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Abstract

Chromatin interactions play important roles in regulating gene expression. However,
the availability of genome-wide chromatin interaction data is limited. Various
computational methods have been developed to predict chromatin interactions. Most
of these methods rely on large collections of ChIP-Seq/RNA-Seg/DNase-Seq
datasets and predict only enhancer-promoter interactions. Some of the ‘state-of-the-
art’ methods have poor experimental designs, leading to over-exaggerated
performances and misleading conclusions. Here we developed a computational
method, Chromatin Interaction Neural Network (ChINN), to predict chromatin
interactions between open chromatin regions by using only DNA sequences of the
interacting open chromatin regions. ChINN is able to predict CTCF-, RNA
polymerase ll- and HiC-associated chromatin interactions between open chromatin
regions. ChINN also shows good across-sample performances and captures various
sequence features that are predictive of chromatin interactions. To apply our results
to clinical patient data, we applied CHINN to predict chromatin interactions in 6
chronic lymphocytic leukemia (CLL) patient samples and a cohort of open chromatin
data from 84 CLL samples that was previously published. Our results demonstrated
extensive heterogeneity in chromatin interactions in patient samples, and one of the
sources of this heterogeneity were the different subtypes of CLL.

Introduction

Chromatin interactions play important roles in regulating gene expression* 2,
They bridge enhancers to genes®® and create insulated domains to constrain the
reach of enhancers®. High-throughput experimental techniques such as high-
throughput Chromosome Conformation Capture (Hi-C)’ and Chromatin Interaction
Analysis with Paired-End Tags (ChIA-PET)® have been developed to detect genome-
wide chromatin interactions. These techniques greatly advanced the understanding
of genome organization and its roles in transcription regulation® **. However, due to
costs and technical challenges, these methods have not been widely applied to large
cohorts of cell lines or clinical samples. Hence, our understanding of how common or
rare chromatin interactions are in different patient samples is limited.

A predictor that uses DNA sequences to predict chromatin interactions could
potentially expand our understanding of genome organization. Sophisticated
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computational methods such as DeepSea'? and DeepBind*® have demonstrated that
many transcription factor binding sites in open chromatin regions could be predicted
from DNA sequences. Additionally, various computational methods have been
developed to predict chromatin interactions to complement the experimental
techniques®*?°. Many of these methods rely on using various functional genomics
data including chromatin immunoprecipitation sequencing (ChlP-seq) data of
transcription factors and histone modifications, open chromatin data, and
transcription data'® '® '® 2°_ Methods such as RIPPLE'®, TargetFinder'®, and JEME"
reported high performances in predicting enhancer-promoter interactions using
supervised machine learning approaches. Although the reported performances were
exaggerated by using cross-validation with random splitting of samples®, these
methods suggested that chromatin interactions could be potentially predicted from 1-
dimensional functional genomics data®.

Recently, the convolutional neural network framework was adapted to predict
Hi-C contact matrix from 1-dimentional sequence data in a method called “Akita” %.
CTCF-associated genome folding pattern can be observed in the prediction results,
suggesting the importance of CTCF in regulating chromatin interactions. In addition,
prediction results can recapture the differences in genome folding between a normal
and genetically altered cell lines, indicating that machine learning framework can
predict different genome folding profiles given different input DNA sequences.
However, there are several limitations. First, Akita only performs predictions with 1
Mb DNA sequence regions, thus long-range chromatin interactions cannot be
predicted. Second, it is unclear whether ChlA-PET data can be predicted. Third, this
method was not tested for its ability to predict chromatin interactions de novo in
patient cancer samples.

In this study, we investigated the possibility of utilizing DNA sequence
features to predict chromatin interactions between open chromatin regions,
regardless of distance between them. We demonstrated that open chromatin
interactions can be predicted accurately from functional genomic data at the
resolutions of the experimental techniques. We then developed a novel method,
called Chromatin Interaction Neural Network (ChINN) to predict open chromatin
interactions from DNA sequences. This model has been developed for RNA
Polymerase Il ChIA-PET interactions, CTCF ChlA-PET interactions and Hi-C
interactions. ChINN was able to identify convergent CTCF motifs, AP-1 transcription
family member motifs such as FOS, and other transcription factors such as MYC as
being important in predicting chromatin interactions.

Moreover, we further applied our model to a set of 6 newly generated chronic
lymphocytic leukemia samples, which showed patient-specific chromatin
interactions. We were able to validate predicted interactions by Hi-C. The models
were then applied to a cohort of previously published 84 chronic lymphocytic
leukemia (CLL) samples® . We found additional evidence for patient-specific
chromatin interactions, and chromatin interactions that were different in different
subtypes of CLL. Taken together, our results indicate that ChINN can predict
chromatin interactions, and application of ChINN to cancer patient samples
demonstrates widespread patient heterogeneity in chromatin interactions.
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Results
Open chromatin interactions can be predicted from functional genomic
features

In light of Xi et al.?* and our previous study®? showing that the existing
prediction methods have exaggerated performances, we first tried to demonstrate
that chromatin interactions could be predicted from functional genomic data. Many
previous studies focused on enhancer-promoter interactions that were annotated
using chromatin interactions derived from HiC or ChIA-PET ** %18 The enhancers
used were typically hundreds of base pairs, while the chromatin interaction anchors
were much larger in size. The resolution discrepancy could lead to the introduction of
a lot of noises to the training datasets (Figure 1a). Thus, we used the chromatin
interaction anchors directly.

Positive samples were constructed from ChlA-PET datasets separately and
the corresponding distance-matched negative datasets were generated
(Supplementary Figure 1). The resulting distance-matched datasets have positive-to-
negative ratios of approximately 1:5 and all chromatin interactions were between
open chromatin regions in the corresponding cell types. We used ChlP-seq data
of transcription factors and histone modifications commonly available to GM12878,
K562 and HelaS3 and DNase-seq data from ENCODE? to annotate the anchors
and build the feature vectors (Supplementary Table 1). For each chromatin
interaction, the average signal of each transcription factor, histone modification and
open chromatin were calculated for both anchors. The distance between two
anchors was also used as a feature.

Gradient boosted trees* were used to build models for each dataset. We
tested three feature sets: 1) all common functional genomics data and distance; 2)
distance only; and 3) common functional genomics data only. The models trained on
all features achieved area under precision-recall curve (auPRC) ranging from 0.62 to
0.77 (Figure 1b), while models trained on distance are mostly at baseline (Figure
1d), showing that distance is properly controlled between positive and negative
samples. The models trained on functional genomics features achieved auPRCs
ranging from 0.58 to 0.69 (Figure 1c), lower than models trained on all features.
These results showed that although distance alone cannot predict chromatin
interactions, the interaction between distance and other features could help to
distinguish between positive and negative chromatin interactions.

The across sample performances were lower than within-sample
performances (Figure 1e). Using peak counts instead of signal values produced
better across-sample performances but lower within-sample performances (Figure
1f). Models trained on RNA Polymerase Il (Pol2) datasets generalize well to each
other. Models trained on CTCF ChlA-PET datasets, however, did not generalize well
to each other. Models trained on CTCF ChlA-PET data perform poorly on Pol2 ChlA-
PET datasets and vice versa.

|.21

Open chromatin interactions can be predicted from DNA sequences

Motivated by the results above, we went on to explore whether open
chromatin interactions can be predicted from DNA sequences. We built a
convolutional neural network, ChINN, to predict chromatin interactions between open
chromatin regions using DNA sequences (Figure 2a). The models were trained on
GM12878 CTCF, GM12878 Pol2, HelaS3 CTCF, K562 Pol2, and MCF-7 Pol2
datasets separately.
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Compared to using functional genomics data for prediction, using sequences
produced better within-sample performances for CTCF ChIA-PET datasets with
auPRCs of 0.77 for GM12878 CTCF and 0.75 for HelaS3 CTCF (Figure 2b), but
worse within-sample performances for Pol2 ChIA-PET datasets with auPRC of 0.51
for GM12878 Pol2, 0.6 for K562 Pol2, and 0.47 for MCF-7 Pol2. Including distance
as a feature to classifier only slightly improved the performances for the distance-
matched datasets (Figure 2c). The across-sample performances of CTCF models
showed well generalizability to each other (Figure 2d). Pol2 models can also
generalize to each other. Models trained on CTCF ChlA-PET datasets perform
poorly on Pol2 ChlA-PET datasets and vice versa (Figure 2d-e). The inability to
generalize between CTCF chromatin interactions and Pol2 chromatin interactions
could be attributed to the different sequence contexts.

For each model, we obtained and matched the position-weight matrices for all
kernels on the first convolutional layer to known transcription factor binding motifs
(Supplementary Figure 2). As expected, CTCF motif was captured by both CTCF
models (Supplementary Figure 2a-b). Other than the CTCF motif, the remaining
known transcription factor binding motifs learned by the two models were different.
The patterns learned by Pol2 models showed more diversity and no matching
transcription factor binding motif was shared among the three models
(Supplementary Figure 2c-e). Interestingly, some of the transcription factors
identified, such as ZNF143 in K562 and GATA3 in MCF-7, play important roles in the
relevant cancer types?®’ %%,

Besides, we also trained CHINN model on GM12878, HeLaS3, HMEC,
HUVEC, IMR90, K562, KBM7, and NHEK HiC data, respectively. The auPRCs of
within-sample performances using only sequences range from 0.52 to 0.77 for the
above eight HiC models (Figure 2f). Including distance as a feature to classifier only
slightly improved the performances for the GM12878, HeLaS3, and NHEK HiC
models (Figure 2g). The across-sample performances of all eight HiC models
showed well generalizability to each other (Figure 2h-i).

Similarly, we obtained and matched the position-weight matrices for all
kernels on the first convolutional layer to known transcription factor binding motifs for
eight HiC datasets (Supplementary Table 2) and counted how many times each
motif was detected (Supplementary Table 3). The CTCF motif was captured by all
HiC models. The known transcription factor binding motifs learned by different HiC
models were different. Some motifs, such as FOS, were learned by all models, but
other motifs showed diversity, for example, ZN436 is detected by all other models
except for HMEC, and ZIC3 is only detected by HeLaS3 (Supplementary Table 3).

Convergent CTCF motifs are important for prediction of CTCF-associated open
chromatin interactions

After extracting the sequence features from both the forward and reverse-
complement sequences of the anchors, the sequence features were fed into the
classifier to obtain a probability score that indicated how likely the pair of anchors
were involved in a chromatin interaction. We obtained the feature importance scores
of the gradient boosted trees trained and validated using a set of extended datasets
that includes more negative samples than the distance-matched datasets (Methods,
Supplementary Figure 3a-d). Distance was the most important feature in all models.

Next, we focused on the sequence features that were important for the
prediction. Interestingly, in CTCF models the important sequence features were on
different strands of the two anchors (Figure 3a-b), while Pol2 models did not show
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such pattern (Figure 3c-e). For the CTCF models, importance scores of features on
different strands of the two anchors showed good correlation, while importance
scores of features on the same strand of the two anchors did not show much
correlation (Figure 3f). In contrast, the importance scores of features of Pol2 models
were generally highly correlated regardless of the strand. The kernels on the last
convolutional layer that generated the most important features in the extended CTCF
models captured the CTCF motif (Supplementary Figure 3e-f), suggesting that
convergent CTCF motifs were important for the prediction of CTCF-associated
chromatin interactions. However, using only CTCF motif information for the
prediction of CTCF-associated open chromatin interactions could not recapitulate the
performance achieved by the convolutional neural network (Supplementary Figure
30), indicating that CTCF was not the sole determining factor of chromatin
interactions.

Similarly, we trained gradient boosted trees with the corresponding extended
datasets for eight HiC datasets. Distance was still the most important feature in all
models (Supplementary Figure 4a-d). When we visualized the sequence feature
importance, although not as obvious as that of the CTCF models, we observed that
the important sequence features were on different strands of the two anchors
according to the corresponding mean values (Figure 3g-n). However, the importance
scores of features did not show highly correlation on HiC datasets (Figure 30). All
the extended HiC models captured the CTCF motif via the kernels of the most
important feature on the last convolutional layer (Supplementary Figure 4e),
indicating that convergent CTCF motifs were important for the prediction of HiC data
chromatin interactions.

Predicting chromatin interactions from open chromatin regions

The above models were trained and evaluated on known chromatin
interactions. Without knowledge of chromatin interactions, as is the case for many
clinical samples and cell types, the locations of the anchors would not be known. To
be able to predict chromatin interactions between open chromatin regions, the
models need to be able to predict chromatin interactions between anchors
constructed from open chromatin regions.

We tested different combinations of merging distances and extension sizes
(Figure 4a) based on validation datasets and determined that the merging distance
of 3000 bp and extension size of 1000 bp for the construction of anchors in
GM12878 cells (Supplementary Figure 5a).

The pairs generated between anchors constructed from open chromatin
regions in GM12878 were used to train gradient boosted trees for both CTCF and
Pol2 models (see Methods). The positive-to-negative ratios were about 1:122 for
CTCF chromatin interaction labeled samples and 1:186 for Pol2 chromatin
interaction labeled samples. The CTCF model achieved within-sample auPRC of
0.514 and the Pol2 model achieved auPRC of 0.347 (Figure 4b). In cross-sample
evaluation, the CTCF model achieved auPRC of 0.359 on HelaS3 dataset and the
Pol2 model achieved auPRCs of 0.232 and 0.164 on K562 and MCF-7 datasets,
respectively (Figure 4b). We were able to validate some of the predicted chromatin
interactions in MCF-7 cells using 4C-seq (Supplementary Figure 5b-d). Some of the
validated chromatin interactions were not captured by the MCF-7 Pol2 ChlA-PET
dataset, thus ChINN is able to identify bona fide chromatin interactions that might
have been previously missed out due to insufficient sequence coverage.
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We also generated pairs between anchors constructed from open chromatin
regions in GM12878 and K562 HiC datasets with different combination of merging
distance and extension size (Supplementary Figure 6a). We kept to use the same
parameters as CTCF model, i.e. merging size of 3,000 and extension size of 1,000,
to train gradient boosted trees due to the not significantly difference of auROC
achieved by different parameters. The GM12878 and K562 HiC model achieved a
little bit low auPRC in the within-sample and cross-sample evaluation (Figure 4c).
However, the performances were acceptable when compared to the random auPRC
values. Moreover, some of the predicted chromatin interactions in MCF-7 cells using
4C-seq were able to be validated by our HIC models (Supplementary Figure 6b-d).

Exploring chromatin interactions in patient samples

Next, we wished to apply our machine learning methods to patient samples to
understand if our method could predict chromatin interactions in a completely new
dataset. We obtained 6 Chronic Lymphocytic Leukemia (CLL) patient samples. The
clinical characteristics are described in Supplementary Table 4.

We prepared integrated Hi-C, ATAC-Seq and RNA-Seq libraries from these 6
samples. We used Juicer to call Topologically-Associated Domains and loops from
these patient samples. Our CLL samples showed many TADs and loops
(Supplementary Table 5), thus indicating that we were able to perform Hi-C in these
patient samples.

Next, we applied GM12878 and K562 HiC models to six new CLL samples.
The auPRC achieved by GM12878 HiC model range from 0.2772 to 0.4362, which
are a bit higher than that of K562 HiC model, whose auPRC range from 0.2607 to
0.3996 (Figure 5a). We calculated the F-score with different thresholds and finally
determined the threshold of 0.025 for GM12878 model and 0.016 for K562 model to
make the prediction on new CLL samples (Supplementary Figure 7a-b), where the
corresponding confusion matrix was shown as Figure 5b-c.

With the selected threshold, a total of 152,202 HiC-associated open
chromatin interactions were predicted (Figure 5d) by GM12878 HiC model. One
guestion we asked was whether there is patient heterogeneity in Hi-C data. We
found extensive patient heterogeneity (Figure 5e-f), as observed from the lack of
conservation of chromatin interactions across the new CLL samples and the
overlapping peaks between new CLL samples and GM12878 HiC peaks.

In addition, we also applied our ChINN framework on the six new CLL
samples and built models using Hi-C and ATAC-seq data from each CLL sample.
Our Hi-C libraries identified 1795 chromatin interactions unique in uCLL samples and
10663 chromatin interactions unique in mCLL samples (Figure 6a). Uniqueness
analysis of the Hi-C interactions from these six CLL samples showed high patient
heterogeneity (Figure 6b). These models have auPRC range from 0.37 to 0.58
(Figure 6c). In addition, across-sample testing of these CLL models on other
datasets from other CLL sample suggest a comparable performance (Figure 6d).
Inclusion of distance did not result in dramatic increase of the model performance
(Supplementary Figure 8a-8b). Similarly, the first convolutional layers of all CLL
models were able to capture the CTCF and AP-1 transcription family member (FOS,
JUN, JUNB, JUND) binding motif (Supplementary Figure 8c) as the Hi-C models we
showed earlier (Supplementary Figure 4e; Supplementary Table 2-3).

After that, we trained gradient boosted trees with the corresponding extended
datasets of the CLL samples. We observed that similar correlation of the important
sequence features on different strands of the two anchors (Figure 6e;
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Supplementary Figure 8d-8e), although the within-sample and cross-sample auPRC
were decreased (Supplementary Figure 8f-89).

We also generated open chromatin pairs using ATAC-seq to train the gradient
boosted trees (merging size: 3000 bp; extension size 1000 bp). Although the
performances decreased compared with using Hi-C anchor region pairs as input,
they were still higher than the random auPRC values (Supplementary Figure 8h-8k).
We further used the 401 CLL sample model to predict chromatin interactions in
MCEF7 cells, as 401 CLL model have the highest within-sample and across-sample
performance. The predicted interactions correlate quite well with the real 4C-seq
interactions (Figure 6f-6g, Supplementary Figure 8I-80, threshold = 0.016).

One question we asked was whether there is patient heterogeneity in Hi-C
data. We first tried to associate the real and predicted Hi-C interactions with
differentially expressed genes identified from RNA-seq data. The results showed that
although the trend of different IFC scores could be observed, these differences were
not significant (Supplementary Figure 8p-8q). We also observed that the Hi-C
interactions and ATAC-seq peaks in the new CLL samples showed high patient
heterogeneity (Supplementary Figure 8r). These patient heterogeneities may be a
reason of the limited sample size in the IFC score analysis after we collapsed all six
sample into mutated and unmutated categories (Supplementary Figure 8p-8q).

Taken together, our results demonstrate across-sample prediction capability
for the ChINN model. In addition, we observed high patient heterogeneity in the new
CLL samples, which may affect the predicted results and integrative analysis.

Exploring chromatin interactions in a cohort of patient samples

Next, we used our machine learning method to predict chromatin interactions
in a cohort of patient samples, and then analyzed the data. We applied the above
models to 84 chronic lymphocytic leukemia (CLL) samples whose open chromatin
profiles were available by ATAC-seq®.

A total of 48,443 CTCF-associated open chromatin interactions and 23,633
Pol2-associated open chromatin interactions were predicted based on the pooled
open chromatin regions of all samples (Figure 7a). Pol2-associated chromatin
interactions were better conserved across the CLL samples than CTCF-associated
chromatin interactions (Figure 7b), which could be attributed to that open chromatin
regions in the CLL samples that overlapped with GM12878 Pol2 peaks were better
conserved than those overlapping with GM12878 CTCF peaks (Figure 7c). Using
this set of ATAC-seq data in CLL samples, it was reported that regions with higher
open chromatin signals in uCLL samples showed strong enrichment of binding sites
of CTCF, RAD21 and SMC3?, which could also contribute to the high variability of
CTCF chromatin interactions. Thus, we again observed extensive patient
heterogeneity of CTCF and RNA Polymerase Il-associated chromatin interactions in
these clinical samples.

When applying the GM12878 HiC model to the CLL samples, a total of
758,407 HiC-associated open chromatin interactions were predicted (Figure 8a). The
phenomenon observed from the CTCF model also can be observed from the HiC
model, for example, the chromatin interactions across the CLL samples and the
overlapping peaks between CLL samples and GM12878 HiC peaks were not well
conserved as that of Pol2 (Figure 8b-c). The predicted chromatin interactions by HiC
model were also possible to separate mCLL and uCLL samples (Supplementary
Figure 9a). Most differential chromatin interactions were associated with changes in
the occurrence of one anchor (Figure 8d). Genes that were upregulated in uCLL
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were associated with uCLL-specific chromatin interactions (Figure 8e). In the set of
differential chromatin interactions whose anchors did not have the same level of
changes as the chromatin interactions themselves between the two subtypes, the
rate of co-occurrences of the two anchors within the same sample and the levels in
chromatin interactions could change (Supplementary Figure 9b). Examples of
predicted chromatin interactions are shown in Figure 8f-g and Supplementary Figure
9e-h. Thus, we observed extensive patient heterogeneity of Hi-C predicted
associated chromatin interactions in these clinical samples.

Clinical samples differ from each other due to a wide variety of factors
including different driver mutations and different underlying genetics and epigenetics
of each patient. Here we asked whether the subtype of the CLL samples could be
one factor giving rise to patient heterogeneity. The CLL samples could be divided
into two subtypes based on IGHV mutation status: 34 IGHV-unmutated CLL (uCLL)
samples and 50 IGHV-mutated CLL (mCLL) samples. IGHV mutation status is an
important prognostic biomarker in CLL, with mCLL being less aggressive®.

Using the predicted chromatin interactions, it was possible to separate mCLL
and uCLL samples (Supplementary Figure 10a). Variations in occurrences of
chromatin interactions between the two subtypes of CLL were highly associated with
variations in occurrences of anchor regions. Most differential ChIA-PET chromatin
interactions were associated with changes in the occurrence of one anchor (Figure
7d). There was a small portion of differential chromatin interactions whose anchors
did not have the same level of changes as the chromatin interactions themselves
between the two subtypes. In this set of differential chromatin interactions, the rate of
co-occurrences of the two anchors within the same sample could change,
contributing to the levels of changes in chromatin interactions (Supplementary Figure
10b). With the GM12878 HIC model, we were also able to see differences in
connectivity at transcription start sites associated with differences in the occurrences
of the open chromatin regions at the transcription start sites (Supplementary Figure
9d).

Genes with higher expression in uCLL showed higher connectivity at the
transcription start sites (Figure 7e, Supplementary Figure 10c, Figure 6e,
Supplementary Figure 9c). The differences in connectivity at transcription start sites
were associated with differences in the occurrences of the open chromatin regions at
the transcription start sites between CLL subtypes (Supplementary Figure 10d), and
also, differences in connectivity were sometimes associated with differences in distal
interacting regions (Supplementary Figure 10e, Figure 7f). Examples of predicted
chromatin interactions are shown at important CLL prognostic markers, such as LPL
(Figure 7g), ZAP70 (Supplementary Figure 10f), ZNF667 (Supplementary Figure
10g), and CD38 (Supplementary Figure 10h)?**2. Taken together, our results
indicate that different subtypes show different profiles of chromatin interactions.
Different subtypes may be a source of patient heterogeneity in clinical samples.

Discussion

We described a convolutional neural network, ChINN, which can extract
sequence features and be coupled to classifiers to predict chromatin interactions
between open chromatin regions using DNA sequences and distance. This approach
only requires the use of open chromatin data and showed good generalizability on
the same type of chromatin interactions across different cell types. Thus, it has the
potential to be applied to large sets of clinical samples with limited biological
materials. In addition, CHINN can discover sequence features that are important for


https://doi.org/10.1101/2020.12.30.424817
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424817; this version posted January 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

predicting chromatin interactions, including shared features such as the CTCF motif
and cell-type specific features such as GATA3 binding motif in MCF-7, which is
frequently mutated in breast cancer®.

We showed that at resolutions limited by the experimental techniques,
chromatin interactions between open chromatin regions could be predicted from 1-
dimensional functional genomics data with reasonable accuracy. In distance-
controlled experiments, our prediction method using functional genomics data
performed better on Pol2 chromatin interactions but worse on CTCF chromatin
interactions compared to sequence-based CHINN. Such differences could be
attributed to the lower functional genomic complexity at CTCF binding sites and
functional genomic data might fail to capture the convergent CTCF binding motifs
often observed at CTCF-mediated chromatin interactions.

On the other hand, Pol2 binding sites do not have such distinctive DNA
motifs, making it harder to predict Pol2 binding sites*® ** and consequently harder to
predict Pol2-associated chromatin interactions from DNA sequences. However, Pol2
binding sites are usually occupied by many other transcription factors, making it
easier to predict Pol2-associated chromatin interactions using functional genomic
data.

The application of CHINN models with gradient boosted tree classifiers to a
set of CLL ATAC-seq samples we were able to show that several of the predicted
chromatin interactions could be validated by Hi-C. While there were also chromatin
interactions that were predicted but not validated by Hi-C, our results showing that
4C could validate predicted chromatin interactions in MCF-7 cells that were not
identified by Hi-C suggest that these so-called “false positives” might potentially be
real chromatin interactions that were simply not captured by Hi-C due to limited
sequencing depth of Hi-C libraries.

Additionally, application of ChINN models in CLL revealed that although there
were chromatin interactions that were ubiquitous in all samples, there were a large
number of patient-specific chromatin interactions and also chromatin interactions
that were found in fewer than half the samples. One reason for these different
chromatin interactions was due to different patient subtypes. We found systematic
differences in chromatin interactions involving important CLL prognostic genes, such
as LPL and CD38, between the IGHV-mutated and IGHV- unmutated subtypes.
These results suggest that differences in chromatin interaction landscapes between
CLL subtypes could have important functional implications in CLL biology.

Our observation of widespread patient heterogeneity in patient cancer
samples highlights the need for precision medicine and the need to understand
chromatin interactions in individual patient samples. Machine learning offers one way
for us to predict chromatin interactions in a cost-effective manner. The CHINN
method may be useful in the future in understanding chromatin interactions in large
cohorts of clinical samples and identifying chromatin interaction-based biomarkers.
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Methods

We performed machine learning, Hi-C interaction analysis, ATAC-seq, RNA-
seq and gene expression analyses as described in the following sections. A list of all
libraries used and generated is provided in Supplementary Table 6.

Machine learning of ChlA-PET data

The development of the sequence models was divided into three stages. In
the first stage, the distance-matched datasets were used to train the models consist
of convolutional neural network (feature extractor) with fully connected layers as the
classier, as shown in Figure 2a. In the second and third stage, the feature extractors
trained in the first stage were frozen and gradient tree boosting classifiers were used
as classifiers. In the second stage, the gradient tree boosting classifiers were trained
using the extended datasets. In the third stage, the gradient tree boosting classifiers
were trained using all potential pairs of anchors generated from open chromatin data
and annotated by existing ChlA-PET data. Thus, the final result was a program that
took in a list of open chromatin regions and produced predictions of chromatin
interactions between the open chromatin regions.

The feature extractors took DNA sequences of both anchors of a potential
interacting pair as input. The classier then took the features generated by the feature
extractor and optionally the distance between anchors as input and produced a
probability score of interaction. More details can be found from Supplementary
Methods1.

Machine learning of Hi-C data from cell lines

We collected the Hi-C interactions from 8 cell lines, including GM12878,
HelLaS3, HMEC, HUVEC, IMR90, K562, KBM7, and NHEK. The construction of
machine learning model using Hi-C data from cell lines follows the same procedures
as described in that of ChlA-PET data, where the positive data is annotated
according to the Hi-C interactions.

Machine learning of Hi-C data from clinical samples

We collected the Hi-C interactions from 6 CLL clinical samples, including CLL
102, CLL 312, CLL 324, CLL 344, CLL 401, and CLL 484. The construction of
machine learning model using Hi-C data from cell lines follows the same procedures
as described in that of ChIA-PET data, where the positive data is annotated
according to the Hi-C interactions. The CLL 401 model was used in the across-
sample prediction.

Preparation of clinical samples

Chronic Lymphocytic Leukemia patient samples (either peripheral blood or
bone marrow isolates) were obtained from the Leukemia Cell Bank at the National
University Health System (NUHS) with patient consent, under Institute Review Board
number H-20-022E. The CLL samples were either bone marrow aspirates
(312,324,344,484, and 102) or peripheral blood (401). The samples were
immediately frozen after collection and stored in liquid nitrogen until further use.

The samples were taken out of the liquid nitrogen and thawed by dipping in a
beaker containing water at 37°C. Once the sample was thawed completely, the cells
were immediately transferred to the 15ml falcon and resuspended in 10 ml PBS
containing 2% fetal bovine serum (FBS) and 2mM EDTA. The cells were pelleted at
300 x g for 5 minutes at room temperature and resuspended in 5ml PBS containing
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2% FBS and 2 mM EDTA. The cells were counted and checked for viability using
Trypan Blue.

RNA and genomic DNA was isolated from the CLL patient samples using
AllPrep DNA/RNA/mIRNA universal kit (Qiagen) according to the to the
manufacturer’s instructions. Briefly, cells lysate were homogenized by 21G needle
and syringe together with lysis buffer and 1M DTT. After that, the homogenized
lysate were transferred into AllPrep DNA mini spin column for genomic DNA
extraction. The genomic DNA were then eluted by water and proceeded for the
IGHV mutation test. The flow through after the AllPrep DNA mini spin column were
then proceeded into RNease Mini spin column with on-column digestion for RNA
extraction. The RNA were eluted in water and further sent for RNA-seq.

IGHV mutation test was performed following the method in Agathangelidis et
al®**. Briefly, IGHV-IGHD-IGHJ gene rearrangements were amplified by 5’ IGHV
leader primers and 3’ IGHJ primers (primer sequences are provided in
Supplementary Table 6) using genomic DNA (gDNA) from CLL patient samples. The
PCR amplification was performed by PCR core kit (Qiagen). Final PCR products
were imaged by agarose gel electrophoresis and purified by PCR purification kit
(QIAGEN). Purified PCR products were confirmed through Sanger sequencing by 3’
IGHJ primers. The Sanger sequencing results were analysed by IMGT/V-QUEST
tools™ to get the IGHV identity scores. If the identify score was larger than 98%, the
CLL sample was considered unmutated sample while the score was lower than 98%,
the CLL sample was considered as an mutated sample.

In situ Hi-C

Hi-C libraries were prepared using the Arima Genomics kit (Arima Genomics,
San Diego, CA) in conjunction with the Swift Biosciences Accel-NGS 2S Plus DNA
Library Kit (Cat # 21024) and Swift Biosciences Indexing Kit (Cat # 26148) following
the manufacturer's recommendations. In brief, 1X 10° cells were fixed with
formaldehyde in the nucleus. Fixed cells were permeabilized using a lysis buffer and
then digested with a restriction enzyme cocktail supplied in the Arima HiC kit. The
resulting overhangs were filled in with biotinylated nucleotides followed by ligation.
After ligation, crosslinks were reversed, and the DNA was purified from protein.
Purified DNA was treated to remove biotin that was not internal to ligated fragments.
Hi-C material was then sonicated using a Covaris Focused-Ultrasonicator M220
instrument to achieve 300-500 bp fragment sizes. The sonicated DNA was double-
size selected using Ampure XP beads, and the sequencing libraries were generated
using low input Swift Biosciences Accel-NGS 2S Plus DNA Library Kit (Cat # 21024)
and Swift Biosciences Indexing Kit (Cat # 26148). The Hi-C libraries were loaded on
an lllumina flow cell for paired-end 150-nucleotide read length sequencing on the
Illumina HiSeq 4000 following the manufacturer's protocols.

Cell culture

MCF-7, a breast cancer cell line, was cultured in DMEM/F12 (Gibco)
supplemented with 10% FBS and 1% penicillin-streptomycin and maintained at
37°C, 5% CO, humidified incubator. Before 4C-seq assays, MCF-7 cells were grown
in hormone-free media: they were washed with PBS twice to remove any residual
FBS or growth factors and incubated in phenol red-free medium (Invitrogen/Gibco)
supplemented with 10% charcoal-dextran stripped FBS (Hyclone) and 1% pencillin-
streptomycin for a minimum of 72 hours. Hormone-depleted MCF-7 cells were then
treated with oestrogen (Sigma) to a final concentration of 100 nM for 45 mins before
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4C-seq assay. The control cells were treated with an equal volume and
concentration of vehicle, ethanol (Sigma), for 45 min.

Circular chromosome conformation capture (4C)

4C-seq assays were performed according to Splinter et al®with slight
modifications. Briefly, 4 71x 110" cells were cross-linked with 1% formaldehyde. The
nuclei pellets were isolated by cell lysis with cold lysis buffer (L0mM Tris-HCI, 10mM
NaCl, 5mM EDTA, 0.5% NP 40) supplemented with protease inhibitors (Roche).
First step digestion was performed overnight at 37°C with Hindlll enzyme (NEB).
Digestion efficiency was measured by RT-gPCR with Hindlll site-specific primers.
After confirmation of good digestion efficiency, DNA was ligated overnight at 16°C by
T4 DNA ligase (Thermo Scientific) and de-crosslinked. Following de-crosslinking,
DNA was extracted by phenol-chloroform and this is the 3C library. The DNA was
then processed for second digestion with Dpnll enzyme (NEB) overnight at 37°C.
After final ligation, 4C template DNA was obtained, and the concentration was
determined using Qubit assays (Thermo Scientific). The 4C template DNA was then
amplified using specific primers with Illlumina Nextera adapters and sent for
sequencing on the MiSeq system. All the 4C genome coordinates are listed in
Supplementary Table 6.

RNA-se

Tgtal RNA was extracted from the CLL samples using the All Prep DNA/RNA
kit (Qiagen). The RNA was quantified using the Qubit BR RNA Assay kit. RNA-seq
libraries (strand specific and ribo zero) were constructed using Illumina Total RNA
Prep kit (lllumina, San Diego, CA, USA) and sequenced 150 bases paired-end on
the lllumina HiSeq 4000 following the manufacturer's instruction.

ATAC-seq

ATAC-seq library was prepared as described previously®. Briefly, 50,000
cells were lysed for nuclei isolation using ATAC-Resuspention Buffer containing
0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin. Transposition reaction was
performed for 30 min at 37C using Nextera DNA library preparation kit (NEB).
Transposed fragments were amplified by eight PCR cycles for library preparation.
Primer dimers and long DNA fragments were removed by AMPure XP beads
purification step. DNA concentration was measured by Qubit fluorometric assay and
library quality was determined by Bioanalyzer. The library was sequenced in
Nextseq 500 76bp paired-end configuration using lllumina platform.

Data deposition

The data for the RNA-Seq, ATAC-Seq and Hi-C data has been deposited with GEO
accession number GSE163896. The 4C data has been deposited with GEO
accession number GSE135052, and is publicly available.

Data availability

All relevant data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corresponding author on
reasonable request.
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Code availability
The codes are freely available at: https://github.com/caofan/chinn .
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Figure 1. Performances of the functional genomic models on distance-
matched datasets. a, lllustration of resolution discrepancy between cis-regulatory
elements and chromatin interaction anchors. b-d, Precision-recall curves of the
functional genomic models on distance-matched datasets using features based on
b, functional genomic data and distance (dis); ¢, only functional genomic data; and
d, only distance. Numbers in brackets indicate the area-under precision-recall curve.
e-f, Across-sample performances using distance (dis) and e, signal values and f,
peak counts.
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Figure 2: Architecture and performances of the sequence-based models on
distance-matched datasets. a, The architecture of the sequence-based models
using to train on distance-matched datasets. b-c, Precision-recall curves of the
sequence-based models on distance-matched datasets using b, only sequence
features or ¢, sequence features with distance. The numbers in the brackets
indicates the area under precision-recall curves. d-e, Across-sample performances
as measured by area-under precision-recall curve (auPRC) of the models on
distance-matched datasets using d, only sequence features or e, sequence features
with distance. f-g, Precision-recall curves of the sequence-based models on
distance-matched HiC datasets using f, only sequence features or g, sequence
features with distance. The numbers in the brackets indicates the area under
precision-recall curves. h-i, Across-sample performances as measured by area-
under precision-recall curve (auPRC) of the models on distance-matched HiC
datasets using h, only sequence features or i, sequence features with distance.
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Figure 3: Sequence feature importance scores of gradient boosted trees
trained on extended datasets. a-e, The importance scores of sequence features
extracted from both directions (F: forward; RC: reverse complement) of the two
anchors (left and right) by models trained on different datasets. The orange
horizontal lines indicate average importance scores of the features from the strand of
the anchor. f, Pearson correlations between feature importance scores of the two
anchors. g-n, The importance scores of sequence features extracted from both
directions (F: forward; RC: reverse complement) of the two anchors (left and right)
by models trained on HiC datasets. The orange horizontal lines indicate average
importance scores of the features from the strand of the anchor. o, Pearson
correlations between feature importance scores of the two anchors in HiC datasets.
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Figure 5: Applying HIC model on new CLL samples. a, the auPRC values achieved
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matrices for 6 new CLL samples using K562 HiC model with threshold of 0.016 and
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analysis of open chromatin regions that overlap with HiC peaks from GM12878 cells
in new CLL samples. All: all open chromatin regions.
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Figure 6. Performances of the sequence-based models in new CLL samples. a,
Venn diagram of chromatin interactions identified by Juicer in unmutated and
mutated CLL samples. b, Uniqueness analysis of real Hi-C and predicted Hi-C
chromatin interactions in new CLL samples. Hi-C, real Hi-C interactions; predicted,
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predicted chromatin interactions using CLL 401 model. c, Precision-recall curves of
the sequence-based models on distance-matched HiC datasets using only sequence
features. d, Across-sample performances as measured by area-under precision-
recall curve (auPRC) of the models on distance-matched HiC datasets using only
sequence features. e, The importance scores of sequence features extracted from
both directions (F: forward; RC: reverse complement) of the two anchors (left and
right) by models trained on CLL 401 sample. The orange horizontal lines indicate
average importance scores of the features from the strand of the anchor. Pearson
correlations between feature importance scores of the two anchors are given in
table. f, Validations of predicted chromatin interactions by 4C-seq at GREB1 gene
region in MCF-7 cells. In the predicted Hi-C interaction panel, only those interactions
connected to GREB1 promoter were shown. g, Validations of predicted chromatin
interactions by 4C-seq at SIAH2 gene region in MCF-7 cells. In the predicted Hi-C
interaction panel, only those interactions connected to SIAH2 promoter were shown.

21


https://doi.org/10.1101/2020.12.30.424817
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424817; this version posted January 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

"

"o

L

15ty
fit

3
[T

o

Differential interactions
3,001 CTCF interactions
1,741 POLR2A interactions

d CICF Pol2 .
Mt t :
Urersads Dresde Natter 21 t 4 .
Beth Baih . - - T - T
Cther uClL mCLL Caner wClL mCLL
genes  up genes up genes genes  up Qones up Qones
{5385) 27} %) {10803} {51) {12)

i

Log2 IFC
Log2 IFC
N

f.l . o . .t . v g... 2 "
LMLL_....._.MH_..._L_..L._J._,- ____ I T L ] -
MU DR LEEL L | SN I A L | L | AL B

i1 A . ) . | " '
R J- | k i
R oifi ] . |
;‘\“:E F N w S - N
- bRkasooroenaa Coaa |. . - - -

. ST Epe——_—— . et |. . i —— . e

Figure 7: Predicted chromatin interactions in CLL samples. a, Summary of the
predicted chromatin interactions in the 84 CLL samples and the differential
chromatin interactions between uCLL and mCLL samples. b, Conservation analysis
of predicted chromatin interactions in the CLL samples. All pairs: all possible pairs
used for prediction. ¢, Uniqueness analysis of open chromatin regions that overlap
with CTCF or Pol2 peaks from GM12878 cells in the CLL samples. All: all open
chromatin regions. d, Distribution of differential CTCF and Pol2 chromatin
interactions based on whether both anchors (Both), one anchor (One-side), or
neither anchors (Neither) showed the same level of differences between uCLL and
mCLL samples as the associated chromatin interaction. e, Association of differences
in chromatin interactions between uCLL and mCLL samples with differentially
expressed genes identified from a set of microarray samples. IFC: the fold change of
the average number of chromatin interactions observed at the gene promoter in
uCLL samples over that in mCLL samples. p-values were calculated using the
Kruskal-Wallis test. f-g, Examples of genes, ZBTB20 and LPL, whose different
connectivity are associated with differences in distal regions. The red bars and
curves indicate significantly different open chromatin regions and chromatin
interactions based on Fisher’s Exact test.
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Figure 8: Predicted chromatin interactions in CLL samples using GM12878 HiC
model. a, Summary of the predicted chromatin interactions in the 84 CLL samples
and the differential chromatin interactions between uCLL and mCLL samples. b,
Conservation analysis of predicted chromatin interactions in the CLL samples. All
pairs: all possible pairs used for prediction. ¢, Uniqueness analysis of open
chromatin regions that overlap with HiC peaks from GM12878 cells in the CLL
samples. All: all open chromatin regions. d, Distribution of differential HIC chromatin
interactions based on whether both anchors (Both), one anchor (One-side), or
neither anchors (Neither) showed the same level of differences between uCLL and
mCLL samples as the associated chromatin interaction. e, Association of differences
in chromatin interactions between uCLL and mCLL samples with differentially
expressed genes identified from a set of microarray samples. IFC: the fold change of
the average number of chromatin interactions observed at the gene promoter in
uCLL samples over that in mCLL samples. p-values were calculated using the
Kruskal-Wallis test. f-g, Examples of genes, ZBTB20 and LPL, whose different
connectivity are associated with differences in distal regions. The red bars and
curves indicate significantly different open chromatin regions and chromatin
interactions based on Fisher’'s Exact test.


https://doi.org/10.1101/2020.12.30.424817
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424817; this version posted January 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

References

1. Babu, D. & Fullwood, M.J. 3D genome organization in health and disease:
emerging opportunities in cancer translational medicine. Nucleus 6, 382-393
(2015).

2. Schottenfeld, D. in Gastrointestinal Oncology: Principles and Practice. (eds.

D.P. Kelsen, J.M. JDaly, B. Levin, S.E. Kern & J.E. Tepper) (Lippincott
Williams and Wilkins, Philadelphia; 2002).

3. Li, G. et al. Extensive promoter-centered chromatin interactions provide a
topological basis for transcription regulation. Cell 148, 84-98 (2012).

4. Jin, F. et al. A high-resolution map of the three-dimensional chromatin
interactome in human cells. Nature 503, 290-294 (2013).

5. Ma, W. et al. Fine-scale chromatin interaction maps reveal the cis-regulatory
landscape of human lincRNA genes. Nat Methods 12, 71-78 (2015).

6. Dowen, Jill M. et al. Control of Cell Identity Genes Occurs in Insulated
Neighborhoods in Mammalian Chromosomes. Cell 159, 374-387 (2014).

7. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science 326, 289-293
(2009).

8. Fullwood, M.J. et al. An oestrogen-receptor-alpha-bound human chromatin
interactome. Nature 462, 58-64 (2009).

9. Dixon, J.R. et al. Topological domains in mammalian genomes identified by

analysis of chromatin interactions. Nature 485, 376-380 (2012).

10. Lupianez, D.G. et al. Disruptions of topological chromatin domains cause
pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012-1025
(2015).

11. Guo, Y. et al. CRISPR Inversion of CTCF Sites Alters Genome Topology and
Enhancer/Promoter Function. Cell 162, 900-910 (2015).

12.  Zhou, J. & Troyanskaya, O.G. Predicting effects of noncoding variants with
deep learning-based sequence model. Nat Methods 12, 931-934 (2015).

13.  Alipanahi, B., Delong, A., Weirauch, M.T. & Frey, B.J. Predicting the
sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nat Biotechnol 33, 831-838 (2015).

14. Cao, Q. et al. Reconstruction of enhancer-target networks in 935 samples of
human primary cells, tissues and cell lines. Nat Genet 49, 1428-1436 (2017).

15. He, B., Chen, C., Teng, L. & Tan, K. Global view of enhancer-promoter
interactome in human cells. Proceedings of the National Academy of
Sciences of the United States of America 111, E2191-2199 (2014).

16. Roy, S. et al. A predictive modeling approach for cell line-specific long-range
regulatory interactions. Nucleic acids research 43, 8694-8712 (2015).

17. Singh, S., Yang, Y., Poczos, B. & Ma, J. Predicting Enhancer-Promoter
Interaction from Genomic Sequence with Deep Neural Networks. bioRxiv,
85241 (2016).

18. Whalen, S., Truty, R.M. & Pollard, K.S. Enhancer-promoter interactions are
encoded by complex genomic signatures on looping chromatin. Nat Genet 48,
488-496 (2016).

19. Yang, Y., Zhang, R., Singh, S. & Ma, J. Exploiting sequence-based features
for predicting enhancer—promoter interactions. Bioinformatics 33, i252-i260
(2017).

24


https://doi.org/10.1101/2020.12.30.424817
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424817; this version posted January 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

20.  Zhu, Y. et al. Constructing 3D interaction maps from 1D epigenomes. Nat
Commun 7, 10812 (2016).

21. Xi, W. & Beer, M.A. Local epigenomic state cannot discriminate interacting
and non-interacting enhancer-promoter pairs with high accuracy. PLoS
Comput Biol 14, e1006625 (2018).

22. Cao, F. & Fullwood, M.J. Inflated performance measures in enhancer—
promoter interaction-prediction methods. Nature genetics (2019).

23.  Fudenberg, G., Kelley, D.R. & Pollard, K.S. Predicting 3D genome folding
from DNA sequence with Akita. Nat Methods 17, 1111-1117 (2020).

24. Rendeiro, A.F. et al. Chromatin accessibility maps of chronic lymphocytic
leukaemia identify subtype-specific epigenome signatures and transcription
regulatory networks. Nat Commun 7, 11938 (2016).

25.  Consortium, E.P. An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57-74 (2012).

26. Chen, T. & Guestrin, C. in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining 785-794
(ACM, San Francisco, California, USA; 2016).

27. Gonzalez, D. et al. ZNF143 protein is an important regulator of the myeloid
transcription factor C/EBPalpha. J Biol Chem 292, 18924-18936 (2017).

28. Cimino-Mathews, A. et al. GATA3 expression in breast carcinoma: utility in
triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol 44,
1341-1349 (2013).

29. Kaderi, M.A. et al. LPL is the strongest prognostic factor in a comparative
analysis of RNA-based markers in early chronic lymphocytic leukemia.
Haematologica 96, 1153-1160 (2011).

30. Morabito, F. et al. Surrogate molecular markers for IGHV mutational status in
chronic lymphocytic leukemia for predicting time to first treatment. Leuk Res
39, 840-845 (2015).

31. Rozovski, U. et al. Aberrant LPL Expression, Driven by STAT3, Mediates
Free Fatty Acid Metabolism in CLL Cells. Mol Cancer Res 13, 944-953
(2015).

32. Crespo, M. et al. ZAP-70 expression as a surrogate for immunoglobulin-
variable-region mutations in chronic lymphocytic leukemia. The New England
journal of medicine 348, 1764-1775 (2003).

33. Takaku, M. et al. GATAS3 zinc finger 2 mutations reprogram the breast cancer
transcriptional network. Nat Commun 9, 1059 (2018).

34. Agathangelidis, A. et al. Immunoglobulin Gene Sequence Analysis In Chronic
Lymphocytic Leukemia: From Patient Material To Sequence Interpretation. J
Vis Exp (2018).

35. Brochet, X., Lefranc, M.P. & Giudicelli, V. IMGT/V-QUEST: the highly
customized and integrated system for IG and TR standardized V-J and V-D-J
sequence analysis. Nucleic Acids Res 36, W503-508 (2008).

36. Corces, M.R. et al. An improved ATAC-seq protocol reduces background and
enables interrogation of frozen tissues. Nat Methods 14, 959-962 (2017).

25


https://doi.org/10.1101/2020.12.30.424817
http://creativecommons.org/licenses/by-nc/4.0/

