship between the half-maximal stimulus
for the switch response (ΘY∗ ) vis-á-vis the half-maximal
stimulus for the receptor occupancy (ΘX∗ ). More specifi-
cally, ΘY∗ < ΘX∗ when k5XT > k6XT , ΘY∗ = ΘX∗ when
k5XT = k6XT , and ΘY∗ > ΘX∗ when k5XT < k6XT . In-
creasing k6XT increases ΘY∗ while increasing k5XT does
the opposite.

Fig. 2 illustrates the aforementioned effects on dose-response
curves for the signaling mechanisms considered. Noting that sig-
naling pathways typically show little activity in absence of the
stimulus (Y ∗0 � YT ) and show full activity (Y ∗∞ ≈ YT ) if the
stimulus is large, it is reasonable to make the following assump-
tions: k3 � k4 + k6XT and k4 � k3 + k5XT . The limiting case of
k3 = 0 leads to Y ∗0 = 0; likewise, k4 = 0 results in Y ∗∞ = YT . With
these assumptions in mind, we use the following parameters for
Fig. 2: k3 = 0 and k6 = 0 for activation; k4 = 0 and k5 = 0 for
derepression; and k3 = 0 and k4 = 0 for concerted. As shown in
Fig. 2(a) activation makes the switch response more sensitive to
stimulus than the receptor occupancy (ΘY∗ < ΘX∗ ). Increasing
the activation strength (k5XT ) increases Y ∗∞ and decreases ΘY∗ ,
increasing the dynamic range (vertical expansion) and sensitiv-
ity (leftward shift) of the dose-response curve. The derepression
mechanism exhibits an opposite behavior with ΘY∗ > ΘX∗ . In
this scenario, increasing the repression strength increases the
dynamic range by decreasing Y ∗0 and decreases sensitivity by
increasing ΘY∗ (Fig. 2(b)).

Because we ignore the basal rates, changing activation and
derepression strengths only influence ΘY∗ in the case of a con-
certed mechanism. As expected, the switch response is more
(less) sensitive than the receptor occupancy if activation (dere-
pression) dominates derepression (activation). There is a per-
fect alignment of the fractional receptor occupancy curve with the
dose response curve of the switch when k5 = k6 (Fig. 2(c)). An-
other important property of the concerted model is that it exhibits
ratiometric signaling in which the response of the switch (Y ∗) is
determined by the ratio of active receptors to the total number of
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Figure 2: Dose-response curves for signaling mechanisms through molecular switches. The response is measured in terms of fraction of
active switches Y∗/YT as the stimulus level varies. The receptor occupancy curve denotes the fraction of active receptors X∗/XT . The stimulus is
normalized by its binding affinity to the receptor (ΘX∗ ). (a) For the activation mechanism, the half-maximal stimulus (ΘY∗ ) of a dose-response curve
is less than ΘX∗ . Each dose-response curve (solid line) is for a fixed activation strength k5XT . Increasing k5XT , depicted by the solid arrow, causes
an upward expansion and leftward shift in dose-response. For these plots, the following values for parameters were used: k3 = 0, k4 = 1 and k6 = 0.
The activation strength (k5XT ) was varied to take values from (0.1, 1, 10, 100, 1000). (b) For the derepression mechanism, the dose-response of the
switch for a given repression strength (k6XT ) has half-maximal stimulus (ΘY ) greater than ΘX∗ . Increasing k6XT , shown by the solid arrow, leads to
a downward expansion and rightward shift in the dose-response curve. The repression strength k6XT takes values from (0.1, 1, 10, 100, 1000). The
rest of the parameters were set as k3 = 1, k4 = 0, and k5 = 0. (c) In the case of concerted mechanism, ΘY∗ may be greater than, equal to, or less
than ΘX∗ , depending upon the relative values of the activation strength and the derepression strength. Increasing the ratio k5/k6, depicted by the
solid arrow, shifts the dose response to left. Dose-response alignment (ΘY∗ = ΘX∗ ) occurs when k5 = k6. The parameters used for the plots are
k3 = 0 and k4 = 0. The ratio k5/k6 was varied over (0.01, 0.1, 1, 10, 100).

receptors (X∗/XT ) [13,14]. The absolute value of the total num-
ber of receptors (XT ) has no bearing on Y ∗. This may be seen
by setting k3 = 0 and k4 = 0 in the expression of Y ∗ in (2):

Y ∗ =
SYT

S + k2k6
k1k5

. (5)

In reality, k3 and k4 are likely to be small, but non-zero. Therefore,
ratiometric signaling does not hold in a strict sense.

Our theoretical results above show how the dose-response
curves behave differently for activation, derepression, and con-
certed mechanisms. Are some of these behaviors observed in
biological systems? One example where the signaling response
becomes maximal when only a small fraction of receptors are
bound (ΘY∗ < ΘX∗ ) is the EGFR–MAPK pathway which elicits
a full MAPK response at less than 5% receptor occupancy [57].
Our analysis explains this by an activation mechanism or a con-
certed mechanism in which the activation strength dominates the
repression strength. A contrasting behavior is seen in the ethy-
lene pathway of Arabidopsis thaliana in which a loss-of-function
mutation of one of the ethylene receptors, etr1, shows increased
sensitivity to etylene [58]. This points to a derepression mecha-
nism in which the decreased amount of the receptor (XT ) lowers
the repression strength k6XT and shifts the dose response curve
to the left in comparison to that of the wild-type system. A sug-
gested example of concerted mechanism is the yeast G-signaling
pathway, which exhibits both ratiometric signaling [13, 14] and
dose-response alignment [43].

Response times
Our analysis thus far focused on the steady-state properties of
the activation, derepression, and concerted mechanisms. In this
section, we study these mechanisms in terms of their response
times; that is the time it takes for a signaling output to reach its

steady-state. We use the following definition of response time:

TR =

∫∞
0 t

∣∣R − R(t)
∣∣ dt∫∞

0

∣∣R − R(t)
∣∣ dt

, (6)

where R(t) is the time-dependent response of the pathway com-
ponent under consideration and R represents its value at steady-
state [59]. For this definition, TR represents the “center of mass”
of the response R(t), and is well-defined when R(0) 6= R. We may
also think of 1/TR as the speed of the response in the sense that
if the response is determined by a single kinetic step, TR is recip-
rocal of the rate constant for that step. For example, the response
time for the receptor is given by (section S1, SI):

TX∗ =
1

k1S + k2
. (7)

Thus, the response time decreases (i.e., response speeds up) if
k1S+k2 increases. Because the response time depends upon the
sum k1S + k2 and the steady-state receptor occupancy depends
upon the ratio k1S/k2, these quantities can be tuned indepen-
dently.

In the absence of stimulus, the response time of the switch
follows the same form as (7):

TY∗ |S=0 =
1

k3 + k4 + k6XT
. (8)

When the stimulus is present, analytic solutions to the integrals in
(6) for the response time of Y ∗(t) do not exist, except for a special
case of the perfect concerted model k5 = k6. It is, however,
possible to approximate TR by linearizing the ODE system in (1)
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Figure 3: Response times of molecular switches governed by activation, derepression, and concerted mechanisms. (a) The response time of
the switch increases as the response time of the receptor increases. Differences in the signaling mechanisms are more prominent when the receptor
response is fast. Activation speeds up the response in comparison with the basal response time whereas dererepssion slows it down. A perfect
concerted mechanism does not affect the response time. For each signaling mechanism, the response time is computed using the analytical result
in (9) (solid lines) and numerically validated by using (6) (dashed lines). To ensure the same basal response and basal response time of the switches
across signaling mechanisms, we chose the parameters as k3 = 1/9, k4 = 1, k6 = 0, and k5XT = 10 for activation; k3 = 1/9, k4 = 0, k5 = 0, and
k6XT = 1 for derepression; and k3 = 1/9, k4 = 0 and k5XT = k6XT = 1 for concerted. The receptor response time was k1S + k2 varied through k2

while maintaining k1S/k2 = 1. (b) With increase in the stimulus level, response time decreases for activation, increases for derepression, and does
not change for the concerted mechanism. The comparison is controlled by setting same response time at half-max. stimulus ΘY∗ . The following
parameters were chosen to have same basal response but different basal response times: k3 = 1, k4 = 9, k5XT = 90, and k6 = 0 for activation;
k3 = 10,k4 = 0,k5 = 0, and k6XT = 90 for derepression; and k3 = 10, k4 = 0, k5XT = k6XT = 90 for concerted. The receptor occupancy was varied by
changing k1S/k2 while maintaining the receptor response time 1/(k1S + k2), which was chosen to be 100 times faster than the response time of the
switches at their respective half maximal stimulus levels.

around its steady-state:

TY∗ ≈
1

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2︸ ︷︷ ︸

resp. time of Y∗ when X∗ is in steady-state

+
1

k1S + k2︸ ︷︷ ︸
resp. time of X∗

×
k3 + k4 + k6XT + (k5 − k6) k1SXT

k1S+k2

k1S + k2 + k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2︸ ︷︷ ︸

time-averaging

. (9)

This equation is exact for the special case when k5 = k6 (sec-
tion S2-B, SI). The first term in (9) can be interpreted as the
response time of the switch when the receptors are at steady-
state, because in that case the switch would be turned on at a
rate k3 + k5

k1SXT
k1S+k2

and turned off at a rate k4 + k6XT −k6
k1SXT
k1S+k2

; so,
inverse of their sum would give the response time. The second
term represents the response time of the receptor (TX∗ ) multi-
plied by a time-averaging factor which computes the ratio of TX∗

to the sum of TX∗ and the response time of the switch when
X∗ = X∗. The time-averaging term lies between 0 and 1; its
value approaches 0 if the receptor response is much faster than
the switch response when X∗ = X∗ and approaches 1 if the re-
ceptor response is much slower than that of the switch.

If the receptor response is much faster than that of the switch,
we expect that the latter does not depend upon the former (time-
averaging term→ 0). Indeed in this limit, (9) gives

TY∗ ≈
1

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

. (10)

Comparing (10) with the basal response time in (8) shows that
for a given stimulus level, activation speeds up the response in
comparison with the basal response. In contrast, derepression
slows down the response and a perfect concerted mechanism
does not affect the response time (Fig. 3(a)). In the other limiting
case when the receptor timescale is much slower than that of the
switch, we expect the receptor dynamics to dictate the response
time (time-averaging term→ 1). Indeed in this case, (9) reduces
to TY∗ ≈ TX∗ such that choice of the mechanism to control the
switch has little effect on the response time. Our analytical as
well as numerical calculations confirm this behavior (Fig. 3(a)).

Next we examine the scenario where the switch is controlled
by varying the stimulus level (S). Because changing the stimulus
affects the response time of the receptor, which in turn affects the
response time of the switch, we control for this effect by keeping
k1S + k2 constant. We find that activation shortens the response
time (speeds up the response) with increasing stimulus levels,
whereas derepression increases the response time (slows down
the response) (Fig. 3(b)). Importantly, the response time of the
concerted mechanism is independent of the stimulus strength,
and, therefore able to respond rapidly over the whole range of
stimulus levels. To better understand this behavior, consider the
response time for the limiting case of fast receptor dynamics. (10)
can be rewritten as

TY∗ ≈
1

k3+k4+k6XT
ΘY∗ + 1

k3+k4+k5XT
S

S + ΘY∗
, (11)

which changes from 1
k3+k4+k6XT

at S = 0 to 1
k3+k4+k5XT

as S → ∞.
The half-maximal stimulus ΘY∗ is same as defined in (4). For the
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activation mechanism, 1
k3+k4+k6XT

> 1
k3+k4+k5XT

; so the response
time decreases with stimulus. Moreover, 1

k3+k4+k6XT
< 1

k3+k4+k5XT

for the derepression mechanism and 1
k3+k4+k6XT

= 1
k3+k4+k5XT

for the
perfect concerted mechanism. Therefore, the response time in-
creases with stimulus for the derepression mechanism and is in-
dependent of the stimulus for the concerted case.It is also worth
pointing out that activation is faster than derepression only if the
basal response times are equal. Therefore to construct a switch
that responds rapidly using derepression, it is necessary for the
switch to undergo fast basal cycling (Fig. 3(b)).

Our analysis of dose-response properties for ratiometric sig-
naling given in (5) reveals that this mechanism is independent
of the total number of receptors XT when the basal rates of the
switch are zero (k3 = 0 and k4 = 0). Using these values in the
expression for the response time in (9) demonstrates that this
property does not hold for the response time. Specifically, the re-
sponse time decreases with an increase in XT (section S2–B–c,
SI).

Is there an intuitive explanation to why activation is faster than
derepression? The activation model shortens the average life-
time of the off state, without affecting the average lifetime of the
on state. Derepression operates differently; it does not affect
the average lifetime of the off state, but increases the lifetime
of the on state. Thus, activation responds faster than derepres-
sion. The concerted mechanism simultaneously decreases the
lifetime of the off state and increases the lifetime of the on state.
Therefore, its response time lies between those of activation and
derepression.

Processing upstream fluctuations
The deterministic models used to compare the signaling mecha-
nisms thus far ignore the stochastic nature of biochemical reac-
tions, which becomes relevant when the abundance of receptor
and switch proteins are small [48–53, 60, 61]. Therefore, we for-
mulate a stochastic model of the concerted mechanism and an-
alyze the other two mechanisms as its special cases. Our model
consists of four reactions: activation of receptor upon recognizing
the stimulus, deactivation of receptor, on to off transition of the
molecular switch, and off to on transition of the molecular switch.
The stochastic model is characterized by the probabilistic nature
of each reaction and the discreteness of changes in population
counts upon occurrence of a reaction as tabulated in Table 1.

Reaction Population update Transition rate

X → X∗ X∗ 7→ X∗ + 1 k1S(XT − X∗)
X∗ → X X∗ 7→ X∗ − 1 k2X∗

Y → Y ∗ Y ∗ 7→ Y ∗ + 1 (k3 + k5X∗)(YT − Y ∗)
Y ∗ → Y Y ∗ 7→ Y ∗ − 1 (k4 + k6(XT − X∗))Y ∗

Table 1: Transitions and associated rates for the stochastic model.

Our goal is to analyze the noise properties of activation, dere-
pression, and concerted mechanisms. We quantify noise using
coefficient of variation squared (CV 2), which is computed by nor-
malizing the variance by mean2 and is a dimensionless quantity.
To this end, we use the ODEs that describe the time evolution of
the first and second-order moments, and solve them in steady-
state to obtain the stationary moments [62–64] (section S3-B,

SI). In particular, moments for the number of active receptors
(X∗) are given by

〈X∗〉 =
k1SXT

k1S + k2
, (12a)

CV 2
X∗ =

〈
X∗2〉− 〈X∗〉2
〈X∗〉2

=
1

XT

k2

k1S
. (12b)

Here 〈.〉 denotes the expected value (average) of its argument.
These moments correspond to a binomial distribution with pa-
rameters XT and k1S

k1S+k2
(section S3-A, SI). The stochastic mean

〈X∗〉 is same as the steady-state value for X∗ in the determin-
istic model in (1). The coefficient of variation squared increases
as the number of receptors (XT ) decreases. Therefore the noise
analysis is important when XT is small. In addition, the noise de-
creases with the ratio k1S/k2. Recall that k1S/k2 is the stimulus
level relative to the binding affinity. Thus the noise diminishes
when the stimulus level is much higher than the binding affinity.

Closed-form expressions for the moments are not available for
Y ∗ owing to the nonlinear term X∗Y ∗ in reaction rates, except
for the special case of a perfect concerted model (k5 = k6). We
approximate the mean response and the noise by considering a
linearized system around the steady-state

〈Y ∗〉 ≈
k3 + k5

k1S
k1S+k2

XT

k3 + k4 + k6
k2

k1S+k2
XT

YT , (13a)

CV 2
Y∗ ≈

1
YT

k4 + k6XT
k2

k1S+k2

k3 + k5XT
k1S

k1S+k2︸ ︷︷ ︸
contribution from act./deact. of Y∗

+

CV 2
X∗ ×

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

k1S + k2 + k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2︸ ︷︷ ︸
time-averaging

×

(
k1S

k1S+k2

)2
(k4k5XT + k6XT (k3 + k5XT ))2(

k3 + k5
k1SXT
k1S+k2

)2 (
k3 + k4 + k5

k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

)2

︸ ︷︷ ︸
coupling

. (13b)

We validate these approximations using exact semi-analytical
approach based on [65] (section S3-B, SI). The formula for
CV 2

Y∗ above is written in terms of various sources of noise, as
previously done for gene regulation models [66–68]. Specifi-
cally, the noise in the signaling activity of the switch arises from
two sources: activation/deactivation reactions of the switch, and
noise in the number of active receptors ((CV 2

X∗ ). The contribu-
tion from activation/deactivation of the switch in (13) has a similar
form as CV 2

X∗ in (12). Accordingly, the contribution of this term
decreases with increase in YT or increase in the ratio of the to-

tal activation rate
(

k3 + k5XT
k1S

k1S+k2

)
with total deactivation rate(

k4 + k6XT
k2

k1S+k2

)
. This ratio increases if the activation strength

increases or the repression strength decreases. The contribution
of CV 2

X to CV 2
Y∗ is scaled by time-averaging and coupling terms.

The time-averaging term is the same as that in (9); it varies be-
tween 0 and 1, depending upon the relative timescales of the
receptor and the switch. Thus, in the limiting case where recep-
tor dynamics is very fast, the contribution from CV 2

X∗ to CV 2
Y∗
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becomes negligible due to efficient time-averaging of fluctuations
in X∗. The coupling term in (13) determines how strongly X∗

affects Y ∗. For example, this term is zero when the stimulus is
absent (S = 0) or when both k5 and k6 are zero. In both these
cases, the switch is decoupled from the receptor.

Next, we compare the noise properties of activation, dere-
pression, and concerted mechanisms. To mathematically control
the comparison, we assume that the receptor dynamics is same
across the three strategies. In addition, we maintain the same
average rate at which the switch turns on from the off state, i.e.,
k3 +k5

k1SXT
k1S+k2

, and the same average rate at which the switch turns

off from the on state, i.e., k4 + k6
k2XT

k1S+k2
. These assumptions en-

sure that differences in the noise properties, if any, are solely due
to the architecture of the molecular switch and not dependent on
the parameters. With this setup, we examine the effect of relative
timescales (response times) of the receptor and the switch. We
observe that in (13), varying k1S + k2 while maintaining k1S/k2

only affects the time-averaging term; all other terms are not af-
fected. As shown in Fig. 4(a), the noise properties of these sig-
naling mechanisms are similar when the receptor timescale is
fast. This is expected because the dominant contribution in CV 2

Y∗

comes from its own activation and deactivation. However, when
the receptor timescale is slower than that of the switch, the overall
noise increases regardless of the signaling mechanism and the
noise performance of the concerted mechanism becomes worse
than the other two mechanisms.

The observation that activation and derepression both have
similar noise and their concerted action has higher noise is sur-
prising in light of our analyses of dose-response and response
time. In terms of these properties, activation and derepression
counteract to enable intermediate response for the concerted
mechanism. Intuitively, the increase in fluctuations occurs be-
cause in the concerted mechanism, fluctuations in the upstream
component affect both transitions Y → Y ∗ and Y ∗ → Y . In
the case of activation and derepression, however, only one of
these transitions is coupled with the upstream component. As
a result, the concerted mechanism performs worse in terms of
noise. We further highlight this observation by varying the rel-
ative strengths of activation (k5XT ) and derepression (k6XT ) in
Fig. 4(b). The noise is greatest for the concerted mechanism
when k5XT = k6XT .

We also analyze the special case of ratiometric signaling. Our
deterministic analysis shows that for a concerted mechanism
without basal rates (k3 = 0 and k4 = 0), the steady-state re-
sponse (Y ∗) does not depend upon the total number of receptors
(XT ). However, similar to the response time, the CV 2

Y∗ also de-
pends upon XT through the time-averaging term and CV 2

X∗ , both
of which decrease with increases in XT (section S3–B–c, SI). To
summarize, ratiometric signaling only holds for the steady-state
response. A cell that has higher XT would respond faster as well
as with less noise than a cell with a smaller XT .

Effect of receptor removal
Our models of signaling mechanisms in Fig. 1 assume con-
servation of number of receptor molecules (XT ) and of switch
molecules (YT ). These assumptions do not hold in case of some
signaling pathways where stimulus-mediated removal of recep-
tors occurs. Reported examples of such phenomena include

GPCRs [54], EGFR [42], AMPA-type glutamate receptors [55],
the receptor-like kinase FLS2 [56] and regulator of G-signaling
(RGS) in Arabidopsis thaliana [11]. On the one hand, removal of
active receptors is proposed to be a mechanism for desensitizing
the response to a sustained stimulus [69, 70], and consequently
enabling signaling over a broad range [41,42]. On the other hand,
phosphorylation and subsequent removal of RGS, which is both
a receptor candidate and a GAP, is proposed to result in sus-
tained activation of signaling in Arabidopsis thaliana [9, 11, 45].
With an aim to explain these seemingly opposite behaviors of
signaling pathways, we ask whether the signaling mechanisms,
particularly activation and derepression, behave differently upon
removal of receptors. To answer this, we reformulate the mod-
els in Fig. 1 by including production of inactive receptors (X ) at
a rate kp, removal of inactive receptors with rate kd , and removal
of active receptors with rate k∗d . This model is simpler than those
showing a broad range [41] or relative sensing [42], but is capa-
ble of adaptation [70] which is what we focus on.

Inclusion of receptor removal results in the following modifica-
tion of the ODE system in (1)

dX
dt

= kp − kd X − k1SX + k2X∗, (14a)

dX∗

dt
= k1SX − k2X∗ − k∗d X∗, (14b)

dY ∗

dt
=
(
k3 + k5X∗

) (
YT − Y ∗

)
− (k4 + k6X ) Y ∗. (14c)

The initial conditions are: X (0) = kp

kd
, X∗(0) = 0, and Y ∗(0) =

k3YT
k3+k4+k6kp/kd

. As before, setting k6 = 0 and k5 = 0, respectively,
result in ODEs for the activation and derepression mechanisms.

An important distinction between the ODEs in (1) and the
ODEs in (14) is that the receptor dynamics only has one
timescale, 1/(k1S+k2), in the former but two timescales in the lat-
ter (section S4, SI). The interplay between these two timescales
allows X (t) and X∗(t) to transiently respond to a stimulus at the
fast timescale, followed by an eventual return towards their re-
spective pre-stimulus levels at the slow timescale. Note that the
switch response in the activation mechanism depends upon the
active receptors X∗. Thus if X∗ increases and returns towards
its basal level, Y ∗ is also expected to follow the same dynamics.
Likewise, if a derepression mechanism governs the switch then a
decrease in X would lead to increase in Y ∗. Further, if X returns
towards its basal level, Y ∗ should also follow this trend. Such
behavior is referred to as adaptation [70,71].

What are appropriate parameter regimes where the switch re-
sponse Y ∗(t) in (14) adapts to a sustained stimulus? Our analy-
sis shows that adaptation by X∗ occurs when k∗d > kd , i.e., active
receptors are removed at a faster rate than inactive receptors. In
contrast, adaptation by X happens when k∗d < kd (section S4,
SI). We note that all other parameters also affect the response
properties, but the relative rates of receptor removal are the most
important determinants of adaptive behavior. We illustrate these
results in Fig. 5. To further bolster our observations, we exam-
ine the scenarios where the inactive receptors are preferentially
removed for an activation mechanism and active receptors are
preferentially removed for a derepression mechanism. Interest-
ingly, in both these cases, the response sustains and does not
adapt. These results thus provide another set of differences be-
tween activation and derepression mechanisms.
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Figure 4: Noise in the number of active switch molecules. Noise is quantified using coefficient of variation squared (CV 2
Y∗ ) as in (13). The

overall CV 2
Y∗ is shown relative to the contribution from activation/deactivation of Y∗. The analytical result is computed using (13), which is validated

numerically. (a) Noise with change in response time of the receptor. The noise increases as receptor response time increases, i.e., as the receptor
slows down in comparison with the switch response time. The concerted model has a higher noise than activation and derepression, which perform
similar. The difference is negligible when receptor dynamics is fast, and is more prominent when receptor is slow. The receptor response time
(k1S + k2) is varied by changing k2 while keeping the same receptor occupancy through the ratio k1S/k2, so as to keep the same number of
switches.The differences across signaling mechanisms are controlled by ensuring the same total activation rate of the switch k3 + k5

k1SXT
k1S+k2

and same

total deactivation rate k4 + k6
k2SXT
k1S+k2

. We used the following parameters: k3 = 0, k4 = 1, k5 = 0.02, and k6 = 0 for activation; k3 = 1, k4 = 0,
k5 = 0, and k6 = 0.02 for derepression; and k3 = 0, k4 = 0, k5 = k6 = 0.02 for concerted. In addition, XT and YT were taken to be 100 each.
The receptor occupancy was maintained by k1S/k2 = 1.(b) Noise with change in relative strengths of activation and derepression for a concerted
mechanism. The noise is highest when the activation and derepression strengths match (perfect concerted mechanism). Deviating from the perfect
concerted mechanism towards either stronger activation (shaded green region) or stronger derepression (shaded orange region) leads to smaller
noise. Parameters were chosen such that total activation and the total deactivation rates were same across signaling mechanisms. For derepression,
the activation strength was kept constant and the repression strength k6XT was varied with a commensurate change in the basal deactivation rate
k4. For activation, the repression strength was kept constant and the activation strength k5XT was increased with appropriate change in the basal
activation rate k3. We used the following parameters: k1 = 1, S = 1, k2 = 1, k3 + k5

k1SXT
k1S+k2

= 1, k4 + k6
k2XT

k1S+k2
= 1, XT = 100, and YT = 100.
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Figure 5: Effect of receptor removal on responses of activation and derepression mechanisms. The response is measured in terms of fraction
of active receptors (Y∗/YT ) over time which is normalized to the slow timescale of the receptor (see section S4, SI). (a) For an activation mechanism,
the switch response adapts, i.e., returns towards basal response after a transient, if the rate of removal of active receptors (k∗d ) is higher than that
of inactive receptors (kd ). In contrast, if inactive receptors are removed at a faster rate, then the response sustains. For the adaptive response, we
chose kp = 0.11, kd = 0.0011, k∗d = 0.11. For the sustained response, we set kp = 101, kd = 1.01 and k∗d = 0.01. Rest of parameters were selected
as k1 = 1, k2 = 1, k3 = 0, k4 = 10, k5 = 1, k6 = 0, S = 1, and YT = 100 (b) For derepression mechanism, preferential removal of X results in
adaptation whereas preferential removal of X∗ causes sustained response.For the adaptive response, we used kp = 101, kd = 1.01, k∗d = 0.01. For
the sustained response, we chose kp = 1, kd = 0.01 and k∗d = 1. Rest of parameters were taken as k1 = 1, k2 = 1, k3 = 10, k4 = 0, k5 = 0, k6 = 1,
S = 100, and YT = 100
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Discussion
Molecular switches are important components of most signaling
pathways. Typically, these switches can exist in two states, on
and off, and the presence of an external stimulus biases the
switch toward the on state. This transition can occur either by
increasing the off -to-on rate (activation), decreasing the on-to-
off rate (derepression), or both (concerted). We characterized
these three mechanisms in terms of their dose-response curves,
response times, and ability to process upstream fluctuations. We
further examined how these three mechanisms were affected by
receptor removal. The following list summarizes key differences
in the performance of switches based on activation, derepression
and concerted mechanisms:

• Both activation and derepression cannot align signaling ac-
tivity with receptor occupancy. In particular, activation re-
duces the stimulus level required for half-maximal signaling
as compared to 50% receptor occupancy (ΘY∗ < ΘX∗ ),
whereas derepression produces a rightward shift of the
dose-response curve (ΘY∗ > ΘX∗ ). The dose-response
curve aligns with the receptor occupancy curve (ΘY∗ =
ΘX∗ ) for a perfect concerted mechanism (Fig. 2).

• A concerted mechanism is capable of ratiometric signaling,
where the steady-state signaling output only depends upon
fractional receptor occupancy and not on the total number
of receptors.

• The response time for the activation mechanism decreases
with signal strength, whereas it increases for the derepres-
sion mechanism. Importantly, the response time for a per-
fect concerted mechanism is independent of signal strength
(Fig. 3).

• Activation and derepression mechanisms respond similarly
to upstream fluctuations, whereas the concerted mecha-
nism is more susceptible to fluctuations (Fig. 4). Unlike the
mean steady state response, fluctuations in the output sig-
nal for the ratiometric signaling do depend on the total num-
ber of receptors.

• Preferential removal of active (inactive) receptors leads
to an adaptive response for the activation (derepression)
mechanism and a sustained response for the derepression
(activation) mechanism (Fig. 5).

These results suggest performance trade-offs in the operat-
ing characteristics for each mechanism. The activation mecha-
nism can increase the sensitivity of the pathway and generate re-
sponse times that decrease with signal strength, but at the cost
of dose-response curves that do not align with receptor occu-
pancy, potentially limiting the pathways ability to transfer infor-
mation [72]. In this sense, the activation mechanism operates as
an ‘eager’ system that is sensitive to small receptor occupancies
and accelerates the response for stronger signals. Therefore,
activation seems appropriate for situations in which the cost of a
false negative is greater than a false positive. For example, the
adrenaline response to imminent danger should be sensitive and
fast because cost of a false positive is small but a false negative
can be deadly.

Similar to the activation mechanism, derepression leads to
misalignment of the dose-response curve and receptor occu-
pancy. However, for derepression the dose-response curve is
shifted to the right. Another difference between these mech-
anisms is that for derepression, the response time increases
with signal strength. Therefore, derepression acts as a ‘con-
servative’ system that does not respond to low receptor occu-
pancy, waiting for a strong signal before committing to a re-
sponse. Derepression seems appropriate for scenarios where
the cost of a false positive is greater than a false negative. In-
terestingly, derepression-based signaling is found in many plants
pathways. We speculate that it happens because plants have
to continually allocate their limited resources between growth in
competition with its neighbors and immunity to survive pathogen
attack [73,74]. For example, plants would perhaps ignore growth
of a low level of pathogenic bacteria before allocating resources
to fight them. Another possible scenarios where derepression
may be used include irreversible cell-fate decisions such as the
WNT pathway for embryo development [75], and fail-safe mech-
anisms such as the hypoxia-inducible factor in face of oxygen
deprivation [76].

The concerted mechanism is better able to align with the re-
ceptor occupancy curve than either the activation or derepres-
sion mechanisms. Therefore, it has a better information fidelity
[72]. The concerted mechanism also can generate response
times that are independent of the strength of the input signal.
However, these features come at the cost of higher susceptibil-
ity to upstream fluctuations. We note that in a recent study it
was shown that ratiometric (concerted) signaling provided an ad-
vantage for gradient sensing, because it could compensate for
spatial variations in the receptor concentration [14]. The system
under consideration in that study was the mating response of
yeast. For this case, the spatial fluctuations in the receptor con-
centration were larger than downstream fluctuations in signaling,
allowing the concerted mechanism to outperform an activation-
based mechanism.

While misalignment of the dose-response curve with recep-
tor occupancy can cause loss of information, it may also offer
some advantages. Consider a scenario where active receptors
are preferentially removed, resulting in adaptation of the signal-
ing response (Fig. 5). Recent work has shown that it is possi-
ble to exploit this feature to perform relative sensing (fold-change
detection) if the receptor removal is a multi-step process [42].
Alternatively, a negative feedback may also result in an adap-
tive response and thereby a fold-change detection [59]. A key
feature of fold-change detection is that the sensitivity of the sys-
tem decreases each time the system adapts [59,77]. Our results
suggest that a relative sensing mechanism may be implemented
with a derepression if the receptor removal operates on inactive
receptors. We speculate that a negative feedback operating on
inactive receptors would also yield the same effect.

Given that activation and derepression shift dose-response in
opposite directions, a natural question to ask is whether dose-
response alignment can occur in a signaling cascade where ac-
tivation and derepression operate sequentially? To explore this
possibility, we constructed a three-tier model where the response
Y ∗ in Fig. 1(a) leads to derepression of a downstream compo-
nent. Our analysis shows that indeed the response of the down-
stream component is better aligned with the dose response than
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Y ∗. We also analyze an alternate mechanism where derepres-
sion is followed by activation by modifying Fig. 1(b). As expected,
the dose response of the downstream component aligns with the
dose response better than that of Y ∗ (section S5, SI). It is worth
noting that nonlinear regulation, such as feedback and feedfor-
ward loops, can also be used to compensate for undesirable
characteristics of a given signaling mechanism. For example,
negative feedback can align the dose-response curve with re-
ceptor occupancy for signaling pathways that operate through
activation [43,72,78].

The models considered here are based on mass action kinet-
ics and therefore cannot capture saturation effects. Traditionally,
signaling pathways are modeled using Michelis-Menten kinetics.
While we believe the qualitative features of our results will hold
in this case, investigating how the behavior of the three mech-
anisms changes when the effects of enzyme saturation are in-
cluded will be the subject of future work. Another future direc-
tion is to extend the analysis to include feedback and feedfor-
ward regulation. Finally, while we have focused our investiga-
tions on signaling pathways, our results are likely to be relevant
in other intracellular systems, such as gene regulatory networks
and metabolic pathways.
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Supplementary Information
S1 Comparison between different definitions of response time
Response time is a measure of the time it takes for a signaling output to reach its steady-state. In (6) of the main text, we defined
the response time as the center of mass of the response curve. However, there are several interrelated definitions of response time.
Here we provide a comparison between them. Towards that end, we use a model of a simple one-tier switch. Consider a protein that
transitions between two states A and A∗ as

A
k1S
�
k2

A∗. (S1.1)

Let A(t) and A∗(t)denote the number of molecules that are in states A and A∗, respectively, at time t . We assume that the total number
of molecules is conserved, i.e., AT = A(t) + A∗(t). We quantify the signaling through the switch by A∗(t), i.e., the number of molecules
in the state A∗. The ordinary differential equation (ODE) governing the dynamics of A∗ is:

dA∗

dt
= k1S(AT − A∗)− k2A∗. (S1.2)

The solution to this ODE is given by

A∗(t) = A∗(0)e−(k1S+k2)t +
k1SAT

k1S + k2

(
1− e−(k1S+k2)t

)
, (S1.3)

where A∗(0) < AT is the initial condition. As t →∞, A∗ approaches its steady-state value which is given by

A∗ =
k1SAT

k1S + k2
. (S1.4)

Recall the definition of response time from (6) in the main text

TA∗ =

∫∞
0 t

∣∣A∗ − A∗(t)
∣∣ dt∫∞

0

∣∣A∗ − A∗(t)
∣∣ dt

. (S1.5)

To compute the integrals in the numerator and the denominator, we first note that

A∗ − A∗(t) =

(
k1SAT

k1S + k2
− A∗(0)

)
e−(k1S+k2)t . (S1.6)

Because k1S > 0 and k2 > 0,
∫∞

0 e−(k1S+k2)t dt and
∫∞

0 t e−(k1S+k2)t dt converge. These integrals are equal to 1/(k1S + k2) and
1/(k1S + k2)2, respectively. Using these integrals, (S1.5) gives

TA∗ =
k1SAT
k1S+k2

− A∗(0)

(k1S + k2)2

k1S + k2
k1SAT
k1S+k2

− A∗(0)
=

1
k1S + k2

. (S1.7)

We can thus deduce that if the response is determined by a single kinetic step, the response time defined above is reciprocal of the
rate constant for that step. It is also worth noting that the ratio is well-defined only when A∗(0) 6= k1SAT

k1S+k2
= A∗.

Another class of definitions of response time are based on the time it takes for the response to start from A∗(0) and reduce its
deviation from its steady-state by a factor 0 < f < 1. More specifically, we define Tf as the solution to the following equation

A∗(Tf )− A∗(0)

A∗ − A∗(0)
= f (S1.8a)

=⇒ A∗(0)e−(k1S+k2)Tf +
k1SAT

k1S + k2

(
1− e−(k1S+k2)Tf

)
= A∗(0) + f

(
k1SAT

k1S + k2
− A∗(0)

)
. (S1.8b)

For A∗(0) 6= k1SAT
k1S+k2

, the above equation reduces to

1− e−(k1S+k2)Tf = f , (S1.9)

which has a straightforward solution

Tf = − log (1− f )
k1S + k2

. (S1.10)

Notably, the response time is set by 1/(k1S + k2) up to a scale which depends on the specific value of f . We discuss three cases. First,
setting f = 1/2 corresponds to the time at which half of the deviation from the steady-state has been reduced. The corresponding
response time is given by

T50% =
log 2

k1S + k2
. (S1.11a)
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Second, f = (e − 1)/e ≈ 0.632 is also frequently used for which we obtain

T63.2% =
1

k1S + k2
. (S1.11b)

Lastly, a third definition concerns computing the time it takes for the response to travel from 10% to 90% of the difference between its
initial value A∗(0) and steady-state A∗ = k1SAT

k1S+k2
. In this case, we get

T90% − T10% =
log 9

k1S + k2
. (S1.11c)

S2 Transient solution and response time of two-tier cascades
In this section, we consider two-tier cascades of Fig. 1. Because activation and derepression are special cases of the concerted
mechanism, we concern ourselves only with the ODEs of a concerted mechanism here.

The ordinary differential equations (ODEs) that govern the dynamics are

dX∗

dt
= k1S(XT − X∗)− k2X∗, (S2.1a)

dY ∗

dt
=
(
k3 + k5X∗

) (
YT − Y ∗

)
−
(
k4 + k6

(
XT − X∗

))
Y ∗, (S2.1b)

with initial conditions

X∗(0) = 0, Y ∗(0) =
k3YT

k3 + k4 + k6XT
. (S2.1c)

The steady-states of X∗ and Y ∗ are computed by setting the derivatives to zero.

X∗ =
k1SXT

k1S + k2
, Y ∗ =

k3 + k5
k1SXT
k1S+k2

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

YT . (S2.2)

Recall that plugging k6 = 0 and k5 = 0, result in ODEs for the activation and derepression mechanisms, respectively. Furthermore, we
term the special case k5 = k6 as perfect concerted mechanism, where the activation and repression strengths match.

S2-A Transient solution
Analytical solutions for nonlinear ODEs such as those in (S2.1) typically do not exist. However, a careful look at (S2.1) shows that the
nonlinear term is (k5 − k6)X∗Y ∗. Thus for a special case when k5 = k6 (perfect concerted mechanism), the system is linear, which
exhibits analytical solution. The solutions for other cases can be computed numerically. We also provide an approximate solution
using linearization around the steady-state solution (X∗, Y ∗).

It turns out that the forms of the ODEs for the perfect concerted mechanism and the linearized system are similar. Therefore, we
consider the following generic system first and compute its transient solution.

dR1

dt
= η0 − η1R1, (S2.3a)

dR2

dt
= ξ0 + ξ1R1 − ξ2R2, (S2.3b)

with initial conditions (R1(0), R2(0)). LetR1[ω] andR2[ω] respectively denote the Laplace transforms of R1(t) and R2(t). Then we have
that

ωR1[ω]− R1(0) =
η0

ω
− η1R1[ω], (S2.4a)

ωR2[ω]− R2(0) =
ξ0

ω
+ ξ1R1[ω]− ξ2R2[ω]. (S2.4b)

Solving forR1[ω] andR2[ω]

R1[ω] =
η0

ω(ω + η1)
+

R1(0)
ω + η1

, (S2.5a)

R2[ω] =
ξ0

ω(ω + ξ2)
+

ξ1η0

ω(ω + η1)(ω + ξ2)
+

ξ1R1(0)
(ω + ξ2)(ω + η1)

+
R2(0)
ω + ξ2

. (S2.5b)
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Taking inverse Laplace transform gives

R1(t) =
η0

η1

(
1− e−η1t

)
+ R1(0)e−η1t , (S2.6a)

R2(t) =
ξ0 + ξ1

η0
η1

ξ2
+

(
R2(0)− ξ0

ξ2

)
e−ξ2t − η0ξ1

η1ξ2

(
η1e−ξ2t − ξ2e−η1t

η1 − ξ2

)
+ ξ1R1(0)

(
e−ξ2t − e−η1t

η1 − ξ2

)
. (S2.6b)

We can compute the steady-state solution by taking the limit t →∞:

R1 =
η0

η1
, (S2.6c)

R2 =
ξ0 + ξ1

η0
η1

ξ2
. (S2.6d)

The solution for the limiting case when η1 = ξ2 may also be obtained by taking the limit η1 → ξ2. Another special case, which is
more relevant for our discussion in this manuscript, is when the initial conditions are specified as R1(0) = 0 and R2(0) = ξ0

ξ2
. For this

case, we have the following

R1(t) =
η0

η1

(
1− e−η1t

)
, (S2.7a)

R2(t) =
ξ0 + ξ1

η0
η1

ξ2
− η0ξ1

η1ξ2

(
η1e−ξ2t − ξ2e−η1t

η1 − ξ2

)
. (S2.7b)

S2–A–a Transient solution for a perfect concerted model
A perfect concerted model is characterized by k5 = k6. Substituting k5 = k6 in (S2.1) results in

dX∗

dt
= k1SXT − (k1S + k2) X∗, (S2.8a)

dY ∗

dt
= k3YT + k6YT X∗ − (k3 + k4 + k6XT ) Y ∗, (S2.8b)

with initial condition (X∗(0), Y ∗(0)) =
(

0, k3YT
k3+k4+k6XT

)
. We note that the form of (S2.8) is same as that of (S2.3), with parameters

η0 = k1SXT , η1 = k1S + k2, ξ0 = k3YT , ξ1 = k6YT , and ξ2 = k3 + k4 + k6XT . Thus, we can use (S2.7) to get the transient solution

X∗(t) =
k1SXT

k1S + k2

(
1− e−(k1S+k2)t

)
, (S2.9a)

Y ∗(t) =
k3 + k6

k1SXT
k1S+k2

k3 + k4 + k6XT
YT −

k6
k1SXT
k1S+k2

k3 + k4 + k6XT
YT

(k1S + k2)e−(k3+k4+k6XT )t − (k3 + k4 + k6XT )e−(k1S+k2)t

k1S + k2 − (k3 + k4 + k6XT )
. (S2.9b)

For the special case when k1S + k2 = k3 + k4 + k6XT , we have

Y ∗(t) =
k3 + k6

k1SXT
k1S+k2

k3 + k4 + k6XT
YT −

k6
k1SXT
k1S+k2

k3 + k4 + k6XT
YT e−(k3+k4+k6XT )t (1 + (k3 + k4 + k6XT )t) . (S2.9c)

S2–A–b Approximate transient solution using linearization

The ODE system in (S2.1) contains the nonlinear term X∗Y ∗, which can be linearized around the steady-state solution (X∗, Y ∗) as

X∗Y ∗ ≈ Y ∗X∗ + X∗Y ∗ − X∗ Y ∗, (S2.10a)

where

X∗ =
k1SXT

k1S + k2
, (S2.10b)

Y ∗ =
k3 + k5

k1SXT
k1S+k2

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

YT . (S2.10c)

Substituting this for the nonlinear term in (S2.1), we get the following

dX∗

dt
= k1SXT − (k1S + k2)X∗, (S2.11a)

dY ∗

dt
=
(
k3YT + (k5 − k6)X∗ Y ∗

)
+
(
k5YT − (k5 − k6)Y ∗

)
X∗ − (k3 + k4 + k6XT + (k5 − k6)X∗)Y ∗. (S2.11b)
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These ODEs are similar to those in (S2.3). The parameters are: η0 = k1SXT , η1 = k1S + k2, ξ0 = k3YT + (k5 − k6)X∗ Y ∗, ξ1 =

k5YT − (k5 − k6)Y ∗, and ξ2 = k3 + k4 + k6XT + (k5 − k6)X∗. With the initial conditions (X∗(0), Y ∗(0)) =
(

0, k3YT
k3+k4+k6XT

)
, the solution

same as that in (S2.7) and is given by.

X∗(t) =
k1SXT

k1S + k2

(
1− e−(k1S+k2)t

)
, (S2.12a)

Y ∗(t) =
k3 + k5

k1SXT
k1S+k2

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

YT −
k1SXT

k1S + k2

(k4k5 + k3k6 + k5k6XT )YT(
k3 + k4 + k6XT + (k5 − k6) k1SXT

k1S+k2

)2×

(k1S + k2)e
−
(

k3+k4+k6XT +(k5−k6) k1SXT
k1S+k2

)
t −
(

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

)
e−(k1S+k2)t

k1S + k2 −
(

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

) . (S2.12b)

The special case when the timescales match may be computed by taking the limit of the above solution.

S2-B Response time
In this section, we compute the response times for the perfect concerted model and the linearized model. To this end, we recall that
the response time for a response R(t) is

TR =

∫∞
0 t

∣∣R − R(t)
∣∣ dt∫∞

0

∣∣R − R(t)
∣∣ dt

, (S2.13)

where R is the steady-state response. We use this definition to compute the response times for the generic ODE system considered in
(S2.3), whose solution is given by (S2.6). We then adapt the solution for our systems of interest, namely, the perfect concerted model
and the linearized model.

We begin by computing the response time for R1(t). The term R1 − R1(t) > 0 is

R1 − R1(t) =

(
η0

η1
− R1(0)

)
e−η1t . (S2.14)

Note that ∫ ∞
0

e−η1t dt =
1
η1

, (S2.15a)∫ ∞
0

t e−η1t dt =
1
η2

1
. (S2.15b)

Using these in (S2.13), we get

TR1 =
1
η1

. (S2.16)

It is worth noting that TR1 does not depend upon the initial condition R1(0) and is only defined if R1(0) 6= R1.
Next we compute the response time for R2(t). The term R2 − R2(t) > 0 is given by

R2 − R2(t) = −
(

R2(0)− ξ0

ξ2

)
e−ξ2t +

η0ξ1

η1ξ2

(
η1e−ξ2t − ξ2e−η1t

η1 − ξ2

)
− ξ1R1(0)

(
e−ξ2t − e−η1t

η1 − ξ2

)
. (S2.17)

The integrals of exponential terms in (S2.15) may be used to compute the integrals for the numerator and the denominator of the
response time. In particular, we have that

TR2 =

−
R2(0)− ξ0

ξ2
ξ2

2
+ η0ξ1
η1ξ2

(
η1
ξ2

2
− ξ2

η2
1

η1−ξ2

)
− ξ1R1(0)

1
ξ2

2
− 1

η2
1

η1−ξ2

−
R2(0)− ξ0

ξ2
ξ2

+ η0ξ1
η1ξ2

(
η1
ξ2
− ξ2

η1
η1−ξ2

)
− ξ1R1(0)

1
ξ2
− 1

η1
η1−ξ2

(S2.18a)

=
−

R2(0)− ξ0
ξ2

ξ2
2

+ η0ξ1(η2
1 +η1ξ2+ξ2

2 )
η3

1ξ
3
2

− ξ1R1(0)(η1+ξ2)
η2

1ξ
2
2

−
R2(0)− ξ0

ξ2
ξ2

+ η0ξ1(η1+ξ2)
η2

1ξ
2
2
− ξ1R1(0)

η1ξ2

(S2.18b)

=
−η3

1ξ2

(
R2(0)− ξ0

ξ2

)
+ η0ξ1(η2

1 + η1ξ2 + ξ2
2 )− η1ξ1ξ2(η1 + ξ2)R1(0)

−η3
1ξ

2
2

(
R2(0)− ξ0

ξ2

)
+ η0η1ξ1ξ2(η1 + ξ2)− η2

1ξ1ξ2
2R1(0)

. (S2.18c)
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We deduce several important insights from the above expression. First, we note that the response time TR2 depends upon the initial
conditions R1(0) and R2(0). Second, the dependence on R1(0) and R2(0) drops for the special case when R1(0) = 0 and R2(0) = ξ0

ξ2
.

In this case, TR2 simplifies to

TR2 =
η2

1 + η1ξ2 + ξ2
2

η1ξ2(η1 + ξ2)
. (S2.19)

Finally, if R1(0) is taken to be at the steady-state R1 = η0
η1

and R2(0) is set as R2(0) = ξ0
ξ2

, then we get

TR2 =
1
ξ2

. (S2.20)

With this in mind, it is convenient to express (S2.19) as

TR2 =
1
ξ2

+
ξ2

η1 + ξ2

1
η1

, (S2.21)

where the first-term is the response time if R1 were at steady-state, and the second term is the time-averaged TR1 .

S2–B–a Response time for a perfect concerted mechanism
For this case, we can simply adapt the results of (S2.16) and (S2.21).

TX∗ =
1

k1S + k2
, (S2.22a)

TY∗ =
1

k3 + k4 + k6XT
+

1
k1S + k2

× k3 + k4 + k6XT

k1S + k2 + k3 + k4 + k6XT
. (S2.22b)

S2–B–b Response time for the linear approximation
As with the response time for the perfect concerted mechanism, here too we adapt the results of (S2.16) and (S2.21).

TX∗ =
1

k1S + k2
, (S2.23a)

TY∗ =
1

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

+
1

k1S + k2
×

k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

k1S + k2 + k3 + k4 + k6XT + (k5 − k6) k1SXT
k1S+k2

. (S2.23b)

How good is the above approximation of response time? One check is to plug in k5 = k6 to obtain the approximation for the perfect
concerted model for which we have the exact expression of the response time in (S2.22). Indeed, substituting k5 = k6 in (S2.23) yields

TX∗ =
1

k1S + k2
, (S2.24a)

TY∗ =
1

k3 + k4 + k6XT
+

1
k1S + k2

× k3 + k4 + k6XT

k1S + k2 + k3 + k4 + k6XT
, (S2.24b)

which is exactly same as (S2.22). Thus the linear approximation is exact for the perfect concerted model. This is not surprising
because the perfect concerted model is linear by construction.A second check of how good the approximation in (S2.23) is through
numerical computation, which is discussed in a later section.

S2–B–c Response time for ratiometric signaling
Ratiometric signaling is the special case where the signaling output does not depend upon the total number of receptors XT . In the
main text, we show that when k3 = 0 and k4 = 0, then the response is independent of XT ((5)). Here we ask whether setting k3 = 0
and k4 = 0 also result in the response time indepedent from XT . To this end, we plug these values in the expression of TY∗ in (S2.23):

TY∗ =
1

k6XT + (k5 − k6) k1SXT
k1S+k2

+
1

k1S + k2
×

k6XT + (k5 − k6) k1SXT
k1S+k2

k1S + k2 + k6XT + (k5 − k6) k1SXT
k1S+k2

. (S2.25)

Clearly, the response time depends upon XT , thereby establishing that the ratiometric signaling is only applicable for the dose-
response. We further ask how XT affects the response time. To this end, the most convenient limit to check is when the receptor
dynamics is fast, i.e., k1S + k2 � k6XT + (k5 − k6) k1SXT

k1S+k2
, which gives us

TY∗ ≈
1

k6XT + (k5 − k6) k1SXT
k1S+k2

. (S2.26)
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Thus, if everything else is constant then increasing XT decreases the response time. Even when the receptor dynamics is not fast, we
can verify this effect by looking at the sign of the derivative of TY∗ with respect to X∗

dTY∗

dXT
= − (k1S + k2)5 + 2(k1S + k2)3(k2k6XT + k1Sk5XT )

XT (k2k6XT + k1Sk5XT )
(
(k1S + k2)2 + k2k6XT + k1Sk5XT

)2 < 0. (S2.27)

Thus increasing XT speeds up the response. Next, we discuss the numerical method to compute response time which we use to
validate our approximations.

S2–B–d Numerical computation of the response time
One convenience in using the center of mass definition of the response time

TY∗ =

∫∞
0 t

∣∣Y ∗ − Y ∗(t)
∣∣ dt∫∞

0

∣∣Y ∗ − Y ∗(t)
∣∣ dt

(S2.28)

is that it can be computer numerically via solution of an augmented ODE system

dX∗

dt
= k1S(XT − X∗)− k2X∗, (S2.29a)

dY ∗

dt
=
(
k3 + k5X∗

) (
YT − Y ∗

)
−
(
k4 + k6

(
XT − X∗

))
Y ∗, (S2.29b)

dV1

dt
= Y ∗ − Y ∗, (S2.29c)

dV2

dt
= 1, (S2.29d)

dV3

dt
= V1V2. (S2.29e)

Here V1(t), V2(t) and V3(t) are the augmented states to the original ODE system. The initial conditions are given by

(
X∗(0), Y ∗(0), V1(0), V2(0), V3(0)

)
=

0,
k3YT

k3 + k4 + k6XT
,

(
k3 + k5

k1SXT
k1S+k2

)
YT

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

− k3YT

k3 + k4 + k6XT
, 0, 0

 . (S2.29f)

Note that the state V1(t) computes the integral in the denominator upto a time horizon t , V2(t) tracks the time, and V3(t) computes the
numerator up to time horizon t . If we choose t to be large enough such that the system has reached saturation, then V3(t)

V1(t) computes
the response time. It is easy to see that the approximation gets better with a larger t . We can use the approximation of response time
in (S2.23) to set a time for the integration.

S3 Stochastic analysis of two-tier cascades
Here we consider a two-tier model for signal transduction as described in Table 1 in the main text. Let Pm,n(t) denote the probability of
finding m molecules of X∗ and n molecules of Y ∗ at time t . Then, we can write the chemical master equation (CME) that describes
the time evolution of Pm,n

dPm,n(t)
dt

= k1S(XT − (m − 1))Pm−1,n + k2(m + 1)Pm+1,n + k3(YT − (n − 1))Pm,n−1

+ k5m(YT − (n − 1))Pm,n−1 + k4(n + 1)Pm,n+1 + k6(XT −m)(n + 1)Pm,n+1

− (k1S(XT −m) + k2m + k3(YT − n) + k5m(YT − n) + k4n + k6(XT −m)n) Pm,n, (S3.1)

where m = 0, 1, ... , XT and n = 0, ... , YT [60,79]. It is often difficult to analytically solve the CME. Because the dynamics of X∗ is linear
and it does not depend upon Y ∗, it is possible to provide an analytical solution Pm. As for Pm,n, we only provide approximate and exact
computations of its first two moments.

S3-A Stochastic solution to receptor dynamics
The CME that governs the time evolution of Pm(t) is:

dPm(t)
dt

= k1S (XT − (m − 1)) Pm−1(t) + k2(m + 1)Pm+1(t)− (k1S (XT −m) + k2m) Pm(t). (S3.2)

We define a generating function

G(z) =
∞∑

m=0

zmPm, |z| ≤ 1 (S3.3)
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to solve (S3.2). Multiplying both sides by zm and summing over m yields

∂G
∂t

= k1SXT

∞∑
m=0

zmPm−1 − k1S
∞∑

m=0

zm (m − 1) Pm−1 + k2

∞∑
m=0

zm (m + 1) Pm+1 − k1SXT

∞∑
m=0

zmPm + (k1S − k2)
∞∑

m=0

zmmPm. (S3.4)

The above equation becomes the following partial differential equation (PDE)

∂G
∂t

= k1SXT (z − 1)G +
(
−k1Sz2 + k2 + (k1S − k2) z

) ∂G
∂z

. (S3.5)

We solve this PDE using method of characteristics, assuming the initial condition G(z, 0) = 1 which corresponds to 0 molecules of X∗.
The solution is given by

G(z, t) =

(
1− k1S

k1S + k2

(
1− e−(k1S+k2)t

)
+

k1S
k1S + k2

z
(
1− e−(k1S+k2)t

))XT

. (S3.6)

Using Binomial theorem, the above expression can be written as

G(z, t) =
XT∑

m=0

(
XT

m

)(
k1S

k1S + k2

(
1− e−(k1S+k2)t

))m (
1− k1S

k1S + k2

(
1− e−(k1S+k2)t

))XT−m

zm. (S3.7)

The probability Pm(t) is given by the coefficient of zm

Pm(t) =

(
XT

m

)(
k1S

k1S + k2

(
1− e−(k1S+k2)t

))m (
1− k1S

k1S + k2

(
1− e−(k1S+k2)t

))XT−m

. (S3.8)

The stationary distribution Pm is computed by taking limit t →∞

Pm =

(
XT

m

)(
k1S

k1S + k2

)m (
1− k1S

k1S + k2

)XT−m

, (S3.9)

which is a Binomial distribution with parameters XT and k1S
k1S+k2

[80]. The stationary moments of this distribution are given by

〈X∗〉 =
k1SXT

k1S + k2
, (S3.10a)〈

X∗2
〉
− 〈X∗〉2 =

k1Sk2XT

(k1S + k2)2
, (S3.10b)

CV 2
X∗ =

〈
X∗2
〉
− 〈X∗〉2

〈X∗〉2
=

k2

k1SXT
. (S3.10c)

S3-B Moment dynamics
We are specifically concerned with moments of the two-tier model. To this end, we take the well-established approach of using the
ODEs that govern the moment dynamics (e.g., see [62,64]). A generic moment may be written as

d 〈X∗m1 Y ∗m2〉
dt

=
〈
k1S(XT − X∗)

(
(X∗ + 1)m1 Y ∗m2 − X∗m1 Y ∗m2

)〉
+
〈
k2X∗

(
(X∗ − 1)m1 Y ∗m2 − X∗m1 Y ∗m2

)〉
+
〈(

k3 + k5X∗
)

(YT − Y ∗)
(
X∗m1 (Y ∗ + 1)m2 − X∗m1 Y ∗m2

)〉
+
〈(

k4 + k6(XT − X∗)
)

Y ∗
(
X∗m1 (Y ∗ − 1)m2 − X∗m1 Y ∗m2

)〉
. (S3.11)

Here we have used 〈.〉 to denote the expected value of a random variable. Our focus in this work is to compute the first two moments
in steady-state. However, due to the nonlinearity X∗Y ∗ in these equations, the moment dynamics is not closed in that a lower-order
moment depends upon a higher-order moment [62–64]. It turns out that for the special case k5 = k6 (perfect concerted model), the
moments may be computed exactly. We provide approximate formulas for moments using a linear approximation when k5 6= k6.

S3–B–a Moment computation for a perfect concerted model
For the concerted model, k5 = k6. Let us write moment dynamics for first two moments.

d 〈X∗〉
dt

= k1SXT − (k1S + k2) 〈X∗〉 , (S3.12a)

d 〈Y ∗〉
dt

= k3YT + k6YT 〈X∗〉 − (k3 + k4 + k6XT ) 〈Y ∗〉 , (S3.12b)

d
〈
X∗2
〉

dt
= k1SXT + (k1S(2XT − 1) + k2) 〈X∗〉 − 2(k1S + k2)

〈
X∗2
〉

, (S3.12c)

d 〈X∗Y ∗〉
dt

= k3YT 〈X∗〉 + k1SXT 〈Y ∗〉 + k6YT
〈
X∗2
〉
− (k1S + k2 + k3 + k4 + k6XT ) 〈X∗Y ∗〉 , (S3.12d)

d
〈
Y ∗2
〉

dt
= k3YT + k6YT 〈X∗〉 + (k3(2YT − 1) + k4 + k6XT ) 〈Y ∗〉 + 2k6(YT − 1) 〈X∗Y ∗〉 − 2(k3 + k4 + k6XT )

〈
Y ∗2
〉

. (S3.12e)
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We can solve for steady-state moments by setting each of the derivatives equal to zero. For example, the means are given by

〈X∗〉 =
k1S

k1S + k2
XT , (S3.13a)

〈Y ∗〉 =
k3 + k6 〈X∗〉

k3 + k4 + k6XT
YT =

k3 + k6
k1S

k1S+k2
XT

k3 + k4 + k6XT
YT . (S3.13b)

Next, we compute second order moments.
〈
X∗2
〉

is given by

〈
X∗2
〉

=

(
k1S

k1S + k2
XT

)2

+
k1Sk2XT

(k1S + k2)2
, (S3.14)

where the first term is 〈X∗〉2. The cross moment 〈X∗Y ∗〉 is

〈X∗Y ∗〉 =
k1Sk2k6XT YT

(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT )
+

(
k1S

k1S + k2
XT

)(
k3 + k6

k1S
k1S+k2

XT

k3 + k4 + k6XT
YT

)
. (S3.15)

Here the second term is 〈X∗〉 〈Y ∗〉. Finally, the second order moment
〈
Y ∗2
〉

in terms of the other moments is

〈
Y ∗2
〉

=
k3YT

2(k3 + k4 + k6XT )
+

k6YT 〈X∗〉
2(k3 + k4 + k6XT )

+
(k3(2YT − 1) + k4 + k6XT ) 〈Y ∗〉

2(k3 + k4 + k6XT )
+

2k6(YT − 1)) 〈X∗Y ∗〉
2(k3 + k4 + k6XT )

(S3.16a)

=
k3YT + k4 + k6XT

k3 + k4 + k6XT
〈Y ∗〉 +

k6(YT − 1) 〈X∗Y ∗〉
k3 + k4 + k6XT

. (S3.16b)

Using the moments computed above, we can compute the centered moments. For example, the variance of X∗ is〈
X∗2
〉
− 〈X∗〉2 =

k1Sk2XT

(k1S + k2)2
, (S3.17)

the centered cross moment is

〈X∗Y ∗〉 − 〈X∗〉 〈Y ∗〉 =
k1Sk2k6XT YT

(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT )
, (S3.18)

and the variance of Y ∗ is

〈
Y ∗2
〉
− 〈Y ∗〉2 =

(
k3YT + k4 + k6XT

k3 + k4 + k6XT

)(
k3 + k6

k1S
k1S+k2

XT

k3 + k4 + k6XT
YT

)
+

k6(YT − 1)
k3 + k4 + k6XT

×

(
k1Sk2k6XT YT

(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT )
+

k1SXT

k1S + k2

k3 + k6
k1S

k1S+k2
XT

k3 + k4 + kXT
YT

)
−

(
k3 + k6

k1S
k1S+k2

XT

k3 + k4 + k6XT
YT

)2

. (S3.19)

We use the centered moments computed above to quantify noise in X∗ and Y ∗ using coefficient of variation squared.

Coefficient of variation squared. Let CV 2
X∗ and CV 2

Y∗ respectively are the coefficient of variation squared for X∗ and Y ∗. Then

CV 2
X∗ =

〈
X∗2
〉
− 〈X∗〉2

〈X∗〉2
=

k2

k1SXT
, (S3.20)

and

CV 2
Y∗ =

〈
Y ∗2
〉
− 〈Y ∗〉2

〈Y ∗〉2
(S3.21)

=

(
k3YT + k4 + k6XT

k3 + k4 + k6XT

)(
k3 + k6

k1S
k1S+k2

XT

k3 + k4 + k6XT
YT

)
1

Y 2
T

(
k3 + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

)2

+
1

Y 2
T

(
k3 + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

)2
k6(YT − 1)

k3 + k4 + k6XT

(
k1Sk2k6XT YT

(k1S + k2)2(k1S + k2 + k3 + k4 + k6XT )

)

+
1

Y 2
T

(
k3 + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

)2
k6(YT − 1)

k3 + k4 + k6XT

(
k1SXT

k1S + k2

k3 + k6
k1S

k1S+k2
XT

k3 + k4 + k6XT
YT

)
− 1. (S3.22)
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On simplifying, we get

CV 2
Y∗ =

1
YT

k3YT + k4 + k6XT

k3 + k6
k1S

k1S+k2
XT

+
YT − 1

YT

k6 (k3 + k4 + k6XT ) (k1Sk2k6XT )

(k1S + k2)2
(

k3 + k6
k1S

k1S+k2
XT

)2
(k1S + k2 + k3 + k4 + k6XT )

+
YT − 1

YT

k6k1SXT(
k3 + k6

k1S
k1S+k2

XT

)
(k1S + k2)

. (S3.23)

Decomposing the coefficient of variation squared into different sources. We expect that CV 2
Y∗ has two sources of noise:

activation/deactivation events for X∗ and activation/deactivation events for Y ∗. To tease out the contribution from activation/deactivation
events for Y ∗, we consider a scenario the dynamics of X∗ is deterministic. In this case, the moment dynamics is given by

dX∗

dt
= k1SXT − (k1S + k2)X∗, (S3.24a)

d 〈Y ∗〉
dt

= k3YT + k6YT X∗ − (k3 + k4 + kXT ) 〈Y ∗〉 , (S3.24b)

d
〈
Y ∗2
〉

dt
= k3YT + k6YT X∗ + (k3(2YT − 1) + k4 + k6XT ) 〈Y ∗〉 + 2k6(YT − 1)X∗ 〈Y ∗〉 − 2(k3 + k4 + k6XT )

〈
Y ∗2
〉

. (S3.24c)

The steady-state solution for the coefficient of variation squared computed from these equations is given by

CV 2
Y∗
∣∣
act ./deact .

=
1

YT

k4 + k6XT
k2

k1S+k2

k3 + k6XT
k2

k1S+k2

. (S3.25)

We do not provide detailed calculations here. One sanity check is that this expression is consistent with coefficient of variation squared
for a binomial distribution, which is expected if X∗ were constant.

Subtracting (S3.25) from (S3.23), we obtain the contribution of noise in X∗ to noise in Y ∗:

CV 2
Y∗ − CV 2

Y∗
∣∣
act ./deact .

=
YT − 1

YT

(k3 + k4 + k6XT )(k1Sk2k2XT )

(k1S + k2 + k3 + k4 + k6XT )(k1S + k2)2
(

k3 + k6XT
k1S

k1S+k2

)2 . (S3.26)

We expect that the term on the right hand side should have contribution from CV 2
X∗ , which is time-averaged. Recall (S2.22) that

k1S + k2 is response time of the receptor and that k3 + k4 + k6XT is response time of the switch if the receptor dynamics is fast. Thus,
k3+k4+k6XT

k1S+k2+k3+k4+k6XT
can be interpreted as the timescale averaging. Therefore, we write

CV 2
Y∗ =

1
YT

k4 + k6XT
k2

k1S+k2

k3 + k6XT
k1S

k1S+k2︸ ︷︷ ︸
contribution from act./deact. of Y∗

+
k3 + k4 + k6XT

k1S + k2 + k3 + k4 + k6XT︸ ︷︷ ︸
time-averaging

YT − 1
YT

(
k6XT

k1S
k1S+k2

k3 + k6XT
k1S

k1S+k2

)2

︸ ︷︷ ︸
coupling

CV 2
X∗ , (S3.27)

where CV 2
X∗ = k2

k1SXT
.

S3–B–b Approximate moment dynamics using linear approximation
As discussed earlier, the moment dynamics is not closed when k5 − k6 is non-zero. To estimate moments, we first linearize the
nonlinear term around the solution of the deterministic model [81]. Let (X∗det , Y ∗det ) be solution to the ODE model

dX∗det

dt
= k1SXT − (k1S + k2)X∗det , (S3.28a)

dY ∗det

dt
= k3YT + k5YT X∗det − (k3 + k4 + k6X∗det )Y

∗
det − (k5 − k6)X∗det Y

∗
det . (S3.28b)

The stochastic model with linearized propensity is shown in Table 2.
The second order moments with the above linearized propensity model satisfy the following differential equations

d
〈
X∗2
〉

dt
= k1SXT + (2k1SXT − k1S + k2) X∗det − 2(k1S + k2)

〈
X∗2
〉

, (S3.29a)

d 〈X∗Y ∗〉
dt

=
(
k3YT + k5X∗det Y

∗
det − k6X∗det Y

∗
det

)
X∗det + k1SXT Y ∗det +

(
k5YT − k5Y ∗det + k6Y ∗det

) 〈
X∗2
〉

−
(
k1S + k2 + k3 + k4 + k5X∗det + k6XT − k6X∗det

)
〈X∗Y ∗〉 , (S3.29b)

d
〈
Y ∗2
〉

dt
= k3YT + k5X∗det Y

∗
det + k6X∗det Y

∗
det +

(
k5YT − k5Y ∗det − k6Y ∗det

)
X∗det

+
(
2k3YT − k3 + k4 + 2k5X∗det Y

∗
det − k5X∗det + k6XT − k6X∗det

)
Y ∗det + 2

(
k5YT − k5Y ∗det + k6Y ∗det

)
〈X∗Y ∗〉

− 2
(
k3 + k4 + k5X∗det + k6XT − k6X∗det

) 〈
Y ∗2
〉

. (S3.29c)
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Event Update Transition rate

X → X∗ X∗ 7→ X∗ + 1 k1S(XT − X∗)
X∗ → X X∗ 7→ X∗ − 1 k2X∗

Y → Y ∗ Y ∗ 7→ Y ∗ + 1 (k3YT + k5YT X∗)− k3Y ∗ − k5
(
Y ∗det X

∗ + X∗det Y
∗ − X∗det Y

∗
det

)
Y ∗ → Y Y ∗ 7→ Y ∗ − 1 (k4 + k6XT )Y ∗ − k6

(
Y ∗det X

∗ + X∗det Y
∗ − X∗det Y

∗
det

)
Table 2: Transitions and associated rates for the stochastic model.

Computing these moment equations, along with the solutions to the deterministic dynamics, approximates the moments. Using a
symbolic solver to solve for moments in steady-state, we get the following for the coefficient of variation of X∗.

CV 2
X∗ =

k2

k1SXT
. (S3.30)

The formula for CV 2
Y∗ can be obtained in the same manner as done for the perfect concerted model and is given by

CV 2
Y∗ ≈

1
YT

k4 + k6XT
k2

k1S+k2

k3 + k5XT
k1S

k1S+k2︸ ︷︷ ︸
contribution from act./deact. of Y∗

+

k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

k1S + k2 + k3 + k4 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2︸ ︷︷ ︸
time-averaging

×

(
k1SXT
k1S+k2

)2
(k4k5 + k6(k3 + k5XT ))2(

k3 + k5
k1SXT
k1S+k2

)2 (
k3 + k4 + k5

k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

)2

︸ ︷︷ ︸
coupling

CV 2
X∗ . (S3.31)

Because we already have exact moment formulas when k5 = k6, we can immediately check the validity of linear approximation for
that case. Plugging k5 = k6 shows that the noise approximation above differs from (S3.27) by a factor (YT − 1)/YT that multiplies
CV 2

Y∗ . Typically (YT − 1)/YT ≈ 1 for large YT , indicating that our linear approximation is reasonably good for a concerted model.

S3–B–c Coefficient variation squared for ratiometric signaling
For ratiometric signaling, in which the steady-state response does not depend upon the total number of receptors XT , we need k3 = 0
and k4 = 0. Substituting these in the expression of CV 2

Y∗ in (S3.31), we get

CV 2
Y∗ ≈

1
YT

k2k6

k1Sk5
+

k2
6(

k1S + k2 + k5
k1SXT
k1S+k2

+ k6
k2XT

k1S+k2

)(
k1Sk5

k1S+k2
+ k2k6

k1S+k2

) k2

k1S
. (S3.32)

Thus, increasing XT decreases overall noise because XT increases the denominator terms in the above above formula. Next, we
provide exact computation of moments using a semi-analytical approach.

S3–B–d Exact moment computation
Our goal here is to compute the first two moments of Y ∗. As discussed earlier, a moment of lower order depends upon moments of
higher order, resulting in the problem of moment closure. Here, we exploit the fact that XT is finite to come up with an alternate state
space where moment dynamics is closed. The computations follow the formalism proposed in [65]. Another closely related method is
the method of conditional moments described in [82].

Let us define indicator variables bi , i = 0, 1, ... , XT as

bi =

{
1, X∗ = i ,

0, otherwise .
(S3.33a)

It then follows that
XT∑
i=0

bi = 1, bibj = 0, i 6= j , b2
i = bi . (S3.33b)

We now recast our original model in the new state-space
[
b0 b1 ... bXT Y ∗

]>
. The transitions (i.e., reactions) and the corre-

sponding transition intensities are as follows.

1. Receptor activation: the transition intensity of a receptor activation event is given by
∑XT

i=0 k1bi (XT − i). Whenever this event
occurs, the states reset as[

b0 b1 ... bXT Y ∗
]> 7→ [

b0 b1 ... bXT Y ∗
]> − XT−1∑

i=0

bi
[
ei Y ∗

]>
+

XT−1∑
i=0

bi
[
ei+1 Y ∗

]>
,
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where ei is a column vector of dimension XT + 1, with all zeros except at the i th position. This reset map simplifies to[
b0 b1 b2 ... bXT−1 bXT Y ∗

]> 7→ [
0 b0 b1 ... bXT−2 bXT−1 + bXT Y ∗

]>
. (S3.34a)

2. Receptor deactivation: the transition intensity is given by
∑XT

i=0 bik2i , with the map

[
b0 b1 ... bXT Y ∗

]> 7→ [
b0 b1 ... bXT Y ∗

]> − XT∑
i=1

bi
[
ei Y ∗

]>
+

XT∑
i=1

bi
[
ei−1 Y ∗

]>
.

The reset map further simplifies to[
b0 b1 b2 ... bXT−1 bXT Y ∗

]> 7→ [
b0 + b1 b2 b3 ... bXT 0 Y ∗

]>
. (S3.34b)

3. State Y ∗ to Y ∗ + 1 occurs with transition intensity
∑XT

i=0 k3bi (YT − Y ∗) +
∑XT

i=0 k5ibi (YT − Y ∗) and map

XT∑
i=0

bi
[
b0 b1 ... bXT Y ∗

]> 7→ XT∑
i=0

bi
[
b0 b1 ... bXT Y ∗ + 1

]>
,

which results in [
b0 b1 b2 ... bXT−1 bXT Y ∗

]> 7→ [
b0 b1 b2 ... bXT−1 bXT Y ∗ + 1

]>
. (S3.34c)

4. State Y ∗ to Y ∗ − 1 occurs with transition intensity
∑XT

i=0 k4biY ∗ +
∑XT

i=0 k6XT biY ∗ −
∑XT

i=0 k6ibiY ∗ and map

XT∑
i=0

bi
[
b0 b1 ... bXT Y ∗

]> 7→ XT∑
i=0

bi
[
b0 b1 ... bXT Y ∗ − 1

]>
.

On simplifying, the above map becomes[
b0 b1 b2 ... bXT−1 bXT Y ∗

]> 7→ [
b0 b1 b2 ... bXT−1 bXT Y ∗ − 1

]>
. (S3.34d)

We can now write the dynamics of moments of the form 〈biY ∗m〉 for m = 0, 1, 2. Let us begin with 〈bi〉.

d 〈b0〉
dt

= −k1XT 〈b0〉 + k2 〈b1〉 , (S3.35a)

d 〈bi〉
dt

= k1 (XT − i + 1) 〈bi−1〉 − k1 (XT − i) 〈bi〉 + k2(i + 1) 〈bi+1〉 − k2i 〈bi〉 , 1 ≤ i ≤ XT − 1, (S3.35b)

d 〈bXT 〉
dt

= k1 〈bXT−1〉 − k2XT 〈bXT 〉 . (S3.35c)

Recalling the definition of bi , we note that 〈bi〉 is same as the probability that X∗ = i . We have solved these equations in a slightly
different notation in (S3.8). Therefore, the solution to these ODEs is

〈bi〉 =

(
XT

i

)(
k1

k1 + k2

(
1− e−(k1+k2)t

))i (
1− k1

k1 + k2

(
1− e−(k1+k2)t

))XT−i

. (S3.36)

Next, we write the dynamics for 〈biY ∗〉.

d 〈b0Y ∗〉
dt

= − (k1XT + k3 + k4 + k6XT ) 〈b0Y ∗〉 + k2 〈b1Y ∗〉 + k3YT 〈b0〉 , (S3.37a)

d 〈biY ∗〉
dt

= k1 (XT − i + 1) 〈bi−1Y ∗〉 − (k1 (XT − i) + k2i + k3 + k4 + k5i + k6 (XT − i)) 〈biY
∗〉 + k2(i + 1) 〈bi+1Y ∗〉

+ k3YT 〈bi〉 + k5YT i 〈bi〉 , 1 ≤ i ≤ XT − 1, (S3.37b)

d 〈bXT Y ∗〉
dt

= k1 〈bXT−1Y ∗〉 − (k2XT + k3 + k4 + k5XT ) 〈bXT Y ∗〉 + k3YT 〈bXT 〉 + k5YT XT 〈bXT 〉 . (S3.37c)
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Finally, the ODEs describing the time evolution of
〈
biY ∗2

〉
are as follows.

d
〈
b0Y ∗2

〉
dt

= −k1XT
〈
b0Y ∗2

〉
+ k2

〈
b1Y ∗2

〉
+ k3YT 〈b0〉 + (−k3 + k4 + k6XT + 2k3YT ) 〈b0Y ∗〉 − (2k3 + 2k4 + 2k6XT )

〈
b0Y ∗2

〉
,

(S3.38a)

d
〈
biY ∗2

〉
dt

= k1 (XT − i + 1)
〈
bi−1Y ∗2

〉
− k1 (XT − i)

〈
biY
∗2〉 + k2(i + 1)

〈
bi+1Y ∗2

〉
− k2i

〈
biY
∗2〉

+ (k3YT + k5YT i) 〈bi〉 + (−k3 − k5i + k4 + k6XT − k6i + 2k3YT + 2k5YT i) 〈biY
∗〉

− (2k3 + 2k5i + 2k4 + 2k6XT − 2k6i)
〈
biY
∗2〉 , 1 ≤ i ≤ XT − 1, (S3.38b)

d
〈
bXT Y ∗2

〉
dt

= k1
〈
bXT−1Y ∗2

〉
− k2XT

〈
bXT Y ∗2

〉
+ (k3YT + k5YT XT ) 〈bi〉 + (−k3 − k5XT + k4 + 2k3YT + 2k5YT XT ) 〈biY

∗〉

− (2k3 + 2k5XT + 2k4)
〈
biY
∗2〉 . (S3.38c)

These ODEs require initial condition to compute transient moments which we discuss below.

Setting initial condition. In absence of stimulus, we have that 〈b0〉=1, because no receptors should be active. All other 〈bi〉 = 0.
Furthermore, 〈biY ∗〉 = 〈bi〉 〈Y ∗〉 and

〈
biY ∗2

〉
= 〈bi〉 〈Y ∗2〉. Therefore the mean and the second moment at time t = 0 are given by

the first two moments of the Binomial distribution with parameters k3
k3+k4+k6XT

and YT . Therefore, the initial condition is

〈b0Y ∗〉 =
k3

k3 + k4 + k6XT
YT ,

〈
b0Y ∗2

〉
=

k2
3 Y 2

T + k3(k4 + k6XT )YT

(k3 + k4 + k6XT )2
. (S3.39)

Semi-analytical solution using linear algebra. Let µ0 =
[
〈b0〉 〈b1〉 ... 〈bXT 〉

]>
be the collection of the moments of bi . Then

the ODEs can be compactly written as
dµ0

dt
= M0µ0, (S3.40)

which has the solution µ0(t) = eM0tµ0(0). We also note that
∑

i 〈bi〉 = 1 at all times.
The matrix M0 is tridiagonal, but its inverse does not exist. This does not affect computation of the transient solution as long as we

respect the constraint that all 〈bi〉 sum up to one. For steady-state solution, however, we have to solve

M0µ0 = 0, (S3.41)

which only exhibits a trivial solution µ0 = 0. To force the summation requirement, we reduce the system such that we get rid of the
last equation corresponding to 〈bXT 〉. We then substitute 〈bXT 〉 = 1 −

∑XT−1
i=0 〈bi〉 wherever we have 〈bXT 〉. This gives us a reduced

system of equation

M̃0µ̃0 + c = 0, (S3.42)

which can be straightforwardly solved using standard linear algebra tools.
It is important to note that we already know the transient as well as the stationary solution for these equations - since 〈bi〉 are

probabilities. However, we present the linear algebra approach for completeness. We will this approach to compute the higher order
moments for which analytical solutions are not known.

Let us now solve for the moments 〈biY ∗〉. To this end, we collect all the required moments in µ1 defined as

µ1 =
[
〈b0〉 ... 〈bXT 〉 〈b0Y ∗〉 ... 〈bXT Y ∗〉 .

]
(S3.43)

The corresponding ODE system is then
dµ1

dt
=

[
M0 0
M10 M11

]
µ1 (S3.44)

As before, we can now compute the solution using matrix exponential. For the moments
〈
biY ∗2

〉
, we can similarly define µ2

µ2 =
[
〈b0〉 ... 〈bXT 〉 〈b0Y ∗〉 ... 〈bXT Y ∗〉

〈
b0Y ∗2

〉
...

〈
bXT Y ∗2

〉
.
]

(S3.45)

Then we can write the ODE system:

dµ2

dt
=

M0 0 0
M10 M11 0
M20 M21 M22

µ2. (S3.46)
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S4 Effect of receptor internalization

S4-A Simple model
Let us begin with a simple model that includes the production of inactive receptors with rate kp, removal of inactive receptors with rate
kd and removal of active receptors of k∗d . The ODE model for the set up is

dX
dt

= kp − kd X − k1SX + k2X∗ (S4.1a)

dX∗

dt
= k1SX − k2X∗ − k∗d X∗ (S4.1b)

dY ∗

dt
= (k3 + k5X∗)(YT − Y ∗)− (k4 + k6X )Y ∗. (S4.1c)

Let us first determine the initial condition before the stimulus arrives. In this case, we have

X (0) =
kp

kd
, X∗(0) = 0, Y ∗(0) =

k3

k3 + k4 + k6kp

kd

. (S4.2)

Also, the steady-state solution is

X =
kp

kd + k1Sk∗d
k2+k∗d

, X∗ =
k1S

k2 + k∗d

kp

kd + k1Sk∗d
k2+k∗d

, Y ∗ =

k3 + k5
k1S

k2+k∗d

kp

kd +
k1Sk∗d
k2+k∗d

k3 + k4 + k6kp

kd +
k1Sk∗d
k2+k∗d

YT . (S4.3)

stimulus

X X*

Y Y*

k1

k2

k6

k5

k4

k3

kp

kd

k*
d ØØ

Figure S4.1: Concerted mechanism with receptor production and degradation.

S4-B Solution to receptor dynamics
Our goal here is to examine the effect of receptor removal on different signaling mechanisms. To that end, let us first compute the
dynamics at the receptor level.

dX
dt

= kp − kd X − k1SX + k2X∗, (S4.4a)

dX∗

dt
= k1SX − k2X∗ − k∗d X∗. (S4.4b)

Let X [ω] and X ∗[ω] respectively denote the Laplace transforms of X (t) and X∗(t). Taking the initial conditions as (X (0), X∗(0)) =(
kp

kd
, 0
)

, the Laplace transforms of above ODEs results in the following algebraic relations

ωX [ω]− kp

kd
=

kp

ω
− (k1S + kd )X [ω] + k2X ∗[ω], (S4.5a)

ωX ∗[ω] = k1SX [ω]− (k2 + k∗d )X ∗[ω]. (S4.5b)

The solution for X [ω] and X ∗[ω] is

X [ω] =
kp

kd
(ω + k2 + k∗d ) + kp

ω2 + 2ζκω + κ2
+

kp(k2 + k∗d )
ω(ω2 + 2ζκω + κ2)

, (S4.6a)

X ∗[ω] =
k1kpS

kd

ω2 + 2ζκω + κ2
+

k1kpS
ω(ω2 + 2ζκω + κ2)

, (S4.6b)
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where we have used the following notation

ζ =
k1S + k2 + kd + k∗d

2
√

(k1S + kd )(k2 + k∗d )− k1Sk2
, (S4.7a)

κ =
√

(k1S + kd )(k2 + k∗d )− k1Sk2. (S4.7b)

The roots of the term ω2 + 2ζκω + κ2 are
ω1,2 = κ(−ζ ±

√
ζ2 − 1). (S4.8a)

The following usual relations hold for ω1 and ω2:

ω1 + ω2 = −2κζ, (S4.8b)

ω1ω2 = κ2, (S4.8c)

ω1 − ω2 = 2κ
√
ζ2 − 1. (S4.8d)

It is easier to take the inverse Laplace transform of X ∗[ω] in order to compute X∗(t):

X∗(t) =
k1kpS
κ2

+ c∗1 eω1t + c∗2 eω2t . (S4.9a)

Here the terms c∗1 and c∗2 are

c∗1 =
k1S

2κ
√
ζ2 − 1

(
kp

kd
+

kpω2

κ2

)
, c∗2 = − k1S

2κ
√
ζ2 − 1

(
kp

kd
+

kpω1

κ2

)
. (S4.9b)

Using the solution of X∗(t), X (t) can also be computed as follows.

X (t) =
1

k1S
dX∗

dt
+

k2 + k∗d
k1S

X∗ (S4.10a)

=
1

k1S

(
c∗1ω1eω1t + c∗2ω2eω2t

)
+

k2 + k∗d
k1S

(
k1kpS
κ2

+ c∗1 eω1t + c∗2 eω2t

)
(S4.10b)

=
kp(k2 + k∗d )

κ2
+

(
c∗1ω1 + c∗1 (k2 + k∗d )

k1S

)
eω1t +

(
c∗2ω2 + c∗2 (k2 + k∗d )

k1S

)
eω2t . (S4.10c)

Having determined these solutions, we next provide a lower bound on ζ. It is worth noting that ζ > 1 implies that the roots ω1,2 are
real.

A lower bound for ζ. The parameter ζ defined in (S4.7) is always greater than one, regardless of the choice of parameters. To see
this, we look at ζ2

ζ2 =

(
k1S + k2 + kd + k∗d

)2

4
(
k2kd + kd k∗d + k1k∗d S

) (S4.11a)

=
(k1S + kd )2 + (k2 + k∗d )2 + 2(k1S + kd )(k2 + k∗d )

4
(
(k1S + kd )(k2 + k∗d )− k1Sk2

) . (S4.11b)

This implies that

(k1S + kd )2 + (k2 + k∗d )2 + (2− 4ζ2)(k1S + kd )(k2 + k∗d ) + 4ζ2k1Sk2 = 0 (S4.11c)

=⇒
(
(k1S + kd )− (k2 + k∗d )

)2
+ (4− 4ζ2)(k1S + kd )(k2 + k∗d ) + 4ζ2k1Sk2 = 0. (S4.11d)

Because all terms in the above equation are positive, except may be for 4 − 4ζ2, a real solution for ζ exists only if 4 − 4ζ2 < 0.
Therefore, ζ > 1. Consequently, the roots ω1 and ω2 defined in (S4.8a) are negative and satisfy

ω2 < ω1 < 0, |ω1| < |ω2|. (S4.12)

S4-C Effect of relative timescales
It is noteworthy that both X and X∗ have two timescales for relaxing to their respective steady-states, determined by ω1 and ω2.
Because |ω2| > |ω1|, we refer to the timescale set by ω2 as fast timescale and the one set by ω1 as the slow timescale. The parameter
ζ controls the difference between the magnitudes of ω1 and ω2. What is the impact of these two timescales on the trajectories of X (t)
and X∗(t)?
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Let us first consider X∗(t) given by (S4.9a). At t = 0, the trajectory begins from X∗(0) = 0. Consider a scenario where ζ → 1,
implying that ω1 ≈ ω2

X∗(t) ≈ k1kpS
κ2

− k1kpS
κ2

e−κt , (S4.13)

which increases over time to reach the steady-state k1kpS
κ2 . Suppose that ζ is now increased. The terms c∗1 and c∗2 relax with different

timescales. Specifically, c∗1 relaxes at a slower timescale than c∗2 . Because c∗1 +c∗2 = − k1kpS
κ2 < 0, at least one of has to be positive. If we

choose a large ζ such that at a small time t ′, the contribution from c∗1 does not change whereas c∗2 term reaches its “quasi-stationary"
value. The solution for t < t ′ can then be approximated as

X∗(t) ≈ k1kpS
κ2

+ c∗1 + c∗2 e−(κζ−κ
√
ζ2−1)t = −c∗2 + c∗2 e−(κζ−κ

√
ζ2−1)t . (S4.14)

If we assume that c∗2 < 0, then the quasi-stationary solution is given by

X∗(t ′) ≈ −c∗2 > 0. (S4.15)

Although this analysis is not rigorous, it equips us with requirements to obtain a response that first attains a peak value above its final
steady-state value. Specifically, we need that the coefficient c∗2 that multiplies the fast timescale exponential term be negative and its
magnitude should be greater than the final steady-state. In other words, we need:

c∗1 + c∗2 = −k1kpS
κ2

, c∗2 < 0, |c∗2 | >
k1kpS
κ2

. (S4.16)

We substituted the values of ζ and κ from (S4.7) and used to symbolic solver to solve the above inequalities. We obtain that the
following should be satisfied:

0 < kd < k∗d . (S4.17)

We get similar requirements for a trajectory of X (t) that starts from X (0) = kp/kd , then decreases with a fast timescale below its final
stead-state value (i.e., attains a quasi-stationary value) and then relaxes back to the steady-state value. These conditions are(

c∗1ω1 + c∗1 (k2 + k∗d )
k1S

)
+

(
c∗2ω2 + c∗2 (k2 + k∗d )

k1S

)
=

kp

kd
− kp(k2 + k∗d )

κ2
,

(
c∗2ω2 + c∗2 (k2 + k∗d )

k1S

)
>

kp

kd
− kp(k2 + k∗d )

κ2
> 0, (S4.18)

As before, substituting the expressions of ζ and κ shows that these requirements are same as having 0 < k∗d < kd .

S5 Alternating activation and derepression
In this section, we consider signaling cascades consisting of alternating activation and derepression based switches. The first cascade
is shown in Fig. S5.1(a). It is built upon the activation mechanism of Fig. 1(a) in the main text, where the receptor activates a
downstream switch (Y � Y ∗). We add a downstream switch (Z � Z∗) which is derepressed. The second cascade, shown in
Fig. S5.1(b), is a modification of the derepression mechanism of Fig. 1(b) in the sense that a downstream component is now activated
by the derepressed switch.

S5-A Activation followed by derepression
The ODEs that govern the dynamics of this cascade are

dX∗

dt
= k1SXT − (k1S + k2)X∗ (S5.1a)

dY ∗

dt
= (k3 + k5X∗)(YT − Y ∗)− k4Y ∗ (S5.1b)

dZ∗

dt
= k7(ZT − Z∗)− (k8 + k10(YT − Y ∗))Z∗ (S5.1c)

We obtain the steady-states by setting each of the derivatives to zero. We express each of the steady-states in a similar form as that
of (3) in the main text

R =
R0ΘR + R∞S

ΘR + S
. (S5.2)

For example, steady-state of X∗ is specified by

X∗0 = 0, (S5.3a)

X∗∞ = XT , (S5.3b)

ΘX∗ =
k2

k1
. (S5.3c)
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Figure S5.1: Three tier cascades with alternating activation and derepression mechanisms

The steady-state of Y ∗ is specified by

Y ∗0 =
k3

k3 + k4
YT , (S5.4a)

Y ∗∞ =
k3 + k5XT

k3 + k4 + k5XT
YT , (S5.4b)

ΘY∗ = ΘX∗
k3 + k4

k3 + k4 + k5XT
< ΘX∗ . (S5.4c)

As expected, activation caused the dose-response of Y ∗ to shift towards left in comparison with that of X∗, i.e., ΘY∗ < ΘX∗ . Finally,
the steady-state of Z∗ is specified by

Z∗0 =
k7ZT

k7 + k8 + k10
k4YT
k3+k4

, (S5.5a)

Z∗∞ =
k7ZT

k7 + k8 + k10
k4YT

k3+k4+k5XT

, (S5.5b)

ΘZ∗ = ΘY∗
k7 + k8 + k10

k4YT
k3+k4

k7 + k8 + k10
k4YT

k3+k4+k5XT

> ΘY∗ . (S5.5c)

We observe that ΘZ > ΘY∗ . This means that the derepression layer has an opposite effect of activation and shifts the dose-response
back towards right.

S5-B Derepression followed by activation
The ODEs that govern the dynamics of this cascade are

dX∗

dt
= k1SXT − (k1S + k2)X∗ (S5.6a)

dY ∗

dt
= k3(YT − Y ∗)− (k4 + k6(XT − X∗))Y ∗ (S5.6b)

dZ∗

dt
= (k7 + k9Y ∗)(ZT − Z∗)− k8Z∗ (S5.6c)

For this model, the steady-state of X∗ has the same specification as (S5.3). The steady-state Y ∗ is prescribed by

Y ∗0 =
k3

k3 + k4 + k6XT
YT , (S5.7a)

Y ∗∞ =
k3

k3 + k4
YT , (S5.7b)

ΘY∗ = ΘX
k3 + k4 + k6XT

k3 + k4
> ΘX∗ . (S5.7c)
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Because ΘY∗ > ΘX∗ , the dose response of Y ∗ is towards the right to that of X∗. This results from the fact that this switch is governed
by a derepression mechanism. We now look at the parameters specifying Z∗:

Z∗0 =
k7 + k9

k3YT
k3+k4+k6XT

k7 + k8 + k9
k3YT

k3+k4+k6XT

ZT , (S5.8a)

Z∗∞ =
k7 + k9

k3YT
k3+k4

k7 + k8 + k9
k3YT
k3+k4

ZT , (S5.8b)

ΘZ∗ = ΘY∗
k7 + k8 + k9

k3YT
k3+k4+k6XT

k7 + k8 + k9
k3YT
k3+k4

< ΘY∗ . (S5.8c)

We see that ΘZ∗ < ΘY∗ . So, the dose-response of Z∗ is towards the left of Y ∗, which implies that activation of the third layer
counteracts the shifting caused of derepression of the second layer. It is important to point out that the effects of these mechanisms
on Z∗0 and Z∗∞ are different. A systematic analysis of these effects on alternating cascades will be carried out in a future work.
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