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Abstract 
Chromatin interactions play important roles in regulating gene expression. However, 
the availability of genome-wide chromatin interaction data is limited. Various 
computational methods have been developed to predict chromatin interactions. Most 
of these methods rely on large collections of ChIP-Seq/RNA-Seq/DNase-Seq 
datasets and predict only enhancer-promoter interactions. Some of the ‘state-of-the-
art’ methods have poor experimental designs, leading to over-exaggerated 
performances and misleading conclusions. Here we developed a computational 
method, Chromatin Interaction Neural Network (ChINN), to predict chromatin 
interactions between open chromatin regions by using only DNA sequences of the 
interacting open chromatin regions. ChINN is able to predict CTCF-, RNA 
polymerase II- and HiC-associated chromatin interactions between open chromatin 
regions. ChINN also shows good across-sample performances and captures various 
sequence features that are predictive of chromatin interactions. To apply our results 
to clinical patient data, we applied CHINN to predict chromatin interactions in 6 
chronic lymphocytic leukemia (CLL) patient samples and a cohort of open chromatin 
data from 84 CLL samples that was previously published. Our results demonstrated 
extensive heterogeneity in chromatin interactions in patient samples, and one of the 
sources of this heterogeneity were the different subtypes of CLL. 
 
Introduction 

Chromatin interactions play important roles in regulating gene expression1, 2. 
They bridge enhancers to genes3-5 and create insulated domains to constrain the 
reach of enhancers6. High-throughput experimental techniques such as high-
throughput Chromosome Conformation Capture (Hi-C)7 and Chromatin Interaction 
Analysis with Paired-End Tags (ChIA-PET)8 have been developed to detect genome-
wide chromatin interactions. These techniques greatly advanced the understanding 
of genome organization and its roles in transcription regulation3, 9-11. However, due to 
costs and technical challenges, these methods have not been widely applied to large 
cohorts of cell lines or clinical samples. Hence, our understanding of how common or 
rare chromatin interactions are in different patient samples is limited.  

A predictor that uses DNA sequences to predict chromatin interactions could 
potentially expand our understanding of genome organization. Sophisticated 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.12.30.424817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424817
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

computational methods such as DeepSea12 and DeepBind13 have demonstrated that 
many transcription factor binding sites in open chromatin regions could be predicted 
from DNA sequences. Additionally, various computational methods have been 
developed to predict chromatin interactions to complement the experimental 
techniques14-20. Many of these methods rely on using various functional genomics 
data including chromatin immunoprecipitation sequencing (ChIP-seq) data of 
transcription factors and histone modifications, open chromatin data, and 
transcription data14, 16, 18, 20. Methods such as RIPPLE16, TargetFinder18, and JEME14 
reported high performances in predicting enhancer-promoter interactions using 
supervised machine learning approaches. Although the reported performances were 
exaggerated by using cross-validation with random splitting of samples21, these 
methods suggested that chromatin interactions could be potentially predicted from 1-
dimensional functional genomics data22.  

Recently, the convolutional neural network framework was adapted to predict 
Hi-C contact matrix from 1-dimentional sequence data in a method called “Akita” 23. 
CTCF-associated genome folding pattern can be observed in the prediction results, 
suggesting the importance of CTCF in regulating chromatin interactions. In addition, 
prediction results can recapture the differences in genome folding between a normal 
and genetically altered cell lines, indicating that machine learning framework can 
predict different genome folding profiles given different input DNA sequences. 
However, there are several limitations. First, Akita only performs predictions with 1 
Mb DNA sequence regions, thus long-range chromatin interactions cannot be 
predicted. Second, it is unclear whether ChIA-PET data can be predicted. Third, this 
method was not tested for its ability to predict chromatin interactions de novo in 
patient cancer samples.   

In this study, we investigated the possibility of utilizing DNA sequence 
features to predict chromatin interactions between open chromatin regions, 
regardless of distance between them. We demonstrated that open chromatin 
interactions can be predicted accurately from functional genomic data at the 
resolutions of the experimental techniques. We then developed a novel method, 
called Chromatin Interaction Neural Network (ChINN) to predict open chromatin 
interactions from DNA sequences. This model has been developed for RNA 
Polymerase II ChIA-PET interactions, CTCF ChIA-PET interactions and Hi-C 
interactions. ChINN was able to identify convergent CTCF motifs, AP-1 transcription 
family member motifs such as FOS, and other transcription factors such as MYC as 
being important in predicting chromatin interactions.  

Moreover, we further applied our model to a set of 6 newly generated chronic 
lymphocytic leukemia samples, which showed patient-specific chromatin 
interactions. We were able to validate predicted interactions by Hi-C. The models 
were then applied to a cohort of previously published 84 chronic lymphocytic 
leukemia (CLL) samples24 . We found additional evidence for patient-specific 
chromatin interactions, and chromatin interactions that were different in different 
subtypes of CLL. Taken together, our results indicate that ChINN can predict 
chromatin interactions, and application of ChINN to cancer patient samples 
demonstrates widespread patient heterogeneity in chromatin interactions.   
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Results 
Open chromatin interactions can be predicted from functional genomic 
features 

In light of Xi et al.21 and our previous study22 showing that the existing 
prediction methods have exaggerated performances, we first tried to demonstrate 
that chromatin interactions could be predicted from functional genomic data. Many 
previous studies focused on enhancer-promoter interactions that were annotated 
using chromatin interactions derived from HiC or ChIA-PET 14, 16, 18. The enhancers 
used were typically hundreds of base pairs, while the chromatin interaction anchors 
were much larger in size. The resolution discrepancy could lead to the introduction of 
a lot of noises to the training datasets (Figure 1a). Thus, we used the chromatin 
interaction anchors directly. 

Positive samples were constructed from ChIA-PET datasets separately and 
the corresponding distance-matched negative datasets were generated 
(Supplementary Figure 1). The resulting distance-matched datasets have positive-to-
negative ratios of approximately 1:5 and all chromatin interactions were between 
open chromatin regions in the corresponding cell types. We used ChIP-seq data 
of transcription factors and histone modifications commonly available to GM12878, 
K562 and HelaS3 and DNase-seq data from ENCODE25 to annotate the anchors 
and build the feature vectors (Supplementary Table 1). For each chromatin 
interaction, the average signal of each transcription factor, histone modification and 
open chromatin were calculated for both anchors. The distance between two 
anchors was also used as a feature.  

Gradient boosted trees26 were used to build models for each dataset. We 
tested three feature sets: 1) all common functional genomics data and distance; 2) 
distance only; and 3) common functional genomics data only. The models trained on 
all features achieved area under precision-recall curve (auPRC) ranging from 0.62 to 
0.77 (Figure 1b), while models trained on distance are mostly at baseline (Figure 
1d), showing that distance is properly controlled between positive and negative 
samples. The models trained on functional genomics features achieved auPRCs 
ranging from 0.58 to 0.69 (Figure 1c), lower than models trained on all features. 
These results showed that although distance alone cannot predict chromatin 
interactions, the interaction between distance and other features could help to 
distinguish between positive and negative chromatin interactions.  

The across sample performances were lower than within-sample 
performances (Figure 1e). Using peak counts instead of signal values produced 
better across-sample performances but lower within-sample performances (Figure 
1f). Models trained on RNA Polymerase II (Pol2) datasets generalize well to each 
other. Models trained on CTCF ChIA-PET datasets, however, did not generalize well 
to each other. Models trained on CTCF ChIA-PET data perform poorly on Pol2 ChIA-
PET datasets and vice versa. 
 
Open chromatin interactions can be predicted from DNA sequences 

Motivated by the results above, we went on to explore whether open 
chromatin interactions can be predicted from DNA sequences.  We built a 
convolutional neural network, ChINN, to predict chromatin interactions between open 
chromatin regions using DNA sequences (Figure 2a). The models were trained on 
GM12878 CTCF, GM12878 Pol2, HelaS3 CTCF, K562 Pol2, and MCF-7 Pol2 
datasets separately. 
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Compared to using functional genomics data for prediction, using sequences 
produced better within-sample performances for CTCF ChIA-PET datasets with 
auPRCs of 0.77 for GM12878 CTCF and 0.75 for HelaS3 CTCF (Figure 2b), but 
worse within-sample performances for Pol2 ChIA-PET datasets with auPRC of 0.51 
for GM12878 Pol2, 0.6 for K562 Pol2, and 0.47 for MCF-7 Pol2. Including distance 
as a feature to classifier only slightly improved the performances for the distance-
matched datasets (Figure 2c). The across-sample performances of CTCF models 
showed well generalizability to each other (Figure 2d). Pol2 models can also 
generalize to each other. Models trained on CTCF ChIA-PET datasets perform 
poorly on Pol2 ChIA-PET datasets and vice versa (Figure 2d-e). The inability to 
generalize between CTCF chromatin interactions and Pol2 chromatin interactions 
could be attributed to the different sequence contexts. 

For each model, we obtained and matched the position-weight matrices for all 
kernels on the first convolutional layer to known transcription factor binding motifs 
(Supplementary Figure 2). As expected, CTCF motif was captured by both CTCF 
models (Supplementary Figure 2a-b). Other than the CTCF motif, the remaining 
known transcription factor binding motifs learned by the two models were different. 
The patterns learned by Pol2 models showed more diversity and no matching 
transcription factor binding motif was shared among the three models 
(Supplementary Figure 2c-e). Interestingly, some of the transcription factors 
identified, such as ZNF143 in K562 and GATA3 in MCF-7, play important roles in the 
relevant cancer types27, 28. 

Besides, we also trained CHINN model on GM12878, HeLaS3, HMEC, 
HUVEC, IMR90, K562, KBM7, and NHEK HiC data, respectively. The auPRCs of 
within-sample performances using only sequences range from 0.52 to 0.77 for the 
above eight HiC models (Figure 2f). Including distance as a feature to classifier only 
slightly improved the performances for the GM12878, HeLaS3, and NHEK HiC 
models (Figure 2g). The across-sample performances of all eight HiC models 
showed well generalizability to each other (Figure 2h-i).  

Similarly, we obtained and matched the position-weight matrices for all 
kernels on the first convolutional layer to known transcription factor binding motifs for 
eight HiC datasets (Supplementary Table 2) and counted how many times each 
motif was detected (Supplementary Table 3). The CTCF motif was captured by all 
HiC models. The known transcription factor binding motifs learned by different HiC 
models were different. Some motifs, such as FOS, were learned by all models, but 
other motifs showed diversity, for example, ZN436 is detected by all other models 
except for HMEC, and ZIC3 is only detected by HeLaS3 (Supplementary Table 3).  
 
Convergent CTCF motifs are important for prediction of CTCF-associated open 
chromatin interactions 

After extracting the sequence features from both the forward and reverse- 
complement sequences of the anchors, the sequence features were fed into the 
classifier to obtain a probability score that indicated how likely the pair of anchors 
were involved in a chromatin interaction. We obtained the feature importance scores 
of the gradient boosted trees trained and validated using a set of extended datasets 
that includes more negative samples than the distance-matched datasets (Methods, 
Supplementary Figure 3a-d). Distance was the most important feature in all models.  

Next, we focused on the sequence features that were important for the 
prediction. Interestingly, in CTCF models the important sequence features were on 
different strands of the two anchors (Figure 3a-b), while Pol2 models did not show 
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such pattern (Figure 3c-e). For the CTCF models, importance scores of features on 
different strands of the two anchors showed good correlation, while importance 
scores of features on the same strand of the two anchors did not show much 
correlation (Figure 3f). In contrast, the importance scores of features of Pol2 models 
were generally highly correlated regardless of the strand. The kernels on the last 
convolutional layer that generated the most important features in the extended CTCF 
models captured the CTCF motif (Supplementary Figure 3e-f), suggesting that 
convergent CTCF motifs were important for the prediction of CTCF-associated 
chromatin interactions. However, using only CTCF motif information for the 
prediction of CTCF-associated open chromatin interactions could not recapitulate the 
performance achieved by the convolutional neural network (Supplementary Figure 
3g), indicating that CTCF was not the sole determining factor of chromatin 
interactions.  

Similarly, we trained gradient boosted trees with the corresponding extended 
datasets for eight HiC datasets. Distance was still the most important feature in all 
models (Supplementary Figure 4a-d). When we visualized the sequence feature 
importance, although not as obvious as that of the CTCF models, we observed that 
the important sequence features were on different strands of the two anchors 
according to the corresponding mean values (Figure 3g-n). However, the importance 
scores of features did not show highly correlation on HiC datasets (Figure 3o). All 
the extended HiC models captured the CTCF motif via the kernels of the most 
important feature on the last convolutional layer (Supplementary Figure 4e), 
indicating that convergent CTCF motifs were important for the prediction of HiC data 
chromatin interactions.  
 
Predicting chromatin interactions from open chromatin regions 

The above models were trained and evaluated on known chromatin 
interactions. Without knowledge of chromatin interactions, as is the case for many 
clinical samples and cell types, the locations of the anchors would not be known. To 
be able to predict chromatin interactions between open chromatin regions, the 
models need to be able to predict chromatin interactions between anchors 
constructed from open chromatin regions.  

We tested different combinations of merging distances and extension sizes 
(Figure 4a) based on validation datasets and determined that the merging distance 
of 3000 bp and extension size of 1000 bp for the construction of anchors in 
GM12878 cells (Supplementary Figure 5a). 

The pairs generated between anchors constructed from open chromatin 
regions in GM12878 were used to train gradient boosted trees for both CTCF and 
Pol2 models (see Methods). The positive-to-negative ratios were about 1:122 for 
CTCF chromatin interaction labeled samples and 1:186 for Pol2 chromatin 
interaction labeled samples. The CTCF model achieved within-sample auPRC of 
0.514 and the Pol2 model achieved auPRC of 0.347 (Figure 4b). In cross-sample 
evaluation, the CTCF model achieved auPRC of 0.359 on HelaS3 dataset and the 
Pol2 model achieved auPRCs of 0.232 and 0.164 on K562 and MCF-7 datasets, 
respectively (Figure 4b). We were able to validate some of the predicted chromatin 
interactions in MCF-7 cells using 4C-seq (Supplementary Figure 5b-d). Some of the 
validated chromatin interactions were not captured by the MCF-7 Pol2 ChIA-PET 
dataset, thus ChINN is able to identify bona fide chromatin interactions that might 
have been previously missed out due to insufficient sequence coverage. 
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We also generated pairs between anchors constructed from open chromatin 
regions in GM12878 and K562 HiC datasets with different combination of merging 
distance and extension size (Supplementary Figure 6a). We kept to use the same 
parameters as CTCF model, i.e. merging size of 3,000 and extension size of 1,000, 
to train gradient boosted trees due to the not significantly difference of auROC 
achieved by different parameters. The GM12878 and K562 HiC model achieved a 
little bit low auPRC in the within-sample and cross-sample evaluation (Figure 4c). 
However, the performances were acceptable when compared to the random auPRC 
values. Moreover, some of the predicted chromatin interactions in MCF-7 cells using 
4C-seq were able to be validated by our HiC models (Supplementary Figure 6b-d).  
 
Exploring chromatin interactions in patient samples 

Next, we wished to apply our machine learning methods to patient samples to 
understand if our method could predict chromatin interactions in a completely new 
dataset. We obtained 6 Chronic Lymphocytic Leukemia (CLL) patient samples. The 
clinical characteristics are described in Supplementary Table 4.  

We prepared integrated Hi-C, ATAC-Seq and RNA-Seq libraries from these 6 
samples. We used Juicer to call Topologically-Associated Domains and loops from 
these patient samples. Our CLL samples showed many TADs and loops 
(Supplementary Table 5), thus indicating that we were able to perform Hi-C in these 
patient samples. 

Next, we applied GM12878 and K562 HiC models to six new CLL samples. 
The auPRC achieved by GM12878 HiC model range from 0.2772 to 0.4362, which 
are a bit higher than that of K562 HiC model, whose auPRC range from 0.2607 to 
0.3996 (Figure 5a). We calculated the F-score with different thresholds and finally 
determined the threshold of 0.025 for GM12878 model and 0.016 for K562 model to 
make the prediction on new CLL samples (Supplementary Figure 7a-b), where the 
corresponding confusion matrix was shown as Figure 5b-c. 

With the selected threshold, a total of 152,202 HiC-associated open 
chromatin interactions were predicted (Figure 5d) by GM12878 HiC model. One 
question we asked was whether there is patient heterogeneity in Hi-C data. We 
found extensive patient heterogeneity (Figure 5e-f), as observed from the lack of 
conservation of chromatin interactions across the new CLL samples and the 
overlapping peaks between new CLL samples and GM12878 HiC peaks. 

In addition, we also applied our ChINN framework on the six new CLL 
samples and built models using Hi-C and ATAC-seq data from each CLL sample. 
Our Hi-C libraries identified 1795 chromatin interactions unique in uCLL samples and 
10663 chromatin interactions unique in mCLL samples (Figure 6a). Uniqueness 
analysis of the Hi-C interactions from these six CLL samples showed high patient 
heterogeneity (Figure 6b). These models have auPRC range from 0.37 to 0.58 
(Figure 6c). In addition, across-sample testing of these CLL models on other 
datasets from other CLL sample suggest a comparable performance (Figure 6d). 
Inclusion of distance did not result in dramatic increase of the model performance 
(Supplementary Figure 8a-8b). Similarly, the first convolutional layers of all CLL 
models were able to capture the CTCF and AP-1 transcription family member (FOS, 
JUN, JUNB, JUND) binding motif (Supplementary Figure 8c) as the Hi-C models we 
showed earlier (Supplementary Figure 4e; Supplementary Table 2-3).  

After that, we trained gradient boosted trees with the corresponding extended 
datasets of the CLL samples. We observed that similar correlation of the important 
sequence features on different strands of the two anchors (Figure 6e; 
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Supplementary Figure 8d-8e), although the within-sample and cross-sample auPRC 
were decreased (Supplementary Figure 8f-8g). 

We also generated open chromatin pairs using ATAC-seq to train the gradient 
boosted trees (merging size: 3000 bp; extension size 1000 bp). Although the 
performances decreased compared with using Hi-C anchor region pairs as input, 
they were still higher than the random auPRC values (Supplementary Figure 8h-8k). 
We further used the 401 CLL sample model to predict chromatin interactions in 
MCF7 cells, as 401 CLL model have the highest within-sample and across-sample 
performance. The predicted interactions correlate quite well with the real 4C-seq 
interactions (Figure 6f-6g, Supplementary Figure 8l-8o, threshold = 0.016).  

One question we asked was whether there is patient heterogeneity in Hi-C 
data. We first tried to associate the real and predicted Hi-C interactions with 
differentially expressed genes identified from RNA-seq data. The results showed that 
although the trend of different IFC scores could be observed, these differences were 
not significant (Supplementary Figure 8p-8q). We also observed that the Hi-C 
interactions and ATAC-seq peaks in the new CLL samples showed high patient 
heterogeneity (Supplementary Figure 8r). These patient heterogeneities may be a 
reason of the limited sample size in the IFC score analysis after we collapsed all six 
sample into mutated and unmutated categories (Supplementary Figure 8p-8q). 

Taken together, our results demonstrate across-sample prediction capability 
for the ChINN model. In addition, we observed high patient heterogeneity in the new 
CLL samples, which may affect the predicted results and integrative analysis. 
 
Exploring chromatin interactions in a cohort of patient samples 

Next, we used our machine learning method to predict chromatin interactions 
in a cohort of patient samples, and then analyzed the data. We applied the above 
models to 84 chronic lymphocytic leukemia (CLL) samples whose open chromatin 
profiles were available by ATAC-seq24.  

A total of 48,443 CTCF-associated open chromatin interactions and 23,633 
Pol2-associated open chromatin interactions were predicted based on the pooled 
open chromatin regions of all samples (Figure 7a). Pol2-associated chromatin 
interactions were better conserved across the CLL samples than CTCF-associated 
chromatin interactions (Figure 7b), which could be attributed to that open chromatin 
regions in the CLL samples that overlapped with GM12878 Pol2 peaks were better 
conserved than those overlapping with GM12878 CTCF peaks (Figure 7c). Using 
this set of ATAC-seq data in CLL samples, it was reported that regions with higher 
open chromatin signals in uCLL samples showed strong enrichment of binding sites 
of CTCF, RAD21 and SMC324, which could also contribute to the high variability of 
CTCF chromatin interactions. Thus, we again observed extensive patient 
heterogeneity of CTCF and RNA Polymerase II-associated chromatin interactions in 
these clinical samples.  

When applying the GM12878 HiC model to the CLL samples, a total of 
758,407 HiC-associated open chromatin interactions were predicted (Figure 8a). The 
phenomenon observed from the CTCF model also can be observed from the HiC 
model, for example, the chromatin interactions across the CLL samples and the 
overlapping peaks between CLL samples and GM12878 HiC peaks were not well 
conserved as that of Pol2 (Figure 8b-c). The predicted chromatin interactions by HiC 
model were also possible to separate mCLL and uCLL samples (Supplementary 
Figure 9a). Most differential chromatin interactions were associated with changes in 
the occurrence of one anchor (Figure 8d). Genes that were upregulated in uCLL 
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were associated with uCLL-specific chromatin interactions (Figure 8e). In the set of 
differential chromatin interactions whose anchors did not have the same level of 
changes as the chromatin interactions themselves between the two subtypes, the 
rate of co-occurrences of the two anchors within the same sample and the levels in 
chromatin interactions could change (Supplementary Figure 9b). Examples of 
predicted chromatin interactions are shown in Figure 8f-g and Supplementary Figure 
9e-h. Thus, we observed extensive patient heterogeneity of Hi-C predicted 
associated chromatin interactions in these clinical samples. 

Clinical samples differ from each other due to a wide variety of factors 
including different driver mutations and different underlying genetics and epigenetics 
of each patient. Here we asked whether the subtype of the CLL samples could be 
one factor giving rise to patient heterogeneity. The CLL samples could be divided 
into two subtypes based on IGHV mutation status: 34 IGHV-unmutated CLL (uCLL) 
samples and 50 IGHV-mutated CLL (mCLL) samples. IGHV mutation status is an 
important prognostic biomarker in CLL, with mCLL being less aggressive24. 

Using the predicted chromatin interactions, it was possible to separate mCLL 
and uCLL samples (Supplementary Figure 10a). Variations in occurrences of 
chromatin interactions between the two subtypes of CLL were highly associated with 
variations in occurrences of anchor regions. Most differential ChIA-PET chromatin 
interactions were associated with changes in the occurrence of one anchor (Figure 
7d). There was a small portion of differential chromatin interactions whose anchors 
did not have the same level of changes as the chromatin interactions themselves 
between the two subtypes. In this set of differential chromatin interactions, the rate of 
co-occurrences of the two anchors within the same sample could change, 
contributing to the levels of changes in chromatin interactions (Supplementary Figure 
10b). With the GM12878 HiC model, we were also able to see differences in 
connectivity at transcription start sites associated with differences in the occurrences 
of the open chromatin regions at the transcription start sites (Supplementary Figure 
9d). 

Genes with higher expression in uCLL showed higher connectivity at the 
transcription start sites (Figure 7e, Supplementary Figure 10c, Figure 6e, 
Supplementary Figure 9c). The differences in connectivity at transcription start sites 
were associated with differences in the occurrences of the open chromatin regions at 
the transcription start sites between CLL subtypes (Supplementary Figure 10d), and 
also, differences in connectivity were sometimes associated with differences in distal 
interacting regions (Supplementary Figure 10e, Figure 7f). Examples of predicted 
chromatin interactions are shown at important CLL prognostic markers, such as LPL 
(Figure 7g), ZAP70 (Supplementary Figure 10f), ZNF667 (Supplementary Figure 
10g), and CD38 (Supplementary Figure 10h)29-32. Taken together, our results 
indicate that different subtypes show different profiles of chromatin interactions. 
Different subtypes may be a source of patient heterogeneity in clinical samples.  
 
Discussion 

We described a convolutional neural network, ChINN, which can extract 
sequence features and be coupled to classifiers to predict chromatin interactions 
between open chromatin regions using DNA sequences and distance. This approach 
only requires the use of open chromatin data and showed good generalizability on 
the same type of chromatin interactions across different cell types. Thus, it has the 
potential to be applied to large sets of clinical samples with limited biological 
materials. In addition, CHINN can discover sequence features that are important for 
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predicting chromatin interactions, including shared features such as the CTCF motif 
and cell-type specific features such as GATA3 binding motif in MCF-7, which is 
frequently mutated in breast cancer33.  

We showed that at resolutions limited by the experimental techniques, 
chromatin interactions between open chromatin regions could be predicted from 1-
dimensional functional genomics data with reasonable accuracy. In distance-
controlled experiments, our prediction method using functional genomics data 
performed better on Pol2 chromatin interactions but worse on CTCF chromatin 
interactions compared to sequence-based CHINN. Such differences could be 
attributed to the lower functional genomic complexity at CTCF binding sites and 
functional genomic data might fail to capture the convergent CTCF binding motifs 
often observed at CTCF-mediated chromatin interactions.  

On the other hand, Pol2 binding sites do not have such distinctive DNA 
motifs, making it harder to predict Pol2 binding sites12, 13 and consequently harder to 
predict Pol2-associated chromatin interactions from DNA sequences. However, Pol2 
binding sites are usually occupied by many other transcription factors, making it 
easier to predict Pol2-associated chromatin interactions using functional genomic 
data. 

The application of CHINN models with gradient boosted tree classifiers to a 
set of CLL ATAC-seq samples we were able to show that several of the predicted 
chromatin interactions could be validated by Hi-C. While there were also chromatin 
interactions that were predicted but not validated by Hi-C, our results showing that 
4C could validate predicted chromatin interactions in MCF-7 cells that were not 
identified by Hi-C suggest that these so-called “false positives” might potentially be 
real chromatin interactions that were simply not captured by Hi-C due to limited 
sequencing depth of Hi-C libraries.  

Additionally, application of ChINN models in CLL revealed that although there 
were chromatin interactions that were ubiquitous in all samples, there were a large 
number of patient-specific chromatin interactions and also chromatin interactions 
that were found in fewer than half the samples. One reason for these different 
chromatin interactions was due to different patient subtypes. We found systematic 
differences in chromatin interactions involving important CLL prognostic genes, such 
as LPL and CD38, between the IGHV-mutated and IGHV- unmutated subtypes. 
These results suggest that differences in chromatin interaction landscapes between 
CLL subtypes could have important functional implications in CLL biology.   

Our observation of widespread patient heterogeneity in patient cancer 
samples highlights the need for precision medicine and the need to understand 
chromatin interactions in individual patient samples. Machine learning offers one way 
for us to predict chromatin interactions in a cost-effective manner. The CHINN 
method may be useful in the future in understanding chromatin interactions in large 
cohorts of clinical samples and identifying chromatin interaction-based biomarkers. 
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Methods 
We performed machine learning, Hi-C interaction analysis, ATAC-seq, RNA-

seq and gene expression analyses as described in the following sections. A list of all 
libraries used and generated is provided in Supplementary Table 6.  
 
Machine learning of ChIA-PET data  

The development of the sequence models was divided into three stages. In 
the first stage, the distance-matched datasets were used to train the models consist 
of convolutional neural network (feature extractor) with fully connected layers as the 
classier, as shown in Figure 2a. In the second and third stage, the feature extractors 
trained in the first stage were frozen and gradient tree boosting classifiers were used 
as classifiers. In the second stage, the gradient tree boosting classifiers were trained 
using the extended datasets. In the third stage, the gradient tree boosting classifiers 
were trained using all potential pairs of anchors generated from open chromatin data 
and annotated by existing ChIA-PET data. Thus, the final result was a program that 
took in a list of open chromatin regions and produced predictions of chromatin 
interactions between the open chromatin regions.  

The feature extractors took DNA sequences of both anchors of a potential 
interacting pair as input. The classier then took the features generated by the feature 
extractor and optionally the distance between anchors as input and produced a 
probability score of interaction. More details can be found from Supplementary 
Methods1. 
 
Machine learning of Hi-C data from cell lines  

We collected the Hi-C interactions from 8 cell lines, including GM12878, 
HeLaS3, HMEC, HUVEC, IMR90, K562, KBM7, and NHEK. The construction of 
machine learning model using Hi-C data from cell lines follows the same procedures 
as described in that of ChIA-PET data, where the positive data is annotated 
according to the Hi-C interactions. 
 
Machine learning of Hi-C data from clinical samples 

We collected the Hi-C interactions from 6 CLL clinical samples, including CLL 
102, CLL 312, CLL 324, CLL 344, CLL 401, and CLL 484. The construction of 
machine learning model using Hi-C data from cell lines follows the same procedures 
as described in that of ChIA-PET data, where the positive data is annotated 
according to the Hi-C interactions. The CLL 401 model was used in the across-
sample prediction. 
 
Preparation of clinical samples  

Chronic Lymphocytic Leukemia patient samples (either peripheral blood or 
bone marrow isolates) were obtained from the Leukemia Cell Bank at the National 
University Health System (NUHS) with patient consent, under Institute Review Board 
number H-20-022E. The CLL samples were either bone marrow aspirates 
(312,324,344,484, and 102) or peripheral blood (401). The samples were 
immediately frozen after collection and stored in liquid nitrogen until further use. 

The samples were taken out of the liquid nitrogen and thawed by dipping in a 
beaker containing water at 37°C. Once the sample was thawed completely, the cells 
were immediately transferred to the 15ml falcon and resuspended in 10 ml PBS 
containing 2% fetal bovine serum (FBS) and 2mM EDTA. The cells were pelleted at 
300 × g for 5 minutes at room temperature and resuspended in 5ml PBS containing 
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2% FBS and 2 mM EDTA. The cells were counted and checked for viability using 
Trypan Blue. 

RNA and genomic DNA was isolated from the CLL patient samples using 
AllPrep DNA/RNA/miRNA universal kit (Qiagen) according to the to the 
manufacturer’s instructions. Briefly, cells lysate were homogenized by 21G needle 
and syringe together with lysis buffer and 1M DTT. After that, the homogenized 
lysate were transferred into AllPrep DNA mini spin column for genomic DNA 
extraction. The genomic DNA were then eluted by water and proceeded for the 
IGHV mutation test. The flow through after the AllPrep DNA mini spin column were 
then proceeded into RNease Mini spin column with on-column digestion for RNA 
extraction. The RNA were eluted in water and further sent for RNA-seq.  

IGHV mutation test was performed following the method in Agathangelidis et 
al34. Briefly, IGHV-IGHD-IGHJ gene rearrangements were amplified by 5’ IGHV 
leader primers and 3’ IGHJ primers (primer sequences are provided in 
Supplementary Table 6) using genomic DNA (gDNA) from CLL patient samples. The 
PCR amplification was performed by PCR core kit (Qiagen). Final PCR products 
were imaged by agarose gel electrophoresis and purified by PCR purification kit 
(QIAGEN). Purified PCR products were confirmed through Sanger sequencing by 3’ 
IGHJ primers. The Sanger sequencing results were analysed by IMGT/V-QUEST 
tools35 to get the IGHV identity scores. If the identify score was larger than 98%, the 
CLL sample was considered unmutated sample while the score was lower than 98%, 
the CLL sample was considered as an mutated sample. 
 
In situ Hi-C  
       Hi-C libraries were prepared using the Arima Genomics kit (Arima Genomics, 
San Diego, CA) in conjunction with the Swift Biosciences Accel-NGS 2S Plus DNA 
Library Kit (Cat # 21024) and Swift Biosciences Indexing Kit (Cat # 26148) following 
the manufacturer's recommendations. In brief, 1X 106 cells were fixed with 
formaldehyde in the nucleus. Fixed cells were permeabilized using a lysis buffer and 
then digested with a restriction enzyme cocktail supplied in the Arima HiC kit. The 
resulting overhangs were filled in with biotinylated nucleotides followed by ligation. 
After ligation, crosslinks were reversed, and the DNA was purified from protein. 
Purified DNA was treated to remove biotin that was not internal to ligated fragments. 
Hi-C material was then sonicated using a Covaris Focused-Ultrasonicator M220 
instrument to achieve 300-500 bp fragment sizes. The sonicated DNA was double-
size selected using Ampure XP beads, and the sequencing libraries were generated 
using low input Swift Biosciences Accel-NGS 2S Plus DNA Library Kit (Cat # 21024) 
and Swift Biosciences Indexing Kit (Cat # 26148). The Hi-C libraries were loaded on 
an Illumina flow cell for paired-end 150-nucleotide read length sequencing on the 
Illumina HiSeq 4000 following the manufacturer's protocols. 
 
Cell culture 

MCF-7, a breast cancer cell line, was cultured in DMEM/F12 (Gibco) 
supplemented with 10% FBS and 1% penicillin-streptomycin and maintained at 
37°C, 5% CO2 humidified incubator. Before 4C-seq assays, MCF-7 cells were grown 
in hormone-free media: they were washed with PBS twice to remove any residual 
FBS or growth factors and incubated in phenol red-free medium (Invitrogen/Gibco) 
supplemented with 10% charcoal-dextran stripped FBS (Hyclone) and 1% pencillin-
streptomycin for a minimum of 72 hours. Hormone-depleted MCF-7 cells were then 
treated with oestrogen (Sigma) to a final concentration of 100 nM for 45 mins before 
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4C-seq assay. The control cells were treated with an equal volume and 
concentration of vehicle, ethanol (Sigma), for 45 min. 
 
Circular chromosome conformation capture (4C)  

4C-seq assays were performed according to Splinter et al68 with slight 
modifications. Briefly, 4�×�107 cells were cross-linked with 1% formaldehyde. The 
nuclei pellets were isolated by cell lysis with cold lysis buffer (10mM Tris-HCl, 10mM 
NaCl, 5mM EDTA, 0.5% NP 40) supplemented with protease inhibitors (Roche). 
First step digestion was performed overnight at 37°C with HindIII enzyme (NEB). 
Digestion efficiency was measured by RT-qPCR with HindIII site-specific primers. 
After confirmation of good digestion efficiency, DNA was ligated overnight at 16°C by 
T4 DNA ligase (Thermo Scientific) and de-crosslinked. Following de-crosslinking, 
DNA was extracted by phenol-chloroform and this is the 3C library. The DNA was 
then processed for second digestion with DpnII enzyme (NEB) overnight at 37°C. 
After final ligation, 4C template DNA was obtained, and the concentration was 
determined using Qubit assays (Thermo Scientific). The 4C template DNA was then 
amplified using specific primers with Illumina Nextera adapters and sent for 
sequencing on the MiSeq system. All the 4C genome coordinates are listed in 
Supplementary Table 6. 
 
RNA-seq  

Total RNA was extracted from the CLL samples using the All Prep DNA/RNA 
kit (Qiagen). The RNA was quantified using the Qubit BR RNA Assay kit. RNA-seq 
libraries (strand specific and ribo zero) were constructed using Illumina Total RNA 
Prep kit (Illumina, San Diego, CA, USA) and sequenced 150 bases paired-end on 
the Illumina HiSeq 4000 following the manufacturer's instruction.  
 
ATAC-seq 

ATAC-seq library was prepared as described previously36. Briefly, 50,000 
cells were lysed for nuclei isolation using ATAC-Resuspention Buffer containing 
0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin. Transposition reaction was 
performed for 30 min at 37C using Nextera DNA library preparation kit (NEB). 
Transposed fragments were amplified by eight PCR cycles for library preparation. 
Primer dimers and long DNA fragments were removed by AMPure XP beads 
purification step. DNA concentration was measured by Qubit fluorometric assay and 
library quality was determined by Bioanalyzer. The library was sequenced in 
Nextseq 500 76bp paired-end configuration using Illumina platform. 
 
Data deposition 
The data for the RNA-Seq, ATAC-Seq and Hi-C data has been deposited with GEO 
accession number GSE163896. The 4C data has been deposited with GEO 
accession number GSE135052, and is publicly available.  
 
Data availability 
All relevant data supporting the key findings of this study are available within the 
article and its Supplementary Information files or from the corresponding author on 
reasonable request. 
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Code availability 
The codes are freely available at: https://github.com/caofan/chinn .  
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Figures 
 
 
Figure 1: Performances of the functional genomic models on distance-
matched datasets. a, Illustration of resolution discrepancy between cis-regulatory 
elements and chromatin interaction anchors. b-d, Precision-recall curves of the 
functional genomic models on distance-matched datasets using features based on 
b, functional genomic data and distance (dis); c, only functional genomic data; and 
d, only distance. Numbers in brackets indicate the area-under precision-recall curve. 
e-f, Across-sample performances using distance (dis) and e, signal values and f, 
peak counts. 
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Figure 2: Architecture and performances of the sequence-based models on 
distance-matched datasets. a, The architecture of the sequence-based models 
using to train on distance-matched datasets. b-c, Precision-recall curves of the 
sequence-based models on distance-matched datasets using b, only sequence 
features or c, sequence features with distance. The numbers in the brackets 
indicates the area under precision-recall curves. d-e, Across-sample performances 
as measured by area-under precision-recall curve (auPRC) of the models on 
distance-matched datasets using d, only sequence features or e, sequence features 
with distance. f-g, Precision-recall curves of the sequence-based models on 
distance-matched HiC datasets using f, only sequence features or g, sequence 
features with distance. The numbers in the brackets indicates the area under 
precision-recall curves. h-i, Across-sample performances as measured by area-
under precision-recall curve (auPRC) of the models on distance-matched HiC 
datasets using h, only sequence features or i, sequence features with distance. 
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Figure 3: Sequence feature importance scores of gradient boosted trees 
trained on extended datasets. a-e, The importance scores of sequence features 
extracted from both directions (F: forward; RC: reverse complement) of the two 
anchors (left and right) by models trained on different datasets. The orange 
horizontal lines indicate average importance scores of the features from the strand of 
the anchor. f, Pearson correlations between feature importance scores of the two 
anchors. g-n, The importance scores of sequence features extracted from both 
directions (F: forward; RC: reverse complement) of the two anchors (left and right) 
by models trained on HiC datasets. The orange horizontal lines indicate average 
importance scores of the features from the strand of the anchor. o, Pearson 
correlations between feature importance scores of the two anchors in HiC datasets. 
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Figure 4: Performances of the from-DNase models and validations. a, 
Illustration of the two parameters, merging distance and extension size, used in 
constructing putative chromatin interactions anchors from open chromatin regions. b, 
Area under precision-recall curves of the from-DNase models. c, Area under 
precision-recall curves of the HiC from-DNase models. 
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Figure 5: Applying HiC model on new CLL samples. a, the auPRC values achieved 
by GM12878 and K562 HiC model, x-axis: new CLL samples. b-c, The confusion 
matrices for 6 new CLL samples using K562 HiC model with threshold of 0.016 and 
GM12878 HiC model with threshold of 0.025. x-axis: true label, y-axis: predicted 
label. 0: negative, 1: positive. d, Summary of the predicted chromatin interactions in 
the 6 new CLL samples and the differential chromatin interactions between uCLL 
and mCLL samples. e, Conservation analysis of predicted chromatin interactions in 
new CLL samples. All pairs: all possible pairs used for prediction. f, Uniqueness 
analysis of open chromatin regions that overlap with HiC peaks from GM12878 cells 
in new CLL samples. All: all open chromatin regions. 
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Figure 6. Performances of the sequence-based models in new CLL samples. a, 
Venn diagram of chromatin interactions identified by Juicer in unmutated and 
mutated CLL samples. b, Uniqueness analysis of real Hi-C and predicted Hi-C 
chromatin interactions in new CLL samples. Hi-C, real Hi-C interactions; predicted, 
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predicted chromatin interactions using CLL 401 model. c, Precision-recall curves of 
the sequence-based models on distance-matched HiC datasets using only sequence 
features. d, Across-sample performances as measured by area-under precision-
recall curve (auPRC) of the models on distance-matched HiC datasets using only 
sequence features. e, The importance scores of sequence features extracted from 
both directions (F: forward; RC: reverse complement) of the two anchors (left and 
right) by models trained on CLL 401 sample. The orange horizontal lines indicate 
average importance scores of the features from the strand of the anchor. Pearson 
correlations between feature importance scores of the two anchors are given in 
table. f, Validations of predicted chromatin interactions by 4C-seq at GREB1 gene 
region in MCF-7 cells. In the predicted Hi-C interaction panel, only those interactions 
connected to GREB1 promoter were shown. g, Validations of predicted chromatin 
interactions by 4C-seq at SIAH2 gene region in MCF-7 cells. In the predicted Hi-C 
interaction panel, only those interactions connected to SIAH2 promoter were shown. 
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Figure 7: Predicted chromatin interactions in CLL samples. a, Summary of the 
predicted chromatin interactions in the 84 CLL samples and the differential 
chromatin interactions between uCLL and mCLL samples. b, Conservation analysis 
of predicted chromatin interactions in the CLL samples. All pairs: all possible pairs 
used for prediction. c, Uniqueness analysis of open chromatin regions that overlap 
with CTCF or Pol2 peaks from GM12878 cells in the CLL samples. All: all open 
chromatin regions. d, Distribution of differential CTCF and Pol2 chromatin 
interactions based on whether both anchors (Both), one anchor (One-side), or 
neither anchors (Neither) showed the same level of differences between uCLL and 
mCLL samples as the associated chromatin interaction. e, Association of differences 
in chromatin interactions between uCLL and mCLL samples with differentially 
expressed genes identified from a set of microarray samples. IFC: the fold change of 
the average number of chromatin interactions observed at the gene promoter in 
uCLL samples over that in mCLL samples. p-values were calculated using the 
Kruskal-Wallis test. f-g, Examples of genes, ZBTB20 and LPL, whose different 
connectivity are associated with differences in distal regions. The red bars and 
curves indicate significantly different open chromatin regions and chromatin 
interactions based on Fisher’s Exact test. 
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Figure 8: Predicted chromatin interactions in CLL samples using GM12878 HiC 
model. a, Summary of the predicted chromatin interactions in the 84 CLL samples 
and the differential chromatin interactions between uCLL and mCLL samples. b, 
Conservation analysis of predicted chromatin interactions in the CLL samples. All 
pairs: all possible pairs used for prediction. c, Uniqueness analysis of open 
chromatin regions that overlap with HiC peaks from GM12878 cells in the CLL 
samples. All: all open chromatin regions. d, Distribution of differential HiC chromatin 
interactions based on whether both anchors (Both), one anchor (One-side), or 
neither anchors (Neither) showed the same level of differences between uCLL and 
mCLL samples as the associated chromatin interaction. e, Association of differences 
in chromatin interactions between uCLL and mCLL samples with differentially 
expressed genes identified from a set of microarray samples. IFC: the fold change of 
the average number of chromatin interactions observed at the gene promoter in 
uCLL samples over that in mCLL samples. p-values were calculated using the 
Kruskal-Wallis test. f-g, Examples of genes, ZBTB20 and LPL, whose different 
connectivity are associated with differences in distal regions. The red bars and 
curves indicate significantly different open chromatin regions and chromatin 
interactions based on Fisher’s Exact test. 
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