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Abstract

Many intracellular signaling pathways are composed of molecular
switches, proteins that transition between two states—on and off. Typ-
ically, signaling is initiated when an external stimulus activates its cog-
nate receptor that in turn causes downstream switches to transition from
off to on using one of the following mechanisms: activation, in which the
transition rate from the off state to the on state increases; derepression,
in which the transition rate from the on state to the off state decreases;
and concerted, in which activation and derepression operate simulta-
neously. We use mathematical modeling to compare these signaling
mechanisms in terms of their dose-response curves, response times,
and abilities to process upstream fluctuations. Our analysis elucidates
several general principles. First, activation increases the sensitivity of
the pathway, whereas derepression decreases sensitivity. Second, ac-
tivation generates response times that decrease with signal strength,
whereas derepression causes response times to increase with signal
strength. These opposing features allow the concerted mechanism to
not only show dose-response alignment, but also to decouple the re-
sponse time from stimulus strength. However, these potentially bene-
ficial properties come at the expense of increased susceptibility to up-
stream fluctuations. In addition to above response metrics, we also ex-
amine the effect of receptor removal on switches governed by activation
and derepression. We find that if inactive (active) receptors are prefer-
entially removed then activation (derepression) exhibits a sustained re-
sponse whereas derepression (activation) adapts. In total, we show how
the architecture of molecular switches govern their response properties.
We also discuss the biological implications of our findings.

Introduction

Several molecules involved in intracellular signaling pathways act
as molecular switches. These are proteins that can be temporar-
ily modified to transition between two conformations, one cor-
responding to an on (active) state and another to an off (inac-
tive) state. Two prominent examples of such switches are pro-
teins that are modified by phosphorylation and dephosphoryla-
tion and GTPases that bind nucleotides. For phosphorylation-
dephosphorylation cycles, it is common for the covalent addi-
tion of a phosphate by a kinase to cause activation of the mod-
ified protein. A phosphatase removes the phosphate to turn
the protein off. In the GTPase cycle, the protein is on when
bound to Guanosine triphosphate (GTP) and off when bound
to Guanosine diphosphate (GDP). The transition from the GDP
bound state to the GTP bound state requires nucleotide ex-
change, whereas the transition from GTP bound to GDP bound
state is achieved via hydrolysis of the v phosphate on GTP.

The basal rates of nucleotide exchange and hydrolysis are often
small. These reaction rates are increased several fold by Gua-
nine Exchange Factors (GEFs) and GTPase Accelerating Pro-
teins (GAPs), respectively [1,2].

A signaling pathway is often initiated upon recognition of a
stimulus by its cognate receptor, which then activates a down-
stream switch. In principle, a switch may be turned on by at
least two mechanisms: a) by increasing the transition rate from
the off state to the on state, and b) by decreasing the transition
rate from the on state to the off state. We term these mech-
anisms activation and derepression, respectively. Examples of
both these mechanisms are found in the GTPase cycle. In an-
imals, signaling through many pathways is initiated by G pro-
tein coupled receptors (GPCRs) that respond to a diverse set
of external stimuli. These receptors act as GEFs to activate
heterotrimeric G proteins [3-6]. Thus, pathway activation relies
upon increasing the transition rate from the off state to the on
state. There are no GPCRs in plants and other bikonts; the nu-
cleotide exchange occurs spontaneously, without requiring GEF
activity [7-9]. G proteins are kept in the off state by a repressor
such as a GAP or some other protein that holds the self-activating
G protein in its inactive state. In this scenario, the presence of
a stimulus results in derepression, i.e., removal of the repressing
activity [10-12]. These two mechanisms for initiating signaling,
activation and derepression, are not mutually exclusive. For ex-
ample, a concerted signal initiation, whereby both activation and
dererpression are used, is employed in the GTPase cycle of the
yeast mating response pathway [13,14]. In this example, inactive
GPCRs recruit a GAP protein and act to repress, whereas active
receptors have GEF activity and act to activate. Thus, perception
of a stimulus leads to concerted activation and derepression by
increasing GEF activity while decreasing GAP activity.

These three mechanisms are not limited to GTPase cycles.
The activation mechanism described here in fact is a simpler
abstraction of a linear signaling cascade, a classical framework
used to study general properties of signaling pathways [15—-19]
as well as to model specific signaling pathways [20—22]. While
derepression may seem like an unusual mechanism, it occurs
in numerous important signaling pathways in plants (e.g., auxin,
ethylene, gibberellin, phytochrome), as well as gene regulation
[23—27]. In many of these cases, derepression occurs through
decrease in the degradation rate of a component instead of its
deactivation rate. Concerted mechanisms are found in bacterial
two component systems, wherein the same component acts as
kinase and phosphatase [28—35].

Mathematical modeling has proven to be a useful tool for un-
derstanding the design principles of signaling pathways, and,
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Figure 1: Mechanisms for signaling through molecular switches. Presentation of a stimulus activates a receptor (X — X).
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reaction causes deactivation of the receptor (X* — X). These transitions govern the activity of a molecular switch downstream. (a) In the activation
mechanism, X™* increases the rate at which the inactive switch (Y) becomes active (Y™*). The opposite reaction Y* — Y has a constant rate. (b) In
the derepression mechanism, the transition Y — Y™ occurs at a constant rate. Activity of the switch is controlled through X: the stimulus decreases X
and consequently increases Y™. (c) In the concerted paradigm, both activation and derepression simultaneously control the downstream component.

not surprisingly, mathematical models of activation, derepression
and concerted mechanisms have been studied previously. For
example, the classical Goldbeter-Koshland model studied zero-
order ultrasensitivity of an activation mechanism [15]. Further
analyses have examined the effect of receptor numbers [36-38],
feedback mechanisms [39, 40], removal of active receptors via
endocytosis and degradation [41,42], etc. Similarly, important
properties of the concerted mechanism, such as its ability to do
ratiometric signaling [13, 14], to align dose responses at differ-
ent stages of the signaling pathway [43], as well as its robust-
ness [29, 44] are well-known. The derepression model is rela-
tively less studied. Although there are models of G-signaling in
Arabidopsis thaliana [45—-47], these models have a large number
of states and parameters and do not specifically look at proper-
ties of derepression mechanism.

Despite these efforts, a systematic comparison of various
properties of activation, derepression, and concerted mecha-
nisms of signaling has been lacking. Comparing these mech-
anisms should enable our understanding of why different organ-
isms have chosen different mechanisms. To this end, we specifi-
cally choose four metrics for the comparison: a) dose-response,
b) response time, c) ability to suppress or filter stochastic fluc-
tuations in upstream components, and d) effect of receptor re-
moval. The rationale behind comparing dose response curves
is that they provide information about the input sensitivity range
and the output dynamic range, both of which are of pharmacolog-
ical importance. We supplement this comparison with response
times, which provide information about the dynamics of the sig-
naling activity. The third metric of comparison is motivated from
the fact that signaling pathways are subject to inherent stochastic
nature of biochemical reactions, further compounded by fluctua-
tions in the number of components [48-53]. Lastly, we study
the effect of receptor removal on the response of these signaling
mechanisms because many signaling pathways evince receptor
removal [11,42,54-56]. We study these properties by construct-
ing both deterministic ordinary differential equation models and
stochastic models based on continuous-time Markov chains.

Our results show that activation has the following two effects:
it makes the switch response more sensitive than that of the re-
ceptor, and it speeds up the response with the stimulus strength.
In contrast, derepression makes the switch response less sensi-

tive than the receptor occupancy and slows down the response
speed as stimulus strength increases. These counteracting be-
haviors of activation and derepression lead to intermediate sen-
sitivity and intermediate response time for the concerted mech-
anism. In the special case of a perfect concerted mechanism
(equal activation and repression), the dose-response curve of the
pathway aligns with the receptor occupancy and the response
time does not depend upon the stimulus level. The noise com-
parison reveals that the concerted mechanism is more suscep-
tible to fluctuations than the activation and derepression mecha-
nisms, which perform similarly. Finally, our analysis of the effect
of receptor removal highlights another important difference be-
tween activation and derepression. Removal of active (inactive)
receptors at a faster rate than inactive (active) receptors results in
an adaptive response for activation (derepression) and sustained
response for derepression (activation). We finally compare our
findings with experimental observations, suggesting reasons that
might have led biological systems to choose one of these mech-
anisms over the others.

Model formulation

We consider a two-tier model for each of three mechanisms of
signaling through a molecular switch (Fig. 1). The first tier is com-
mon for all mechanisms, where an inactive receptor (X) becomes
active (X*) when its corresponding input (stimulus) is presented.
The second tier is the molecular switch that transitions between
off (Y) and on (Y*) states. In the activation mechanism, the
transition rate from the off state to the on state increases as the
number of active receptor molecules increases (Fig. 1(a)). In the
derepression mechanism, the transition rate from the on state
to the off decreases with decrease in the number of inactive re-
ceptor molecules (Fig. 1(b)). In the concerted mechanism, both
activation and derepression occur simultaneously (Fig. 1(c)). We
model these mechanisms using ordinary differential equations
(ODEs), assuming mass-action kinetics. To this end, we denote
the time by ¢, stimulus level by S, the total number of receptors
by X7, and the total number of switches by Yr. We use X* and
Y* to denote the number of active receptors and the number of
active switches, respectively. The rate constants are as follows:
ky is the rate of receptor activation per unit stimulus, k. is the
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rate of receptor deactivation, k3 is the basal rate of activation of
the switch, ky is the basal rate of deactivation of the switch, kg
is the strength of activation of an individual active receptor, and
ks is the strength of repression of an individual inactive receptor.
Thus, the (total) activation strength is ks X7 and (total) repres-
sion strength is kg X7. Lastly, we assume that X7 and Yt are
conserved, and that each model is in steady state before pre-
sentation of the stimulus at t = 0.

Note that the concerted mechanism encompasses both activa-
tion and derepression. Therefore, writing ODEs for the concerted
mechanism is sufficient to capture all three mechanisms. The
number of active receptors and the number of active switches
evolve over time according to the ODEs:

ax* .
s = ki SXt — (k1S + ko) X*, (1a)
ay* N .
? =k3YT+k5YTX 7(k3+k4+k5XT) Y

— (ks — ke) X" Y™. (1b)

The activation and derepression mechanisms represent limiting
cases in which ks = 0 and ks = 0, respectively. Solving (1)
requires rate constants and initial conditions to be specified. We
assume that initial conditions are given by the pre-stimulus (S =
0) steady state:
* * k3
Xy =0, Yy= mw. (1c)
With the models described by (1), we next compare the three
signaling mechanisms in terms of their dose responses and re-
sponse times.

Dose responses

We begin our analysis by examining the steady-state dose re-
sponses of activation, derepression, and concerted mechanisms.
The steady-state solution to (1) is

—  SXr

X* = (2a)
& )
S+ 3
loks + _KarksXr
v - FallorkatksXr) © Karharks Xy Yr. (2b)

Ko (K3 +Ka+Ke XT) S
K1 (k3+K4+k5XT)

Here X* and Y* are the number of active (occupied) receptors
and the number of active switches long time after the stimulus is
presented (t — o0), respectively. Notably, both X* and Y* have

the form
_ Roe/:; + ROQS

R_ ’
@R+S

where Ry is the minimum response corresponding to S = 0, R
is the maximum response corresponding to S > ©Og, and Og is
the stimulus concentration that produces half-maximal response
%. The dynamic range of the response is given by R, — Ry,
signifying the maximum the output can change in response to the
input. (3) shows that shapes of dose response curves are same
for the three signaling mechanisms. Hence comparison between
them can be carried out in terms of Ry, R, and ©g.

At the receptor level, Xj' = 0 and X% = X7, notwithstanding

the rate parameters. The half-maximal stimulus ©x- is equal to

(3)

f—f, which is the binding affinity of the stimulus with the recep-

tor. Furthermore, the fractional receptor occupancy (X*/Xr) for
a given stimulus (S) is determined by ki S/kp. As for the switch,
the response (Y*) is specified by:

ks Yr

UL L — 4a
0 k3+k4+k5XT ( )
ks + ks X1) Y-
Y:O=(3+5T)T’ (4b)
k3+k4+k5XT
K3 + Ky + ks X
Oy = Oy 2T UT AT (4c)

kg + k4 + k5XT.

These expressions show that the dose-response of the switch
depends upon the the basal rates as well as activation strength
(ks XT) and repression strength (ks X7). A careful examination of
(4) provides the following insights:

(i) The activation strength (ks X7) does not affect the minimum
response (Yg'), but affects the maximum response (YZ,). In
particular, increasing ks Xt increases Y, . The repression
strength (ks X7) decreases Y and does not affect Y.

(i) Relative values of the repression and activation strengths
dictate the relationship between the half-maximal stimulus
for the switch response (©y«) vis-a-vis the half-maximal
stimulus for the receptor occupancy (©x~). More specifi-
cally, Oy« < ©Ox~ when ksX7 > ks X7, Oy~ = Oy« when
ks Xt = ksX7, and Oy« > Ox+ when ks X7 < KgX7. In-
creasing kg Xt increases Oy while increasing ks Xt does
the opposite.

Fig. 2 illustrates the aforementioned effects on dose-response
curves for the signaling mechanisms considered. Noting that sig-
naling pathways typically show little activity in absence of the
stimulus (Yy < Y7) and show full activity (Y3, ~ Y7) if the
stimulus is large, it is reasonable to make the following assump-
tions: k3 < Ky + ke X7 and ky << k3 + ks X7. The limiting case of
ks = 0leads to Yj = 0; likewise, ks = O results in Y3 = Y. With
these assumptions in mind, we use the following parameters for
Fig. 2: k3 = 0 and ks = 0 for activation; k;, = 0 and ks = O for
derepression; and k3 = 0 and k; = 0 for concerted. As shown in
Fig. 2(a) activation makes the switch response more sensitive to
stimulus than the receptor occupancy (Oy+ < ©xx). Increasing
the activation strength (ks X7) increases Y7 and decreases ©y-,
increasing the dynamic range (vertical expansion) and sensitiv-
ity (leftward shift) of the dose-response curve. The derepression
mechanism exhibits an opposite behavior with ©y- > Ox«. In
this scenario, increasing the repression strength increases the
dynamic range by decreasing Y; and decreases sensitivity by
increasing ©y- (Fig. 2(b)).

Because we ignore the basal rates, changing activation and
derepression strengths only influence ©y+ in the case of a con-
certed mechanism. As expected, the switch response is more
(less) sensitive than the receptor occupancy if activation (dere-
pression) dominates derepression (activation). There is a per-
fect alignment of the fractional receptor occupancy curve with the
dose response curve of the switch when ks = kg (Fig. 2(c)). An-
other important property of the concerted model is that it exhibits
ratiometric signaling in which the response of the switch (Y*) is
determined by the ratio of active receptors to the total number of
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Figure 2: Dose-response curves for signaling mechanisms through molecular switches. The response is measured in terms of fraction of
active switches Y* /Y7 as the stimulus level varies. The receptor occupancy curve denotes the fraction of active receptors X* /Xr. The stimulus is
normalized by its binding affinity to the receptor (©x=). (a) For the activation mechanism, the half-maximal stimulus (©y~) of a dose-response curve
is less than ©x=. Each dose-response curve (solid line) is for a fixed activation strength ks X7. Increasing ks X7, depicted by the solid arrow, causes
an upward expansion and leftward shift in dose-response. For these plots, the following values for parameters were used: k3 = 0, ks = 1 and ks = 0.
The activation strength (ks X7) was varied to take values from (0.1, 1, 10, 100, 1000). (b) For the derepression mechanism, the dose-response of the
switch for a given repression strength (ks X7) has half-maximal stimulus (©y) greater than ©x=. Increasing ks X7, shown by the solid arrow, leads to
a downward expansion and rightward shift in the dose-response curve. The repression strength ks Xt takes values from (0.1, 1,10, 100, 1000). The
rest of the parameters were set as ks = 1, ks = 0, and ks = 0. (c) In the case of concerted mechanism, ©y« may be greater than, equal to, or less
than ©x~, depending upon the relative values of the activation strength and the derepression strength. Increasing the ratio ks /ks, depicted by the
solid arrow, shifts the dose response to left. Dose-response alignment (©y« = ©xx) occurs when ks = ks. The parameters used for the plots are
ks = 0 and ks = 0. The ratio ks /ks was varied over (0.01,0.1, 1,10, 100).

receptors (X*/Xr) [13,14]. The absoluteﬁlue of the total num- steady-state. We use the following definition of response time:
ber of receptors (X7) has no bearing on Y*. This may be seen
by setting k3 = 0 and k; = 0 in the expression of Y* in (2):

IS t|R— R()| ot
f =

v Srr ) L [R—R@)|dt’

koke -
S+ ke

(6)

_ ' where R(t) is the time-dependent response of the pathway com-
Inreality, ks and k4 are likely to be small, but non-zero. Therefore,  ponent under consideration and R represents its value at steady-

ratiometric signaling does not hold in a strict sense. state [59]. For this definition, 75 represents the “center of mass”
Our theoretical results above show how the dose-response of the response R(t), and is well-defined when R(0) # R. We may
curves behave differently for activation, derepression, and con- also think of 1/7x as the speed of the response in the sense that

certed mechanisms. Are some of these behaviors observed in if the response is determined by a single kinetic step, 7r is recip-
biological systems? One example where the signaling response  rocal of the rate constant for that step. For example, the response
becomes maximal when only a small fraction of receptors are time for the receptor is given by (section S1, Sl):

bound (Oy+ < ©xx) is the EGFR-MAPK pathway which elicits

a full MAPK response at less than 5% receptor occupancy [57].

Our analysis explains this by an activation mechanism or a con- Tx+
certed mechanism in which the activation strength dominates the

repression strength. A contrasting behavior is seen in the ethy-

lene pathway of Arabidopsis thaliana in which a loss-of-function Thus, the response time decreases (i.e., response speeds up) if
mutation of one of the ethylene receptors, etr1, shows increased ki S+k; increases. Because the response time depends upon the
sensitivity to etylene [58]. This points to a derepression mecha- sum ki S + ky and the steady-state receptor occupancy depends
nism in which the decreased amount of the receptor (X7) lowers upon the ratio ki S/kp, these quantities can be tuned indepen-
the repression strength ks X7 and shifts the dose response curve dently.

to the left in comparison to that of the wild-type system. A sug- In the absence of stimulus, the response time of the switch
gested example of concerted mechanism is the yeast G-signaling follows the same form as (7):
pathway, which exhibits both ratiometric signaling [13, 14] and

dose-response alignment [43].

1

= —". 7
k18+k2 ()

1

TY* $=0 = k3 + k4 + keXT.

®)
Response times

Our analysis thus far focused on the steady-state properties of When the stimulus is present, analytic solutions to the integrals in
the activation, derepression, and concerted mechanisms. In this (6) for the response time of Y*(t) do not exist, except for a special
section, we study these mechanisms in terms of their response case of the perfect concerted model ks = k. It is, however,
times; that is the time it takes for a signaling output to reach its possible to approximate 7r by linearizing the ODE system in (1)
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Figure 3: Response times of molecular switches governed by activation, derepression, and concerted mechanisms. (a) The response time of
the switch increases as the response time of the receptor increases. Differences in the signaling mechanisms are more prominent when the receptor
response is fast. Activation speeds up the response in comparison with the basal response time whereas dererepssion slows it down. A perfect
concerted mechanism does not affect the response time. For each signaling mechanism, the response time is computed using the analytical result
in (9) (solid lines) and numerically validated by using (6) (dashed lines). To ensure the same basal response and basal response time of the switches
across signaling mechanisms, we chose the parameters as k3 = 1/9, ks = 1, ks = 0, and ks X7 = 10 for activation; ks = 1/9, ks = 0, ks = 0, and
ke Xt = 1 for derepression; and ks = 1/9, ks = 0 and ksXr = ke X7 = 1 for concerted. The receptor response time was ki S + k. varied through k.
while maintaining k1S/k. = 1. (b) With increase in the stimulus level, response time decreases for activation, increases for derepression, and does
not change for the concerted mechanism. The comparison is controlled by setting same response time at half-max. stimulus ©y=. The following
parameters were chosen to have same basal response but different basal response times: ks = 1, ks = 9, ks X7 = 90, and ks = 0 for activation;
ks = 10,ks = 0,ks = 0, and ks X7 = 90 for derepression; and k3 = 10, ks = 0, ks X7 = ks X7 = 90 for concerted. The receptor occupancy was varied by
changing ki S/ k> while maintaining the receptor response time 1/(ki S + kz), which was chosen to be 100 times faster than the response time of the
switches at their respective half maximal stimulus levels.

around its steady-state: Comparing (10) with the basal response time in (8) shows that

for a given stimulus level, activation speeds up the response in

T ~ 1 1 comparison with the basal response. In contrast, derepression
ye = koxr T

Ks + ks + ks X7 + (ks — kg) k1S + ko slows down the response and a perfect concerted mechanism
7 does not affect the response time (Fig. 3(a)). In the other limiting
case when the receptor timescale is much slower than that of the
K3 + Ko + ke X7 + (Ks — ks),:‘ssﬁfz switch, we expect the receptor dynamics to dictate the response
x KiS+ ko + kg + ko + ke X7 + (ks — kﬁ);fssjé - 0 time (time-averaging term —>. 1). Indeed in this case, (9) reduces
to Ty« = Tx+ such that choice of the mechanism to control the
time-averaging switch has little effect on the response time. Our analytical as

well as numerical calculations confirm this behavior (Fig. 3(a)).
Next we examine the scenario where the switch is controlled

ki S+k2

1 *
resp. time of Y* when X*is in steady-state resp. time of X

This equation is exact for the special case when ks = kg (sec-

tion S2-B, Sl). The first term in (9) can be interpreted as the by varying the stimulus level (S). Because changing the stimulus
response time of the switch when the receptors are at steady- y varying uiu ' N 9ing Hu

. . affects the response time of the receptor, which in turn affects the
state, because in that case the switch would be turned on at a . nse time of the switch. w ntrol for this effect by keepin
rate ks + ks ;2257 and turned off at a rate ky + ke Xr — ke 23X ; s0, esponse time of Ihe switeh, we controt for this etiect by keeping
. 15+ke ) . 15+ke k1S + ko constant. We find that activation shortens the response
inverse of their sum would give the response time. The second . o . .

. . time (speeds up the response) with increasing stimulus levels,
term represents the response time of the receptor (7x-) multi- . i
. . . . . whereas derepression increases the response time (slows down
plied by a time-averaging factor which computes the ratio of T« ) )
. . the response) (Fig. 3(b)). Importantly, the response time of the
to the sum of 7x- and the response time of the switch when ) v ;
concerted mechanism is independent of the stimulus strength,
and, therefore able to respond rapidly over the whole range of

X* = X*. The time-averaging term lies between 0 and 1; its
value approaches 0 if the receptor response is much faster than , . . .
pp P P stimulus levels. To better understand this behavior, consider the
response time for the limiting case of fast receptor dynamics. (10)

the switch response when X* = X* and approaches 1 if the re-
ceptor response is much slower than that of the switch. can be rewritten as
If the receptor response is much faster than that of the switch,

we expect that the latter does .not erer?d upor? the former (time- T k3+k41+k5XTeY* + k3+k41+k5XT S (1)
averaging term — 0). Indeed in this limit, (9) gives yr S+0Oy. ’
1 i o at S =0to b
Ty ~ — (10) which changgs from Tk gt S=0to Forka R X, as S — oo.
ks + Ky + ks X7 + (ks — kKg) P The half-maximal stimulus ©y- is same as defined in (4). For the
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activation mechanism

; so the response

1 1
? ky+kg+ke X1 ky+kg+ks X1

time decreases with stimulus. Moreover, Kotk kX Rtk kX
; ; 1 _ 1
for the derepression mechanism and FrkrkaXr = otk X for the

perfect concerted mechanism. Therefore, the response time in-
creases with stimulus for the derepression mechanism and is in-
dependent of the stimulus for the concerted case.lt is also worth
pointing out that activation is faster than derepression only if the
basal response times are equal. Therefore to construct a switch
that responds rapidly using derepression, it is necessary for the
switch to undergo fast basal cycling (Fig. 3(b)).

Our analysis of dose-response properties for ratiometric sig-
naling given in (5) reveals that this mechanism is independent
of the total number of receptors Xt when the basal rates of the
switch are zero (k3 = 0 and k; = 0). Using these values in the
expression for the response time in (9) demonstrates that this
property does not hold for the response time. Specifically, the re-
sponse time decreases with an increase in X7 (section S2-B—c,
SI).

Is there an intuitive explanation to why activation is faster than
derepression? The activation model shortens the average life-
time of the off state, without affecting the average lifetime of the
on state. Derepression operates differently; it does not affect
the average lifetime of the off state, but increases the lifetime
of the on state. Thus, activation responds faster than derepres-
sion. The concerted mechanism simultaneously decreases the
lifetime of the off state and increases the lifetime of the on state.
Therefore, its response time lies between those of activation and
derepression.

Processing upstream fluctuations

The deterministic models used to compare the signaling mecha-
nisms thus far ignore the stochastic nature of biochemical reac-
tions, which becomes relevant when the abundance of receptor
and switch proteins are small [48-53,60,61]. Therefore, we for-
mulate a stochastic model of the concerted mechanism and an-
alyze the other two mechanisms as its special cases. Our model
consists of four reactions: activation of receptor upon recognizing
the stimulus, deactivation of receptor, on to off transition of the
molecular switch, and off to on transition of the molecular switch.
The stochastic model is characterized by the probabilistic nature
of each reaction and the discreteness of changes in population
counts upon occurrence of a reaction as tabulated in Table 1.

Transition rate

ki S(X7 — X¥)

Ko X*

(ks + ks X*)(YT — Y7)
(ks + k(X7 — X*)) Y™

Reaction Population update
X=X X=X 41
X=X X = X*—1
Y=Y Y'—Y*+1
Y=Y Y'—Y*-1

Table 1: Transitions and associated rates for the stochastic model.

Our goal is to analyze the noise properties of activation, dere-
pression, and concerted mechanisms. We quantify noise using
coefficient of variation squared (CV?), which is computed by nor-
malizing the variance by mean? and is a dimensionless quantity.
To this end, we use the ODEs that describe the time evolution of
the first and second-order moments, and solve them in steady-
state to obtain the stationary moments [62—64] (section S3-B,

Sl). In particular, moments for the number of active receptors
(X*) are given by

ki SXt
XY=z — 12
X) = ot (122
CV2. - <X*2> _ <X*>2 _ 1k (12b)
) (X*)? X7 kS’

Here {.) denotes the expected value (average) of its argument.
These moments correspond to a binomial distribution with pa-
rameters X and kwks‘sz (section S3-A, Sl). The stochastic mean
(X*) is same as the steady-state value for X* in the determin-
istic model in (1). The coefficient of variation squared increases
as the number of receptors (X7) decreases. Therefore the noise
analysis is important when X7 is small. In addition, the noise de-
creases with the ratio k; S/ky. Recall that k; S/ k, is the stimulus
level relative to the binding affinity. Thus the noise diminishes
when the stimulus level is much higher than the binding affinity.

Closed-form expressions for the moments are not available for
Y* owing to the nonlinear term X*Y* in reaction rates, except
for the special case of a perfect concerted model (ks = kg). We
approximate the mean response and the noise by considering a
linearized system around the steady-state

ks + ks 35— X7
ki S+k;
(Y") =~ YT, (13a)
k3 + k4 + kszT
ko
CV2. ~ 1kt ke X5y
T ki S
YT k3 + k5XT kSt
contribution from act./deact. of Y*
ki SXT ko X
CV2. x ks + ka + Ks i 5o + Ko r 6k
X K S+ ko + kg + Ky + kg F15XT 4 g teXe
1 2 T A3 T R4 T 5 Siks 6 ki S+hky
time-averaging
ks )2 2
(745 ) (kaksXr + ko Xl + ks Xr)
% 5 5. (13b)
ki SX1 ki SXT ke Xt
(kS + ks, S+k2) (kS + ke + Ksy s + Ko S+k2)

coupling

We validate these approximations using exact semi-analytical
approach based on [65] (section S3-B, Sl). The formula for
CVZ. above is written in terms of various sources of noise, as
previously done for gene regulation models [66—68]. Specifi-
cally, the noise in the signaling activity of the switch arises from
two sources: activation/deactivation reactions of the switch, and
noise in the number of active receptors ((CV2.). The contribu-
tion from activation/deactivation of the switch in (13) has a similar
form as CV3. in (12). Accordingly, the contribution of this term
decreases with increase in Y7 or increase in the ratio of the to-

1S

tal activation rate (k3 + k5XTk—)

Sk with total deactivation rate

(k4 + ksxrﬁ). This ratio increases if the activation strength
increases or the repression strength decreases. The contribution
of CVZ to CV2. is scaled by time-averaging and coupling terms.
The time-averaging term is the same as that in (9); it varies be-
tween 0 and 1, depending upon the relative timescales of the
receptor and the switch. Thus, in the limiting case where recep-
tor dynamics is very fast, the contribution from CVZ. to CVZ.
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becomes negligible due to efficient time-averaging of fluctuations
in X*. The coupling term in (13) determines how strongly X*
affects Y*. For example, this term is zero when the stimulus is
absent (S = 0) or when both ks and kg are zero. In both these
cases, the switch is decoupled from the receptor.

Next, we compare the noise properties of activation, dere-
pression, and concerted mechanisms. To mathematically control
the comparison, we assume that the receptor dynamics is same
across the three strategies. In addition, we maintain the same
average rate at which the switch turns on from the off state, i.e.,
ks +ks ,ﬁ‘ssf,; , and the same average rate at which the switch turns
off from the on state, i.e., ks + kg kfgﬁz. These assumptions en-
sure that differences in the noise properties, if any, are solely due
to the architecture of the molecular switch and not dependent on
the parameters. With this setup, we examine the effect of relative
timescales (response times) of the receptor and the switch. We
observe that in (13), varying ki S + ko while maintaining ki S/ k»
only affects the time-averaging term; all other terms are not af-
fected. As shown in Fig. 4(a), the noise properties of these sig-
naling mechanisms are similar when the receptor timescale is
fast. This is expected because the dominant contribution in CVZ.
comes from its own activation and deactivation. However, when
the receptor timescale is slower than that of the switch, the overall
noise increases regardless of the signaling mechanism and the
noise performance of the concerted mechanism becomes worse
than the other two mechanisms.

The observation that activation and derepression both have
similar noise and their concerted action has higher noise is sur-
prising in light of our analyses of dose-response and response
time. In terms of these properties, activation and derepression
counteract to enable intermediate response for the concerted
mechanism. Intuitively, the increase in fluctuations occurs be-
cause in the concerted mechanism, fluctuations in the upstream
component affect both transitions Y — Y* and Y* — Y. In
the case of activation and derepression, however, only one of
these transitions is coupled with the upstream component. As
a result, the concerted mechanism performs worse in terms of
noise. We further highlight this observation by varying the rel-
ative strengths of activation (ks X7) and derepression (ks X7) in
Fig. 4(b). The noise is greatest for the concerted mechanism
when k5XT = k6XT.

We also analyze the special case of ratiometric signaling. Our
deterministic analysis shows that for a concerted mechanism
without basal rates (k3 = 0 and k; = 0), the steady-state re-
sponse (Y*) does not depend upon the total number of receptors
(X7). However, similar to the response time, the CV2. also de-
pends upon X7 through the time-averaging term and CVz. , both
of which decrease with increases in X7 (section S3—-B—c, Sl). To
summarize, ratiometric signaling only holds for the steady-state
response. A cell that has higher X7 would respond faster as well
as with less noise than a cell with a smaller X7.

Effect of receptor removal

Our models of signaling mechanisms in Fig. 1 assume con-
servation of number of receptor molecules (X7) and of switch
molecules (Y7). These assumptions do not hold in case of some
signaling pathways where stimulus-mediated removal of recep-
tors occurs. Reported examples of such phenomena include

GPCRs [54], EGFR [42], AMPA-type glutamate receptors [55],
the receptor-like kinase FLS2 [56] and regulator of G-signaling
(RGS) in Arabidopsis thaliana [11]. On the one hand, removal of
active receptors is proposed to be a mechanism for desensitizing
the response to a sustained stimulus [69, 70], and consequently
enabling signaling over a broad range [41,42]. On the other hand,
phosphorylation and subsequent removal of RGS, which is both
a receptor candidate and a GAP, is proposed to result in sus-
tained activation of signaling in Arabidopsis thaliana [9, 11, 45].
With an aim to explain these seemingly opposite behaviors of
signaling pathways, we ask whether the signaling mechanisms,
particularly activation and derepression, behave differently upon
removal of receptors. To answer this, we reformulate the mod-
els in Fig. 1 by including production of inactive receptors (X) at
a rate k,, removal of inactive receptors with rate ky, and removal
of active receptors with rate k. This model is simpler than those
showing a broad range [41] or relative sensing [42], but is capa-
ble of adaptation [70] which is what we focus on.

Inclusion of receptor removal results in the following modifica-
tion of the ODE system in (1)

ax
o = fe— kaX — ki SX + I X", (14a)
ax*
= haSX — ke X* — KX, (14b)
dY* * * %
e (ks +ksX*) (Y7 = Y*) — (ke + ks X) Y*.  (140)
The initial conditions are: X(0) = %’, X*(0) = 0, and Y*(0) =
W. As before, setting kg = 0 and ks = 0, respectively,

result in ODEs for the activation and derepression mechanisms.

An important distinction between the ODEs in (1) and the
ODEs in (14) is that the receptor dynamics only has one
timescale, 1/(ki S+kz), in the former but two timescales in the lat-
ter (section S4, Sl). The interplay between these two timescales
allows X(t) and X*(t) to transiently respond to a stimulus at the
fast timescale, followed by an eventual return towards their re-
spective pre-stimulus levels at the slow timescale. Note that the
switch response in the activation mechanism depends upon the
active receptors X*. Thus if X* increases and returns towards
its basal level, Y* is also expected to follow the same dynamics.
Likewise, if a derepression mechanism governs the switch then a
decrease in X would lead to increase in Y*. Further, if X returns
towards its basal level, Y* should also follow this trend. Such
behavior is referred to as adaptation [70,71].

What are appropriate parameter regimes where the switch re-
sponse Y*(t) in (14) adapts to a sustained stimulus? Our analy-
sis shows that adaptation by X* occurs when k} > ky, i.e., active
receptors are removed at a faster rate than inactive receptors. In
contrast, adaptation by X happens when kj < ky (section S4,
Sl). We note that all other parameters also affect the response
properties, but the relative rates of receptor removal are the most
important determinants of adaptive behavior. We illustrate these
results in Fig. 5. To further bolster our observations, we exam-
ine the scenarios where the inactive receptors are preferentially
removed for an activation mechanism and active receptors are
preferentially removed for a derepression mechanism. Interest-
ingly, in both these cases, the response sustains and does not
adapt. These results thus provide another set of differences be-
tween activation and derepression mechanisms.
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(a) effect of time-averaging (b) effect of coupling
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Figure 4: Noise in the number of active switch molecules. Noise is quantified using coefficient of variation squared (CV2.) as in (13). The
overall CV2. is shown relative to the contribution from activation/deactivation of Y*. The analytical result is computed using (13), which is validated
numerically. (a) Noise with change in response time of the receptor. The noise increases as receptor response time increases, i.e., as the receptor
slows down in comparison with the switch response time. The concerted model has a higher noise than activation and derepression, which perform
similar. The difference is negligible when receptor dynamics is fast, and is more prominent when receptor is slow. The receptor response time
(k1S + ko) is varied by changing k. while keeping the same receptor occupancy through the ratio k1 S/k, so as to keep the same number of
switches.The differences across signaling mechanisms are controlled by ensuring the same total activation rate of the switch ks + ks ,:‘ssfkfz and same
total deactivation rate ks + ks (25 We used the following parameters: ks = 0, ky = 1, ks = 0.02, and ks = O for activation; ks = 1, ks = O,
ks = 0, and ks = 0.02 for derepression; and ks = 0, ks = 0, ks = ks = 0.02 for concerted. In addition, X7 and Y7 were taken to be 100 each.
The receptor occupancy was maintained by k1S/k, = 1.(b) Noise with change in relative strengths of activation and derepression for a concerted
mechanism. The noise is highest when the activation and derepression strengths match (perfect concerted mechanism). Deviating from the perfect
concerted mechanism towards either stronger activation (shaded green region) or stronger derepression (shaded orange region) leads to smaller
noise. Parameters were chosen such that total activation and the total deactivation rates were same across signaling mechanisms. For derepression,
the activation strength was kept constant and the repression strength ks X7 was varied with a commensurate change in the basal deactivation rate
ks. For activation, the repression strength was kept constant and the activation strength ks Xr was increased with appropriate change in the basal
activation rate ks. We used the following parameters: k; =1, S=1, ko = 1, ks + ks XL = 1 4 + kszi =1, Xr =100, and Y7 = 100.

ki S+kp S+ko
(a) activation (b) derepression
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Figure 5: Effect of receptor removal on responses of activation and derepression mechanisms. The response is measured in terms of fraction
of active receptors (Y™ / Yr) over time which is normalized to the slow timescale of the receptor (see section S4, Sl). (a) For an activation mechanism,
the switch response adapts, i.e., returns towards basal response after a transient, if the rate of removal of active receptors (ky) is higher than that
of inactive receptors (kg). In contrast, if inactive receptors are removed at a faster rate, then the response sustains. For the adaptive response, we
chose k, = 0.11, kg = 0.0011, k; = 0.11. For the sustained response, we set k, = 101, kg = 1.01 and k; = 0.01. Rest of parameters were selected
as ki =1,k =1,ks =0, ks =10, ks =1, ks = 0, S = 1, and Y7 = 100 (b) For derepression mechanism, preferential removal of X results in
adaptation whereas preferential removal of X* causes sustained response.For the adaptive response, we used k, = 101, kg = 1.01, k; = 0.01. For
the sustained response, we chose k, = 1, kg = 0.01 and kj = 1. Rest of parameters were taken as k1 = 1, ko = 1, ks = 10, ks = 0, ks = 0, ks = 1,
S =100, and Yr = 100
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Discussion

Molecular switches are important components of most signaling
pathways. Typically, these switches can exist in two states, on
and off, and the presence of an external stimulus biases the
switch toward the on state. This transition can occur either by
increasing the off-to-on rate (activation), decreasing the on-to-
off rate (derepression), or both (concerted). We characterized
these three mechanisms in terms of their dose-response curves,
response times, and ability to process upstream fluctuations. We
further examined how these three mechanisms were affected by
receptor removal. The following list summarizes key differences
in the performance of switches based on activation, derepression
and concerted mechanisms:

» Both activation and derepression cannot align signaling ac-
tivity with receptor occupancy. In particular, activation re-
duces the stimulus level required for half-maximal signaling
as compared to 50% receptor occupancy (Oy- < Ox«),
whereas derepression produces a rightward shift of the
dose-response curve (Qy: > ©Ox+). The dose-response
curve aligns with the receptor occupancy curve (Oy+ =
©x~) for a perfect concerted mechanism (Fig. 2).

» A concerted mechanism is capable of ratiometric signaling,
where the steady-state signaling output only depends upon
fractional receptor occupancy and not on the total number
of receptors.

» The response time for the activation mechanism decreases
with signal strength, whereas it increases for the derepres-
sion mechanism. Importantly, the response time for a per-
fect concerted mechanism is independent of signal strength
(Fig. 3).

» Activation and derepression mechanisms respond similarly
to upstream fluctuations, whereas the concerted mecha-
nism is more susceptible to fluctuations (Fig. 4). Unlike the
mean steady state response, fluctuations in the output sig-
nal for the ratiometric signaling do depend on the total num-
ber of receptors.

» Preferential removal of active (inactive) receptors leads
to an adaptive response for the activation (derepression)
mechanism and a sustained response for the derepression
(activation) mechanism (Fig. 5).

These results suggest performance trade-offs in the operat-
ing characteristics for each mechanism. The activation mecha-
nism can increase the sensitivity of the pathway and generate re-
sponse times that decrease with signal strength, but at the cost
of dose-response curves that do not align with receptor occu-
pancy, potentially limiting the pathways ability to transfer infor-
mation [72]. In this sense, the activation mechanism operates as
an ‘eager’ system that is sensitive to small receptor occupancies
and accelerates the response for stronger signals. Therefore,
activation seems appropriate for situations in which the cost of a
false negative is greater than a false positive. For example, the
adrenaline response to imminent danger should be sensitive and
fast because cost of a false positive is small but a false negative
can be deadly.

Similar to the activation mechanism, derepression leads to
misalignment of the dose-response curve and receptor occu-
pancy. However, for derepression the dose-response curve is
shifted to the right. Another difference between these mech-
anisms is that for derepression, the response time increases
with signal strength. Therefore, derepression acts as a ‘con-
servative’ system that does not respond to low receptor occu-
pancy, waiting for a strong signal before committing to a re-
sponse. Derepression seems appropriate for scenarios where
the cost of a false positive is greater than a false negative. In-
terestingly, derepression-based signaling is found in many plants
pathways. We speculate that it happens because plants have
to continually allocate their limited resources between growth in
competition with its neighbors and immunity to survive pathogen
attack [73,74]. For example, plants would perhaps ignore growth
of a low level of pathogenic bacteria before allocating resources
to fight them. Another possible scenarios where derepression
may be used include irreversible cell-fate decisions such as the
WNT pathway for embryo development [75], and fail-safe mech-
anisms such as the hypoxia-inducible factor in face of oxygen
deprivation [76].

The concerted mechanism is better able to align with the re-
ceptor occupancy curve than either the activation or derepres-
sion mechanisms. Therefore, it has a better information fidelity
[72]. The concerted mechanism also can generate response
times that are independent of the strength of the input signal.
However, these features come at the cost of higher susceptibil-
ity to upstream fluctuations. We note that in a recent study it
was shown that ratiometric (concerted) signaling provided an ad-
vantage for gradient sensing, because it could compensate for
spatial variations in the receptor concentration [14]. The system
under consideration in that study was the mating response of
yeast. For this case, the spatial fluctuations in the receptor con-
centration were larger than downstream fluctuations in signaling,
allowing the concerted mechanism to outperform an activation-
based mechanism.

While misalignment of the dose-response curve with recep-
tor occupancy can cause loss of information, it may also offer
some advantages. Consider a scenario where active receptors
are preferentially removed, resulting in adaptation of the signal-
ing response (Fig. 5). Recent work has shown that it is possi-
ble to exploit this feature to perform relative sensing (fold-change
detection) if the receptor removal is a multi-step process [42].
Alternatively, a negative feedback may also result in an adap-
tive response and thereby a fold-change detection [59]. A key
feature of fold-change detection is that the sensitivity of the sys-
tem decreases each time the system adapts [59, 77]. Our results
suggest that a relative sensing mechanism may be implemented
with a derepression if the receptor removal operates on inactive
receptors. We speculate that a negative feedback operating on
inactive receptors would also yield the same effect.

Given that activation and derepression shift dose-response in
opposite directions, a natural question to ask is whether dose-
response alignment can occur in a signaling cascade where ac-
tivation and derepression operate sequentially? To explore this
possibility, we constructed a three-tier model where the response
Y* in Fig. 1(a) leads to derepression of a downstream compo-
nent. Our analysis shows that indeed the response of the down-
stream component is better aligned with the dose response than
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Y*. We also analyze an alternate mechanism where derepres-
sion is followed by activation by modifying Fig. 1(b). As expected,
the dose response of the downstream component aligns with the
dose response better than that of Y* (section S5, Sl). It is worth
noting that nonlinear regulation, such as feedback and feedfor-
ward loops, can also be used to compensate for undesirable
characteristics of a given signaling mechanism. For example,
negative feedback can align the dose-response curve with re-
ceptor occupancy for signaling pathways that operate through
activation [43,72,78].

The models considered here are based on mass action kinet-
ics and therefore cannot capture saturation effects. Traditionally,
signaling pathways are modeled using Michelis-Menten kinetics.
While we believe the qualitative features of our results will hold
in this case, investigating how the behavior of the three mech-
anisms changes when the effects of enzyme saturation are in-
cluded will be the subject of future work. Another future direc-
tion is to extend the analysis to include feedback and feedfor-
ward regulation. Finally, while we have focused our investiga-
tions on signaling pathways, our results are likely to be relevant
in other intracellular systems, such as gene regulatory networks
and metabolic pathways.
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Supplementary Information

S1 Comparison between different definitions of response time

Response time is a measure of the time it takes for a signaling output to reach its steady-state. In (6) of the main text, we defined
the response time as the center of mass of the response curve. However, there are several interrelated definitions of response time.
Here we provide a comparison between them. Towards that end, we use a model of a simple one-tier switch. Consider a protein that

transitions between two states A and A* as fs
1

A= A% (81.1)
ko
Let A(t) and A*(t)denote the number of molecules that are in states A and A*, respectively, at time . We assume that the total number
of molecules is conserved, i.e., Ar = A(t) + A*(t). We quantify the signaling through the switch by A*(t), i.e., the number of molecules
in the state A*. The ordinary differential equation (ODE) governing the dynamics of A* is:

dA*
= kiS(Ar — A") — k. A™. (81.2)
dt
The solution to this ODE is given by
_ kiSAT _
A* t) = A* O)e (k1 S+hko)t | 1Y 1—¢e (k1 S+hko)t , S1.3
(t) = A"(0) * e srte | ) (51.3)
where A*(0) < Ar is the initial condition. As t — oo, A* approaches its steady-state value which is given by
—  KkSA
AF = 27T (S1.4)
k1 S+ k2

Recall the definition of response time from (6) in the main text

Jo t

A* — A(t)| dt

A = L . (S1.5)
I7 |A* — A(t)| ot
To compute the integrals in the numerator and the denominator, we first note that
__ ki SAT _
A* — A () = [ ———— — A*(0) | e iS+ht, S1.6
(t <k1S+k2 ()) (81.6)

Because k1S > O and ky > 0, [;° e *iS*kigt and [ te~k1S*)iqt converge. These integrals are equal to 1/(kS + kz) and
1/(ki S + ko)?, respectively. Using these integrals, (S1.5) gives

ki SA *
T _ k113+kT2 —A (0) k1S+k2 _ 1 (S1 7)
AT Stk AL _A(0)  kS+k '
1 S+ko

We can thus deduce that if the response is determined by a single kinetic step, the response time defined above is reciprocal of the
rate constant for that step. It is also worth noting that the ratio is well-defined only when A*(0) ,’:gf‘é = A*.
Another class of definitions of response time are based on the time it takes for the response to start from A*(0) and reduce its

deviation from its steady-state by a factor 0 < f < 1. More specifically, we define T; as the solution to the following equation

A*(Ty) — A*(0)

~ = f (S1.8a)
A" — A*(0)
_ kySAT _ ki SAT
= A*(0)e~iSH)Ti y 2T (1 _ o= (iSHRITH) 2 A*(0) 4 f —A%0)) . S1.8b
©) St ) =A O+ s, A0 (51.80)
For A*(0) # 2, the above equation reduces to
1— g kST _ g (S1.9)
which has a straightforward solution
log(1 —f)
=——. S1.10
77 k1 S+ kg ( )

Notably, the response time is set by 1/(ki S+ kz) up to a scale which depends on the specific value of f. We discuss three cases. First,
setting f = 1/2 corresponds to the time at which half of the deviation from the steady-state has been reduced. The corresponding
response time is given by

log 2

Tao = —2
0% T K S+ ko

(S1.11a)
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Second, f = (e — 1)/e ~ 0.632 is also frequently used for which we obtain

1

_ S1.11b
k1S+k2 ( )

7?33.2% =

Lastly, a third definition concerns computing the time it takes for the response to travel from 10% to 90% of the difference between its

initial value A*(0) and steady-state A* = {137L. In this case, we get

log9

Tove — Trom = —> .
90% 10% k1S+k2

(S1.11¢)

S2 Transient solution and response time of two-tier cascades

In this section, we consider two-tier cascades of Fig. 1. Because activation and derepression are special cases of the concerted
mechanism, we concern ourselves only with the ODEs of a concerted mechanism here.
The ordinary differential equations (ODESs) that govern the dynamics are

ax*
e ki S(XT — X*) — ko X*, (S2.1a)
dY* £3 * £3 *
p = (ks + ks X*) (Y7 — Y*) — (ks + ks (X7 — X*)) Y, (S2.1b)
with initial conditions
X*(0)=0, Y*(0) uchs (S2.1c)
T _k3+k4+k6XT- '
The steady-states of X* and Y* are computed by setting the derivatives to zero.
Kk SX - ks + kg 21SXT
e V- St Yy (52.2)
1O + K2 k3+k4+k5,ﬁS+k2+k6k13+k2

Recall that plugging k¢ = 0 and ks = 0, result in ODEs for the activation and derepression mechanisms, respectively. Furthermore, we
term the special case ks = ks as perfect concerted mechanism, where the activation and repression strengths match.

S2-A Transient solution

Analytical solutions for nonlinear ODEs such as those in (S2.1) typically do not exist. However, a careful look at (S2.1) shows that the
nonlinear term is (ks — kg) X* Y*. Thus for a special case when ks = kg (perfect concerted mechanism), the system is linear, which
exhibits analytical solution. The solutions for other cases can be computed numerically. We also provide an approximate solution
using linearization around the steady-state solution (X*, Y*).

It turns out that the forms of the ODEs for the perfect concerted mechanism and the linearized system are similar. Therefore, we
consider the following generic system first and compute its transient solution.

dR;

=1y — 11 Ay, S2.3
g = o~ mh (S2.3a)
dR
7dt2 =&+ &R — &R, (S2.3b)

with initial conditions (R;(0), R2(0)). Let R+[w] and Ro[w] respectively denote the Laplace transforms of R;(t) and Ry (t). Then we have
that

WRA[w] — Ry (0) = % R, (S2.4a)
wRalw] — R2(0) = %0 + §1 R [w] — E2Ra[w]. (S2.4b)
Solving for R4[w] and Ro[w]
Rifw] = — 0, O (S2.5a)
w(w+n1) W+
Rolw] = $o 110 §1R1(0) R2(0) (52.5)

Ww+&)  wwrmw+E)  Wr)wrm)  wrby
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Taking inverse Laplace transform gives

Ry(t) = ? (1—e ™) + Ry (0)e ", (S2.6a)
1
S +& r/o —&at —mt —&ot _ o—mt
Rolt) = 1 <Ff2(0) _ 5") S (”‘e tee ) + &Ry (0) (ee) . (S2.6b)
& &2 mée m — & m — &
We can compute the steady-state solution by taking the limit t — oo:
B =M (S2.6¢)
T

. G+l
Ry = >lm (S2.6d)

€2

The solution for the limiting case when 7y = & may also be obtained by taking the limit 7, — &,. Another special case, which is
more relevant for our discussion in this manuscript, is when the initial conditions are specified as R;(0) = 0 and R>(0) = % For this
case, we have the following

Ri(f) = % (1—e ™), (S2.7a)
1
So+ & ot (771 e &l — &eﬂﬂ)
Felt) = & mé& —& ' (52.70)

S2-A-a Transient solution for a perfect concerted model

A perfect concerted model is characterized by ks = kg. Substituting ks = kg in (S2.1) results in

ax* .
el kiSXt — (kS + ko) X, (S2.8a)
avy* . .
dat = k3 YT + ke YTX - (k3 + k4 + kGXT) Y s (S28b)
with initial condition (X*(0), Y*(0)) = (0, %). We note that the form of (S2.8) is same as that of (S2.3), with parameters
Mo =kiSXt,m =kiS+ ko, & = k3 Y7, &1 = ke Y7, and & = ks + kg + kg X7. Thus, we can use (S2.7) to get the transient solution
ki SXt (ki Stk
X*(t) = 1 — g (S+h)t) | S2.9a
( ) k1 S+ kg ( ) ( )
vy ST RRS |, RS | (S ke RN — (kg + ky + keXr)o Stk s2.9)
T kgt ks + ke X | k3t ket keXT | kiS + ko — (K + ka + ks X7) ' '
For the special case when kS + ko = k3 + k4 + kg X7, we have
k3 + 5 k1SXT k6 k1SXT
Y*(t) = kSt vy fiSthe vy g=(ketkatke XDt (1 4 (kg + Ky + Ko X7)1) . (S2.9¢)

Ko + kg + ks X7 | kg + kg + kg X7
S2-A-b Approximate transient solution using linearization

The ODE system in (S2.1) contains the nonlinear term X* Y*, which can be linearized around the steady-state solution (X*, Y*) as

XY~ VX + XY — XF YR, (52102
where
—  kSX;
. | S2.10b
kiS + ko | )
_ ks + ks 1AL
o kS k_ = VT (S2.10c)
ks + kg + K X7 + (K5 kﬁ)k1 Stko

Substituting this for the nonlinear term in (S2.1), we get the following

ax* .

= k1 SX7 — (ki S + ko) X*, (S2.11a)
ay* S — — _

dt = (ngT+(k5—k6)X* Y*) + (ksYT—(ks—ks)Y*) X* —(k3+k4+k5XT+(k5—ke)X*)Y*. (S211b)
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These ODEs are similar to those in (S2.3). The parameters are: o = ki SXt, m = k1S + ko, 50 = K3Y71 + (ks — ke)v W, 51 =
ksYr — (ks — ks) Y™, and & = ks + ks + ks X7 + (ks — k) X*. With the initial conditions (X*(0), Y*(0)) = (o, %) the solution
same as that in (S2.7) and is given by.

ki SXt

X*(t) = ——1 (1 — g~ kSl 5o 128
( ) Ky S+ ko ( ) ( )
Ky SX;

Y*(t) = ks + ks k1‘s+kTg Yy — ki SXt (Kaks + kaks + ksks X7) YT

- K SX .

ks + ks + K X7 + (Ks — Ko) 3 5 i ki S + ko (ks + Ky + ke X7 + (Ks — ke):1ssi(l(72)
ky SX-
(k1S + kz)e_ (k3+k4+k6XT+(k5_k6)ﬁ)t _ (ks + Ky + kg X7 + (ks — ks)%) o (ki Stke)t

(S2.12b)

KiS+ky — <k3+k4+k6XT+(k5 _ ke)ggfkfz)

The special case when the timescales match may be computed by taking the limit of the above solution.

S2-B Response time

In this section, we compute the response times for the perfect concerted model and the linearized model. To this end, we recall that
the response time for a response R(t) is

I 7 t|R— R(t)| dt
IS |R= R dt’

Tr = (S2.13)
where R is the steady-state response. We use this definition to compute the response times for the generic ODE system considered in
(S2.3), whose solution is given by (S2.6). We then adapt the solution for our systems of interest, namely, the perfect concerted model
and the linearized model.

We begin by computing the response time for R;(t). The term Ry — Ry(t) > O'is

R — Ri(t) = <77° _ R (0)> e, (S2.14)
T
Note that
e 1
/ e Mgt = —, (S2.15a)
0 Ual
o 1
/ te”dt = . (S2.15b)
0 Uk
Using these in (S2.13), we get
1
Th = —. (S2.16)
T
It is worth noting that 7z, does not depend upon the initial condition R;(0) and is only defined if R;(0) # R;.
Next we compute the response time for Ro(t). The term R, — Rx(t) > 0 is given by
—&at —nt —&ot 4t
— e e e e
By — Ro(t) = — <R2(0) _ 50) ot , 081 (M) — & R(0) () . (S2.17)
&2 méa m—& m—&

The integrals of exponential terms in (S2.15) may be used to compute the integrals for the numerator and the denominator of the
response time. In particular, we have that

Ry(0)— S0 Z%—% z-
_ &y Mo&1 5 M — & R(0)2 ik

W

m—& m—&

Tr, = FIZ(O)—%" . %1_& . (S2.18a)
_ 2 Mos1 2 M _ 2 m
&2 e < m—&2 > 1R (0) m—&2
_RZ(O)_% & (e +m&e+El)  &1R(0)(mi+Ea)
& ' ug 7 (S2.18b)
- Fo(0)— £ R, (0 '
_ z 4 no&1(m+&2) _ &1R41(0)
&2 n2&; mé2
—n3é (92(0) - %) + 101 (0% + &z + &5) — m&r&a(m + E2) A1 (0) (52180
= . - C

—n7&5 (Rz(o) - %) +10mi&1€a(n +&2) — nf&E5R1(0)
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We deduce several important insights from the above expression. First, we note that the response time 7, depends upon the initial
conditions R;(0) and R»(0). Second, the dependence on R;(0) and R»(0) drops for the special case when R;(0) = 0 and R»(0) = %
In this case, 7, simplifies to

i +méa+ &

R, = . (S2.19)
© om&a(m + &)
Finally, if Ry (0) is taken to be at the steady-state Ry = % and R»(0) is set as Rx(0) = % then we get
1
Tg, = —. (52.20)
&
With this in mind, it is convenient to express (S2.19) as
1 &
Th = — 4 —. (52.21)
TG mran
where the first-term is the response time if Ry were at steady-state, and the second term is the time-averaged 7g, .
S2-B-a Response time for a perfect concerted mechanism
For this case, we can simply adapt the results of (S2.16) and (S2.21).
T 1 (S2.22a)
T kSt k) '
1 1 ks + Kq + ks X
Tye = N x I S (S2.22b)
k3+k4+k6XT k1S+k2 k1S+k2+k3+k4+k6X7-
S2-B-b Response time for the linear approximation
As with the response time for the perfect concerted mechanism, here too we adapt the results of (S2.16) and (S2.21).
Tx» = ! (S2.23a)
T kS+k '
1 1 ks + kg + ke X7 + (ks — k) K1SXT
Ty- = B x S (S2.23b)
k3 + k4 + kGXT + (ks - ke)k113+/:2 k1 S+ k2 k1 S+ kg + k3 + k4 + kGXT + (k5 — ke)k113+lz-2

How good is the above approximation of response time? One check is to plug in ks = kg to obtain the approximation for the perfect
concerted model for which we have the exact expression of the response time in (S2.22). Indeed, substituting ks = ks in (S2.23) yields

1
k1S+k2’

1 1 % k3+k4+k6XT
k3+k4+k6XT+k1S+k2 k1S+k2+k3+k4+k6XT’

Ty = (S2.24a)

TY* =

(S2.24b)

which is exactly same as (S2.22). Thus the linear approximation is exact for the perfect concerted model. This is not surprising
because the perfect concerted model is linear by construction.A second check of how good the approximation in (S2.23) is through
numerical computation, which is discussed in a later section.

S2-B-c Response time for ratiometric signaling

Ratiometric signaling is the special case where the signaling output does not depend upon the total number of receptors Xr. In the
main text, we show that when k3 = 0 and k4 = 0, then the response is independent of X7 ((5)). Here we ask whether setting k3 = 0
and k4 = 0 also result in the response time indepedent from X7. To this end, we plug these values in the expression of Ty« in (52.23):

1 1 k6XT + (k5 - kG) k1S+),(T
Ty« = kSxr + X — ki SXr_° (52.25)
ke X7 + (ks — Ko) i ool KiS+hke  kiS+ ke + ke X7 + (Ks — Ko) 1 5o

Clearly, the response time depends upon X7, thereby establishing that the ratiometric signaling is only applicable for the dose-
response. We further ask how X7 affects the response time. To this end, the most convenient limit to check is when the receptor

dynamics is fast, i.e., k1S + ko > ke X + (ks — ko) 3L, which gives us

1

~ kiSXt
Ko X + (ks — hg) 1EXE

Ty (S2.26)
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Thus, if everything else is constant then increasing Xt decreases the response time. Even when the receptor dynamics is not fast, we
can verify this effect by looking at the sign of the derivative of Ty« with respect to X*

d7—y* _ (k1 S + k2)5 + 2(/(1 S + kz)s(kgke)(T + k1 SksXT)

dXr Xr(koko X7 + ki Sks X7) (K1 S + k)2 + koks X7 + ki SKSXT)Z

<o0. (S2.27)

Thus increasing X7 speeds up the response. Next, we discuss the numerical method to compute response time which we use to
validate our approximations.

S2-B-d Numerical computation of the response time

One convenience in using the center of mass definition of the response time

S t|YE = vt at

Ty = “sgr== (S2.28)
S|V = vt dt
is that it can be computer numerically via solution of an augmented ODE system
ax*
e ki S(Xr — X*) — ko X*, (S2.29a)
dY* * * * *
e (ks + ks X*) (Y7 = Y*) — (ka + ks (X7 — X*)) Y, (S2.29b)
av, —
Ay oy, (S2.29¢)
dt
av.
2 9, (S2.29d)
dt
dVs
— = ViVa. S2.2%
a1 ? ( )
Here Vi (t), Vo(t) and V3(t) are the augmented states to the original ODE system. The initial conditions are given by
ki SXT
(X*(0), Y*(0), V4(0), Va(0), Va(0)) = | 0, T (k3 Hhe k‘s+k2> i kYT 50 (S2.29f)
’ P T L TS N ’kg,+k4+k6XT’k3+k4+k5%+k6k:‘25):22 ks + ks + ke X7~ ' '

Note that the state V;(t) computes the integral in the denominator upto a time horizon ¢, Vi (t) tracks the time, and V3(t) computes the

numerator up to time horizon t. If we choose t to be large enough such that the system has reached saturation, then zj—ﬁg computes

the response time. It is easy to see that the approximation gets better with a larger t. We can use the approximation of response time
in (S2.23) to set a time for the integration.

S3 Stochastic analysis of two-tier cascades

Here we consider a two-tier model for signal transduction as described in Table 1 in the main text. Let Py, ,(f) denote the probability of
finding m molecules of X* and n molecules of Y* at time t. Then, we can write the chemical master equation (CME) that describes
the time evolution of Py, ,

dPpm,n(1)

o = aSXr = (m=1))Pm_1n+ ke(m +1)Prutn + ka(Yr — (1 = 1))Pmn—s

+ksm(YT — (1 —1))Pmn—1 + ka(n+ )Py + ks(XT — m)(n + 1) Ppy iy
— (k1 S(XT — m) + k2m + kg(YT — n) + k5m(YT — n) + k4n + kG(XT — m)n) Pm’n, (831)

where m=0,1,...,Xrand n=0,..., Y7 [60,79]. It is often difficult to analytically solve the CME. Because the dynamics of X* is linear
and it does not depend upon Y*, it is possible to provide an analytical solution Py,. As for Pp, ,, we only provide approximate and exact
computations of its first two moments.

S3-A Stochastic solution to receptor dynamics
The CME that governs the time evolution of Pp(t) is:
dPp(t)

prani ki S (Xt — (M — 1)) Pp—1(t) + kao(m + 1) Py () — (k1 S (X7 — m) + kom) Pro(t). (S3.2)
We define a generating function
G(z) = Z Z"Py, |z <1 (S3.3)
m=0
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to solve (S3.2). Multiplying both sides by z™ and summing over m yields

k1SXTZz [ —k1SZz m—1) Pp_ 1+kZZz (M +1) Py —k1SXTZz P+ (ki S — ko) Zz mPy. (S3.4)
m=0 m=0 m=0
The above equation becomes the following partial differential equation (PDE)
0G 0G

F_k1SXT(Z_1)G+( k1SZ +k2+(k1S kg) )az

We solve this PDE using method of characteristics, assuming the initial condition G(z, 0) = 1 which corresponds to 0 molecules of X*.
The solution is given by

(S3.5)

k1 S _ k1 S — s
Glz,t)=(1— 1 — g (kS+klt z (1 — e kS+helt . $3.6
(2.1 ( Sk )t s’ ) (53.6)
Using Binomial theorem, the above expression can be written as
XT m erm
X7 kS _ kS _
G(z,t) = 1 — g~ (kiS+kt 1— 1 — g~ kiS+ht z"m. $3.7
( ) %(m) <k18+k2( ) k1S+k2( ) ( )
The probability P,,(t) is given by the coefficient of z”
Xr ki S _ m kS _ Xrom
P (1) = 1 — g kSt 1— 1 — g~ WS+t ) S3.8
() <m) (k18+k2( ) k1S+k2( ) (S3.8)
The stationary distribution P, is computed by taking limit t — co
_ /X kS \" kS \¥T"
P.=("T ! 1— , (S3.9)
m) \KkS+k ki S + ko
which is a Binomial distribution with parameters X7 and kfgsz [80]. The stationary moments of this distribution are given by
ki SXt
X*) = , S3.10a
< > k1 S + k2 ( )
ki Sko Xt
X2 - (x*)? = 20 $3.10b
< > < > (k1 S+ k2)2 ( )
X*2> X*>2 k2
CVZ. = { = . (S3.10c)
(x*)? ki SXr

S3-B Moment dynamics

We are specifically concerned with moments of the two-tier model. To this end, we take the well-established approach of using the
ODEs that govern the moment dynamics (e.g., see [62,64]). A generic moment may be written as

d<x*m1 Y*m2>
dt
+ (ks + ks X™) (Y7 = Y*) (X*T(Y" + 1)™ — X*TY*™)) o ((Ky + Ke(Xr — X¥)) Y5 (XFT(YS —1)™ — X*My*™)) - (S3.11)

- <k1 S(XT o X*) ((X* + 1)m1 Y*mz o X*m1 Y*m2)> + <k2X* ((X* o 1)m1 Y*mg o X*m1 Y*m2)>

Here we have used (.) to denote the expected value of a random variable. Our focus in this work is to compute the first two moments
in steady-state. However, due to the nonlinearity X* Y* in these equations, the moment dynamics is not closed in that a lower-order
moment depends upon a higher-order moment [62—64]. It turns out that for the special case ks = kg (perfect concerted model), the
moments may be computed exactly. We provide approximate formulas for moments using a linear approximation when ks + kg.

S3-B-a Moment computation for a perfect concerted model

For the concerted model, ks = kg. Let us write moment dynamics for first two moments.

I S? = kiSXr — (ki S+ ko) (X*), (S3.12a)

. <dt*> = ks Y7+ ko Y7 (X") — (ks + ke + ks X7) (Y") , (S3.12b)

d <;(:2> = ki SXr + (ki S@Xr — 1) + ka) (X*) — 2(ki S + ko) (X*?) (S3.12¢)
% = ks Y7 (X*) + ks SX7 (Y*) + ke Y7 (X*2) — (k1S + ko + kg + ky + Ks X7) (X*Y¥) (S3.12d)
d<;,/:2> = kg Y7+ Ke Y1 (X*) + (Ks(2Yr — 1) + ka + K Xr) (Y*) + 2Ks(YT — 1) (X*Y*) — 2(ks + ks + ke X7) (Y*%) . (S3.12¢)
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We can solve for steady-state moments by setting each of the derivatives equal to zero. For example, the means are given by

.. kS
(X*) = k1S1+ kzxr, (S3.13a)
(v = Hothe Xy, 2 ot o g Xr Yr. (S3.13b)

ks + ks + ke X7 | kg + ko + ke X7
Next, we compute second order moments. <X*2> is given by

kS 2 K SkX
! ) (‘ ALl (S3.14)

X*Z X =
(x%) = <k18+k2 ") kS + k)

where the first term is (X*)2. The cross moment (X* Y*) is

ki Skoks X7 Y kS ks + ke 15X
(X*Y*) = 12126 T 1T +< L xr><3 oS TYT>. (S3.15)

(k1S+k2)2(k1S+k2+k3+k4+k6XT) k1S+k2 k3+k4+k6XT

Here the second term is (X*) (Y*). Finally, the second order moment ( Y*2) in terms of the other moments is

k3 Y; ke YT (X* Ks(2YT — 1) + kg + ks X7) (Y*)  2ke(Y7 — 1)) (X*Y*
(v = 3 YT . 6 YT (X™) +(3( T — 1)+ ks + ke X7) ( >+ s(YT — 1) ) (S3.16a)
(kg + k4 + kGXT) 2(k3 + k4 + keXT) 2(/(3 + k4 + kGXT) 2(/(3 + k4 + keXT)
k3 Y ke X ks(YT — 1) (X*Y*
_feYrek ke Xr k(YT — 1) (XTYT) (S3.16b)
k3 + k4 + keXT k3 + k4 + k6XT
Using the moments computed above, we can compute the centered moments. For example, the variance of X* is
ki Sko X1
XY (x*)E o AT S3.17
(X =) (k1S + ka)? ( )
the centered cross moment is o Sho kXY
XYy = (X*) (") = AT , (83.18)
(k1S + kg) (k1S + k2 + k3 + k4 + kGXT)
and the variance of Y* is
K3 YT + kg + kg X ks + K X Ke(YT — 1
(v?) —(y2= (1 T+ Ka + ke X7 s+ Kb Ty ) s s(Yr—1)
k3 + k4 + kGXT k3 + k4 + k6XT k3 + k4 + kGXT
2
k1 SkgkeXT YT k1 SXT kS + kﬁk Stko XT k3 + kGﬁXT Y (83 19)
(k1S + k)2(kiS + ko + ks + ko + K X7) + KiS+ ko kot ks + kXr | Ko+ ks + ke X7 | '

We use the centered moments computed above to quantify noise in X* and Y* using coefficient of variation squared.

Coefficient of variation squared. Let CVZ. and CV2. respectively are the coefficient of variation squared for X* and Y*. Then

X2y —(X*)? g
CV2, = ) i ok , (S3.20)
<X*> k1 SXT
and
Y*2 _ Y*
CVi. = H# (83.21)
(Ys)
2
_ (k3Y7+k4+k6XT) k3+k6k3+k XTY A [ kg + ke + ke Xr
T\ ks + kg + ke X7 ks + ks + kX7 | Y2 Ko + Ko 95 X
2
1 kg + k4 + kGXT ke(YT - 1) k1 SkgkeXT YT
b
Y k3 + ka K S+k XT k3 + k4 + kGXT (k1 S+ k2)2(k1 S+ kg + k3 + k4 + kBXT)
2
1 [ ks + ke + ke X7 ke(Yr —1) [ kSXr ks +keﬁxry 1 ©3.22)
+— —1. .
Y2 \ ko + ko g3 Xr ) ha+ka+keXr \ kiS+ ko ks + ks + ko Xr T
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On simplifying, we get

CV2 1 k3 YT + k4 + kGXT + YT -1 ke (k3 + k4 + kGXT) (k1 SkgkeXT)
Ty, kiS 2
Y1 oks+ Ko kool XT Yr (k1S + kp)? (ks + ksikfs‘sz XT) (k1S + ko + k3 + kg + ks XT)
Yr —1 Kek1 SX:
+— 61277 (S3.23)

Yr (ks + k%gifkgxr) (ki S+ ko)

Decomposing the coefficient of variation squared into different sources. We expect that CV2. has two sources of noise:
activation/deactivation events for X* and activation/deactivation events for Y*. To tease out the contribution from activation/deactivation
events for Y*, we consider a scenario the dynamics of X* is deterministic. In this case, the moment dynamics is given by

ax*
o = faSXr — (kS + ko) X*, (S3.24a)
a(yr) " ]
dt = kg YT + ke YTX - (k3 + k4 + kXT) <Y > f (8324b)
d<Y*2> * « * * *2
” = kY7 + ke YT X" + (ka(2Y7 — 1) + ka + ke X7) (Y*) + 2ks (YT — 1)X* (V™) — 2(ks + ks + ke X7) (Y*2). (S3.24c)

The steady-state solution for the coefficient of variation squared computed from these equations is given by

1 Ko+ K X7 gikg

CcVe. =—
act./deact. ko °
YT k3 + k6XT i St+ko

(S3.25)

We do not provide detailed calculations here. One sanity check is that this expression is consistent with coefficient of variation squared
for a binomial distribution, which is expected if X* were constant.
Subtracting (S3.25) from (S3.23), we obtain the contribution of noise in X* to noise in Y*:

YT —1 (k3 + k4 + k@XT)(lﬂ Sk2k2XT)
act./deact. = Yr

CV2. — CV2.

. (S3.26)
(k1S + ko + kg + Ka + ke X7)(Ks S + Ko)? (k3 . ksxrﬁ)

We expect that the term on the right hand side should have contribution from CVZ., which is time-averaged. Recall (S2.22) that
k1S + ko is response time of the receptor and that k3 + k4 + ks X7 is response time of the switch if the receptor dynamics is fast. Thus,

% can be interpreted as the timescale averaging. Therefore, we write
k P 2
cve. . LMrlNEsk | kerkerkXr  Yrodf KNEsk ) g (S3.27)
YT ks + ke X760 kiS+ ko + ks + ks + ke X7 Y7 o + ko X7 25 X+ .

time-averaging

contribution from act./deact. of Y* coupling

2 _  k
where CV%. = K oX; -

S3-B-b Approximate moment dynamics using linear approximation

As discussed earlier, the moment dynamics is not closed when ks — kg is non-zero. To estimate moments, we first linearize the
nonlinear term around the solution of the deterministic model [81]. Let (Xj,;, Y) be solution to the ODE model

X et

pra ki SXt — (k1S + ko) Xy, (S3.28a)
dyj, y e L
dctiet =Ka Y7+ Ks Y7 Xy — (K3 + Ka + Ks Xo1) Yoot — (K5 — Ke) Xt Yaer- (S3.28b)

The stochastic model with linearized propensity is shown in Table 2.
The second order moments with the above linearized propensity model satisfy the following differential equations

d <X*2> * *2
s ki SXT + (2ki SXT — k1S + ko) Xy — 2(k1 S + k2) (X*2) | (S3.29a)
—a (ks YT + Ks Xt Yaor — Ko Xt Yaer) Xaer + K1 SXT Yior + (Ks Y7 — K5 Yor + Ko Yoo ) (X*2)
— (KiS+ ks + kg + Ky + Ks Xjjoy + Ks X7 — ke X3ir) (X" Y*), (S3.29b)
d < Y*2> * * * * * * *
g = KT+ KsXaer Yaer + Ko Xoer Yaer + (Ks YT — ks Yo — Ko Yaor) Xaet

+ (2/(3 YT - k3 + k4 + 2K5X;et Y;e[ - k5X;et + kGXT - kGX;eI) Y;et +2 (ks YT - k5 Y;e[ + ke Y;et) <X* Y*>
— 2 (kg + kg + ks Xy + K X7 — ke XGp) (Y*?). (S3.29c¢)
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Event Update Transition rate

X — X* X* = X +1 ki S(XT — X*)

X* =X X* = X — 1 ko X*

Y — v+ Y* s V¥4 (ks YT+ Ks YT X*) — kg Y™ — K5 (Yo X* + Xt Y™ = Xot Yiior)
Y* =Y Y* s Y — 1 (Ka + Ke XT) Y™ — Ko (Yir X* + Xt Y™ = Xt Yiier)

Table 2: Transitions and associated rates for the stochastic model.

Computing these moment equations, along with the solutions to the deterministic dynamics, approximates the moments. Using a
symbolic solver to solve for moments in steady-state, we get the following for the coefficient of variation of X*.

ke
ki SXt'

The formula for CVZ2. can be obtained in the same manner as done for the perfect concerted model and is given by

CV2, =

(S3.30)

1 Ko+ K X7 gikg

v kS
YT kg + k5XTm

CV2, ~

contribution from act./deact. of Y*

2
ki SXr ko XT (7‘“ SXr ) Kaks + k(K3 + ks X 2
k3 + kg + k57k18+k2 + ke kSt ki S+ko ( 415 6( 3 5 T))

K1 S + ko + kg + Ky + kg 1SXT 4 s teXT wsxr \ 2 Ky SX; ke Xr
k1 S+ke ki S+kz ks + ks ki Seks k3 + k4 + ks koo T Ks ki otk

5 CV%.. (S3.31)

time-averaging
coupling
Because we already have exact moment formulas when ks = ks, we can immediately check the validity of linear approximation for
that case. Plugging ks = ks shows that the noise approximation above differs from (S3.27) by a factor (Yr — 1)/ Y7 that multiplies
CVZ.. Typically (Yr — 1)/ Y7 ~ 1 for large Y7, indicating that our linear approximation is reasonably good for a concerted model.

S3-B-c Coefficient variation squared for ratiometric signaling

For ratiometric signaling, in which the steady-state response does not depend upon the total number of receptors X7, we need k3 = 0
and k4 = 0. Substituting these in the expression of CV$* in (S3.31), we get

1 kok K2 k
20 6 2 (S3.32)

CV2. ~ — + .
Y7 ki Sks (k1S+k2+k5 K SXr | o keXr ) (k1Sk5 + ek ) kS

ki S+kz 6 K Sthy kiSthky © K S+ky

Thus, increasing Xt decreases overall noise because X7 increases the denominator terms in the above above formula. Next, we
provide exact computation of moments using a semi-analytical approach.

S3-B-d Exact moment computation

Our goal here is to compute the first two moments of Y*. As discussed earlier, a moment of lower order depends upon moments of
higher order, resulting in the problem of moment closure. Here, we exploit the fact that X7 is finite to come up with an alternate state
space where moment dynamics is closed. The computations follow the formalism proposed in [65]. Another closely related method is
the method of conditional moments described in [82].

Let us define indicator variables b;,i = 0,1, ..., X7 as

1, X* =i,
bi = . (S3.33a)
0, otherwise.
It then follows that
Xr
Z bi=1, bbj=0,i+#j, b?=b. (S3.33b)
i=0
We now recast our original model in the new state-space [bo by ... by, Y*]T. The transitions (i.e., reactions) and the corre-

sponding transition intensities are as follows.

1. Receptor activation: the transition intensity of a receptor activation event is given by Zfo kibj(XT — i). Whenever this event
occurs, the states reset as

(b by o bx, Y] b by o by Y =Y be YT+ bifew Y],
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where ¢; is a column vector of dimension X7 + 1, with all zeros except at the i position. This reset map simplifies to

T

[bo b1 b2 .. bx—1 bx, Y| = [0 by by .. bx—2 bx,_1+bx Y*]T. (S3.34a)

2. Receptor deactivation: the transition intensity is given by Zfo bikoi, with the map

Xt X7
[bo by o bx, Y] (b by by Y =Y bile v+ biley Y]
i=1 i=1

The reset map further simplifies to

[bo bi by . bx1 by Y] = [bo+b by by .. by O Y. (S3.34b)

3. State Y* to Y* + 1 occurs with transition intensity Z,)fo Kabi(Yr — Y*) + E,)fo ksibi(YT — Y*) and map

Xr Xt
Sobilbo b by Y] =Y bl by bx YT4d],
-0 i-0
which results in
[bo b1 by .. bx,—1 bx, Y| = [by b1 by .. bx,_1 bx, YF+1] . (83.34¢)
4. State Y* to Y* — 1 occurs with transition intensity Zﬁ) kb Y* + Z,{To ke X7bY* — Zfo Keib; Y* and map
bty b by Y] > bi[by by by, YF—1] .
i=0 i=0
On simplifying, the above map becomes
* T * T
[bo b1 by .. bx—1 bx, Y| = |bo b by .. bx_1 bx, Y*—1] . (S3.34d)
We can now write the dynamics of moments of the form (b;Y*™) for m = 0,1, 2. Let us begin with (b;).
d (b
<t°> = —k X7 (bo) + ko (by) , (S3.35a)
daib) _ e - ' ' <i<
dt = 1( T—I+1)<b,',1>—k1 (XT—I)<b,‘>+k2(I+1)<b,'+1>—k2l<b,'>,1 _I_XT—1, (SSSSb)
db
<d;(T> = ki (bx;—1) — ke X7 (bx;) - (883.35¢)

Recalling the definition of b;, we note that (b;) is same as the probability that X* = /. We have solved these equations in a slightly
different notation in (S3.8). Therefore, the solution to these ODEs is

i Xr—i
X k ks k ks !
<bi> ) ( fT) <k1 :kz (1 et kZ)t)) (1 B k1 :kz (1 et kZ)t)) - (53.36)

Next, we write the dynamics for (b; Y*).

d{bY*
% = — (k1 XT + k3 + k4 + kGXT) <b0 Y*> + kg <b1 Y*> + ks YT <b0> , (83373)
d (biY*) ) ) o . . . , .
T=k1(XT—I+1)<b,',1Y>—(k1(XT—I)+k2[+k3+k4+k5l+k6(XT—l))<b,‘Y>+k2(l+1)<b,‘+1Y>
+ k3 YT <b,> + k5 YTI <b,> s 1 S i S XT - 1, (S337b)
d<bXT Y*> * *
—Q ki (bx,—1Y™) — (ke X7 + kg + ks + ks X1) (bx; Y™) + ka Y7 (bx,) + ks Y7 X1 (bx;) . (83.37¢)
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Finally, the ODEs describing the time evolution of <b, Y*2> are as follows.

% = —kiX7 (boY*?) + ko (b1 Y*?) + ks Y1 (bo) + (—ks + ks + ke X7 + 2k Y7) (o Y*) — (2ks + 2Ky + 2k X7) (b Y*?)
(S3.38a)
w = ki (XT — i+ 1) (b1 Y*?) — ki (X7 — 1) (b1 Y*?) + ko(i + 1) (bi1 Y*?) — kai (b; Y*?)
+ (k3 YT + ks Y7i) (bi) + (—ks — Ksi + ks + ks X7 — Kei + 2k Y7 + 2ks Y7i) (b; Y*)
— (2ks + 2Ksi + 2k + 2ke X7 — 2ksi) (biY*?), 1< i< Xr—1, (S3.38b)
d <bXT Y*2> 2 2 *
—— =k (bx;—1Y"?) — ke X7 (bx; Y*?) + (k3 Y7 + Ks Y7 X7) (bi) + (—ks — ks X7 + K4 + 2k3 Y7 + 2ks Y7 X7) (b Y™)
— (2ks + 2ks X7 + 2ks) (b Y*?) . (S3.38c)

These ODEs require initial condition to compute transient moments which we discuss below.

Setting initial condition. In absence of stimulus, we have that (by)=1, because no receptors should be active. All other (b;) = 0.
Furthermore, (b;Y*) = (b;) (Y*) and (b;Y*?) = (b;) (Y*2). Therefore the mean and the second moment at time ¢ = 0 are given by

the first two moments of the Binomial distribution with parameters m and Y7. Therefore, the initial condition is

. ks won KE2YZ 4 ky(ky + ks XT) YT
boY*) = ———— Y7, (bY*?) = . $3.39
oY) = Xy T {boY™) (ks + ks + ko X7)? (53.39)

Semi-analytical solution using linear algebra. Let yo = [(b) (b1) ... (bx,)] " be the collection of the moments of b;. Then
the ODEs can be compactly written as
dpo
GHO _ Aorto. S3.40
o oo ( )

which has the solution 1io(t) = €"!116(0). We also note that >, (b;) = 1 at all times.
The matrix M is tridiagonal, but its inverse does not exist. This does not affect computation of the transient solution as long as we
respect the constraint that all (b;) sum up to one. For steady-state solution, however, we have to solve

MOMO =0, (8341)

which only exhibits a trivial solution po = 0. To force the summation requirement, we reduce the system such that we get rid of the
last equation corresponding to (bx,). We then substitute (bx,) = 1 — Z,foq (b;) wherever we have (bx,). This gives us a reduced

system of equation
Mosio + ¢ = 0, (S3.42)

which can be straightforwardly solved using standard linear algebra tools.

It is important to note that we already know the transient as well as the stationary solution for these equations - since (b;) are
probabilities. However, we present the linear algebra approach for completeness. We will this approach to compute the higher order
moments for which analytical solutions are not known.

Let us now solve for the moments (b;Y*). To this end, we collect all the required moments in ;4 defined as

pr = [(bo) . (bx,) (boY*) .. (bx,Y*).] (S3.43)
The corresponding ODE system is then
d/l1 Mo 0
— = S3.44
dt {Mw M11] - ( )

As before, we can now compute the solution using matrix exponential. For the moments <b,- Y*2>, we can similarly define pi,

pz = [(bo) ... (bx;) (boY*) .. (bx,Y*) (boY*?) .. (bx, Y*?)] (S3.45)

Then we can write the ODE system:

du My 0 0

2

7dt = M10 M11 O 2. (8346)
Moy Moy Moy
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S4 Effect of receptor internalization
S4-A Simple model

Let us begin with a simple model that includes the production of inactive receptors with rate k,, removal of inactive receptors with rate
kg and removal of active receptors of k. The ODE model for the set up is

aX
o = Ky — kg X — ki SX + ko X™ (S4.1a)

ax*
el KiSX — ko X* — K3 X* (S4.1b)

dy* * * *
o = (ks + ks X" W YT = Y") — (ks + ks X)Y™. (S4.1¢c)
Let us first determine the initial condition before the stimulus arrives. In this case, we have
k k:
X(0)=-2, X*(0)=0, Y*(0)= ——p. (S4.2)
kd k3 + k4 + %dp
Also, the steady-state solution is
ks + kS% I;psﬁ
Xe—fo__ e RS kel : dkdﬁvr (S4.3)
= ki Sk = Ky Sk = kek, : :
Ka + Tovic ko + kg ky + ek ks + ks + +i1gk;
d ka+k
k E
p *
Ky
Kq K, "
5
Ks
k e
6

Figure S4.1: Concerted mechanism with receptor production and degradation.

S4-B Solution to receptor dynamics

Our goal here is to examine the effect of receptor removal on different signaling mechanisms. To that end, let us first compute the
dynamics at the receptor level.

aX

=k~ KaX — KiSX 4 kX, (S4.4a)
ax*
o = RSX — ke X" — kG X" (S4.4b)

Let X[w] and X*[w] respectively denote the Laplace transforms of X(f) and X*(t). Taking the initial conditions as (X(0), X*(0)) =
(% 0), the Laplace transforms of above ODEs results in the following algebraic relations

K K
wX[w] — k—p = ;” — (k1S + kg) X [w] + ko X *[w], (S4.5a)
d
WX *[w] = ki SX[w] — (ko + K3)X*[w]. (S4.5b)
The solution for X'[w] and X*[w] is
ﬁ(w+k2+k*)+k ko(ko + k)
Xw] = K a77 7P e + Ay , S4.6
] w? + 2CKw + K? " w(w? + 2(kw + K?) ( 3
kikyS
R ki K,
X*[w] = . 1S (S4.6b)

+
w? +2(kw + K2 w(w? + 2(kw + K2)’
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where we have used the following notation

B KiS+ ko + kg + K

- 2\/(kS +ko)(ke + K)) — ki Sko”
K = \/(k1 S + ko) (ko + k) — K1 Sko. (S4.7b)

¢

(S4.72)

The roots of the term w? + 2(kw + k2 are
wig = K(—CE /(2 —1). (S4.8a)

The following usual relations hold for wy and ws:

wi +wa = —2k(, (S4.8b)
wWiws = K2, (S4.8¢c)

wy — wp = 2K/ (% — 1. (S4.8d)

It is easier to take the inverse Laplace transform of X'*[w] in order to compute X*(t):

kik,S
X(t) = —22 4 cfet + cyetet. (S4.9a)
K
Here the terms ¢} and ¢ are
* k1 S <kp kpCUg) * k1 S (kp kpw1 )
oo (S, =12 (%, . (S4.9b)
"ok —1\ks K2 )P 2521 \ks K2
Using the solution of X*(t), X(t) can also be computed as follows.
1 dX* ke +Kk}
X(t)= — 2 TR (S4.10a)
kiS dt kS
1 * ) * ) k2 + Ky k1k S * Wy * W
%S (ciwie“" + ciwoe™") + k1Sd ( Kg +cie“' 1 cle 2’) (S4.10b)
Ko(ko + k) Ciwy + ¢ (ko + k) ; Cywo + Cy (ko + KJ) ot
= Wi ol S4.10c
2 P e ki S © ( )

Having determined these solutions, we next provide a lower bound on . It is worth noting that > 1 implies that the roots w, » are
real.

A lower bound for (. The parameter ( defined in (S4.7) is always greater than one, regardless of the choice of parameters. To see
this, we look at (2

(ki S+ ko + ky + K3)?

= 4 (Kokg + Kokl + ki k3 S) (S4.11a)
_(kiS+ ka)? + (ko + k)% + 2(ki S + kq) (ko + k;). (S4.11b)
4 ((ki S + Ka)(kz + k) — ki Skz)
This implies that
(k1S + kg)? + (ko + K)? + (2 — 4C®) (ki S + ky) (ko + k) + 4¢%ki Skp = O (S4.11c)
= ((k1S+kg) — (ko + kg;))2 +(4 — 4¢3 (ks S + k) (ka + K;) + 4CPky Sk = 0. (S4.11d)

Because all terms in the above equation are positive, except may be for 4 — 4(2, a real solution for ¢ exists only if 4 — 4¢% < 0.
Therefore, ( > 1. Consequently, the roots w; and wy defined in (S4.8a) are negative and satisfy

wo < wq <0, |W1| < |OJ2|. (S4.12)

S4-C Effect of relative timescales

It is noteworthy that both X and X* have two timescales for relaxing to their respective steady-states, determined by w; and ws.
Because |wa| > |w1]|, we refer to the timescale set by ws as fast timescale and the one set by w; as the slow timescale. The parameter
¢ controls the difference between the magnitudes of w; and w,. What is the impact of these two timescales on the trajectories of X(t)
and X*(t)?
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Let us first consider X*(t) given by (S4.9a). At t = 0, the trajectory begins from X*(0) = 0. Consider a scenario where { — 1,
implying that wy ~ w»

_kikoS  kikpS

X*(t) 2 2

e " (S4.13)

kikyS
K2

which increases over time to reach the steady-state . Suppose that ¢ is now increased. The terms ¢} and c; relax with different
kikyS

timescales. Specifically, ¢ relaxes at a slower timescale than ¢;. Because ci+c; = —= %= < 0, at least one of has to be positive. If we
choose a large ¢ such that at a small time ¢, the contribution from ¢ does not change whereas c¢; term reaches its “quasi-stationary"
value. The solution for t < ' can then be approximated as

kik, S
X'(t) m =22 ¢} + cpem (RETVETN L _gr gy (RCTRVESDE (S4.14)
K

If we assume that ¢; < 0, then the quasi-stationary solution is given by
Xt~ —c; > 0. (S4.15)

Although this analysis is not rigorous, it equips us with requirements to obtain a response that first attains a peak value above its final

steady-state value. Specifically, we need that the coefficient c; that multiplies the fast timescale exponential term be negative and its

magnitude should be greater than the final steady-state. In other words, we need:

kik,S
2

i +¢cy=—

kik,S

, G <0, || > 2

(S4.16)
We substituted the values of ¢ and « from (S4.7) and used to symbolic solver to solve the above inequalities. We obtain that the
following should be satisfied:

0 < kg < Kkj. (S4.17)

We get similar requirements for a trajectory of X(t) that starts from X(0) = k,/kq, then decreases with a fast timescale below its final
stead-state value (i.e., attains a quasi-stationary value) and then relaxes back to the steady-state value. These conditions are

Ciw + il + k) | (Gt Gl + k) _ ko kolle+kg)  (GuzrGille ki) _ Kk Kolke +K3)
k1 S k1 S kd K2 ’ k1 S kd K2

>0, (S4.18)

As before, substituting the expressions of ( and x shows that these requirements are same as having 0 < kj < kg.

S5 Alternating activation and derepression

In this section, we consider signaling cascades consisting of alternating activation and derepression based switches. The first cascade
is shown in Fig. S5.1(a). It is built upon the activation mechanism of Fig. 1(a) in the main text, where the receptor activates a
downstream switch (Y &= Y*). We add a downstream switch (Z &= Z*) which is derepressed. The second cascade, shown in
Fig. S5.1(b), is a modification of the derepression mechanism of Fig. 1(b) in the sense that a downstream component is now activated
by the derepressed switch.

S5-A Activation followed by derepression

The ODEs that govern the dynamics of this cascade are

ax* §
= kiSXr — (kS + ko)X (S5.1a)
dY* * * *
o (ks + ks X*) (YT — Y7) — kY (S5.1b)
az* « K\y %
prale ki(Zr — Z7) — (ks + kio(YT — Y7))Z (S5.1¢)

We obtain the steady-states by setting each of the derivatives to zero. We express each of the steady-states in a similar form as that

of (3) in the main text
_ Hoe/:g + HOOS

R= S5.2
@F; +S ( )
For example, steady-state of X* is specified by

Xy =0, (S5.3a)
X5, = X, (S5.3b)

k;
Ox- = 2. (S5.3¢)

K
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(a) activation-derepression (b) derepression-activation
stimulus stimulus
K, Ky
X X’ X X’
Ks Ks
Y Y Y Y*
Ky K Ky
6 k9
Z Z Z Z
Kg Kg
Kyg

Figure S5.1: Three tier cascades with alternating activation and derepression mechanisms

The steady-state of Y* is specified by

K3
Y = Yr, S5.4
0 ks + k4 T ( a)
k3 + k5XT
yr = 20Ty S5.4b
© 7 kot ks + ksXr | ( )
k
Oy. =06 stk _ g, (S5.4c)

X kg + kg + ks X7

As expected, activation caused the dose-response of Y* to shift towards left in comparison with that of X*, i.e., Oy« < Ox-. Finally,
the steady-state of Z* is specified by

Kk Z
Zi=— T (S5.5a)
k7 + kg + k1°k34+l€;
k7 Z:
A ; T (S5.5b)
7 T8+ K103 Tk ke Xy
k7 + kg + k10 ka Yy
Oz« = Oy« fathks > Oy, (S5.5¢)
ks + kg + Kyg —Yr_—
7+ R + K10 1k ke Xy

We observe that ©, > ©y-. This means that the derepression layer has an opposite effect of activation and shifts the dose-response
back towards right.

S5-B Derepression followed by activation

The ODEs that govern the dynamics of this cascade are

ax

= kiSXr — (ki S+ k)X (S5.6a)
ay* " £\ A%

= ha(YT = Y) — (ke 4 ke(Xr — X)Y (S5.6b)

az*
=k keY)Zr = Z) — k2" (S5.6¢)

For this model, the steady-state of X* has the same specification as (S5.3). The steady-state Y* is prescribed by
k3
Y= ———— Y5, S5.7a
0 k3 + k4 + kGXT T ( )
ks
Y: = YT, S5.7b
TR ( )
K3 + K4 + Kg X
Oy = exw > Oxx. (S5.7¢)
k3 + k4
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Because ©y- > Oy-, the dose response of Y* is towards the right to that iX*. This results from the fact that this switch is governed
by a derepression mechanism. We now look at the parameters specifying Z*:

k3 Y
z = o+l k3+ki+56§f Zr (S5.8a)
k7 + kg + kgm
k7 + kg ko Yr
7 kotks _ 7 (S5.8b)

o] ks YT
k7 + kg + kg katks

k7 + kg + kgM
ez* = ey* Ktk +ho X7 < ey*. (85.80)

ks Y;
k7 + kg + kg k33+I;

We see that ©z« < Oy-. So, the dose-response of Z* is towards the left of Y*, which implies that activation of the third layer
counteracts the shifting caused of derepression of the second layer. It is important to point out that the effects of these mechanisms
on Z; and ZZ are different. A systematic analysis of these effects on alternating cascades will be carried out in a future work.

29


https://doi.org/10.1101/2020.06.12.147900
http://creativecommons.org/licenses/by/4.0/

	Comparison between different definitions of response time
	Transient solution and response time of two-tier cascades
	Transient solution
	Transient solution for a perfect concerted model
	Approximate transient solution using linearization

	Response time
	Response time for a perfect concerted mechanism
	Response time for the linear approximation
	Response time for ratiometric signaling
	Numerical computation of the response time


	Stochastic analysis of two-tier cascades
	Stochastic solution to receptor dynamics
	Moment dynamics
	Moment computation for a perfect concerted model
	Approximate moment dynamics using linear approximation
	Coefficient variation squared for ratiometric signaling
	Exact moment computation


	Effect of receptor internalization
	Simple model
	Solution to receptor dynamics
	Effect of relative timescales

	Alternating activation and derepression
	Activation followed by derepression
	Derepression followed by activation


